
Unsupervised Term Extraction for Highly Technical Domains

Francesco Fusco
IBM Research

ffu@zurich.ibm.com

Peter Staar
IBM Research

taa@zurich.ibm.com

Diego Antognini
IBM Research

Diego.Antognini@ibm.com

Abstract

Term extraction is an information extraction
task at the root of knowledge discovery plat-
forms. Developing term extractors that are
able to generalize across very diverse and po-
tentially highly technical domains is challeng-
ing, as annotations for domains requiring in-
depth expertise are scarce and expensive to
obtain. In this paper, we describe the term
extraction subsystem of a commercial knowl-
edge discovery platform that targets highly
technical fields such as pharma, medical, and
material science. To be able to generalize
across domains, we introduce a fully unsu-
pervised annotator (UA). It extracts terms by
combining novel morphological signals from
sub-word tokenization with term-to-topic and
intra-term similarity metrics, computed using
general-domain pre-trained sentence-encoders.
The annotator is used to implement a weakly-
supervised setup, where transformer-models
are fine-tuned (or pre-trained) over the training
data generated by running the UA over large
unlabeled corpora. Our experiments demon-
strate that our setup can improve the predictive
performance while decreasing the inference la-
tency on both CPUs and GPUs. Our annota-
tors provide a very competitive baseline for all
the cases where annotations are not available.

1 Introduction

Automated Term Extraction (ATE) is the task of
extracting terminology from domain-specific cor-
pora. Term extraction is the most important infor-
mation extraction task for knowledge discovery sys-
tems – whose aim is to create structured knowledge
from unstructured text – because domain specific
terms are the linguistic representation of domain-
specific concepts. To be of use in knowledge dis-
covery systems (e.g., SAGA (Ilyas et al., 2022),
DeepSearch (Dognin et al., 2020)) the term extrac-
tion has to identify individual mentions of terms
to enable downstream components (i.e., the entity

JPEG (/ˈdʒeɪpɛɡ/ JAY-peg)[2] is a commonly used method of 
lossy compression for digital images, particularly for those 
images produced by digital photography.

Wikipedia Text from https://en.wikipedia.org/wiki/JPEG.

Our unsupervised term-extractor annotator
TEXT = JPEG (/ˈdʒeɪpɛɡ/ JAY-peg)[2] is a commonly used 
Method of lossy compression for digital images, particularly
for those images produced by digital photography. 

[JPEG] START=0 END=4 Confidence=0.60 
[JAY-peg] START=17 END=24 Confidence=0.90
[lossy compression] START=58 END=75 Confidence=0.73
[digital images] START=80 END=94 Confidence=0.93
[digital photography] START=138 END=157 Confidence=0.92

Figure 1: Our term extractor identifies the same men-
tions as Wikipedia without relying on annotated data.

linker) to use not only the terms, but also their sur-
rounding context. Unlike other applications of term
extraction, such as text classification, where it is
sufficient to extract representative terms for entire
documents or even use generative approaches, term
extraction in knowledge discovery systems has to
be approached as a sequence tagging task.

The largest challenges for term extraction sys-
tems, when used for knowledge discovery, are gen-
eralization across domains and lack of annotated
data. In fact, commercial knowledge discovery plat-
forms are typically required to process large cor-
pora targeting very diverse and often highly tech-
nical domains. Organizing annotation campaigns
for such vertical domains is a costly process as
it requires highly specialized domain experts. An
additional challenge for such platforms are the com-
putational requirements, which must be accounted
for when developing technologies required to sift
through very large and often proprietary corpora.

In this work, we describe an effective term ex-
traction approach used in a commercial knowledge
discovery platform1 to extract Wikipedia-like con-
cepts2 from text (see Figure 1). Our approach does

1https://ds4sd.github.io.
2The linking from words to Wikilinks is done manu-

ally on Wikipedia, see https://en.wikipedia.org/wiki/
Wikipedia:Manual_of_Style/Linking for more details.

ar
X

iv
:2

21
0.

