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CFD applications

Automotive

Aerospace

Energy

Heat exchangers
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Deep learning in engineering design

Create designs Evaluate them

Choose best and iterate

Design 
cycle

● Need: a method to quickly
evaluate the designs

● Numerical methods
○ Accurate
○ Physical predictions
○ Can be slow

● Deep learning
○ Train on simulation data
○ Much quicker
○ Lower accuracy
○ Possibly unphysical predictions
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How to improve a DL model when 
the underlying physics is known?

Image sources: [1]



Physics-informed neural networks (PINNs)
How to incorporate physics into a model?

Incorporating physics into ML

Data Model architecture Training procedure

Nondimentionalisation PDE-residuals
as loss termsHard constraints

Remove physical dimensions 
from equations by substitution

Modify the output to satisfy
boundary conditions (BCs)

Train a (un-)supervised model 
to satisfy PDEs 
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Physics-informed neural networks (PINNs)
Using PDE-residuals as losses

NN(x,t,W) PDE(ν)
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data* physics

Burgers’ equation
autodiff.
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● Explicitly incorporate PDEs 
into the model

● Challenges
○ Choosing loss weights
○ Ensuring convergence 

stability and speed
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Combining physics-informed and surrogate models

PINN

Unsupervised training Supervised training

● Geometry
● Governing equations
● Boundary conditions

minimize residuals
Characteristics
● Doesn’t need data
● Can be difficult to tune

Surrogate 
NN

● Geometry
● Simulation data

minimize data loss
Characteristics
● Doesn’t need physics
● Transfer/accuracy difficulties

Hybrid model

● Geometry
● Governing equations
● Boundary conditions

PINN 
(simplified 
physics)

minimize residuals

Surrogate 
NN

minimize data loss

● Simulation data
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Navier-Stokes equations
● Variables

○ Coordinate 
○ Time
○ Velocity
○ Pressure
○ Kinematic viscosity
○ Dynamic viscosity 

● Equations
○ Conservation of linear momentum
○ Conservation of mass (= continuity equation)
○ Boundary conditions

– Initial
– Dirichlet
– Neumann

Assumptions
➔ continuous 1-phase fluid
➔ incompressible
➔ steady flow
➔ no external forces/sources
➔ constant temperature
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Navier-Stokes equations → potential flow

Navier-Stokes

❌✅

Potential flow
+ irrotationality

11 / 23Image sources: [7]
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PINNs for potential flow
Soft constraints

● Laplace problem with mixed BCs

● Analytical solution available for a circular cylinder

● Model
○ Fully-connected NN [1, 100x5, 1]
○ MSE for all terms, using Adam with LR decay

● Execution
○ Sample points in the domain and on the boundaries
○ Predict solution 
○ Evaluate PDE and BC residuals
○ Compute individual losses and the weighted sum
○ Calculate grads and do the optimization step

Inlet Outlet

Surface

Sides

Geometry of the problem
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PINNs for potential flow
Hard constraints

● Laplace problem with mixed BCs

● Analytical solution available for a circular cylinder

● Model
○ Fully-connected NN [1, 100x5, 1]
○ MSE for all terms, using Adam with LR decay

● “Hard constraints”
○ Reduces the number of loss terms
○ Transform model output as

Inlet Outlet

Surface

Sides

Geometry of the problem
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Ground truth

● Solved pot. flow
○ Cylinder: soft and hard
○ Airfoil: hard constraints

● Convergence and training speed 
heavily depends on the number 
of sampled points

● Overfitting may result in 
non-physical predictions
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Soft Hard

PINNs for potential flow
Results: cylinder



Overfitting

Good convergence
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4k points

2k points

PINNs for potential flow
Results: airfoil

● Solved pot. flow
○ Cylinder: soft and hard
○ Airfoil: hard constraints

● Convergence and training speed 
heavily depends on the number 
of sampled points

● Overfitting may result in 
non-physical predictions



Viscous flow with PINN+DNN
Data

● Flow around NACA airfoils
○ Incompressible fluid at T=const
○ Simulated with RANS
○ 1096 samples (90% train)
○ Varying geometry
○ Varying freestream velocity V

● Task
○ Given the geometry and V
○ Predict velocity, pressure and 

turbulent viscosity

MeshFreestream velocity

Velocity Pressure Turb. visc.
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scalars

surface mesh 

volumetric 
point set

scalars

surface mesh 

volumetric 
point set

e.g., drag

e.g., U, p

FNN

GNN

projection + CNN

Surrogate model

Viscous flow with PINN+DNN
Surrogate DNN architecture

● Zampieri et al.

