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Probing multi-particle unitarity with the Landau equations
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Abstract

We consider the 2→ 2 scattering amplitude of identical massive particles. We identify
the Landau curves in the multi-particle region 16m2 ≤ s , t < 36m2. We systematically
generate and select the relevant graphs and numerically solve the associated Landau
equations for the leading singularity. We find an infinite sequence of Landau curves that
accumulates at finite s and t on the physical sheet. We expect that such accumulations
are generic for s , t > 16m2. Our analysis sheds new light on the complicated analytic
structure of nonperturbative relativistic scattering amplitudes.
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1 Introduction

Implementation of multi-particle unitarity is among the biggest challenges in the nonpertur-
bative S-matrix bootstrap. This paper studies the “shadow” that multi-particle unitarity casts
on the 2→ 2 amplitude.

It is a well-known fact that scattering amplitudes develop a nontrivial discontinuity along
the normal thresholds. This fact is a direct consequence of unitarity. Once combined with an-
alyticity, unitarity also predicts the existence of infinitely many curves in the s− t plane along
which the amplitude develops double discontinuity. These so-called Landau curves are more
detailed characteristics of the amplitude’s analytic structure. This paper explores the 2 → 2
scattering of identical scalar particles of mass m. The Landau curves found here should be
present in any massive quantum field theory. Relatedly, the support of the double discontinu-
ity found in the present paper enters the Mandelstam representation of the nonperturbative
amplitude.

We assume that m is the lightest particle in a theory. For simplicity we also assume that
the theory has Z2-symmetry, such that the scattered particles are Z2-odd.1

We only concern ourselves with the behavior of the amplitude on the physical sheet. This
is the region in the complex s, t planes that is continuously connected to 0 < s, t, u < 4m2,
without going through the multi-particle normal thresholds.

Let us quickly summarize the state-of-the-art results in this context, see figure 1. When
one of the Mandelstam variables is in the elastic region, say 4m2 ≤ s ≤ 16m2, unitarity relates
the 2→ 2 amplitude to itself. Correspondingly, the Landau curves in this regime are known
explicitly [8, 32], see appendix B. In figure 1 we plot the leading elastic Landau curves and
below, in gray, the region where the double discontinuity is known to be zero.

On the other hand, in the multi-particle regime where both s, t > 16m2, the full non-
perturbative support of the double discontinuity is not known.2 This is directly related to the
fact that in this regime unitary relates the discontinuities of the 2→ 2 amplitude to amplitudes
with four external particles or more. These are very hard to analyze and only a few results
are available in the literature. In [27], five Landau curves in this region were identified, out
of which some were found explicitly in [26,27].

Using graph-theoretic tools implemented through a systematic computer search, we find
all the Landau curves that asymptote to both, t = 16m2 at large s and to s = 16m2 at large
t.3 Our results are summarized on figure 5 and figure 4. In particular, we find infinitely many
Landau curves that accumulate towards the curve

(s− 16m2)(t − 16m2)− 192m4 = 0 . (1)

1For example, this applies to the pion scattering in QCD.
2For example, in figure 1 one can imagine that there exists a multi-particle Landau curve bulging below both

elastic curves. In this paper we will argue that this does not happen for the scattering of lightest particles.
3When claiming that the set of Landau singularities we find is complete, we will also assume that there are no

bound states. By bound states we mean poles on the physical sheet in the region 0< s, t, u< 4m2.
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Figure 1: The Landau curves in the elastic region 4m2 ≤ s, t < 16m2 are known
thanks to elastic unitarity. The first of these are plotted in this figure. In the gray
region, the double discontinuity is equal to zero. The main purpose of the present
paper is to explore the structure of the Landau curves in the multi-particle region
s, t ≥ 16m2.

We expect such accumulation points to be a generic characteristic of multi-particle unitarity
and that there are infinitely many of them at higher s, t, on the physical sheet.4

The plan of the paper is as follows. In section 2 we review the relation between analytically
continued unitarity and the Landau equations. We also formulate the problem of finding the
leading multi-particle Landau curves addressed in the present paper. In section 3 we present
the solution to the problem. In section 4 we collect implications of our results, future direc-
tions, and relation to other works. Many technical details are collected in the appendices.

2 Analytically continued unitarity and the Landau equations

The 2→ 2 scattering process is characterized by an analytic function T (s, t) that depends on
two independent (complex) Mandelstam variables s = −(p1+p2)2 and t = −(p1+p4)2, where
pµi are the on-shell momenta, p2

i = −m2, of the scattered scalar particles.5

We would like to understand the minimal set of singularities possessed by T (s, t) as a
consequence of unitarity and crossing. While the general answer to this question is beyond
the scope of this paper, here we aim at revealing an infinite subset of singularities associated
with multi-particle unitarity. The simplest singularities of this kind are normal thresholds.
These are branch-point singularities at s, t, u = (nm)2, with n ≥ 2. Their presence follows
directly from unitarity

DiscsT (s, t)≡
T (s+ iε, t)− T (s− iε, t)

2i
=

∫

∑

n

T2→nT †
2→n ,

with s ≥ 4m2 , 4m2 − s < t < 0 , (2)

and the fact that T2→n = 0 for s < (nm)2. Here, the integral is over the n-particle phase space.
To each term in the sum in (2) we can assign the graph in figure 2.a.

4This is in sharp contrast to the situation in the physical region where in every bounded portion of kinematic
space only a finite number of singularities exists [46]. By the physical region we mean kinematics that can be
directly probed in a scattering experiment.

5The results derived in this paper should equally apply to spinning particles.
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(a) (b) (c)

Figure 2: A few simplest examples of graphs that represent various singularities of
the 2 → 2 scattering amplitude. a) The bubble diagram represents multi-particle
normal thresholds. b) The two-particle box diagram. It represents a Landau curve
along which the scattering amplitude develops double discontinuity. c) The four-
particle box diagram. This diagram corresponds to four-particle scattering both in
the s- and in the t-channel. In this paper we systematically study the graphs of this
type and the corresponding Landau curves.

The vertices in this graph represent the amplitudes T2→n, T †
n→2 and the lines between them

represent the n-particle state.
As we analytically continue (2) to t > 0, we may encounter discontinuities of DiscsT (s, t)

in t. For example, consider the term in (2) with n = 2. Both T2→2(s, t ′) and T †
2→2(s, t ′′) have

a normal 2-particle threshold in the t-channel. These start to contribute to the corresponding
phase space integral in (2) at a new branch-point that is located at

(s− 4m2)(t − 16m2)− 64m4 = 0 , (3)

along which the scattering amplitude develops double discontinuity, see [8] for details.
We can assign to this double discontinuity the graph in figure 2.b, where again, the lines

represent (on-shell) particles and the vertices represent four-point amplitudes that have been
analytically continued outside the regime of real scattering angles.

As we take s > 16m2 more n’s contribute to (2) and more singularities are produced by
the corresponding phase space integration. For example, the integration over the four-particle
phase space (n = 4) can produce a cut of DiscsT (s, t) in t that results from the analytically
continued two-particle normal threshold of T2→4 and T †

2→4. A graph that represents such a
contribution to the double discontinuity DisctDiscsT (s, t) is plotted in figure 2.c.

Similarly, for any singularity that follows from multiple iteration of (analytically contin-
ued) unitarity we can associate a corresponding graph. By iteration of unitarity we mean the
double discontinuity of the amplitude that is generated from a singularity of T2→n and an-
other singularity of T †

2→n, through the analytic continuation of the phase space integration in
(2) to t > 0. The singularities of T2→n and T †

2→n themselves follows from analytically con-
tinued unitarity in a similar fashion. The graph that we associate to such a contribution to
DisctDiscsT (s, t) is defined recursively, by gluing together a graph that represents a singularity
of T2→n with a one that represents a singularity T †

2→n with n-lines.
To enumerate all singularities that emerge in this way, we can go in the opposite direction

and first enumerate all graphs that may result in a singularity of the amplitude. Whether
a given graph leads to a singularity of the amplitude in a certain region in the complex s, t
planes is a kinematical question that does not depend on the details of the sub-amplitudes,
represented by the vertices in the graph.6 Hence, to answer this question we can equivalently
take them to be constants. After doing so, it becomes evident that the same singularity, if it
exists, is also generated by the Feynman diagram that coincides with the graph obtained from

6The described way of generating new singularities from old ones involves analytic continuation of the am-
plitudes. It might happen that due to some special properties of the amplitude, the expected singularity is not
there. Here we assume that this does not happens and expect the singularities which follow from unitarity to be
generically present.
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unitarity. The relevant singularity of the diagram comes from the region of loop integration
where all propagators go on-shell [43,44]. Other singularities of Feynman diagrams may result
from a region of the loop integration where only a subset of propagators is on-shell. Those
propagators that remain off-shell at the locus of a given singularity can thus be regarded as
part of an higher point vertex that is not constant. For example, the Feynman diagrams that
correspond to the graph in figure 2.a with two lines and the graph in figure 2.b, both have
normal threshold at s = 4m2. Hence, the set of all singularities of a Feynmann diagram includes
the singularities of the corresponding graph and graphs obtained from it by collapsing some
subset of lines into vertices with more legs. This operation is called a contraction.

If a generic diagram has an n-particle cut then it has a normal threshold starting at n2m2

in s, t or u (depending on which external legs are considered incoming/outgoing). This can
be seen by contracting the rest of the lines into a bubble diagram as in figure 2.a, with n legs.7

In this way we immediately conclude that figure 2.b has normal thresholds at s = 4m2,
t = 16m2, and figure 2.c at s = 16m2, t = 16m2.