13
11

8v
1 

 [
cs

.C
L

] 
 2

4 
O

ct
 2

02
2

https://ds4sd.github.io
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking
https://en.wikipedia.org/wiki/Wikipedia:Manual_of_Style/Linking


not require any human annotation, offers the flexi-
bility to select the right trade-off between accuracy
and inference latency, and enables the deployment
of lightweight models running entirely on CPUs.

At its core, our approach is a weakly supervised
setup (see Figure 2), where transformer models are
fine-tuned (or even entirely pre-trained) using the
weak labels generated by a fully unsupervised term
annotator. The unsupervised annotator (UA) com-
bines novel morphological and semantic signals
to tag sequences of text corresponding to domain-
specific terminology. In fact, in addition to part-of-
speech tagging to identify candidate terms, the UA
exploits sub-word tokenization techniques – com-
monly used in language models to highlight words
that are outside of the common vocabulary – to
indirectly measure the morphological complexity
of a word based on its sub-tokens. To the best of
our knowledge, this is the first work relying on
sub-word tokenization units in the context of term
extraction. To prune the candidate set of terms
the annotator uses two semantic metrics as thresh-
olds: the topic-score and a novel specificity score
that are both computed using representations from
sentence encoders. The unsupervised annotator,
combined with the two-stage weakly supervised
setup, makes our approach particularly attractive
for practical industrial setups because computation-
ally intensive techniques used by the unsupervised
annotator are not paid at inference time. Therefore,
one can improve the annotation quality by using
more expensive techniques (e.g., entity linking to
external knowledge bases), without adding costs at
inference time. The two main contributions of this
paper are summarized as follows:

1. We extract a novel morphology signal from
subword-unit tokenization and we introduce a
new metric called the specificity score. Upon
those signals, we build an unsupervised term-
extractor that offers competitive results when
no annotation is available.

2. We show that by fine-tuning transformer mod-
els over the weak labels produced by the un-
supervised term extractor we decrease the la-
tency and improve the prediction quality.

2 Related work

Automated Term Extraction (ATE) is a natural lan-
guage processing task that has been the subject
of many research studies (Buitelaar et al., 2005;

Lossio-Ventura et al., 2016; Zhang et al., 2018; Ma
et al., 2019; Šajatović et al., 2019). What we de-
scribe in this work is an effective term extraction
approach that is fully unsupervised and also offers
the flexibility and modularity to deploy and easily
maintain systems in production.

ATE should not be confused with keyphrase ex-
traction (Firoozeh et al., 2020; Mahata et al., 2018;
Bennani-Smires et al., 2018) and keyphrase genera-
tion (Wu et al., 2022; Chen et al., 2020), which
have the goal of extracting, or generating, key
phrases that best describe a given free text doc-
ument. Keyphrases can be seen as a set of tags as-
sociated to a document. In the context of keyphrase
extraction, sentence embedders have been used in
the literature, such as in EmbedRank (Bennani-
Smires et al., 2018) and Key2Vec (Mahata et al.,
2018). In our work, we also rely on sentence
encoders, but we use them to generate training
data for sequence tagging. Therefore, we do not
rely on sentence encoders at runtime to extract ter-
minology from text, enabling the creation of lower
latency systems.

To capture complex morphological structures we
use word segmentation techniques. Word seg-
mentation algorithms such as Byte-Pair Encoding
(Sennrich et al., 2016), word-piece (Schuster and
Nakajima, 2012), and unigram language modeling
(Kudo, 2018) have been introduced to avoid the
problem of out-of-vocabulary words and, more in
general, to reduce the number of distinct symbols
that sequence models for natural language process-
ing have to process. To the best of our knowledge,
we are the first to use the subword-unit tokenization
as a signal to extract technical terms from text.

Our approach builds on the notion of specificity
to find terminology. While there are multiple re-
search works (Caraballo and Charniak, 1999; Ryu
and Choi, 2006) highlighting the importance of
specificity, to the best of our knowledge, this is the
first work using the notion of specificity to extract
terminology from text.

