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Abstract—The HyperDimensional Computing (HDC) Machine
Learning (ML) paradigm is highly interesting for applications
involving continuous, semi-supervised learning for long-term
monitoring. However, its accuracy is not yet on par with
other ML approaches, necessitating frameworks enabling fast
HDC algorithm design space exploration. To this end, we
introduce HDTorch, an open-source, PyTorch-based HDC
library with CUDA extensions for hypervector operations.
We demonstrate HDTorch’s utility by analyzing four HDC
benchmark datasets in terms of accuracy, runtime, and memory
consumption, utilizing both classical and online HD training
methodologies. We demonstrate average (training)/inference
speedups of (111x/68x)/87x for classical/online HD, respectively.
We also demonstrate how HDTorch enables exploration of HDC
strategies applied to large, real-world datasets. We perform the
first-ever HD training and inference analysis of the entirety
of the CHB-MIT EEG epilepsy database. Results show that
the typical approach of training on a subset of the data may
not generalize to the entire dataset, an important factor when
developing future HD models for medical wearable devices.

Index Terms—Hyper-Dimensional Computing, Machine Learn-
ing, PyTorch, GPUs, CUDA

1. Introduction

Recently, HyperDimensional Computing (HDC) has
emerged as an alternative Machine Learning (ML) frame-
work to more traditional models such as random forests
or neural networks, where its novel data representation
strategy enables various advantages from both hardware
and software perspectives. HD computing has been used
in a broad spectrum of applications, such as robotics [1],
recommendation systems [2], language recognition [3] and
more. Due to the current trends of using Artificial Intelligence
(AI) and ML for personalized medicine [4] and wearable
devices for health monitoring [5], many HDC biomedical
applications have been proposed, varying from emotion
recognition [6] and electromyogram gesture recognition [7]
to epileptic seizure detection via EEG signals [8], [9].

The highly parallel nature of HDC algorithms lends
motivation to the development of specific HDC hardware
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accelerators. While such accelerators will certainly be im-
plemented in future products that rely on HD computing,
they are expensive and limited in algorithmic flexibility, a
necessity for research into the HDC design space. Therefore,
open-source, flexible GPU-accelerated HDC frameworks are
necessary to enable efficient HDC research.

In this context, we propose HDTorch, the first open-
source, PyTorch-based library built for exploring the HDC
paradigm. HDTorch unlocks the full potential of PyTorch
applied to HDC algorithms, and further extends PyTorch with
custom, CUDA-backed hypervector operations. HDTorch is
highly customizable, enabling modification to hyperparam-
eters and encoding/similarity strategies. We validate HD-
Torch’s accuracy and runtime performance on four reference
HDC benchmarks, demonstrating accuracy comparable to
state-of-the-art works while greatly accelerating training and
inference for classical and online HD strategies.

We further motivate HDTorch’s utility for exploring the
HDC design space by applying it to the CHB-MIT epilepsy
database. HDTorch enables us to perform the first ever
HDC training on the entire dataset by reducing training and
inference time by over 70x. We draw several conclusions
from the analysis that will be useful for future works applying
HD computing to large, unbalanced datasets.

This work’s contributions are summarized as follows:
• We introduce HDTorch, an open-source, PyTorch-based

HDC framework with CUDA extensions for hypervec-
tor operations, namely, bit-(un)packing and bit-array
summation in the horizontal/vertical dimensions.

• We benchmark classical/online HD computing with
HDTorch, showing accelerations of (111x/68x)/87x for
(classical/online) training and inference, respectively.

• We explore the accuracy/runtime impact of varying
hyperparameters, namely, hypervector width and online
HD training batch size.

• We motivate HDTorch’s design space exploration utility
by performing, to the best of our knowledge, the first
HDC training on the entire 980-hour, 7 million datapoint
CHB-MIT epilepsy detection dataset. We present novel
observations on the utility of HD computing on large,
unbalanced datasets.

