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Abstract: The mechanical behavior of flexible adhesives used in fiber-polymer composite joints 

under monotonic and cyclic loading is highly nonlinear and sensitive to displacement rate in 

particular. To simulate their rate-dependent mechanical behavior, a phenomenological model 

was developed consisting of a linear and a nonlinear Maxwell unit acting in parallel. The 

viscoelastic parameters were calibrated by the results obtained from experiments under tension 

monotonic and reversed cyclic loadings. The applicability of the derived model is presented by 

power-law relationships between 1) the monotonic viscoelastic parameters and the applied 

displacement rates, and 2) the cyclic viscoelastic parameters and the maximum cycle 

displacements. The relationships enabled the simulation of both the pre- and post-yield 

monotonic and cyclic response characteristics, such as stretching of molecular chains (strain 

hardening), and formation and accumulation of damage (softening).  

Keywords: Adhesive-composite joint; ductile adhesive; rate-dependent behavior; constitutive 
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1. Introduction 

In a load-bearing structure composed of brittle members, such as composite laminates, pseudo-

ductility can be obtained by using a pseudo-ductile adhesive in the joints [1]. Due to the 

relatively high stiffness of the laminates compared to the adhesive in pseudo-ductile joints, the 

joints’ response to the applied displacement mainly depends on the behavior of the adhesive. 

The adhesives used for structural purposes are mostly thermoset polymers and exhibit 

viscoelastic behavior [2].  

In thermoset polymers, viscoelastic behavior is a result of molecular chain movements, which 

are both strain rate- and temperature-dependent [3]. Different applied strain rates can result in 

different mechanical responses in the polymer, varying from brittle to pseudo-ductile, with 

different yield load and post-yield behavior [4]. The thermoset molecular chain structure 

consists of both primary bonds (in the chains and cross-links between the chains, mainly 

covalent bonds) and secondary bonds (van der Waals and hydrogen bonds), whose strength 

decreases as the distance between the chains increases. Under applied low strain rates, the 

coiled chains have sufficient time to uncoil. After the yield point, chains start to lose secondary 

bonds and subsequently become aligned or stretched [5]. The stiffness thus significantly 

decreases and the deformability significantly increases; stretching may result in a hardening 

behavior. On the other hand, under high strain rates, the chains do not have sufficient time to 
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rearrange and respond to the imposed displacement, and the molecular mobility of the chains 

is reduced. Consequently, the stiffness remains high and deformability low [6]. Broken primary 

and lost secondary bonds contribute to the initiation and propagation of damage and energy 

dissipation in viscoelastic polymers [7].  

Comprehensive constitutive models are valuable assets for analysis and design purposes and a 

wide range of constitutive models has therefore been developed for viscoelastic materials. The 

simplest mechanical model for viscoelastic behavior consists of two elements, each representing 

a mechanical characteristic of the behavior: a spring and a dashpot (or damper). A linear spring 

is used for modeling the elastic behavior where the spring constant, S, is the modulus of 

elasticity. A linear viscous dashpot contains a fluid with a viscosity η is used to model the viscous 

behavior [8]. Spring and dashpot elements can be combined in a variety of configurations to 

produce a desired viscoelastic response. Maxwell and Kelvin are the most basic models that 

combine a Hookean spring with a Newtonian dashpot, in series and parallel, respectively [9]. 

The combination of a simple spring and a dashpot element has been long used for simulating 

the rate-dependent behavior of viscoelastic materials [10].  

Bergström and Boyce performed a study on the large-strain time-dependent behavior of 

elastomeric materials [11]. They proposed that the mechanical behavior of elastomeric 

materials can be decomposed into an elastic and a time-dependent segment (viscous segment) 

and modeled with nonlinear springs and a dashpot. Liu et al. [12] found that the Bergström and 

Boyce model was unable to identify the damage accumulation in filled rubbers to capture their 

rupture under cyclic loading. To capture stress-softening, i.e. damage accumulation, Ayoub et 

al. [13] proposed a phenomenological model which comprised a nonlinear spring in parallel with 

a nonlinear Maxwell element. In their model, they identified the average length of the chains 

and the average number of chains per unit volume as the physical parameters and modified 

both by a variable damage parameter. 