3 The approach

Figure 2 depicts our weakly supervised setup. Start-
ing from a raw text corpus and no labels, our train-
ing workflow produces an efficient sequence tag-
ging model, based on the transformer architecture,
which effectively implements the term extraction.
At the core of the weak labels there is a fully un-
supervised component, called the Unsupervised



Raw Corpus (no labels)

Unsupervised Annotator (UA)

Generated Annotated Data

Transformer Fine-tuning

Final Model for Inference

Weak SupervisionUnsupervised

Figure 2: Our training workflow consists of 1) generat-
ing training data from raw unlabeled text using our Un-
supervised Annotator, and 2) fine-tuning a transformer-
based model or any sequence tagging model.

Annotator (UA), which, given the raw corpus, pro-
duces a training dataset for sequence labeling. The
resulting dataset is used to train (or fine-tune) a
sequence model that represents the final model for
term annotation used at inference time. Pre-trained
transformer-based models clearly represent a valid
alternative to implement such sequence models.
Moreover, we can avoid pre-training since the UA
potentially generates a large amount of training
data.

From the software engineering standpoint, this
setup is extremely attractive as it makes the archi-
tecture of the term extraction subsystem modular
and very flexible. The modularity comes from de-
coupling the inference component and the unsu-
pervised annotator (UA). The unsupervised anno-
tator can be enhanced with additional and more
computationally demanding subcomponents (e.g.,
an entity linker to an external knowledge base),
without increasing the final inference latency ob-
served by the user. This modularity enables domain
customization with proprietary data (and systems),
which might be available for specific domains or
customers. Since the integration between the Unsu-
pervised Annotator and the inferencing component
is achieved via data (i.e., the training samples for
sequence tagging expressed in IOB format) the ap-
proach enables the smooth transition between a
fully unsupervised setup and a setup where man-
ual annotations augment the ones obtained via the
UA. In practice, in realistic deployments, the un-
supervised annotator is used to boostrap the term
extraction subsystem, while domain specific anno-
tations are added over time by organizing anno-
tation campaigns or by collecting labels through
the interactions of the users with the knowledge
discovery platform.

Having a dedicated component for inferencing,
which is independent from the UA, gives the flex-
ibility to select the right trade-off in terms of ac-
curacy, inference latency, deployment costs, and

inferencing infrastructure. This choice is com-
pletely independent from the Unsupervised Anno-
tator, which can be independently improved with-
out taking care of inference latency. Since the
inference component can be built around off-the-
shelf transformer-based models, one can fully lever-
age the optimizations available in modern com-
mercial offerings for inferencing services (e.g.,
Amazon Sagemaker, HuggingFace Infinity). As
Transformer-based models are frequently used
for multiple tasks (e.g., classification, NER, QA)
within a knowledge discovery platform, this of-
ten corresponds to having a very homogeneous
inferencing infrastructure in production. However,
given that the UA can potentially generate a large
amount of training samples, large pre-trained mod-
els are not a necessity, and even alternative architec-
tures such as pQRNN (Kaliamoorthi et al., 2021)
or pNLP-Mixer (Fusco et al., 2022) can be used.

3.1 Unsupervised annotator

Our unsupervised annotator is responsible for pro-
viding accuracy in potentially unseen domains with-
out any training data, as depicted in Figure 1. It
achieves this goal by using a greedy approach that
processes each sentence of a raw corpus using the
following steps:

1. Extract multiword expression candidates. Us-
ing the part-of-speech tags we extract multiword ex-
pression candidates, consisting of sequences of
zero or more adjectives (ADJ) followed by nouns
(NOUN) or proper nouns (PROPNs) sequences.
This chunking step allows us to identify term can-
didates expressed via multiword expressions.

