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Abstract

In this paper we provide a novel and simple algorithm, Clairvoyant Multiplicative
Weights Updates (CMWU), for convergence to Coarse Correlated Equilibria (CCE)
in general games. CMWU effectively corresponds to the standard MWU algorithm
but where all agents, when updating their mixed strategies, use the payoff profiles
based on tomorrow’s behavior, i.e. the agents are clairvoyant. CMWU achieves
constant regret of ln(m)/η in all normal-form games with m actions and fixed
step-sizes η. Although CMWU encodes in its definition a fixed point computation,
which in principle could result in dynamics that are neither computationally efficient
nor uncoupled, we show that both of these issues can be largely circumvented.
Specifically, as long as the step-size η is upper bounded by 1

(n−1)V , where n is the
number of agents and [0, V ] is the payoff range, then the CMWU updates can be
computed linearly fast via a contraction map. This implementation results in an
uncoupled online learning dynamic that admits a O(log T )-sparse sub-sequence
where each agent experiences at most O(nV logm) regret. This implies that
the CMWU dynamics converge with rate O(nV logm log T/T ) to a CCE and
improves on the current state-of-the-art convergence rate of uncoupled online
learning dynamics [13, 1].

1 Introduction

The connection between online learning and game theory has been extensively studied for decades.
The emergence of online learning algorithms guaranteeing comparable payoffs with the highest-
rewarding strategy has provided a landmark method of understanding how selfish agents can act in
an adversarial environment, while the notion of Coarse Correlated Equilibrium (CCE) has provided
a game-theoretic characterization of the limiting behavior of such online learning dynamics [4, 20,
35, 21].

An important aspect of online learning dynamics is that agents can collectively learn a CCE without
having explicit knowledge of the full game description. By definition, online learning algorithms
take as input the sequence of vectors corresponding to the payoff of each possible action, making no
assumption about how these payoff vectors are derived [22]. This idea of information exchange can
be concisely described with the following distributed protocol, known in the literature as uncoupled
online learning dynamics [11]:

1. No agent is aware of their payoff matrix or the payoff matrix of any other agent.
2. At each round t, each agent i announces their mixed strategy xt

i.
3. Based on the announced strategy vector xt := (xt

1, . . . , x
t
n), each agent i learns only their

payoff vector ui(x
t
−i).
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4. Each agent i uses (ui(x
0
−i), . . . , ui(x

t
−i)) to update their mixed strategy at round t+ 1.

If agents use one of the classical no-regret online learning algorithms (e.g. Hedge, Regret Match-
ing, Multiplicative Weights Update (MWU) etc), then the time-average behavior of the resulting
uncoupled online learning dynamics will converge to CCE with rate Θ(1/

√
T ) [9]. Despite the fact

that Θ(1/
√
T ) has proven to be the optimal time-average regret that an agent can achieve in the

adversarial case, the question of determining which update rule gives the fastest convergence to CCE
has remained open. Over the years, a series of works has proposed update rules with better and better
rates [9, 12, 24, 33, 37, 10] until the recent seminal work of Daskalakis et. al [13], which established
that Optimistic Multiplicative Weights Update (OMWU) admits O(log4 T/T ) rate of convergence.
This rate matches (up to logarithmic factors) the lower bound Ω(1/T ) on the convergence rate of any
uncoupled online learning dynamic [11].

Self-Play and Algorithmic Applications

Apart from theoretical interest, uncoupled online learning dynamics admit important applications
which make the above line of research even more exciting and significant [35, 15, 25, 28, 39, 32, 27].
Some of their interesting algorithmic properties are: i) their decentralized nature permits efficient
distributed implementation, ii) the implicit access to the game via payoff vectors permits game-
abstractions with vastly reduced size, and iii) their iterative guarantees can be preferable over the
all-or-nothing guarantees of linear programs. A notable example of their algorithmic success is the
design of state-of-the art AI poker programs based on iterative self-play that outperform previous
LP-based approaches, and were able to compete with human professionals [6, 38, 40]. We remark
that this result has motivated a parallel line of research studying the convergence rates of uncoupled
online learning dynamics for extensive form games [17, 8, 16, 18, 25].

Our Contribution and Results

All previous works in this area couple the goals of minimizing adversarial regret and fast time-average
convergence to CCE [9, 12, 24, 33, 15, 37, 10]. Since many of the aforementioned applications are
in the realm of self-play where all agents are programmed to follow the update rule, guaranteeing
adversarial no-regret is not a necessity. Indeed, it is not clear why time-average behavior should
be the only way to deduce a CCE. In fact, any simple and efficient deduction rule would serve the
algorithmic benefits of uncoupled online learning dynamics [18, 25]. Motivated by the above, our
contributions can be summarized as follows:

• We introduce a novel update rule, called Clairvoyant Multiplicative Weights Update
(CMWU) that produces sequences of strategy profiles with constant regret in general games.

