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The prediction of trajectories of buoyancy-driven objects immersed in a viscous fluid
is a key problem in fluid dynamics. Simple-shaped objects, such as disks, present a
great variety of trajectories, ranging from zig-zag to tumbling and chaotic motions. Yet,
similar studies are lacking when the object is permeable. We perform a linear stability
analysis of the steady vertical path of a thin permeable disk, whose flow through the
microstructure is modelled via a stress-jump model based on homogenization theory. The
relative velocity of the flow associated with the vertical steady path presents a recirculation
region detached from the body, which shrinks and eventually disappears as the disk
becomes more permeable. In analogy with the solid disk, one non-oscillatory and several
oscillatory modes are identified and found to destabilize the fluid–solid coupled system
away from its straight trajectory. Permeability progressively filters out the wake dynamics
in the instability of the steady vertical path. Modes dominated by wake oscillations are
first stabilized, followed by those characterized by weaker, or absent, wake oscillations, in
which the wake is typically a tilting induced by the disk inclined trajectory. For sufficiently
large permeabilities, the disk first undergoes a non-oscillatory divergence instability,
which is expected to lead to a steady oblique path with a constant disk inclination, in
the nonlinear regime. A further permeability increase reduces the unstable range of all
modes until quenching of all linear instabilities.
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1. Introduction

From the flight of dandelion seeds transported by the wind to phytoplankton settling
in the ocean, the prediction of bifurcations resulting from fluid–solid interactions on a
freely falling object is a fascinating subject, with countless applications spanning from
meteorology, ecology and insect flight to engineering applications (see Ern et al. (2012)
for a review). The interactions between wake and free-fall dynamics have been widely
investigated in the literature. Everyday objects such as paper sheets show several falling
paths, such as fluttering and tumbling trajectories, faithfully reproduced by ordinary
differential equation (ODE) models which include aerodynamic interactions (Belmonte,
Eisenberg & Moses 1998; Pesavento & Wang 2004; Andersen, Pesavento & Wang 2005).
Similar zig-zag and oblique paths have been observed for buoyant drops and bubbles
(Magnaudet, Rivero & Fabre 1995; Magnaudet & Eames 2000; Mougin & Magnaudet
2001). Other relevant examples include particle settling and transport (Stringham, Simons
& Guy 1969; Dietrich 1982; Matas, Morris & Guazzelli 2004; Camenen 2007; Guazzelli,
Morris & Pic 2011).

Buoyancy-driven disks have been the object of substantial interest in the fluid dynamics
community since they present a great variety of falling paths, such as zig-zag, tumbling and
chaotic motion (Willmarth, Hawk & Harvey 1964; Field et al. 1997; Fernandes et al. 2008).
Auguste, Magnaudet & Fabre (2013) performed an extensive numerical study, identifying
several planar and non-planar falling paths, varying independently the fluid properties and
disk inertia. The authors highlighted the influence of the disk thickness on the resulting
falling trajectories. For disks of very small thickness, a relatively larger flow inertia leads
to the transition from a steady vertical (SV) path to a zig-zag regime, characterized by very
low-amplitude oscillations at low values of the disk inertia and large-amplitude oscillations
at moderate and large disk inertia. For a ratio between the disk thickness and diameter
of 0.1, the authors observed the transition from the SV path to a regime characterized
by a steady oblique trajectory with a constant inclination of the disk, analogous to the
one obtained by Fabre, Tchoufag & Magnaudet (2012) via a weakly nonlinear expansion
around the SV path.

However, direct numerical simulations suffer from being extremely costly in terms of
computational time, in particular in parametric studies. The temporal transient becomes
(virtually) infinitely long close to instability thresholds. From this perspective, a suitable
approach to tackling large parametric studies and obtaining precise thresholds is linear
stability analysis. This tool can provide the threshold value of the instability of a certain
path with respect to perturbations as well as detailed information about the unstable
neutral mode, in reasonable computational time (Assemat, Fabre & Magnaudet 2012).
The advantage becomes striking when the stability of an axisymmetric state, e.g. the
SV path, is considered. Exploiting the axisymmetry of the flow associated with the SV
path, the three-dimensional problem can also be reduced to a two-dimensional one, with
an enormous reduction of the computational times (cf. Meliga, Chomaz & Sipp (2009b)
among others). As a consequence of the linearization of the governing equations, linear
stability analysis, however, allows one to understand the emerging path only in the vicinity
of the instability threshold and cannot give information on the nonlinear saturated state.
The instability of the SV axisymmetry-preserving path was rationalized in Tchoufag, Fabre
& Magnaudet (2014) via a linear stability analysis exploiting a Fourier decomposition of
the azimuthal perturbations. The SV path presents several instabilities, with azimuthal
wavenumber m = ±1, which depend on the considered disk inertia; three oscillatory and
one non-oscillatory modes are identified. Although the related neutral curves, i.e. curves
associated with a zero growth rate in the parameter space, often intersect, a threshold
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value of the Reynolds number could nevertheless be identified, below which the SV
trajectory is stable. This value depends on the disk inertia. The authors also analysed
the mutual coupling between the wake and disk dynamics by considering the qualitative
differences between the real and imaginary parts of the modes, which represent the wake
at two different instants of time within the period of oscillation of the mode. Strong
re-organizations of the wake pattern imply a strong mutual coupling between wake and
disk dynamics, associated with large-amplitude oscillations in the nonlinear simulations
of Auguste et al. (2013). These results were in quite good agreement with the observation
of low- and large-amplitude zig-zag regimes. Besides, linear stability analysis predicted
the onset of the steady oblique path for a disk of ratio thickness–diameter of 0.1, in very
good agreement with the results of Auguste et al. (2013). When two or more modes present
similar thresholds, the dynamics results from a competition of the different modes (Fabre,
Auguste & Magnaudet 2008), which cannot be unveiled only through linear stability
analysis. In this case, weakly nonlinear analyses can shed light on the emerging trajectories
or wake patterns, as performed by Meliga, Chomaz & Sipp (2009a), Citro et al. (2016) and
Sierra-Ausín et al. (2022) for the wake of fixed and rotating spheres.

Several falling objects such as dandelions are known to possess permeable structures
(Cummins et al. 2018). The flow past a sufficiently permeable object may significantly
differ from the one around a solid, impervious body, see e.g. Zong & Nepf (2012) and Ciuti
et al. (2021). Here, we focus on the behaviour of thin permeable objects. For Reynolds
numbers of the order of Re ∼ 104, the wake flow past permeable plates exhibits a regime
characterized by a steady wake region that extends far downstream of the body and a region
further downstream associated with the vortex shedding, resulting in a detached mean
recirculation region. For very large permeabilities, the vortex shedding is inhibited due to
the air bleeding through the permeable body (Castro 1971). This behaviour was confirmed
in Ledda et al. (2018) for Re ∼ 100. The recirculation region past permeable plates
abruptly detaches and shrinks at large permeability, and disappears. The increase in the
critical Reynolds number for the onset of the von Kármán vortex street past the permeable
object, obtained through linear stability analysis, becomes abrupt when approaching a
critical value of the permeability, beyond which the linear instability is quenched. Similar
flow features were observed in the case of thin permeable disks (Cummins et al. 2017;
Ledda et al. 2019).

Flow around and through thin permeable objects may be computationally expensive
due to the large range of length scales involved (Falcucci et al. 2021) and potentially
limited by the choice of a specific microscopic configuration. Homogenization provides
insights into the modelling of flow through porous structures, rigorously establishing
a link between the microstructure and its macroscopic effect on the large-scale flow
(Hornung 1997; Zampogna & Bottaro 2016; Lācis & Bagheri 2017). Homogenized models
recover the macroscopic effects of the permeability and provide a formal framework
to obtain these permeability properties from a microscopic structure, and vice versa
(Ciuti et al. 2021; Ledda et al. 2021). Therefore, the homogenized model does not suffer
from the limitations stemming from the choice of a particular microscopic geometry.
It also allows one to design specific microstructures which target the parameters used
in the macroscopic boundary conditions. Thin permeable objects can be modelled as
microstructured membranes, enabling the use of a homogenized model, which states
that the velocity at the membrane is proportional to the difference of stresses across the
membrane itself (Zampogna & Gallaire 2020). The same model was validated in Ledda et
al. (2021) for Re ∼ 100.
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While the buoyancy-driven instabilities of solid objects have been widely investigated
in the literature, similar studies are lacking in the case of permeable structures. The
prediction of the instability of trajectories of falling thin permeable objects is of significant
interest owing to the large range of applications (Ern et al. 2012), such as environmental
ones (Cummins et al. 2018). Permeable disks are a suitable testing ground to investigate
the role of permeability in modifying falling or rising trajectories of thin bodies. To
this purpose, the combination of linear stability analysis and the homogenized model
is suitable to perform a parametric study and give a first, unified, understanding of the
path instability of a thin buoyancy-driven permeable disk. The employed formalism allows
one to obtain general results, independent of a specific microscopic structure. Therefore,
with the aim of unveiling the modifications induced by permeability to the rich picture of
instabilities which characterize the rise or fall of a buoyancy-driven thin disk, we perform
a linear stability analysis of the SV path with respect to azimuthal perturbations of a disk
modelled as a thin permeable membrane. We predict the values of the parameters which
ensure a stable steady, vertical path, and the emerging unstable trajectories. We begin by
introducing the theoretical framework and numerical implementation. We then describe
the flow features of the SV path and its instabilities as the permeability properties of the
disk are varied.