2. Filter candidates by specificity or topic score.
Once the candidate terms, represented as multi-
word expression, are identified, a pruning step is
responsible for filtering out multiword expressions
using two semantic scores: the topic score and the
specificity score. To compute those scores, we rely
on pre-trained sentence encoders to extract embed-
dings from text.
� Topic score. The topic score captures the sim-
ilarity, topic-wise, between a candidate and the
sentence containing it. It is computed as the cosine
similarity between the embedding vector of the
multiword expression and the embedding vector of
the sentence containing it.
� Specificity score (SP ). This is the mean of the
pairwise distance, in the embedding space, between
the multiword expressions and all the other word or



multiword expression in the context. Specifically,
given a multiword mw, and the word or multiword
expression w1, ..., wk in its context, we define the
specificity score SP as:

SP (mw) =

∑k
i=1 dist(wi,mw)

k
, (1)

where dist(wi, wj) is the cosine-similarity be-
tween the embedding vectors of wi and wj . Mul-
tiword expressions with a higher score correspond
to more specific terms.

Multiword expressions with a specificity or topic
score below a certain threshold can be filtered out.
Both scores rely on high-quality sentence encoders.
In our implementation we use the pretrained sen-
tence encoders described in Reimers and Gurevych
(2019), but other sentence encoders can be used as
a drop-in replacement.

3. Upgrade single nouns according to morpho-
logical features. At this stage, we could have
nouns that are not part of any multiword expres-
sions, but still relevant. We deal with those cases
separately. For each of those nouns, we have to de-
cide whether to extract them as terms or not. To do
so, we use morphological features. First, we check
if the lemma of the noun is the same as any of the
heads of the multiword expressions. If that is the
case, we upgrade the noun to term. Otherwise, we
segment the word using a subword-unit segmenta-
tion algorithm and a vocabulary trained over a large
general purpose corpus. Subword-unit tokenizers
have been introduced to enable the representation
of any text as a combination of subword units, with
the idea that the most frequent words can be repre-
sented by a small number of subword units, eventu-
ally just one for very common words as in case for
stopwords. For example, the word “sun”, will have
its own entry in the dictionary of subword units,
while the word “paracetamol” will be represented
as the sequence of the following subword units:[

“para”, “##ce”, “##tam”, “##ol”]. Not suprisingly,
the number of subword units required to represent
a word in a subword-unit tokenization regime is
a very strong morphological signal, which we use
as an indirect measure of the morphological “com-
plexity”, and is extremely cheap to compute. In our
implementation, we simply promote as terms all
the nouns with a number of sub-tokens higher than
a threshold (4 in our case). We use the vocabulary
of the BERT-base model from HuggingFace (Wolf
et al., 2020) and the corresponding tokenizer.

Sentence Terms

Corpus Train Dev Test Train Dev Test

ACL 828 276 280 2, 574 898 930
GENIA 11, 127 3, 709 3, 710 48, 928 16, 217 16, 404
ScienceIE 2, 516 417 876 6, 067 1, 052 1, 885

Table 1: Number of sentences and terms in the train,
dev, and test set for the datasetst used for evaluation.

4 Experiments

We now assess whether our approach can represent
a valid baseline for term extraction in different tech-
nical domains when annotated data is not available.
We aim to answer the following research questions:

• Does our Unsupervised Annotator generate a
high-quality weakly-annotated dataset from a
unlabeled general-domain corpus?

• Can we train models on the latter to lower the
latency inference and increase the prediction
performance at the same time?

4.1 Datasets

We use three common publicly available term ex-
traction corpora: ACL RD-TEC 2.0 (QasemiZadeh
and Schumann, 2016), GENIA (Kim et al., 2003),
and ScienceIE (Augenstein et al., 2017). Each
contains abstracts from scientific articles in differ-
ent domains: natural language processing (ACL),
medicine (GENIA), and computer science, material
science, as well as physics (ScienceIE). All tokens
are annotated using the IOB format (short for In-
side, Out and Begin) (Ramshaw and Marcus, 1999).
Since we are only interested in general term extrac-
tion, we did not use multiple class labels, even if
provided in the respective dataset. We create ran-
dom splits of train, dev, and test sets (60/20/20)
for the ACL and GENIA datasets, and we use the
pre-existing data splits for ScienceIE corpus.

In terms of preprocessing, we remove nested
terms from the GENIA dataset, since the IOB tag
set does not allow nested term extraction. For the
ACL corpus, some samples have abstracts labeled
by two annotators. In those cases, we selected the
abstract from the first annotator. An overview of
the datasets is given in Table 1.