• In its generic form, CMWU is a centralized update rule and does not fit in the online learning
framework. However, based on CMWU we design an uncoupled online learning dynamic
called CMWU dynamics which gives fast convergence to CCE beyond the time-average
sense.

• More precisely, we establish that given any trajectory of length T of CMWU dynamics,
the log T -sparse sub-trajectory always admits constant regret for all agents. As a result,
the time-average behavior of the O(log T )-sparse sub-trajectory converges to CCE with
Θ(log T/T ) rate, improving on the previous state-of-the-art Θ

(
log4 T/T

)
achieved by

Daskalakis et al. [13].

• The update rule of CMWU dynamics (presented in Algorithm 2) admits a simple form and
an efficient implementation (requiring only a single step of the MWU algorithm at each
round). The proof of convergence for CMWU dynamics is also far simpler than previous
proofs of convergence of uncoupled online learning dynamics [13].

In Table 1 we summarize the most important results concerning the convergence to CCE of uncoupled
online learning dynamics.
Remark 1.1. All the results mentioned in Table 1 additionally admit Õ(

√
T ) adversarial guarantees.

As mentioned above, this means that once a subset of the agents act adversarially by not following
the update rule of the online learning dynamic, the agents following the update rule are guaranteed
to experience at most Õ(

√
T ) regret. The reason why CMWU is able to achieve better guarantees

with simpler analysis comes from the fact that it neglects the adversarial no-regret guarantees that are
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Table 1: Prior results for convergence to CCE in uncoupled online learning dynamics. n denotes the
number of players, m denotes the number of actions per player and V denotes the maximum value in
the game payoff tensor. The step-size for CMWU, η, is set to 1/2V n.

Update Rule Deduction Rule Rate of Convergence Game Type

MWU Time-average O
(
V
√

logm/T
)

[9] General-sum

Excessive Gap
Technique

Time-average O
(
V logm(log T + log3/2 m)/T

)
[12] 2-player zero-sum

DS-OptMD,
OptDA

Time-average logO(V )(m)/T [24] 2-player zero-sum

OMWU Time-average O
(
V logm

√
n/T 3/4

)
[33, 37] General-sum

OMWU Time-average O
(
V log5/6 m/T 5/6

)
[10] General-sum

OMWU Time-average O
(
nV logm log4 T/T

)
[13] General-sum

CMWU
log T−sparse

average
O (nV logm log T/T )

(Theorem 4.1)
General-sum

irrelevant in self-play/training settings and focuses on minimizing the regret in specific parts of the
sequence.
Remark 1.2. In another related work, [1] established an online learning dynamic that converges with
rate Θ(n log(m) log4 T/T ) to Correlated Equilibria (CE), a subset of Coarse Correlated Equilibria.
Finally, following our work, [2] produced time-average convergence to CE via online learning at a
rate Θ(nm5/2 log T/T ). In comparison, our dependency on the number of actions m is exponentially
smaller at Θ(log(m)). Furthermore, their update rule is based on self-concordant regularization and
thus admits high per-iteration complexity, a point which is mentioned by the authors.
Remark 1.3. Similarly to other standard no-regret algorithms, CMWU is designed to compute
CCE via an uncoupled online learning dynamic and thus cannot be viewed as a rational behavioral
assumption for selfish agents who seek to minimize their individual cost. One concrete example
where the assumption fails is the case of auctions with a no-regret buyer [5], where the auctioneer
can provably manipulate the behavior of any buyer learning according to a wide class of no-regret
algorithms to guarantee themselves optimal revenue. This comes at the expense of higher prices
for the buyer, since the auctioneer can take advantage of the commitment of the buyer to a no-
regret learning strategy. Hence, it is clear that the learning in games community should discuss and
differentiate in greater detail the uncoupled online learning dynamics that come as natural game-play
and uncoupled dynamics that come as a means of decentralized, efficient computation.