In this study, to allow for a representative simulation of the pseudo-ductile behavior of 

adhesively-bonded fiber-polymer composite joints under various applied displacement rates, a 

novel phenomenological model is developed for the viscoelastic behavior of pseudo-ductile 

adhesives. The phenomenological model consists of two parallel units: a Maxwell unit 

characterizing the linear viscoelastic behavior before the onset of adhesive chain stretching, and 

a modified Maxwell unit with a variable stiffness spring that characterizes the nonlinear 

viscoelastic behavior during the molecular chain stretching. Unlike in literature, a unique 

constitutive equation is proposed for modeling both the monotonic and reversed cyclic behavior 

of the pseudo-ductile adhesive. The model parameters were calibrated with the results of 

monotonic and reversed cyclic experiments, previously performed in [14]. 

2. General phenomenological model 

Double-lap joint specimens consisting of fiber-polymer composite adherends and a ductile 

adhesive were subjected to a series of monotonic tension and reversed cyclic tension-

compression experiments; details of the experimental work and its motivation can be found in 

[14]. The load-joint displacement responses of the adhesive joints under monotonic and 

reversed cyclic loading are summarized in Fig. 1. Since the laminate stiffness was significantly 

greater than the adhesive stiffness and the contribution of the laminates to the joint 

displacements was thus negligible [14], the measured joint displacements, shown in Figs. 1 were 
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directly used for modeling the viscoelastic behavior of the adhesive. Furthermore, the cyclic 

responses (Fig. 1 (b), (c), and (d)) between the two reversal points of each cycle [14], followed 

the same pattern as the monotonic responses (Fig. 1 (a)). Therefore, the derived 

phenomenological model for the monotonic responses was applicable to the cyclic responses.  

 

Figure 1. Load-joint displacement responses under a) monotonic loading under three 

displacement rates, and cyclic loading, primary cycles of b) A-C0.1a, c) A-C0.5b, d) A-C1.0a [14] 

The investigated monotonic load-displacement curves were almost bilinear and thus consisted 

of two main branches, i.e., a pre-yield linear viscoelastic and a post-yield nonlinear viscoelastic 

branch, see Fig. 1 (a). Consequently, a phenomenological model composed of two dissimilar 

parallel Maxwell units was introduced, as shown in Fig. 2 (a). The first Maxwell unit includes a 

spring of constant stiffness and a dashpot in series, while the second unit consists of a spring 

with variable stiffness and a dashpot in series. The first Maxwell unit simulates the rate-

dependent initial branch up to the yield point level as shown in Fig. 2 (b) (red line). The second 

Maxwell unit simulates the nonlinear stiffening due to the molecular chains’ rate-dependent 

stretching up to the failure level, see blue line in Fig. 2 (b).  

 

Figure 2. Rheological structure of phenomenological model 

A mathematical model can be derived by combining the constitutive relationships of each 

Maxwell unit, considering force-displacement equilibrium and boundary conditions as follows: 
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𝑋 = 𝑋1 = 𝑋2 = 𝑋�̇�         (1) 

𝐹 = 𝐹1 + 𝐹2          (2) 

where X is the total applied displacement, equal to the displacements of the first and second 

Maxwell units (X1, X2) in [mm], Ẋ is the applied displacement rate in [mm/s], and t is the time in 

[s]. Similarly, F is the total force, which is equal to the sum of the first and second Maxwell unit 

forces, F1 and F2, respectively, in [kN]. 