The remainder of the paper is organized as follows.
Section 2 details related work on HD computing. Section 3
provides a typical HDC workflow as motivation for HDTorch.
Section 4 presents the HDTorch framework. Section 5 details
the benchmarks, metrics, and testing environment we use
to validate HDTorch. Section 6 presents our experimental
results, while Section 7 concludes this work.



Input signals discretized 
in small windows

Winlen

Winstep

Time
𝑉𝑓1

𝐼𝐷𝑓1
𝐹1

𝑉𝑓𝑛

𝐼𝐷𝑓𝑛

Feature extraction and 
encoding to HD vectors

Labels

Online HD

Classic HD

Initialized vectors 
in memory

𝐹 Feature extractionThresholdingBundling (SUM) Binding (XOR) Decision block

Value HD vectors

Feature ID HD vectors

●
●
●

𝐼𝐷1

𝑉2

𝑉𝑚

𝐼𝐷2

𝐼𝐷𝑛

𝑉1

●
●
●

●
●

●

𝐹𝑛

Class Vectors

…

●●●

Classic/Online
HD

Update class vectors at 
each datapoint

*

PredictionSort

*

Multiply

Classical and Online HD training

Figure 1. HD workflow for training classical and online HD models. Online training differs in that the class vectors are updated after every
datapoint by multiplying its similarity to the target class by the vector before accumulating it into the class.

2. Related Work

2.1. Hyperdimensional Computing

HD computing is a machine learning strategy whose
defining feature is its representation of datapoints as long
(’hyper’) vectors, which enables learning by ’accumulation’
of said vectors belonging to the same class. HD computing
relies on two conditions; first, any two randomly generated
HD vectors are with high probability orthogonal, and second,
a vector generated by vector accumulation will be more
similar to its components than a vector not of its class [10].
HD computing has proven to be very appropriate for various
forms of learning such as online [11], [12] on-device, semi-
supervised [9], [13], and distributed learning [14]. Storing
models in the form of hypervectors exhibits strong noise and
data corruption resistance [15]. It also enables exploration
of feature importance and selection [16].

From an algorithmic perspective, many HDC variations
have been explored in literature, touching on almost every
aspect of the HD training or inference flow. These include
methods for initializing hypervectors [8], [17], [18], accumu-
lating datapoints into class vectors [9], [13], [19]–[21], and
calculating similarity between data and class vectors [10].
Exploring this design space necessitates analysis of the effects
of various hyperparameter values such as hypervector lengths
or online batch sizes, testing different encoding and learning
strategies, and applying pre- or post-processing filtering to
data or results. Unfortunately, due to the lack of publicly
available libraries for fast processing and parallelization of
HD computing on CPU or GPU, such analysis has thus far
been performed on unoptimized HDC frameworks, greatly
reducing research efficiency. For example, to the best of
our knowledge, HD computing has not been tested on large
datasets such as those for epilepsy detection. While previous
works applied HD computing to epilepsy datasets, data sub-
sets were always utilized [8], [18], [22]–[24]. Unfortunately,
it has also been demonstrated that training on subsets of data
may result in significant alterations to the final predictions in
comparison to utilizing the entire dataset [9]. Thus, to develop
suitable HDC algorithms, accelerating the exploration of the
HDC design space is necessary.

2.2. Accelerating HD Computing

Several works have begun to explore strategies of accel-
erating HD computing via various software and hardware
frameworks. Works mainly focus on 1) ASIC implementa-
tions [25]–[28] or 2) in-memory computing accelerators [29]–
[31]. Other works explore GPU acceleration of HD com-
puting. In [19], the authors implement an HDC architecture
in PyTorch to compare against other ML algorithms on
an embedded GPU, analyzing runtime, memory usage, and
energy consumption. Similarly, the authors in [20] design
a TensorFlow framework with HDC-specific extensions to
accelerate the encoding and training process. Our proposal
differs from the previous two in several ways. First, we utilize
PyTorch as a base framework for HDTorch, as explained
in Section 4. Second, as we want to encourage fast design
space exploration in future works, we rely on native PyTorch
operations where possible, and develop a set of custom
CUDA functions where we identify HDC-specific bottlenecks
that PyTorch cannot handle effectively. These functions are
different from those accelerated in previous papers. Finally,
we provide an open-source PyTorch library that encompasses
these contributions.

