
Page 1 | © 2012, Jasper Design Automation

Leveraging Formal Verification
Throughout the Entire Design Cycle

Verification Futures

Page 2 | © 2012, Jasper Design Automation

Objectives for This Presentation

 Highlight several areas where formal verification has been

successfully used throughout the design cycle

 Provide some insight for identifying good opportunities for

applying formal verification for maximal ROI

 Show some of the innovations in formal verification that

have enabled broader adoption and higher project benefits

Page 3 | © 2012, Jasper Design Automation

About Jasper

 Jasper Design Automation

• Leading provider of SoC design and verification solutions leveraging

advanced formal technologies

 Jasper Users

• Include system architects, logic designers, verification engineers,

and silicon bring-up teams

 Jasper’s Success

• Our year-to-year growth based on successful, proven technologies;

excellent AE support; and deployment-driven business model

Page 4 | © 2012, Jasper Design Automation

What Is the Perception of Formal Verification?

 It is a point tool

 One needs to have a PhD to use it

 Verifies only module/block-level RTL

• Can verify only small portions of the design (e.g., FIFO overflow)

 Need to write 100s/1000s of properties

• Need to learn a new language to do this

 Involves a deep learning curve on property languages

 Debugging failure traces is difficult and time consuming

This perception is not the reality!

Page 5 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Page 6 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Formal Property Verification

•Traditional application of formal

•More than just block-level checks

Page 7 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

X-Propagation Verification
 Unexpected X Detection

and debugging

Formal handles both x-optimism

and x-pessimism, when

simulation is not helping

Page 8 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

CSR Verification
 Automated register verification

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Formal increases SoC integration

productivity

Page 9 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

Formal provides visibility into a

design, isolating relevant areas

effectively

Page 10 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

… and many more

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Synergy from various sources of

properties at various abstraction

levels

Page 11 | © 2012, Jasper Design Automation

What Is Really Possible with Formal

RTL Development
 Waveform generation from intent
 Designer-based verification w/o

testbench
 Design trade-off analysis

Formal Property Verification
 Protocol certification
 End-to-end packet integrity
 Asynchronous clocking effects
 Assertion-based verification
 Proofs for critical functionalities
 Debug isolation and fix validation

Architectural Modeling
 Executable spec
 Absence of deadlock
 Cache coherency

Property Synthesis (Structural / Behavioral)
 Automated assertion generation
 Functional pre-defined property generation
 Inference & synthesis of properties from RTL & simulation
 Identification of coverage holes

Post-Silicon Debugging
 Failure signature matching
 Root cause isolation
 Candidate cause elimination
 Validation of fixes before re-spin

CSR Verification
 Automated register verification

Intelligent Proof Kits and Verification IPs
 Certification of AMBA 4/ACE checkers
 Popular standard protocols
 Configurable, illustrative, optimized for formal

Other SoC-Related Applications
 Glitch detection
 Multi-cycle path verification
 Low power verification

Connectivity Verification
 Chip-level connectivity
 Conditional connection with latency

Executable Spec
 Design IP documentation
 Cross references among

document, waveform,
and RTL

 Configurable waveforms

X-Propagation Verification
 Unexpected X Detection

and debugging

RTL

Development

Functional

Verification

Formal Verification

throughout the Entire

Design Cycle

Post-Silicon

Debugging

Architecture

Modeling

SoC Integration

Page 12 | © 2012, Jasper Design Automation

X-PROPAGATION VERIFICATION
Formal Verification throughout the Entire Design Cycle

Page 13 | © 2012, Jasper Design Automation

Where Do Xs Come From?

Non-resettable flop

Z

X

Unknown

Values at Input
X

Explicit X-assignments in RTL

X

 Unknown values at design inputs

• Check input values and propagate Xs if needed

 Non-resettable memory elements

• Expensive to make all elements explicitly resettable

• RTL intent is that “write” occurs before any “read”

 Explicit X-assignments in RTL

• For optimization purposes (e.g., some address bits are “don’t care” under some conditions)

• To properly propagate Xs to upstream logic to catch Xs with proper checker in simulation

Outputs

RTL

Page 14 | © 2012, Jasper Design Automation

Detecting Unexpected X-Propagation

Non-resettable Flop

Z

X

Unknown

Values at Input
X

Explicit X-assignments In RTL

X
Outputs should
not be X

Important Data

should not be X

 Cannot rely on simulation to detect unexpected X propagation

• Simulation behavior of X does not accurately portray the behavior of the circuit

• Simulation is not exhaustive

 Formal can be used, if configured properly

• $isunknown construct in SystemVerilog Assertion language (SVA)

• Special formal engines with correct X semantics, not just Boolean formal engines

Page 15 | © 2012, Jasper Design Automation

X-Propagation Validation with Formal

 Exhaustively checks whether Xs can propagate to some target signals

• Formally optimized treatment of “X” with “smart-x-modeling”

