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Abstract

This work proposes a universal and adaptive second-order method for minimizing
second-order smooth, convex functions. Our algorithm achieves O(σ/

√
T ) con-

vergence when the oracle feedback is stochastic with variance σ2, and improves
its convergence to O(1/T 3) with deterministic oracles, where T is the number of
iterations. Our method also interpolates these rates without knowing the nature of
the oracle apriori, which is enabled by a parameter-free adaptive step-size that is
oblivious to the knowledge of smoothness modulus, variance bounds and the diam-
eter of the constrained set. To our knowledge, this is the first universal algorithm
with such global guarantees within the second-order optimization literature.

1 Introduction

Over the last few decades, first-order (convex) minimization methods have gained popularity for
modern machine learning and optimization problems due to their efficient per-iteration cost and
global convergence properties. The literature on first-order methods is rather dense and extensive
with a concrete, thorough understanding of the optimal global convergence behavior. Focusing on the
more relevant settings of smooth, convex minimization, the lower bounds have been well-established;
O(σ/

√
T ) when the gradient feedback is noisy with variance σ2, and O(1/T 2) under deterministic

first-order oracles [52, 58]. Under slight variations of the aforementioned problem setting, there
exists an extensive amount of work that enjoys the latter, “accelerated” rate [56, 57, 53, 65, 69, 39, 2,
41, 67, 19, 18, 35, 31, 6, 44].

On the contrary to its first-order analogue, the literature on global convergence of second-order,
smooth methods is notably sparse with many open questions standing even in the simplest problem
formulations. Following the pioneering works of Bennett [11], Kantorovich [33], Newton’s method
and its variations [40, 46] are considered as the staple of second-order methods in optimization.
Although its powerful local convergence behavior has been repeatedly demonstrated [17, 38], studies
on its global behavior are relatively limited. Prior attempts at tackling global convergence mostly make
additional structural assumptions on the objective function [61, 47, 38] or assume extra regularity
conditions on the Hessian [34] beyond the simplest smooth and convex setting. Over the last decade,
we have witnessed important progress towards a more complete theory of globally-convergent second-
order methods (more on this shortly), and yet there remains many important questions unanswered,
which we will delve into in this paper.

To motivate the perspective in our technical endeavour, we take a small detour to introduce the idea of
universality, which we particularly characterize as adaptation to the level of noise in oracle feedback.
Enabled by the recent advances in online optimization, universal first-order algorithms essentially
attain the O(σ/

√
T + 1/T 2) convergence for convex minimization problems, interpolating between

stochastic and deterministic rates. There exist a plethora of algorithms that enjoy this rate under
∗Alphabetical order, equal contribution
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different sets of assumptions for both minimization scenarios (for convex and non-convex settings,
we refer the reader to [39, 35, 22, 31, 6] and [68, 42, 36, 45], respectively), and the more general
framework of variational inequalities [8, 5, 66, 25, 3, 26, 4]. However, we observe that such universal
results do not exist in second-order literature, hence, it is only natural to ask,

Can we design a simple second-order method that will achieve
accelerated universal rates beyond O(σ/

√
T + 1/T 2)?

More recently, global sub-linear convergence rates for second-order methods have been characterized
by [59] for second-order smooth and convex setting. Essentially, the so-called Cubic Regularized
Newton’s Method combines the quadratic Taylor approximation in the typical Newton update with
a cubic regularization term. At the expense of solving a cubic problem, this method achieves
O(1/T 2) convergence rate. Shortly after, Nesterov [55] proposes an accelerated version of the
cubic regularization idea with O(1/T 3) value convergence, pioneering a new direction of research
in the study of globally-convergent second-order methods [49]. This idea has been studied further
for different settings in convex optimization [28, 29] with the same accelerated O(1/T 3) rate and
extended to non-convex realm [14, 15], obtaining the analogous rates of O(1/T 2/3) and O(1/T 1/3)
for finding first-order and second-order stationary points, respectively, leading the way for further
investigations [10, 21, 16].

Notice that accelerated cubic regularization is sub-optimal such that recent studies prove a respective
lower-bound for second-order smooth, convex problems as O(1/T 7/2) [1, 7]. The first line of research
that shrinks the gap between the upper and lower bounds for achieving an almost-optimal (more on
this shortly) convergence [60] is the so-called “bisection-type” methods. Pioneered by Monteiro
and Svaiter [50], these class of algorithms propose a conceptual method where the step-size of the
algorithm implicitly depends on the next iterate. To resolve, the authors propose a bisection procedure
that simultaneously finds a step-size/next iterate pair that satisfies the conditions of the iterative
update, which enables the convergence rate of O(1/T 7/2), modulo the complexity of bisection
procedure. This idea was very recently generalized for higher-order tensor methods [23]. Not so
surprisingly, the same construction finds application in variational inequality (VI) and min-max
optimization literature [12, 30]. Very recently and concurrently to our work, [13] propose the first
bisection free acceleration for second-order methods, that achieves the optimal O(1/T 7/2). The
authors define an explicit, deterministic procedure called MS oracle and compute the step-size using
a standard line-search procedure enabling them to achieve optimal rates while adaptively computing
the step-size without needing to know the smoothness constant.

Although there are promising results with an increasing interest into second-order –and also higher-
order– methods, we identify three main shortcomings in the literature, which we will systematically
address in the sequel. First, bisection-type methods achieve the optimal convergence rate however,
the search procedure is computationally very prohibitive [60, 43] and the resulting algorithms are
complicated with many interconnected components. On the other hand, cubic regularization-based
ideas propose a simple construction that achieves acceleration beyond O(1/T 2) however, similar to
previous methods, they either require the knowledge of smoothness constant or need to execute a
standard line-search procedure to estimate it locally. A common drawback for both approaches is that
the algorithmic constructions are designed for handling only deterministic oracles and it is an open
question whether such frameworks could immediately accommodate stochastic first and second-order
information.

Our contributions: To address the aforementioned issues, we developed the first universal and
adaptive second-order algorithm, EXTRA-NEWTON, for convex minimization. We summarize our
contributions as follows:

1. We prove EXTRA-NEWTON achieves the global convergence rate of O(
σg√
T

+ σH

T 3/2 + LD3

T 3 )

that adapts simultaneously to the variance in the gradient oracle (σg) and Hessian oracle (σH )
achieving the first universal convergence result in the literature.

2. Our method is completely oblivious to any problem-dependent parameters including smoothness
modulus, variance bounds on stochastic oracles, diameter of the constraint set and any possible
bounds on the gradient and Hessian.
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Table 1: A survey on first and second-order algorithms with key properties

AGD
[56]

UniXGrad
[35]

Reg.
Newton

[49]

Accel.
Cubic Reg.

[55]

ANPE2

[50]
OptMS

[13]

Extra
Newton
[ours]

Rate 1
T 2

σg√
T
+ 1

T 2
1
T 2

1
T 3

1
T 7/2

1
T 7/2

σg√
T
+ σH

T 3/2 + 1
T 3

Bisection-free ✓ ✓ ✓ ✓ ✗ ✓ ✓
Adapts to L ✗ ✓ ✗ Partial ✗ ✓ ✓
Noise-adaptive ✗ ✓ ✗ ✗ ✗ ✗ ✓

3. We design the first adaptive step-size, in the sense of [20, 63], that successfully incorporates
second-order information “on-the-fly”. While doing so, we bypass any bisection or linesearch
procedure, and propose a simple, intuitive algorithmic framework.

From a technical point of view, what will allow us to achieve these results is the combination of
three principal ingredients: (i ) proposing appropriate adjustments to Extra-Gradient [37] that was
originally designed for solving variational inequalities and min/max problems; (ii ) an “optimistic”
weighted iterate averaging scheme accompanied by an appropriate gradient rescaling strategy in the
spirit of [67, 19, 35] which allows us to obtain an accelerated rate of convergence by means of a
generalized online-to-batch conversion (Theorem 3.3), and (iii ) the glue that holds these elements
together is an adaptive learning rate inspired by [63, 35, 4] which automatically rescales aggregated
gradients and second order information. In what follows, we shall explicate these arguments.

2 Problem setup

Throughout the sequel, we will be focusing on solving (constrained) convex minimization problems
of the general form:

minimize f(x)

subject to x ∈ X .
(Opt)

Formally, in the above X is a convex and compact subset of a d- dimensional normed space V ∼= Rd

with diameter D = maxx,y∈X ∥x− y∥, and f : V → R ∪ {+∞} is a proper, lower semi-continuous,
convex function with domf = {x ∈ Rd : f(x) < +∞} ⊂ X . To that end, we make a set of blanket
assumptions for (Opt). Following the vast literature of constrained convex minimization [54, 9], we
consider “simple” constraint sets, i.e.,

Assumption 2.1. The constraint set X of (Opt) possesses favorable geometry which facilitates a
tractable projection operator.

In order to avoid trivialities, we also assume that the said problem admits at least a solution, i.e.

Assumption 2.2. The solution set X ∗ = argminx∈X f(x) of (Opt) is non-empty.