3. Motivation: A Typical HD Workflow

To motivate the need for HDTorch, we present a typical
HD workflow that may be applied to a dataset by a researcher.
The design choices presented here are commonly used in
previous literature, and are accelerated by HDTorch, as
described in Section 4.2.

The first step when performing training or inference via
HD computing is to encode raw input data into the HD space
as hypervectors. One popular encoding method is that of
ID-Level encoding [20], where each feature has an ID vector
representing it, while all datapoints are discretized into a fixed
number of bins, with each bin having its own representative
HD Value vector. ID vectors (I⃗D) are randomly generated,
while Value vectors (⃗V ) may be randomly generated or, as
in [17], generated using a linear scaling method so that
vectors representing similar values are also similar. Using
the predefined I⃗D and V⃗ vectors, each data point is encoded



to a hypervector H⃗i by binding each feature vector ⃗ID f i with
the bin value vector V⃗f i corresponding to the value of the
feature. Encoded features are then accumulated as formulated
in Equation 1. The final summed values are normalized using
majority voting to regenerate the binary vector.

H⃗i =
⌊
∑
fi

⃗ID f i⊕V⃗f i

⌋
(1)

Once encoded, the data can be processed in different
ways. The most basic approach is so-called classical HD
training, which utilizes single-pass accumulation of the
encoded vectors belonging to the same class into a class
vector. On the other hand, recent literature has proposed
various improvements to classical HD training, such as iter-
ative learning [13], ’multi-centroid learning’ which utilizes
more than one vector per class [9], and progressive, online
HD learning [19]. In [24] the authors compared all these
approaches on the use case of epileptic seizure detection
and demonstrated that online training is potentially the most
interesting, given its high performance, the fact that it utilizes
each data point only once as opposed to iterative training,
and its lower memory requirements than, for example, a
multi-centroid approach. Online training improves accuracy
by, instead of treating all data points as equally important,
multiplying new data points by their similarity to current
class vectors before being accumulated, as illustrated in
Equations 2 and 3:

M⃗′C←− M⃗C +(δC)H⃗ (2)

M⃗′W ←− M⃗W − γ(1−δW )H⃗ (3)

where M⃗X is either the correctly or incorrectly classified
class vector, δX is the distance from the class vector (lower
distance means more similarity), and γ is the learning rate.
In this way, highly common class patterns are not allowed
to saturate the class vectors, thus improving sensitivity to
less common patterns. Online HD training is also applicable
in continuously learning wearable devices, as it is capable of
integrating new data in real time. The workflow is described
visually in Figure 1.

Once class vectors have been learned from either the
entirety of the training set in a single pass or over time via
online training, test data can be compared to the class vectors
to find the most similar vector, thus returning a predicted
class. A variety of similarity metrics have been proposed,
with the two most popular being Hamming distance and
cosine similarity.

Then, let us consider a typical HD workflow that in-
tegrates the aforementioned steps. We will utilize as an
example, subject 1 of the CHB-MIT epilepsy database
consisting of 40 hours of data, split in 1 hour segments as in
the original database, further described in Section 5.1.2. We
use the HDC framework from [23], with ID-Level Encoding
and Hamming distance similarity measurement. We perform
both classical and online training using the common leave-
one-out cross-validation strategy.