The force-displacement relationships in the Maxwell units can be expressed as follows [15]: 

𝑋𝑛 = (
1

𝑆𝑛
+

1

𝜂𝑛
𝜕

𝜕𝑡

) . 𝐹𝑛  , 𝑛 = 1,2       (3) 

where n is the number representing each of the Maxwell units. For the first Maxwell unit (n = 

1), S1 is the constant stiffness of the spring in [kN/mm], and η1 is the viscosity coefficient of the 

dashpot in [kNs/mm]. For the second Maxwell unit (n = 2), S2 is the variable stiffness of the spring 

to simulate the chain stretching effect on the load-displacement response, and η2 is the viscosity 

coefficient of the second dashpot. Since the chain stretching causes a nonlinear increase in the 

adhesive stiffness, S2 can be defined by a power-law relationship as follows [15]:  

𝑆2 = 𝛼 (
𝑋

�̇�
)

𝛽
          (4) 

where α and β are fitting parameters defined for each cycle and displacement rate. By 

substituting the displacement equation (Eq. (1)) into the Maxwell unit relationships (Eq. (3) 

and (4)), the total load (Eq. (2)) can be calculated as follows: 

𝐹 = �̇�𝜂1(1 − 𝑒−𝜆1𝑡) + �̇�𝜂2 (1 − 𝑒
−

𝜆2𝑡

(𝛽+1))      (5) 

where λ1 and λ2 are equal to S1/η1 and S2/η2, respectively. Parameters S1, η1, α, β, and η2 are the 

considered viscoelastic parameters, to be determined for the development of the 

phenomenological model. 

The optimization method used to estimate the viscoelastic parameters solved a nonlinear 

least-squares problem using the Trust Region Reflective (TRF) algorithm to apply error 

minimizing. The optimization task was performed using the Scipy.optimize library [16] in 

Python. 

3. Monotonic and cyclic viscoelastic parameter results 

3.1 Rate-dependent monotonic viscoelastic parameters 

The load-displacement responses, obtained from the derived constitutive equation Eq. (5), are 

shown in Fig. 3 for the applied displacement rates of 0.1, 0.5, and 1.0 mm/s. The models agree 

well with the experimental results. The slight differences in the pre-yield linear segments of the 

phenomenological model and experimental curves were mainly due to the contribution of the 

laminate deformations, which became negligible after the yield points since the deformations 

in the adhesive increased significantly. 
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Figure 3. Phenomenological model and experimental load-displacement curves for 

displacement rates of: (a) 0.1 mm/s, (b) 0.5 mm/s, and (c) 1.0 mm/s. 

The variations of the estimated viscoelastic parameters of the phenomenological model versus 

the applied displacement rates or joint displacement are shown in Fig. 4. The estimated values 

of S1, η1, and η2, for the applied displacement rates of 0.1, 0.5, and 1.0 mm/s are shown with 

solid circles in Fig. 4 (a), (b), and (d) respectively, with added power-law fitted curves 

represented by dashed lines; the variable S2 parameter is shown in Fig. 4 (c). By increasing the 

applied displacement rate, the S1 parameter increased, while η1, S2, and η2 decreased.  

 

Figure 4. variation of monotonic viscoelastic parameters a) S1, b) η1, c) S2, d) η2. 

3.2 Rate-dependent cyclic viscoelastic parameters 

The cyclic responses of the specimens comprised primary and trailing cycles of which only the 

primary cycles are presented. Furthermore, by taking into account the different states of chains 

at the reversal points, each primary cycle response (Fig. 1 (b), (c), and (d)) was decomposed into 

T-P and P-P segments as 1) starting from the partially stretched state of the adhesive at the 

reversal point of the trailing cycle (T2) up to an almost fully stretched state at the first reversal 

point of the primary cycle (P1), and 2) starting from the latter (P1) to the also almost fully 

stretched state at the second reversal point of the primary cycle (P2) in the opposite direction. 

The estimated viscoelastic parameters versus maximum cycle displacement (for S1, η1, and η2) 

and cyclic displacement (for S2), at each primary cycle, are shown in Fig. 5 for the applied 
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displacement rates, for partially and fully stretched states. The S2 and η2, parameters are not 

shown for the highest applied displacement rate of 1.0 mm/s due to the negligible amount of 

stretching. 