2. Problem formulation

We consider a thin permeable disk composed of a periodic microstructure of characteristic
length �, as depicted in figure 1. We introduce the separation of scales parameter

ε = �

D
, (2.1)

where D is the disk diameter (see figure 1). The thickness of the disk is of the same order
as the microscopic characteristic length, i.e. h/D = O(ε) � D. The disk is composed of
a material of density ρb and immersed in a viscous fluid of density ρ and viscosity μ; we
denote with V its volume. We denote with v̄(t̄) and Ω̄(t̄) the translational and rotational
velocities of the body during its trajectory, respectively. We introduce a Cartesian reference
frame (x̄, ȳ, z̄) for Newton’s equations, with origin on the disk centre and initially aligned
with a fixed reference frame (x̄1, x̄2, x̄3). In contrast, we employ cylindrical coordinates
(x̄, r̄, ϕ̄) for the incompressible Navier–Stokes equations for the flow dynamics (see
figure 1). Following Tchoufag et al. (2014), the flow equations are written in terms of
absolute velocity, but with the above-defined coordinate systems rotating and translating
with the disk. The x̄-direction, common to both coordinate systems, is aligned along the
disk axis.

The equations for the fluid–structure coupled problem are non-dimensionalized with the
fall or rise velocity of the SV path USV , stress ρU2

SV and disk diameter D. We denote with
M = ρbV the mass of the disk. Dropping bars for non-dimensional variables, the system
of equations reads

∇ · u = 0,
∂u
∂t

+ (u − v − Ω × r)∇u + Ω × u = −∇p + 1
Re

∇2u, (2.2a)

M∗
(

dv

dt
+ Ω × v

)
− M − ρV

ρD2U2
SV

g =
∫

Γint

Σ(u, p)n dΓ, (2.2b)

I∗
dΩ

dt
+ Ω × (I∗Ω) =

∫
Γint

r × [Σ(u, p)n] dΓ, lim
‖r‖→∞

u = 0, (2.2c)
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Figure 1. (a) Sketch of the falling disk with relevant quantities and the employed reference frames, together
with a sketch of a possible microscopic geometry with relative characteristic quantities. (b) Sketch of the
relative velocity recirculation region past a falling permeable disk.

where g is the gravity vector, ‖r‖ is the position vector from the disk centre, n is the
normal to the considered boundary, Σij = −pδij + (1/Re)(∇u)ij is the non-dimensional
stress tensor, Re = (ρUSVD)/μ is the Reynolds number defined with the disk diameter,
M∗= M/(ρD3) is the non-dimensional disk mass and I∗ is the dimensionless disk inertia
tensor, whose non-zero components are I∗xx and I∗yy = I∗zz = I∗. We also introduce the three
angles describing the inclination of the disk ϑ = (ϑx, ϑy, ϑz), which are related to the
angular velocity through the classical yaw–pitch–roll relations (Auguste 2010). Since the
microstructure is not defined, the relation between the inertia tensor and the disk mass
may differ from that of an impervious disk employed in Tchoufag et al. (2014). The flow
through the permeable microstructure is described via an interface condition that models
the macroscopic drag induced by the microscopic solid structure, under the assumption of
negligible flow inertia within the membrane pores. The model imposes a discontinuity in
the fluid stresses and the continuity of velocity across the permeable membrane, whose
surface is denoted as Γint (red surface in figure 1b). Labelling with the superscripts −
and + variables evaluated, respectively, on the upstream and downstream sides of the
membrane of negligible thickness, as shown in figure 1, the generic interface conditions
at the membrane Γint read

u+−v − Ω × r = Re
[
M

[
Σ

(
u−, p−)

n−] + N
[
Σ

(
u+, p+)

n+]]
, u+ = u− onΓint,

(2.3)

where u − v − Ω × r is the relative velocity with respect to the membranal disk. The
tensors M and N are, respectively, called upstream and downstream permeability tensors
(Zampogna & Gallaire 2020) and are non-dimensionalized by employing the macroscopic
characteristic length, i.e. the diameter of the disk. These tensors result from microscopic
Stokes-like problems around each repetitive element of the microstructure (detailed in
Appendix A). They depend on the detailed geometry of the pores and are proportional to
the separation of scales parameter ε. As shown in Ledda et al. (2021), desired values
of the components of M and N can be retrieved with a tailored combination of pore
shape and size. Therefore, (2.3) is suitable to obtain results independent of a specific
microstructure. We now focus on the case of a membrane composed of a homogenous
and isotropic structure, symmetric with respect to the membrane mean surface. Under
these assumptions, the macroscopic velocity at the membrane interface Γint is given by

u+−v − Ω × r = ReM
[
Σ

(
u−, p−)

n−+Σ
(
u+, p+)

n+]
, u+ = u− on Γint. (2.4)
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The non-zero entries of the dimensionless permeability tensor M read

Mxx = −K, Mrr = Lr, Mϕϕ = Lϕ, (2.5a–c)

which respectively are the dimensionless permeability K and slip numbers. Under the
assumption of a homogenous and isotropic structure, Lr = Lϕ = L. We note that,
in Appendix A, where a full-scale analysis is conducted for validation based on a
non-isotropic microstructure, the two slip numbers may indeed differ.

The relative velocity at the membrane is proportional to the Reynolds number and
accounts for the reduction of the viscous resistance with Re. The velocity components
tangential and normal to the membrane are proportional to L and K, which denote the
capability of the flow to pass through and slip along the membrane, respectively. An
increase of permeability, with fixed slip, leads to larger attainable streamwise velocities
across the membrane. In the limit K = 0 and L = 0, the zero-velocity condition at a solid
wall is retrieved, while for K → ∞ and L → ∞ the continuity of stresses across the
microscopic elementary volume is retrieved, which merely represents the absence of the
solid microstructure. The case K = 0 and L /= 0 corresponds to a slip condition on each
side of the membrane which is thus made by an impervious, rough, wall and is formally
analogous to the Navier slip condition of Zampogna, Magnaudet & Bottaro (2019). When
K /= 0 and L = 0, the fluid can flow through the membrane but cannot slip tangentially.
However, such a situation is unlikely to happen since actual permeable microstructures are
always characterized by non-zero values of permeability and slip (Ledda et al. 2021).

We conclude the presentation of the problem by noting that, since ε � 1, we can safely
neglect the integral contributions along the disk thickness in Newton’s equations (2.2b,c).
The remaining integrals therefore account for the two faces, + and −, of the disk.

With the aim of understanding the general framework of the homogenized model and
providing actual realizations of the results exposed in the following sections, Appendix A
shows a comparison against the linear stability analysis of a full-scale buoyancy-driven
structure composed of concentric rings.

3. Steady vertical path

The SV path with the disk orthogonal to the flow, constant vertical velocity V = −ex and
zero angular velocity is characterized by the axisymmetric flow [U, P] which satisfies

∇ · U = 0, (U + ex)∇U + ∇P − 1
Re

∇2U = 0, lim
‖r‖→∞

U = 0

U + ex = ReM
[
Σ

(
U−, P−)

n−+Σ
(
U+, P+)

n+]
on Γint,

⎫⎪⎬⎪⎭ (3.1)

with symmetry conditions at r = 0 (Tchoufag et al. 2014). The problem is thus formally
analogous to the fixed body case if the relative velocity U + ex is considered. Newton’s
equations reduce to the equilibrium between gravity and drag along the vertical direction.
In non-dimensional form, this balance reads Ar2 = (8/π)Re2CD, where

CD =
∫

Γint

Σ (U, P) dΓint, (3.2)

is the non-dimensional drag and

Ar = ρ(2|(ρb/ρ) − 1|gh)1/2D
μ

, (3.3)

is Archimede’s number, i.e. the Reynolds number defined with the typical gravitational
velocity Ug = (2|(ρb/ρ) − 1|gh)1/2 (Tchoufag et al. 2014). In the definition of the
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Figure 2. Base flow relative velocity: isocontours of the streamwise component and streamlines for varying
K and Re = 85, L = 5 × 10−4; (a) K = 5 × 10−4, (b) K = 5 × 10−3, (c) K = 6 × 10−3, (d) K = 7 × 10−3.