Since our objective is to study the generalization
of our approach, we need an unlabeled broad cor-
pus from which our Unsupervised Annotator will
annotate the text. Hence, we randomly sampled
500,000 sentences from abstracts from Semantic



ACL

Model (#Params) exact F1 partial F1

BERT B (110M) 78.69 91.06
ELECTRA S (14M) 72.84 88.06
ELECTRA XS (7M) 50.40 71.61

UA (0) 49.95 74.56

GENIA

Model (#Params) exact F1 partial F1

BERT B (110M) 70.13 88.19
ELECTRA S (14M) 67.73 88.04
ELECTRA XS (7M) 59.86 83.16

UA (0) 45.65 77.16

ScienceIE

Model (#Params) exact F1 partial F1

BERT B (110M) 49.62 66.36
ELECTRA S (14M) 46.43 68.45
ELECTRA XS (7M) 27.17 51.10

UA (0) 39.75 64.29

Table 2: Results for the unsupervised annotator (UA) and transformer models fine-tuned on the manually an-
notated ACL, GENIA, and ScienceIE datasets, respectively. Without using any annotation, the UA performs
similarly to ELECTRA XSmall and even better on the ScienceIE.

Scholar (SS). 3 We call our weakly annotated train-
ing set UA-SS. The training sets of the ACL, GE-
NIA, and ScienceIE datasets are not used (unless
specified).

4.2 Models

We use transformer-models, fine-tuned with man-
ual annotations, as baselines. We employ pre-
trained transformer models of different sizes:
BERT-base (110M parameters) (Devlin et al.,
2019), ELECTRA Small (14M parameters) (Clark
et al., 2020), and ELECTRA XSmall (7M parame-
ters).

Since our main goal is to compare the models to
each other and across multiple corpora, we priori-
tize comparabability across corpora over compara-
bability with approaches from other studies.

4.3 Experimental settings

We use the pre-trained checkpoints of BERT-base
and ELECTRA Small from HuggingFace (Wolf
et al., 2020). We pre-train ELECTRA XSmall4

from scratch using our Semantic Scholar dataset.
During fine-tuning, we devoted a similar amount
of GPU time to all the models. We pick the best-
performing model in the dev set after 10 epochs

We implemented our Unsupervised Annotator
using the POS tagger of SpaCy (Honnibal et al.,
2020). To compute the specificity and similar-
ity scores we use the sentence embedding model
distilbert-base-nli-mean-tokens from the
sentence transformers5 library.

The specificity and similarity thresholds used
to generate the training data over abstracts from
Semantic Schoolar have been set to conservative
values. We set the threshold for the specificity
TSP = 0.05 and the threshold for the similarity

3www.semanticscholar.org/.
4We used 2 attention heads and 4 hidden layers, while us-

ing the same hidden dimension and similarly sized vocabulary.
5pypi.org/project/sentence-transformers/.

Ttopic = 0.1. For the sub-word tokenization we
rely on the tokenizer from BERT-base.

4.4 Results

In Table 2, we first compare the performance (ex-
pressed as exact and partial F1 scores that count
only exact or partial matches as true positives) of
our fully Unsupervised Annotator to the perfor-
mance obtained by fine-tuning transformer-based
models with the manual annotations present in the
original training sets. Without relying on any hu-
man annotation, our UA delivers comparable or
even better results than the ELECTRA XSmall in
ACL and ScienceIE, respectively. These results
show that the UA represents a very competitive
baseline for domains where annotations are not
available.

Further, we are interested in understanding
whether transformer-based models fine-tuned with
human annotations can generalize across domains.
We also evaluate if the availability of weakly super-
vised labels generated by our Unsupervised Anno-
tator over a large and broad corpus (i.e., Semantic
Scholar) could lead to models with higher gener-
alization capabilities. In Table 3 we report the
exact and partial F1 scores for the ACL, GENIA,
and ScienceIE datasets, and the transformer-based
model fine-tuned with the output of our Unsuper-
vised Annotator (UA-SS). This setup simulates the
problem of bootstrapping an annotator for a spe-
cific domain for which in-domain human labels are
not available.

