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Novel technologies, fabrication methods, controllers and computational methods
are rapidly advancing the capabilities of soft robotics. This is creating the need for
design techniques and methodologies that are suited for the multi-disciplinary
nature of soft robotics. These are needed to provide a formalized and scientific
approach to design. In this paper, we formalize the scientific questions driving soft
robotic design; what motivates the design of soft robots, and what are the
fundamental challenges when designing soft robots? We review current methods
and approaches to soft robot design including bio-inspired design, computational
design and human-driven design, and highlight the implications that each design
methods has on the resulting soft robotic systems. To conclude, we provide an
analysis of emerging methods which could assist robot design, and we present a
review some of the necessary technologies that may enable these approaches.
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1 Introduction

Soft robotics has introduced a range of robotic technologies with wide ranging form,
function and appearance, with their inherent compliance opening up new application domains
for robotics and leading to the creation of novel fundamental technologies (Lipson, 2014; Rus
and Tolley, 2015). To date, soft robots have been successful applied to underwater exploration
(Katzschmann et al., 2018; Li et al., 2021), rehabilitation robotics (Liu et al., 2020; Ashuri et al.,
2020) and manipulation solutions (Hughes et al., 2016) amongst others. This wide varying
range of applications has been enabled by the creation of fundamental ‘soft-robotic
technologies’ and accompanying control and learning algorithms (Laschi et al., 2016; Della
Santina et al., 2021).

The diversity in materials and mechanisms, actuation technologies, sensors and control
approaches provides a design space that allows for creative, and innovative solutions. This
creativity seen in soft robot design should be celebrated; however, it still falls far short of the
diversity and variety that can be found in nature (Fine, 2015). Whilst we need to further extend
and search this design space to increase the diversity and creativity of solutions, the possibility of
exploring a wide range of solutions leads to a conflicting challenge of isolating or finding
optimal design solution. Although there has been significant advances in modelling and
representing soft systems, this is still an ongoing and open quest (Schegg and Duriez;
2022). This means that soft robot design relies heavily on human intuition and experience.
Although this has been shown to lead to many successful and impact robotic solutions and
approaches, these can be challenging to formalize the fundamentals that underpin the
development of soft robotic technologies and solutions.
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In light of this conflicting needs and challenges for soft robot design,
we review the scientific questions driving soft robotic design, and current
methods and approaches used for soft robot design. We conclude by
providing some potential directions and approacheswhichwould allow us
to design increasingly capable soft robotic solutions.

1.1 What is the science behind soft robot
design?

Soft robotics offers a multi-disciplinary approach, where the
behavior can be determined by the robot materials, morphology,
control and the interactions with the environment. It also denotes a
design problem where the design space or intelligence is distributed
between the body-brain-environment interactions (Pfeifer et al., 2007).
Although this can be the case (Collins et al., 2001) for ‘rigid’ robots it is
less commonly so. Therefore, the design of soft robots can not be limited
to a morphological problem, but instead it should consider the entire
embodiment in the system, composed of the mechanical structure, the
control strategy and the interaction with the environment.

As shown in Figure 1 soft robotic systems exploit the interactions
between the physicality of the structure, traditional computation and
also the environment. In this way, we have physical interactions between
the soft body and the environment. Thus to be able to explain and hence
design the resultant behaviors of soft robotic systems, many different
scientific disciplines are required. In addition to the physics and science
governing the behaviors of soft or even biological materials, we also
require an understanding of the physical interactions between the soft
body and the environment. This can require insight into fluid dynamics,
mechanics of solids, or even soil dynamics.

To develop design methodologies there is a requirement to
understand or model many different scientific disciplines, and also
their interactions. For example, to understand how the sensory
cognition and control of a soft structure affects the resultant fluid
dynamics when it is moving in a water based environment, a synergistic

cooperation between several fields of knowledge is required. Thus the
science of soft robotics is understanding how and which scientific
disciplines must be coupled to understand these soft robotic
structures. This makes it challenging to develop and optimize
designs, as the design space of the soft robots spans many coupled
scientific disciplines. However, this also enables the emergence of
exciting and novel behaviors that leverage the physics of the
interactions between the brain, body and environment (Mengaldo
et al., 2022). When compared to more ‘traditional’ robotics, where
the power exchange from the environment to the robot can be
compensated for in control, the development of a significantly
different approach is required for soft systems, which naturally
display a high level of underactuation. Therefore the development of
soft robots calls for a newmethodology of connecting different scientific
disciplines which are traditionally treated independently.

