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Abstract—Wearable IoT devices and novel continuous mon-
itoring algorithms are essential components of the healthcare
transition from reactive interventions focused on symptom
treatment to more proactive prevention, from one-size-fits-all
to personalized medicine, and from centralized to distributed
paradigms. HyperDimensional Computing (HDC) is an emerging
ML paradigm inspired by neuroscience research with various
aspects interesting for IoT devices and biomedical applications. In
this work, we explore five HD vector encoding strategies of spatio-
temporal ExG data, such as that of electroencephalogram (EEG),
and test it on a use case of epileptic seizure detection. We discuss
the impact of these strategies’ performance, memory overhead,
and computational complexity. Furthermore, we demonstrate how
feature selection via the HDC framework can be accomplished by
choosing a proper encoding, and results in up to 70% reduction
in used features while improving performance up to 7%.

I. INTRODUCTION

Hyperdimensional Computing (HDC) is an emerging ML
paradigm inspired by neuroscience research, based on data
representation in the shape of high-dimensional hypervectors.
This paradigm shift in data representation brings various advan-
tages in learning and hardware implementation. From a learning
perspective, it opens new paths for semi-supervised, distributed,
continuous online learning, or multi-centroid learning. In terms
of hardware, parallelization possibilities open the way for
designing efficient accelerators or in-memory computations [1].
Its lower energy and memory requirements [2], [3] enable
learning on low power wearables and IoT systems. HD
computing has attracted a great deal of attention for biomedical
applications, especially with ExG data. It has been tested
for electromyogram (EMG) gesture recognition, detection of
EEG error-related potentials, recognition of emotions from
electrocardiogram (ECG) and electroencephalogram (EEG),
and epilepsy detection via EEG [3], [4] among others.

ExG data (e.g., EEG and EMG) are spatio-temporal, noisy
and non-stationary data that require careful encoding to HD
vectors to enable high-quality HD learning. However, the
encoding of channel and feature information has not yet been
systematically explored. Most existing literature that uses EMG
or EEG data has encoded only raw data or Local Binary
Patterns (LBPs) [5] to HD vectors. However, similar to standard
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ML approaches, the possibility of adding more features can
significantly improve the power of models [6]. Thus, in this
paper, we discuss possibilities for encoding information about
channels and features, to capture all the relevant aspects.

As we demonstrate in this work, encoding can also enable
analysis of the performance, correlations, and learning capa-
bilities of individual features. Furthermore, feature selection
is a crucial step in wearable applications, needed to remove
noisy and non-informative features while also leading to more
lightweight models. To the best of our knowledge, so far in the
literature a clear and straightforward methodology for feature
selection via HDC has not been presented. We demonstrate a
70% reduction in the features used while gaining up to 7% in
terms of performance.

In this paper, we assess several approaches in the con-
text of epileptic seizure detection. Epileptic seizures are a
chronic neurological disorder characterized by the unpredictable
occurrence of seizures that affects a significant portion of
the world’s population (0.6 to 0.8%). Due to its high inter-
patient variability and unpredictable nature, it still poses open
research questions. Despite pharmacological treatments, one
third of patients still suffer from seizures and are subject to
serious health risks and many restrictions in daily life. At the
same time, wearable devices for the prediction, detection, or
continuous monitoring of epilepsy in outpatient settings are not
yet widely available. HD computing’s unique properties make
it suitable for this domain, but only with further algorithmic
improvements can it reach the performance of state-of-the-
art algorithms [7]. Therefore, further exploration of how to
optimize HD computing and encoding for better performance
is of great interest for the detection of epilepsy.

II. RELATED WORK

HD computing has been applied so far in multiple do-
mains where spatio-temporal data such as EEG, iEEG [2],
[3] or EMG [8] is utilized. Most works utilize raw signal
values or short LBPs to describe and map temporal signal
changes to HD vectors [3], [4], [8]. Some of the work also
utilized vector permutation to encode time information between
neighboring samples. Furthermore, in [1], the authors propose
energy-efficient in-memory encoding for this way of encoding
spatio-temporal signals. This is an interesting approach in its
simplicity, as it uses raw signal values directly. However, it is
limited to only mapping one type of information to HD vectors
(i.e., raw signal amplitude and/or signal change trends).