On the ACL corpus, the UA-SS-based model
clearly outperforms the GENIA-based and
ScienceIE-based models. On the GENIA corpus,
the UA-SS-based model and the ACL-based model
perform equally well. On the ScienceIE corpus,
all models perform equally with a slight tendency
towards the GENIA-based model.

Overall, it can be said that the UA-SS-based
approach is a valid starting point to bootstrap a

https://www.semanticscholar.org/
https://pypi.org/project/sentence-transformers/


ACL GENIA ScienceIE

Model (#Params) Fine-tuned on exact F1 partial F1 exact F1 partial F1 exact F1 partial F1

BERT Base
(110M)

UA-SS 58.22 77.36 53.18 79.38 46.79 66.59

ACL − − 52.05 82.49 47.88 69.97
GENIA 45.97 61.53 − − 48.50 69.84

ScienceIE 38.28 54.92 46.91 73.16 − −

ELECTRA Small
(14M)

UA-SS 58.00 77.41 53.44 80.01 44.68 65.58

ACL − − 50.84 81.33 44.21 67.57
GENIA 46.65 67.21 − − 45.79 68.83

ScienceIE 42.58 66.02 43.48 76.77 − −

ELECTRA XSmall
(7M)

UA-SS 49.83 72.78 45.35 74.83 40.32 62.39

ACL − − 31.13 59.99 28.79 58.20
GENIA 29.81 58.17 − − 30.00 59.61

ScienceIE 20.60 33.53 39.95 68.63 − −

Table 3: Results for the generalization of multiple transformer models that are fine-tuned on the weakly annotated
dataset based on the Semantic Scholar corpus (annotated with UA, denoted as UA-SS) and evaluated on the ACL,
GENIA, and ScienceIE datasets, respectively. Transformer models fine-tuned using our automatically generated
dataset perform better than their counterparts fine-tuned using the other datasets.

system in a no-resource scenario. Table 2 shows
that the F1 score gap between models trained with
in-domain manually annotated data and the UA-SS-
based approach is lower for smaller models.

Now, we compare the Unsupervised Annotator
with the models fine-tuned with its output to eval-
uate our two-step approach in terms of F1 score
and inference latency. Figure 3 reports the aver-
age inference latency for models (fine-tuned with
the UA-SS training data) over sentences from the
ACL dataset with a batch of size 1 using a NVIDIA
Tesla V100 and a single core of a Xeon E5-2690
v4 (similar trends on the other datasets). While
the inference latency has similar orders of mag-
nitude across models with GPU acceleration, the
minimum inference time of 26.6 ms can be ob-
tained on a single CPU core using the ELECTRA
XSmall model. Therefore, our approach is particu-
larly attractive in all cases where inference acceler-
ators (e.g., GPUs) are not available. Additionally,
the results highlight that by fine-tuning over the
output of the UA, the latency can be reduced by 4
to 10 times, while providing comparable or even
better F1 scores. Having the option to generate a
large amount of training data for fine-tuning is an
extremely useful property that enables the creation
of very small models offering low inference times
even without using GPU acceleration.

4.5 Lessons learned

In this work, we have demonstrated that, while the
value of in-domain labels is without any doubt the
best way to increase predictive quality, fully un-

45 47 49 51 53 55 57 59
F1 Exact Match on ACL

101

102

103

L
at

en
cy

(m
s)

BERT (110M)

ELECTRA S (14M)

Lower latencyBetter F1 score

ELECTRA XS (7M)

L
ow

es
t

la
te

nc
y

UA (0M)

CPU
Latency (ms)

438.50

68.80

26.60

282.60

45 47 49 51 53 55 57 59
F1 Exact Match on ACL

25

50

75

L
at

en
cy

(m
s)

BERT (110M)

ELECTRA S (14M)Lower latencyBetter F1 score

ELECTRA XS (7M)

L
ow

es
t

la
te

nc
y

UA (0M)
GPU

Latency (ms)

52.30

52.80

43.80

66.40

Figure 3: Average inference latency on CPU (top) and
GPU (bottom) on the ACL dataset. We note in paren-
thesis the number of trainable parameters of the mod-
els. By fine-tuning over the output of the UA, we
achieve lower latency and higher F1 scores. The lowest
inference latency, 26.6 ms, is achieved on CPU.

supervised approaches are often the only viable
option to bootstrap a term extractor that has to gen-
eralize across very diverse domains. Additionally,
while the practicality of ML solutions is often un-
derestimated, we have shown that having a modular
system can not only provide greater flexibility in
deployments, but can also allow to boost time pre-
dictive performance and inference latency at the
same.

