École polytechnique fédérale de Lausanne Computer Vision Lab (CVLab)

Informing Neural Networks with Simplified Physics for Better Flow Prediction

MSc in Computational Sciences and Engineering Master's project

Student Fedor Sergeev fedor.sergeev@epfl.ch Supervisors Prof. Pascal Fua Dr. Jonathan Donier

February 10, 2023

Contents

- 1. Motivation
 - Deep learning in engineering design
 - Physics-informed neural networks

2. Method

- Combining physics-informed and surrogate models
- Simplifying Navier-Stokes to potential flow

3. Experiments

- Solving potential flow with PINNs
- Predicting viscous flow around an airfoil with PINN+DNN

Contents

1. Motivation

- Deep learning in engineering design
- Physics-informed neural networks

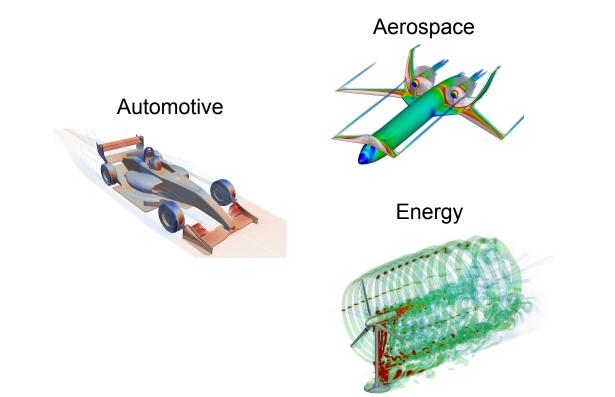
2. Method

- Combining physics-informed and surrogate models
- Simplifying Navier-Stokes to potential flow

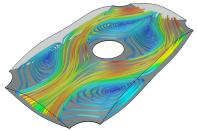
3. Experiments

- Solving potential flow with PINNs
- Predicting viscous flow around an airfoil with PINN+DNN

CFD applications

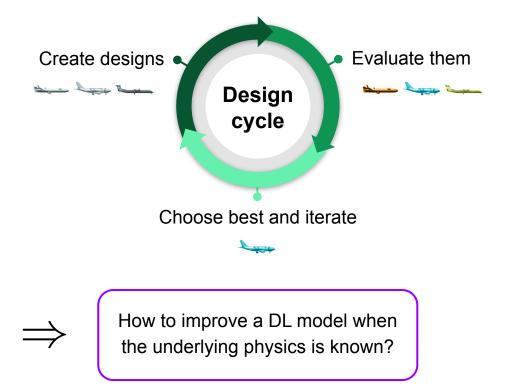


Heat exchangers

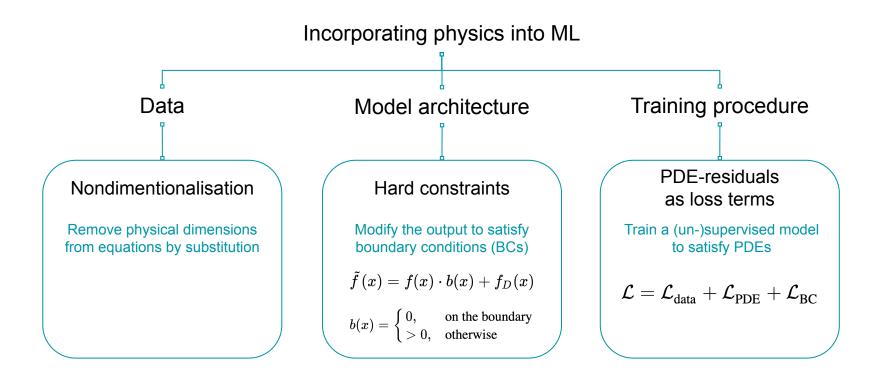


Deep learning in engineering design

- Need: a method to quickly evaluate the designs
- Numerical methods
 - Accurate
 - Physical predictions
 - Can be slow
- Deep learning
 - Train on simulation data
 - Much quicker
 - Lower accuracy
 - Possibly unphysical predictions

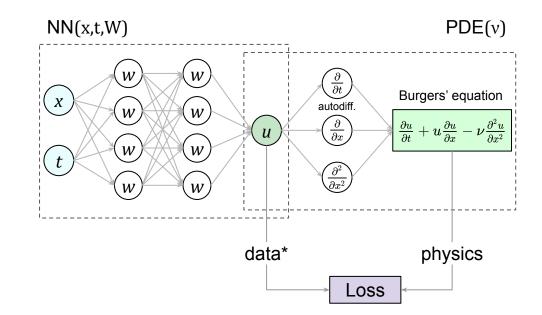


Physics-informed neural networks (PINNs) How to incorporate physics into a model?



