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Abstract

Surrogate deep neural networks (DNNs) can significantly speed up the engineering design pro-
cess by providing a quick prediction that emulates simulated data. Many previous works have
considered improving the accuracy of such models by introducing additional physics-based loss
terms (physics-informed neural networks or PINNs). However, PINNs are more computation-
ally expensive and often more difficult to tune than DNNs. We propose combining the two
approaches by first training an unsupervised PINN to solve a simplified physics problem and
then using its output as additional input features for the surrogate DNN. This method can
potentially be more accurate than a simple DNN, while being simpler to train than a PINN on
complex multiscale physics problems. Furthermore, it could be preferable in transfer learning
scenarios as the PINN, which provides the basis for the surrogate DNN’s prediction, does not
depend on data. We tested our approach by comparing the performance of a geometric DNN
for the prediction of 2D incompressible fluid flow around airfoils with and without additional
physics features (potential flow solution by a PINN). We observed a slight improvement in test
prediction accuracy and a decrease in the difference between train and test accuracy.

Keywords: physics-informed neural networks, potential flow, computational fluid dynamics,
geometric deep learning.
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1 Introduction

Computer modeling is at the heart of modern engineering. In particular, computational fluid
dynamics (CFD) is widely used in the automotive, aerospace, and energy industries to predict
the flow of fluids and gases. Accurate simulations allow engineers to avoid conducting real-life
experiments for intermediate versions of their designs, thus enabling rapid innovation. However,
even with modern CFD methods, some simulations require days to compute, severely slowing
the early stages of a development cycle.

Deep neural networks (DNNs) have recently been proposed as surrogate models for CFD
simulators. Trained on large data sets of simulations, DNNs learn to predict physical fields
with an inference time as low as minutes. The major shortcoming of such models is their
accuracy. The output of DNNs may be unpredictable and may not satisfy the basic physics
laws. Moreover, while DNNs are excellent at making predictions for designs similar to those in
the training dataset, they often show poor performance on out-of-distribution samples.

To address these issues, physics-informed neural networks (PINNs) incorporate physical
laws, usually in the form of partial differential equations (PDEs), into a DNN. PINNs can be
trained in a supervised manner, using physical data from simulations or experiments, or in an
unsupervised manner, to satisfy the PDEs directly. Unfortunately, PINNs often have many
hyperparameters and are hard to tune, limiting their applications to CFD modeling.

In this work, we propose a new approach to training a surrogate DNN for simulating the
flow of an incompressible one-phase fluid. We train a PINN in an unsupervised manner to solve
a simplified physics problem (potential flow), and use its predictions as an input to a surrogate
DNN trained on a dataset of CFD simulations.

In Section 2, we provide the notation and abbreviations that are used throughout the text.
In Section 3, we introduce the basics of fluid mechanics, numerical methods, and deep learning.
First, we give the Navier-Stokes equations for incompressible one-phase fluids. Second, describe
general approaches to solving them numerically. Third, we give the basics of machine learning
and deep learning. Fourth, we give the basics of physics-informed machine learning. Section 4
is dedicated to an overview of previous works on the application of deep learning and physics-
informed machine learning to modeling fluid flow. In Section 5 we introduce our method,
discuss how simplified physics features can help a surrogate DNN, and introduce potential flow.
In Section 6 we first investigate the performance of an unsupervised PINN for potential flow
modeling on a range of geometries, and second, we study the performance of a surrogate model
for predicting viscous flow around an airfoil with and without additional geometric and physics
features. Section 7 discusses the limitations of this study and the directions for future work. In
Section 8 we conclude the thesis by summarizing the results.
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2 Notation

• Variables in the Navier-Stokes equations

◦ xi – coordinate in Descartes coordinate system
◦ uuu, ui – velocity vector
◦ p – pressure
◦ T – temperature
◦ fff – external force
◦ ϕ – external heat flux

• Fluid/gas parameters

◦ ρ – density
◦ ν – kinematic viscosity
◦ µ – dynamic viscosity
◦ ε – strain tensor
◦ k – thermal conductivity
◦ cp – specific heat at constant pressure

• Computation domain

◦ Ω ⊂ R3 – computation domain
◦ Γ = ∂Ω – boundary of the computation domain
◦ ΓD – boundary on which Dirichlet BC is imposed
◦ ΓN – boundary on which Neumann BC is imposed

• Variables in the RANS equations

◦ ui, p – time-independent component of velocity, pressure (mean flow)
◦ u′, p′ – time-dependent component of velocity, pressure (fluctuations)
◦ τij – Reynolds stress

• Variables in potential flow equations

◦ F – scalar potential
◦ ω = ∇× uuu – vorticity
◦ S – surface of an airfoil inside the computation domain

• Variables in deep learning preliminaries

◦ N – dataset size
◦ i = 0, . . . N – sample number
◦ Xi ∈ Rn – data points
◦ Yi ∈ Rm – data labels
◦ f : Rn → Rm – approximator function / neural network
◦ L : (Rn,Rn) → R – loss function
◦ γ ∈ R+ – step size of gradient descent

• Abbreviations

◦ PC – point cloud (point set)
◦ PDE – partial differential equation
◦ BC – boundary condition
◦ CFD – computational fluid dynamics
◦ RANS - Reynolds-averaged Navier-Stokes equations
◦ FDM, FVM, FEM – finite difference/volume/element method
◦ SDF – signed distance function
◦ DNN/FNN/CNN/GNN – deep/fully-connected/convolutional/graph neural network
◦ PINN – physics-informed neural network

7



3 Preliminaries

3.1 Fluid mechanics

The movement of fluids is governed by the Navier-Stokes equations. These partial differential
equations describe the relationship between velocity uuu, pressure p, and temperature T for a
wide variety of liquids and gases [1], [2].

We consider a single-phase continuous incompressible fluid. In this case, the density ρ is
constant and the Navier-Stokes equations take the following form:

• conservation of mass (continuity equation)

∇ · uuu = 0, (1)

• conservation of linear momentum

∂uuu

∂t
+ (uuu · ∇)uuu− ν∇2uuu = −1

ρ
∇p+ fff, (2)

• conservation of energy

ρcp

(
∂T

∂t
+ (uuu · ∇)T

)
= k∇2T + ϕ. (3)

Here ν is the kinematic viscosity of the fluid, k is its thermal conductivity, cp is its specific heat
at constant pressure. Note that in general these parameters are not constant; e.g. they vary
with temperature. Additionally, fff is an external force and ϕ is an external heat flux.

In this work, we assume that the temperature is constant and there are no external forces
or heat fluxes (T = const, fff = 0 and ϕ = 0).