To summarize, in spite of their perturbative nature, Feynman integrals have kinematic
singularities (normal thresholds and Landau curves) that can be traced back to (analytically-
continued) unitarity, a principle which the non-perturbative amplitude is expected to satisfy.
Therefore, to enumerate the singularities that follow from non-perturbative unitarity we can
equally enumerate the singularities of individual Feynman diagrams.8

In this classification, the Feynman diagrams are only used as a device to study the location
of kinematic singularities of the non-perturbative amplitude.9 For more than two intermediate
particles, we find this tool more practical than directly analyzing the analytic continuation of
the unitarity relation (2).

The locations of singularities of Feynmann diagrams can be found using the Landau equa-
tions. These are summarized in appendix C and we refer the reader, for example, to [14, 36]
for a detailed review.

The so-called leading singularity of a Feynmann diagram occurs when every internal mo-
mentum goes to the mass-shell. This is precisely the singularity that is described by the cor-
responding graph, as defined above through unitarity, where each line represents an on-shell
particle.

Therefore we may restrict our dissection to singularities of this type only. The Landau
equations then read

1. All propagators are on-shell, k2
i = m2, where the index i = 1, . . . , P labels all the propa-

gators and ki ’s are complex-valued oriented momenta that flow through them.

2. At each vertex v, the momentum is conserved,
∑

j∈v ±kµi = 0, with + (−) for ingoing
(outgoing) momenta.

3. For any loop l, the momenta satisfy
∑

j∈l ±α jk
µ
i = 0, with + (−) sign for momenta along (opposite) the orientation of the

loop, and non-zero coefficients, αi 6= 0.

Two solutions that are related by an overall rescaling of the coefficients corresponds to the
same singularity. We may therefore normalize them such that

∑

αi = 1.

7In fact, the set of contractions only leads to a pair of single vertices if each side remains connected after the
cut. In graph-theoretic terms this requires the cut to be minimal [11]. Physically, this is consistent with the fact
that on the RHS of unitarity (2) only connected S-matrix elements participate.

8Related to that, let us emphasize particles that propagate in these auxillary Feynman graphs are true asymp-
totic states. For example, in QCD these are pions and not quarks.

9In particular, note that m is the mass of a particle in the spectrum, which need not be associated with a
fundamental field.

5

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062


SciPost Phys. 13, 062 (2022)

For any solution to these equations we can associate a story in complexified spacetime. In
this story the Feynman parameters, αi , are the proper times of on-shell particles, k2

i = m2
i , that

propagate along the spacetime interval ∆xµi = αik
µ
i . Every vertex represents a scattering of

these particles that takes place at a point. The spacetime interval between two vertices should
not depend on the path between the vertices. This means that for a closed path (i.e. a loop)
we have

∑

i∈l∆xµi = 0.
No general answer is known to the question of which parts of the Landau curve lead to

singularities on the physical sheet (which is our main interest here).
With present understanding, answering it requires a careful case-by-case analysis. There

is however a special class of solutions to the Landau equations, called α-positive, for which
the singularity on the physical sheet is sometimes easier to establish.10 These are solutions for
which αi > 0.11 Below we concern ourselves with α-positive solutions only.

The double discontinuity DisctDiscsT (s, t) does not depend on the order in which the two
discontinuities are taken. For example, the graph in figure 2.b can equally be interpreted
as a contribution to the double discontinuity that comes about by first considering the four
particle contribution to t-channel unitarity and then plugging in the single-particle pole of
the analytically continuation of T2→4 and T †

2→4 in the s-channel. We can therefore group
the Landau curves into families that are characterized by two integers (ns, nt), which are the
maximal number of particles in the s-channel and t-channel unitarity they can be obtained
from.

In this paper we focus on the (4s, 4t) family of double discontinuities. These are the ones
that originate from the analytic continuation of unitarity (2) up until n = 4 in both channels.
Physically, this corresponds to restricting energies to s, t < 36m2.

We expect that all Landau curves in families with (ns ≥ 4, nt > 4) and (ns > 4, nt ≥ 4),
which are not already included in the (4s, 4t) family, to lay above the (4s, 4t) family in the s− t
plane of figure 1.

3 Graph selection

We now describe our systematic method of finding the α-positive Landau curves in the (4s, 4t).
A characteristic feature of a graph associated with such a curve is that any of its internal lines
can be taken to be one of the four (or less) particles in the unitarity relation in either the s-
channel or the t-channel. In other words, any leg of the graph should have a 2- or 4-particle
cut in at least one of the channels.

The number of potentially contributing graphs is infinite. We study finitely many graphs
with a fixed number of vertices, V , of fixed maximum vertex-degree D,12 and increase V
and D gradually. As we do so, the number of graphs to be analyzed grows factorially and
the problem rather quickly becomes intractable.13 To overcome this difficulty, we rule out
graphs that a priori cannot possibly have α-positive Landau curve or involve more than four
particles in the s- or t- channel. Importantly, this selection process has a precise graph-theoretic

10More precisely, this has only been shown for planar Feynman diagrams [13]. We believe that all α-positive
solutions found in this paper correspond to singularities on the physical sheet. However, we do not prove this for
the non-planar graphs.

11Let us emphasize an important subtlety. In the literature the notion of α-positive graphs typically involves
an extra assumption: all kµi are real, and k0

i > 0. These are the solutions of the Landau equations that capture
singularities of the amplitude in the physical region [7]. On the other hand, the α-positive graphs considered here
are relevant for singularities of the 2→ 2 amplitude on the physical sheet.

12Because of the aforementioned contractions, graphs with higher vertex degree D can arise in theories with a
smaller vertex degree. For example, the graph (c) in Fig. 2, which has two degree-6 vertices, gives a Landau curve
in φ4 theory.

13For D = 4 we analyzed all the graphs with V ≤ 12 and for D = 6, 8 up to V ≤ 8.
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implementation, so that it can be imposed before solving the Landau equations. Eventually
we find that the number of the relevant graphs stabilizes at a handful number of graphs.

Throughout our analysis we assume Z2 symmetry of the amplitude that restricts the vertex
degree D to be even.

The set of criteria that we use to select the relevant graphs are as follows:

• We look for Landau curves in the (4s, 4t) family. Correspondingly, we demand that any
leg of a graph should have a four-particle or two-particle cut in at least one of the chan-
nels. Even though this criteria sounds very intuitive, we have not proved it. Instead, we
will see that all the curves that result from graphs that satisfy it pass through the region
16m2 < s, t < 36m2 and asymptote to 16m2.14

• A graph only admits an α-positive solution to the Landau equations if each of its sub-
graphs admits an α-positive solution to the Landau equations.

According to this criterion, we can discard a graph by identifying that one of its subgraphs
cannot have an α-positive solution.

• We can discard a graph if a subgraph of it can be contracted without affecting the solu-
tion. That is because the corresponding Landau curve if it exists, is already accounted
for by the contracted graph.

We denote trivial sub-graph a graph that falls into one of the last two categories. We have
identified a few families of trivial graphs that involve bubbles, triangles, and boxes.15 They
are discussed in appendix D.

Computationally, we found it most efficient to proceed as follows

1. We start by generating all graphs without trivial bubbles, with fixed number of vertices
V that contain at least one vertex of degree D, but no vertices of higher degree.

2. We discarded graphs with trivial sub-triangles.

3. We discarded graphs without 2-particle or 4-particle cuts in at least two channels.

4. We selected the graphs for which all legs can be cut by 2-particle or 4-particle cuts.

5. We discard graphs with trivial sub-boxes.

6. Finally, we select graphs for which an α-positive solution to the Landau equations is
found.

Step 1 was implemented using nauty and Traces [34]. Steps 2-5 were implemented using the
open source network analysis package igraph [9], adapted to mathematica by the igraph/M
package [22]. Step 6 was implemented in mathematica. The details of the implementations
of each step can be found in appendix E.

As we increase D, it is harder to satisfy the four-particle constraint and the absence of
trivial sub-graphs. In particular, we did not find any graphs satisfying our criteria with D ≥ 8.
In table 1, we list the number of graphs at each step for D = 4 and D = 6.

As can be seen from table 1, considerable reduction in the number of graphs occurs at step
4 as the number of vertices increases. At this order it becomes an incredibly tight criterion,
but also very computationally expensive. For comparison, given the same set of graphs, we
observe step 3 to be roughly a hundred times faster and step 2 around a thousand times faster.

14Conversely, no graph that was left out by this criterion was found to have a curve in this region. This check
was made until V = 8 for D = 4 and until V = 6 for D = 6.

15These are subgraphs with 2, 3, and 4 vertices correspondingly.
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Table 1: The number of graphs with vertex degree 4 (top) and vertex degree≤ 6 with
at least one sextic vertex (bottom). Each column specifies the number of vertices
and each row specifies a reduction step. We show the total number of 2→ 2 graphs
without trivial bubbles in the second row. In the third row, graphs with trivial triangle
subgraphs have been discarded. Next, we require that all legs can be put on-shell
with at most 4-particle cuts since we are looking for Landau curves in the (4s, 4t)
family. We first demand that there exists at least one such cut of the diagram in each
channel (fourth row). Next we demand that every line can be cut with a 2-particle
or a 4-particle cut (fifth row). As a next step we discard the graphs containing a
trivial box subgraph (sixth row). The last row has the number of graphs for which
an α-positive solution has been found by numerically solving the Landau equations.
For quartic graphs, this number does not go to zero as the number of vertices is
increased. This is due to an infinite family of diagrams generated by consecutive
insertion of triangles (see figure 4). The corresponding Landau curves accumulate at
finite s, t, see figure 5. Current computational limitation prevents us from increasing
the number of vertices any further, but we believe that all the relevant diagrams have
been identified.