Fig. 1. Simple illustration showing the HD computing workflow and learning
process from windows of seizure and non-seizure data.

In [6], the authors test how different feature types regularly
used in non-HDC ML models for epilepsy detection perform
in the HDC framework. They show that, indeed, the use of a
variety of statistical, time, or frequency features outperforms
simple raw signal encoding. Further, in [2], the authors extend
their previous work [4] by adding the mean amplitude and
line length features to LPB values. They resolved the problem
of encoding more features to HD vectors by utilizing three
independent classifiers, each with its own model vectors,
where predictions are merged using a linear layer. In [9],
the authors explored epileptic seizure detection using power-
spectral features from iEEG data, and encountered similar
problems as we point out here. They explored three different
encoding approaches: 1) concatenating feature vectors to
generate long HD vectors, 2) using multiple classifiers (one
for each feature) and then integrating their predictions by
majority voting, and 3) training one classifier using all features.
In the last approach, vectors representing features and their
values are first combined and then merged with the channel
information. These approaches are highly interesting due
to the broad spectrum of feature characteristics that are
integrated. However, unfortunately, in [9] approaches were
not systematically assessed across performance, memory, or
complexity metrics.

III. METHODS

A. Encoding spatio-temporal data for HD computing

Typical spatio-temporal (ST) data, e.g. EMG or EEG, consist
of several channels positioned in different physical locations
and recorded during time. This results in a 3D data structure
containing information about features, channels, and time.
Within the typical HDC encoding workflow, this means that
initial vectors representing each of these entities must be
defined, i.e. HD vectors representing each feature (FID),
each possible value of features (FChV ), and each channel
(ChID) must be generated. The question addressed in this
work is how to encode all this information into HD vectors.
We evaluate potential methods from several perspectives,
including classification performance, memory overhead, and
computational complexity. Therefore, in Fig. 2, we illustrate
the different possibilities considered in this paper to encode
one time window of data to an HD vector.

We use the most common type of HD vectors; binary vectors
(containing only 0 or 1). Three basic arithmetic operations that

are used are: 1) bundling (bitwise summation), 2) binding
(bitwise XOR), and 3) thresholding to binarize vectors after
summation. The bundling operation results in a vector that
is, with high probability, very similar to summed vectors,
while on the other hand, binding leads to a vector orthogonal
to the bound vectors. Thresholding returns the final vector
to binary form after summation. A typical approach in the
literature dealing with simpler, non-spatial data is to bind
feature vectors with feature value vectors and then bundle
(and threshold) them. Translating this approach to ST data
leads to two options: 1) F ×V and 2) ChFComb×V , where
F represents features, V values of features, and ChFComb
features of specific channels. The difference between these
approaches is that, as illustrated in Fig. 2, F × V does not
include information about channels but simply bundles features
(FID) and feature values from each channel (FChV ). On the
other hand, the ChFComb× V approach treats each feature
and channel combination as an individual feature and gives it an
independent HD vector (FChID). This approach distinguishes
between channels as formulated in (2), but can lead to large
memory maps to store all initial HD vectors, especially when
the dataset consists of many channels (such as iEEG data) or
when many features are extracted. As this can be problematic
from a memory perspective, we propose more EEG-inspired
approaches: 3) F×Ch×V and 4) Ch×F×V . Both approaches
first initialize vectors for each channel (ChID), each feature
(FID), and possible feature values (FChV ). However, they
differ in the order of bundling information. F × Ch× V , as
formulated by (3), bundles channels (ChID) and feature values
on those channels (FChV ) first, followed by bundling with
feature IDs (FID). In Ch × F × V the order of bundling is
inverted, as formulated in (4).