The Philosophy and Design of CMWU

We introduce a radically different philosophy in the design of online learning algorithms. We shift
away from the prevailing paradigm by defining a novel algorithm that we call Clairvoyant Multiplica-
tive Weights Update (CMWU). CMWU is MWU equipped with a mental/simulated/synthetic model
(jointly shared across all agents) about the state of the system in its next period. Each agent records
its mixed strategy, i.e., its belief about what it expects to play in the next period in this shared mental
model, which is internally updated using MWU without any changes to the real-world behavior up
until it equilibrates, thus marking its consistency with the next day’s real-world outcome. It is then
and only then that agents take action in the real-world, effectively doing so with “full knowledge” of
the state of the system on the next day, i.e., they are clairvoyant. CMWU acts as MWU with one day
look-ahead, achieving bounded regret. CMWU update rule is closely related with the Proximal Point
Method (PPM) [29, 26, 34, 31] which is an implicit (and therefore unimplementable) method that
admits arbitrarily fast convergence in the context of convex minimization. Similarly to PPM, in order
to implement the update rule of CMWU one would require access to the explicit description of the
game and to additionally solve a fixed-point problem.
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Our main technical contribution consists of establishing that for sufficiently small step-sizes, the
update rule of CMWU can be computed via the iterations of a contraction map. This not only provides
a way to compute the CMWU update rule using a simple and efficient process, but also opens a
pathway for decentralized computation in the context of uncoupled online learning dynamics. The
basic idea behind CMWU dynamics (Algorithm 2) is to punctuate the history of play with anchor
points which are equally spaced in distance Θ(log T ), such that any anchor point is the CMWU
update of the previous anchor point. In this way, the regret in the anchor sequence is constant for
any agent. Moreover, the intermediate points between two anchor points correspond to the iterations
of the contraction map. Surprisingly enough, all of the above can be implemented with just an
if condition and an MWU-esque exponentiation (see Algorithm 2).

2 Preliminaries & Model

2.1 Normal Form Games

We begin with basic definitions from game theory. A finite normal-form game Γ ≡ Γ(N ,S, u)
consists of a set of players N = {1, ..., n} where player i may select from a finite set of actions
or pure strategies Si. Each player has a payoff function ui : S ≡

∏
i Si → R assigning reward

ui(s) to player i. It is common to describe ui with a payoff tensor A(i) where ui(s) = A
(i)
s . Let

m = maxi |Si| denote the maximum number of pure strategies in Γ, and let V = maxi,s |A(i)
s |

denote the maximum payoff value of any strategy in Γ.

Players are also allowed to use mixed strategies xi = (xisi)si∈Si
∈ ∆(Si) ≡ Xi. The set of mixed

strategy profiles is X =
∏

i Xi. A strategy is fully mixed if xisi > 0 for all si ∈ Si and i ∈ N .
Individuals compute the payoff of a mixed strategy linearly using expectation. Formally,

ui(x) =
∑
s∈S

ui(s)
∏
i∈N

xisi . (1)

We also introduce additional notation to express player payouts for brevity in our analysis later. Let
visi(x) = ui(si;x−i)

1 denote the reward i receives if i opts to play pure strategy si when everyone
else commits to their strategies described by x. This results in ui(x) = ⟨vi(x−i), xi⟩. Next we will
introduce the notion of Coarse Correlated Equilibria (CCE), which is the key equilibrium notion we
explore in our work.

Definition 2.1. A probability distribution µ over pure strategy profiles s = (s1, . . . , sn) ∈ S is called
an ϵ-approximate Coarse Correlated Equilibrium if for each agent i ∈ [n],

Es∼µ [ui(s)] ≥ Es∼µ [ui(s
′
i, s−i)]− ϵ for all actions si ∈ Si

Definition 2.2. Given a strategy profile x := (x1, . . . , xn) ∈ X , µx denotes the product probability
distribution over strategy profiles s = (s1, . . . , sn) ∈ S induced by x, µx(s) := Πsi∈sxisi .

2.2 Uncoupled Online Learning Dynamics in Games

We study games from a learning perspective where agents iteratively update their mixed strategies
over time based on the performance of pure strategies in prior iterations via an uncoupled, online
adaptive algorithm. We will start by describing one of the most classical online learning algorithms,
Multiplicative Weights Update (MWU).

The update rule for MWU can be written as

xt+1
isi

=
xt
isi

exp (ηi · visi(xt))∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i(xt))
(MWU)

The remarkable guarantee of MWU and many other online learning algorithms is that the actual
payoff for agents is close to the highest-rewarding action of the game. This property is formally
captured via the notion of regret.

1(si;x−i) denotes the strategy x after replacing xi with si.
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Definition 2.3 (Regret). Given a sequence of mixed strategies x0, . . . , xT−1 the regret of agent i,
Ri(T ), is defined as

Ri(T ) := max
xiXi

T−1∑
t=0

⟨vi(x−i), x
t
i⟩ −

T−1∑
t=0

⟨vi(xt
−i), x

t
i⟩

Once agent i adopts MWU, then they are ensured to experience sub-linear regret, Ri(T ) ≤ O
(√

T
)

no matter how the other agents update their strategies [9]. This implies that the time-averaged
difference between the payoff of the best fixed strategy and the actual produced reward goes to zero
with rate O(1/

√
T ). Any online learning algorithm that is able to guarantee Ri(T ) = o(T ) is called

no-regret.

There exists a folklore connection between any no-regret online learning algorithms and Coarse
Correlated Equilibrium.
Theorem 2.4 (Folkore2). Given a sequence of mixed strategies (x0, . . . , xT−1), then the probability
distribution µ̂ :=

∑T−1
t=0 µxt

/T is an (R(T )/T )-approximate Coarse Correlated Equilibrium where
R(T ) := maxi∈[n] Ri(T ).