Furthermore, we assume that there exists a Lipschitz continuous selection x 7→ ∇2f(x) ∈ Rd×d, i.e.,

∥∇2f(x)−∇2f(x′)∥ ≤ L∥x− x′∥ ∀x, x′ ∈ X (H-smooth)

and in addition it satisfies the second order approximation:

f(x) = f(x′) + ⟨∇f(x′), x− x′⟩+ 1

2
⟨∇2f(x′)(x− x′), x− x′⟩+O

(
∥x− x′∥3

)
(Taylor)

To that end, combining (H-smooth) and (Taylor) we readily get the following inequality:

∥∇f(x)−∇f(x′)−∇2f(x′)(x− x′)∥ ≤ L

2
∥x− x′∥2 (1)

The above equivalences are well-established and hence we omit their proofs (we defer for a panoramic
view to [70])

2Note that the bisection procedure is computationally prohibitive, we defer the reader to [60], p.304-305.
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Oracle feedback structure From an algorithmic point of view, we aim to solve (Opt) by using
methods that require access to a (stochastic) first and second order-oracle. Before we move forward
with the methodology, we shall introduce the definitions and notations for this oracle model which
we will use in algorithm definitions and technical discussions. Let g(x, ξ) denote the stochastic
gradient evaluated at x with randomness defined by ξ and H(x, ξ) be the stochastic Hessian at x with
ξ describing the randomness of the oracle, such that

E [ g(x, ξ) | x ] = ∇f(x), E
[
∥g(x, ξ)−∇f(x)∥2 | x

]
≤ σ2

g

E [H(x, ξ) | x ] = ∇2f(x), E
[
∥H(x, ξ)−∇2f(x)∥2 | x

]
≤ σ2

H

(2)

Due to space constraints, we will also define an operator that accommodates second-order information
and its respective stochastic counterpart.

F(x;x′) = ∇f(x′) +
1

2
∇2f(x′)(x− x′)

F̃(x;x′, ξ) = g(x′, ξ) +
1

2
H(x′, ξ)(x− x′)

(3)

where F is essentially the gradient (with respect to x) of the second-order Taylor polynomial. By
definition, the operator F satisfies the second-order smoothness property in Eq. (1)

3 Method

In this section, we shall establish our universal second-order framework. Our presentation evolves
around three key components: choosing the appropriate algorithmic template with the key motivations
behind it, solving implementability issues that commonly arise in higher-order methods and finally
designing a universal algorithm that can handle deterministic and noisy oracle feedback simultane-
ously without having prior knowledge. Our point of departure is the popular Extra-Gradient (EG)
template; originally introduced by Korpelevich [37] and further developed in Nemirovski [51],

Xt+ 1
2
= ΠX (Xt − γt∇f(xt))

Xt+1 = ΠX
(
Xt − γt∇f(xt+1/2)

)
,

(EG)

where ΠX (x) = argminz∈X ∥x− z∥2 is the standard Euclidean projection onto the set X . In terms
of output, the candidate solution returned by (EG) after T iterations is the so-called “ergodic average”

X̄T =

∑T
t=1 btXt+ 1

2∑T
t=1 bt

(4)

Then, taking bt = γt and assuming the method’s step-size γt is chosen appropriately, X̄T enjoys the
following universal guarantee [32, 62]:

E[f(Xt)− f(x∗)] = O
(
1

T
+

σ√
T

)
(5)

where σ signifies the effect of the noisy feedback. However, as it becomes apparent, the vanilla
(EG) template is not capable of matching the iconic 1/T 2 for the smooth deterministic case. It is
well-established in the literature of smooth, convex minimization that iterate averaging (or momentum
in the sense of Nesterov [56]) is essential for matching the O(1/T 2) lower bounds. In fact, plain
uniform averaging is not sufficient; one needs to introduce new iterates with increasing weights.
Precisely, this is equivalent to computing an average by taking bt = O(t). However, we cannot fully
characterize the acceleration machinery without what we like to call “gradient weighting”. On top of
(weighted) iterate averaging, gradients must be multiplied by the same order of weights to achieve
acceleration, which is a recurring theme in the literature of accelerated and universal optimization
[65, 69, 39, 2, 41, 67, 18, 35, 31].

Going back to discussion on (EG), Wang and Abernethy [67] and Kavis et al. [35] provide useful
insights into acceleration within the context of (EG). Wang and Abernethy [67] identifies a 2-player
game with a particular structure called FENCHELGAME framework, which essentially reduces to
minimizing a smooth, convex function when the players cooperate. By introducing an “optimistic”
weighted iterate averaging along with a complementary gradient weighting strategy, the framework
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recovers different acceleration schemes of Nesterov [56, 57, 53]. On a related front, Diakonikolas
and Orecchia [19] proposes the first acceleration of (EG) by appropriately integrating the optimistic
averaging idea [67] into the (EG) template as follows:

X̃t =
btXt +

∑t−1
s=1 bsXs+ 1

2∑t
s=1 bs

, X̄t+ 1
2
=

∑t
s=1 bsXs+ 1

2∑t
s=1 bs

(6)

where bt = O(t) is the “iterate averaging” parameter. Later on, Kavis et al. [35] designs an adaptive,
universal variant of accelerated Mirror-Prox following the same optimistic averaging idea as in
Eq. (6). All in all, it is a recurring theme among accelerated algorithms to adopt weighted iterate
averaging (bt = O(t)) with proportionate gradient weighting, and not so surprisingly, prior work
establishes clear connections between the degree of weighting and convergence rate. Cutkosky [18]
designs a black-box reduction that accelerates a class of online algorithms and proves that the rate of
convergence of the reduction is O(1/

∑T
t=1 bt) for bt ∈ [1, t]. In retrospect, we aim at answering the

following question;

What algorithmic construction would enable acceleration beyond O(1/T 2)?

3.1 Implicit algorithm

We give a first affirmative answer to the above question by presenting our implicit accelerated
algorithm which is constructed upon (EG), and establish its convergence properties. Note that
the implicitness of the scheme serves as a gentle introduction to the actual explicit second order
acceleration, which shall follow. Formally, our scheme is given via the following recursion:

Xt+ 1
2
= ΠX

(
Xt − γtatF(X̄t+ 1

2
; X̃t)

)
= argmin

x∈X
at⟨∇f(X̃t) +

1

2
∇2f(X̃t)(X̄t+ 1

2
− X̃t), x−Xt⟩+

∥x−Xt∥2

2γt

Xt+1 = ΠX

(
Xt − γtat∇f(X̄t+ 1

2
)
)

= argmin
x∈X

at⟨∇f(X̄t+ 1
2
), x−Xt⟩+

∥x−Xt∥2

2γt

(Implicit)

with ΠX (x) denoting the Euclidean projection of x onto X , average sequences X̃t and X̄t+ 1
2

defined
as in (6) and the adaptive step-size γt defined as (for some γ, β0 > 0):

γt =
γ√

β0 +
∑t−1

s=1 a
2
s∥∇f(X̄s+ 1

2
)− F(X̄s+ 1

2
; X̃s)∥2

. (7)

The implicit nature of (Implicit) originates from Xt+1/2 update (which we shall refer to as (corrected)
extrapolation step at times) since X̄t+ 1

2
depends upon Xt+ 1

2
itself. However, this scheme exhibits

several key differences from the vanilla (EG), which constitute the fundamental parts of our second-
order acceleration machinery. In particular, we have:

(i) integration of second-order updates for sharper extrapolation steps - first step of acceleration.
(ii) interplay between averaging (bt) and gradient weighting (at) which allows more aggressive

averaging - second step of acceleration.
(iii) adaptive step-size in the sense of Rakhlin and Sridharan [63] - key to adaptivity and universality.

Second-order updates: First, we will consider the particular interpretation of (EG) as an approx-
imation to the Proximal Point method [64] which serves as motivation for the accommodation of
second-order information in our scheme.

Xt+1 = Xt − γt∇f(Xt+1). (PP)

In particular, (EG) tries to approximate Xt+1 by generating the extrapolated point Xt+ 1
2

, and make
use of the gradient at Xt+ 1

2
to take a step from Xt to Xt+1. Therefore, if the algorithm is able
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to compute a sharper estimate in the extrapolation step, it should be able live up to the fame of
(PP) and display faster convergence. To this end, we augment the extrapolation step by introducing
second-order term. Essentially, our algorithm makes use of second-order Taylor approximation, as
opposed to first-order expansion, only for the extrapolation step, trading-off sharper approximation
with second-order information.

Iterate averaging and gradient weighting: Now, we turn our attention to the second component
in our acceleration machinery; averaging and weighting. Recall that the acceleration framework of
Cutkosky [18] guarantees a value convergence rate of O(1/tp+1) when weighting factor satisfies
bt = O(tp) with p ∈ [0, 1]. We take this result one step beyond in two fronts; our algorithm exploits
higher-order smoothness in order to extend this bound for p ∈ [0, 2], implying the accelerated rate
of O(1/T 3). Second, we observe that previous work restricts the choice of gradient weights and
averaging weights by taking at ≈ bt. We decouple those weights by allowing the sequences at and
bt to be different, which in turn equips us with more aggressive iterate averaging when necessary.

Adaptive step-size: As the final component, we study the adaptive step-size (7) from the param-
eter adaptation perspective (i.e., adaptation to the Lipschitz modulus) and expand on its universal
properties in the next section. The vast literature on adaptive methods predominantly rely on con-
structions of AdaGrad-like decreasing step-size policies by accumulating the observed gradient
norms in its denominator. The intuition behind this choice is that whenever the method approaches a
solution, the vanishing gradients bring about stabilization, ensuring progress around the solution’s
neighborhood. However, this idea fails for (compactly) constrained problems; when the solution
lies on the boundary. So inspired by [63], we design a constraint-aware step-size by accumulating
∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 which converges to 0 as X̄t+ 1

2
− X̃t → 0; which in turn implies

convergence of the algorithm. To our knowledge, this is the first adaptive step-size that accommodates
second order information.