F × V =
⌊ nCh∗nF∑

i=1

FIDi ⊕ FChV i

⌋
(1)

ChFComb× V =
⌊ nCh∗nF∑

i=1

FChIDi ⊕ FChV i

⌋
(2)

F × Ch× V =

⌊ nF∑
i=1

FIDi ⊕
⌊ nCh∑

j=1

ChIDj ⊕ FChV ij

⌋⌋
(3)

Ch× F × V =

⌊ nCh∑
i=1

ChIDi ⊕
⌊ nF∑
j=1

FIDj ⊕ FChV ij

⌋⌋
(4)

FA =
⌊ nCh∑

j=1

ChIDj ⊕ F1ChV j

⌋
...
⌊ nCh∑

j=1

ChIDj ⊕ FnFChV j

⌋
(5)

The last approach, called Feature Appending (FA), is
designed to make it easier to determine how different features
contribute to encoded vectors. In this approach, as illustrated
in Fig. 2, channels and feature values are bound and bundled
to n encoded subvector for each feature, but instead of binding
it with other feature subvectors as in F ×Ch×V these vectors
are appended one after another, as formulated in (5). This
encoding organization enables analysis of individual subvectors.
For example, in this paper, we analyze the class separability
and predictive power of individual features, as well as their
confidence in time with respect to other features.



Fig. 2. Schematic of different possibilities to encode information about channels, features, and their values to HD vectors. Five different encoding approaches
tested in the paper are illustrated.

B. Feature selection

In the FA approach, it is known which part of the final
encoded vector comes from each feature, allowing analysis
of individual features. In this paper, we define and measure
several metrics for each feature:

• Prediction: Using only the d = D/nF bits corresponding
to the feature of interest, we can determine the prediction
per feature as the label of the most similar class vector. D
is the total hypervector length, nF the number of features,
and the similarity metric is the hamming distance.

• Feature certainty: The certainty of each feature’s label
based on distances from class vectors can be quantified for
each time moment. It is defined as the difference between
distances from the two classes divided by the average
absolute distance for all features at the same time.

• Correlation: Based on each feature’s predictions in time,
the correlation between different feature’s predictions can
be measured and utilized later for feature selection.

• Class separability: Feature separability is defined as the
relative hamming distance between class vectors when
using only the bits of the corresponding feature.

These metrics can be then used to perform feature selection,
using three selection strategies. Each approach starts by
ordering features based on specific quality metrics:

• Feature Selection By Performance (SBP): On the basis of
the predictions for each sample and the true labels, we
can measure each feature’s performance. The exact per-
formance metric of choice can depend on the application;
for epilepsy detection we define these in Sect. IV-D2.

• Feature Selection By Confidence (SBC): Based on the
certainty values and predictions per feature, the features
can be ordered based on the highest confidence. It is
calculated as how much more certain is the feature during
correct predictions versus wrong predictions.

• One-By-One (OBO) feature selection: If the selection is
made based only on feature performance, it might lead
to selecting features that perform well, but are highly
correlated, and thus possibly redundant. In this approach,
we select features one-by-one by evaluating in each step

how the performance changes when adding one of the
not yet used features.

After features are ordered, the performance of the train and
test set is assessed while increasing the number of features
until all features are included. Prediction when using n features
is given by summing the distances from the seizure and non-
seizure model vectors of the individual features. From the
performance curve of the training set, the optimal number of
features is chosen as the minimum number of features giving
maximal performance. In the end, performance on the test set is
measured for the chosen reduced set of features and compared
with the initial performance without feature selection.

IV. EXPERIMENTAL SETUP

A. Dataset

We use the CHB-MIT database [10]. It consists of 24 subjects
and 183 seizures, with an average of 7.6 ± 5.8 seizures per
subject. 18 EEG channels that are common to all patients are
used. Even if the common approach in the literature is using
balanced data preparation, it can lead to highly overestimated
performance [11]. Training on the entire dataset using HD
computing is not feasible due to its complexity, thus, as
proposed in [7], we use a data selection approach that contains
all seizure segments and ten times more non-seizure data. Data
is arranged in such a way that for each seizure file, seizure
data is extracted and surrounded by non-seizure data randomly
selected from one of the files not containing any seizure.