Theorem 2.4 implies that if all agents update their strategies with a no-regret online learning algorithm,
then the time-average strategy vector converges to CCE with rate o(T )/T . As a result, the time-
average strategy vector converges to CCE as T →∞.

In Algorithm 1, we present a generic description of uncoupled online learning dynamics.

Algorithm 1 Uncoupled Online Learning Dynamics

1: for all round t = 0, · · · , T − 1 do
2: Each player i ∈ [n], broadcasts its mixed strategy xt

i ∈ Xi

3: Each agent i ∈ [n], learns only its reward vector ui(x
t
−i).

4: Each agent i ∈ [n], updates xt+1
i ∈ Xi based only on ui(x

0
−i), . . . , ui(x

t
−i)

5: end for

If for example the update rule of MWU is implemented at Step 4 of Algorithm 1, then the distribution
µ̂ :=

∑T−1
t=0 µxt

/T is an (1/
√
T )-approximate CCE.

3 Clairvoyant MWU

In this section, we introduce a novel learning algorithm for games that we call Clairvoyant Mul-
tiplicative Weights Updates (CMWU). Critically, CMWU, unlike MWU, forms self-confirming
predictions/beliefs about what all opponents will play in the next time instance. Namely, all agents
will form the same belief about what agent i will play in the next period t + 1

(
xt+1
i

)
. These

beliefs/estimates are such that when agents simulate an extra period of play in their mind and update
their current strategies using MWU, the resulting strategy for each agent i is xt+1

i . All agents
accurately predict the behavior of all other agents tomorrow, in other words they are clairvoyant!

The update rule for (CMWU) is as follows:

xt+1
isi

=
xt
isi

exp (ηi · visi(xt+1))∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i(xt+1))
(CMWU)

CMWU is an implicit method: the new strategy xt+1 appears on both sides of the equation, and thus
the method needs to solve an algebraic/fixed point equation for the unknown xt+1.
Theorem 3.1. The algebraic system of equations in (CMWU) defined by an arbitrary game Γ, an
arbitrary tuple of learning rates ηi, and any state xt, always admits a solution.

2See e.g. https://theory.stanford.edu/~tim/f13/l/l17.pdf
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Theorem 3.1 follows directly by the Brouwer fixed-point theorem. Having established the fact that
the agents can always collectively compute a next step of the CMWU update rule, we present the
remarkable property of CMWU stated in Theorem 3.2.
Theorem 3.2. Let x0, . . . , xT−1 be a sequence of mixed strategies such that all pairs of consecutive
mixed strategies (xt, xt+1) satisfy Equation (CMWU). Then, each agent i has bounded regret
≤ log |Si|/ηi.

The proof of Theorem 3.2 follows by standard arguments in online learning literature (e.g. Lemma 5.4
in [22]). Moreover, we directly obtain the following corollary:
Corollary 3.3. Let x0, . . . , xT−1 be a sequence of mixed strategies such that all pairs of consecutive
mixed strategies (xt, xt+1) satisfy Equation (CMWU). Then, the probability distribution µ̂ :=∑T−1

t=0 µxt/T is a (logm/ηT )-approximate CCE where η := mini∈n ηi.

From a computational complexity perspective, solving the algebraic/fixed point equation (CMWU)
is in general a hard problem. For instance, the computation of a Nash Equilibrium [30] which has
proven to be PPAD-complete [14], reduces to the computation of a solution for equation (CMWU)
once η →∞. Moreover, even if we assume that the agents possess unlimited computational power,
it is not clear how they can compute a solution to Equation (CMWU) in the context of uncoupled
online learning dynamics.

In Section 3.1, we show that if each ηi is upper bounded by some game-dependent parame-
ters, (CMWU) is a contraction map (Theorem 3.6, Corollary 3.7). This not only implies that
there exists a unique fixed-point solution that can be computed very efficiently, but also that the
Clairvoyant MWU update rule can be simulated via an uncoupled online learning dynamic.

3.1 Uniqueness of Fixed Point via Map Contraction

We will establish uniqueness of the fixed point in CMWU for a specific range of step-sizes. The proof
will be based on an application of the Banach fixed-point theorem (mapping theorem or contraction
mapping theorem) [3]. Thus, we simultaneously provide a constructive method to compute these
fixed points with linear convergence rate. In what follows, it will be useful to consider (MWU) as a
map from a vector of payoffs vi = (vi1, . . . , vi|Si|) to mixed strategies parameterized by the current
initial position xt

i:

fxt
i
(vi) :=

(
xt
i1 exp (ηi · vi1)∑

s̄i∈Si
xt
is̄i

exp (ηi · vis̄i)
, . . . ,

xt
i|Si| exp (ηi · vi|Si|)∑

s̄i∈Si
xt
is̄i

exp (ηi · vis̄i)

)
(MWUf )

We first establish the fact that fxt
i
(vi) is an 2ηi-continuous mapping.