Physics-informed neural networks (PINNs) Using PDE-residuals as losses

- Explicitly incorporate PDEs into the model
- Challenges
 - Choosing loss weights
 - Ensuring convergence stability and speed



Contents

- 1. Motivation
 - Deep learning in engineering design
 - Physics-informed neural networks

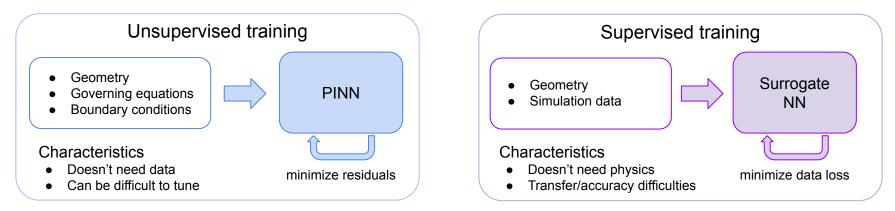
2. Method

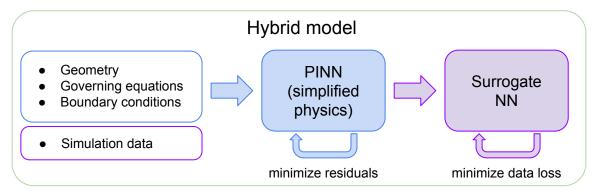
- Combining physics-informed and surrogate models
- Simplifying Navier-Stokes to potential flow

3. Experiments

- Solving potential flow with PINNs
- Predicting viscous flow around an airfoil with PINN+DNN

Combining physics-informed and surrogate models





Navier-Stokes equations

- Variables
 - Coordinate
 - Time
 - Velocity
 - Pressure
 - \circ Kinematic viscosity u
 - \circ Dynamic viscosity μ

• Equations

- Conservation of linear momentum
- Conservation of mass (= continuity equation)

T

U,

p

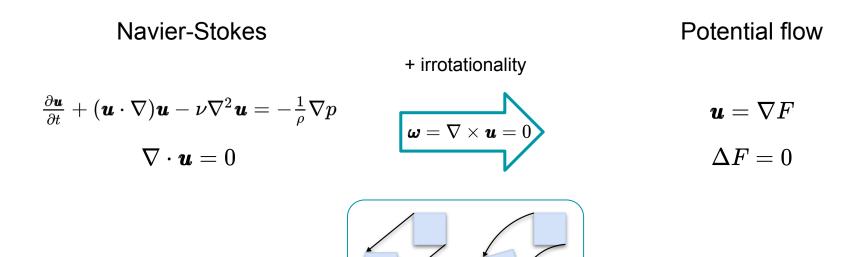
- Boundary conditions
 - Initial
 - Dirichlet
 - Neumann

Assumptions

- → continuous 1-phase fluid
- → incompressible
- → steady flow
- → no external forces/sources
- → constant temperature

$$egin{aligned} &rac{\partial oldsymbol{u}}{\partial t} + oldsymbol{(u \cdot
abla)}oldsymbol{u} -
u
abla^2 oldsymbol{u} = -rac{1}{
ho}
abla p \
abla &
abla = 0 \ oldsymbol{u}ert_{t=0} &= oldsymbol{u}_0 \ oldsymbol{u}ert_{t=0} &= oldsymbol{f}_D(oldsymbol{x},t) \ oldsymbol{u}ert_{\Gamma_D} &= oldsymbol{f}_D(oldsymbol{x},t) \ -poldsymbol{n} + \mu rac{\partial oldsymbol{u}}{\partial oldsymbol{n}}ert_{\Gamma_N} &= oldsymbol{g}_n(x,t) \end{aligned}$$

Navier-Stokes equations \rightarrow potential flow



X

Contents

- 1. Motivation
 - Deep learning in engineering design
 - Physics-informed neural networks

2. Method

- Combining physics-informed and surrogate models
- Simplifying Navier-Stokes to potential flow

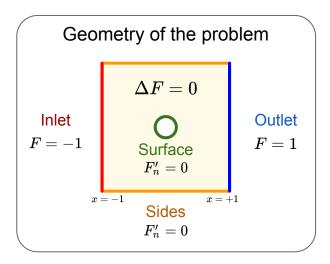
3. Experiments

- Solving potential flow with PINNs
- Predicting viscous flow around an airfoil with PINN+DNN