Reynolds number based on the actual fall velocity, permeability, slip and mass of the
object thus play a role. When the disk material is fixed, variations of the solid structure
and wake properties induced by permeability and slip may lead to different values of the
falling Reynolds number. However, since the microstructure and material are not defined,
permeability, slip number and mass of the object (and thus the falling Reynolds number)
are considered independent parameters. In an actual configuration, the following results
can be applied by imposing the known relation between permeability, slip and Reynolds
number for the specific case under consideration.

The flow equations are solved in a rectangular domain corresponding to a section ϕ =
const., for the coordinates (x, r) (see figure 1). We impose zero velocity at the boundary
located at x = x−∞ and r = r∞, and the free-stress condition at x = x+∞, together with
the membrane interface condition at (x = 0, r < 0.5). The numerical implementation of
the weak form of the various equations is performed in COMSOL Multiphysics, with
Taylor–Hood elements for the velocity and pressure fields. Since we employ a domain
decomposition method for the flow upstream and downstream of the disk, at x = 0 and for
r < 0.5 the interface condition at the membranal disk is imposed, while for r > 0.5 we
impose the continuity of stresses and velocities.

Figure 2 shows typical streamlines of the relative velocity field U + ex. The flow is
characterized by a toroidal recirculation region, reminiscent of that of the fixed solid disk.
We define the length of this recirculation LR as the distance between the two points which
present a zero x-component of velocity on the axis, while the distance from the disk XR is
given by the x-position of the first point. At low permeabilities (panel a) the wake strongly
resembles the one of the solid case. An increase in K (panels b,c) leads to a downstream
displacement of the recirculation region, which decreases its dimensions until it disappears
(panel d). As shown in the isocontour plots in figure 3, an increase in permeability, with
fixed Re, leads to a decrease of the recirculation region length LR while it slightly increases
as L increases. The decrease of LR becomes more abrupt as permeability increases, leading
to a sudden disappearance of the recirculation region for a critical permeability in the range
4 × 10−3 < K < 8 × 10−3, depending on the Reynolds number. Note that the length of
the recirculation region presents a non-monotonic behaviour with Re, in the vicinity of
the iso-level LR = 0. Concomitantly, the distance between the recirculation and the disk
XR monotonically increases with K, while it can become non-monotonic with Re in the
vicinity of LR = 0. However, in the vicinity of the abrupt disappearance of the recirculation
region, XR also presents a similar rapid increase with K. The downstream displacement is
always of the order of the diameter of the disk, and it does not exceed XR ∼ 1.5.
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Figure 3. Isocontours of (a) the length of the recirculation region LR, (b) the distance XR between the disk
and the recirculation region and (c) the drag coefficient CD, as functions of Re and K, for L = 10−4 (dashed),
L = 5 × 10−4 (solid), L = 10−3 (dot-dashed). The red lines denote the iso-levels LR = 0.

The decrease of the length of the recirculation region together with its downstream
displacement is sudden and occurs for K ∼ 5 × 10−3. These results are similar to those
observed in Cummins et al. (2017), who observed a rapid decrease of the length of the
recirculation region for a porous disk with t/D = 0.1 modelled via the Darcy law. For a
thick porous medium, the pressure drop between the upstream and the downstream part of
the disk is of order

p+−p−

(t/D)
∼ 1

ReDa
Ux, (3.4)

where Da is the non-dimensional permeability within the Darcy law framework
(Zampogna & Bottaro 2016). The relation between Da and the permeability K of the
employed homogenized model is thus K ∼ Da/(t/D). In Cummins et al. (2017), the
sudden decrease of the length of the recirculation occurs for 10−4 < Da < 10−3, and thus
10−3 < K < 10−2, in agreement with our results.

Figure 3(c) shows the iso-levels of the drag coefficient CD. An increase of the Reynolds
number leads to a monotonic decrease of CD. At low values of the Reynolds number,
CD monotonically decreases with K. However, for Re ∼ 80, a slight increase of the drag
coefficient with K is observed. At larger Reynolds numbers, a peak in the isocontours is
visible, highlighting a non-monotonic behaviour of CD with K. However, at very large
permeabilities, beyond the iso-level LR = 0, the drag coefficient monotonically decreases
and goes asymptotically to zero. Variations of L do not qualitatively influence the observed
trends.

In summary, the relative flow past a steadily falling permeable disk presents a detached
recirculation region which shrinks and moves downstream as the permeability increases;
an increase in L instead leads to a counter-intuitive slight increase of the length of
the recirculation region. This behaviour can be qualitatively explained in light of the
interface condition. An increase in K implies a larger attainable streamwise velocity. As
a consequence, the flow streamlines are less constrained to pass around the body and the
flow becomes more parallel, as the body is less intrusive. This leads to a reduction of the
radial velocity and thus of the counterflow generated by the separation at the disk edge.
An increase in L with fixed K leads to the opposite behaviour. While the ability of the
flow to pass through the body is not modified, larger radial velocities can be attained at
the disk surface because of the slip condition. This leads to an increase in the size of the
recirculation region since the separation is stronger. However, the effect of L remains mild
and does not strongly modify the qualitative behaviour of the steady axisymmetric flow.
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Permeability sets the instability of buoyancy-driven disks

4. Stability analysis

In the previous section, we characterized the steady and axisymmetric flow associated
with the SV path. However, not all of the flow solutions previously described are likely
to be observed, as they are not necessarily linearly stable. In the following, we perform
a parametric study in the parameter space (Re, M∗, I∗,K,L) to identify the thresholds
which lead to a departure from the SV path, and the resulting falling trajectories through a
linear stability analysis. We investigate the growth of perturbations with respect to the SV
path [U, P, V = −ex]. The decomposition for the flow variables

[u, p] = [U(x, r), P(x, r)] + δ[u′(x, r, ϕ, t), p′(x, r, ϕ, t)], (4.1)

and disk variables

v(t) = −ex + δv′(t), Ω(t) = δω′(t), ϑ(t) = δϑ ′(t), (4.2a–c)

is introduced in (2.2) (δ � 1). The equations for the linearized dynamics of the
perturbation read (Tchoufag et al. 2014)

∂u′

∂t
+ (U + ex) ∇u′ + (u′ − v′ − ω′ × r)∇U + ω′ × U = −∇p′ + 1

Re
∇2u′, (4.3a)

∇ · u′ = 0, M∗
(

dv′

dt
− ω′ × ex

)
− CD

(
θ ′

yez − θ ′
zey

)
=

∫
Γint

Σ(u′, p′)n dΓ, (4.3b)

I∗
dω′

dt
=

∫
Γint

r × [Σ(u′, p′)n] dΓ,
dϑ ′

dt
= ω′, lim

‖r‖→∞
u′ = 0, (4.3c)

u′ − v′ − ω′ × r = ReM
[
Σ

(
u′−, p′−)

n−+Σ
(
u′+, p′+)

n+]
on Γint. (4.3d)

We consider a normal mode expansion of the perturbation of azimuthal wavenumber m
and complex growth rate σ ∈ C, i.e.

[u′(x, r, ϕ, t), p′(x, r, ϕ, t)] = [û(x, r), p̂(x, r)] exp(imϕ + σ t),

[v′(t), ω′(t), ϑ ′(t)] = [v̂, ω̂, ϑ̂] exp(σ t).