In addition to the governing equations, boundary conditions have to be imposed. For a
domain Ω with boundary Γ = ΓD ∪ ΓN (ΓD ∩ ΓN = ∅), the boundary conditions are the
following:

• no-slip boundary condition (for viscous fluids) on solid boundaries inside Ω

uuu = 0, (4)

• Dirichlet boundary condition on ΓD × (0, T )

uuu = uuud, (5)

• Neumann boundary condition on ΓN × (0, T )

−pnnn+ µ
∂uuu

∂nnn
= uuun, (6)

Navier-Stokes equations do not have a general analytical solution even under the introduced
assumptions. Therefore, the solution must be approximated using numerical methods.

3.2 Numerical methods

Numerical solutions of the Navier-Stokes equations are explored in Computational Fluid Dy-
namics (CFD). A wide range of methods have been developed to perform quick and accurate
simulations for a wide variety of problems. Generally, a CFD pipeline consists of the following
steps:

1. Define the governing equations, fluid and flow parameters, input geometry, initial condi-
tions, and boundaries.

2. Discretize the governing equations and mesh the computation domain.
3. Run the simulation.
4. Post-process and visualize the results.

8



3.2.1 Turbulence models

In many practical cases, the fluid motion is turbulent: it exhibits unsteady and chaotic behavior
[2] (see fig. 1). Although such flows are described by the Navier-Stokes equations, they are
difficult to simulate directly due to the vastly different length scales at which phenomena can
occur [1].

(a) Laminar flow (b) Turbulent flow

Figure 1: Airfoil in a wind tunnel
Under CC-BY 3.0 from DLR via Wikimedia Commons, https://creativecommons.org/licenses/by/3.0/

One approach to modeling turbulent flow is Direct Numerical Simulation (DNS). In this
case, the Navier-Stokes equations are discretized and solved directly. To resolve both small-
and large-scale effects, DNS requires a very fine mesh, which makes this method extremely
computationally demanding.

Alternative approaches to turbulence modeling introduce additional assumptions, equations,
and unknowns. Although it limits the applicability of such methods, this also significantly
reduces their computational cost.

One of such methods is Reynolds-averaged Navier-Stokes (RANS) modeling. In RANS
equations, the time-dependent variables in the Navier-Stokes equations are divided into time-
independent uuu and time-varying uuu′, called mean flow and fluctuating parts [3]. This operation
is called Reynolds decomposition:

uuu = uuu+ uuu′, p = p+ p′

By substituting this into (1),(2),(3) and averaging over time, we obtain RANS
∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xi∂xj

− ∂τij
∂xj

,

∂ui
∂xi

= 0,

τij = u′iu
′
j .

(7)

Here τ is the Reynolds stress term that incorporates the effects of turbulent motions [3]. It
contains six additional independent unknown terms, which means that a turbulence model
must be devised to close the system (7) with additional equations. In this work, we use data
simulated using the Spalart–Allmaras one-equation turbulence model [4].

3.2.2 Discretization methods

There are many approaches to discretizing PDEs and obtaining the numerical solution. Ar-
guably, the most widely used methods in CFD are the finite-difference, element, and volume
methods.

9
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In the finite-difference method (FDM), the derivatives are approximated directly with a
finite-difference scheme. It is often used on regular grids and can be implemented very efficiently,
making it useful for large-scale simulations on simple domains [5], [6].

In the finite-element method (FEM), the computational domain is divided into small simple
geometric primitives called elements (e.g., triangles or tetrahedrons), and the PDE solution
is approximated locally on each element. FEM is very flexible, and thus especially useful for
simulations involving multi-physics analysis and complex shapes. However, it is quite compu-
tationally demanding [5], [6].

In the finite-volume method (FVM), the computational domain is divided, similarly to the
FEM, into small geometric primitives called cells. Unlike FEM, FVM is aimed at solving con-
servation laws. Instead of approximating the solution of the differential form of the conservation
law, it is reformulated in an integral form for each cell (incoming flux must be equal to outgoing
flux). By design, FVM methods provide physical solutions, which makes them especially useful
for CFD in general and handling discontinuities in particular. Its main downside is the difficulty
in creating high-order schemes [5], [7].

The data used in this work are simulated with RANS equations with the SA one-equation
turbulence model [4] and FVM using OpenFOAM [8], [9] and follows [10], [11].

3.3 Deep Learning

Sometimes, if a large data set of simulations is available, it is possible to build a deep neural
network (DNN) to predict physical values from the data rather than simulating them directly
[10].

Consider a data set of simulations {Xi, Yi}N0 . Xi ∈ Rn is a vector consisting of coordinates
xxx and additional parameters (e.g., fluid parameters such as kinematic viscosity ν, initial condi-
tions, geometry encoded in a vector, etc.). Yi ∈ Rm is a vector consisting of the physical values
that we would like to predict (for example, velocity and pressure uuu, p).

The task of predicting physical values Yi is essentially a multinomial regression: we search
for a function f : Rn → Rm that would satisfy f(Xi) = Yi as precisely as possible for all possible
i [12].

To evaluate the precision of the prediction, we introduce a loss function

L(Y, f(X)) : (Rm,Rm) → R.

Here Y = {Yi} and f(X) = {f(Xi)}. The smaller the value of the loss function, the better
the prediction. A common choice for a loss function is the squared error loss (also called L2
loss)

L2(Y, f(X)) =

N∑
j=0

∥Yi − f̂(Xi)∥2i .

The presented regression task is high-dimensional and nonlinear; therefore, the function
f should be able to capture this complexity. A deep fully connected neural network (FNN)
(also called a multilayer perceptron) is a simple but powerful deep learning model that fits this
requirement.

FNN is a chain of functions applied one after another, called dense layers. Each layer is a
linear transformation WX + b, where W is a weight matrix and b is a bias term, followed by a
simple nonlinear function σ(x), called activation. For example, an FNN f(x) with 3 layers and
σ(x) = tanh(x) activation function would be

f (k) = σ(W (k)x+ b(k)), k = 0, 1, 2,

f(x) = f2
(
f1

(
f0(x)

))
.
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The matrices W (k) and the vectors b(k) are parameters that should be inferred from the
data to allow the function to approximate the target distribution. Inference is done using the
backpropagation algorithm [12].

Essentially, since the function f is a combination of linear functions with simple nonlinear
activations, it is fully differentiable. This means that given a loss value L and parameters W (k)

and b(k), we can calculate the gradients ∂L
∂W (k) and ∂L

∂b(k)
for all k. Next, we can update them

using a gradient descent optimization algorithm (or its more advanced versions [13])

W (k)′ = W (k) − γ
∂L

∂W (k)
,

b(k)
′
= b(k) − γ

∂L

∂b(k)
.

When this process is repeated iteratively for a large number of iterations and a well-chosen
gradient descent step size γ ∈ R+, the loss function hopefully decreases, and we arrive at a
learned FNN f that approximates the data well. This process is called training.

It can be shown that even a shallow FNN can approximate any reasonably regular function
(FNNs are universal approximators [14]). In practice, however, it is often hard to achieve due
to the difficulty of the model optimization task.