5 Conclusion

In this paper, we described an effective term ex-
traction approach that uses a fully unsupervised



annotator to generate training data to fine-tune
transformer models. This approach reduces the in-
ference time of the unsupervised annotator, without
decreasing its performance, and allows the flexibil-
ity to pick the right trade-off between latency and
F1 score. The latency-optimized models are less
than 30 Megabytes in size, provide inference laten-
cies lower then 30 ms even without GPUs, while
exhibiting a competitive F1 score compared to the
models fine-tuned with manually annotated data.

References
Isabelle Augenstein, Mrinal Das, Sebastian Riedel,

Lakshmi Vikraman, and Andrew McCallum.
2017. Semeval 2017 task 10: Scienceie-extracting
keyphrases and relations from scientific publica-
tions. In Proceedings of the 11th International
Workshop on Semantic Evaluation (SemEval-2017),
pages 546–555.

Kamil Bennani-Smires, Claudiu Musat, Andreea Hoss-
mann, Michael Baeriswyl, and Martin Jaggi. 2018.
Simple unsupervised keyphrase extraction using sen-
tence embeddings. In Proceedings of the 22nd Con-
ference on Computational Natural Language Learn-
ing, pages 221–229, Brussels, Belgium. Association
for Computational Linguistics.

Paul Buitelaar, Philipp Cimiano, and Bernardo
Magnini. 2005. Ontology Learning from Text: Meth-
ods, Evaluation and Applications.

Sharon A. Caraballo and Eugene Charniak. 1999. De-
termining the specificity of nouns from text. In 1999
Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Cor-
pora.

Wang Chen, Hou Pong Chan, Piji Li, and Irwin King.
2020. Exclusive hierarchical decoding for deep
keyphrase generation. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1095–1105, Online. Asso-
ciation for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Pre-training trans-
formers as energy-based cloze models. In EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Pierre Dognin, Igor Melnyk, Inkit Padhi, Cicero
Nogueira dos Santos, and Payel Das. 2020. Du-
alTKB: A Dual Learning Bridge between Text and

Knowledge Base. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8605–8616, Online. As-
sociation for Computational Linguistics.

Nazanin Firoozeh, Adeline Nazarenko, Fabrice Alizon,
and Béatrice Daille. 2020. Keyword extraction: Is-
sues and methods. Natural Language Engineering,
26(3):259–291.

Francesco Fusco, Damian Pascual, and Peter Staar.
2022. pNLP-Mixer: an Efficient all-MLP
Architecture for Language. arXiv preprint
arXiv:2202.04350.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Ihab F. Ilyas, Theodoros Rekatsinas, Vishnu Konda,
Jeffrey Pound, Xiaoguang Qi, and Mohamed Soli-
man. 2022. Saga: A platform for continuous con-
struction and serving of knowledge at scale. In Pro-
ceedings of the 2022 International Conference on
Management of Data, SIGMOD/PODS ’22, page
2259–2272, New York, NY, USA. Association for
Computing Machinery.

Prabhu Kaliamoorthi, Aditya Siddhant, Edward Li, and
Melvin Johnson. 2021. Distilling large language
models into tiny and effective students using pqrnn.
CoRR, abs/2101.08890.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi
Tsujii. 2003. Genia corpus—a semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl_1):i180–i182.

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 66–75, Mel-
bourne, Australia. Association for Computational
Linguistics.