}
(4.4)

Positive values of the growth rate Re(σ ) denote unstable modes, whose associated
frequency is the imaginary part of σ . In the solid case, modes with m = 0 are stable
(Tchoufag et al. 2014). Besides, for |m| ≥ 2 the wake dynamics is decoupled from the
disk dynamics since the integral contributions in Newton’s equations are zero. Following
Tchoufag et al. (2014), we next consider modes with wavenumber m = ±1. We exploit
the azimuthal symmetry and reduce the number of unknowns: by symmetry, v̂x = ϑ̂x = 0,
and thus Ixx is not involved in the dynamics. Suitable symmetry conditions are imposed at
r = 0, as in Tchoufag et al. (2014). The projections of the linearized Newton’s equations
along y and z are combined, and a single equation is obtained. This is achieved by
introducing the so-called U(1) transformation (Jenny, Dušek & Bouchet 2004) on the disk
variables, which reads

v̂± = v̂y ∓ iv̂z, ω̂± = ω̂z ± iω̂y, ϑ̂± = ϑ̂z ± iϑ̂y, (4.5a–c)

depending on the chosen sign for m = ±1. The developments are formally analogous to
those reported in Tchoufag et al. (2014), to which we refer the reader for the derivation of
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the eigenvalue problem (reported in Appendix B), except for the interface condition on the
disk which reads

û − v̂±
2

(
er ± ieϕ

) + rω̂±
2

ex = Re M
[
Σ±

(
û−, p̂−)

n−+Σ±
(
û+, p̂+)

n+]
on Γint,

(4.6)

where Σ± is the stress tensor in cylindrical coordinates upon substitution of the normal
form of the perturbation

Σ±(û, p̂) = −p̂I + Re
(
∇±û + ∇±ûT

)
, ∇±F =

⎡⎢⎢⎢⎢⎢⎣
∂Fr

∂r
∂Fϕ

∂r
∂Fx

∂r
±Fr

r
− Fϕ

r
±iFϕ

r
+ Fr

r
±iFx

r
∂Fr

∂x
∂Fϕ

∂x
∂Fx

∂x

⎤⎥⎥⎥⎥⎥⎦ .

(4.7)

The result is an eigenvalue problem of the form

σBq̂ + L(m = ±1, Re, M∗, I∗,K,L, Q)q̂ = 0, Q = [U, P] , q̂ = [û, p̂, v̂±, ω̂±, ϑ̂±],
(4.8a–c)

where Re, M∗, I∗, K and L are free parameters. The linear stability equations are solved
in the same rectangular domain corresponding to ϕ = const. (see figure 1). Newton’s
equations are implemented as ODE problems, with integrals at the disk surface discretized
through a fourth-order Gaussian quadrature rule. Upon solution of the steady and
axisymmetric problem for the base flow (U, P) for a specific combination of (Re,K,L),
the stability analysis is performed for the same values of these parameters and for varying
values of the disk moment of inertia I∗ and mass M∗. The parametric study thus involves
five independent parameters and results in several eigenvalue problems to be solved to
obtain the parametric curves described in the following. The algorithm was validated
against the stability results for a solid disk with thickness 10−4 of Tchoufag et al.
(2014) by including a solid region in 0 < x < 10−4 and r < 0.5. We performed a mesh
convergence analysis for large values of the Reynolds number and permeability, reported
in Appendix C.

We initially fix M∗ = 16I∗ (as in the solid case) and increase K so as to investigate its
hydrodynamic role in modifying the instabilities of the SV path. We also fix L = 10−4.
Owing to its very small value, the slip number does not influence the flow patterns and
instabilities with respect to the solid case.

4.1. The impervious limit
Following Ledda et al. (2021) an almost-solid case is given by K = L = 10−4. Figure 4
shows the curves which represent the iso-level of zero growth rate for different modes,
i.e. the neutral curves, in the (I∗, Re) plane, for K = 10−4. These curves are built via
continuation, i.e. by following with continuity the neutral conditions of the modes from
very large and very small values of I∗. As initial guesses for the curves, we considered
the values of the solid case reported in Tchoufag et al. (2014). We label the curves from
the behaviour at large inertia, for the first destabilization. The positive and negative signs
respectively denote unstable and stable regions with respect to the considered neutral
curve. At these very low values of K and L, the stability map and structure of the modes
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Figure 4. (a) Neutral curves and (b) corresponding Strouhal number St = Im(σ )/(2π) in the (I∗, Re) plane,
for K = 10−4, L = 10−4 and M∗ = 16I∗. The symbols (+) and (−) denote, respectively, unstable and stable
regions for the corresponding neutral curve: F1 (red lines), F2 (blue lines), S1 (black lines), S2 (green lines).
The grey region is linearly stable with respect to all modes. The magenta symbols help correlate the neutral
curves to the Strouhal number in the (I∗, Re) plane. (c) Real (top) and imaginary (bottom) parts of the
streamwise component of the mode, rescaled with ϑ̂±, for different cases and modes on the marginal stability
curves, with K = 10−4, L = 10−4 and M∗ = 16I∗.

are in line with the impervious disk case of Tchoufag et al. (2014). Three oscillating (black,
red and blue) and one non-oscillating (green) unstable global modes are found. As shown
in panel (c), curves with label F are also called ‘fluid’ neutral curves and give the critical
Reynolds number found by the stability analysis of the wake past a fixed disk (reported
in Appendix D) as I∗ → ∞, in opposition to the ‘solid’ curves, labelled with S, whose
critical Reynolds number at infinite inertia does not have a correspondence in the fixed
body problem.

Curve F1 (red lines) presents an oscillatory mode and is almost independent of the
inertia I∗. In accordance, the Strouhal number shows mild variations with I∗. The
eigenvectors (top left on panel c) are similar to those associated with the unsteady
bifurcation of the steady and axisymmetric wake past a fixed disk (Meliga et al. 2009b)
and, actually, they coincide with the first unsteady bifurcation of the fixed disk as I∗ →
∞. The real and imaginary parts of the eigenmode, rescaled with the inclination angle
eigenvector ϑ̂±, do not strongly vary with I∗ and present decaying structures of alternating
sign moving downstream.

Curve S1 instead shows strong variations of the critical Reynolds number for the
instability with I∗. The critical Reynolds number is initially decreasing with I∗, reaches
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Figure 5. (a) Variation with Re of the real part (top) and Strouhal number (bottom) for
modes associated with curves F1 (red) and S1 (black) for fixed I∗ = 0.08, and K = 10−4,
L = 10−4, M∗ = 16I∗. (b) Eigenvalues of modes F1 and S1 plotted in the complex plane
for varying Re. (c,d) Spatial distribution of the streamwise velocity component of the modes
at the marginal stability, re-scaled with ϑ̂±, for I∗ = 0.08 and (c) mode S1 (Re = 99) and
(d) mode F1 (Re = 106).

a minimum and increases again toward an asymptotic value. For I∗ → ∞, the curve S1
frequency asymptotically follows the law St ∼ I∗−1/2, as already observed by Tchoufag et
al. (2014). The eigenvectors (top right of panel c) show strong differences between the real
and imaginary parts. While the real part is predominantly characterized by an elongated
wake of constant sign moving downstream, the imaginary part presents structures of
alternating sign of lower amplitude.

The blue line is the neutral curve labelled F2. According to Tchoufag et al. (2014), this
critical Reynolds number for an oscillatory mode is retrieved also in the fixed disk case.
At large inertia (bottom left of panel c), the associated eigenvector strongly resembles that
of curve F1, but with a larger frequency and thus oscillation of lower spatial wavelength
in the wake.

The green line represents the marginal stability curve S2, characterized by a mode with
zero frequency, independent of I∗ (Tchoufag et al. 2014). The eigenvector (bottom right of
panel c) presents a wake with a real part characterized by an elongated region of constant
sign and zero imaginary part.

The grey region identifies the part of the (I∗, Re) plane where the SV path is stable.
The first instability encountered by the SV path increasing Re is given by curves F1 and
S1 at small and large values of inertia, respectively. We note the presence of a ‘loop’ for
curve F1, which defines a small region where the SV path is stable, in agreement with
the results of Tchoufag et al. (2014). The ‘loop’ is associated with a re-stabilization of the
unstable mode associated with curve S1, see figure 5 for the evolution of the modes with
Re, for fixed inertia I∗ = 0.08. Mode S1 initially becomes unstable at Re = 35. The real
part of the eigenvalue increases and reaches a maximum for Re = 66. For larger values of
the Reynolds number, the growth rate decreases and, at Re = 91, reaches the zero value.
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Permeability sets the instability of buoyancy-driven disks

In the region 91 < Re < 99, mode S1 is stable. The growth rate reaches a minimum < 0,
and then increases again. For Re > 99, the growth rate monotonically increases and the
associated mode is unstable. The growth rate of the mode associated with curve F1 instead
monotonically increases with Re and crosses the zero value at Re = 106, a value slightly
larger than the ones for which the stable region for mode S1 is observed. As a consequence,
the ‘loop’ region is globally stable with respect to perturbations. Remarkably, the SV path
is stable, in this region. This result was already highlighted in Tchoufag et al. (2014) and
confirmed by their comparison with nonlinear simulations, in the impervious limit. Both
modes have similar eigenvalues and a similar structure to the one shown for mode S1, as
reported in figure 4(c,d). This ‘loop’ also highlights a relevant feature of the modes. At
intermediate and small values of inertia, oscillatory modes have similar spatial structures
in the regions where the eigenvalues present similar values.