The success of training also depends on the choice of hyperparameters: size and number
of network layers, type of activation functions, gradient descent step size and training length,
etc. To ensure that the optimization procedure does not overfit the particular data selected
for training (e.g., the model would make accurate predictions on unseen data), the available
data set is divided into training, validation, and test sets. The training set is used to actually
train the model (infer the parameters of the FNN). The validation set is used to evaluate its
performance when tuning hyperparameters. The test set is used to evaluate the performance of
the final model on unseen data. If the data set is small and dividing it might be problematic,
alternative procedures, such as cross-validation, can be used [12].

To improve the performance of FNN in tasks such as image classification and segmentation,
convolutional neural networks have been proposed [15], [16]. Instead of dense layers, CNNs use
convolutional layers. A convolutional layer consists of multiple filters (or kernels), similar to
those in image processing [17]. Each filter is a small learned matrix that is “moved” across and
convolved with the input image.

Figure 2: Convolution layers
Under CC BY-SA 4.0 from Renanar2 via Wikimedia Commons,

https://creativecommons.org/licenses/by-sa/4.0

For example, fig. 2 shows 2 convolutional layers. Here, the input is a square
√
N ×

√
N × 1

matrix xxx. The first convolutional layer WWW 1 consists of m1 filters of size
√
n0 × √

n0, and is
applied to every element of the matrix x (assume zero padding for elements on the edges of
the matrix). The first convolutional layer WWW 2 consists of m2 filters of size

√
n1 ×

√
n1, and is

applied to every element of the matrix zzz1.
Using convolutional layers instead of dense layers allows the model to learn local features.

Additionally, it drastically reduces the number of trainable parameters, which increases the
training speed and improves its stability.

11
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Convolutional and dense layers are among the main building blocks of modern deep neural
networks. Next, we describe the specific architectures used for the prediction of fluid flow.

3.3.1 On grids: U-Net

U-Net is a CNN that was originally designed for the segmentation of biomedical images [18]. This
architecture is well suited for aggregating information about the input domain and precisely
capturing localized features. First, the input matrix is compressed to a feature vector (e.g.,
bottleneck) using a series of convolutional layers. Then, the bottleneck vector is up-sampled
to the original shape again using convolutional layers. This allows the information about the
domain to be propagated to each point of the output, while taking into account the local
information as well.

U-Net architecture has been used to predict the physical fields for RANS simulations in
[11]. The model receives three constant fields as input (geometry and freestream velocity) and
outputs the field containing it. The architecture is presented in fig. 3 with black arrows denoting
convolutional layers and orange arrows denoting skip connections [11].

Figure 3: U-Net architecture [11], [19]
Under Apache 2.0 from TUM Thuerey Group

https://github.com/tum-pbs/pbdl-book/blob/main/resources/supervised-airfoils-unet.png

In some cases, representing the data with a full per-pixel matrix is not possible. For example,
encoding a high-resolution 3D shape with a matrix is often not feasible due to memory con-
straints. Instead, such shapes are often stored as point clouds or meshes (see fig. 4). Therefore,
different architectures are required to work with these representations.

(a) Grid / voxel grid (b) Surface mesh (c) Point cloud

Figure 4: Representations of a 3D sphere

3.3.2 On point clouds: PointNet

PointNet is a neural network designed for object classification and segmentation using point
clouds [20]. It consists of three modules: a symmetric pooling operation, an aggregator of local
and global information (segmentation network), and a joint alignment network. The purpose
of these blocks is to

12
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1. aggregate information from the whole point set,
2. combine global and local information so that the prediction at a point is “aware” of the

values at other points
3. ensure invariance to input permutation and certain geometric transformations so that the

model can be used on unordered point clouds.

Figure 5: PointNet++ architecture [21]
Under MIT from Geometric Computation Group of Stanford University

https://github.com/charlesq34/pointnet2/blob/master/doc/teaser.jpg

PointNet++ is a further development of PointNet, which makes aggregation aware of the distance
between points [21]. It is done by iteratively sampling and grouping points that are close to
each other in terms of a metric distance, allowing the model to learn multiscale features (see
fig. 5).

3.3.3 On graphs: GNN

Graph neural networks (GNN) have been developed to operate on graphs and meshes with appli-
cations to network analysis, chemistry, computer vision, and physics simulations [22]. Similarly
to U-Net and PointNet, the core feature of a GNN is the ability to aggregate information from
the whole data sample taking into account locality and/or connectivity. While on grids and
point clouds it is done using convolutions and hierarchical sampling, in the case of graphs it
can be done using graph convolutions (see fig. 6) [23].

1 4 5

7 3 6

6 1 7

6

2.08 in

(a) Convolution on a regular grid

3

6

1

7

67

1

6

1

2

5

44

2

1.62 in

(b) Convolution on a graph

Figure 6: Convolutions in CNNs and GNNs
Redrawn from [23]

3.4 Physics-Informed Machine Learning

Although numerical discretization of PDEs is a reliable method used for modeling a wide range
of problems, it cannot seamlessly incorporate noisy observational data. Therefore, multi-physics
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multiscale problems require the development of modeling methods that combine PDE- and data-
based approaches: physics-informed machine learning[24].

There are multiple ways to provide machine learning algorithms with information about the
physics of the system: through data, model architecture, and learning procedure.

Data can be selected or augmented to bias the model in a specific way. For example, if the
model should be symmetric with respect to a coordinate x, the data set can be expanded with
points symmetric to those already in the data set.

The model architecture can be modified to ensure that the output of the model satisfies
certain conditions. For example, given a model f to predict temperature T by a coordinate x
and a Dirichlet boundary condition T = 0 in x = 1, a new model f̃ that always satisfies the
boundary condition can be constructed

f̃(x) = (x− 1) · f(x).

The choice of loss functions can be adjusted to favor convergence to certain outputs. For
example (taken from [24]), a physics-informed neural network (PINN) for solving Burger’s
equation

∂u

∂t
+ u

∂u

∂x
= 0

can be constructed using a loss function.

L = wdataLdata + wPDELPDE,

where Ldata is an mean L2 loss on observed values and LPDE is an additional loss on the
PDE-residual:

Ldata =
1

Ndata

Ndata∑
i=1

(u− ui)
2
∣∣
(xi,ti)

,

LPDE =
1

NPDE

NPDE∑
j=1

(
∂u

∂t
+ u

∂u

∂x

)2 ∣∣∣
(xj ,tj)

,

(wdata and wPDE are the corresponding positive weights). Note that physical loss functions can
be added to existing surrogate models or used by themselves for unsupervised learning.
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Figure 7: Physics-informed neural network for Burger’s equation

Redrawn from [24]
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4 Related works

This study builds on [11] and [10]. In [11] the authors present a framework for creating data
sets of 2D laminar flow around NACA airfoils simulated with RANS equations. They then
study the performance of a modernized U-Net architecture for the prediction of pressure and
velocity distributions, reporting an average relative error (MAPE) of less than 3%. The thesis
[10] is dedicated to the construction of an advanced geometric DNN that could operate with
multiple types of input (scalars, surface meshes, and volumetric point clouds) and accurately
predict airflow on a range of data sets. The authors report a mean relative pointwise L2 error
of under 4% on a modified version of the data set presented in [11]. They specifically note
the importance of undimensionalizing the input physical parameters, as it can significantly
improve the performance of a DNN. Undimensionalization effectively scales and normalizes the
distribution of the physical parameters while maintaining the original form of the physical law.