Quartic graphs (D = 4)

# of vertices (V ) 4 5 6 7 8 9 10 11 12
All graphs (no trivial bubbles) 2 3 23 111 788 5639 46603 410114 3587793

No trivial triangles 2 1 10 33 232 1522 12696 113034 1023415
2- or 4-particle cuts (exist) 2 1 7 25 157 955 7070 54835 429093

2- or 4-particle cuts (all legs) 2 1 4 5 12 7 10 7 9
No trivial boxes 2 1 3 4 9 4 4 3 3

α-positive Landau curves 2 1 2 1 3 1 1 1 1

Quartic & sextic graphs (D = 6) w/ sextic vertex

# of vertices (V ) 4 5 6 7 8
All graphs (no trivial bubbles) 9 109 2678 73918 2477395

No trivial triangles 6 22 553 14714 538309
2- or 4-particle cuts (exist) 1 3 27 476 10356

2- or 4-particle cuts (all legs) 1 0 2 1 3
No trivial boxes 1 0 1 0 0

α-positive Landau curves 1 0 1 0 0

Step 3 is logically included in step 4. Even though it is not necessary, it reduces total
computing time.

Interestingly, step 2, the elimination of trivial sub-triangles, is essential to observe the
quench in the growth of diagrams. We observe that the number of diagrams with trivial trian-
gles that survives the criterion imposed by step 4 grows at least exponentially with the number
of vertices.

Let us now summarize our findings. Figures 4 and 5 depict all the graphs that satisfy α-
positive Landau equations with at most four particles in the s- and t-channels, and figure 5
the corresponding Landau curves. The graphs in figure 4 and figure 5, as well as the Landau
curves in figure 5 are the main results of the paper.16 In appendix A we exhibit the equations

16 All the curves that we found cross the region 16m2 < s, t < 36m2. We believe that the presented here list of
curves in this region is complete. Showing this requires proving some further properties of the α-positive Landau
curves which we discuss in the conclusions. It also requires making sure that non α-positive solutions to the Landau
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(a) (b)

Figure 3: The planar cross and the non-planar cross (open envelope) graphs. Each
of the diagrams is the first one in an infinite chain of diagrams, see figure 4, that
generates the Landau curves on the physical sheet, in the region 16m2 ≤ s, t < 36m2.

a)

b)

Figure 4: The planar, a), and non-planar, b), triangle chain graphs. Remarkably, each
of the graphs involves four-particle scattering both in the s- and in the t- channel. As
the number of triangles grows, the corresponding Landau curves quickly accumulate
around the locus (1) on the physical sheet. Notice that adding a single triangle to each
chain increases the number of vertices V by 2. Closely related diagrams appeared
before in [2,4,13].

for some of the multi-particle Landau curves depicted in figure 5.
Interestingly, we find Landau curves crossing 16m2 ≤ s, t < 36m2 which originate from

graphs with arbitrarily large V . These are depicted in figure 4 and their Landau curves (shown
in black on figure 5) accumulate to the red curve on figure 5. This is a new feature compared
to the elastic region 4m2 ≤ s, t < 16m2, where every bounded region of the kinematic space
contains a finite number of Landau curves. We believe that this feature is characteristic for the
multi-particle region and there are infinitely many accumulation points of the Landau curves
there. We discuss this further below.

equations do not lead to the singularities on the physical sheet.

Table 2: Accumulation of Landau curves at finite s and t. The table lists the symmetric
point (s = t) of the first few Landau curves produced by the infinite set of triangle
chain diagrams (depicted in black in figure 5). The curves accumulate towards the
red curve in figure 5. The last row of the table indicates that the approach towards
the limiting curve is very quick (approximately geometric).

Triangle chain curves at symmetric point: s = t = xn.

n 1 2 3 4 5 6 7 8 · · · ∞
xn 35.8885 27 30.2385 29.7511 29.8799 29.8504 29.8579 29.8560 · · · 29.8564

�

�

xn−x∞
xn−1−x∞

�

� - 0.4735 0.1338 0.2756 0.2235 0.2533 0.2482 0.2547 · · · ?
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Figure 5: The Landau curves in the 2 → 4 multi-particle region. To each diagram
corresponds a pair of crossing symmetry-related curves. For crossing symmetric di-
agrams, there is only one curve. The red curve, given by equation (1), is an accu-
mulation point of infinitely many Landau curves. The uppermost curve (black #1)
is given by the non-planar cross diagram, figure 3 (b), while the planar cross, figure
3 (a), gives the lowermost curve (black #2). The planar triangle chain graphs (#2,
#4, #6,...), figure 4 (a), approach the red curve from below while non-planar trian-
gle chain graphs (#1, #3, #5,...), figure 4 (b), approach it from above. As shown
in the inset panel, the approach is fast (see table 2). We expect that the Landau
curves presented here are all the curves that cross the square 16m2 < s, t < 36m2

on the physical sheet. We collect explicit equations for some of the Landau curves in
appendix A.

4 Discussion

In this paper we have analyzed analytic properties of the 2→ 2 scattering amplitude on the
physical sheet. In particular, we have focused on the leading Landau curves in the multi-
particle region which originate from the analytic continuation of four-particle unitarity both
in the s- and t- channels (in our notations (4s, 4t) curves). Here we discuss various implications
of our results as well as some interesting directions to explore.
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4.1 Lighest particle maximal analyticity

Eventually we would like to fully understand the analytic properties of the scattering amplitude
on the physical sheet. In the context of perturbation theory a rich structure of singularities has
been discovered already in a 2→ 2 scattering amplitude. These include anomalous thresholds
[24,25,38]17, crunodes, acnodes and cusps [12]. No systematic understanding of these latter
singularities exists up to this day.

Nevertheless in the course of these explorations a remarkable hypothesis has emerged. It
concerns the 2→ 2 scattering of the lightest particles in a gapped theory (which is the subject
of the present paper) and can be stated as follows.

Lighest Particle Maximal Analyticity: The 2→ 2 scattering amplitude of the lightest parti-
cles in the theory, T (s, t), is analytic on the physical sheet for arbitrary complex s and t, except
for potential bound-state poles, a cut along the real axis starting at s = 4m2 with branch points
associated with production normal thresholds and Landau curves, as well as images of these
singularities under the crossing symmetry transformations.

Establishing this hypothesis even within the framework of perturbation theory is an impor-
tant, open problem in S-matrix theory. Assuming lighest particle maximal analyticity (LPMA),
the analytic structure of the 2 → 2 amplitude is concisely encapsulated by the Mandelstam
representation.18 From the point of view of our analysis, the nontrivial fact about LPMA is
that scattering of lightest particles contains infinitely many subgraphs that by themselves do
not respect maximal analyticity. For example, some of the trivial boxes subgraphs depicted in
figure 19 do not admit the Mandelstam representation [33]. For LPMA to hold, embedding
these subgraphs inside a larger graph that describes scattering of the lightest particles in the
theory should render the complicated singularities of the subgraph harmless on the physical
sheet.19

We have not studied the mechanism of how this happens, and we leave this important
question for future work.

LPMA is a working assumption in some of the recent explorations of the S-matrix bootstrap,
see e.g. [8, 18, 20, 40]. It is also one of the main reasons we have restricted our study to the
physical sheet.

It would be very interesting to revisit the problem of establishing LPMA in perturbation
theory. For example, showing that all the graphs considered in the present paper admit Man-
delstam representation might provide a clue as to why it is valid more generally.

4.2 Analytic continuation of multi-particle unitarity

As we discussed at the beginning of the paper, a direct way to see the emergence of double
discontinuity of the amplitude is to analytically continue the unitarity relations (2) which
involves T2→n scattering amplitude. While for n= 2 this has been done already by Mandelstam
[32], very little work has been done for n > 2. Let us mention that some progress has been

17Anomalous thresholds do not arise in the 2→ 2 scattering of the lightest particles, see e.g. [13] for a pertur-
bative argument. However they are present in the 3→ 3 (or 2→ 3) scattering, see [3,10].

18The Mandelstam representation involves an extra assumption that the discontinuity of the amplitude is poly-
nomially bounded on the physical sheet.

19As an example, the top center box in figure 19 has an α-positive section of the Landau curve for s < 4m2,
which is associated with a complex singularity and for which the Mandelstam representation does not hold [33].
For the case of scattering of lightest particles, this anomalous box is embedded in the graph in fig. 11, where LPMA
applies. For this graph we have verified numerically that no α-positive solution exists for s < 4m2. While at present
we cannot rule out the presence of complex singularities in this graph, we see that, at least, there is no anomalous
α-positive real section.
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made for n= 3 in the papers [16,23] but the connection between analytically continued multi-
particle unitarity and the multi-particle Landau curves has not been explored systematically.
It could be useful, for example, to better understand the lower bound on particle production
along the lines of [8].

4.3 Lightest particle α-positive Landau curves

All the elastic Landau curves [8] and the multi-particle curves discussed in the present paper
satisfy the following properties:

1. Asymptotic to normal thresholds. As t (or s) goes to infinity, s (or t) approaches normal
thresholds.

2. Monotonic. For s > 4m2 we have d t
ds < 0.

It is tempting to conjecture that in the context of the lightest particle scattering the prop-
erties above fully capture the nonperturbative analytic structure of the 2 → 2 amplitude on
the physical sheet. Assuming it is true, the Landau curves form a simple hierarchical struc-
ture, where the α-positive curve (if it exists) of a graph with a minimum cut across ns legs in
the s-channel, and a minimum cut across nt legs in the t-channel has support in the region
s > (nsm)2, t > (nt m)2. It then follows that the curves found in the present paper are com-
plete in the region 16m2 ≤ s, t < 36m2. This is an extra assumption to which we referred in
the footnote 16.

Even if heavier particles flow in the internal lines, as long as the external states are the
lightest particles, we expect that the above properties should hold. Clearly, in fig. 5 we see
diagrams with 2-particle and 3-particle internal bubbles which are equivalent (i.e. would give
the same Landau curve) to diagrams where these bubbles are replaced by single particles with
mass 2m and 3m, respectively.

However, due to the presence of anomalous thresholds [33], monotonicity of the Landau
curves does not necessarily hold outside lightest particle scattering. See section 4.8 for a
discussion on the general external mass case.