PINNs for potential flow

Soft constraints

- Laplace problem with mixed BCs
- Analytical solution available for a circular cylinder
- Model
 - Fully-connected NN [1, 100x5, 1]
 - MSE for all terms, using Adam with LR decay
- Execution
 - Sample points in the domain and on the boundaries
 - \rightarrow Predict solution
 - \circ $\$ Evaluate PDE and BC residuals
 - Compute individual losses and the weighted sum
 - Calculate grads and do the optimization step

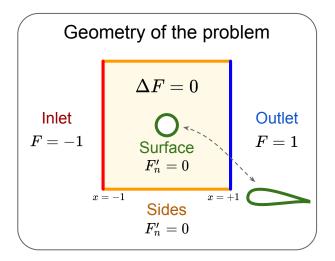


$$egin{aligned} \mathcal{L} &= \mathcal{L}_{ ext{PDE}} + \mathcal{L}_{ ext{inlet}} + \mathcal{L}_{ ext{outlet}} + \mathcal{L}_{ ext{sides}} + 20 \cdot \mathcal{L}_{ ext{surface}} \ \mathcal{L}_{ ext{PDE}} &= ext{MSE}(\Delta \hat{F}(x), 0) \end{aligned}$$
 $egin{aligned} \mathcal{L}_{ ext{inlet}} &= ext{MSE}(F(x_{ ext{inlet}}), -1) & \mathcal{L}_{ ext{sides}} &= ext{MSE}(\hat{F}_n'(x_{ ext{sides}}), 0) \end{aligned}$
 $egin{aligned} \mathcal{L}_{ ext{outlet}} &= ext{MSE}(F(x_{ ext{outlet}}), +1) & \mathcal{L}_{ ext{surface}} &= ext{MSE}(\hat{F}_n'(x_{ ext{surface}}), 0) \end{aligned}$

PINNs for potential flow Hard constraints

- Laplace problem with mixed BCs
- Analytical solution available for a circular cylinder
- Model
 - Fully-connected NN [1, 100x5, 1]
 - MSE for all terms, using Adam with LR decay
- "Hard constraints"
 - Reduces the number of loss terms
 - Transform model output as

 $\widetilde{NN}(x,y) = (1-x)(1+x)\cdot NN(x,y) + x$

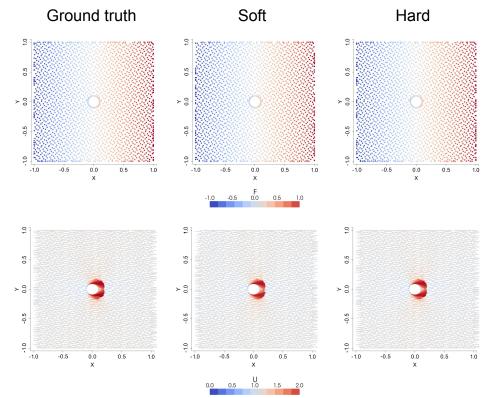


$$\begin{split} \mathcal{L} &= \mathcal{L}_{\text{PDE}} + \underline{\mathcal{L}_{\text{inlet}}} + \mathcal{L}_{\text{outlet}} + \mathcal{L}_{\text{sides}} + 20 \cdot \mathcal{L}_{\text{surface}} \\ \mathcal{L}_{\text{PDE}} &= \text{MSE}(\Delta \hat{F}(x), 0) \\ \mathcal{L}_{\text{inlet}} &= \text{MSE}(F(x_{\text{inlet}}), -1) \quad \mathcal{L}_{\text{sides}} = \text{MSE}(\hat{F}'_n(x_{\text{sides}}), 0) \\ \mathcal{L}_{\text{outlet}} &= \text{MSE}(F(x_{\text{outlet}}), +1) \quad \mathcal{L}_{\text{surface}} = \text{MSE}(\hat{F}'_n(x_{\text{surface}}), 0) \end{split}$$