4.2. Expected nonlinear trajectories
Linear stability analysis also provides insight into the resulting nonlinear trajectories
and the relative strength of oscillations related to the wake and to the translational
and rotational degrees of freedom of the disk. The strength of the fluid–structure
interaction, for oscillatory instabilities, can be qualitatively assessed by considering the
wake re-organization between the real and imaginary parts of the fluid velocity field
re-scaled with ϑ̂±. With this re-scaling, the real and imaginary parts correspond to the
instants with maximum ϑ̂y and ϑ̂z during one period (Tchoufag et al. 2014). With reference
to figure 4(c), two different kinds of wakes can be recognized. We identify so-called ‘SPT’
(sign-preserving type) structures (as the real part of the modes of curves S1 and S2),
an elongated wake of constant sign moving downstream. The structure of the mode is
reminiscent of the non-oscillatory instability of the flow past a fixed disk (Meliga et al.
2009b). In the fixed case, this non-oscillatory instability leads, in the nonlinear regime,
to a steady shift of the wake. If the disk could move, it is expected that this steady
shift would lead to a rotation of the disk toward an inclined trajectory. Therefore, the
predominant effect of SPT structure is a variation of the disk orientation, where the wake
inclination is a consequence of the disk one. Conversely, ‘SAT’ (sign alternating type)
disturbances, such as the real parts of the modes of curves F1 and F2, are characterized by
downstream oscillations of the wake with positive and negative structures. The modes of
curves F1 (red line) and F2 (blue line) at large inertia are dominated by SAT disturbances
whose imaginary part is a phase shift of the real one. These spatial distributions are
typical of shedding of vortical structures past fixed bodies, thus suggesting a dominance
of the wake instability in the disk dynamics. Auguste et al. (2013) related this spatial
distribution of the wake with the low-amplitude zig-zag regime, characterized by strong
wake oscillations with very small variations of the disk inclination. Therefore SAT
structures characterized by a phase shift between real and imaginary parts would ultimately
lead to weak oscillations of the disk trajectory with respect to the vertical path, with
strong oscillating vortical structures shedding from the disk, in the nonlinear regime. The
dominance of one of SAT or SPT structures, or their coexistence, is a manifestation of the
segregation or interaction between the disk and wake dynamics.

The different spatial distributions of the real and imaginary parts for the mode of curve
S1 highlight a strong coupling between the wake and disk dynamics. The SPT disturbances
dominate the real part of the perturbation, with significantly larger amplitudes than the
SAT structures observed in the imaginary part. Following Auguste et al. (2013) and
Tchoufag et al. (2014), this mode structure is associated with large-amplitude oscillations
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Figure 6. (a,b) Same as figure 4 for L = 10−4 and M∗ = 16I∗ and K = 10−3 (solid lines), K = 1.1 × 10−3

(dashed lines), K = 1.5 × 10−3 (dot-dashed lines). The symbols (+) and (−) denote, respectively, unstable
and stable regions for the corresponding neutral curve. The progressively brighter grey regions denote overall
linearly stable regions for K = 10−3 and K = 1.5 × 10−3. (c,d) On the left: base state (cut of streamsurfaces
and axial velocity in colour map). On the right: real (top) and imaginary (bottom) parts of the streamwise
component of the mode, re-scaled with ϑ̂±, on the marginal stability curves, with I∗ = 10−3 and (c) K = 10−3,
(d) K = 1.5 × 10−3.

of the disk, in the nonlinear regime. The decrease in Strouhal as I∗−1/2, for I∗ → ∞, is
associated with an increase in the streamwise extent of vortical structures. In the nonlinear
regime, one thus expects motions characterized by larger-amplitude oscillations of the
disk, with a lower frequency, as inertia increases.

The eigenvector of the mode associated with curve S2 presents a wake dominated by
an SPT structure in the real part. The zero imaginary part implies ϑ̂z = 0 and thus the
load causes an exponential increase of the inclination angle in the linear regime, similar to
the so-called divergence instability in aeroelasticity. The nonlinear saturation mechanisms
ultimately lead to a steady oblique path (Auguste et al. 2013), whose wake is a consequence
of the constant disk inclination.

4.3. The effect of permeability
Variations of the permeability K induce changes in the marginal stability curves. As
previously stated, we label with continuity the neutral curves by following the first
destabilization at large inertia. In particular, the mode associated with curve S2 is
non-oscillatory, the imaginary part of curve S1 decays as I∗−1/2 and modes associated
with curves F1 and F2 present the same critical Reynolds number for the instability

955 A29-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

98
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.989


Permeability sets the instability of buoyancy-driven disks

300

350
0.20

0.15

0.10

0.05

0

250

200

150

100

50

10–4 10–2 100

I∗
10–4 10–2 100

I∗

1.7 × 10–3

1.85 × 10–3

K

Mode F1

Mode S1

Mode F2

Mode F3

Mode S2

(–)

(–)

(–)

(–)

(–)

(+)

(+)

(+)

(+)

(+)

(–)

(–)

(–)

(–)

(+)

(+)(+)(+)

(+)

(+)

(–)

(–)

(–)

Re St

(a)

(c)

(d )

(b)

0.5

0
–1 0 1 2 3

x

r

0.5

0

0.5

0.5r
0
0.5
1.0

–0.5

0
0.5
1.0

–0.5

Re = 163, K = 1.85 × 10–3

Re = 151, K = 1.7 × 10–3

0 5 10 15 20

–1 0 1 2 3 0 5 10 15 20

x

4
2

–2
–4
–6

0

4
2

–2
–4
–6

0
Real part

Imaginary part

Real part

Imaginary part

I∗–1/2

Figure 7. (a,b) Same as figure 4 for L = 10−4 and M∗ = 16I∗ and K = 1.7 × 10−3 (solid lines) and K =
1.85 × 10−3 (dashed lines). The symbols (+) and (−) denote, respectively, unstable and stable regions for
the corresponding neutral curve. The grey region is overall linearly stable for K = 1.7 × 10−3. (c,d) On the
left: base state (cut of streamsurfaces and axial velocity in colormap). On the right: real (top) and imaginary
(bottom) parts of the streamwise component of the mode, rescaled with ϑ̂±, on the marginal stability curves,
with I∗ = 10−3 and (c) K = 1.7 × 10−3, (d) K = 1.85 × 10−3.

of the fixed case, as I∗ → ∞. Figure 6 shows the evolution of the neutral curves in
the (I∗, Re) plane for different values of K. As permeability increases, neutral curve
F1 progressively moves toward larger Reynolds numbers and the loop region increases
its dimensions. A similar displacement is observed for curve S2. At I∗ ≈ 0.008, the
neutral curves S1 and F2 almost intersect at Re ≈ 160, with the same values of St.
Therefore, the two eigenvalues associated with these curves are coalescing and, for a
slight increase in K = 1.1 × 10−3, the two branches at low inertia exchange. A further
increase in permeability (K = 1.5 × 10−3) leads to a displacement of the neutral curves
towards larger Re, in particular at low inertia. Therefore, an increase in permeability may
also lead to interactions between the different neutral curves and sudden modifications. In
general, an increase of the thresholds for the instability of the SV path is observed. Neutral
curve S1 presents a turning point and the associated mode is thus stable at low inertia,
in the considered range of Re. The Strouhal number St = Im(σ )/(2π) instead shows an
overall decrease with permeability. Figure 6(c,d) shows the steady and axisymmetric flow
associated with the SV path and the mode at its overall marginal stability with increasing
Re, for fixed I∗ = 10−3 and two different values of K. An increase in permeability within
this range leads to similar spatial distributions, with a slight increase of the streamwise
wavelength of the alternating vortical structures of the mode associated with curve F1.
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For K = 1.7 × 10−3 (figure 7), the situation is very similar to the one described in the
previous figure. However, we observe a slight increase of the critical Reynolds number for
the primary instability of the SV path. The loop region increases in size and approaches
the neutral curve S1. Also, for I∗ ≈ 0.2, curves F1 and S1 as well as their associated
Strouhal numbers are approaching. An increase in permeability leads to coalescence of the
eigenvalues of curves F1 and S1. The picture at K = 1.85 × 10−3 is rather different from
that previously described. A new oscillatory neutral curve associated with the exchange of
branches appears, coloured in cyan. This curve is localized at low inertia. In contrast,
curves F1 and S1 are now present only at large inertia. At the same time, curve F2
disappears and the associated mode is always stable in the considered range of parameters.
In this configuration, the primary destabilization of the SV path is now given by the
non-oscillatory mode, at low inertia. Remarkably, all oscillatory modes are stabilized at
large values of the Reynolds number. As a consequence of the exchange of branches, the
mode associated with the new neutral curve presents a spatial structure which is very
similar to mode F1, see figure 7(c,d). Because of this similarity, we label the new neutral
curve F3.