4.4 Extended elastic unitarity region

The results of this paper strengthen the picture in which the double discontinuity vanishes
below the first elastic Landau curves

ρ(s, t)≡ DisctDiscsT (s, t) = 0 , (4)

for s, t ≥ 4m2 and
(s− 4m2)(t − 16m2)< 64m4 ,
(t − 4m2)(s− 16m2)< 64m4 .

We see that the multi-particle Landau curves do not spoil this relation and, therefore, we
expect it to hold non-perturbatively.

Another outcome of our analysis is an extended region of validity of the analytically con-
tinued elastic unitarity. Let us consider the first multi-particle Landau curve that we encounter
as we enter the region s, t > 16m2. It is the planar cross curve given by the equation [27]
(black curve #2 in figure 5)

s3(t − 16) + t3(s− 16) + 24 s t(s+ t − 18)− 2s2 t2 = 0 . (5)

Let us call {4m2 < s, t < planar cross} the extended elastic unitarity region. In this region the
double discontinuity ρ(s, t) satisfies the following relation

Extended elastic unitarity :

ρ(s, t) = ρel(s, t) +ρel(t, s) , 4m2 < s, t < planar cross , (6)
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Figure 6: A box graph with bridges of size (n1, n2, n3, n4). The Landau curve that is
associated to this graph is expected to be an accumulation curve of infinitely many
Landau curves. They correspond to graphs that are obtained from this one by replac-
ing an ni-bridge with an ni-chain.

where ρel(s, t) is the double discontinuity given by the Mandelstam equation in the s-channel,
which expresses analytically continued elastic unitarity.

Notice that the equation (6), on one hand, involves only the 2→ 2 scattering amplitude.
On the other hand, its origin lies in the details of multi-particle unitarity.

4.5 Accumulation points of the Landau curves are generic

We believe that the basic mechanism found in the present paper for the accumulation of the
Landau curves on the physical sheet is generic. For example, we expect that the Landau curves
that originate from the graphs depicted in figure 6 are accumulation points of infinitely many
Landau curves on the physical sheet.

The basic mechanism is the one we observed for the triangle chains depicted in figure 4.
By exchanging an ni-particle bridge with a chain of ni-particle sub-graphs, an infinite family of
Landau curves is generated. As the length of the chain is increased, it is natural to expect that
the solution of the Landau equations, if it exists, converges to the one of the ni-particle bridge.
In particular, we have already established existence of the α-positive solution to the Landau
equations for a chain of triangles. The triangle chain can now be exchanged with any ni = 3
bridge of a diagram with an α-positive solution to produce an accumulation sequence.20

This scenario leads to a very complicated structure of the Landau curves on the physi-
cal sheet. We will have an infinite number of accumulation points, accumulation points of
accumulation points, etc.

Let us also emphasize that this feature should be present in any interacting gapped theory
with at least one massive particle in the spectrum, with any spin. We also see no reason why
such accumulations would not occur in the general mass case, i.e. with different species being
exchanged. It would be interesting to check this explicitly.

4.6 Higher multi-particle Landau curves

Our method is systematic and, given enough computational ability, can be used to find Landau
curves above s, t > 36m2. Graph selection should now involve 6−particle (or heavier) cuts.

It is likely, however, that the elimination of trivial bubbles and triangles will no longer
be sufficient to quench the growth of the number of graphs. Unfortunately, the condition for
larger subgraphs to be trivial is not so simple (see appendix D where we identify some trivial

20Note that the triangle chain diagrams correspond to embedding 3 → 3 elastic scattering amplitude inside
a 2 → 2 process. Similarly, the mechanism for accumulation of the Landau curves described above seems to be
related to the behavior of the n → n multi-particle amplitudes close to the normal multi-particle thresholds. It
would be interesting to study this behavior in more detail (for a related discussion see [4]).
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boxes). The problem becomes more complicated the deeper one delves into the multi-particle
region. One may need to discard multiple-loop subgraphs, for example.

Direct use of unitarity may be a viable alternative, as shown in the elastic region. However,
as mentioned earlier, analytic continuation of multi-particle kernels is a difficult task. The
accumulation mechanism discussed here, which should follow from 4-particle unitarity, indeed
does not indicate otherwise.

4.7 S-matrix bootstrap applications

Our results have implications for the S-matrix bootstrap program. Indeed, the stumbling block
of the current incarnation of the S-matrix bootstrap in d > 2 is that it was not possible so far
to include the multi-particle amplitudes in the analysis.

Here we took an alternative route, where we tried to understand how the presence of
multi-particle unitarity is reflected on the structure of the 2→ 2 amplitude. In some sense, we
can think of the Landau curves found in the present paper as seeing multi-particle shadows on
the elastic scattering wall.

Implementing the structure of the few leading Landau curves in the analytic structure of
the amplitude will already be a step forward compared to some of the current explorations of
the S-matrix bootstrap [17,18,20,40]. Indeed, even (4) has not been realized in this context.21

Another interesting question is to what extent the detailed analytic structure is relevant
for the low-energy observables, e.g. a few low-energy Wilson coefficients. We do not know
the answer to this question, but recent works [18,40] suggest that the low-energy observables
are not very sensitive to that. It would be very interesting to better understand the origin of
this phenomenon.

4.8 Other future directions

A few other future directions are

• An interesting generalization of our analysis is to relax Z2 symmetry. Effectively it allows
vertices of odd degree D and will lead to new graphs and the corresponding Landau
curves. It would be interesting to understand them in detail. While the Landau curves
found in fig. 5 should still be present, these will not be all the curves crossing the region
16m2 < s, t < 36m2. There will be new curves that asymptote to 9m2 and that cross this
region, similarly to what happens with the elastic curves, which asymptote to 4m2 and
also cross 16m2 < s, t < 36m2.

A presumably simpler problem to what we have studied here would be to map out all
the curves in the region 9m2 < s, t < 16m2. Are there accumulations of Landau curves
inside this region? We believe that this is not case since no analog of the triangle chain
depicted in figure 4 exists in this case.

• Another possibility is to consider the presence of bound-states, or particles with differ-
ent mass. We can think of a couple of difficulties here. One is that the graph selection
procedure is more involved. The simple graph-theoretic rules derived in appendix D for
discarding trivial sub-graphs become much more complex in the general mass case, and
a systematic selection as done here might be unfeasible. The other problem, a more
fundamental one, is that the different mass case leads to several new features on the
Landau curves. First, there are anomalous thresholds and Landau curves are in general
non-convex, namely they can bulge below the asymptotic normal threshold. This could

21The fixed point unitarity methods [1] do realize this structure but these have not been implemented in d > 2
yet [47].
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invalidate our cut criteria which discard Landau curves that asymptote to normal thresh-
olds outside the kinematic region of interest. Surely the curves found in fig. 5 should
be present in any theory (with at least one massive particle). However, in the general
mass case these won’t very likely be all the curves that cross a given kinematic region
on the physical sheet. Secondly, cusps, acnodes and more generally complex singular-
ities [14, 33] could appear on the physical sheet. These are not necessarily associated
with α-positive solutions to the Landau equations.

• It would be interesting to apply techniques recently developed in [37] to better un-
derstand the approach of the Landau curves to the accumulation point, as well as the
analysis of [19] to better understand the nature of multi-sheeted analytic structure of
the corresponding Feynman graphs.

• It would be important to prove that all the curves we have found are indeed present on
the physical sheet. For the planar graphs it is guaranteed, see [13,35,36]. For the non-
planar cross in figure 3.b, the question was addressed in [42]. For the other non-planar
graphs an extra analysis is required, either by following the analytic continuation of the
corresponding Feymann integral or by directly analyzing the 4-particle unitarity kernel.
It is also important to prove that non α-positive solutions to the Landau equations do not
lead to singularities on the physical sheet. Finally, one would like to show that there is
a unique α-positive solution associated with each nontrivial graph (which we assumed
to be the case in appendix C).

• Our results should emerge from the flat space limit of the theory in AdS [21,29,30,39,
41]. In the latter case, one computes the conformal correlators on the boundary of AdS.
The double spectral density of the amplitude corresponds to the quadruple discontinuity
of the corresponding correlator [5]. Complexity of the multi-particle scattering in this
case translates into the complexity of the n-twist operators with n> 2, [15,28].

• For large N confining gauge theories, a new classical description emerges at large
s, t � m2 [6]. Can there also be a universal classical description in this regime for
the non-perturbative amplitude? A crucial step in answering this question seems to be a
better understanding of the analytic structure in this regime. Understanding this regime
is necessary for establishing the Mandelstam representation of the scattering amplitude
non-perturbatively. It is also important for developing possible truncation schemes in
which the complicated multi-particle unitarity structure can be simplified.
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A Multi-particle Landau curves

Here we collect explicit equations for some of the multi-particle Landau curves discussed in
the paper. For convenience we set the mass m = 1. We refer to the various diagrams by their
colors as depicted on figure 5.
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Red curve (the accumulation curve)

(s− 16)(t − 16)− 192= 0 . (7)

Planar cross (see figure 3.a, and [27])

s3(t − 16) + t3(s− 16) + 24st(s+ t − 18)− 2s2 t2 = 0 . (8)

Non-planar cross (see figure 3.b, and [27])

1
3

s3 t3u3 − 48s3 t3u2 + 768s3 t3u− 4096s3 t3 + 4096s3

+ 8512s2 t2u2 − 503808s2 t2 − 36864
�

s2 t + st2
�

+ 138240
�

s3 t2 + s2 t3
�

− 790528stu+ (cyclic) = 0 , (9)

where s + t + u = 4. Curiously in the region 0 < s, t, u < 4 this curve can be written
as [31]

� s
16

�
1
3
+
� t

16

�
1
3
+
� u

16

�
1
3
= 1 . (10)

Green curve

s2 t2 − 16s2 t − 32st2 + 224st + 256(t − 1)2 = 0 . (11)

Blue curve

(s− 16)3 t2 + (s− 4)(s− 16)3 t − 16((s− 10)s+ 32)2 = 0 . (12)

Curves (7), (11) and (12) were found using the 2-particle kernel. See appendix B.