The results of CPU training and inference are as fol-

TABLE 1. HDTORCH FEATURE OVERVIEW

Features Values
Customizable Hypervector Dimension
Hyperparameters Batch Size

Hypervector Binary (0,1)
Flavors Bipolar (-1,1)

Hypervector Random
Generation Scale Random [17], [18]
Strategies Sandwich [23]

Available
Binding Strategies

ID-Level Encoding [7]
Feature Permutation [21]
Feature Appending [16]

Available Hamming [10]
Similarity Metrics Cosine [10]

HD Computing Binary (Un)Packing
CUDA Extensions Horizontal/Vertical Summation

lows. Classical training takes 46 minutes, 22 of which
are consumed by the encoding step. Online training takes
134 minutes, 28 of which are consumed by encoding. If
extrapolated to the full 980 hours of data, with a time
resolution of 0.5 seconds, resulting in more than 7 million
samples included in the CHB-MIT database, classical/online
training would take 19/54 hours, respectively.

It is no wonder, then, that previous works have analyzed
only subsets of the dataset, as performing any sort of design
space exploration is infeasible with such high runtimes. Thus,
a GPU-accelerated, flexible HD computing framework is
necessary to enable future fast, iterative research into the
HDC design space.

4. HDTorch

With this motivation in mind, we describe how HDTorch
provides a flexible framework for performing HDC research
on GPU-equipped platforms.

4.1. Implementing HD Computing in PyTorch

PyTorch is one of the two most popular Deep Learning
(DL) frameworks utilized in research today, along with
TensorFlow. While the debate on framework superiority
is contentious, there can be no doubt that PyTorch is
currently the most popular DL framework in research, being
utilized in over 75% of research papers using either of the
two frameworks [32]. As such, providing HDC support in
PyTorch will enable the majority of the research community
to explore HDC solutions on a wider range of topics more
easily.

HDTorch is realized as a python library installable from
PyPi1. Table 1 lists the features provided by HDTorch’s
base HD model class. Namely, it supports variable size
binary or bipolar hyperdimensional vectors for any number

1. https://pypi.org/project/hdtorch/
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Figure 2. Illustration of HDTorch’s bit packing and horizontal summation operations. a) Bit packing reduces hypervector memory footprint
and improves bitwise operation efficiency, and b) summation enables packed hypervectors to be accumulated efficiently.

of classes. Value and feature hypervectors may be generated
randomly, or by a number of pseudo-random functionalities
proposed previously in the literature [8], [17], [18]. A variety
of feature/class binding methods are supported, including
ID-Level encoding [20], vector permutation [21], and feature
appending [16]. Pairwise similarity calculation via either
hamming distance or cosine similarity [10] is supported.

4.2. HDTorch: HyperDimensional Extensions for
PyTorch

While PyTorch’s GPU optimization provides already
excellent acceleration, its functions are not implemented
with HD computing in mind and thus fail to fully optimize
the HDC kernel. Namely, HD computing relies on operations
between hypervectors containing 1000’s of binary values.
By default, PyTorch stores binary values as bytes, resulting
in up to an 8x memory overhead per bit. Besides memory
access, inefficiencies are also found in three key hypervector
computations: namely, 1) the performance of binary xor
operations between hypervectors during both training and
inference, 2) the summation of ID-Level encoded vectors for
all features, and 3) the summation along the class hypervector
during hamming distance calculation. Encoding is usually
the main bottleneck of HDC applications, taking up to 70%
of training time [20], and is highly dependent on these
inefficient operations. With this in mind, HDTorch provides
four new functions with backing CUDA C++ code to address
Python’s shortcomings in regards to HD computing. These
extensions are only applicable to binary hypervectors; bipolar
hypervectors may still benefit from HDTorch’s non-specific
accelerations, as described in Section 6.

4.2.1. Bit (Un)Packing to Improve Memory and Bitwise
Operation Efficiency. The first optimization HDTorch
supports is the packing of a hypervector’s bits into byte
blocks. This reduces hypervector memory footprint by 8x
and enables bitwise operations, specifically the bitwise xor

necessary for ID-Value encoding and Hamming distance
calculation. Individual bits are packed into 32-bit integers,
enabling HDTorch to take advantage of CUDA’s bit counting
intrinsics as described below. A complementary unpacking
operation is also supported to return packed hypervectors to
their original state if necessary. Both operations are backed
by CUDA code for GPU acceleration.