Having established the core components of our design, we are in position to present the first acceler-
ated convergence rate guarantee for (Implicit). Formally, this is given by the following.
Theorem 3.1. Let {Xt+ 1

2
}Tt=1 be generated by (Implicit) run with the adaptive step-size policy (7)

where at = t2, bt = tp with p ≥ 2. Assume that f satisfies (H-smooth) then, it is ensured that:

f(X̄T+ 1
2
)− f(x∗) ≤ O

max
{√

β0
D2

γ , LD4+Dγ3

γ

}
T 3


When γ = D, we obtain the converge rate O

(
max{LD3,

√
β0D}

T 3

)
.

Remark 3.1. We emphasize that the above rate does not require any prior knowledge of problem
paramaters such as L, D, time-horizon T and any bounds on gradient/Hessian norms. In order to
have better dependence on D one could set γ = D, and our rate of O(1/T 3) holds irrespective of γ.

3.2 Explicit algorithm

Despite the fact that (Implicit) improves upon the accelerated rate of O(1/T 2), one may easily
observe that it exhibits the following drawbacks:

1. (Implicit) is a conceptual algorithm and therefore, not implementable in practice.
2. A fortiori, it cannot provide rate interpolation guarantees as it does not have the machinery to

simultaneously cope with deterministic and stochastic feedback.

As discussed earlier, a common strategy for overcoming this implicit construction is using a
bisection/line-search procedure [30, 50, 12]. Depending on the context, this procedure serves
two distinct purposes. Primarily, it tackles the implicit nature of the update rule by simultaneously
finding a pair of (γt, Xt+ 1

2
) and secondly, it enables adaptation to the second-order smoothness.

However, one may identify major setbacks with these approaches; first, it is not clear how to handle
stochastic oracles for executing the search procedure, so it is not capable of satisfying any universal
guarantees. Moreover, it yields a rather complicated procedure as a byproduct that has many moving
parts. To that end, we propose an alternative approach which not only yields a simple scheme, but
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also provides a universal algorithm that is able to handle noisy feedback on-the-fly. Without further
ado, we display our explicit algorithm, EXTRA-NEWTON, with appropriate modifications. Having
defined our main scheme, Algorithm 1, we will provide a more detailed description of its components.

Algorithm 1: EXTRA-NEWTON

Input: X1 ∈ X , at = t2 and At =
∑t

s=1 as, bt = tp (p ≥ 2) and Bt =
∑t

s=1 bs, γ > 0, ξt ∼ i.i.d.

1: for t = 1 to T do
2: γt =

γ√
β0 +

∑t−1
s=1 a

2
s∥g(X̄s+ 1

2
, ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s, ξs)∥2

3: Xt+ 1
2
= argminx∈X ⟨atg(X̃t, ξt), x⟩+ atbt

2Bt
⟨H(X̃t, ξt)(x−Xt), x−Xt⟩+ 1

2γt
∥x−Xt∥2

4: Xt+1 = argminx∈X ⟨atg(X̄t+ 1
2
, ξt+ 1

2
), x⟩+ 1

2γt
∥x−Xt∥2

5: end for

Universal step-size We modify our step-size (see Eq. (2)) in order to operate in the stochas-
tic regime while making it noise-adaptive for rate interpolation. Using the same weighted
averaging scheme in Eq. (6), we define the universal counterpart of the adaptive step-size,
Note that γt is independent of any variable/randomness generated at iteration t; it accumulates
a2t∥g(X̄s+ 1

2
, ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s, ξt)∥2 up to t− 1. Therefore, the step-size is decoupled from the

explicit update, a priori.

Now, what remains is a new algorithmic design that will retain the accelerated convergence properties
demonstrated by (Implicit) while having an explicit construction that is capable of automatically
adjusting to noise level in the oracle feedback. Before expanding upon the technical details of our
strategy, let us take our time to explain the consequences of our explicit design compared to (Implicit).

From implicit to explicit To obtain the explicit algorithm, (i ) we write the projection sub-problem
in the argmin form; (ii ) introduce stochastic oracle feedback; (iii ) for the second-order term, replace
Xt+ 1

2
in X̄t+ 1

2
with the free variable x; then, (iv) simplify as follows:

at
2
⟨H(X̃t, ξt)(X̄t+ 1

2
− X̃t), x−Xt⟩

⇓

at
2

〈
H(X̃t, ξt)

(btXt+ 1
2
+
∑t−1

s=1 bsXs+ 1
2

Bt
−

btXt +
∑t−1

s=1 bsXs+ 1
2

Bt

)
, x−Xt

〉
⇓

at
2

〈
H(X̃t, ξt)

(btx+
∑t−1

s=1 bsXs+ 1
2

Bt
−

btXt +
∑t−1

s=1 bsXs+ 1
2

Bt

)
, x−Xt

〉
⇓

atbt
2Bt

⟨H(X̃t, ξt)(x−Xt), x−Xt⟩

Given the bisection-type conceptual methods [50, 30, 12], it is surprising how smoothly we could
transition from implicit to explicit once we decouple the step-size from the current iteration apriori.
Moreover, the resulting update rule for the extrapolation step retains the quadratic structure as the
Xt+1 update rule. Having analyzed the components of the explicit scheme, we will first present the
universal convergence rates then provide a concise explanation of the proof strategy with particular
emphasis on the principal components of the analysis.
Theorem 3.2. Let {Xt+ 1

2
}Tt=1 be a sequence generated by Algorithm 1, run with the adaptive

step-size policy (2) and at = t2, bt = tp with p ≥ 2. Assume that f satisfies (H-smooth), and that
Assumptions (2) hold. Then, the following universal guarantee holds:

f(X̄T+ 1
2
)− f(x∗) ≤ O

 D2+γ2

γ σg
√
T

+

D3+Dγ2

γ σH

T 3/2
+

max
{
LD4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3
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When γ = D, we obtain the target rate O

(
Dσg√

T
+ D2σH

T 3/2 +
max{LD3,

√
β0D}

T 3

)
.

Remark 3.2. Similar to Theorem 3.1, EXTRA-NEWTON achieves the preceding convergence rate
independent of the knowledge of problem parameters.

Compatible with the (EG)-based algorithmic design, our proof has the following main steps

1. We perform an offline regret analysis of Alg. 1 and show adaptive regret bounds - see Prop. 3.1.
2. We prove an anytime online-to-batch conversion framework, which generalizes that of Cutkosky

[18], through decoupling iterate averaging from gradient weighting - see Theorem 3.3.
3. Combining the adaptive regret bound with the conversion theorem immediately implies universal,

accelerated value convergence of O(
Dσg√

T
+ D2σH

T 3/2 +
max{LD3,

√
β0D}

T 3 ) - see Theorem 3.2.

Let us begin with clarifying what offline regret means for Algorithm 1. We define the (linear) regret
considering the convention in both online learning [63, 18] and first-order acceleration literature
[67, 35, 31]. We measure the performance of our decisions for the extrapolation sequence such that
after playing Xt+ 1

2
, our algorithm observes and suffers the linear (weighted) loss with respect to

at∇f(X̄t+ 1
2
). Hence, we define the regret as

RT(x) =

T∑
t=1

at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x⟩ (Reg)

where we run the algorithm for T rounds. Next up, we provide our generalized conversion result.
Theorem 3.3. Let RT(x

∗) denote the anytime regret for the decision sequence {Xt+ 1
2
}Tt=1 as in

(Reg), and define two sequences of non-decreasing weights at and bt such that at, bt ≥ 1. As long as
at/bt is ensured to be non-increasing,

f(X̄T )− f(x∗) ≤ RT(x
∗)

aT
BT

bT

Remark 3.3. This conversion result holds independent of the order of smoothness of the objective
as long as f is convex. Moreover, it allows averaging parameter bt to be asymptotically larger than
gradient weights at, enabling a more aggressive averaging strategy when necessary.

To complement the lower bound to the regret RT(x
∗), we present an upper bound that helps us explain

how we exploit second-order smoothness for a more aggressive weighting, hence the rate O(1/T 3).
Proposition 3.1. Let {Xt+ 1

2
}Tt=1 be generated by Algorithm 1, run with a non-increasing step-size

sequence γt and non-decreasing sequences of weights at, bt ≥ 1 such that at/bt is also non-
increasing. Then, the following guarantee holds:

ERT(x
∗) ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

]

Observe that the inequality in Proposition 3.1 is agnostic to the design of our step-size in Eq. (2)
as well as the selection of the weights as described in Theorem 3.2. It essentially applies to any
non-increasing sequence of step-sizes and non-decreasing gradient weight sequence at ≥ 1. To
obtain it, we neither used convexity nor the smoothness of the objective. In fact, the structure of the
objective function, i.e., its convexity, will not be needed for upper-bounding the regret expression,
and required only for the conversion in Theorem 3.3.