B Landau curves from 2-particle unitarity

As explained in section 2, we can assign graphs to singularities that follow from continuation
of unitarity. They represent how unitarity integrals relate singularities of sub-graphs to singu-
larities of the bigger graph. In this appendix we demonstrate such explicit relation directly at
the level of the Landau curves, without using the Landau equations. It follows from a detailed
analysis of the two-particle unitarity integral – the so-called Mandelstam kernel, see [8] for
details.

Figure 7: The Landau curve of a graph AB that has a 2-particle cut is related to
the singularities of sub-graphs A and B. The numbers indicate the mass of “on-shell"
particles as integer multiples of m.

Consider a graph AB that can be split into two sub-graphs, A and B, by a 2-particle cut
as illustrated in figure 7. In this case, the Landau curve of AB (tAB(s)) can be determined in
terms of the curves of A (tA(s)) and B (tB(s)) from the following equation

λn, j(s, tAB(s)) = λn,k(s, tA(s))×λk, j(s, tB(s)) , (13)
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where
λn, j(s, t) = zn, j(s, t) +

q

zn, j(s, t)2 − 1 , (14)

and

zn, j(s, t) =
s− 2(n m)2 − 2( j m)2 + 2t
p

s− 4(n m)2
p

s− 4( j m)2
, (15)

is the cosine of the scattering angle between incoming particles of mass n m and outgoing
particles of mass j m.

To illustrate (13) consider the leading elastic Landau curve that is plotted in gray in figure
5. It is represented by the graph on figure 8 and has a single 2-particle cut along the s-channel.

Figure 8: Diagrams with a single s-channel cut which splits each diagram into a
pair of t-channel bubbles. The Landau curves of these diagrams follows from the
singularities of the bubbles, which are simple normal thresholds. The Landau curve
of the diagram on the left (gray curve in figure 5) is given by equation (16) while
the diagram on the right (red curve in figure 5) has Landau curve given by equation
(18).

Since either sub-diagram has a normal threshold at t = 4m2 and all legs have the same mass
m, the corresponding Landau curve is given by

λ1,1(s, tgray(s)) =
�

λ1,1(s, 4m2)
�2

, (16)

which in polynomial form reads

(s− 4m2)(t − 16m2)− 64m4 = 0 . (17)

Swapping s↔ t leads to the leading elastic curve that follows from t-channel unitarity. Both
are represented in gray in figure 5.

Note that equation (13) can be iterated. By gluing AB to a new diagram C one can express
the Landau curve of ABC as

λn, j(s, tABC(s)) = λn,k(s, tA(s))×λk,l(s, tB(s))×λl, j(s, tC(s)) .

One may further iterate (18) by gluing more sub-diagrams. If all sub-diagrams A, B, C,
... are taken to be t-channel bubbles then the full graph ABC· · · becomes a ladder diagram.
Every Landau curve belonging to the elastic region 4m2 < s < 16m2 is represented by a ladder
diagram, and every elastic curve can be computed accordingly (see section 3.5 of [8]).

Interestingly, the 2-particle kernel may also be used to determine some of the Landau
curves in the multi-particle regime s, t > 16m2. This is because a bubble diagram with n legs
of mass m is indistinguishable from a graph where this bubble is replaced by a single on-shell
particle of mass nm (see appendix D). We may therefore use equation (13) to determine the
red Landau curve in figure 5 whose diagram and cut is represented in figure 8

λ1,1(s, tred(s)) = λ1,2(s, m2)λ2,1(s, 9m2) . (18)
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Figure 9: Slicing of multi-particle graphs with 2-particle cuts where each cut bubble
corresponds to a particle of mass 2m. equation (18) may be used to find the Landau
curves represented by these diagrams. Green is given by equation (19) and blue
follows from eqs. (20) and (21).

Similarly, we may use equation (18) to compute the blue and green Landau curves in figure
5, according to the slicing in figure 9.

The green Landau curve reads

λ(s, tgreen(s)) = λ1,2(s, m2)λ2,2(s, 4m2)λ2,1(s, m2) , (19)

which, in polynomial form, is given by equation (11).
The blue Landau curve can be expressed in terms of the Landau curve t∗(s) of the sub-

diagram in the middle (see figure 10),

λ(s, tblue(s)) = λ1,2(s, m2)λ2,2(s, t∗(s))λ2,1(s, m2) . (20)

We can now relate t∗(s) to the Landau curve of a simple box diagram by crossing s- and u-
channels.

Figure 10: Crossing s ↔ u channels relates the Landau curve of the middle sub-
graph of (Blue) in figure 9 with the curve of a simple box diagram. To each external
vertex a bubble is connected, which is equivalent to considering 2→ 2 scattering of
particles with mass 2m.

Using (13) we can find the Landau curve of the box diagram and t∗(s) is the solution of

λ2,2(u, t∗(s)) = λ2,1(u, m2)λ1,2(u, m2) , (21)

where in the formula above we set u = 16m2 − s − t∗(s). Plugging t∗(s) back into (20) leads
to the blue curve in figure 5, which is expressed in polynomial form in (12).

For the graphs in this section, we have explicitly checked that the obtained Landau curves
correspond to the α-positive solutions of the Landau equations. However, this is not always
the case. For example, the graph in figure 11 does not admit an α-positive solution. Applying
to it the procedure described in this section produces a Landau curve which we believe is on
the second sheet.

C Landau equations and automorphisms

Here we briefly review the standard derivation of the Landau equations for the Feynman di-
agrams, see for example [14] and [36] for a recent review. A generic Feynman integral with

18

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062


SciPost Phys. 13, 062 (2022)

Figure 11: A graph whose Landau curve (more precisely, its leading singularity)
can be found using the method described in this section. The Landau curve sits
between the blue and red curves in figure 5. Given that it is not α-positive, we do
not expect it to be on the physical sheet. In the graph selection procedure, this graph
was discarded by identification of a trivial box (see figure 19).

trivial numerators takes the form

F =

∫ L
∏

j=1

dd k j

1
∫

0

P
∏

i=1

dαi
δ(1−

∑

i αi)
ψP

, (22)

where L are the number of loops, P the number of internal lines and the denominator reads

ψ=
P
∑

j=1

α j(k
2
j −m2

j ) , (23)

where the k j>L momenta depend linearly on the loop momenta k j≤L , due to momentum con-
servation at each vertex.

The integration over the loop momentum can then be readily done and yields

F =

1
∫

0

P
∏

j=1

dα j

δ(1−
∑P

j=1α j)C P−2L−2

DP−2L
, (24)

with

C = det ai j , D = det

�

ai j −b j
−b j c

�

, (25)

where i, j = 1, . . . , L and

ai j =
1
2
∂ 2ψ

∂ ki∂ k j

�

�

�

�

k=0

, b j =
1
2
∂ψ

∂ k j

�

�

�

�

k=0

, c = ψ|k=0 . (26)

As the integral is analytically continued in the Mandelstam variables, the contour of inte-
gration may be smoothly deformed to avoid the singularities. The integral becomes singular
when the contour is pinched by singularities of the integrand.

The so-called leading singularities occur whenever two (or more) zeros of the denominator
coincide.22

These can be found by solving

∂ψ

∂ αi
= 0 ,

∂ψ

∂ k j
= 0 . (27)

The first condition puts all internal legs on-shell, k2
i = m2

i , while the third condition relates
momenta belonging to the same loop, l, as

∑

i∈l

αiki = 0 . (28)

22There are also end-point singularities, corresponding to pinches at end-points of the integration contour.
However, in the context of Feynman integrals, these are also leading singularities of contractions of the original
graph [14].
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An equivalent form of the Landau equations is obtained for representation (24),

D = 0 ,
∂ D
∂ αi

= 0 . (29)

Note that since D∝ αi
∂ D
∂ αi

is homogeneous, D = 0 is automatically satisfied.
There are P + 2 variables, s, t and the α parameters, and P + 1 Landau equations, which

are the P pinch conditions (29) supplemented by the normalization

P
∑

i=1

αi = 1 . (30)

These equations may be solved for αi(s) and t(s), the Landau curve.
In this work we made use of the form (27) to discard trivial subgraphs (see appendix D),

while (29) is used for numerical computation of the Landau curves (see appendix E) since D
is an explicit function of s and t.

As discussed in section 2, we restricted ourselves to the α-positive solutions because these
occur on the undistorted contour of integration of (22) and (24), and are therefore likely to
be on the physical sheet.10

We observe that non-trivial graphs (see section 3) have a unique α-positive solution, cor-
responding to the Landau curve represented by that graph. We assume that it is always the
case.

Under this assumption, one can derive an important result which allows for dramatic sim-
plification of the Landau equations in the search for α-positive solutions.

Symmetries of a graph translate into symmetries of the corresponding Landau equations.
Concretely, if a transformation mapping edge i → i′ is an automorphism [11] (which also
leaves (s, t) invariant) then the change αi → αi′ is a symmetry of the Landau equations (29).
Therefore, if αi is a solution, then αi′ is a solution to (29) as well.

Now, under the assumption that the α-positive solution is unique we see that the automor-
phism i→ i′ has to map the α-positive solution to itself. Hence,

αi = αi′ . (31)

This property can be used to reduce the system of Landau equations, if one identifes the
automorphisms that leave the Mandelstam invariants unchanged. Note that (s, t) are left in-
variant if the external legs are swapped in pairs or, trivially, if they remain still.23 If there
are also automorphisms that map s↔ t, the Landau curve is crossing-symmetric and further
reduction is possible at the point s = t.

Given a graph, the exact expression for D and the graph automorphisms can be found
automatically using graph-theoretic tools. See appendix E for the precise implementation.