Lemma 3.4. For any choice of xt
i ∈ ∆(Si), the (MWUf ) map fxt

i
: R|Si| → ∆(Si) satisfies that

for any utility vectors vi, v′i ∈ R|Si|,

∥fxt
i
(vi)− fxt

i
(v′i)∥1 ≤ 2ηi∥vi − v′i∥∞

In the rest of the section we establish that once all ηi are selected sufficiently small then Equa-
tion MWUf admits a unique fixed point and is in fact a contraction map.
Definition 3.5. The distance between the strategy profiles x = (x1, . . . , xn) ∈ X and x′ =
(x′

1, . . . , x
′
n) ∈ X is defined as D(x, x′) := max1≤i≤n∥xi − x′

i∥1.

In Theorem 3.6 we show that the computation of CMWU is a contraction map once all ηi do not
exceed a game-dependent constant.
Theorem 3.6. Consider the mixed strategy profile (xt

1, x
t
2, . . . , x

t
n) and the map G : X 7→ X defined

as follows:
G(x) :=

(
fxt

1
(v1(x)), . . . , fxt

n
(vn(x))

)
Then for any x, x′ ∈ X ,

D(G(x), G(x′)) ≤ ηV (n− 1) · D(x, x′)

where η is the maximum step-size over all players, [0, V ] is the payoff range of the game and n is the
number of players.
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Proof. Let us denote by dTV(x, x
′) the total variation distance between product distributions x, x′.

D(G(x), G(x′)) = ∥fxt
i
(vi(x))− fxt

i
(vi(x

′))∥1 for some player i ∈ [n]

≤ 2η · ∥vi(x)− vi(x
′)∥∞ by Lemma (3.4)

≤ 2ηV · dTV(x−i, x
′
−i)

≤ 2ηV ·
∑

j ̸=i dTV(xj , x
′
j) by known properties of total variation (e.g., [23])

= ηV ·
∑

j ̸=i∥xj − x′
j∥1

≤ ηV (n− 1) · D(x, x′)

Corollary 3.7. The (MWUf ) map with maximum step-size η < 1
(n−1)V is a contraction and thus

converges to its unique fixed point at a linear rate.

4 Uncoupled Clairvoyant MWU Online Learning Dynamics

In this section we present an uncoupled online learning dynamic based on the Clairvoyant MWU
update rule, which we call CMWU dynamics. More precisely, the agents follow the distributed
protocol described in Algorithm 1 while each agent i runs Algorithm 2 internally to update their
strategy xt

i at each round. To simplify notation in Algorithm 2, we set the number of actions of any
agent i to be m := |Si|.

Algorithm 2 Internal update rule of Clairvoyant MWU Dynamics

1: Input: η > 0, k ∈ N
2: x−1

i ← (1/m, . . . , 1/m) and z−1
i ← (1/m, . . . , 1/m)

3: for each round t = 0, · · · , T − 1 do
4: if tmod k == 0 then
5: xt

i ← xt−1
i

6: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).

7: Updates zti such that for all si ∈ Si,

ztisi ←
zt−1
isi

eη·visi (x
t
−i)∑

s̄i∈Si
zt−1
is̄i

eη·vis̄i
(xt

−i)

8: else
9: zti ← zt−1

i

10: Updates xt
i such that for all si ∈ Si,

xt
isi ←

ztisie
η·visi (x

t−1
−i )∑

s̄i∈Si
ztis̄ie

η·vis̄i (x
t−1
−i )

11: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).
12: end if
13: end for

Theorem 4.1. Let x0, . . . , xT−1 be the strategy vector once each agent internally adopts Algorithm 2
with η = 1/2nV and k = ⌈log T ⌉. Then for each agent i,

T ′∑
τ=0

〈
vi(x

k·τ
−i ), x

k·τ
i

〉
− max

xi∈Xi

T ′∑
τ=0

〈
vi(x

k·τ
−i ), xi

〉
≥ −12nV logm

where T ′ =
⌊
T−1
k

⌋
. Thus, the distribution µ̂ :=

∑T ′

τ=0 µxkτ /T ′ is a Θ(nV logm log T/T )-
approximate CCE.