PINNs for potential flow

Results: cylinder

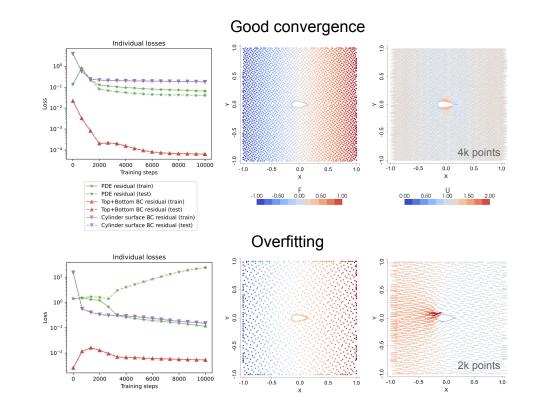
- Solved pot. flow
 - Cylinder: soft and hard
 - Airfoil: hard constraints
- Convergence and training speed heavily depends on the number of sampled points
- Overfitting may result in non-physical predictions



PINNs for potential flow

Results: airfoil

- Solved pot. flow
 - Cylinder: soft and hard
 - Airfoil: hard constraints
- Convergence and training speed heavily depends on the number of sampled points
- Overfitting may result in non-physical predictions

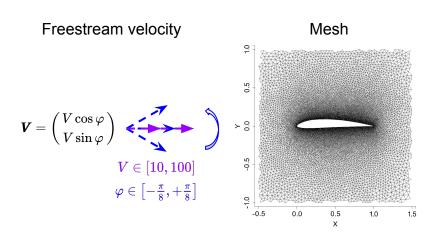


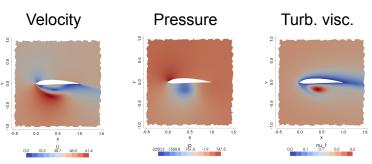
Viscous flow with PINN+DNN Data

- Flow around NACA airfoils
 - Incompressible fluid at *T=const*
 - Simulated with RANS
 - 1096 samples (90% train)
 - Varying geometry
 - Varying freestream velocity V

Task

- Given the geometry and V
- Predict velocity, pressure and turbulent viscosity

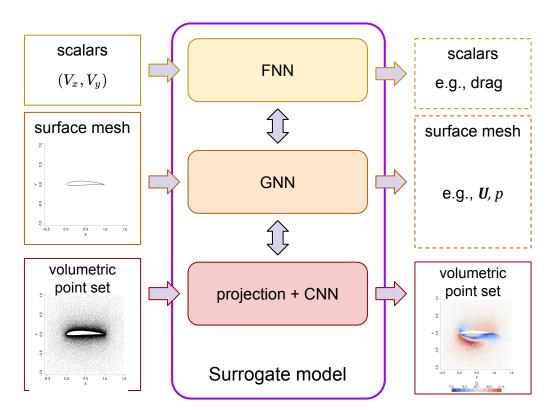




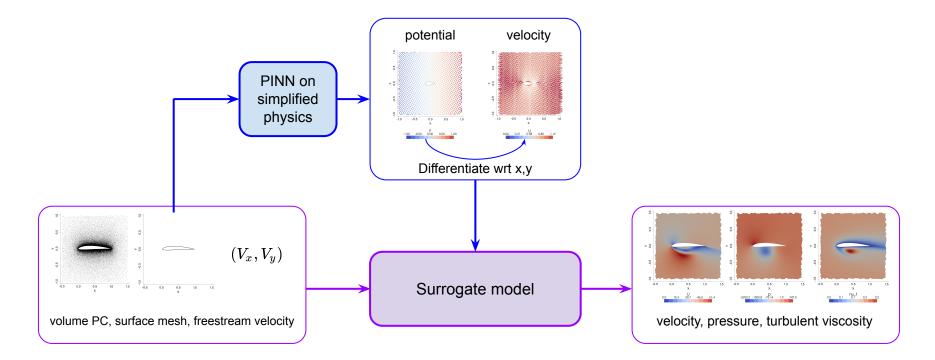
Viscous flow with PINN+DNN

Surrogate DNN architecture

- Zampieri et al.
- Geometric DNN for predicting scalars, values on meshes and point sets
- We use it only to predict on point sets



Viscous flow with PINN+DNN Hybrid PINN+DNN architecture

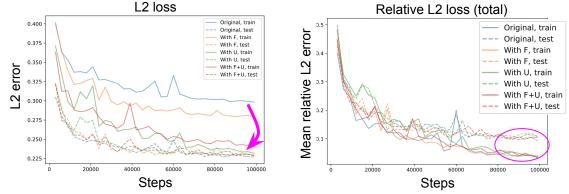


Viscous flow with PINN+DNN Results

- Pot. flow training takes 30h
 (±2 min/sample, 1k samples)
- Distance between train and test significantly reduced
- Accuracy is the same (marginal improvement)