D Trivial subgraphs

As discussed in the main text, a trivial sub-graph is a sub-graph that either do not have an
α-positive solution or can be contracted without affecting the solution to the Landau equa-
tions. In this appendix we identify a few families of trivial sub-graphs that are composed from
bubbles, triangles and boxes.

23The latter case includes permutations between legs belonging to the same bubble. This implies that the
corresponding parameters αi have the same value, as derived in appendix D.
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Bubbles

A bubble sub-graph is a set of n> 1 legs connecting the same two vertices, see figure 12. When
solving the associated Landau equations, we attach to them parameters αi and momenta ki ,
that are all taken to point towards the same vertex.

Each pair of these legs, (i, j), form a loop and the associated Landau equation reads

αiki = α jk j . (32)

Figure 12: A bubble sub-graph with n internal lines. Each line is associated with an
on-shell momentum k2

i = m2 and a Feynman parameter αi . The Landau equation
forces them all to be the same, making the buble equivalent to a single line of mass
n×m.

Using the on-shell condition k2
i = m2 and requiring the α’s to be positive leads to αi = α j .

Plugging this back into (32) leads to ki = k j .
Since all momenta are equal, the bubble diagram is indistinguishable from a single leg

with mass n×m.

Figure 13: A sub-graph made of a chain of two bubbles with n and ñ lines corre-
spondingly. The Landau equation forces n = ñ, making the chain equivalent to a
single bubble and hence, a trivial sub-graph.

Consider now a chain of two bubbles, one with n lines and the other with ñ lines, con-
nected through a single vertex, see figure 13. Using momentum conservation at that vertex
we conclude that in order to have a solution, ñ must be equal to n. In this case however, having
two bubbles instead of one impose no further constraints on the external momenta. Hence,
the Landau equations for the pair of bubbles are equivalent to the ones of a single bubble.

We conclude that a bubble is trivial if to one of its vertices another bubble is connected.

Triangles

Figure 14: A trangle sub-graph with three independent masses m2
i . For

p2
1 = (m2 ±m3)2 the triangle is trivial.

A triangle sub-graph consists of three vertices conected by three lines, (see figure 14).
To each line i = 1,2, 3 we associate an independent mass mi , Feynman parameter αi , and
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momentum ki that is oriented anti-clockwise around the loop. To each vertex we associate an
incoming momentum pi , with p3 = k1 − k2, etc. The associated Landau equation reads

α1 k1 +α2 k2 +α3 k3 = 0 . (33)

By dotting this equation with ki=1,2,3, we may express it as a condition on the Gram matrix




m2
1 k1 · k2 k1 · k3

k1 · k2 m2
2 k2 · k3

k1 · k3 k2 · k3 m2
3









α1
α2
α3



= 0 . (34)

Using momentum conservation, we express the Lorentz invariants in terms of the external
momenta as

k1 · k2 =
m2

1 +m2
2 − p2

3

2
, (35)

and similarly for k1 · k3 and k2 · k3.
The solutions to the Landau equations (34) can be classified into three types.

a) If one of the external momenta, say p1, satisfies

p2
1 = (m2 ±m3)

2 , (36)

but p2 and p3 do not satisfy an analogous relation then the only possible solution is with
α1 = 0. This is not an α-positive solution.

b) Suppose two of the external momenta satisfy conditions equivalent to (36). To have a
solution with αi 6= 0 also the third momenta has to obey a condition equivalent to (36)
such that the product of signs in (36) is equal to −1. In that case, there is a line of
solutions given by the relation

±α1m1 ±α2m2 ±α3m3 = 0 , (37)

where the signs in (37) are dictated by the corresponding signs in (36). Requiring that
αi > 0 selects a line of solutions with one minus and two pluses in (37).

c) Finally, there are other solutions which are not of type (a), or (b) above, in which the
triangle may be non-trivial.

While in principle a sub-triangle of type (b) may be non-trivial, we observed that until
V = 8 for quartic graphs and V = 5 for sextic graphs, all such cases do not lead to a new
curve. Two examples of this are given in figures 15 and 16. We assumed that this is general.
Namely, that any type (b) sub-triangle belonging to a graph in the (4s, 4t) family does not
lead to a new Landau curve. Under this assumption, if at least one of the external momenta
satisfies (36) then the triangle is trivial.

Let us now translate this condition into a graph-theoretic criterion. A generic triangle will
have bubbles as internal edges, (see figure 17). As shown previously, a bubble is equivalent to
single leg of mass nim, where ni is the number of bubble legs.

Suppose that we further attach an external bubble to one of the vertices of the triangle, say
the vertex where p3 in figure 14 enters. Condition (36) for a triangle to be trivial then reads

N3 = |n1 ± n2| , (38)

where N3 is the number of legs in the external bubble and n1 and n2 are the number of legs
in internal bubbles that are attached to the vertex.
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Figure 15: An example of a sub-triangle (left) that is equivalent to a 3-particle bubble
(right). The top right vertex of the triangle obeys condition (36) with a (−) sign while
the top left vertex obeys this condition with a (+) sign. Therefore, in order for an
α-positive solution to be possible, the momenta p entering the bottom vertex must
satisfy (36) with a (+) sign, i.e. p2 = (m+ 2m)2 = 9m2, which makes the triangle
equivalent to the bubble with three legs on the right.

Figure 16: The trivial “acnode" graph (left) and the accumulation graph (right) have
the same Landau curve. Note that the acnode graph has two trivial triangles (top
right and bottom left vertices satisfy (36), or equivalently (38)). No obvious graph-
theoretic operation relates the graphs. It is also not clear to us how the Landau
equations of the two are related, except by looking at the α-positive solutions.

Figure 17: A triangle is trivial if two of its internal bubbles, with n1 and n2 legs, are
connected to an external bubble with |n1 ± n2| legs.

Figure 18: Box graph. Besides the “masses" p2
i there are also Mandelstam invariants

s = (p1+p2)2 and t = (p1+p3)2 that participate in the Landau equations. This makes
it hard to find a generic graph-theoretic condition for the box graph to be trivial.

Boxes

A box sub-graph consists of four vertices, such that each vertex is connected to two other
vertices, see figure 18. For the box graph there are 4 external momenta pi that flow into each
vertex. Now, the kinematical invariants are not only the ’masses’ p2

i but also the Mandelstam
invariants s = −(p1 + p2)2 and t = −(p1 + p3)2.

Because the Landau equations now involve s and t, a generic graph-theoretic condition
for the box graph to be trivial is harder to find. However, for our purposes we do not need
to discard trivial sub-boxes to quench the growth of graphs (identification of trivial triangles
and bubbles allied with requiring all legs to be cut by 4-particle cuts is enough, see table 1.).
Rather, after step 4 of the graph selection procedure described in section 3 there are still trivial
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graphs remaining. We were able to roughly discard half of them by identifying a trivial sub-box
(see table 1). The remainder was eliminated by numerical search for an α-positive solution
(see appendix E).

In figure 19 we present the boxes that were found to be trivial by explicitly solving the
Landau equations (see [14]). Let us emphasize once again, that we call them trivial because
the corresponding Landau equations do not admit an α-positive solution. It does not mean
that these boxes do not have a nontrivial double discontinuity.

Figure 19: A few examples of trivial boxes. We have explicitly checked that the
presented graphs do not admit an α-positive solution to the Landau equations.

E Graph-theoretic implementation

In this appendix we describe how the graph selection procedure outlined in section 3 is imple-
mented in detail.

Graph generation (step 1)

To obtain all graphs with V vertices and a certain maximal vertex degree, we start by generating
all vacuum bubbles with V+1 vertices and the same maximal degree. We then remove a quartic
vertex. The four legs that were connected to it become the external legs of the scattering graph
(see figure 20).

Figure 20: Excision of a quartic vertex from a vacuum bubble (left) leads to a graph
with 4 external legs (right).

To generate vacuum bubbles we make use of nauty and Traces [34], in particular the geng
and multig commands. The nauty/geng command generates all simple non-isomorphic graphs
with a given number of vertices V and minimum and maximum vertex degrees ds and Ds.

24

The nauty/multig command takes a simple graph and turns each edge into a bubble (or multi-
edge), according to maximum vertex degrees Dm and maximum edge multiplicity M . It outputs
all possible graphs with bubbles out of that simple graph. See the documentation [34] for more
information.

24A simple graph is a graph without bubbles, only single edges [11], (see figure 21).
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Finally, the output of nauty/multig (the adjacency matrix [11] of each graph) is inserted
into mathematica. Using the package igraph/M [9,22] and default tools we remove a quartic
vertex from the vacuum bubble to obtain a graph with 4 external legs. This procedure is
exemplified for the accumulation graph in figure 21.

Figure 21: Simple vacuum bubbles are generated using nauty/geng (left). Single
lines are then replaced by bubbles in all possible ways using nauty/multig (center).
Removal of quartic vertices (using Mathematica) leads to graphs with 4 external legs
(right).

We now describe how the physical graph selection criteria described in 3 constrains the
parameters Ds, d and Dm and M that enter into geng and multig, respectively.

• Ds = Dm = D. It is clear that if we are looking for graphs with 4 external legs with
maximum vertex degree D then we can choose Ds = Dm = D as long as D ≥ 4 (so that
there is a quartic vertex that can be removed from the vacuum bubble to generate the
graph with 4 external legs). This condition is guaranteed because we are interested in
D = 4,6, 8, ....

• ds = 3. Since we are only interested in vacuum bubbles it is clear that ds > 1. Taking
ds = 2 will generate quadratic simple vertices which, when run through multig, will give
rise to bubble chains (see figure 22) which are trivial sub-graphs (see appendix D). Thus,
we should take ds = 3. Indeed, in figure 21 we see that the accumulation graph comes
from a simple graph with cubic and quartic vertices (left).

Figure 22: Simple quadratic vertices (left) give rise to bubble chains (right).