 

Figure 5. Variation of cyclic viscoelastic parameters, a) S1, b) η1, d) η2, versus maximum cycle 

displacement, and c) S2, versus cyclic displacement, under the applied displacement rates 

The S1 parameter values were initially higher at higher rates, see Fig. 5(a), but then decreased 

much faster than at the lower rate due to the higher loads (see Fig. 1), which increased damage 

formation and the associated softening. No significant differences could be observed for either 

of the states starting from partially or fully stretched materials. 

The η1 parameter values were higher at the lower rate and followed a decreasing trend with 

increasing applied maximum cycle displacements for all cases, except for the initially fully 

stretched material under the lowest 0.1 mm/s displacement rate, see Fig. 5(b). The accumulated 

damage generally decreased the viscosity parameters of the linear segment. In 0.1_P-P, 

however, the decreasing trend was reversed since the highly stretched chains at the reversal 

point first had to resist the reversed load until they ‘’buckled’’, so to be realigned in the opposite 

direction.  

The development of the S2 parameter during each segment of the primary cycles is shown in Fig. 

5(c). In all cases, the S2 parameter exhibited an increasing trend due to an increasing number of 

aligned molecular chains with an increasing cyclic displacement. Under the lower applied 

displacement rate, due to the higher stretching in cycles with higher displacement, the 

maximum S2 values increased in the T-P segments from each primary cycle to the next, while the 

slope of the curves decreased due to damage formation. In the P-P segments, the maximum S2 

values and slope of the curves (grey lines) were lower than in the T-P segments due to a delay 

in stretching. By increasing the cycle displacement, the delay in stretching in the opposite 

direction became more dominant and thus the S2 maximum values decreased from each primary 

cycle to the next. At the higher applied displacement rate, much more damage was 

accumulated, which decreased both the S2 maximum values and the slopes of the curves.  
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The η2 parameter values were higher and increased for the lower 0.1 mm/s rate, and lower and 

decreased for the higher 0.5 mm/s rate (Fig. 5 (d)). The increasing-decreasing trends of the η2 

values were in line with the trends of the peak loads of each primary cycle (Fig. 1) since the 

former was determined from the latter (Fig. 2). The dominating hardening behavior at the lower 

rate increased the peak loads and thus η2, while the dominating softening at the higher rate 

decreased the peak loads and η2.  

4. Model validation 

The full cyclic responses of the experimental and phenomenological model under the 

displacement rate of 0.1 mm/s are compared in Fig. 6(a). The envelope curves of the 

experimental cyclic responses, shown in Fig. 1, and of the modeled cyclic responses, are further 

compared in Fig. 6(b). They were constructed by connecting the P1 peak loads. The comparison 

reveals that the hardening behavior under 0.1 mm/s and the softening behavior under 0.5 mm/s 

displacement rate were well represented in the model.  

 

Figure 6. Experimental and modeled (a) load-displacement responses of full cycles for specimen 

A-C0.1a, and (b) envelope curves for specimen A-C0.1a and A-C0.5b at P1 reversal points  

The comparison between the curves in Fig 6 validates the capacity of the phenomenological 

model to simulate the entire cyclic load-displacement behavior of the specimens. 

5. Conclusions 

A new phenomenological model was presented, allowing the simulation of the rate-dependent 

load-displacement responses of a pseudo-ductile adhesive joint under axial monotonic and 

cyclic loadings. By calibrating the viscoelastic parameters of the phenomenological model with 

the results from experimental monotonic and cyclic investigations, it could be concluded that: 

1- The two Maxwell units of the phenomenological model were able to well simulate the 

rate-dependent pre- and post-yield branches of both monotonic and cyclic responses. 

2- The viscoelastic parameters of the Maxwell units did capture well the physical 

characteristics of the adhesive in both monotonic and cyclic responses, such as 

stretching of molecular chains, and formation and accumulation of damage. 

3- The effects of the applied displacement rate on the monotonic loading behavior were 

well represented by power-law relationships between the monotonic viscoelastic 

parameters and the applied displacement rates. 
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4- The proposed model could well predict the cyclic envelope curves, except for the final 

failure values of the last cycles. To also model the final chain scission, a third parallel 

unit could be added to the model, consisting of a dashpot element. 
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