7



Proof. Notice that zti = z
⌊t/k⌋
i when (tmod k) ̸= 0 and that

ztisi ←
zt−k
isi
· eηvisi (x

t
−i)∑

s̄i∈Si
zt−k
is̄i
· eηvis̄i (xt

−i)
when (tmod k) = 0 (2)

As a result, the sequence z0i , z
k
i , . . . , z

kτ
i , . . . is the sequence produced by MWU with look-ahead (Be-

The-Regularized-Leader) applied on the sequence reward vectors vi(x0
−i), vi(x

k
−i), . . . , vi(x

kτ
−i), . . .

and it is known to admit the following regret guarantee3,

T ′∑
τ=0

〈
vi(x

k·τ
−i ), z

k·τ
i

〉
− max

xi∈Xi

T ′∑
τ=0

〈
vi(x

k·τ
−i ), xi

〉
≥ − logm

η
= −2nV logm

Up next, we establish that ∥zk·τi − xk·τ
i ∥1 ≤ 8/2k for all τ ≥ 1. Let τm := (τ − 1) · k +m. By the

definition of Algorithm 2, xk·τ
i = xτk−1

i and zτmi = zτ0i for all m = 0, . . . , k − 1. Thus,

xτm
isi
←

zτ0isie
ηvisi (x

τm−1
−i )∑

s̄i∈Si
zτ0is̄ie

ηvis̄i (x
τm−1
−i )

for all si ∈ Si.

Using Equation MWUf of Section 3.1, the above system of equations can be concisely written as,

xτm
i = fzτ0

i

(
ui(x

τm−1
−i )

)
and since all agents follow Algorithm 2, xτm = G

(
xτm−1

)
where G (x) := (fzτ0

1
(x), . . . , fzτ0

n
(x)).

Since η := 1/2nV by Theorem 3.6, G (x) is a contraction map with constant 1/2. Thus,

D
(
G
(
xτk−1

)
, xτk−1

)
≤ 1

2k−2
· D (xτ1 , xτ0) ≤ 8

2k
.

The second inequality follows by D (xτ1 , xτ0) ≤ 2 (see Definition 3.5). Recall that xk·τ = xτk−1

and that zk·τ = G
(
xτk−1

)
(Equation 3). As a result, for each agent i

∥xk·τ
i − zk·τi ∥1 ≤ D

(
xk·τ , zk·τ

)
= D

(
xτk−1, G

(
xτk−1

))
≤ 8

2k

We are now ready to complete the proof of Theorem 4.1,

T ′∑
τ=0

⟨vi(xk·τ
−i ), x

k·τ
i ⟩ ≥

T ′∑
τ=0

⟨vi(xk·τ
−i ), z

k·τ
i ⟩ − |⟨vi(xk·τ

−i ), x
k·τ
i − zk·τi ⟩|

≥
T ′∑
τ=0

⟨vi(xk·τ
−i ), z

k·τ
i ⟩ −

T ′∑
τ=0

∥vi(xk·τ
−i )∥∞ · ∥xk·τ

i − zk·τi ∥1

≥
T ′∑
τ=0

⟨vi(xk·τ
−i ), z

k·τ
i ⟩ − 8V

T

k2k
− ∥vi(x0

−i)∥∞ · ∥x0
i − z0i ∥1

≥ max
xi∈Xi

T ′∑
τ=0

⟨vi(xk·τ
−i ), xi⟩ − 2nV logm− 10V

≥ max
xi∈Xi

T ′∑
τ=0

⟨vi(xk·τ
−i ), xi⟩ − 12nV logm

3Lemma 5.4 in [22] or https://web.stanford.edu/class/cs229t/scribe_notes/11_12_final.
pdf. For completeness we include the full proof in Lemma A.1.
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5 Conclusion

In this paper we analyze a novel algorithm achieving the strongest to-date results for time-average
convergence to coarse correlated equilibria (CCE) in general games. We call this Clairvoyant
Multiplicative Weights Updates (CMWU). Although CMWU includes in its definition a fixed-point
computation and effectively enables the agents to access the future behavior of their opponents, we
show that it can be implemented efficiently in an online and totally uncoupled manner. A critical
conceptual innovation of the uncoupled implementation of CMWU is that the CCE computation is
done not via the standard techniques (uniform time averaging or last-iterate implementation) but
an averaging of a pre-specified and game independent O(log T )-sparse sub-sequence of the whole
history of play. This type of implementation, as far as we know, is novel not only from a theoretical
but even from a practical perspective.

Indeed, learning in games has become a fundamental as well as ubiquitous tool for numerous machine
learning applications. These include the most well known AI headline success stories such as
Generative Adversarial Networks [19], achieving superhuman performance in diverse settings such
as Go [36], heads-up Poker [28], many-player Poker [7] a.o. Despite this wide range of settings,
there is a roughly common pattern in achieving these results - design an optimization-driven learning
dynamic and have it compete against itself in self-play. In poker style applications, the typical
technique is to approximately solve the zero-sum game via low-regret time-averaging (typically
uniform, sometimes with recency bias) over the whole history of play. In other applications such
as Go, where the policy/strategy encoding is achieved by DeepNets with many parameters and any
notion of averaging is totally impractical, the hope is that self-play leads to ever improving agents
with the solution being the last-iterate of the self-play process. Our analysis shows that exploring
different averaging techniques enables efficient, simple-to-implement, uncoupled and state-of-the-art
algorithms to solving general normal-form games. This points to a rather under-explored hyper-
parameter of online algorithm design, the averaging policy, and raises tantalizing questions about
extending our results both in theory as well as experimentally to more complex settings.
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Appendix