Juan Antonio Lossio-Ventura, Clément Jonquet, Math-
ieu Roche, and Maguelonne Teisseire. 2016.
Biomedical term extraction: overview and a new
methodology. Information Retrieval Journal, 19(1-
2):59–99.

Dehong Ma, Sujian Li, Fangzhao Wu, Xing Xie,
and Houfeng Wang. 2019. Exploring sequence-to-
sequence learning in aspect term extraction. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3538–
3547, Florence, Italy. Association for Computa-
tional Linguistics.

Debanjan Mahata, John Kuriakose, Rajiv Ratn Shah,
and Roger Zimmermann. 2018. Key2Vec: Auto-
matic ranked keyphrase extraction from scientific ar-
ticles using phrase embeddings. In Proceedings of

https://doi.org/10.18653/v1/K18-1022
https://doi.org/10.18653/v1/K18-1022
https://www.aclweb.org/anthology/W99-0609
https://www.aclweb.org/anthology/W99-0609
https://doi.org/10.18653/v1/2020.acl-main.103
https://doi.org/10.18653/v1/2020.acl-main.103
https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf
https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.694
https://doi.org/10.18653/v1/2020.emnlp-main.694
https://doi.org/10.18653/v1/2020.emnlp-main.694
https://doi.org/10.1017/S1351324919000457
https://doi.org/10.1017/S1351324919000457
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1145/3514221.3526049
https://doi.org/10.1145/3514221.3526049
http://arxiv.org/abs/2101.08890
http://arxiv.org/abs/2101.08890
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.1007/s10791-015-9262-2
https://doi.org/10.1007/s10791-015-9262-2
https://doi.org/10.18653/v1/P19-1344
https://doi.org/10.18653/v1/P19-1344
https://doi.org/10.18653/v1/N18-2100
https://doi.org/10.18653/v1/N18-2100
https://doi.org/10.18653/v1/N18-2100


the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 2 (Short Pa-
pers), pages 634–639, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Behrang QasemiZadeh and Anne-Kathrin Schumann.
2016. The acl rd-tec 2.0: A language resource
for evaluating term extraction and entity recognition
methods. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1862–1868.

Lance A Ramshaw and Mitchell P Marcus. 1999. Text
chunking using transformation-based learning. In
Natural language processing using very large cor-
pora, pages 157–176. Springer.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Pum-Mo Ryu and Key-Sun Choi. 2006. Taxon-
omy learning using term specificity and similarity.
In Proceedings of the 2nd Workshop on Ontology
Learning and Population: Bridging the Gap be-
tween Text and Knowledge, pages 41–48, Sydney,
Australia. Association for Computational Linguis-
tics.

Antonio Šajatović, Maja Buljan, Jan Šnajder, and Bo-
jana Dalbelo Bašić. 2019. Evaluating automatic
term extraction methods on individual documents.
In Proceedings of the Joint Workshop on Multiword
Expressions and WordNet (MWE-WN 2019), pages
149–154, Florence, Italy. Association for Computa-
tional Linguistics.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In International Confer-
ence on Acoustics, Speech and Signal Processing,
pages 5149–5152.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Di Wu, Wasi Uddin Ahmad, Sunipa Dev, and Kai-
Wei Chang. 2022. Representation learning for
resource-constrained keyphrase generation. CoRR,
abs/2203.08118.

Ziqi Zhang, Johann Petrak, and Diana Maynard. 2018.
Adapted textrank for term extraction: A generic
method of improving automatic term extraction al-
gorithms. Procedia Computer Science, 137:102 –
108. Proceedings of the 14th International Confer-
ence on Semantic Systems 10th – 13th of September
2018 Vienna, Austria.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/W06-0506
https://www.aclweb.org/anthology/W06-0506
https://doi.org/10.18653/v1/W19-5118
https://doi.org/10.18653/v1/W19-5118
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.48550/arXiv.2203.08118
https://doi.org/10.48550/arXiv.2203.08118
https://doi.org/https://doi.org/10.1016/j.procs.2018.09.010
https://doi.org/https://doi.org/10.1016/j.procs.2018.09.010
https://doi.org/https://doi.org/10.1016/j.procs.2018.09.010