Now, let us explain how we make use of second-order smoothness for enjoying faster rates, and
give a brief discussion of how the regret bound will look in its final form. First, we decompose the
stochastic term ∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 into deterministic feedback and noise. Then,

we argue that the noisy component grows as O(σHT 3/2 + σgT
5/2). On the other hand, achieving

the accelerated O(1/T 3) component of the universal rate amounts to showing that the regret has a
constant, O(1), component. In the worst-case sense, however, the deterministic component itself
grows as O(T 5/2). Fortunately, we identify that the negative term is “large enough” in magnitude to
control the growth of the deterministic term, permitting a constant component O(LD2) for the regret.
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Although the regret bound of O(LD3 +D2σHT 3/2 +DσgT
5/2) seems counter-intuitive from an

online-learning perspective, it will make perfect sense when we discuss how second-order smoothness
leads to “faster” conversion through more aggressive averaging. As a matter of fact, we will continue
our discussion with how second-order smoothness helps us accelerate. It turns out that using
(H-smooth), iterate averaging as in Eq.(6) and compactness of X , we can bound the negative term as,

− 1

γt+1
∥Xt+ 1

2
−Xt∥2 ≤ − 1

L2D2γt+1
t4∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

Observe that to seamlessly combine the positive and negative terms, our analysis enforces that
at = O(t2) and bt = Ω(t2). Then, the conversion implies a convergence rate of RT(x

∗)/T 3, hence
the recipe for acceleration. Therefore, the constant component of the regret amounts to O(1/T 3)

convergence rate, while the stochastic component of the regret implies O(σH/T 3/2 + σg/
√
T ) rate,

giving us the first universal acceleration beyond first-order smoothness.

Let us conclude by discussing the intricate relationship between the universal step-size and the regret
bounds. Simply put, growth of the summation in the denominator of γt is of the same order as the
regret bound. Under stochastic gradient and Hessian oracles, the regret bound is of order O(T 5/2),
and we can trivially show using variance bounds that the step-size is lower bounded by O(T−5/2).
On the other extreme, the regret bound described in Proposition 3.1 is bounded by a constant under
deterministic oracles, which implies that the summation in the denominator of the step-size is in turn
summable, i.e., the step-size has a positive, constant lower bound. This adaptive behavior of our
step-size enables automatic adaptation to noise levels and thus the universal rates.

4 Experiments

In this section, we will present practical performance of EXTRA-NEWTON against a set of first-order
algorithms, e.g., GD, SGD, ADAGRAD [20], ACCELEGRAD [41], UNIXGRAD [35]; and second-
order methods, e.g., NEWTON’S, Optimal Monteiro-Svaiter (OPTMS) [13], Cubic Regularization
of Newton’s method (CRN) [59] and Accelerated CRN (ACRN) [55] for least squares and logistic
regression problems over a LIBSVM datasets, a1a and a9a. Our main objective is three-folds.
First, when the objective has a favorable structure as in least squares, second-order method has
cheap oracle costs and display superior convergence behavior. Second, we want to demonstrate the
improved rates of our algorithm against accelerated and non-accelerated first-order methods through
the ℓ2-regularized logistic regression problem. Finally, we compare our methods with respect to other
second-order methods that achieve (almost) optimal rates. In the plots, the statement # of oracle
calls on the x-axis counts any gradient or Hessian computation as one oracle call. Also note that
we consider the black-box oracle model in which the algorithms only have access to gradient and
Hessians without knowing the actual objective function.

When the problem is suitable, second-order methods show promising performance with truly superior
run time. In Figure 1a, we display the result for least squares setting. Second-order methods
are known to be suitable for quadratic problems, and our method exploits its hybrid construction
to converge significantly faster than first-order methods, matching the behavior of NEWTON’S.
For the logistic regression problem, we regularize it with g(x) = 1/2∥x∥2, but use a very small
regularization constant to render the problem ill-conditioned, making things slightly more difficult
for the algorithms [47, 49]. Although we implement NEWTON’S with line-search, we actually
observed a sporadic convergence behavior; when the initial point is close to the solution it converges
similarly to EXTRA-NEWTON, however when we initialize further away it doesn’t converge. This
non-convergent behavior has been known for NEWTON’S, even with line-search present [27]. On
the contrary, EXTRA-NEWTON consistently converges; even if we perturb the initial step-size and
make it adversarially large, it manages to recover due to its adaptive step-size. We complement our
numerical tests by comparing EXTRA-NEWTON with a set of second-order methods. To that end, we
implemented our method within the framework presented in [13]. Using the implementation and the
experimental setup provided in their GitHub repository [24], we implemented our method in their
code and compared against NEWTON’S, CRN, ACRN and OPTMS algorithms. Figure 2 shows that
EXTRA-NEWTON has comparable performance to OPTMS, which has the theoretically faster rate
O(1/T 7/2), and marginally outperforms with respect to number of linear system solutions since the
linesearch procedure of OPTMS might require multiple system solutions per iteration. While CRN
and ACRN has worse convergence than EXTRA-NEWTON, NEWTON’S seems to have the fastest.
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(b) Logistic regression on a1a

Figure 1: Comparison of value convergence for regression problems with deterministic oracle access

(a) Value convergence w.r.t # Hessian oracle calls (b) Value convergence w.r.t. # linear system solutions

Figure 2: EXTRA-NEWTON vs. second-order methods. Logistic regression with a9a dataset

Note that the initialization favors NEWTON’S as it lies in a close neighborhood of the solution, and
NEWTON’S performance sporadically deteriorates when initialized arbitrarily.

5 Conclusion

In this work, we present the first universal, second-order algorithm, EXTRA-NEWTON, which
enjoys the value convergence rate of O(σg/

√
T + σH/T 3/2 + 1/T 3). By extending the notion

of bounded variance on stochastic gradients to stochastic Hessian, we prove adaptation to the
noise in first and second-order oracles, simultaneously, while showing accelerated rates matching
that of Nesterov [55] under the fully deterministic oracle model. To that end, an important open
question is whether we could design a method that achieves an improved rate interpolation guarantee
O(σg/

√
T + σH/T 3/2 + 1/T 7/2) without depending on any line-search/bisection mechanism. We

defer this to a future work.
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A Preface

In Appendix B, we provide a complete list of notation and definitions that we have used throughout
the manuscript.

In Appendix C, we showcase additional numerical evidence for the comparison we provided in the
main text. Due to space constraints, we moved most of our plots to the appendix. We investigate the
practical behavior in both deterministic and stochastic setting.

In Appendix D, we begin with the proof of the generalized online-to-batch conversion in Theorem 3.3
to form the connection between the offline regret RT(x

∗) and value convergence f(X̄T+ 1
2
)− f(x∗).

Then in Appendix E, we present the analysis for obtaining the template regret bound in Proposition 3.1.
This template inequality is indeed the point where the analysis in the deterministic, implicit setting
and universal, explicit setting part ways.

In Appendix F, we take a small detour to introduce a crucial numerical inequality that is commonly
used in the analysis of adaptive methods.

We present the universal convergence analysis of EXTRA-NEWTON (Theorem 3.2) in Appendix G.

In Appendix H, we share the analysis of our conceptual framework: convergence of the implicit
algorithm (Implicit) in deterministic setting (Theorem 3.1), with the appropriate corollary of Proposi-
tion 3.1 for the case of deterministic oracles in this section.

B Notation and Definitions

To complement the notation in Section 2, we will present a complete list of definitions and parameter
descriptions to make it easier for the reader to follow the technical arguments in the whole paper.

Table 2: A complete list of parameters and expressions, their definitions and descriptions

Formal Definition Description

f f : Rd → R+ {+∞} objective function

X X ⊂ Rd convex and compact constraint set

x∗ = argminx∈X f(x) solution of the constrained problem (Opt)

D = supx,y∈X ∥x− y∥ diameter of the constraint set X
L ∥∇2f(x)−∇2f(x′)∥ ≤ L∥x− x′∥ second-order smoothness constant of f

g(·, ξ) E [ g(x, ξ) | x ] = ∇f(x), x ⊥⊥ ξ unbiased gradient estimate

H(·, ξ) E [H(x, ξ) | x ] = ∇2f(x), x ⊥⊥ ξ unbiased Hessian estimate

Ft = σ(ξ1, ξ1+ 1
2
, · · · , ξt) σ-algebra generated by random variables up to ξt

Ft+ 1
2

= σ(ξ1, ξ1+ 1
2
, · · · , ξt, ξt+ 1

2
) σ-algebra generated by random variables up to ξt+ 1

2

σg E
[
∥g(x)−∇f(x)∥2 | x

]
≤ σ2

g variance bound for gradient estimate

σH E
[
∥H(x)−∇2f(x)∥2 | x

]
≤ σ2

H variance bound for Hessian estimate

σ = max {σg, σH} maximum variance of oracles

γt Eq. (7) and Eq. (2) adaptive step-size

at = t2 gradient weights

At =
∑t

s=1 as normalization factor for gradient weights at

bt = tp, where p ≥ 2 averaging weights

Bt =
∑t

s=1 bs normalization factor for averaging weights bt
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C Further Experimental Evaluation

In this section we will present additional numerical experiments in two fronts;

- we run logistic regression and least-squares regression under deterministic gradients with another
LIBSVM datasets, w1a,

- and subsequently display results in the stochastic setting for the same datasets a1a, w1a.

Figure 3 shows the results for the deterministic experiments while Figure 4 focuses on the results of
the stochastic setting. In both figures, we present results for the least-squares in the first column and
the logistic regression in the second column.

In Figure 3, the x-axis represent the number of calls made to the deterministic oracle, and in Figure 4,
x-axis corresponds to number of full data passes (epochs) to compute the stochastic gradient estimates.
The deterministic setup is the same as we described in the main text. In the case of stochastic gradients,
we compute mini-batch gradient estimates with a batch-size of 50 samples. We plot the mean of
5 trials for all the methods under mini-batch gradients and also display the variance as the shaded
region around the mean curve.