A Omitted Proofs

Lemma A.1. Consider z−k = (1/m, . . . , 1/m), the sequence of mixed strategies z0i , z
k
i , . . . , z

kT ′

i

and the sequence of reward vectors vi(x0
−i), vi(x

k
−i), . . . , vi(x

kT ′

−i ) such that

zk·τisi ←
zk·τ−k
isi

· eηvisi (x
k·τ
−i )∑

s̄i∈Si
zk·τ−k
is̄i

· eηvis̄i (xk·τ
−i )

for all τ ≥ 0

Then, the following guarantee holds,

T ′∑
τ=0

〈
vi(x

k·τ
−i ), z

k·τ
i

〉
− max

xi∈Xi

T ′∑
τ=0

〈
vi(x

k·τ
−i ), xi

〉
≥ − logm

η
.

Proof. To simplify notation let t := k · τ and vti := vi(x
k·τ
−i ). It is known that the zti can be

equivalently described as (see Section 5.4.1 in [22]),

zti = argmax
zi∈Xi

[
γ

〈
t∑

s=0

us
i , zi

〉
− h(zi)

]
for all t ≥ −1

where h(zi) = −
∑

si
zisi log zisi . Now let gt(zi) := γ

〈∑t
s=0 u

s
i , zi

〉
− h(zi) which means that

zti = argmaxzi∈Xi
gt(zi) and let x∗

i := argmaxxi∈Xi

∑T ′

t=0 ⟨vti , xi⟩. Using a simple induction (see
Lemma 5.4 in [22]) one can easily show that

T ′∑
t=−1

gt(z
t
i) ≥

T ′∑
t=−1

gt(x
∗
i )

which implies that

T ′∑
τ=0

〈
vi(x

t
−i), z

t
i

〉
−

T ′∑
τ=0

〈
vi(x

t
−i), x

∗
i

〉
≥ h(z−1)

γ
− h(x∗

i )

γ
≥ logm

γ

B Proof of Lemma 3.4

To simplify notation we drop the dependence on xt
i and denote with fsi(vi) the si coordinate of

fxt
i
(vi). Notice that for any si, s

′
i ∈ Si with si ̸= s′i we have:

∂fsi
∂visi

= ηi
xt
isi

exp (ηi · visi)
(∑

s̄i∈Si
xt
is̄i

exp (ηi · vis̄i)
)

(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2 −

(
xt
isi

exp (ηi · visi)
)2

(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2

= ηix
t+1
isi

(1− xt+1
isi

)

Moreover,

∂fsi
∂vis′i

= −ηi
xt
isi

exp (ηi · visi)xt
is′i

exp (ηi · vis′i)(∑
s̄i∈Si

xt
is̄i

exp (ηi · vis̄i)
)2

= −ηixt+1
isi

xt+1
is′i
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It follows that ∥∇fsi(vi)∥1 = 2ηix
t+1
isi
· (1− xt+1

isi
) ≤ 2ηix

t+1
isi

and thus
∑

si∈Si
∥∇fsi(vi)∥1 ≤ 2ηi.

∥fxt
i
(vi)− fxt

i
(v′i)∥1 =

∑
si∈Si

|fsi(vi)− fsi(v
′
i)|

=
∑
si∈Si

|
∫ 1

t=0

⟨∇fsi ((1− t)vi + tv′i) , vi − v′i⟩ ∂t|

≤
∑
si∈Si

∫ 1

t=0

| ⟨∇fsi ((1− t)vi + tv′i) , vi − v′i⟩ |∂t

≤
∫ 1

t=0

( ∑
si∈Si

∥∇fsi ((1− t)vi + tv′i)∥1
)
· ∥vi − v′i∥∞∂t

≤ 2ηi∥vi − v′i∥∞

C Experimental Results

In this section we present several experimental results that show the fast convergence of CMWU to
CCE. In Figure 1 we compare the performance of CMWU dynamics (Algorithm 2) to the current
state of the art OMWU with step-sizes selected according to [13]. The game is a randomly generated
4-player, 10-strategy normal form game and in each run, the players’ initial conditions are randomly
generated. The update rule for (OMWU), also referred to as Optimistic Hedge, can be written as

xt+1
isi

=
xt
isi

exp (ηi ·
(
2visi(x

t)− visi(x
t−1)

)∑
s̄i∈Si

xt
is̄i

exp (ηi ·
(
2vis̄i(x

t)− vis̄i(x
t−1)

) (OMWU)

In order to account for the internal update rule of CMWU dynamics, we run the OMWU experiment
for a longer time and compute the regret of the OMWU dynamic only at each log(T )-th iterate. We
observe that CMWU allows for faster computation of CCE than OMWU.