1.2 Scientific motivation behind design of soft
robots?

We propose that the scientific motivation behind soft robot design
can be categorized into three different groups.

• Application solving, i.e. the development of new designs or soft
robotic technologies that can extend the capabilities of robots to
applications in which the compliance with the environment
(Albu-Schäffer et al., 2007), robust disturbance rejection
properties or energy efficiency are crucial (Kashiri et al.,
2018). Examples include bio-medical instruments (Cianchetti
et al., 2018), extreme environment exploration (Mahon et al.,
2019) and safe human-robot interaction (Queißer et al., 2014).

• Advancing Theoretical Principles. Developing new theory or
understanding that explains the behaviors or interactions of soft
robotic elements with the environment. This could be driven by
intrinsic curiosity opposed to being entirely application driven.
Due to the potential for complex interactions between rigid and
soft systems, there are many such problems in soft robotic
research in the modeling and control domain.

• Improve our understanding of biological systems. Biological
systems are typically, ‘soft’ or have soft components, thus
developing bio-inspired or bio-mimetic systems allows us to
further our understanding of the natural world through the
creation of ‘robot-physics’ or similar approaches.

In many cases, the motivation straddles a number of these areas.
Regardless of the specific motivation, to demonstrate significant
scientific impact from soft robot designs, we must identify scientific
problems or applications where the impact can be clearly shown, and
is non-trivial. Previous work has motivated the need to analyze the
significance of contributions (Hawkes et al., 2021), which could assist
in enabling these key and impactful areas to be identified.

1.3 What makes soft robot design
challenging?

The move towards the incorporation of soft and compliant
structures in robots provides exciting new capabilities. However,
several fundamental challenges need to be overcome to allow a

FIGURE 1
A schematic representation of the disciplines involved in the design
of soft robots with embodied intelligence, i.e., systems in which the
intelligence spans between Brain, Body and environmental interaction.
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significant improvement in soft robot design and manufacturing. The
specific challenges include.

• Despite the recent efforts to include soft mechanisms and
robotics within academic education, the transfer of
knowledge on soft robot manufacturing, modeling and
control, is still at its infancy. The interdisciplinary nature of
soft robotics means that it is hard to be an expert across all
scientific domains. This limits the ability to develop designs that
simultaneously exploit material science, control theory, learning
and fabrication. This challenge calls for education that highlight
the connections between the different sub-fields and scientific
disciplines. In addition, there is also a need for a common
currency or language between these disciplines, to allow scientist
from different training to meaningfully discuss and collaborate.

• Limited simulation and analysis tools. The non-linearity and
properties of the materials and the high degrees of freedom
means that simulation and analysis tools are limited, or do not
have the precision, that is, available for rigid robotic systems.

• Lack of standardized or modular parts. There are few off-the-
shelf components that can be purchased; an equivalent in the
domain of ‘rigid’ robot systems would be smart servos which
have integrated actuation and position/velocity control vastly
simplifying actuation and control. This leads to comparatively
slow fabrication which limits real world design exploration.

These challenges highlight the need for new approaches and tools
for the construction of robots. In the following section we review some
of the underlying approaches and the state-of-the art in soft robot
design, discussing their advantages and limitations. Following this we
present new technologies and design methodologies which could
address some of the existing limitations.

2 Approaches to soft robot design

In this Section, we identify three main approaches currently,
shown in Figure 3, used in the research community to design novel
soft robots and discuss the relative merits of each.