4.2.2. Horizontal/Vertical Summation for Highly SIMD
Bitwise Operations. While PyTorch natively supports bit-
wise operations on packed bits, summation operations that
can take advantage of the packed and binary nature of
hypervectors are absent. Therefore, operations for performing
horizontal and vertical summations are introduced to enable
fast accumulations of binary vectors.

In the case of horizontal summation, CUDA’s popcount
intrinsic is utilized to count the number of bits set to 1 in a
32-bit integer. As it is known beforehand that only values
of 0 or 1 are being accumulated, 8-bit summations can be
used during accumulation, with intermediate accumulation
of the 8-bit accumulators into the final output summation
vector every seven additions to avoid overflow.

Figure 2 illustrates the bit-packing and horizontal sum-
mation HDTorch operations. Vertical summation is accom-
plished by transposing the input bit-array before performing
horizontal summation on the intermediate array. The input
array is tiled into subblocks of 128x128 bits, with each
subarray assigned to a CUDA warp, which is in charge of
transposing the tile. Once all warps have completed their
transpositions, the tiles are transposed as they are written
back to main memory.

5. Experimental Setup

To evaluate HDTorch’s utility in terms of exploring the
HDC design space, we perform a wide range of evaluations
in terms of HDC training and inference strategies, datasets,
and hyperparameter variations.



TABLE 2. HDTORCH BENCHMARK DATASETS (FC: FEATURE COUNT,
CC: CLASS COUNT, DS: DATASET SIZE IN NUMBER OF SAMPLES)

Dataset Description FC CC DS [103]

PAMAP Activity recognition
(IMU + HR)

31 5 ∼80

UCIHAR Activity recognition
(Smartphone)

561 12 ∼10

ISOLET Voice recognition 617 26 ∼8
MNIST Handwritten digit

recognition
784 10 ∼70

CHB-
MIT

Epilepsy detection 342 2 ∼7056

5.1. Datasets

We draw results from experiments performed on five
datasets covering a range of sizes, complexities, and use
cases. Four datasets are standard HDC benchmarks, while the
5th is a large, highly unbalanced medical dataset, providing
a more demanding scenario than the first four datasets.

5.1.1. Reference HD Computing Benchmarks. To compare
HDTorch performance with HDC implementations available
in the literature, we use four benchmark datasets from the
online-available UCI repository [33]: 1) ISOLET is an audio
dataset containing spoken letters of the English alphabet, 2)
MNIST is an image dataset consisting of written digits, 3)
UCIHAR is a dataset for classifying human activity from
smartphone inertial sensors and, 4) PAMAP is a physical
activity dataset containing both inertial sensors and a heart
rate monitor. We chose these datasets as they are utilized in
previous works demonstrating HD computing on GPUs [19],
[20], with a wide range of Feature Counts (FC), Class Counts
(CC) and Dataset Sizes (DS), as listed in Table 2.

5.1.2. Epilepsy Benchmark Use-Case. Beyond demon-
strating HDTorch’s utility on standard HD benchmarks, we
wish to demonstrate its ability to enable analysis on large,
computationally challenging datasets typical of real-world
scenarios such as the ones for continuous monitoring of
biomedical data. These datasets contain hundreds of hours
of data and are usually highly imbalanced. For this reason,
typically only subsets of the entire dataset are utilized for
analysis, and it is possible that the results of such studies
do not represent the actual performance of the algorithms
in the final application (e.g. on a wearable device for long-
term detection and monitoring). Thus, we test the ability
of HDTorch to explore HD algorithms on the CHB-MIT
epilepsy dataset, a widely used open source dataset for
epilepsy detection [9], [34]–[36].