B. Feature Choices

We use the mean amplitude and both relative and absolute
values of power spectral density in the five common brain wave
frequency bands: delta: [0.5-4] Hz, theta: [4-8] Hz, alpha: [8-12]
Hz, beta: [12-30] Hz, gamma: [30-45] Hz, and low-frequency
components: [0-0.5] Hz and [0.1-0.5] Hz. We also included the
line length feature [12] showing high discriminative power. In
total, we extract 19 features from data segmented into 4-second
windows with a 0.5-second step. Before extracting the features,
the data is filtered with a 4th-order, zero-phase Butterworth
bandpass filter between [1, 20] Hz.



Fig. 3. Jensen-Shannon divergence of features.

Fig. 4. Comparison of features based on FA approach. Order of features is
the same as in Fig. 3. The averaged values over all subjects are shown.

C. HD Learning Workflow

The standard HDC workflow consists of a single-pass
training phase, where HD vectors representing different data
windows from the same label class are bundled together to
form a model HD vector representing that class (illustrated
in Fig. 1). This approach is simple and fast. However, all
data windows are equally important, which can lead to the
domination of more common patterns in the final vectors, a
problem especially prevalent in highly imbalanced datasets
such as those of epilepsy. As shown in [7], this situation
leads to an under-representation of less common patterns and
ultimately lowers performance. OnlineHD was proposed in [13]
as an alternative, where each window vector is multiplied by
a weight before being added to the model vector. The weight
is defined by the similarity of the current vector to the current
prototype vectors; the higher the similarity, the lower the weight,
which helps to identify repeating patterns and mitigates model
saturation. In [7] standard and OnlineHD have been compared
for the use case of epileptic seizure detection, and OnlineHD
was shown to have higher performance, so we use it in this
work as well.

D. Validation

1) Feature comparison: A standard approach to compare
features individually is the Jensen-Shannon divergence, which
analyse the distance between the distributions of feature values
for different classes. Furthermore, as explained in Sect. III-B,
the FA appending approach enables various feature comparison
metrics, namely: predictions and performance, confidence,
correlation, and class separability per feature.

2) Performance evaluation: Training and evaluation are
done using leave-one-seizure out cross-validation independently
for each subject due to the subject-specific nature of epileptic
seizures. In the end, we report performance as average over
all subjects. The performance of the classifier is evaluated
with respect to seizure episode detection and duration-based
detection, measuring sensitivity, predictivity, and F1 score. The
performance at the episode level groups the signal into blocks of

seizure and non-seizure. The performance at the duration level,
cares about the correct prediction of each sample, meaning
that seizures need to be predicted correctly over their entire
duration. Finally, we combine the F1 scores for episodes (F1E
and F1D) using the geometric mean as F1DEgmean. In
epilepsy detection, raw label predictions often lead to unrealistic
behavior of seizure dynamics (e.g., seizures lasting only a few
seconds or seizures that are only a few seconds apart). Thus,
label post-processing is an integral part of the pipeline, and
we post-process raw label predictions by performing a moving
average with majority voting, using a window size of 5s.

V. RESULTS

A. Feature comparison

Fig. 3 shows the Jensen-Shannon divergence of the 19
features we used and their distribution over all channels for all
subjects. There is a clear difference between features, where
the mean amplitude, line length, total energy, and absolute
spectral powers of the delta, theta, alpha, beta, and middle-
range are quite discriminative. Relative powers seem to be less
discriminative than absolute values. Fig. 4 compares features
based on measures extracted using the FA approach. More
specifically, the separability of the vectors for the two classes,
the average confidence, and the performance of each feature
are shown. In the performance subplot, the horizontal line
represents the performance achieved when using all the features,
and shows that no single feature reaches the performance of all
features, but some of them are quite close (i.e., mean amplitude,
line length, total power, and power of delta and theta). These
results confirm that the FA approach can indeed be used to
investigate different properties of individual features.