For the case of logistic regression under deterministic gradients, our method performs better than the
rest of the pack with a1a dataset but has almost matching performance with a smaller performance
gap compared to accelerated first-order methods with w1a dataset. For both datasets, we tried to tune
Newton’s method for a randomly-chosen initialization but it was very difficult to find a parameter
setting where Newton shows any reasonable behavior. One could notice that Newton’s method
doesn’t converge to the solution for logistic regression problem for this random initial point.
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(a) Least-squares, a1a
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(b) Logistic regression, a1a
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(c) Least-squares, w1a
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(d) Logistic regression, w1a

Figure 3: Comparison of value convergence for regression problems with deterministic oracle access

We observe that the main advantage of our approach, and in general that of second-order methods,
becomes apparent when the problem at hand has a compatible structure such as least-squares. Intu-
itively, second-order methods should benefit when the cost of computing the Hessian is comparable
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to gradient computation. In fact, quadratic problems like least-squares yield a constant Hessian for
any point in the domain, granting a significant advantage to second-order methods. We exemplify
this behavior for least-squares problem with deterministic oracles. With w1a dataset, we couldn’t get
Newton’s method to converge once again. On the contrary, our method shows significant performance
upgrade compared to first-order methods while converging consistently in all our trials.

Finally, we have the experiments under stochastic oracles. We essentially present these results for
two main reasons; to show that our method works seamlessly with stochastic gradients without any
modifications, and to demonstrate that EXTRA-NEWTON achieves the O(1/

√
T ) rate (same as other

methods we compare against) when the gradient information is noisy. We showcase both of these
perspectives in Figure 4.
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Figure 4: Comparison of value convergence for regression problems with stochastic oracle access

D Generalized Online-to-batch Conversion (Theorem 3.3)

In this section we present the online-to-batch conversion scheme which connects the optimality gap
f(X̄T+ 1

2
)− f(x∗) with the "weighted" regret RT(x

∗) =
∑T

t=1 at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x∗⟩.

Theorem 3.3. Let RT(x
∗) denote the anytime regret for the decision sequence {Xt+ 1

2
}Tt=1 as in

(Reg), and define two sequences of non-decreasing weights at and bt such that at, bt ≥ 1. As long as
at/bt is ensured to be non-increasing,

f(X̄T+ 1
2
)− f(x∗) ≤ RT(x

∗)

aT
BT

bT

Proof. First, recall the definition of the offline regret:

RT(x
∗) =

T∑
t=1

at⟨∇f(X̄t+ 1
2
, Xt+ 1

2
− x∗⟩
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Devising our analysis in the spirit of [18, 35], we need to relate Xt+ 1
2

to the average iterate X̄t+ 1
2

in
order to exploit the convexity of the objective function. Notice that we could write the iterate Xt+ 1

2

as the difference of consecutive average iterates,

atXt+ 1
2
= at

Bt

bt
X̄t+ 1

2
− at

Bt−1

bt
X̄t− 1

2
. (8)

Also, we could subsequently express atx∗ = at
Bt

bt
x∗ − at

Bt−1

bt
x∗. Combining them together,

RT(x
∗) =

T∑
t=1

at⟨∇f(X̄t+ 1
2
, Xt+ 1

2
− x∗⟩

=

T∑
t=1

at
Bt

bt
⟨∇f(X̄t+ 1

2
), X̄t+ 1

2
− x∗⟩ − at

Bt−1

bt
⟨∇f(X̄t+ 1

2
, X̄t− 1

2
− x∗⟩

=

T∑
t=1

at⟨∇f(X̄t+ 1
2
), X̄t+ 1

2
− x∗⟩+ at

Bt−1

bt
⟨∇f(X̄t+ 1

2
), X̄t+ 1

2
− X̄t− 1

2
⟩

where we added and subtracted at
Bt−1

bt
⟨∇f(X̄t+ 1

2
), X̄t+ 1

2
⟩ to obtain the second equality. Having

expressed both inner products in the form we want, we could apply convexity and telescope.

T∑
t=1

at⟨∇f(X̄t+ 1
2
, Xt+ 1

2
− x∗⟩

≥
T∑

t=1

at

(
f(X̄t+ 1

2
)− f(x∗)

)
+ at

Bt−1

bt

(
f(X̄t+ 1

2
)− f(X̄t− 1

2
)
)

=

T∑
t=1

at

(
f(X̄t+ 1

2
)− f(x∗)

)
+ at

Bt−1

bt

(
f(X̄t+ 1

2
)− f(x∗)

)
− at

Bt−1

bt

(
f(X̄t− 1

2
)− f(x∗)

)
=

T∑
t=1

at
Bt

bt

(
f(X̄t+ 1

2
)− f(x∗)

)
− at

Bt−1

bt

(
f(X̄t− 1

2
)− f(x∗)

)
= aT

BT

bT

(
f(X̄T+ 1

2
)− f(x∗)

)
− a1

B0

b1

(
f(X̄−1/2)− f(x∗)

)
+

T−1∑
t=1

Bt

(
at
bt

− at+1

bt+1

)(
f(X̄t+ 1

2
)− f(x∗)

)
Setting B0 = 0 eliminates the second term. To conclude the proof, we need to show that the
summation term in the above expression is always non-negative. This is ensured when the sequence
at

bt
is monotonically non-increasing, which is specified in the theorem statement (and subsequently

satisfied by the algorithms). Hence,

T∑
t=1

at⟨∇f(X̄t+ 1
2
, Xt+ 1

2
− x∗⟩

= aT
BT

bT

(
f(X̄T+ 1

2
)− f(x∗)

)
+

T−1∑
t=1

Bt

(
at
bt

− at+1

bt+1

)(
f(X̄t+ 1

2
)− f(x∗)

)
≥ aT

BT

bT

(
f(X̄T+ 1

2
)− f(x∗)

)
.

Rearranging the terms gives us the final result

f(X̄T+ 1
2
)− f(x∗) ≤

∑T
t=1 at⟨∇f(X̄t+ 1

2
), Xt+ 1

2
− x∗⟩

aT
BT

bT

=
RT(x

∗)

aT
BT

bT

.

■
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E Template Regret Bound (Proposition 3.1)

In this section, we will prove the template inequality in Proposition 3.1 in the case of stochastic
oracles. This inequality will give us the main departure point for both Theorem 3.1 and Theorem 3.2.
We will prove a corollary of the following result later on, specifically for the deterministic setup,
which will follow the same steps as Proposition 3.1.

For ease of navigation, we present EXTRA-NEWTON once more.

EXTRA-NEWTON

Input: X1 ∈ X , at = t2 and At =
∑t

s=1 as, bt = tp (p ≥ 2) and Bt =
∑t

s=1 bs, γ > 0, ξt ∼ i.i.d.

1: for t = 1 to T do
2: γt =

γ√
β0 +

∑t−1
s=1 a

2
s∥g(X̄s+ 1

2
, ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s, ξs)∥2

3: Xt+ 1
2
= argminx∈X ⟨atg(X̃t, ξt), x⟩+ atbt

2Bt
⟨H(X̃t, ξt)(x−Xt), x−Xt⟩+ 1

2γt
∥x−Xt∥2

4: Xt+1 = argminx∈X ⟨atg(X̄t+ 1
2
, ξt+ 1

2
), x⟩+ 1

2γt
∥x−Xt∥2

5: end for

Proposition 3.1. Let {Xt+ 1
2
}Tt=1 be generated by Algorithm 1, run with a non-increasing step-size

sequence γt and non-decreasing sequences of weights at, bt ≥ 1 such that at/bt is also non-
increasing. Then, the following guarantee holds:

ERT(x
∗) ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

]

Proof. We take off from the optimality conditions associated with each update sequence for our
explicit algorithm EXTRA-NEWTON (Algorithm 1). Optimality condition for Xt+ 1

2
implies for any

z0 ∈ X ,

⟨atg(X̃t, ξt) + at
bt
Bt

H(X̃t, ξt)(Xt+ 1
2
−Xt), Xt+ 1

2
− z0⟩

= ⟨atg(X̃t, ξt) + atH(X̃t, ξt)(X̄t+ 1
2
− X̃t), Xt+ 1

2
− z0⟩

= ⟨atF̃(X̄t+ 1
2
; X̃t, ξt), Xt+ 1

2
− z0⟩

≤ 1

γt
⟨Xt+ 1

2
−Xt, z0 −Xt+ 1

2
⟩

=
1

2γt

(
∥Xt − z0∥2 − ∥Xt+ 1

2
− z0∥2 − ∥Xt+ 1

2
−Xt∥2

)
(9)

Similarly, optimality of Xt+1 update yields for any z1 ∈ X ,

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+1 − z1⟩ ≤

1

2γt
⟨Xt+1 −Xt, z1 −Xt+1⟩

=
1

2γt

(
∥Xt − z1∥2 − ∥Xt+1 − z1∥2 − ∥Xt+1 −Xt∥2

) (10)

First, we will set z1 = x∗ to establish the telescoping summation over ∥Xt − x∗∥2 − ∥Xt+1 − x∗∥2.
Then, we will simply align the above expression with the regret as follows,

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

= ⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
−Xt+1⟩+ ⟨atg(X̄t+ 1

2
, ξt+ 1

2
), Xt+1 − x⋆⟩

≤ ⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
−Xt+1⟩

+
1

2γt

(
∥Xt − x⋆∥2 − ∥Xt+1 − x⋆∥2 − ∥Xt+1 −Xt∥2

) (11)
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Now, observe that setting z0 = Xt+1 in Eq. (9) and rearranging we have

− 1

2γt
∥Xt+1 −Xt∥2

≤ −⟨atF̃(X̄t+ 1
2
; X̃t, ξt), Xt+ 1

2
−Xt+1⟩ −

1

2γt

(
∥Xt+ 1

2
−Xt+1∥2 + ∥Xt+ 1

2
−Xt∥2

)

Plugging the above expression into Eq. (11) and summing over t = 1, ..., T , we will obtain,

T∑
t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

≤
T∑

t=1

at⟨g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt), Xt+ 1

2
−Xt+1⟩

+

T∑
t=1

1

2γt

(
∥Xt − x⋆∥2 − ∥Xt+1 − x⋆∥2 − ∥Xt+ 1

2
−Xt+1∥2 − ∥Xt+ 1

2
−Xt∥2

)

First off, we bound the inner product term using Cauchy-Schwarz and a slight generalization of
Young’s inequality [63]

T∑
t=1

at⟨g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt), Xt+ 1

2
−Xt+1⟩

≤
T∑

t=1

at∥g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥∥Xt+ 1

2
−Xt+1∥

≤ 1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 +

1

γt+1
∥Xt+ 1

2
−Xt+1∥2.