The paper [24] presents the current state of physics-informed machine learning and describes
the main approaches to incorporating physics knowledge into a model: through data augmen-
tation [25], architecture adjustment [26], [27], and changing training (mainly loss function) [28],
[29]. Below, we review the works that use these approaches.

In [25], authors propose using a PointNet++ architecture to predict laminar fluid flow in 2D
and using PDE-residuals as interpretable and physically meaningful convergence metrics. They
note that by sampling points around the object, the geometry is implicitly encoded (e.g., surface
mesh is not required as an input), which simplifies the data and the model. Using a PointNet++
architecture allows one to avoid the need to interpolate data values to the grid (e.g. if a U-Net is
used). The authors train the model on a data set of external 2D flow around various geometries
(e.g., triangles, rectangles, etc.). The results show that the model provides accurate predictions
and is even able to generalize to predict flow around multiple objects (e.g., two triangles) and
unseen geometries (e.g., geometries not used in training like an airfoil). In [30], the authors
further develop this approach by adding physical loss terms to the data loss term and applying
the model to porous mediums. Using physics-informed PointNet enables training with noisy
sensor data as well as efficient training and smooth predictions on boundaries.

In [31], a physics-informed DNN is developed to model the incompressible laminar flow
passing a circular cylinder. Their model combines both data and physics loss functions, with
physics loss using residuals of the Navier-Stokes equations. The paper [29] is also dedicated to
using a PINN with both physics and data losses to model laminar flow. In this case, however,
only the data on the domain boundaries are used, and physics loss uses residuals of the RANS
equations. To enable RANS residuals, their DNN outputs not just the pressure and velocity,
but also the Reynolds stresses. Both papers show an improved convergence of DNN when using
physics losses for 2D experiments.

The works [26], [27] are dedicated to methods for informing DNN through modification of the
model architecture. The paper [26] develops a DNN method for solving a class of second-order
boundary value problems on complex geometries. We are particularly interested in the proposed
hard constraints for enforcing a Dirichlet boundary condition fD(x) on complex geometries. This
is achieved by constructing a function l(x) that is zero on the Dirichlet boundary and greater
than zero at other points. Then, the DNN output is transformed as

NN′(x) = NN(x) · l(x) + fD(x).

DNN output can also be modified to be even or odd with respect to some parameter (NN(x) =
±NN(−x)) as shown in [27]. Furthermore, it is possible to explicitly enforce more complex
conditions, such as energy conservation. However, this requires an additional DNN, which
complicates tuning and training, and limits applications of this approach to simple conditions
such as symmetry and boundary conditions.
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5 Methodology

In this work, we propose to combine unsupervised PINNs with supervised DNNs by first training
an unsupervised model on a simplified physical problem and then providing its solution as an
additional input to the supervised DNN. This approach potentially combines the advantages of
both methods.

Unsupervised PINNs do not need input data as they are trained to directly satisfy the un-
derlying physical laws by minimizing their residuals. This makes unsupervised PINNs especially
useful for transfer learning scenarios when data is not available or is scarce. A major drawback
of unsupervised PINNs is the difficulty of training. They often have many hyperparameters
and require careful tuning. Although there are more advanced versions of PINNs, such as
gradient-enhanced PINNs [32], they involve even more loss terms and can be even harder to
tune.

Solving the Navier-Stokes equations with PINNs is computationally expensive and not al-
ways possible (the required accuracy cannot be achieved), especially for complex geometries.
This complicates the use of PINNs for industrial CFD data, which are 3D and often involve
complex geometries.

Supervised DNNs can work with such data. However, they are not informed of the underlying
physical laws. One could modify the training function with physics loss based on PDE-residuals,
as is done in [31]. However, this approach could require further changes to the architecture, as
the loss behavior may change drastically.

Alternatively, physical information can be provided to the DNN as additional data features.
Note that in [10], [25], [31], the underlying DNNs only use geometric information about the
points at which a prediction is made. By calculating additional features based on the solution
of the simplified physics problem, we provide the DNN with data that better correlate with
the target prediction. The simplified physics problem can be solved much faster than the full
Navier-Stokes equations using either classical methods or PINNs.

Additionally, since PINN and DNN training are separate, our method does not require
modification of the surrogate model’s architecture.

5.1 Potential flow

The Navier-Stokes equations under additional assumptions can be simplified to essentially a
Laplace problem. The solution to this problem is called the potential flow [33].

Consider the Navier-Stokes equations for the steady flow of a continuous incompressible
one-phase fluid. Additionally, assume that the temperature is constant: this will eliminate the
equation for energy conservation eq. (3). Together with the boundary and initial conditions, we
obtain the following system

∂uuu
∂t (uuu · ∇)uuu− ν∇2uuu = −1

ρ∇p, x ∈ Ω,

∇ · uuu = 0, x ∈ Ω,

uuu(x) = uuud(x, t), x ∈ ΓD,

−pnnn+ µ∂uuu
∂nnn = uuun, x ∈ ΓN ,

uuu(x) = 0, x ∈ S.

(8)

Using the continuity condition ∇ · uuu = 0 and identities

uuu · ∇uuu = (∇× uuu) +∇
(uuu · uuu

2

)
,

∇× (∇× uuu) = ∇(∇ · uuu)−∇2uuu,

we can rearrange the terms in the first equation to use vorticity;

ωωω = ∇× uuu. (9)
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ωωω × uuu+ ν∇×ωωω +∇
(
p

ρ
+

uuu · uuu
2

)
= 0

To further simplify the system, we assume that the flow is irrotational

ωωω = 0.

In this case, there exists a scalar potential function F such that

uuu ≡ ∇F.

The continuity equation becomes Laplace’s equation

∇2F = 0,

and section 5.1 becomes

∇
(
p

ρ
+

uuu · uuu
2

)
= 0.

Notice that this equation is fully integrable and therefore the pressure can be directly ex-
pressed as a function of velocity

p =
ρ

2
(uuu · uuu).

The system eq. (8) transforms into the Laplace problem
∇2F = 0,

F (x) = FD(x), (x, t) ∈ ΓD,
∂F
∂n = FN (x), (x, t) ∈ S ∪ ΓN .

(10)

Velocity and pressure can then be expressed as{
uuu = ∇F,

p = ρ
2(uuu · uuu).