2.1 Bio-inspiration and bio-mimetics

Nature provides an extraordinary number of examples of the
enhanced motor capabilities generated by the introduction of
compliant elements in the body structure. With the aim of
replicating the capabilities of biological system, the research
community put significant efforts into the design of robot inspired
by nature (Kim et al., 2013; Kovač, 2014). Biological systems can
inspire the design of soft robots in two main ways, namely bio-
mimetics and bio-inspiration. Bio-mimetics seeks to reproduce the
capabilities of natural systems through copying motions, appearance,
and behaviors. Bio-inspiration instead looks at the founding physical
principle in natural phenomena, to translate it into applications
eventually far from the natural example. As presented in Figure 2,
in the process of developing both bio-inspired and bio-mimetic
systems, new technologies are created, novel combinations of
existing technologies are proposed, new robotic structures are
presented or novel fabrication methodologies are developed.

Mimicking nature allows us to exploit what has been learnt or
identified through evolution. Hence we can copy mechanisms that are
highly adapted for interactions with a specific environment. For
example, fish display an incredible efficiency when moving in a
water medium (Katzschmann et al., 2018), and human hands show
incredible dexterity in grasping and manipulation tasks (Bicchi; 2000).
Biological examples can be seen as the result of an ongoing
evolutionary search taking place in the real world for millions of
years. This perspective informs the designer in two ways.

• Nature already shows the optimal design for real tasks, which
can hardly be found with human intuition or with a
computationally-driven design optimization methods
performed in simulation, due to the simulation to reality
gap. However, it is not always clear what the real world
objective functional for a given evolutionary process.

• Natural systems are able to perform both in artificial (e.g. human
designed) and natural environments. Indeed, most of the
artificial world has been engineered to interact ergonomically
with natural systems. Therefore, robots that resemble natural
structures, e.g. a human hand, can easily adapt to artificial
environments, such as a door handle.

However, several drawbacks to bio-inspired robotics have to be
noted. The design process (Kovač; 2014) to generate these new
technological solutions often relies significantly on the designer
expertise. Furthermore, when a biomimicry approach is used, the
resulting designs are limited to natural examples. Moreover, while a
biomimicry based approach could spur the designer’s creativity, there
are substantial differences between living organisms and robots. First,
the fitness function for which nature optimizes is not necessarily the
optimal cost function for a robot. Indeed, some metrics that may be
critical for biological entities, such as energy saving and optimal
feeding tactics (Darwin, 1882) may be negligible for a robotic
design. Similarly, when designing a robotic structure, elements such
as manufacturing and scalability should be considered while they are
not applicable to biological systems. Moreover, the characteristics of
engineered components and natural structures are significantly
different. While the building blocks for a natural system are cells,
traditionally the roboticist has had to rely on rigid motors, electrical
power supplies and a limited set of materials (Rus and Tolley; 2015).
Another interesting example of the difference between natural and
engineered systems regards the distribution of intelligence. It has been
noted by Pfeifer et al. (2007) that nature is characterized by a high level
of embodied intelligence. This decentralized distribution of
intelligence is commonly justified by the low speed of transmission
of sensory inputs and limited computational power in natural systems.
While significant efforts have been placed to include this characteristic
in robotic designs, this feature has not been crucial for robots, which
can rely on high computational power and faster connection between
sensors than natural systems.

2.2 Computational design

Computational design methods provide a framework to optimize
the design parameters with respect to a specified fitness function. The
design process is formalized as an optimization problem where the
desired behavior is expressed by a cost function, evaluated on a set of
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variables which span the design space (Ha et al., 2018). The
optimization is commonly performed in a simulated environment,
which allows to evaluate the cost function over the design spaces. Note
that the design spaces can span different morphologies, control
strategies or a combination of the two.

With this methodology, the resulting design can significantly vary
from natural examples and is not limited by the human intuition
(Zhao et al., 2020; Hiller and Lipson, 2012). It therefore has the
potential of generating particularly unexpected design solutions. In
particular, it resulted to generate innovative results in problems with
large design spaces and good simulation accuracy. At the same time, as
presented in Figure 2, computational designs outperform human
intuition in problems in which the goal is to optimize concepts
that have clear mathematical descriptions but are not intuitively
understood by humans (Stolpe; 2016).