We merge the expressions together,

T∑
t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

≤ 1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 +

1

γt+1
∥Xt+ 1

2
−Xt+1∥2

+

T∑
t=1

1

2γt

(
∥Xt − x⋆∥2 − ∥Xt+1 − x⋆∥2 − ∥Xt+ 1

2
−Xt+1∥2 − ∥Xt+ 1

2
−Xt∥2

)

It is important that we invoke generalized Young’s inequality with step-size at time t + 1. Since
the step-size lags one iteration behind, γt does not include ∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2

and this would pose some problems in the later stages of the proof. Hence, we add/subtract
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1
γt+1

∥Xt+ 1
2
−Xt∥2 and regroup the terms,

T∑
t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

≤ 1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

1

γt+1
∥Xt+ 1

2
−Xt∥2

+
1

2

T∑
t=1

(
1

γt+1
− 1

γt

)(
∥Xt+ 1

2
−Xt+1∥2 + ∥Xt+ 1

2
−Xt∥2

)
+

1

2

T∑
t=1

1

γt

(
∥Xt − x⋆∥2 − ∥Xt+1 − x⋆∥2

)
≤ 1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

1

γt+1
∥Xt+ 1

2
−Xt∥2

+
∥X1 − x∗∥2

2γ1
+

1

2

T−1∑
t=1

(
1

γt+1
− 1

γt

)
∥Xt+1 − x⋆∥2 +D2

T∑
t=1

(
1

γt+1
− 1

γt

)

≤ 3D2

2γT+1
+

1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

1

2

T∑
t=1

1

γt+1
∥Xt+ 1

2
−Xt∥2

where we have rewritten the telescoping summation for ∥Xt − x⋆∥2 − ∥Xt+1 − x⋆∥2 and used
that D2 = supx,y∈X ∥x− y∥2 (diameter of the constraint set) to obtain the second inequality. The
final line follows from telescoping the summations, plugging in the diameter D and rearranging the
resulting terms.

Now, what remains is to obtain the (expected) regret from
∑T

t=1⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩.

Recall the definitions of Ft = σ(ξ1, ξ1+ 1
2
, · · · , ξt) and Ft+ 1

2
= σ(ξ1, ξ1+ 1

2
, · · · , ξt, ξt+ 1

2
) from

Table 2. Taking expectation over all randomness,

E

[
T∑

t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

]

= E

[
T∑

t=1

at⟨g(X̄t+ 1
2
, ξt+ 1

2
)−∇f(X̄t+ 1

2
), Xt+ 1

2
− x⋆⟩+ at⟨∇f(X̄t+ 1

2
), Xt+ 1

2
− x⋆⟩

]

= E

[
T∑

t=1

E
[
at⟨g(X̄t+ 1

2
, ξt+ 1

2
)−∇f(X̄t+ 1

2
), Xt+ 1

2
− x⋆⟩ | Ft

] ]

+ E

[
T∑

t=1

at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x⋆⟩

]

= E

[
T∑

t=1

at⟨E
[
g(X̄t+ 1

2
, ξt+ 1

2
) | Ft

]
−∇f(X̄t+ 1

2
), Xt+ 1

2
− x⋆⟩

]

+ E

[
T∑

t=1

at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x⋆⟩

]

= E

[
T∑

t=1

at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x⋆⟩

]

We used towering property of expectation (equivalently total law of expectation) to have the second
inequality, and the last line from the unbiasedness assumption of gradient oracles in Eq. (2) such that
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E
[
g(X̄t+ 1

2
, ξt+ 1

2
) | Ft

]
= ∇f(X̄t+ 1

2
). Hence, we obtain that

E [ RT(x
∗) ] = E

[
T∑

t=1

at⟨∇f(X̄t+ 1
2
), Xt+ 1

2
− x⋆⟩

]

= E

[
T∑

t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

]
,

which concludes the target result,

E [ RT(x
∗) ] ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

]
■

F Technical Lemma for the Main Proofs

Before proceeding with the proofs of our main results, we need to establish the following technical
result, due to [48] and [41], which has been commonly used in the analysis of adaptive methods. We
make use of it for the proof of Theorem 3.1 and Theorem 3.2.
Lemma F.1 (48, 41). For all non-negative numbers α1, . . . αt, the following inequality holds:√√√√ T∑

t=1

αt ≤
T∑

t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt (12)

G EXTRA-NEWTON: The First Universal Second-order Accelerated Method
(Theorem 3.2)

Theorem 3.2. Let {Xt+ 1
2
}Tt=1 be a sequence generated by Algorithm 1, run with the adaptive

step-size policy (2) and at = t2, bt = tp for p ≥ 2. Assume that f satisfies (H-smooth), and that
Assumptions (2) hold . Then, the following universal guarantee holds:

f(X̄T+ 1
2
)− f(x∗) ≤ O

 D2+γ2

γ σg
√
T

+

D3+Dγ2

γ σH

T 3/2
+

max
{
LD4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3


When γ = D, we obtain the target rate O

(
Dσg√

T
+ D2σH

T 3/2 +
max{LD3,

√
β0D}

T 3

)
.

Proof. We take Proposition 3.1 as our departure point for the analysis. After proving an offline regret
bound, we will use Theorem 3.3 to obtain the optimality gap from the regret bound. Recall the
template regret bound,

ERT(x
∗) ≤ 1

2
E

[
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

]
Now, we want to unify the first two terms through numerical inequalities. We will write the second
term in terms of the first term. Due to Lemma F.1, we can upper the bound second term as,

1

2

T∑
t=1

γt+1a
2
t∥g(X̄t+ 1

2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2

=
γ

2

T∑
t=1

a2t∥g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2√

β0 +
∑t

s=1 a
2
s∥g(X̄s+ 1

2
, ξs+ 1

2
)− F̃(X̄s+ 1

2
; X̃s, ξs)∥2

≤ γ

√√√√β0 +

T∑
t=1

a2t∥g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

γ

2
√
β0
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Plugging this back into the original expression gives us

E [ RT(x
∗) ]

≤
(
3D2

2γ
+ γ

)√√√√β0 +

T∑
t=1

a2t∥g(X̄t+ 1
2
, ξs)− F̃(X̄t+ 1

2
; X̃t, ξt)∥2 −

1

2

T∑
t=1

1

γt+1
∥Xt+ 1

2
−Xt∥2

Next up, we will handle the negative term in the above expression. As we have discussed in the main
text, the key for faster rates beyond O(1/T 2) is understanding how to manipulate the negative term in
the above expression. A crucial part of our analysis is understanding the implications of second-order
smoothness and how to unlock its potential. This next derivation will demonstrate how (H-smooth)
allows for a more aggressive gradient weighting and in turn faster convergence rate implied by our
generalized conversion technique. Next, we will relate the negative term to the positive terms using
smoothness and primal averaging, similar to the approaches in [67, 35].

−
∥Xt+ 1

2
−Xt∥2

γt+1
= − D2

D2γt+1
∥Xt+ 1

2
−Xt∥2

≤ − 1

D2γt+1
∥Xt+ 1

2
−Xt∥4

= − 1

D2γt+1

B4
t

b4t
∥ bt
Bt

Xt+ 1
2
− bt

Bt
Xt∥4

= − 1

D2γt+1

B4
t

b4t
∥
btXt+ 1

2
+
∑t−1

s=1 bsXs+ 1
2

Bt
−

btXt +
∑t−1

s=1 bsXs+ 1
2

Bt
∥4

= − 1

D2γt+1
c4t4∥X̄t+ 1

2
− X̃t∥4

≤ − 4c4t4

L2D2γt+1
∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

First, notice that for any sequence bt = O(tp) with p ≥ 0, we have Bt =
∑t

s=1 bs = O(tp+1), which
implies Bt

bt
≤ ct, where c > 0 is an absolute constant depending on how bt is defined. Then, we

use the definitions of average sequences X̄t+ 1
2

and X̃t to go from ∥Xt+ 1
2
−Xt∥4 to ∥X̄t+ 1

2
− X̃t∥4

to obtain equalities 3-5, and apply smoothness to obtain the last line. On a related note, we want
to highlight the importance of optimistic weighted averaging that is central for obtaining the above
expression. Since the averaged pairs X̄t+ 1

2
and X̃t differ by only the last element, we can seamlessly

relate ∥Xt+ 1
2
−Xt∥ to ∥X̄t+ 1

2
− X̃t∥.