The resulting potential flow system (10) is much simpler than the initial Navier-Stokes
equations (8), which means that it is more likely to be solvable using a PINN or can be quickly
solved using numerical methods. The solution of the potential flow can then be provided to a
DNN that will predict the correction with respect to rotational and viscous effect. The solution
is guaranteed to satisfy conservation energy and linear momentum, and thus might provide a
useful basis for the surrogate model as either an additional input field or a pre-trained layer.

Unlike [31], our combined model does not include the PDEs used for simulation. Therefore,
it can be used on any version of the Navier-Stokes equations, not just on the RANS equations.
This is especially important for industrial applications, as in some cases the simulation data
will contain only fundamental physical variables (pressure, velocity, and temperature), when
the RANS equations also include Reynolds’ stresses. Additionally, since our model is not tied
to the residuals of the PDEs used in the simulation, it can be used on data sets that have been
simulated with different models (e.g., DNS and RANS).
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6 Experiments

In this section, we first investigate the performance of an unsupervised PINN for solving poten-
tial flow problem on a range of geometries. We then compare the performance of a surrogate
geometric DNN trained with and without additional physical features.

6.1 Unsupervised PINNs

We investigate solutions of the potential flow system (10) using PINNs on a range of geometries
to explore their applicability to production settings. The models are built using the DeepXDE
library with the TensorFlow2 backend [34], [35]. The experiments are run on an Intel(R)
Xeon(R) CPU E5-2690 v4 @ 2.60GHz and an NVidia(R) K80 GPU. The results are visualized
using PyVista [36].

First, we show the training convergence for simple geometries in 1-3D: interval, rectangle,
and cube. Second, we compare training with soft and soft plus hard constraints for a potential
flow around a circular cylinder and a NACA airfoil in 2D.

6.1.1 Flow on simple geometries in 1–3D

Before considering complex cases, we investigate potential flow (10) (Laplace problem with
mixed boundary condition) using a PINN with soft constraints (e.g., physics information em-
bedded only through losses) on simple geometries: interval [−1, 1], rectangle [−1, 1]2 and cube
[−1, 1]3. The formulation of the Laplace problem is given in (11).

∆F = 0, interior: F ∈ (−1, 1)d,

F = 1, inlet: x = −1,

F = −1, outlet: x = +1

F ′
n = 0, sides: y = ±1 ∨ z = ±1.

(11)

This problem allows us to verify the implementation of the model. Additionally, we consider
it as a baseline against which to compare convergence in more complex cases. The geometries
and boundaries are presented in fig. 8.

Inlet
F = 1

Outlet
F’ = -1

Interior
ΔF = 0

(a) Interval

Inlet
F = 1

Outlet
F = -1

Top
F’n = 0

Bottom
F’n = 0

Interior
ΔF = 0

(b) Rectangle

Outlet
F = -1

Faces
F’n = 0

Inlet
F = 1

Interior
ΔF = 0

(c) Cube

Figure 8: Geometries for Laplace equation

For all cases, there exists a unique solution, which is known analytically

F (x, y, z) = −x.

The training is done using soft constraints for all terms of the equation. Namely,

• PDE residual for the Laplace equation LPDE,

18



• Dirichlet boundary for the inlet LI ,
• Dirichlet boundary condition for the outlet LO,
• Neumann boundary condition for other boundaries (sides) LS .

The loss function is
L(xxx) =

∑
i∈{PDE,I,O,S}

wiLi(xxx).

Losses are calculated at the points sampled inside the domain and at its boundaries using
the Hammersley distribution [34] (see table 1).

All losses are equally weighted (wi = 1). For all three cases we use an FNN with 3 hid-
den layers of 50 neurons each, tanh activation function, and Glorot uniform initialization [37].
Optimization is done using Adam with parameters specified in table 1 [38].
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Figure 9: Solution of the Laplace equation on simple geometries

Note that since the loss terms have the same weight, we could have combined the loss
functions for the inlet and outlet into one loss for the Dirichlet boundary condition. Similarly,
if a finer control over weighing is required, the loss term for Neumann BC can be separated into
individual loss terms for each side (e.g., top and bottom in the 2D case).

Table 1: Training parameters and results for potential flow on simple geometries

1D 2D 3D
Learning rate 1e-3 1e-3 5e-4
Epochs 4000 10000 10000
# training points 16 15 20
# training boundary points 2 225 400
# test points 100 60 80
Relative L2 error 2.9e-4 6.7e-3 2.1e-4
Training time (CPU), s 7 46 79
Training time (GPU), s 9 27 32

The training parameters and the convergence results are presented in table 1 and fig. 9.
In all cases, the models converge to the solution without noticable overfitting and achieve a
relative L2 test error of less than 0.5% (see fig. 27). The training time in all cases is less than
1.5 minutes when using either a CPU or a GPU.

6.1.2 External flow around 2D airfoils

Next, we consider an external potential flow around a circular cylinder of radius R = 0.1 with
center at (0, 0) in a 2D rectangle [−1, 1]2. Unlike for a general NACA shape, there exists an
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analytical solution [2]: F =

(
r +

R2

r

)
U cos θ,

U = ∇F = (Ur, Uθ)
T ,

(12)

where r and θ are 2D polar coordinates given by

r =
√
x2 + y2, y = atan2

(y
x

)
.

Then velocity in polar coordinates is

Ur =
∂F

∂r
=

(
1− R2

r2

)
U cos θ,

Uθ =
1

r

∂F

∂θ
= −

(
1 +

R2

r2

)
U sin θ.

In Cartesian coordinates, it can be expressed as

Ux = Ur cos θ − Uθ sin θ,

Uy = Ur sin θ + Uθ cos θ.

This makes this problem extremely useful for verifying the model that will be used on the
airfoils.
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Figure 10: Geometry scheme for external flow
around cylinder/airfoil
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Figure 11: Inverse learning rate decay for
ρ = 0.5, K = 100

We consider a PINN with the losses presented on fig. 10. The losses are equivalent to the
potential flow on a rectangle, with the addition of a zero Neumann boundary condition on the
surface of the cylinder corresponding to the nonpenetration of a solid surface.

To decrease the amount of losses and weights in PINN training, we can apply hard constraints
for the Dirichlet boundary condition. That is, we transform the output of the DNN f into

f̃(x, y) = (x+ 1)(1− x)f(x, y) + x.

This means that the final output of the model satisfies f̃(±1, y) ≡ ±1. This allows us to elimi-
nate 2 loss functions and 2 corresponding hyperparameters (their weights) from the training.

Additionally, the initial output of the model will be close to the solution of the potential
flow on a rectangle. This is because the PINN weights are initialized with small floats, which
means that the initial output of the PINN f(x, y) is also small, which means f̃(x, y) ≈ −x.
Therefore, the model only has to learn the correction corresponding to the flow change due to
the addition of the cylinder/airfoil to the modeling domain.
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For training with soft constraints, all losses are assigned a weight of 1, except for the cylinder
surface, which is assigned 8. For training with hard constraints, the weights are again 1 for all
losses except surface loss, which has weight 20. We use an FNN with 5 hidden layers of 100
neurons each, tanh activation function, and Glorot uniform initialization. Optimization is done
using Adam with parameters specified in table 2.