At K = 2 × 10−3 (figure 8), all modes are linearly stable at large Re, as highlighted by
the grey region for K = 2 × 10−3. Therefore, the SV path is linearly stable also at very
large values of Re, with the upper bound given by the non-oscillatory mode. A further
increase of K leads to quenching of the non-oscillatory mode S2, which is always stable
for K = 2.9 × 10−3 and thus its neutral curves disappear from the parameter space, since
the lower destabilizing branch and the upper restabilizing branch get closer until the mode
remains always stable with Re. At the same time, the unstable region contained by the
cyan curve F3 becomes smaller and disappears for K = 2.2 × 10−3. Similar fates occur to
curves F1 and S1. In particular, curve F1 becomes stable at large inertia and only a small
island of instability is observed, at intermediate inertia. This island of instability becomes
extremely small at K = 2.9 × 10−3 and disappears for larger K. Also the unstable region
given by curve S1 shrinks and only a small range of Re is unstable at large inertia, for
K = 2.9 × 10−3. A slight increase leads to quenching of the related mode. Therefore, all
unstable regions become smaller with increasing permeability and, for K ≈ 3 × 10−3, all
instabilities are quenched (not shown). In these conditions, the SV path is linearly stable,
independently of Re and I∗, at least in the range of the considered parameters.

In the case of wake flows past fixed bluff objects, permeability only modifies the
instability thresholds. Conversely, when the fluid–structure interaction is considered,
the permeability also affects the nature of the instability. The non-oscillatory mode,
responsible for a divergence instability which ultimately leads to a steady oblique path,
appears to be persistent as permeability increases, does not show strong modifications
with K and Re and, at low values of inertia and large permeability, is the first instability
encountered by the SV path. This mode selection with K is shown in figure 9. For
I∗ = 10−3, the primary destabilization is given by low-amplitude disk oscillations with
SAT structures that dominate the instability, in a large range of K. However, at K =
2.1 × 10−3, the SV path instability is induced by the non-oscillatory mode, thus leading
in the nonlinear regime to a steady oblique path. A similar situation is encountered for
I∗ = 10−2, where large-amplitude disk oscillations are replaced again by a steady oblique
path as permeability increases.

Therefore, permeability may strongly modify the instability picture of the steady vertical
path, in particular by inducing a primary destabilization characterized by a steady oblique
path. The first effect observed when increasing permeability is the stabilization of the wake
instabilities (curves F1, F2 and F3) until a small ‘island’ of instability at intermediate
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for increasing K, for fixed (a) I∗ = 10−3 and (b) I∗ = 10−2, of the first unstable mode of the SV path found
increasing Re.

inertia is observed. At the same time, curve S1 is confined at large inertia, while the
critical Reynolds number for the instability related to S2 increases with respect to the
impervious case. The strength of the wake instability is reduced with permeability since
the recirculation region shrinks. Therefore, the flow modifications induced by permeability
initially lead to quenching of the wake oscillations while the trajectory is still unstable and
is associated with modes that show, as a consequence of the disk inclination, a tilted wake.
Mode associated with S1 presents very slow oscillations in its unstable region, which can
be associated with the dominance of the disk oscillations in the wake dynamics. At very
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Figure 10. Neutral curves for K = 0.002 and varying (a) L and (b) M∗. Panel (a) shows M∗ = 16I∗ and
L = 10−4 (solid lines), L = 10−3 (dashed lines), L = 2 × 10−3 (dash-dotted lines). Panel (b) shows L = 10−4

and M∗ = 10I∗ (solid lines), M∗ = 20I∗ (dashed lines), M∗ = 30I∗ (dash-dotted lines). The grey colour
identifies the stable region for (a) L = 10−4 and (b) M∗ = 10I∗.

large permeability K ≈ 3 × 10−3, also modes of S2 and S1 are stabilized, together with the
island of instability of mode F1. As the perturbation of the flow induced by the permeable
body becomes smaller, the flow cannot sustain the instability, neither the non-oscillatory
one (mode S2) nor the oscillatory one at a very low frequency (mode S1). The stabilization
sequence is similar to that of the fixed case, see Appendix D, where permeability first
leads to a stabilization of the oscillatory mode, while the non-oscillatory one is quenched
at larger K. In conclusion, permeability progressively filters out the wake dynamics, first
stabilizing the modes dominated by wake oscillations and then quenching the ones where
the wake re-organization is a consequence of the disk inclination.

4.4. The role of slip and disk mass
To complete our exploration of the parameter space, variations of the microstructure not
only change permeability but also induce variations of L and M∗, which in turn may
modify the stability diagrams. Figure 10 shows the modifications of the neutral curves for
K = 2 × 10−3. An increase in L leads to qualitatively similar marginal stability curves
compared with the case L = 10−4, with a slightly larger unstable region in the range
of the considered parameters. As M∗ varies, the shape of the neutral curves is slightly
modified, as shown by the absence of the loop region for M∗ = 20I∗ and M∗ = 30I∗
and the reduction of the unstable region of mode S1 for M∗ = 10I∗. However, the general
picture with the primary destabilization at low inertia induced by the non-oscillatory mode
is unchanged, together with the restabilization of all modes at large Re.

5. Conclusion and discussion

In this work, we investigated the role of permeability in modifying the path and wake
instabilities of the SV path of a microstructured permeable disk. We employed the effective
stress-jump model (Zampogna & Gallaire 2020) to define the permeability properties
of the disk and thus perform a parametric study independent of a specific microscopic
geometry. The steady and axisymmetric flow associated with the SV path presents a
recirculation region detached from the body, which becomes smaller and disappears as
the permeability of the disk increases. When perturbed along the azimuthal direction, the
SV path presents one non-oscillatory and several oscillatory instabilities. An increase in
permeability leads to complex interactions between the neutral curves with variations of
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the emerging unstable modes and thresholds for the instabilities. For large permeability,
all neutral curves show a destabilization–stabilization sequence with the Reynolds number
already observed for other permeable bluff bodies. The primary destabilization of the
SV path shows a progressive shift toward larger Reynolds numbers as K increases.
At the same time, the restabilization branch of the neutral curves progressively moves
toward smaller Reynolds numbers, until the instability is quenched. The progressive
stabilization of the modes occurs in two successive phases as permeability increases,
in analogy with the stabilization of the oscillatory and non-oscillatory modes in the
wake of a fixed disk. The wake oscillations intensity associated with the unstable modes
is reduced since the recirculation region of the base flow shrinks, with a consequent
flow stabilization (Ledda et al. 2018). This leads to the survival of modes dominated
by the degrees of freedom of the disk and characterized by a weak coupling with the
wake dynamics and very low or absent frequency, i.e. the non-oscillatory mode at low
inertia and a slowly oscillating mode at large inertia. However, a further increase in
permeability also leads to the quenching of these two modes. We identified a critical
permeability K ∼ 3 × 10−3, beyond which the linear instability is prevented, at least in
the considered range of parameters. As an example, this value of K can be realized
through a perforated membrane, with holes diameter of ≈0.058D, distance between the
holes centres ≈0.064D and thickness ≈0.003D, following the calculations of Zampogna
& Gallaire (2020). We also note that this value is in line with that proposed by Cummins
et al. (2018), i.e. K = Da/(t/D) ≈ 0.004, employed to reproduce, via the Darcy law, the
flow features past a dandelion seed, known to present a steady wake in hovering flight.
However, permeability not only progressively quenches the instability, but it also modifies
the nature of the primary instability of the SV path. At low values of the disk inertia
and for large permeability, the first instability is non-oscillatory, which ultimately would
lead to a steady oblique path with a constant inclination angle, in the nonlinear regime.
Linear stability analysis thus allowed us to efficiently characterize the primary instability
of the SV path in the space of the parameters and understand the origin of the threshold
modifications and the emerging paths in the vicinity of these thresholds. These variations
of the primary instability therefore call for a better understanding of these trajectories,
with a perspective on their prediction and control through a tailored microstructure. The
homogenized model allowed us to obtain general results, independently of a specific
geometry of the microstructure. This work gives a first parametric study of the effect of
permeability on the linear path instability of the SV path of buoyancy-driven disks, so as
to give a theoretical basis and an operative method for a deeper understanding of the path
instabilities of buoyancy-driven permeable objects.