B. Encoding comparison

Next, we compare different encoding approaches. Fig. 5
shows the average performance for the episode and duration
metric, for all subjects without any post-processing. F × V
encoding, which does not account for channel information,
results in lower performance than strategies that account
for channel information. There is no significant performance
difference between the three approaches that include channel
information: F×Ch×V , Ch×F×V and ChFComb×V . The
FA approach, even distinguishing between channels, yields
a lower performance than the three approaches that utilize
channel information, probably due to the smaller number of
dimensions per feature. Yet, FA still outperforms the F × V
approach. Fig. 6 shows the memory required (as a relative ratio)
to store all HD vectors (for channels, features, and values) for
each approach. Due to the large number of combinations of
features and channels, the ChFComb × V approach is the
most memory-demanding one. The FA approach requires the
least amount of memory, as the base vectors have lower D/nF
dimensions. Furthermore, the relative number of operations
needed to encode one window of data is shown as well in Fig. 6.
The FA approach requires significantly less operations due to
the smaller number of dimensions per vector for each feature.



Fig. 5. Performance of different EEG encoding approaches. True Positive
Ratio (TPR) is sensitivity, Positive Predictive Value (PPV) is precision, and
F1 is the harmonic mean between TPR and PPV.

Fig. 6. Comparison of encoding approaches in terms of required memory and
number of binding and bundling operations to encode one data window.

From other approaches, ChFComb× V and F × V require
slightly less operations than F × Ch× V and Ch× F × V .

C. Feature selection

Fig. 7 shows the performance with the FA approach, when
features are incrementally added according to the ordering of
the three methods described in Sect. 7. In the first column of
Fig. 7, features are selected by performance (SBP) (in this
case, their F1DE performance), in the second column, they
are selected based on average feature confidence (SBC), while
in the third column, features are added one-by-one (OBO),
selecting the feature that best improves performance when
added to previously chosen features. This approach results in a
more optimal ordering and choice of features, as it takes into
account the correlation between features, and indeed attains
the highest performance of the three strategies.

The last column shows the boxplots of feature orders for
each feature selection method over all subjects. The smaller
the ranking, the sooner that feature was chosen. It can be seen
that the classification of features in the first two approaches,
using only feature performance or confidence, gives similar
results to the discriminative power analysis shown in Fig. 3.
In the last case of OBO feature selection, the feature order is
slightly different due to the accounting for feature correlations.

Fig. 8 shows the results of OBO feature selection for every
subject. The first graph shows the number of features per subject
and average feature count for all subjects (the horizontal line).
The next two graphs show the performance improvement (or
decrease), i.e., F1 for episodes and gmean of F1 for episodes
and duration, for the training and test set. The figures’ titles
contain the average performance over all subjects on the test set.
There is significant variability between the number of features
chosen per subject, ranging from 1 to 10, with an average of
5.8, or 30%, of the features used.

Table V-C shows the results for the three feature selection
methods, when the F1 score for episodes (F1E), or F1 score

Feat. sel. Target Num. Train [%] Test [%]
approach Metric Feat. F1E F1DE F1E F1DE

SBP F1E 2.84 12.29 4.63 4.78 -1.40
F1DE 6.99 9.41 7.49 4.94 3.69

SBC F1E 5.98 10.92 8.55 4.00 3.75
F1DE 6.62 9.44 10.26 3.56 6.03

OBO F1E 2.65 14.61 8.91 5.84 1.88
F1DE 5.81 13.29 10.84 2.45 6.54

TABLE I
OPTIMAL NUMBER OF FEATURES AND PERFORMANCE IMPROVEMENT FOR

DIFFERENT FEATURE SELECTION APPROACHES.