In addition to the optimizer, we employ the inverse time decay with the rate ρ = 0.5 over
K = 100 steps (see fig. 11). This schedule changes the initial learning rate l0 with the iteration
number s as

l(s) =
l0

1 + ρ · s
K

.

Table 2: Training parameters and results for potential flow around a cylinder and an airfoil
(SC – soft constraints, HC – hard constraints)

Cylinder (SC) Cylinder (HC) Airfoil
Learning rate 1e-3 1e-3 5e-4
Epochs 10000 10000 10000
# training points 2000 2000 4000
# training boundary points 300 300 300
# test points 500 500 80
Relative L2 error 2.9e-3 2.3e-3 N/A
Training time (CPU), sec 729 658 1198
Training time (GPU), sec 68 69 91

The training results for the PINN training for the flow around a circular cylinder using soft
and hard constraints are presented in figs. 12 and 13 and in table 2. We must use more training
points to avoid overfitting, leading to a longer training time. The models achieve relative errors
similar to those achieved for flow on simple geometries.

(a) Soft constraints (b) Hard constraints (c) Analytical solution

Figure 12: Potential prediction for flow around cylinder

Interestingly, the training time is similar for both soft and hard constraints. This means
that a change in the number of points affects the training time much more than additional
evaluations of the boundary conditions. At the same time, the use of hard constraints is
still beneficial because it decreases the number of hyperparameters. Therefore, we use hard
constraints to train a PINN to predict external flow around a NACA airfoil.

We keep the same parameters for the potential flow around an airfoil, except for the number
of training points sampled in the domain. This is due to overfitting issues (see figs. 14 and 15).
When too few points are used for PINN training, the PDE loss on train and test points starts to
diverge, meaning that the model does not generalize the solution to the unseen data. Although
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such a model might achieve training residuals similar to a non-overfitting one, the prediction
results might be quite non-physical, as seen in fig. 15.

(a) PINN prediction using soft
constraints

(b) PINN prediction using hard
constraints

(c) Analytical solution

Figure 13: Velocity prediction for potential flow around cylinder

(a) Potential (b) Velocity

Figure 14: Potential and velocity prediction for potential flow around a NACA airfoil

(a) Potential (b) Velocity

Figure 15: Potential and velocity prediction for potential flow around a NACA airfoil when
overfitting occurs
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6.2 Supervized PINNs

Having built a PINN for predicting potential flow around an airfoil, we now investigate how
adding physical features affects the performance of a surrogate DNN for predicting viscous flow.

6.2.1 Data

Following [10], we perform our experiments on a data set of 2D simulations of incompressible
fluid flow around NACA airfoils. Simulations are performed using the OpenFOAM package and
the RANS equations with one equation turbulence model and FVM [11].

The data set is created by randomly selecting a set of NACA airfoils from a database and
simulating a freestream flow around them for random velocities V ∈ [10, 100] and attack angles
φ ∈

[
−π

8 ,
π
8

]
.

Our data set contains 1096 samples. Each consists of a velocity vector of the free stream
VVV , a 3D airfoil surface mesh, and an irregular triangular mesh of around 40000 points in a
[−5, 5] × [−5, 5] × [0, 1] cuboid around the airfoil (see fig. 16a). The third dimension appears
because OpenFOAM supports only 3D simulations. Therefore, to perform 2D simulations, an
additional dimension is added. At each mesh vertex, the pressure p, the velocity UUU and the
turbulent viscosity νt are given (fig. 17).

(a) Raw (b) After cropping

Figure 16: Computation mesh

To increase model accuracy, we preprocess VVV , UUU , and p for each sample as proposed in [10]
(this operation amounts to nondimensionalisation of the Navier-Stokes equations):

ṼVV =
VVV

V
, ŨUU =

UUU

V
, p̃ =

p− p̄

V 2
.

Here p̄ is the average pressure at all points in a sample. Since only the Navier-Stokes equations
involve only the gradient of pressure, such linear scaling does not affect the system. Further-
more, we apply “standard scaling”: we subtract the mean and divide by the standard deviation
calculated across the training data set independently for each input (velocity, pressure, turbu-
lent viscosity fields, and freestream velocity). Such an operation is a common and sometimes
necessary operation in machine learning. In our case, standard scaling improves the accuracy
of the surrogate DNN, especially for pressure predictions [10].
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Following [10], we crop each sample to [−0.5, 1.5] × [−1, 1] (see figs. 16b and 17). Unlike
numerical methods, surrogate DNNs do not necessarily require a large space between the surface
of the airfoil and the edge of the computational domain, as they do not consider open boundaries.
The data set is then divided into train and test subsets in ratios of 9 to 1.

(a) Velocity U (b) Pressure p (c) Turbulent viscosity νt

Figure 17: Simulated values on cropped mesh for sample #90

6.2.2 Models

We train a surrogate geometric DNN proposed in [10] to predict laminar viscous flow around
airfoils. We compare its performance in the cases when it is provided with the potential flow
solution produced by a PINN or not provided.

For the unsupervised PINN training we use the same model and training parameters as in
the experiments with potential flow around an airfoil in the previous section (see table 2).

The model from [10] combines an FNN, CNN, and GNN (see fig. 18). It was designed as a
surrogate DNN for CFD simulations and can predict physical fields in a volume given only a
surface mesh and scalar parameters. Additionally, it can predict scalars and surface values, but
we do not use that capability. We use the same parameters (128× 128 projection grid) as [10]
to compare the performance of our models (the model has 928 thousand trainable parameters).
However, note that the data set used in this work is smaller (1096 instead of 1500) but is
generated in the same way.

scalars

surface mesh 

volumetric 
point set

scalars

surface mesh 

volumetric 
point set

e.g., drag

e.g., U, p

FNN

GNN

projection + CNN

Surrogate model

Figure 18: Sketch of the surrogate Zampieri et al. model’s architecture
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Figure 19: Architecture of the (simplified physics)-informed surrogate models.

We train the models for 100000 steps (one sample is used in each step) using the L2 loss,
Adam optimizer, and exponential decay scheduler with the initial learning rate l0 = 2e−4, decay
rate ρ = 0.5 and K = 5e4 decay steps (see fig. 22):

l(s) = l0(s) · ρ
s
K .

6.2.3 Results

First, we train PINNs to solve the potential flow problem with the same parameters as for
the airfoil in the previous section. Second, we train surrogate models with and without the
additional features provided by the potential flow solution.