• M = 3. M is the maximum number of internal lines that a bubble can have. Since we
are only interested in graphs with 4-particle cuts it is clear that M ≤ 4 suffices. Taking
M = 4 will generate 4-legged bubbles, which can be cut by a 4-particle cut, however for
such graphs there will be no cut on any other channel (see figure 23).

Figure 23: A graph with a 4-legged bubble has a 4-particle cut on one channel. How-
ever, there is no space left for a cut on the other channel.

We import the vacuum bubbles generated by multig into mathematica and keep the ones
with even degree vertices.

Finally, we discard graphs which only have a cut in one of the channels. This can be done
at this stage without explicitly performing the cuts in the following way.
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First, we require all graphs to be bi-connected [11]. A bi-connected graph can only be
disconnected by removing two vertices. A non-bi-connected graph can be disconnected by re-
moving a single vertex. Contracting the bubble in figure 23 leads to a generic non-bi-connected
graph with arbitrary ‘gray blobs’ connected by a single vertex. Similarly to the original graph,
it only has a cut in one of the channels.

Second, we require that the quartic vertex that is excised from the vacuum bubble does
not have any bubble incident to it. This avoids the scenario represented in figure 24 where
two external legs, which were originally part of a bubble, become incident to the same vertex.
Such graphs also only have a cut in one of the channels. In practice, we can avoid generating
such graphs by only excising vertices which were also quartic vertices in the original simple
vacuum bubble.25

Figure 24: Excising quartic vertices which are incident to bubbles (left) leads to
graphs with cuts on only one single channel (right). Note that a quartic vertex which
is incident to a bubble is a cubic simple vertex.

Graph selection (steps 2-5)

Here we describe how steps 2-5 of the graph selection procedure described in section 3 are
implemented in detail. We make use of mathematica and the package igraph/M [9,22].

E.0.1 Trvial subgraphs

The function IGTriangles finds all triangles contained within any graph. Once the triangles are
identified we select the cubic simple vertices (the vertices which can have an external bubble
attached to it). Then, the incidence list [11] lists all incident edges to a given vertex. From this
we can explicitly check condition (38). If any of the vertices satisfies (38) we have identified
a trivial triangle and the graph is discarded.

A similar approach is taken to find boxes, except that there is no dedicated command to
find boxes. We make use of FindCycle to find 4-cycles (i.e. boxes). We then compare the boxes
with any of the trivial boxes in figure 19 using IGIsomorphic. In fact, given the handful amount
of graphs after step 4 (see table 1) one can just identify the trivial boxes by visual inspection.

E.0.2 Cuts

We are interested in minimal7 cuts that separate external legs in pairs. There are three possible
arrangements between pairs of external legs, corresponding to s-, t- and u-channels. To ex-
plicitly find these cuts for a given graph we apply the following procedure (depicted in figure
25).

1. Identify the 4 vertices to which the external legs are incident. We call these external
vertices.

2. Connect the external vertices in pairs, in all three possible ways (s, t and u-channels).

25For example, in figure 21 we have 3 quartic vertices on the vacuum bubble in the center. However, only the
central vertex leads to a graph with cuts on both channels. It is also the only quartic vertex in the simple vacuum
bubble (left).
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3. Find the source-to-sink [11, 45] minimal cuts which separate a connected pair of ex-
ternal vertices (source) from the other pair of external vertices (sink). Here we use
IGMinimumCutValue or IGFindMinimalCuts (see below).

4. The cuts of the original graph can then be obtained by matching the cut legs found in
the previous step.

In step 3 of the graph selection procedure we only ask if there is a 2 or 4-particle cut in at
least two channels. For this we make use of the fast IGMinimumCutValue which gives the size
of the smallest cut.

In step 4 we ask if all legs can be cut by a 2 or 4-particle cut. Here, we make use of
IGFindMinimalCuts and select the cuts of size up to 4. If every internal leg is contained in (the
union of) these cuts we select that graph.

Figure 25: A cut can be found by connecting external vertices (represented in black)
in pairs. Each pair turns into two vertices, source and sink, and the cut separat-
ing external legs becomes a source-to-sink cut [11] which can be found using graph-
theoretic algorithms [45].

Numerical search for α-positive solutions (step 6)

Here, we describe how the final step of the graph selection procedure is implemented in prac-
tice. At this stage no more than a handful number of graphs exists (see table 1). Explicit
numerical search for a solution to the Landau equations is therefore feasible.

We implement this step in mathematica (with the package igraph/M [9, 22]). We are
given as input a graph, and the output is an α-positive solution (if found) of the Landau
equations at some fixed value of s. We in particular searched along the s = t line point due
to the existence of enhanced symmetry and consequent reduction of the Landau equations for
some graphs (see appendix C). We also set m= 1 without loss of generality.

The algorithm is as follows.

1. Each bubble of n internal legs is replaced by a single line with mass n. The graph becomes
a simple graph.

2. A random direction is assigned to the internal edges of the graph, the corresponding
incidence matrix [11] is found and momentum conservation at each vertex follows (see
below for more details).

3. The momentum conservation equations are solved in terms of a set of independent mo-
menta (the loop momenta). Then, the on-shell action ψ as defined in eq. (23) is com-
puted and from there the discriminant D is found from eqs. (25) and (26).

4. The Landau equations follow from (29). Since we are searching for the α-positive solu-
tion under the assumption that it is unique. We can relate different αi = αi′ if the graph
is automorphic under the map i → i′ (see appendix C). The automorphisms are found
using GraphAutomorphismGroup.
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5. To solve the Landau equations numerically, we square the LHS of (29) and sum over i
(after the reduction described in the previous step is performed). The solutions to the

Landau equations will be the minima of
∑

i

�

∂ D
∂ αi

�2
= 0. We perform a random search

using FindMinimum with random starting points αi ∈ (0, 1) and s ∈ (−1000,1000). The
search stops when an α-positive solution is found. A maximum of 1000 attempts was
set.

Naturally, as the number of vertices increases, the system of equations becomes bigger, and
the search for solutions becomes slower. Fortunately, at step 6 of the graph selection (see table
1), the majority of graphs for which this procedure was implemented enjoy some degree of
symmetry, which drastically reduces the computing time. For example, Z2 symmetry roughly
halves the number of independent αi ’s in the Landau equations of a generic large graph.

For V > 8 all quartic graphs after elimination of trivial boxes (step 5) consist of triangle
chains depicted in figure 4 and slight variations. For one particular variation (see figure 26)
there is no automorphism relating different αi . For graphs with V ≥ 8 belonging to this family
we were not able to perform 1000 attempts . However, we believe that any graph belonging
to this family is trivial given that for V = 4,5, 6 this can be proven analytically (identification
of trivial triangle or box) and for V = 7 no solution was found in 1000 attempts.

Figure 26: Asymmetric variation of the triangle chain represented in figure 4. It is
obtained by expanding into a bubble one of the vertices connecting to an external
leg. This variation exists for both planar and non-planar iterations (represented by
the gray vertex). For the first three iterations one can prove analytically that such
graphs are trivial. For the fourth iteration, no solution was found in 1000 attempts.
For the succeeding iterations we do not have a numerical argument for the absence
of α-positive solution.

Incidence matrix and momentum conservation

The incidence matrix ai j is defined as ai j = ±1 if edge j is incident and directed into (+) or
out of (−) vertex i, and ai j = 0 if edge j and vertex i are not incident (see figure 27).

It is instructive to consider a particular example. Consider the generic box graph in figure
28. Its incidence matrix is written in table 3.

A few comments are in order. Note that for internal legs, the entries in the corresponding
column add up to 0, while for an external legs we get +1 or −1 if the leg is incoming or
outgoing, respectively.

The degree of a vertex is given by summing over the absolute value of the entry of the
corresponding row. For the box graph we confirm that all vertices are cubic.

Importantly, the incidence matrix directly encodes momentum conservation at each ver-
tex. If we multiply each column of the incidence matrix by the momentum that flows on the

Figure 27: A graph can be represented in terms of the incidence matrix defined above.
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Figure 28: Directed box graph.

Table 3: The incidence matrix ai j of the box graph in figure 28. The columns are
labelled according to momentum flowing on the corresponding edge, while the vertex
i is labelled according to the incoming external momentum pi .

ai j p1 p2 p3 p4 k1 k2 k3 k4

1 +1 0 0 0 −1 0 0 +1
2 0 +1 0 0 0 0 +1 −1
3 0 0 +1 0 +1 −1 0 0
4 0 0 0 +1 0 +1 −1 0

corresponding edge and sum over each line we obtain momentum conservation on that vertex.

Momentum conservation at i:
∑

j

ai jq j = 0 , (39)

where q j is the momentum flowing on edge j.
Applying equation (39) to the incidence matrix (given in table 3) we find the expected

relations

p1 − k1 + k4 = 0 , p2 + k3 − k4 = 0 ,

p3 + k1 − k2 = 0 , p4 + k2 − k3 = 0 .

References

[1] D. Atkinson, Introduction to the use of non-linear techniques in S-matrix theory, Springer,
Vienna, ISBN 9783709158371 (1970), doi:10.1007/978-3-7091-5835-7_2.

[2] J. D. Bjorken and T. T. Wu, Perturbation theory of scattering amplitudes at high energies,
Phys. Rev. 130, 2566 (1963), doi:10.1103/PhysRev.130.2566.

[3] J. Boyling, Hermitian analyticity and extended unitarity in S-matrix theory, Nuovo Cim.
33, 1356 (1964), doi:10.1007/BF02749470.

[4] J. Bros and D. Iagolnitzer, Structure of scattering functions at m-particle thresholds in a
simplified theory and nonholonomic character of the S-matrix and Green’s functions, Phys.
Rev. D 27, 811 (1983), doi:10.1103/PhysRevD.27.811.

[5] S. Caron-Huot, Analyticity in spin in conformal theories, J. High Energy Phys. 09, 078
(2017), doi:10.1007/JHEP09(2017)078.