● Geometric DNN for 
predicting scalars, values 
on meshes and point sets

● We use it only to predict on 
point sets
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Viscous flow with PINN+DNN
Hybrid PINN+DNN architecture

volume PC, surface mesh, freestream velocity

Surrogate model

PINN on 
simplified 
physics

velocity, pressure, turbulent viscosity

Differentiate wrt x,y

potential velocity
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Viscous flow with PINN+DNN
Results

Overfitting Good convergence Undertraining

PINN convergence examples

● Pot. flow training takes 30h 
(±2 min/sample, 1k samples)

● Distance between train and 
test significantly reduced

● Accuracy is the same 
(marginal improvement)
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Future work
Addressing limitations, transfer learning

● Addressing limitations
○ Directional potential flow
○ PINN training stability
○ Uncertainty estimation

● Transfer learning
○ Unsupervised PINNs 

work on out-of-distribution 
samples

train on single 
shapes

transfer

Very close ⇒ we need 
confidence intervals

PINN training stability Uncertainty estimation

Transfer learning

Directional pot. flow

now

can be

Adjust training parameters 
for better convergence 

Lo
ss

Steps

Rel. L2 error
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Future work
Application to 3D problems

Cylinder U-turn Bottleneck

Geometry

PINN 
prediction

● Applications to 3D problems
○ External flow
○ Automotive, aerospace, etc.
○ Internal flow
○ Heat exchangers, energy, etc.

● Potential flow in circular tubes
○ Inside
○ Inlet
○ Outlet
○ Surface
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Conclusion

Unsupervised PINNs + surrogate DNN in 2D

Reliable PINNs in 2D with dir. pot. flow

Transferability study

Application to 3D problems

Image sources: [9] 23 / 23

● DNNs are becoming increasingly important for engineering

● Hybrid PINN+DNN approaches can lead to improved
○ Accuracy
○ Reliability
○ Transferability

● Simplified physics allows for easier 
training of PINNs

● Experiments for external flow
around an airfoil show potential
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Physics-informed neural networks (PINNs)
How to incorporate physics into a model?

Incorporating physics into ML

Data Model architecture Training procedure

SamplingAugmentation PDE-residuals
as loss terms

Enforcing
symmetry

Hard
constraints

Image sources: [5-4]

Sample around the 
shape to encode it

Augment data to capture 
observational biases

Modify the function to be even/odd, satisfy 
conservation laws or boundary conditions

autodiff
regression prediction

conservation correction

Train a (un-)supervised 
model to satisfy PDEs 
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Changing data and loss to include physics
● Task

○ predict steady fluid flow: p,v
○ over various shapes in 2D 
○ (geometric shapes and airfoils)

● Method
○ pointcloud encodes the shape geometry
○ residuals of governing PDEs used as

a. convergence metric
b. loss term

[10]

[5]

train on single 
shapes

transfer
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Changing model architecture to satisfy function symmetry

Last layer output

Even/odd requirement
(⇒ constraint on the bias term)

⇒ Even/odd decomposition

● Task
○ solve noisy regression for 

■ even/odd functions
■ equations of motion 

(Hamiltonian mechanics)
○ satisfy symmetries exactly
○ (conservation laws ↔ symmetry)

● Method
○ Introduce hub neurons to satisfy 

constraints exactly

Source: [6] 28



Changing model architecture to satisfy energy conservation

● Task
○ solve noisy regression for 

■ even/odd functions
■ equations of motion 

(Hamiltonian mechanics)
○ satisfy symmetries exactly
○ (conservation laws ↔ symmetry)

● Method
○ Introduce hub neurons to satisfy 

constraints exactly

Harmonic oscillator

Total energy

Trajectory

Potential energy

regression prediction conservation correction

autodiff

Total energy ⇒ second NN solves ODE

Prediction

Eq. of motion
(1d, suppose E=const)

Source: [6] 29



Potential flow with PINNs
Results: cylinder

Ground truth● Solved pot. flow
○ Cylinder: soft and hard
○ Airfoil: hard constraints

● Convergence and training speed 
heavily depends on the number of 
sampled points

● Overfitting may result in 
non-physical predictions
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