– Avoids performance overhead of brute-force, 3-valued analysis

• Xs are treated as either 0 or 1, reflecting actual silicon behavior

– No missed bugs due to either X-optimism or X-pessimism

 Functional errors detected include:

• Unknown values propagating to output data buses for “valid” data

as indicated by the data enable signals

• Incorrect clock-gating not easily found in simulation

• Uninitialized registers affecting control logic

Page 16 | © 2012, Jasper Design Automation

SOC INTEGRATION
Formal Verification throughout the Entire Design Cycle

Page 17 | © 2012, Jasper Design Automation

SoC Integration Verification with Formal

 Automated register verification

• Prove data integrity of register fields and reset values

 Glitch verification

• Identify and verify possible clock glitches in the design

 Multi-cycle path verification

• Accurately verify multi-cycle path waivers

 Chip-level connectivity

• Exhaustively verify that RTL matches connectivity definition

 Other applications

Page 18 | © 2012, Jasper Design Automation

Register Verification with End-to-End Properties

RTL
InterfaceChecks/assertions on

programming

sequence behaviors
Registers

 Given a DUV with register space accessible by:

• Standard interface (AHB, OCP, etc.) or proprietary interface (parallel, serial)

 Automated flow provides better verification

• Saves project time and human time

 To prove end-to-end properties such as:

• Data integrity of register fields (exhaustive)

– I.e., data read from a register equals previously updated data (write, reset, etc.)

Page 19 | © 2012, Jasper Design Automation

Register Definition

May be captured in different formats:

• Spreadsheet/CSV

• IP-XACT

• Custom text format

• Etc.EGISTER “IDT_AD”

ADDRESS 0x0001C

ACCESS_TYPE RW

RESET_VALUE 0x00000000

--field

RESERVED31 BIT[31:21]

CONS_ID BIT[20:16]

RESERVED15 BIT[15:5]

PROD_ID BIT[4:0]

...

Let a tool or a script

translate this into formal-

friendly properties

Page 20 | © 2012, Jasper Design Automation

Comprehensive Ranges of Register Behaviors

 Access Types

• R: readonly

• RW: read write

• RS: read and set to 1

• RC: read and clear to 0

• RR: read and reset to reset value

• RO: read always see value ones

• RZ: read always see value zeros

• Etc.

 A single register (a single address) might

have numerous fields, and they can have

different attributes:

• Access types

• Widths

• Reset values

Properties
Interface

model

RTL

Registers

Page 21 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Solution

 Exhaustively verifies that the RTL matches the connectivity definition

• Verify that point A is equivalent to point B (block or chip level)

as certain signals/modes can impact connections

• No other signals/modes/settings can impact connections

• Important aspect of system integration of many IP’s

 Types of connection

 Structural, Boolean condition, temporal condition, and temporal

connection with latency and delay

 Allow fast and exhaustive verification

 Quickly reconfirm results (regressions) as RTL is being modified

 Automated flow allows early and frequent verification

Page 22 | © 2012, Jasper Design Automation

Chip-Level Connectivity Verification Flow

Waveforms

with connectivity

conditions

Connectivity proofs
(assertions and covers)

Connectivity map

cond
A

RTL

Top-level of SoC

B

Page 23 | © 2012, Jasper Design Automation

SoC Integration Summary

 Identify areas where automation is desired

 Both verification time and verification resource savings

 Exhaustive

 Areas that have been automated

• CSR verification

 Accurately verify multi-cycle path waivers

 Detect glitches in the design and generate optimal set of assertions

that can be used in simulation

 Exhaustively prove that RTL matches with connectivity definition

Page 24 | © 2012, Jasper Design Automation

RTL DEVELOPMENT AND
EXECUTABLE SPECIFICATION

Formal Verification throughout the Entire Design Cycle

Page 25 | © 2012, Jasper Design Automation

Typical Designer-Based Verification

 Testbench and input stimulus are required to explore and verify design

behavior

• Usually unavailable at early design stage or smaller block levels

• Designer does not have time to create extensive tests

 No systematic method for confirming RTL functional scenarios as each

feature is added to the RTL code

• Usually done by eye-balling the RTL

 Inability to confidently customize an existing RTL block for multiple projects

This usually means designer-based

verification is not done

Page 26 | © 2012, Jasper Design Automation

Rethinking Designer Verification

 Simulation

• More of an “input driven” method, may not exercise desired behavior

• Wiggle the inputs to produce a desired behavior (trial and error)

 Visualize

• Specify the target and let the formal engines generate the stimulus (“output

driven” method)

• Interactively add constraints to construct desired waveform

Simulator

RTL

Testbench

Simulation

waveform

VisualizeTM

RTL

state == READ

ack = 1

Visualize

waveform

Target

state == READ

ack = 1

Page 27 | © 2012, Jasper Design Automation

Formal for RTL Development

 Designer-based verification w/o testbench

• Allows early RTL exploration without the need to generate input

stimulus

• Start with simple behaviors about the design

– cover line_eop

• Group simple behaviors together to build complex scenarios

• Write assertions about events that are always/never true

 Design trade-off analysis

• Behaviors and scenarios allow for easy incremental analysis and RTL

comparison tasks

 Higher quality RTL passed to other teams in the design/verification flow

Page 28 | © 2012, Jasper Design Automation

Complete Flow for RTL Designers

RTL

Database

Scenario A

Scenario B

Scenario C

Scenario D

Functional scenario A :

assertion 5 violation

Functional scenario B :

assertion 7 violation

Functional scenario C……

Functional scenario D…..