Linear analyses should be complemented with nonlinear studies of the falling trajectory
for permeable bodies. In the presence of one unstable mode and in the vicinity of the
threshold, linear analyses could predict the resulting trajectory selection, but not the
saturated state, nor the sub- or super-critical nature of the bifurcation. To this purpose,
weakly nonlinear approaches and direct numerical simulations may complete the picture.
While the former can also help to shed light on the interaction between two or more almost
neutrally stable modes in the vicinity of their thresholds, direct numerical simulations may
be employed to characterize the various trajectories in the large space of parameters. From
this perspective, the increase of Reynolds number beyond the values considered in this
work would also call for a finer modelling of the flow through the membrane when the
inertia at the microscopic level cannot be neglected, i.e. for Remicro > 1–5. This situation
would require an extension of the homogenized model with an Oseen approximation
of the flow through the membrane (Zampogna & Bottaro 2016), so as to obtain values
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of permeability and slip which depend on the local velocity. The presence of linearly
stable regions at large Reynolds number also calls for transient growth studies. Further
developments include the study of nonlinear trajectories of permeable disks composed
of an actual microscopic structure, e.g. the ones shown in Appendix A. With the aim of
controlling falling or rising trajectories, optimization tools would be suitable to extend
these analyses in the case of rigid microstructures. Such results would also open to the
analysis of permeable, flexible and reconfigurable microstructures (Rafsanjani, Bertoldi
& Studart 2019) for the real-time control of the trajectory. The direct link between the
microstructure and its macroscopic effect on the flow paves the way to a rational design of
buoyancy-driven objects in viscous fluids.
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Appendix A. Comparison between the homogenized model and full-scale
simulations

In this section, we compare the homogenized model results against full-scale cases, in
terms of steady and axisymmetric flow associated with the SV path and its instability. A
simple full-scale configuration which preserves axisymmetry is reported in figure 11(a).
The permeable structure is composed of an array of concentric rings, of rectangular
cross-section, which move together as a rigid body, similar to the configuration proposed in
Ciuti et al. (2021), for a bulk permeable sphere. Denoting with N the number of concentric
rings, the non-dimensional distance between the rings measured along the radial direction
reads ε = 0.5/N and coincides with the separation of scales parameter. Following
Ciuti et al. (2021), the microscopic calculations can be solved in a three-dimensional
domain where the azimuthal curvature of the ring is neglected, thus leading to the
microscopic elementary cell shown in figure 11(b). Upon non-dimensionalization with
the microscopic characteristic length �, the microscopic problems within the elementary
cell, for the microscopic auxiliary variables Pα and Qα = (Qα

n , Qα
t , Qα

s ), with α = (n, t, s)
(see figure 11b), read

∇Pα + ∇2Qα = 0, ∇ · Qα = 0, (A1a,b)

plus periodicity along t and s and Robin conditions along n, i.e. [−PαI + (∇Qα +
∇TQα)]en = eα at n = −4 and [−PαI + (∇Qα + ∇TQα)]en = 0 at n = +4. The
permeability and slip numbers in the non-dimensionalization with the disk diameter,
employed in this work are then obtained from the following relations:

K = εFx = ε〈Qn
n〉, Lr = εLr = ε〈Qt

t〉, Lϕ = εLϕ = ε〈Qs
s〉, (A2a–c)

where 〈Qα
α〉 = ∫ 0.5

−0.5

∫ 0.5
−0.5 Qα

α(n = 0) dt ds is the spatial average operator, and Lr and Lϕ

denote the slip numbers along the radial and azimuthal directions, which do not coincide,
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Figure 11. Sketch of (a) the considered full-scale geometry with (b) the microscopic elementary cell together
with relevant quantities and (c) the employed computational domain.
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Figure 12. Comparison between the homogenized model and full-scale simulations for the SV path, Re = 163,
N = 15. (a) The SV path relative velocity streamlines from the homogenized model (on the top) and from
full-scale simulations (on the bottom). (b) Streamwise relative velocity sampled at x = 0, homogenized model
(orange line), full-scale simulations (blue line) and the average of the full-scale simulations in the periodic cells
(circles).

for this geometry. We consider rectangular elements of thickness 0.01ε and height 0.3ε,
leading to

Fx = 0.0598, Lr = 0.0527, Lϕ = 0.1122. (A3a–c)

Upon definition of the value of ε, both the full-scale geometry and the values of
permeability and slip numbers are defined. In order to focus on the aerodynamic effect
of the disk permeability, we allow the Reynolds number and disk inertia I∗ to vary while
the disk mass is kept constant M∗ = 16I∗.

Figure 12 shows (a) the relative velocity streamlines of the SV path and (b) the relative
streamwise velocity sampled at x = 0, for the case Re = 163, N = 15. The homogenized
model well captures the flow features and the comparison with the average streamwise
velocity in the periodic cells shows a reasonable agreement. Table 1 completes the picture
by comparing the drag coefficient, with an overall reasonable agreement even at very large
values of ε and Re. The homogenized model slightly overestimates the drag coefficient
obtained from the full-scale simulations.

Table 2 instead compares the values of the critical Reynolds number for the onset of
the primary instability of the SV path and the associated Strouhal number, for different
values of N and I∗. The homogenized model is conservative, giving slightly smaller values
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N ε K Re Reel CH
D CFS

D

30 0.0167 0.001 127 0.64 0.466 0.460
18 0.0278 0.00166 140 1.17 0.461 0.454
16 0.0313 0.00187 150 1.41 0.456 0.449
15 0.0333 0.00199 163 1.63 0.449 0.442
12 0.0417 0.00249 185 2.31 0.449 0.442
12 0.0417 0.00249 265 3.32 0.436 0.429

Table 1. Drag coefficient obtained from the homogenized model CH
D and full-scale simulations CFS

D for
different values of N and Re. The quantity Reel denotes the Reynolds number referred to the free-stream velocity
and the size of the microscopic periodic element, i.e. Reel = 0.3εRe.

N ε K I∗ ReH
cr ReFS

cr StH StFS

30 0.0167 0.001 0.001 124.8 127.7 0.1 0.099
18 0.0278 0.00166 0.001 139.7 145.2 0.092 0.090
16 0.0313 0.00187 0.001 148 155.5 0.086 0.088
15 0.0333 0.00199 0.001 162.3 165.2 0 0
12 0.0417 0.00249 0.001 185.1 192.4 0 0
15 0.0333 0.00199 0.1 39.9 43.9 0.142 0.139
15 0.0333 0.00199 1 76.4 78.8 0.046 0.045

12 0.0417 0.00249 0.001 263.5 270.9 0 0

Table 2. Upper part of the table: critical Reynolds number for the onset of the primary instability of the SV
with the associated Strouhal number obtained from the homogenized model (superscript H) and full-scale
simulations (superscript FS) for different values of N and I∗. The bottom part of the table instead shows the
critical Reynolds number for the restabilization of the non-oscillatory eigenvalue.
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Figure 13. Comparison between the homogenized model (top) and full-scale simulation (bottom) for two
marginally stable modes of the SV path from table 2; (a) N = 16 and I∗ = 0.001, and (b) N = 15 and
I∗ = 0.001.

of the critical Reynolds number. Despite the approximation of neglecting the azimuthal
curvature in the microscopic simulations, the agreement is reasonable and in line with the
accuracy given by the homogenized model (Zampogna & Gallaire 2020). The case N = 12
shows a reasonable agreement also for the re-stabilization of the non-oscillatory mode S2,
which occurs at Re ≈ 270. Figure 13 presents two modes at the marginal stability from the
homogenized model (top) and full-scale simulations (bottom), with very similar spatial
structures.

Therefore, the homogenized model well captures the full-scale flow patterns, for
the considered values of ε and Re. As previously mentioned, the employed effective
stress-jump condition is valid under the assumption of negligible inertia within the pores.
In the considered case, the Reynolds number referred to the free-stream velocity and to
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the size of the microscopic rectangle reads Reel = 0.3εRe, whose values are reported
in table 1. However, as shown in figure 12(b), the actual velocity within the pores is
much smaller than the free-stream one, around 0.2, and thus Reel overestimates the
actual Reynolds number within the pores. In the case N = 15 and Re = 163, the actual
Reynolds number referred to the average velocity within the membrane and to the rectangle
size is 0.33. For Re = 265 and N = 12, the average velocity across the membrane is
≈0.4 and thus the Reynolds number referred to this velocity and to the rectangle size
is 1.33. Hence, the assumption of negligible inertia is reasonable for the considered
cases of ε and Reynolds number (Nield & Bejan 2013), already shown in Ledda et al.
(2021) for the two-dimensional case and confirmed by the reasonable agreement of this
section.