Now, we are at a position to explain how we will go beyond O(1/T 2) convergence rate, which
fundamentally depends on the gradient weights at and jointly relies on our generalized online-to-
batch conversion in Theorem 3.3. The negative term above is monotonically decreasing (increases
in magnitude) which is essential to (partially) control the growth of remaining positive term. More
specifically, one can notice that in order to align the summands of the positive and negative term,
the algebra dictates that we need to select at = O(t2), which implies bt = Ω(t2). Notice that our
averaging and weighting parameters grow at least O(t) faster than the existing accelerated schemes
for first-order smoothness, which grants the improved O(1/T 3) rate. On the contrary, first-order
smoothness would only allow t2 factor in front of the norm, leading to the slower rate.

Due to (margin-wise) space constraints, we will use a slightly more compact notation for certain
expressions. Let us first define a shorthand notation for noise in gradient and Hessian evaluations,
respectively.

ϵt = [g(X̄t+ 1
2
, ξt+ 1

2
)− g(X̃t, ξt)]− [∇f(X̄t+ 1

2
)−∇f(X̃t)]

δt = H(X̃t, ξt)−∇2f(X̃t)
(13)

Then, we define following deterministic/stochastic placeholders:

∇t = ∇f(X̄t+ 1
2
)− F(X̄t+ 1

2
, X̃t)

∇̃t = g(X̄t+ 1
2
, ξt+ 1

2
)− F̃(X̄t+ 1

2
, X̃t, ξt) = ∇t + ϵt − δt(X̄t+ 1

2
− X̃t)

(14)
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Setting at = t2, combining all the terms and introducing the compact notation,

T∑
t=1

⟨atg(X̄t+ 1
2
, ξt+ 1

2
), Xt+ 1

2
− x⋆⟩

≤
(
3D2

2γ
+ γ

)√√√√β0 +

T∑
t=1

a2t∥∇̃t∥2 −
T∑

t=1

2c4

L2D2γt+1
a2t∥∇t∥2

At this point, we need to understand how to relate ∥∇t∥2 and ∥∇̃t∥2 while treating the step-size γt+1

accordingly. The issue is that the step-size is agnostic to deterministic oracle information since we
accumulate ∥∇̃t∥2. From the perspective of step-size, we need to find a relevant, if not matching,
lower bound for ∥∇t∥2 and ∥∇̃t∥2. Indeed, we follow the ideas presented in [35], and begin by
(trivially) lower bounding both terms with the same expression,

∥∇̃t∥2 ≥ min
{
∥∇̃t∥2, ∥∇t∥2

}
∥∇t∥2 ≥ min

{
∥∇̃t∥2, ∥∇t∥2

} (15)

Now, we will decompose ∥∇̃t∥2 into ∥∇t∥2 and the noise terms. Using the definitions in Eq. (13)
and (14) and applying triangular inequality with quadratic expansion,

∥∇̃t∥2 ≤ 2∥∇t∥2 + 4∥δt(X̄t+ 1
2
− X̃t)∥2 + 4∥ϵt∥2 (16)

We can also have the following trivial upper bound,

∥∇̃t∥2 ≤ 2∥∇̃t∥2

≤ 2∥∇̃t∥2 + 4∥δt(X̄t+ 1
2
− X̃t)∥2 + 4∥ϵt∥2

(17)

Let us simplify the relationship between the bounds in Eq. (16) and Eq. (17); if ∥∇t∥2 ≤ ∥∇̃t∥2,
then Eq. (16) is tighter, otherwise Eq. (17) is tighter. Hence, we could select the minimum of ∥∇t∥2
and ∥∇̃t∥:

∥∇̃t∥2 ≤ 2min
{
∥∇̃t∥2, ∥∇t∥2

}
+ 4∥δt(X̄t+ 1

2
− X̃t)∥2 + 4∥ϵt∥2 (18)

Using this intuition, we can construct a variable λt that always upper bounds the step-size.

λt =
γ√

β0 +
∑t−1

s=1 a
2
s min

{
∥∇̃s∥2, ∥∇s∥2

} (19)
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It is immediate that γt ≤ λt. Essentially, we will replace the terms ∥∇t∥2 and ∥∇̃t∥2 with
min

{
∥∇̃t∥2, ∥∇t∥2

}
, ∥δt(X̄t+ 1

2
− X̃t)∥2 and ∥ϵt∥2.

E [ RT(x
∗) ]

≤ E

[
3D2 + 2γ2

2γ

√√√√β0 +

T∑
t=1

a2t∥∇̃t∥2 −
T∑

t=1

2c4

L2D2γt+1
a2t∥∇t∥2

]

≤ E

[
3D2 + 2γ2

2γ

√√√√β0 +

T∑
t=1

2a2t min
{
∥∇̃t∥2, ∥∇t∥2

}
+ 4a2t∥δt(X̄t+ 1

2
− X̃t)∥2 + 4a2t∥ϵt∥2

−
T∑

t=1

2c4

L2D2λt+1
a2t min

{
∥∇̃t∥2, ∥∇t∥2

}]

≤ E

[
3D2 + 2γ2

√
2γ

√√√√β0 +

T∑
t=1

a2t min
{
∥∇̃t∥2, ∥∇t∥2

}
−

T∑
t=1

2c4a2t
L2D2λt+1

min
{
∥∇̃t∥2, ∥∇t∥2

}

+ 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥δt(X̄t+ 1
2
− X̃t)∥2 + 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥ϵt∥2
]

≤ E

[
3D2 + 2γ2

√
2γ2

(
γ
√

β0 +

T∑
t=1

λt+1a
2
t min

{
∥∇̃t∥2, ∥∇t∥2

})
−

T∑
t=1

2c4a2t
L2D2λt+1

min
{
∥∇̃t∥2, ∥∇t∥2

}

+ 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥δt(X̄t+ 1
2
− X̃t)∥2 + 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥ϵt∥2
]

≤ 3D2 + 2γ2

√
2γ

√
β0 + E

[
T∑

t=1

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
λt+1a

2
t min

{
∥∇̃t∥2, ∥∇t∥2

}

+ 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥δt(X̄t+ 1
2
− X̃t)∥2 + 2

(
3D2

2γ
+ γ

)√√√√ T∑
t=1

a2t∥ϵt∥2
]

Next, we will simplify the first summation and eventually show that it has a finite, constant upper
bound. First off, notice that

(
3D2+2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
is a decreasing quantity and we are interested

in the time point at which it changes signs. Let us define,

T0 = max

{
t ∈ Z |

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
≥ 0

}
.

This immediately implies that for any t ≤ T0,

1

λt+1
≤ LD

√
3D2 + 2γ2

23/4γc2
. (20)

There is a critical cut-off point for the possible values of T0 depending on the value of β0. When
the initial step-size is small enough, i.e., β0 is too large, then T0 < 0. This occurs when β0 ≥
L2D2(3D2+2γ2)

23/2γ2c4
, which implies,

E

[
T∑

t=1

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
λt+1a

2
t min

{
∥∇̃t∥2, ∥∇t∥2

}]
≤ 0
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We get the same bound when T0 = 0. For any other value of T0, i.e., T0 > 0, observe that the way
we define T0 enables us to upper bound the summation up to T , with the summation up to T0. Hence,

3D2 + 2γ2

√
2γ

√
β0 + E

[
T∑

t=1

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
λt+1a

2
t min

{
∥∇̃t∥2, ∥∇t∥2

}]

≤ 3D2 + 2γ2

√
2γ

√
β0 + E

[
T0∑
t=1

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
λt+1a

2
t min

{
∥∇̃t∥2, ∥∇t∥2

}]

≤ 3D2 + 2γ2

√
2γ

√
β0 +

3D2 + 2γ2

√
2γ

T0∑
t=1

a2t min
{
∥∇̃t∥2, ∥∇t∥2

}
√
β0 +

∑t−1
s=1 a

2
s min

{
∥∇̃s∥2, ∥∇s∥2

}
≤ 3

√
2D2 + 2

√
2γ2

γ

√√√√β0 +

T0∑
t=1

a2t min
{
∥∇̃t∥2, ∥∇t∥2

}
=
(
3
√
2D2 + 2

√
2γ2
) 1

λT0+1

≤
LD

(
3D2 + 2γ2

)3/2
21/4γc2

To make sure we incorporate the effect of the initial step-size, we combine the bounds to get

3D2 + 2γ2

√
2γ

√
β0 + E

[
T∑

t=1

(
3D2 + 2γ2

√
2γ2

− 2c4

L2D2λ2
t+1

)
λt+1a

2
t min

{
∥∇̃t∥2, ∥∇t∥2

}]

≤ 3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√
3D2 + 2γ2

c2

}

This gives us the constant part of the regret, which will lead to the O(1/T 3) part of the convergence
rate. Now, what remains is to handle the “stochasticity”. We will bound the remaining stochastic
terms with respect to the stochastic gradient and the stochastic Hessian. Plugging the expected regret
in to the bound and combining all the expressions together,

E [ RT(x
∗) ]

≤ 3D2 + 2γ2

γ
E


√√√√ T∑

t=1

a2t∥δt(X̄t+ 1
2
− X̃t)∥2 +

√√√√ T∑
t=1

a2t∥ϵt∥2

+
3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√

3D2 + 2γ2

c2

}

≤ 3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√
3D2 + 2γ2

c2

}
+

3D2 + 2γ2

γ


√√√√ T∑

t=1

E
[
a2t∥δt∥2∥(X̄t+ 1

2
− X̃t)∥2

]
+

3D2 + 2γ2

γ

√√√√ T∑
t=1

E
[
a2t [∥g(X̄t+ 1

2
, ξt+ 1

2
)−∇f(X̄t+ 1

2
)∥2 + ∥g(X̃t, ξt)−∇f(X̃t)∥2]