However, the designer must typically specify the fitness function in
clear mathematical terms. This has two main drawbacks. First, it can
be hard or impossible to analytically specify a fitness function that
captures the desired high-level behavior. Moreover, the solution of the
optimization problem could be overly specific for the specified cost
function and simulation environment, lacking robustness for slight
changes in the environment and in the desired performance. Indeed,
as the optimization is traditionally performed in simulation, this
methodology is fundamentally limited by the simulation to reality
gap. While the potential of simulations to generate solutions for robot
designs in complex scenarios has been demonstrated for rigid robots,
the simulation to reality gap is too wide to apply similar methods to
soft structures (Hwangbo et al., 2019). This is mainly due to the
difficulty of the simulation to capture the nonlinear material
characteristics. Recently it has been shown that using a low fidelity

FIGURE 2
Schematic representation of the pipelines used for robot design. On the left, the pool of methods and fields which constitute the inspiration for robotics
designs, in the center, the design approach used, and on the right the outcome of the design process. The magnitude of the arrows highlights the streams of
information for the different in the pipelines, represented with arrows of different colours and intensities.

FIGURE 3
Pictorial representation of notable soft robotic design examples. Based on the methodology and process used, the design are placed in a three
dimensional space spanning bio-inspired, computational and human-driven methodologies. As a fourth degree of classification, the color of the border
indicates whether the design process was application oriented,—in red - or exploration oriented—in yellow. In the latter, the goal of building a robot with
specific capabilities spurs the development of novel technologies with any of the pipelines presented in Figure 2. a-(Cheney et al., 2014), b-(Obayashi
et al., 2022b), c-(Amend et al., 2012), d-(Kriegman et al., 2020), e-(Hawkes et al., 2017), f-(Cheng et al., 2012), g-(Obayashi et al., 2022a), h-(Katzschmann et al.,
2018).
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simulation, tuned with feedback from a few real world experiments,
may lead to better results for both classical rigid robots (Truong et al.,
2022) and soft systems (Obayashi et al., 2022a). Another approach
used to avoid the simulation to reality gap is performing the evolution
of the control strategy (Veenstra et al., 2018) and of the robot
morphology directly on the real system. Finally, it is hard to define
a design space which takes into account fabrication possibilities, with
the risk of optimizing for designs that are not physically plausible. Due
to these challenges, successful translation of the computational designs
to reality has been limited to few notable cases (Bächer et al., 2021;
Bern et al., 2017; Blackiston et al., 2021; Sui et al., 2019).

2.3 Human-driven design

To this date, most novel designs have been generated by human
intuition. When analyzing any design process, it is therefore pivotal to
evaluate the role of the human in the design loop. First, the human
expertise plays a clear role in both bio-inspired and computational
design approaches. When following a bio-inspired pipeline (Kovač;

2014), the human designer has to translate the features observed in
nature into a functional robotic system, therefore dealing with the
fabrication constraints and with the challenges of modeling and
controlling the system. In computational design, the role of the
human is once again crucial, as the optimal result is highly
dependent on the cost function and parameters selected by the
human programmer. However, the design processes observed in
humans are not limited to bio-inspiration and computational
designs. Humans excel in finding connections between different
experiences. In the context of robot design, humans are able to
connect concepts from education, exploratory research and
expertise in mechanical design, to build design intuition. It is
possible also observe designs that are largely driven by human
intuition and experience in mechatronic systems, such as the
universal gripper (Amend et al., 2012).

As highlighted in Figure 2, the human-driven design is the only
methodology in which the experience and interaction with existing
soft robots is taken into account. This interaction provides the
designer with new ideas on how to design mechatronic systems,
control schemes, and fabrication methodologies in the next

FIGURE 4
Schematic representation of the methodological advancements proposed. On the top row, first an embodied setup of the system to optimize is
manufactured, and data about the behavior within the environment are captured with few experiments. The simulation is then informed of the real behavior
through relity to simulation regression and identification methods. Finally, in simulation the structure morphology and control strategy is optimized, and
brought back to reality. Thanks to the generality of the learnt model, the simulation can be used to optimize both themorphology and the control policy
of the system (Stella et al., 2022). In the middle row, the robot is automatically manufactured, thanks to multi-material 3D printing, 4D printing or other
automatic manufacturing technologies. The robot is then evaluated and tested by a second robotic system—the robot scientist—which captures data about
the behavior. These real-world data inform the optimization algorithm, which generates the next iteration in the design by varying the robot structure, the
control policy or a combination of the two. In the bottom row, two possible pipelines for human—computational design collaboration are highlighted. On the
right, a large design space spanning different morphologies and control policies is explored computationally, and the best performing robot designs are
returned to the human, which can then combine the most interesting features and account for manufacturability. On the left, the human informs the
computational design algorithm on interesting zones of the design space, and on these the optimization method performs a extensive search for the best
parameters.
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iteration of design. In this sense, each interaction with soft systems
shapes the next generation of soft robots. Therefore, the human
perception of the robotic systems (Jørgensen, 2022), and therefore
features such as aesthetics and naturalness (Jørgensen et al., 2022)
become crucial in the design of soft systems.