for episodes and duration (F1DE) are taken into account. It can
be noticed that when optimizing only for F1E, fewer features
are needed, but this usually results in a smaller performance
increase for F1DE. When F1DE is optimized, this leads to a
significant performance increase both for F1DE and F1E but at
the price of a slightly higher number of features. In general, the
performance increase is smaller on the test set than on the train
set, which is reasonable, as the optimal number of features was
chosen based on the train set without knowledge about the test
set. Yet, the performance increase due to feature selection is
still significant, ranging up to 7% for the test set. Overall, SBP
and SBC feature selection leads to a slightly higher number of
features but not to an improved performance. This is due to the
lack of feature correlation information. Finally, the code and
data required to reproduce the presented results are available
online as open-source1.

VI. DISCUSSION

This paper draws attention to the topics of mapping and
encoding spatio-temporal data such as EEG or EMG to HD
vectors. Although HD computing has been utilized and shows
promising results for various biomedical applications, most
works in the literature use only raw data or LBP values, namely,
only one feature per channel. Thus, optimal encoding when
more features per channel or more data modalities are used
remains unclear. In this work, we propose five strategies to
encode feature values as well as channel information into
an HD vector and test it on epileptic seizure detection. Our
results show that including channel information is beneficial
for detection performance, but that the order in which features
and channels are mapped is not relevant. Further, we show that
the ChFComb× V approach is the most memory demanding
and that F ×Ch×V , ChxF ×V and FA are comparable and
more appropriate. FA requires the least amount of memory
and operations to encode vectors due to the smaller effective
number of dimensions per feature vector, but also results in
slightly lower performance.

Using the FA approach, to the best of our knowledge,
we present the first method in the literature for performing
feature selection using HD computing. An incremental feature
selection approach was tested with three different methods to
determine the order of features to be added. All approaches
led to a significant reduction of features while keeping or even

1https://c4science.ch/source/FeatureSelectionWithHD/



Fig. 7. Performance evolution by incrementally adding new features for three approaches as described in Sect. III-B: SBP, SBC, and OBO.

Fig. 8. Optimal number of features and performance after feature selection. Example is shown for feature selection using both feature performance and
correlation. The horizontal lines represent the average for all subjects.

significantly improving performance compared to using all
features. FA is interesting not only from a feature selection
perspective, but also from a clinical perspective, as it leads to
a deeper understanding of various features and their properties.
For example, we investigated several measures per feature:
performance, probabilities of decisions, confidence, correlation,
and separability of classes, which can all lead to knowledge
discovery related to the usefulness of features.

This approach can be adapted to ChA and can be used
analogously for channel comparison, channel selection, and
potentially seizure localization. Therefore, we hope that in the
future this work will serve as inspiration for further research
and novel ideas in the direction of feature exploration, feature
and prediction interpretability, and channel selection. More
specifically, for the detection of epileptic seizures, we believe
that seizure localization and a more detailed feature quality
assessment for different seizure-type classifications could be
interesting research venues.

VII. CONCLUSION

In this paper, we have demonstrated how a novel hyperdi-
mensional computing approach can be used as an alternative
to state-of-the-art ML in the use case of epileptic seizure
detection. We explored the not yet addressed topic of optimal
encoding of spatio-temporal ExG data, such as EEG, and
all the information it entails, into HD vectors. We compared
five different approaches with respect to their memory and
computational complexity, as these metrics are of great interest
for wearable devices for continuous monitoring of diseases.
Hence, those approaches with lower complexity could make
longer battery lifetimes feasible and make a step towards
preventive healthcare. In addition, we have demonstrated how
the HD computing framework can be utilized to perform
feature selection by choosing a proper encoding strategy. Three
approaches were tested and led to an average feature reduction
of 70%, while maintaining or even significantly improving

detection accuracy (up to 7%) compared to using all the features.
We trust that this work can serve as inspiration for further
research and novel ideas in the direction of feature exploration,
feature and prediction interpretability, and channel selection.
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