(a) OMWU (decreasing step-sizes) (b) CMWU (constant step-size)

Figure 1: State-of-the-art OMWU [13] vs. CMWU in a 4-player 10-strategy game. We plot the
max over agents’ cumulative regret for several common random initializations. The shaded region
represents the max/min regret range across runs. CMWU allows for significantly faster computation
of approximate coarse correlated equilibria than OMWU, i.e., it needs significantly less oracles call
for the same accuracy level. For a zoom-in on the cumulative regret of CMWU for larger step-sizes η
see Fig. 2.

In Figure 2 we plot the cumulative regret of CMWU for various fixed step-size values. As the
step-size increases, we note empirically that the time required to compute a CCE decreases.
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Figure 2: Zoomed-in cumulative regret over time for Figure 1b with larger η values. As the learning
rate increases, antithetical with other approaches, the speed of convergence of CMWU to CCE
increases. Colored horizontal lines represent the respective theoretical regret bounds for each value
of η.

D CMWU Dynamics as an Anytime Algorithm

Our formulation of the internal update rule of CMWU dynamics in Algorithm 2 can also be framed
as an anytime algorithm. In this setting, the time horizon T is not known in advance and thus the
algorithm has to have bounded regret for all T . Typically one can obtain such an anytime algorithm
via a doubling trick, but we propose a simple modification of the internal update rule which achieves
the same effect in Algorithm 3. Our convergence result of Theorem 4.1 can also be extended to the
anytime setting, as we show in Theorem D.1.

Theorem D.1. Let x0, . . . , xT−1 be the strategy vector once each agent internally adopts Algorithm 3
with η = 1/2nV . Then for each agent i,∑

τ∈T ′

〈
vi(x

τ
−i), x

τ
i

〉
− max

xi∈Xi

∑
τ∈T ′

〈
vi(x

τ
−i), xi

〉
≥ −O(nV logm)

Moreover |T ′| = Ω(T/ log T ) and thus the distribution µ̂ :=
∑

τ∈T ′ µxτ /T ′ is a
O (nV logm log T/T )-approximate CCE.

Proof. Notice that the set T ′ is the same for any agent i. In order to simplify notation let T ′ =
{1, . . . , τk−1, τk, . . . , τK}. At the same time, note that if Algorithm 3 is run for T time-steps, then
K = Ω(T/ log T ). As in the proof of Theorem 3.2 we have that for any τk ∈ T ′, by definition of
Algorithm 3, ∣∣∣∣∣∣xτk

isi
−

x
τk−1

isi
· eηvisi (x

τk−1
−i )∑

s̄i∈Si
x
τk−1

isi
· eηvis̄i (x

τk−1
−i )

∣∣∣∣∣∣ ≤ 1

2τk−τk−1
≤ 1

k2
(3)

To simplify notation we rewrite the above inequality as

∥xτk − yτk∥ ≤ 1/k2

where

yτkisi ←
x
τk−1

isi
· eηvisi (x

τk−1
−i )∑

s̄i∈Si
x
τk−1

isi
· eηvis̄i (x

τk−1
−i )
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Algorithm 3 Anytime internal update rule of Clairvoyant MWU Dynamics

1: Input: η > 0

2: x0
i ← (1/m, . . . , 1/m) and z0i ← (1/m, . . . , 1/m)

3: T ′ ← {1} and τ ← 0

4: for each round t = 1, · · · , T − 1 do
5: if t == τ + log

(
|T ′|2

)
then

6: xt
i ← xt−1

i

7: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).

8: Updates zti such that for all si ∈ Si,

ztisi ←
zt−1
isi

eη·visi (x
t
−i)∑

s̄i∈Si
zt−1
is̄i

eη·vis̄i
(xt

−i)

9: T ′ ← T ′ ∪ {t} and τ ← t
10: else
11: zti ← zt−1

i

12: Updates xt
i such that for all si ∈ Si,

xt
isi ←

ztisie
η·visi (x

t−1
−i )∑

s̄i∈Si
ztis̄ie

η·vis̄i (x
t−1
−i )

13: Agent i broadcasts the mixed strategy xt
i and then receives the payoff vector vi(xt

−i).
14: end if
15: end for

The proof is completed with the exact same argument as in Theorem 3.2. More precisely,

K∑
k=1

⟨vi(xτk
−i), x

τk
i ⟩ ≥

K∑
k=1

⟨vi(xτk
−i), y

τk
i ⟩ − |⟨vi(x

τk
−i), x

τk
i − yτki ⟩|

≥
K∑

k=1

⟨vi(xτk
−i), y

τk
i ⟩ −

K∑
k=1

∥vi(xτk
−i)∥∞/k2

≥
K∑

k=1

⟨vi(xτk
−i), y

τk
i ⟩ −O(V )

≥ max
xi∈Xi

K∑
k=1

⟨vi(xτk
−i), xi⟩ −O(nV logm)
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