This prospective consequently inform us that human-driven
design is highly dependent on the designer’s experience and
expertise. Unfortunately, it takes a significant amount of effort and
time for humans to become good designers. The learning process, i.e.
the creation of a large design set, can be supported with an education
system in which successful designs and tools are taught. To simplify
the challenge of soft robotic design, it is crucial to develop well-
characterized modular systems that can be combined in complex
robotic structures. This modular approach to soft robotics would
follow the approach of rigid robotics, which, to date, can rely on off-
the-shelf motors, power supplies and structural components.

3 Advancing the science of soft robot
design: Technology drivers and new
methods

To overcome some of the limitations of these methods, both
technological development and new methodological approaches are
needed. In this section we discuss how developments in technology
could change the landscape of soft robot design. Additionally, we
discuss some alternative approaches to robot design methodology,
pictorially depicted in Figure 4, that go beyond the three presented.

3.1 Technology development

3.1.1 Simulation & modeling tools
Improvements in simulation and modeling tools that can better

capture both the physical interactions between robots and the
environment, and soft robot systems would offer significant
improvements for computational design. This could significantly
reduce the simulation to reality gap and fabrication gap (Kriegman
et al., 2020). Current advances and focuses on differentiable
simulation have demonstrated the potential they offer in terms of
optimization (Bächer et al., 2021; Bern et al., 2020). However, there
remains challenges for these, for example, for modelling contact for
soft robot manipulation. Advances in simulation tools could reduce
the amount of data or processing required for system identification,
and in the long term, fully eliminate the simulation to reality
gap. Work on rigid robotic systems has shown the potential for
simulation to reality transfer of learnt controllers, however we still
require simulation tools for soft robotics where the required precision
can be achieved at a reasonable ‘cost’.

A secondary role in which to exploit simulation and modeling
tools is to identify the needs and requirements for technologies
currently not available. For example, by identifying what properties
of sensors or actuators are required to enable resulting output
behaviors. This could help direct the requirements for new sensor,
actuation or material technologies in a structured and formalized way.

3.1.2 Physically adaptive and self-X technologies
Actuation, sensing or materials capabilities that offer physical

adaption, or Self-X behaviors such as self-healing (Terryn et al., 2017),

self-adaptation or self-growing could enable the morphology or robot
properties to be optimized online (Vicari et al., 2022). This could allow
for real-time adaption or exploration of the design space to find the
optimal solution (Shah et al., 2021). Such technologies could limit the
number of design iterations, that is, required for a single robot by
leveraging the capabilities of the robots to self-assemble, self-structure
of adapt. This may lead to the requirement of more bio-inspired
approaches to design, for example, design through regeneration or
developmental processes, such as 4D printing. The self-X capabilities
offered by bio-hybrid technologies could be one way to explore such
technologies (Guix et al., 2021).

3.1.3 Robot ‘genes’: Building blocks
Development of ‘cell’ inspired building blocks with standardized

manufacturing techniques, and accompanying mathematical
description for modelling, could empower computational design
searches. Such approaches could leverage biological concepts such
as cell specialization and also co-ordination to enable ‘simple’
building blocks and which can combine together to achieve
complex emergent behaviors at the organism level. The
development of these ‘building blocks’ could accelerate fabrication
and design implementation, which could be further assisted by
dedicated simulation tools. The formulation of these into openly
available tools could also improve the accessibility of soft robotics to
other research domains.

3.2 Methodological advancements

In addition to improvements in technologies, there are also
methodological advancements. Whilst these may be driven by the
availability of new technologies and approaches, they can also
result from new approaches or philosophies surrounding soft
robot design.