The training of a PINN to solve the potential flow problem takes around 110 seconds per
sample (using the GPU), with a total computation time around 31 hours. Although the training
parameters for the model were previously successfully tested on both potential flow around a
cylinder and an airfoil, during training on multiple geometries, we see that the model does not
always converge. Apart from well-converging runs, there are instances of both overfitting and
undertraining (see fig. 20).
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(a) Overfitting (sample 0)
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(b) Good convergence (sample 29)

0 2000 4000 6000 8000 10000
Training steps

10 1

100

Lo
ss

General loss

train
test

0 2000 4000 6000 8000 10000
Training steps

10 4

10 3

10 2

10 1

100
Lo

ss

Individual losses

PDE residual (train)
PDE residual (test)
Top+Bottom BC residual (train)
Top+Bottom BC residual (test)
Airfoil surface BC residual (train)
Airfoil surface BC residual (test)

0 2000 4000 6000 8000 10000
Training steps

10 1

100

Test metric

l2 relative error

(c) Undertraining (sample 19)

Figure 20: Training loss for PINNs trained on various airfoils

In the case of overfitting, the loss error becomes larger than the training error. As seen
before, this can result in the PINN producing an unphysical solution. In the case of overfitting,
the solution should still be physical, but the training could be extended so that the model can
achieve higher accuracy.

The training results for the surrogate model are presented in table 3.
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We see that our models achieve similar relative L2 errors compared to [10]. The individual
relative L2 errors for U , p and νt range from 0.06 to 0.001 and match those of Zampieri et al.

The discrepancy in our results could be expected due to the different data sets: ours is
around 30% smaller, which in conjunction with variability in freestream velocities and airfoil
shapes might result in performance difference. In this case, however, the results are close to
each other.

Table 3: Results of the surrogate model training

Model Features
L2 loss Rel. test L2 error

train test Total U nut p

Zampieri et al

– 0.2983 0.2271 0.0976 0.0353 0.0010 0.0570
Pot.flow: F 0.2786 0.2287 0.0994 0.0389 0.0010 0.0588
Pot. flow: U 0.2317 0.2292 0.1029 0.0347 0.0011 0.0644

Pot. flow: F, U 0.2404 0.2283 0.0932 0.0365 0.0011 0.0540

When comparing the performance of the Zampieri et al. model with and without potential
flow features, we do not see a significant improvement. The best performing among the models
with additional features is quite clearly the one provided with both potential and velocity values
from the potential flow solution. It has the best L2 test error, the relative L2 test error in total
and for p. Its error for UUU is sightly worse than the model provided only with the velocity of the
potential flow, and νt error comparable to the other three models.

The difference between the L2 loss on the test set for the original model and the model
provided with both F and UUU from the potential flow is less than 0.02 (or 2% of the loss value).
The relative L2 loss of the latter model in total and for p is slightly better: 0.0932 compared to
0.0976 and 0.0540 compared to 0.0570. However, it is worse with respect to UUU and νt: 0.0365
against 0.0353, and 0.0011 against 0.0010.
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Figure 22: Exponential learning rate decay for
ρ = 0.5, K = 5e4

Interestingly, the distance between the training curves for the surrogate model is noticably
smaller than for the original model (see fig. 21). For example, the model provided with the
potential flow’s velocity shows the train loss of 0.2317 and the test loss of 0.2292 (difference of
0.0025), while the original model shows the train loss of 0.2983 and test loss of 0.2271 (difference
of 0.0712, almost 30 times more than the other model).
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7 Discussion and future work

7.1 Discussion

The potential flow calculated with a PINN marginally improves the performance of a geometric
surrogate DNN on the test set. We believe that there are two main reasons for the underwhelm-
ing performance: good performance of the original model on the given dataset and issues with
PINN convergence.

A somewhat surprising result is that adding potential flow to the surrogate model reduces
the gap between training and test loss. We also consistently see that the test loss is smaller
than the train loss. This might indicate that the original model proposed by [10] is already
reaching the best achievable accuracy limits on the given data set. Nevertheless, a reduction of
the distance between the training curves is useful, as the training loss becomes a better estimate
of the overall performance of the model.

The parameters of the PINN training have been tested to solve the potential flow around
a cylinder and an airfoil. However, when the model was trained on a range of geometries,
convergence was not guaranteed. Clearly, the chosen learning rate, decay, number of training
steps and number of points sampled in the domain are not suitable for all samples present
in the data set. To address this issue, a future study could investigate the creation of an
adaptive procedure that would adjust the parameters of the training based on its performance.
Additionally, if overfitting is detected, training could be restarted.

Having a numerical solution to the potential flow problem would help analyze the conver-
gence of PINNs. Although solving the system with numerical methods is beyond the scope of
this study, we recognize that it would be useful to understand the exact reason for the failure
of the PINNs to solve the potential flow.

Note also that we formulated the potential flow problem for a fixed stream direction and
magnitude (horizontally from left to right with V = 2). This is not ideal as it does not capture
the freestream velocity difference between the samples. A better approach is to formulate a
potential problem with variable direction and magnitude of the stream. This would improve
the correlation between the solutions of the simplified and full physics problem and thus provide
more informative features to the surrogate model.

Our results should not be viewed as conclusive. Taking into account very similar performance
of the presented models, we should ideally take into account the uncertainty introduced by both
the data and the training procedure. This would enable an informed comparison of the model
performance and help decide whether the addition of simplified physics features provides a
significant enough accuracy boost for added computation time.

7.2 Future work

7.2.1 Improving few-shot transfer learning with simplified physics

In this work, we only considered the performance of a surrogate model on a test set that is
similar to the train set. However, our approach may be especially useful in the transfer learning
scenarios. Usual surrogate DNNs can struggle with the out of distribution samples, making an
unsupervised PINN that does not depend on data a crucial addition to the model.

In the future, we hope to also study the performance of the model on previously unseen
geometries, similar to the way it is done in [25]. For example, we could investigate the per-
formance of the PINN and the surrogate DNN for simulation of flow around one or multiple
geometric shapes: triangles, rectangles, etc.
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7.2.2 Solving simplified physics using numerical methods

In the proposed model, we use a PINN to predict the simplified physics solution (see fig. 19).
Note, however, that we could change the PINN to a numerical solver. PINNs can overfit given
data and produce unrealistic output (see fig. 15), which subsequently decreases the performance
of the surrogate model. Therefore, numerical methods would produce the simplified physics
solution more reliably. However, the numerical approach requires meshing, when a PINN only
needs points inside and on the boundaries of the domain. The meshing overhead might prevent
the numerical methods from being faster. Therefore, a future study could determine which
approach produces feature fields faster, more reliably, and more accurately.

7.2.3 Studying the choice of the simplified physics system

We use potential flow as a simplified version of the Navier-Stokes equations, as it is arguably
the simplest model of fluid flow. However, one could also consider more advanced models such
as, for example, the Euler equations (equivalent to the Navier-Stokes equations for a fluid with
zero viscosity and thermal conductivity).

The simplified physics model should be simple enough so that it can be quickly and accu-
rately solved by numerical methods or PINNs, but complex enough so that it is close to the
solution of the original physics problem and thus improves the performance of the surrogate
DNN.