CHB-MIT is an EEG database collected by the Children’s
Hospital of Boston and MIT. It contains 980 hours of data
recorded at 256Hz, consisting of 183 seizures from 24
subjects with medically-resistant seizures ranging in age
from 1.5 to 22 years [34], [37]. On average, it has 7.6 ±
5.8 seizures per subject, and between 23 and 26 channels,

of which the 18 channels that are common to all patients
are utilized in this work.

We extract 19 features from each of the 18 channels,
similar to [16], calculating them on 4 second windows with
a moving step of 0.5 seconds. We organize the dataset in two
manners before analysis: 1) Subsets of data for each patient
that contain all seizure data and 10x more randomly selected
non-seizure data (Fact10), and 2) the entirety of the dataset
divided into approximately one-hour-long segments (1HSeg).
Previous literature has demonstrated that utilizing different
seizure to non-seizure ratios in dataset sub-selections can
lead to highly overestimated performance [9]. Thus, in this
work, we perform the first (to the best of our knowledge)
assessment of HDC performance on the entire database,
comparing it to the Fact10 subset. Evaluation is performed
in a time-series split cross-validation (TSCV) approach [38],
where only previously acquired data can be used for training,
as opposed to, for example, typical leave-one-out cross-
validation. More specifically, we perform a cross-validation
for each hour-long segment, with segment n as the test set
and previous segments 0 to n−1 as the training set. This
approach also reduces the runtime by approximately half, as
it trains on less data in all cross-validations but the last one.

5.2. Evaluation Metrics

To confirm framework correctness, we evaluate perfor-
mance in terms of accuracy, memory consumption, and
training and inference speedup on the four datasets described
in Section 5.1.1. We perform these analyses while varying
model hyperparameters, specifically, the hypervector dimen-
sion D and the online training batch size, or the frequency
with which class vectors are updated as a function of the
arrival of new training data.

Concerning the epilepsy dataset use-case, we analyze
acceleration due to the utilization of HDTorch for encoding,
training, and inference for classical and online HD strategies.
With this realized speedup, we are able to evaluate perfor-
mance of classical and online HDC on the entirety of the
CHB-MIT database. Thus, we compare episode detection
accuracy for the two previously described dataset selections,
Fact10 and 1HSeg. Performance is evaluated by concatenating
predictions of all cross-validations. We perform moving
average smoothing of the predicted labels with a window
size of 5s, measure sensitivity (TPR), precision (PPV) and
F1 score for both selections, and discuss the differences in
performance.

5.3. Benchmarking Environment

Benchmarking and analysis are performed on a server
system equipped with a 2-socket, 40-core Intel Xeon Gold
6242R processor capable of frequencies up to 4.1GHz and
an NVIDIA Tesla V100 GPU. The software environment
consists of Python v3.9.10, PyTorch v1.10.2, and the CUDA
driver v11.6. Profiling is accomplished via PyTorch’s native
profiler, capable of profiling CPU and GPU runtime/memory
consumption by function.



Figure 3. Performances of different HDC implementations, with
Random Forest (RF) for reference, on 4 benchmark datasets.
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Figure 4. Speedup comparison between different HD learning
implementations. 4 different benchmark datasets are used.

6. Results

The following sections detail the results of our ex-
periments. For clarity, results utilizing hypervector CUDA
extensions are marked as HDTorch+ in the following figures.

6.1. Model Accuracy Analysis

Figure 3 shows the accuracy of online and classical
HD model implementations with respect to random forest
performance. We also compare the online HD approach with
two implementations found in the literature. XCelHD [20]
uses a modified TensorFlow implementation of the online
HD workflow described in Section 3, and OnlineHD [19]
uses an original HD floating point model with a non-standard
encoding approach implemented in PyTorch.