]

=
3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√
3D2 + 2γ2

c2

}
+

3D2 + 2γ2

γ

√√√√D2

T∑
t=1

E
[
a2t

b2t
B2

t

E [ ∥δt∥2 | Ft ]

]

+
3D2 + 2γ2

γ

√√√√ T∑
t=1

a2tE
[
E
[
∥g(X̄t+ 1

2
, ξt+ 1

2
)−∇f(X̄t+ 1

2
)∥2 | Ft

]
+ E

[
∥g(X̃t, ξt)−∇f(X̃t)∥2 | Ft− 1

2

] ]
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≤ 3D2 + 2γ2

γ


√√√√D2σ2

H

T∑
t=1

a2t
b2t
B2

t

+

√√√√4σ2
g

T∑
t=1

a2t

+
3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√
3D2 + 2γ2

c2

}

≤ 3D2 + 2γ2

γ


√√√√D2σ2

H

c2

T∑
t=1

at + 2σgT
5/2

+
3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√

3D2 + 2γ2

c2

}

≤ 3D2 + 2γ2

21/4γ
max

{√
β0

21/4
,
LD
√
3D2 + 2γ2

c2

}
+

3D3 + 2Dγ2

cγ
σHT 3/2 +

6D2 + 4γ2

γ
σgT

5/2

Before concluding the convergence proof, we would like to have a quick detour on the value of c.
The value of c is roughly between [1/p, 1], where p is the exponent of the averaging weight, bt = tp.
For instance, when we pick bt = t2, we have t3/3 ≤ Bt ≤ t3; and when bt = t3, t4/4 ≤ Bt ≤ t4.
Hence, we can avoid its effect in the final bound. Running the above expression through Theorem 3.3
we obtain,

f(X̄T+ 1
2
)− f(x∗) ≤ O

 D2+γ2

γ σg
√
T

+

D3+Dγ2

γ σH

T 3/2
+

max
{
LD4+Dγ3

γ ,
√
β0

D2+γ2

γ

}
T 3


■

H Implicit Accelerated Second-order Algorithm (Theorem 3.1)

In this section, we will provide the analysis of the implicit algorithm (Implicit) under deterministic
oracles. To do so, we will first start with a corollary result based on Proposition 3.1 that essentially
proves the same template inequality under deterministic oracle model. In fact, one could easily show
that Proposition 3.1 holds exactly up to replacing stochastic evaluations g(·) and F̃(·; ·) with ∇f(·)
and F(·; ·). For completeness, we will formalize the aforementioned result in Proposition H.1 which
follows the same steps as the proof of Proposition 3.1.

Proposition H.1. Let {Xt+ 1
2
}Tt=1 be generated by (Implicit), run with a non-increasing step-size

sequence γt and non-decreasing sequences of weights at, bt ≥ 1 such that at/bt is also non-
increasing. Then, the following guarantee holds:

RT(x
∗) ≤ 1

2

(
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

)
.

Proof. The proof of this theorem is analogous to that of Proposition 3.1 in Section E, up to replacing
the stochastic feedback with the deterministic oracle calls. ■

Theorem 3.1. Let {Xt+ 1
2
}Tt=1 be a sequence generated by (Implicit), run with the adaptive step-size

policy (7) where at = t2, bt = t3. Assume that f satisfies (H-smooth) and denote the diameter of the
set as D. Then, the following guarantee holds:

f(X̄T+ 1
2
)− f(x∗) ≤ O

max
{√

β0
D2

γ , LD4+Dγ3

γ

}
T 3


When γ = D, we obtain the converge rate O

(
max{LD3,

√
β0D}

T 3

)
.

Proof. We will initiate our proof at template regret inequality as we proved in Proposition H.1. Our
overall strategy is straightforward; we first prove a constant upper bound for the offline weighted
regret, then make use of the conversion result in Theorem 3.3 to obtain a convergence rate of order
O(1/T 3).
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Due to Proposition H.1 we have,

RT(x
∗) ≤ 1

2

(
3D2

γT+1
+

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

)
We will merge the first two terms and express the first term in the form of the second one using
Lemma F.1. Observe that for the proof of Theorem 3.2, we did the opposite and converted the
summation into the form of the first term, 3D2

2γ .

RT(x
∗)

≤ 3D2

2γ

√√√√β0 +

T∑
t=1

a2t∥∇f(X̄t+ 1
2
)− F(X̄t+ 1

2
; X̃t)∥2

+
1

2

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

≤ 3D2
√
β0

2γ
+

3D2

2γ

T∑
t=1

a2t∥∇f(X̄t+ 1
2
)− F(X̄t+ 1

2
; X̃t)∥2√

β0 +
∑t

s=1 a
2
s∥∇f(X̄s+ 1

2
)− F(X̄s+ 1

2
; X̃s)∥2

+
1

2

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

=
3D2

√
β0

2γ
+

3D2

2γ2

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

+
1

2

T∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1

=
3D2

√
β0

2γ
+

1

2

T∑
t=1

3D2 + γ2

γ2
γt+1a

2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 −

∥Xt+ 1
2
−Xt∥2

γt+1
,

where we obtain the second inequality due to Lemma F.1 and the last two lines follow from the
definition of the step-size in Eq. (7) and appropriate regrouping. Similar to the proof in the explicit
algorithm, we upper bound the negative term using appropriate averaging constants and smoothness.

−
∥Xt+ 1

2
−Xt∥2

γt+1
≤ − 4c4

L2D2γt+1
t4∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

Setting at = t2, plugging the bound on the negative term into the original expression we have,

≤ 3D2
√
β0

2γ
+

1

2

T∑
t=1

(
3D2 + γ2

γ2
− 4c4

L2D2γ2
t+1

)
γt+1a

2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 (21)

Our main objective is to show that the above summation is summable so we could show the constant
upper bound for the offline regret, hence the acceleration. First off, notice that

(
3D2+γ2

γ2 − 4c4

L2D2γ2
t+1

)
is a non-increasing quantity and we are interested in the time point at which this quantity becomes
negative. For that reason, we define the following time point,

T0 = max

{
t ∈ Z |

(
3D2 + γ2

γ2
− 4c4

L2D2γ2
t+1

)
≥ 0

}
.

This immediately implies that for any t ≤ T0,

1

γt+1
≤ LD

√
3D2 + γ2

2γc2
. (22)

To paint a complete picture, we would like to have a brief discussion on the possible values for T0.
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1. T0 ≤ 0 implies that the step-size is small enough from the very beginning and that the summation
term in Eq. (21) is always bounded by a constant, which immediately implies constant regret and
O(1/T 3) rate.

2. T0 = ∞ implies that the step-size is always lower bounded by the inverse
of the constant on the right-hand side of Eq.(22). This is equivalent to saying∑∞

t=1 a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2 ≤ C for some constant C, which in turn ensures that the

summation in Eq. (21) is summable. Once again, we will have the constant regret and O(1/T 3)
rate.

3. When T0 is a finite positive integer, we can upper bound the summation in Eq. (21) with the same
summation up to iteration T0. Note that it is not important whether T is larger or smaller than T0,
as the summands change sign and become negative after T0.

Same as in the proof of EXTRA-NEWTON, we need to understand the effect of the initial step-size

choice due to β0. Imagine the case
√
β0 ≥ LD

√
3D2+γ2

2γc2 . This implies that T0 < 0 and that the
step-size is already small enough to make the summation negative from the first step onwards. In that
scenario, the condition in Eq. (22) doesn’t hold so we should consider the effect of this initial setup
for the final bound. For the case when T0 > 0, we can safely unify all the 3 cases above and simply
upper bound the expression in Eq. (21) by rewriting the summation up to T0. Therefore,

≤ 3D2
√
β0

2γ
+

1

2

T∑
t=1

(
3D2 + γ2

γ2
− 4c4

L2D2γ2
t+1

)
γt+1a

2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

≤ 3D2 + γ2

2γ

√
β0 +

3D2 + γ2

2γ2

T0∑
t=1

γt+1a
2
t∥∇f(X̄t+ 1

2
)− F(X̄t+ 1

2
; X̃t)∥2

=
3D2 + γ2

2γ

√
β0 +

3D2 + γ2

2γ

T0∑
t=1

a2t∥∇f(X̄t+ 1
2
)− F(X̄t+ 1

2
; X̃t)∥2√

β0 +
∑t

s=1 a
2
s∥∇f(X̄s+ 1

2
)− F(X̄s+ 1

2
; X̃s)∥2

≤ 3D2 + γ2

γ

√√√√β0 +

T0∑
t=1

a2t∥∇f(X̄t+ 1
2
)− F(X̄t+ 1

2
; X̃t)∥2

=
(
3D2 + γ2

) 1

γT0+1

≤
LD

(
3D2 + γ2

)3/2
2γc2

We combine the case for T0 < 0 with the one above to established the constant regret bound

RT(x
∗) ≤ O

(
max

{√
β0

D2

γ
, L

D4 +Dγ3

γ

})
Plugging this result in its place we obtain the convergence rate,

f(X̄T+ 1
2
)− f(x∗) ≤ O

max
{√

β0
D2

γ , LD4+Dγ3

γ

}
T 3


■
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