We hypothesize that using systems that are more complex than potential flow would be
too computationally expensive. For example, as reported in [39], training a PINN for the
2D simulation of a laminar flow passing a step (see fig. 23) using the Navier-Stokes equations
requires ×8 more iteration, ×2.5 more points in the domain and ×30 points on the boundaries
than our simulation of the flow around an airfoil (see table 2). Therefore, training for one
sample using our setup would probably take around 10-15 minutes, meaning that training for
a dataset of 1000 samples would take more than 8 days.

3.07 in

(a) Geometry, governing equations and parameters of the problem

(b) Absolute value of the velocity field (c) Pressure field

Figure 23: Laminar incompressible flow step passing a step [40]
Under CC BY 3.0 from CSC - IT Center for Science, https://creativecommons.org/licenses/by/3.0/

This makes our approach much less appealing, since for unseen samples, the PINN training
would be included in inference time. This could be overlooked if the performance gain for the
surrogate DNN is great.

Potentially, the training speed could be increased by using two optimizers in succession:
Adam and L-BFGS, as is done in [31]. Alternatively, more computational resources could be
used, as in [41]. Furthermore, we cannot rule out the possibility that the needed speedup can
be achieved by optimizing our code or using a different framework for PINNs, such as NVIDIA
SimNetTM[41].
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7.2.4 Using potential flow for surrogate models in 3D

This work explored the application of additional geometric and simplified physics features only
to a 2D external flow problem. To properly assess the utility of our approach, we would also
like to test it on 3D problems of external and internal flow. 3D problems are more challenging
as they are more computationally expensive (e.g., PINN training for modeling blood flow in an
aneurysm required 20 million points [41], ×1000 more than what we used). However, they are
also more relevant to industrial applications (e.g., aerodynamics and heat exchanger modeling
in the automotive industry; see section 7.2.4).

(a) External: aerodynamic of a single-seater (b) Internal: flow in a pillow plate heat
exchanger

Figure 24: Examples of applications of flow simulation
Under CC BY 4.0 from AlbertsFlyStudio/Flocess via Wikimedia Commons,

https://creativecommons.org/licenses/by/4.0

We have already started working in this direction by modeling potential flow in circular
3D pipes. Preliminary results show that PINNs can successfully capture the direction of flow
(see section 7.2.4). The next step is to create a data set of simulations of 3D internal flow and
evaluate whether additional geometric and simplified physics features improve the performance
of a surrogate DNN for flow prediction.

Inlet

Outlet

(a) Cylinder

Inlet

Outlet

(b) U-turn

Inlet
Outlet

(c) Bottleneck

Figure 25: 3D circular pipes

(a) Cylinder (b) U-turn (c) Bottleneck

Figure 26: Solution of the potential flow on 3D circular pipes (preliminary results)
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8 Conclusion

Deep neural networks (DNNs) can quickly predict solutions to complex modeling problems by
learning to emulate simulated data. Physics-informed neural networks (PINNs) can make more
accurate and reliable predictions by incorporating knowledge of the underlying physics system
into the model. However, creating and training such models is a complex task, especially for
industrial applications as they often involve high-resolution 3D data and multiscale physics.

In this study, we proposed training an unsupervised PINN to predict a solution to a simplified
physics problem and provide its prediction to a surrogate DNNs that would model the initial
problem. This approach potentially combines the accuracy of unsupervised PINNs with the
speed of surrogate DNNs. It is much easier to train an unsupervised PINN to solve simplified
physics, and simplified physics can be a good baseline from which to make predictions.

We tested our approach on prediction of velocity, pressure, and turbulent viscosity of 2D
laminar flow of incompressible fluid around an airfoil. The fluid motion in this case is described
by the Navier-Stokes equations, which can be simplified to the potential flow. We trained a
PINN to predict potential flow around an airfoil. Model training for one sample did not require
meshing and took less than 2 minutes with a GPU. We found that training the PINN with fixed
training parameters (e.g., learning rate, number of iterations) on a range of airfoils can result
in overfitting and undertraining. However, even providing such a potential flow solution to the
surrogate geometric DNN slightly improved its performance and reduced the difference between
train and test losses.

Future research can investigate improvements to the unsupervised PINN model (e.g., in-
crease training speed and stability), consider directional potential flow (e.g., having the same
velocity as the freestream) or a different simplified physics system altogether, and study whether
the performance benefit is significant compared to data and model uncertainty. We also hope
that this work will provide a starting point for future research into using PINNs for 3D problems
and better transfer of surrogate DNNs.
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Appendix

A Potential flow experiments

A.1 Simple geometries
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Figure 27: Training curves for potential flow on simple geometries
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A.2 Cylinder and airfoil
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(a) Soft constraints

0 2000 4000 6000 8000 10000
Training steps

10 3

10 2

10 1

100

101

Lo
ss

General loss

train
test

0 2000 4000 6000 8000 10000
Training steps

10 5

10 4

10 3

10 2

10 1

100

101

Lo
ss

Individual losses

PDE residual (train)
PDE residual (test)
Top+Bottom BC residual (train)
Top+Bottom BC residual (test)
Cylinder surface BC residual (train)
Cylinder surface BC residual (test)

0 2000 4000 6000 8000 10000
Training steps

10 2

Test metric

l2 relative error

(b) Hard constraints

Figure 28: Training curves for potential flow around a cylinder
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Figure 29: Training curves for potential flow around a NACA airfoil
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Figure 30: Training curves for potential flow around a NACA airfoil (overfitting)

(a) PINN prediction using soft
constraints

(b) PINN prediction using hard
constraints

Figure 31: Error in potential for flow around cylinder
(Fpred − Fsol)

(a) PINN prediction using soft
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(b) PINN prediction using hard
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Figure 32: Error in velocity for flow around cylinder(
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B Surrogate models experiments
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(a) Overfitting (sample 0)

0 2000 4000 6000 8000 10000
Training steps

10 1

100

Lo
ss

General loss

train
test

0 2000 4000 6000 8000 10000
Training steps

10 4

10 3

10 2

10 1

100

Lo
ss

Individual losses

PDE residual (train)
PDE residual (test)
Top+Bottom BC residual (train)
Top+Bottom BC residual (test)
Airfoil surface BC residual (train)
Airfoil surface BC residual (test)

0 2000 4000 6000 8000 10000
Training steps

10 1

100

Test metric

l2 relative error

(b) Good convergence (sample 29)
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Figure 33: Individual training losses for PINNs trained on various airfoils

(a) Sample 0 (b) Sample 29 (c) Sample 19

Figure 34: PINN prediction of potential for potential flow around various airfoils

(a) Sample 0 (b) Sample 29 (c) Sample 19

Figure 35: PINN prediction of velocity for potential flow around various airfoils
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Figure 36: Training curves for the surrogate models
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