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3. Solving potential flow with PINNs
Fully-connected NN is trained in an unsupervised manner to minimize residuals 
of the PDE and Neumann BC. Dirichlet BC is imposed with hard constraints. 
Velocity is computed from potential with autodifferentiation. Note that it is im-
portant to sample enough points in the domain to avoid overfitting, as it leads 
to non-physical predictions.)

1. Introduction
Modern engineering needs methods for quick design evaluation:

While numerical methods are accurate and reliable, they can be prohibitively 
expensive to use for rapid design iterations (e.g., require hours per simulation). 
Deep neural networks (DNNs) trained on simulation data are much quicker 
(minutes per prediction), but may produce nonphysical results and struggle on 
out-of-distribution samples. Physics-informed Neural Networks (PINNs) poten-
tially combine the advantages of both approaches but are often difficult to tune.

We propose using a hybrid model that combines an unsupervised PINN, trained 
on a simplified physics system, with a surrogate geometric DNN. This method 
can potentially be more accurate than a DNN, while being easier to train than a 
PINN.

Computer Vision 
Lab (CVLab)

Informing neural networks with
simplified physics for better flow prediction

Fedor Sergeev
Supervisors: Prof. Pascal Fua, Dr. Jonathan Donier

Create designs Simulate

Choose best and iterate

Design 
cycle

4. Solving viscous flow with PINNs+DNNs

Data
The data set of incompressible fluid 
flows around 2D NACA airfoils con-
sists of 1096 samples (90% train).

Each sample is generated for a se-
lected airfoil shape and freestream 
velocity V [2].

Task: given freestream velocity and airfoil surface mesh, predict velocity, pres-
sure, and turbulent viscosity on a point set.

Model
We use a geometric DNN proposed in [3] as a surrogate model and a similar 
PINN to the one used in the previous section.

Results
Training a PINN on a simplified physics problem requires around 2 minutes per 
sample (30h for the whole dataset). During training. we notice that in some 
cases overfitting and undertraining occur.

The DNN with the addition of the PINN output performs largely the same as the 
original geometric DNN from [2]. However, our models have significantly smaller 
distances between train and test curves. 

Overall, these results are promising, and the approach can be improved by con-
sidering directional potential flow. Future studies can consider the application of 
our approach for 3D problems as well as transfer learning.

2. Simplifying physics
Consider continuous incompressible 1-phase fluid at a constant temperature 
without external forces and heat sources. Its flow is described by the Navier-
Stokes equations. They are challenging to solve using PINNs. Therefore, we 
consider a simplified system (potential flow) by assuming that the fluid motion is 
irrotational.

Here u is the velocity vector, p – pressure, 
𝜈 – viscosity, ρ – density, F – scalar potential.
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Trained for 100000 iterations using 
Adam optimizer with L2 loss and 
exponential learning decay.