3.2.1 Real-sim-real
Transfer from simulation to reality directly is challenging. To

leverage the advantages of simulation (Milana et al., 2021) whilst
reducing the challenge of translating simulation to reality, we can
instead start from reality, utilize system identification or other
methods to capture the design space before returning to reality.
Examples of this approach include using computer vision to extract
the behavior of soft tentacles robot to generate a model which include
information on the soft structure in the context of the environment,
before controller optimization can be performed and then transferred
back to reality (Stella et al., 2022). Iterative approaches of cycles or
real-sim-real have also shown potential (Du et al., 2021). This
approach could be further extended and formalized to allow for
‘capturing’ of the design space from real world robots, and also to
mitigate or minimize challenges related to the simulation to
reality gap.

3.2.2 Real world evolution: Robot scientists
Repeated and automated experimentation in the real world

removes the challenging of crossing the reality gap and also the
fabrication gap. Robotic automation of the fabrication, testing and
evaluation can remove the ‘human’ cost, and allow the tens, hundreds,
or thousands of real-world evaluations that may be required. This has
been demonstrated for more rigid systems (Brodbeck et al., 2015).
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Advances in robotic automation technologies and in fabrication of soft
robots begin tomake this possible for softer systems. Examples thus far
include the optimization of the aerofoil of paper planes (Obayashi
et al., 2022b) and modular soft walkers. By combining this approach
with technologies which show physical adaption or self-X, this could
simplify the real world fabrication through growth, self-assembly or
other approaches. As such, this could make large scale testing and
robot-driven evaluation increasingly feasible.

3.2.3 Computational design tools for human assisted
robot design

Computational design offers many advances over humans in
their ability to analytically compute and explore and optimize a
design space, especially for mathematically well-defined tasks.
However, it lacks the intuition and creativity, that is, found in
human designers. By developing computational tools that can be
used by humans, for example, to predict the behavior of human
driven design, or to narrow down a design space, the advances of
both human and computational design can be leveraged.
Learning-based tools to make suggestions to human operators
have shown success in a number of different research areas
(Christiano et al., 2017) and that could be applied to soft robot
design.

This approach opens up questions as to the best mode of operation
between human and robot designers. Exploring how the order or
methodology of design affects the results should be further explored.
Should computational or automated design should become before or
after human design inspiration? Should these approaches be combined
for an iterative approach? Within these approaches how can the
creativity of designs be maintained?

3.2.4 Community education
Human design will continue to significantly contribute to soft

robot design. Thus, improving the education and skills of human
designers would improve the designs generated by the humans that are
central to the process. The interdisciplinary nature of soft robotics
often means the education of researchers in this area is fragmented; for
example, we have control specialists, that may lack the understanding
of the properties of the materials constituting soft structures, or design
specialists that do not understand the challenges of sensing
technologies required to enable the control of such robots.
Improving the interdisciplinary education of soft robotics to ensure
that there is sufficient literacy across the necessary subfields of soft
robotics could fundamentally improve the designs that are generated
by human designers. Similarly, creating platforms (Bongard et al.,
2012) in which researchers from different backgrounds can collaborate
in an efficient way could enhance the variety and diversity of soft
designs.

4 Discussion & conclusion

The potential offered by soft robotic technologies and components
is significant; soft robotic technologies will clearly play a central role in
shaping the future directions of robotics. This shift is going to require
the development of new technologies and methodologies for exploring
the design space of soft robot designs. Although this could be
considered a challenge or limiting factor, it is also an opportunity
to rethink and reapproach robot design. This could include a move
towards reducing the separation between ‘rigid’ and ‘soft’ robots, but
considering this as continuum, which incorporates robots of varying
stiffness and softness. This wider design space will allow for us to
explore a number of design approaches which are enabled by the
technologies of soft robots, e.g. growing, adaptive or even bio-hybrid.
These technologies can be combined with new methodologies to
explore and generate new and exciting possibilities for soft robots.
This will ultimately not only provide improvement performance in
robotic systems, but also an improved understanding of why and how
we build robots, advancing the science of soft robotic design.
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