Online training improves performance in comparison to
classical HD for all datasets. Furthermore, our online HD
implementation using HDTorch is similar in accuracy to the
implementations found the literature. It should be noted that
random forest outperforms all HD computing implementa-
tions, indicating the necessity for further optimization of HD
computing to reach state-of-the-art accuracy results. This
situation further motivates the need for efficient design space
exploration of HDC algorithms.

6.2. Time Performance Analysis

Figure 4 illustrates runtime accelerations achieved by
HDTorch/HDTorch+ in comparison to HDTorch run on the
CPU. Acceleration for training on both classical and online
HD, and acceleration for inference (equivalent for both

Figure 5. Average speedup for HDTorch-CPU, HDTorch and HD-
Torch+ for different dimensions of HD vectors on 4 benchmark
datasets. Values are normalized to the runtime of the HDTorch
model running on CPU with the typical D=10000.

approaches) is illustrated. Comparison with XCelHD [20]
speedup was not possible as the code is not publicly
available. As can be seen, both HDTorch and HDTorch+
greatly reduce benchmark runtime: HDTorch provides up
to (12.7x/6x)/10.7x (training)/inference speedup for classi-
cal/online runtime, respectively, while HDTorch+ improves
these gains to (139x/9.5x)/130x. Note that online HD speedup
is significantly lower as a result of the necessity to re-
calculate the class vectors after every datapoint, a challenge
addressed in Section 6.4.2. Finally, the observed differences
in speedup for different datasets is due to the different dataset
feature counts; for example, PAMAP has the smallest number
of features and thus the smallest possible speedup due to
more limited parallelization opportunities.

6.3. Memory Consumption Analysis

Figure 4 also illustrates trends in memory consumption
across the datasets. Memory values are normalized to the
memory usage of running training and inference on the CPU.
It can be seen that utilizing HDTorch without HDTorch+
extensions does not reduce memory usage, as the tensors
used to store hypervectors are identically sized on either
the CPU or GPU. Introducing HDTorch+ extensions, on the
other hand, reduces memory consumption by approximately
10x for both training and inference in the aforementioned
benchmark datasets. This is due to reducing the memory
footprint for hypervectors by 8x by bit packing, and utilizing
the more memory efficient HDTorch+ bit-array summation
functions, which instantiate fewer intermediate tensors during
computation. Once again, PAMAP is an outlier on memory
consumption reduction as it has an order of magnitude fewer
samples compared to the other datasets.

6.4. Parameters Influence

We also evaluate the impact of hyperparameter variance
on accuracy and runtime for the four benchmarks. We find
a trade-off between model complexity/size, accuracy, and
runtime. Measured runtime and accuracy values are averaged
across the four datasets, and error bars indicate the standard
deviation of the averaged values.



Figure 6. Acceleration with respect to HDTorch-CPU, compared for
HDTorch and HDTorch+ implementations. Comparison is given
for training using different batch sizes.

6.4.1. Hypervector Dimension. Figure 5 illustrates the
impact on model training time when varying the width D of
the class and feature hypervectors between 1024 to 32768
bits. The runtime values are normalized to the runtime of the
HDTorch model running on CPU with the typical D=10000.
As can be seen, reducing D drastically reduces runtime, up
to 483x/31x for classical/online learning with HDTorch+, at
the cost of an average 6% decrease in accuracy. On the other
hand, increasing D past 10000 provides little improvement to
accuracy. However, our results show that even a model with a
D=32768 runs 27x/14x faster over a CPU model of D=10000
for classical/online HD, indicating that if a user would like
to test a higher dimensional model on their dataset, HDTorch
makes this feasible in a reasonable amount of time.

6.4.2. Batch Size. Online HD benefits less from HDTorch
acceleration due to the fact that online HD is trained
sequentially, with one data sample accumulated into the
class vector at a time, and thus cannot be highly parallelized.
There is, however, the possibility to improve runtime by only
updating class vectors after a batch size of n new datapoints
are received. Figure 6 illustrates batching effects on model
runtime and accuracy. It can be seen that batching data sig-
nificantly decreases training time, especially for HDTorch+,
with an average of 68x performance gain achieved across all
batch sizes and datasets. This comes at a cost of an average
accuracy drop of 7% at a batch size of 8192. This drop
will vary according to dataset complexity; hence, batch size
should be tuned to the particular use case of the model.