Overfitting Good convergence Undertraining Train loss Train loss Train loss Test loss - Test loss **MSE Loss** 10 Test loss 10 10-10-10 2000 4000 6000 8000 10000 2000 4000 6000 ອກ່ອກ 10000 4000 6000 8000 10000 Steps Steps Steps

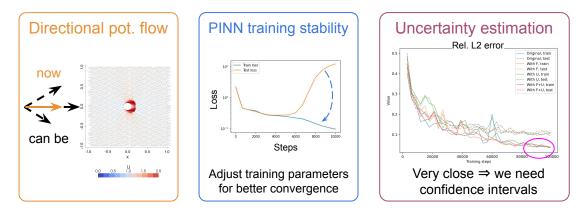
PINN convergence examples

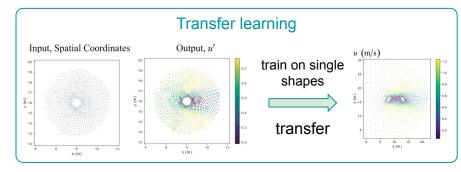


Future work

Addressing limitations, transfer learning

- Addressing limitations
 - Directional potential flow
 - PINN training stability
 - Uncertainty estimation
- Transfer learning
 - Unsupervised PINNs work on out-of-distribution samples



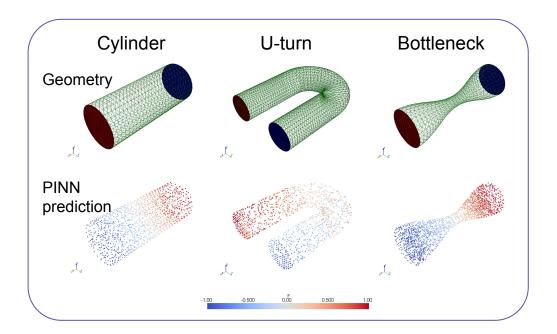


Future work Application to 3D problems

- Applications to 3D problems
 - External flow
 - Automotive, aerospace, etc.
 - Internal flow
 - Heat exchangers, energy, etc.

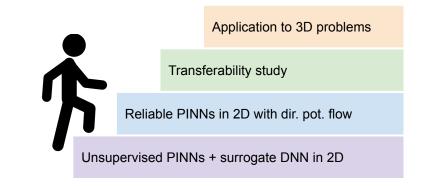
• Potential flow in circular tubes

- \circ Inside $\Delta F=0$
- \circ Inlet F=-1
- \circ Outlet F = 1
- \circ Surface $F_n'=0$



Conclusion

- DNNs are becoming increasingly important for engineering
- Hybrid PINN+DNN approaches can lead to improved
 - Accuracy
 - Reliability
 - Transferability
- Simplified physics allows for easier training of PINNs
- Experiments for external flow around an airfoil show potential



Photographic credits

- [1] Chang et al. in ShapeNet: An Information-Rich 3D Model Repository
- [2] AlbertsFlyStudio, CC BY 4.0 https://creativecommons.org/licenses/by/4.0, via Wikimedia Commons
- [3] By Flocess Own work, CC BY-SA 4.0, https://en.wikipedia.org/w/index.php?curid=61866681
- [4] By Fraunhofer-Gesellschaft,

https://www.windenergie-cfd.de/en/aerodynamics-for-wind-turbines/Meshing-and-CFD-Simulations-of-Wind-Turbines.html

- [5] Kashefi, Mukerjib in Physics-informed PointNet
- [6] Modified from Mattheakis et al. Physical Symmetries Embedded in Neural Networks
- [7] Redrawn from Karniadakis et al., Physics-informed machine learning
- [8] (modified) By FSund Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=53827516
- [9] Man walking up the stairs icon: https://i.pinimg.com/originals/d1/89/c5/d189c5d9b4d9491a2bc30826976a062a.png
- [10] Eivazi et al., Physics-informed neural networks for solving Reynolds-averaged Navier-Stokes equations

Additional material

Physics-informed neural networks (PINNs) How to incorporate physics into a model?