Thanks to the generality of the homogenized model (2.3), the same value of permeability
can be obtained by tuning the value of ε with a different geometry, e.g. by reducing the
height of the rectangle one can obtain larger permeabilities and thus reduce the value of ε,
improving the accuracy of the method at large permeabilities. As an example, in the case
of rectangular elements of thickness 0.01ε and height 0.6ε

Fx = 0.0158, Lr = 0.0134, Lϕ = 0.0291. (A4a–c)

With the choice N = 8, i.e. ε = 0.0625, one obtains K = 0.001. At I∗ = 10−3, the critical
Reynolds number for the onset of the instability of the SV path is Recr = 128.1, in line with
the case N = 30 of table 2.

Appendix B. Eigenvalue problem for the linear stability analysis

In this section, we report the bulk formulation of the eigenvalue problem for the
linear stability analysis derived in Tchoufag et al. (2014). Newton’s equations for the
perturbation, upon the U(1) transformation (Jenny et al. 2004), read

M∗σ v̂± = ±M∗ω̂± ± CDϑ̂±

+ 2π

∫
Γint

[
1
2

(
−p̂ + 2

Re
∂ ûr

∂r

)
nr dx + 1

Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nxr dr

]
∓ 2iπ

Re

∫
Γint

[
1
2

(
∂ ûϕ

∂r
− ûϕ

r
+ ± iû

r

)
nr dx +

(
∂ ûϕ

∂x
± iûx

r

)
nxr dr

]
(B1)

σI∗ω̂± = −2π

∫
Γint

r
[(

−p̂ + 2
Re

∂ ûx

∂x

)
nxr dr + 1

2Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nr dx

]
+ 2π

∫
Γint

x
[

1
2

(
−p̂ + 2

Re
∂ ûr

∂r

)
nr dx + 1

Re

(
∂ ûx

∂r
+ ∂ ûr

∂x

)
nxr dr

]
∓ iπ

∫
Γint

x
[

1
2Re

(
∂ ûϕ

∂r
− ûϕ

r
± iûr

r

)
nr dx + 1

Re

(
∂ ûϕ

∂x
± iûx

r

)
nxr dr

]
(B2)

λϑ̂± = ω̂±. (B3)
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The linearized Navier–Stokes equations read

σ û + û∇U + (U + ex) ∇±û = −∇±p̂ + 1
Re

∇2
±û + 1

2

(
∂U
∂r

± iUr

r
eϕ

)
v̂±

+
{
∓1

2

[
r
∂U
∂x

− (Uxer + Urex)

]
±1

2
x
∂U
∂r

± 1
2

i
[

x
Ur

r
− Ux

]
eϕ

}
ω̂±, ∇± · û = 0.

(B4)

The operators of the coupled fluid-solid eigenvalue problem Aq̂ = σBq̂ thus read

q̂ =

⎡⎢⎢⎢⎣
û
p̂
v̂±
ω̂±
ϑ̂±

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎣
1 0 0 0 0
0 0 0 0 0
0 0 M∗ 0 0
0 0 0 I∗ 0
0 0 0 0 1

⎤⎥⎥⎥⎦ , (B5a,b)

A =

⎡⎢⎢⎢⎢⎢⎣
−C(·, U) + 1

Re
∇2±(·) −∇±(·) N v±(·) N ω± (·) 0

∇± · (·) 0 0 0 0
Fu±(·) Fp

±(·) 0 M∗ CD
Mu±(·) Mp

±(·) 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦ , (B6a,b)

where C(a, U) = (U + ex)∇±a + a∇U , N v±(·) and N ω± (·) are, respectively, the terms
proportional to v̂± and ω̂± in (B4), and Fu±(·), Fp

±(·) and Mu±(·), Mp
±(·) are, respectively,

the operators which apply to û and p̂ in (B1), (B2). We conclude by noting that the
dependence of the problem on permeability and slip stems from the boundary conditions.

Appendix C. Validation of the numerical method and convergence

The mesh convergence is performed by progressively increasing the domain size and by
uniformly refining the discretization, as shown in table 3. Variations of the growth rate
are at most of the order of 1 %–3 % and the subsequent error on the critical Reynolds
number is �Recr � 1. Therefore, mesh M0 is a good compromise between resolution and
computational time for the large parametric study performed.

Appendix D. Stability analysis of the flow past a fixed permeable disk

In this section, we present the stability analysis results for the steady and axisymmetric
flow described in § 3 when the disk is kept fixed. The neutral curves for the oscillatory and
non-oscillatory modes are reported in figure 14(a,b). In the case L = 10−4, the critical
Reynolds number for the instability initially slightly decreases with K, suddenly increases
and reaches an inversion point, which defines a critical permeability beyond which the
axisymmetric flow is stable. The Strouhal number of the oscillatory mode decreases as
Re increases. The inversion of the curve can be understood in the light of panels (c,d)
which show the non-monotonic behaviour of the eigenvalues for fixed permeability and
increasing Re. The real part of the eigenvalue initially increases, crossing the zero value,
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Mesh x−∞ x+∞ r∞ Nel F1:Re(σ ) F1:Im(σ ) S1:Re(σ ) S1:Im(σ )

M0 25 50 25 24 718 −1.435 × 10−3 0.4956 1.820 × 10−3 0.02886
M0-upstream A 35 50 25 26 705 −1.438 × 10−3 0.4956 1.820 × 10−3 0.02886
M0-upstream B 40 50 25 27 657 −1.470 × 10−3 0.4956 1.820 × 10−3 0.02886
M0-downstream A 25 70 25 28 534 −1.436 × 10−3 0.4956 1.820 × 10−3 0.02886
M0-downstream B 25 100 25 34 437 −1.438 × 10−3 0.4956 1.821 × 10−3 0.02886
M0-radial A 25 50 30 27 926 −1.458 × 10−3 0.4956 1.820 × 10−3 0.02886
M0-radial B 25 50 40 34 370 −1.486 × 10−3 0.4956 1.819 × 10−3 0.02886
M1 25 50 25 35 027 −1.443 × 10−3 0.4956 1.821 × 10−3 0.02886
M2 25 50 25 43 456 −1.447 × 10−3 0.4957 1.822 × 10−3 0.02886

Table 3. Mesh convergence analysis for mode F1, at I∗ = 10−3, Re = 180, K = 2 × 10−3 and L = 10−4, and
for mode S1, at I∗ = 100, Re = 130, K = 2 × 10−3 and L = 10−4. The quantities x−∞, x+∞ and r∞ denote
the upstream, downstream and lateral boundary, respectively, while Nel denotes the total number of elements.
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Figure 14. Stability analysis of the flow past a fixed permeable disk. (a,b) Neutral curves for the
non-oscillatory (solid lines) and oscillatory (dashed lines) modes for (a) L = 10−4, together with a scatter
plot of St for the oscillatory mode and for (b) increasing values of L. (c,d) Destabilization–restabilization
sequence when increasing Re of the (c) non-oscillatory mode at K = 2.5 × 10−3 and of the (d) oscillatory
mode for K = 2 × 10−3.

reaches a maximum and decreases, crossing again the zero value. These crossings define
an unstable region where the real part of the eigenvalue is positive. An increase in K
shrinks this region until the maximum is reached for Re(σ ) < 0, and thus the mode is
stable. Figure 15 shows the marginally stable modes following the neutral curves. At
low value of K, the unstable modes are very similar to the ones of the impervious case
(Meliga et al. 2009b). In the vicinity of the inversion point, the non-oscillatory mode
is more focused in the near wake of the disk, while the oscillatory one presents
alternating vortical structures of larger streamwise extent compared with the case with
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Figure 15. Real part of the streamwise component of the mode following the neutral curves of the (a,b)
non-oscillatory and (c,d) oscillatory modes, for the stability analysis past a permeable fixed disk: (a) Re = 80,
K = 10−3; (b) Re = 180, K = 2.5 × 10−3; (c) Re = 113, K = 5 × 10−4; (d) Re = 150, K = 2 × 10−3.

lower permeability. This increase is correlated to the decrease of the Strouhal number,
which implies a reduction of the frequency of shedding of these vortices.
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