RTL’

What-if analysis

Debug failing

scenarios

Combine and save

multiple functional

scenarios

Modified RTL

Visualize design

behavior w/o testbench

Compare saved

scenarios

against modified

RTL

Page 29 | © 2012, Jasper Design Automation

RTL Development Summary

 Conduct early RTL exploration w/o a testbench

 Store expected functional scenarios and validate against

modified RTL

 Perform design trade-off analysis while RTL is being

developed

 Properties developed at this stage live with the RTL and

are leveraged throughout the verification flow

Page 30 | © 2012, Jasper Design Automation

PROPERTY SYNTHESIS
Formal Verification throughout the Entire Design Cycle

Page 31 | © 2012, Jasper Design Automation

Properties for Design and Verification

 Critical to improve verification coverage, expose functional coverage holes

 Assertions “firing” point to bugs, reduce debugging time

– Traditional checkers can miss bugs

– Saves 50% debugging time, closer to RTL than checkers

 Writing properties can be difficult: it’s an “art”

– White box: RTL designer writes

 RTL implementation specific

 Can overlap black box

– Black box: Verification engineer writes

 Integration issues for modules. Closer to Spec

 Engineer can typically only write 5-10 properties a day

– Written correctly? – only know if used in simulation/formal

Page 32 | © 2012, Jasper Design Automation

Property Synthesis

 Sources of properties

• Structural

– Extracted from RTL

– No testbench required

– Valuable during RTL development

• Behavioral

– Extracted from simulation (with/without knowledge of RTL)

– Quality of properties directly tied to maturity and quality of the simulation

results

– Usually used in later stages of verification

Page 33 | © 2012, Jasper Design Automation

Structural Property Synthesis

 Properties can be automatically extracted from the RTL for

common structures without simulation results:

• Non-synthesizable constructs

• Unintentional latches

• Out-of-range indexing

• Arithmetic overflow

• Full and parallel case issues (for SystemVerilog and Verilog)

• Dead code or unreachable blocks; Stuck at signals

• Finite state machines (FSM)

– Livelock/deadlock states

– Reachable FSM states/transitions

• …

Page 34 | © 2012, Jasper Design Automation

Behavioral Property Synthesis Flow

RTL • Intelligent

heuristics

• Advanced formal

analysis

• Data mining

engines

Obtain simulation results with:

• VCD/FSDB files

• Link PLI with simulator

SVA Properties

Asserts

Constraints

Reports

CoversSimulation

Output SVA properties for:

• Simulation / emulation

• Formal

Page 35 | © 2012, Jasper Design Automation

Behavioral Property Synthesis for Formal

 Module-interface properties:

• Extract assumptions about the interface

• Faster ramp-up time for the formal environment

 Multi-cycle properties (not limited to 1 or 2 cycles):

• High value assertions that may never fire in simulation

• Failing traces are significantly shorter and easier to debug with

formal

 Cross-hierarchical

• High-value assertions

• Formal can prove or disprove inter-block relationships

Page 36 | © 2012, Jasper Design Automation

Property Synthesis Summary

 Properties can be used as assumptions to quickly ramp up the

formal environment

 Covers provide confidence in design operation and can detect

overconstraints

 Formal can be leveraged during RTL design

• Prove properties before code check-in

• Remove common design errors before the start of validation cycle

 Should formally verify properties before including them in

simulation

• If a cover cannot be exercised with formal, then it will never be hit in simulation

• Failure traces for assertions are much shorter and easier to debug compared to

simulation

Page 37 | © 2012, Jasper Design Automation

Conclusion

 Formal has been expanded tremendously over the years

 Understanding the challenges in verification leads to great methodology

innovation in formal applications

 Integration of formal into mainstream verification flow causes many

innovations in the technology to enable wide use

 By focusing on the problems and challenges, formal can be applied

as part of the overall verification strategy

 Identify areas where stimulus and coverage is the main bottleneck

 Identify opportunity for automation to reduce project time and effort

 Focus on high-risk areas (critical and/or new functionalities) to maximize ROI

(return on investment)

 Working closely with formal vendors to solve new problems

Page 38 | © 2012, Jasper Design Automation

www.jasper-da.com

http://www.jasper-da.com
http://www.jasper-da.com
http://www.jasper-da.com