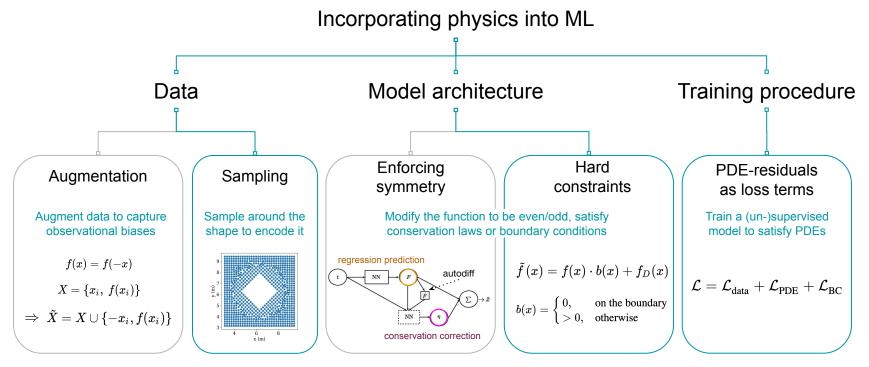
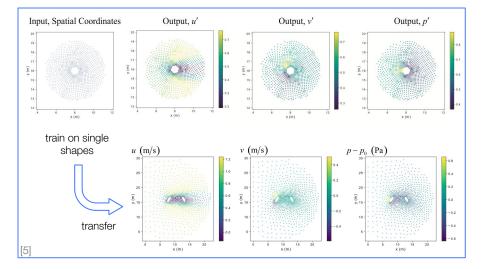


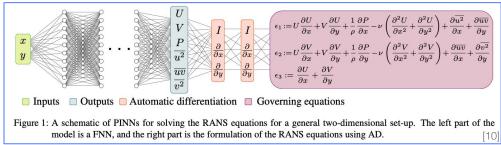
Image sources: [5-4]

Changing data and loss to include physics

• Task

- predict steady fluid flow: p,v
- over various shapes in 2D
- (geometric shapes and airfoils)
- Method
 - pointcloud encodes the shape geometry
 - residuals of governing PDEs used as
 - a. convergence metric
 - b. loss term





Changing model architecture to satisfy function symmetry

• Task

- \circ solve noisy regression for
 - even/odd functions
 - equations of motion (Hamiltonian mechanics)
- satisfy symmetries exactly
- \circ (conservation laws \leftrightarrow symmetry)
- Method
 - Introduce hub neurons to satisfy constraints exactly

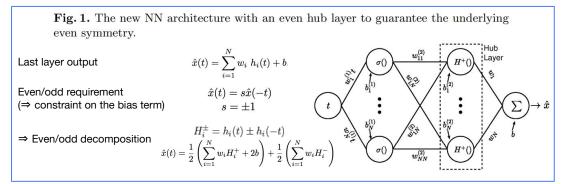
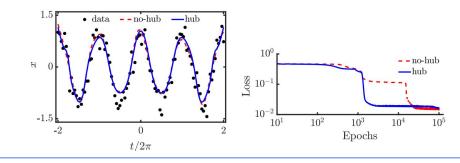


Fig. 2. Left: Regression on noisy data from an even function. Right: MSE in training.

$$x(t) = \cos(t) + \epsilon, \quad t \in [-2\pi, 2\pi]. \quad \epsilon \sim \mathcal{N}(0, \sigma)$$



Changing model architecture to satisfy energy conservation

- Task
 - \circ solve noisy regression for
 - even/odd functions
 - equations of motion (Hamiltonian mechanics)
 - satisfy symmetries exactly
 - (conservation laws \leftrightarrow symmetry)
- Method
 - Introduce hub neurons to satisfy constraints exactly

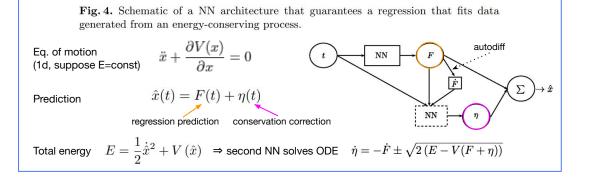
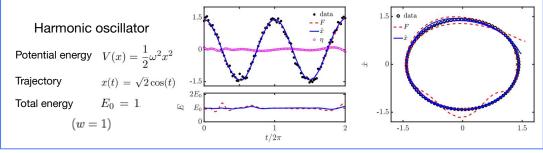


Fig. 5. Left: Regression lines and <u>noisy data</u>. Lower: Total energy in time. Right: Phase-space trajectories. The hub network is able to correct the regression to conserve the total energy and to predict closed trajectories in phase-space.



Potential flow with PINNs

Results: cylinder

- Solved pot. flow
 - Cylinder: soft and hard
 - Airfoil: hard constraints
- Convergence and training speed heavily depends on the number of sampled points
- Overfitting may result in non-physical predictions