6.5. Epilepsy Detection Use Case

Finally, we test classical HD and online HD implemen-
tations on a real-life dataset for epilepsy detection. Figure 7
illustrates HDTorch and HDTorch+ speedup with respect
to CPU-HDTorch for classical/online HD. Accelerations
are shown for the encoding, training, and inference stages.
For classical HD, HDTorch achieves a 7x speedup for all
stages, with HDTorch+ providing an additional 10x gain
for each stage, for total speedups of 79x, 78x, and 70x for
encoding, training, and inference, respectively. For online HD,
performance gains are similar for encoding and inference,
whereas for training, gains are significantly reduced, to 2.1x
and 2.7x for HDTorch and HDTorch+. This is due to the
parallelization constraints described in Section 6.1.

Figure 7. Acceleration in respect to HDTorch-CPU, compared for
HDTorch and HDTorch+ implementations, for encoding stage,
training and interference on CHB-MIT dataset.

Figure 8. Epilepsy detection performance comparing training on a
subset of data (typical in previous literature) against using the whole
CHB-MIT dataset. Boxplots represent performance distribution for
all 24 subjects, with mean performance marked as a horizontal line.

The speedup achieved by using the HDTorch library
enables us to evaluate HDC performance on the entirety of
the CHB-MIT database. Evaluation of HDC performance on
such a big database enables better insights into performance
of HDC algorithms for real-life applications on wearable
devices. Figure 8 illustrates the detection of epileptic episodes
for the two dataset organizations described in Section 5.1.2,
namely, Fact10 and 1HSeg. For Fact10, there is no significant
difference between performance of random forest, classical
HD and online HD, with all of them detecting almost
all seizures with some amount of false positives. On the
other hand, training and predicting on the 1HSeg dataset
organization shows a significant decrease in performance
for classical HD. While it still detects almost all seizures, it
also has significantly more false positives, thus reducing the
F1 score. While random forest and online HD miss some
seizures, they also avoid such a significant drop in precision
and F1 score. Even so, random forest slightly outperforms
online HD performance.

These results indicate two key takeaways. First, analyzing
a subset of data may not generalize to performance on the
entirety of a dataset, especially when the dataset is large and
highly unbalanced, as is the case of the CHB-MIT database.
Second, new training strategies are constantly improving
HD computing’s accuracy, bringing it closer to that of other
standard ML models, such as random forest. Both takeaways
motivate the necessity for HDTorch, which enables new HDC
strategies to be explored on realistic datasets, paving the way
for future breakthroughs in the field.



7. Conclusion

In order to bring HDC performance in line with state-
of-the-art ML algorithms and position it as an algorithm for
continuous online monitoring for wearables in healthcare,
algorithm optimization and design space exploration are
necessary. Thus, in this work we have presented HDTorch, the
first open-source, PyTorch-based library for HD computing
with CUDA extensions for hypervector operations.

On four HDC benchmark datasets, we demonstrated an
average 111x/68x training speedup for classical/online HD,
respectively, and an average 87x speedup for inference. In
addition, we have shown that HDTorch’s CUDA extensions
for HDC operations reduce training/inference memory con-
sumption by up to 10x. HDTorch’s utility and flexibility have
been demonstrated by analyzing the effects of hypervector
dimension and batch size on model accuracy and runtime.

Finally, the speedup achieved by using the HDTorch
library enables us to evaluate HDC performance on the large,
highly unbalanced CHB-MIT epilepsy dataset, where we
demonstrate that the performance resulting from typical
approach of training on a subset of the data does not
necessarily generalize to training on the entire dataset. This
important observation must be carefully considered when
developing future HD models for medical wearable devices.
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