[6] S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher
spins: The asymptotic uniqueness of the Veneziano amplitude, J. High Energy Phys. 10,
026 (2017), doi:10.1007/JHEP10(2017)026.

29

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062
https://doi.org/10.1007/978-3-7091-5835-7_2
https://doi.org/10.1103/PhysRev.130.2566
https://doi.org/10.1007/BF02749470
https://doi.org/10.1103/PhysRevD.27.811
https://doi.org/10.1007/JHEP09(2017)078
https://doi.org/10.1007/JHEP10(2017)026


SciPost Phys. 13, 062 (2022)

[7] S. Coleman and R. E. Norton, Singularities in the physical region, Nuovo Cim. 38, 438
(1965), doi:10.1007/BF02750472.

[8] M. Correia, A. Sever and A. Zhiboedov, An analytical toolkit for the S-matrix bootstrap, J.
High Energy Phys. 03, 013 (2021), doi:10.1007/JHEP03(2021)013.

[9] G. Csardi and T. Nepusz, The igraph software package for complex network research, Com-
plex Syst. 1695, 1 (2006).

[10] R. Cutkosky, Anomalous thresholds, Rev. Mod. Phys. 33, 448 (1961),
doi:10.1103/RevModPhys.33.448.

[11] R. Diestel, Graph theory, Springer, Berlin, Heidelberg, ISBN 9783662536223 (2017),
doi:10.1007/978-3-662-53622-3.

[12] R. Eden, P. Landshoff, J. Polkinghorne, and J. Taylor, Acnodes and cusps on Landau curves,
J. Math. Phys. 2, 656 (1961), doi:10.1063/1.1703752.

[13] R. J. Eden, Analytic structure of collision amplitudes in perturbation theory, Phys. Rev. 119,
1763 (1960), doi:10.1103/PhysRev.119.1763.

[14] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic S-matrix,
Cambridge University Press, Cambridge, UK, ISBN 9780521523363 (1966).

[15] A. L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic
bootstrap and AdS superhorizon locality, J. High Energy Phys. 12, 004 (2013),
doi:10.1007/JHEP12(2013)004.

[16] V. Gribov and I. Dyatlov, Contribution of three-particle states to the spectral function equa-
tion, J. Exp. Theor. Phys. 15, 140 (1962).

[17] A. Guerrieri and A. Sever, Rigorous bounds on the analytic S-Matrix, Phys. Rev. Lett. 127,
251601 (2021), doi:10.1103/PhysRevLett.127.251601.

[18] A. L. Guerrieri, J. Penedones and P. Vieira, Bootstrapping QCD using pion scattering am-
plitudes, Phys. Rev. Lett. 122, 241604 (2019), doi:10.1103/PhysRevLett.122.241604.

[19] H. S. Hannesdottir, A. J. McLeod, M. D. Schwartz and C. Vergu, Implications of
the Landau equations for iterated integrals, Phys. Rev. D 105, L061701 (2022),
doi:10.1103/PhysRevD.105.L061701.

[20] Y. He and M. Kruczenski, S-matrix bootstrap in 3+1 dimensions: Regularization and dual
convex problem, J. High Energy Phys. 08, 125 (2021), doi:10.1007/JHEP08(2021)125.

[21] E. Hijano, Flat space physics from AdS/CFT, J. High Energy Phys. 07, 132 (2019),
doi:10.1007/JHEP07(2019)132.

[22] S. Horvát, IGraph/M, Zenodo (2020), doi:10.5281/zenodo.4081566.

[23] J. N. Islam and Y. Kim, Analytic property of three-body unitarity integral, Phys. Rev. 138,
B1222 (1965), doi:10.1103/PhysRev.138.B1222.

[24] R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Spectral representa-
tions in perturbation theory. I. Vertex function, Phys. Rev. 111, 1187 (1958),
doi:10.1103/PhysRev.111.1187.

30

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062
https://doi.org/10.1007/BF02750472
https://doi.org/10.1007/JHEP03(2021)013
https://doi.org/10.1103/RevModPhys.33.448
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1063/1.1703752
https://doi.org/10.1103/PhysRev.119.1763
https://doi.org/10.1007/JHEP12(2013)004
https://doi.org/10.1103/PhysRevLett.127.251601
https://doi.org/10.1103/PhysRevLett.122.241604
https://doi.org/10.1103/PhysRevD.105.L061701
https://doi.org/10.1007/JHEP08(2021)125
https://doi.org/10.1007/JHEP07(2019)132
https://doi.org/10.5281/zenodo.4081566
https://doi.org/10.1103/PhysRev.138.B1222
https://doi.org/10.1103/PhysRev.111.1187


SciPost Phys. 13, 062 (2022)

[25] R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Spectral representations
in perturbation theory. II. Two-particle scattering, Phys. Rev. 114, 376 (1959),
doi:10.1103/PhysRev.114.376.

[26] V. Kolkunov, L. Okun, and A. Rudik, The singular points of some Feynman diagrams, J.
Exp. Theor. Phys. 11, 634 (1960).

[27] V. Kolkunov, L. Okun, A. Rudik, and V. Sudakov, Location of the nearest singularities of the
ππ-scattering amplitude, J. Exp. Theor. Phys. 12, 242 (1961).

[28] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, J. High Energy
Phys. 11, 140 (2013), doi:10.1007/JHEP11(2013)140.

[29] S. Komatsu, M. F. Paulos, B. C. van Rees and X. Zhao, Landau diagrams in AdS
and S-matrices from conformal correlators, J. High Energy Phys. 11, 046 (2020),
doi:10.1007/JHEP11(2020)046.

[30] Y.-Z. Li, Notes on flat-space limit of AdS/CFT, J. High Energy Phys. 09, 027 (2021),
doi:10.1007/JHEP09(2021)027.

[31] A. A. Logunov, I. T. Todorov, and N. A. Chernikov, Analytical properties of Feynman graphs,
in 11th international conference on high-energy physics, 695 (1962).

[32] S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dis-
persion relations and unitarity. General theory, Phys. Rev. 112, 1344 (1958),
doi:10.1103/PhysRev.112.1344.

[33] S. Mandelstam, Analytic properties of transition amplitudes in perturbation theory, Phys.
Rev. 115, 1741 (1959), doi:10.1103/PhysRev.115.1741.

[34] B. D. McKay and A. Piperno, Practical graph isomorphism, II., J. Symb. Comput. 60, 94
(2014), doi:10.1016/j.jsc.2013.09.003.

[35] S. Mizera, Bounds on crossing symmetry, Phys. Rev. D 103, L081701 (2021),
doi:10.1103/PhysRevD.103.L081701.

[36] S. Mizera, Crossing symmetry in the planar limit, Phys. Rev. D 104, 045003 (2021),
doi:10.1103/PhysRevD.104.045003.

[37] S. Mizera and S. Telen, Landau discriminants, J. High Energy Phys. 08, 200 (2022),
doi:10.1007/JHEP08(2022)200.

[38] Y. Nambu, Dispersion relations for form-factors, Nuovo Cim. 9, 610 (1958),
doi:10.1007/BF02740903.

[39] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix bootstrap.
Part I: QFT in AdS, J. High Energy Phys. 11, 133 (2017), doi:10.1007/JHEP11(2017)133.

[40] M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix boot-
strap. Part III: Higher dimensional amplitudes, J. High Energy Phys. 12, 040 (2019),
doi:10.1007/JHEP12(2019)040.

[41] J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, J. High En-
ergy Phys. 03, 025 (2011), doi:10.1007/JHEP03(2011)025.

[42] D. Y. Petrina, The Mandelstam representation and the continuity theorem, J. Exp. Theor.
Phys. 19, 370 (1964).

31

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062
https://doi.org/10.1103/PhysRev.114.376
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2020)046
https://doi.org/10.1007/JHEP09(2021)027
https://doi.org/10.1103/PhysRev.112.1344
https://doi.org/10.1103/PhysRev.115.1741
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1103/PhysRevD.103.L081701
https://doi.org/10.1103/PhysRevD.104.045003
https://doi.org/10.1007/JHEP08(2022)200
https://doi.org/10.1007/BF02740903
https://doi.org/10.1007/JHEP11(2017)133
https://doi.org/10.1007/JHEP12(2019)040
https://doi.org/10.1007/JHEP03(2011)025


SciPost Phys. 13, 062 (2022)

[43] J. Polkinghorne, Analyticity and unitarity, Nuovo Cim. 23, 360 (1955),
doi:10.1007/BF02785712.

[44] J. Polkinghorne, Analyticity and unitarity - II., Nuovo Cim. 25, 901 (1962),
doi:10.1007/BF02733156.

[45] J. S. Provan and D. R. Shier, A paradigm for listing (s, t)-cuts in graphs, Algorithmica 15,
351 (1996), doi:10.1007/BF01961544.

[46] H. P. Stapp, Finiteness of the number of positive-α Landau surfaces in bounded portions of
the physical region, J. Math. Phys. 8, 1606 (1967), doi:10.1063/1.1705398.

[47] P. Tourkine and A. Zhiboedov, Work in progress.

32

https://scipost.org
https://scipost.org/SciPostPhys.13.3.062
https://doi.org/10.1007/BF02785712
https://doi.org/10.1007/BF02733156
https://doi.org/10.1007/BF01961544
https://doi.org/10.1063/1.1705398

	Introduction
	Analytically continued unitarity and the Landau equations
	Graph selection
	Discussion
	Lighest particle maximal analyticity
	Analytic continuation of multi-particle unitarity
	Lightest particle -positive Landau curves
	Extended elastic unitarity region
	Accumulation points of the Landau curves are generic
	Higher multi-particle Landau curves
	S-matrix bootstrap applications
	Other future directions

	Multi-particle Landau curves
	Landau curves from 2-particle unitarity
	Landau equations and automorphisms
	Trivial subgraphs
	Graph-theoretic implementation
	Trvial subgraphs
	Cuts


	References

