
EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE
POLITECNICO FEDERALE LOSANNA
SWISS FEDERALE INSTITUTTE OF TECHNOLOGY

Virtual Reality and Active Interfaces Group

Christian Wengert, Björn Poëll
{ christian.wengert | bjoern.poell } @epfl.ch
Assistants: Sébastien Grange, Terrence Fong
Professor: Roland Siegwart

Human Oriented Tracking and Mobile Robot
Gesture Driving

Semester Project Winter 2001/2002

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

1

Contents

I. Introduction.. 4
I.1. Goal of the project... 4
I.2. People tracking ... 4

I.2.1. Problems .. 4
I.2.2. Hypotheses .. 5

I.3. Gesture recognition... 5
I.3.1. Problems .. 5
I.3.2. Hypotheses .. 5

I.4. People Identification.. 5
I.4.1. Problems .. 6
I.4.2. Hypotheses .. 6

I.5. Robot Control.. 6
I.5.1. Hypotheses .. 6

II. Related research .. 7
II.1. Human tracking.. 7
II.2. Gesture Recognition .. 9
II.3. People identification... 10

II.3.1. Color Histograms... 10
II.3.2. Histogram Intersection... 10

III. System overview ... 11
III.1. Hardware .. 12

III.1.1. Robot.. 12
III.1.2. Imaging system .. 13
III.1.3. Geometry.. 13
III.1.4. Overview of techniques .. 14
III.1.5. Stereo geometry ... 15

III.2. People tracking ... 15
III.2.1. Histogram processing... 15
III.2.2. 2D Segmentation.. 17
III.2.3. 3D Segmentation and 3D Object Extraction ... 18
III.2.4. Continuous tracking.. 19
III.2.5. Color based tracking... 19

III.3. Gesture recognition... 19
III.4. People identification.. 20
III.5. Robot Control.. 23

III.5.1. Overview .. 23
III.5.2. Simplified robot control ... 24

IV. Implementation.. 24
IV.1. People Tracking.. 24
IV.2. Gesture recognition .. 26
IV.3. People Identification ... 28
IV.4. Robot Control ... 28
IV.5. Coding .. 28

IV.5.1. Class overview... 29
V. Results ... 30

V.1. People Tracking... 30
V.1.1. Problems... 30

V.2. Gesture recognition ... 31

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

2

V.3. People Identification .. 31
V.3.1. Problems... 32

VI. Future Work .. 32
VII. Conclusion ... 33
VIII. References.. 34
IX. Appendix ... 36

IX.1. Class documentations .. 36
IX.2. File overview... 36
IX.3. Header files .. 37
IX.4. Datasheets and specs .. 46

IX.4.1. Camera .. 46
IX.4.2. Frame grabber ... 48
IX.4.3. On-board computer .. 50

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

3

List of figures

Figure 1: Templates used for person detection. The larger templates have zeros
in the center since stereo may fail in the center region if the person is
wearing clothing with little texture. ... 7

Figure 2: Results from template matching .. 7
Figure 3: Example of a skin locus in the normalized red / green plane: Nogatech

camera skin locus [5] ... 8
Figure 4: Proximity spaces with links representing head, shoulder, arm 10
Figure 5: Dataflow chart ... 12
Figure 6: Pioneer II from Active Media ... 13
Figure 7: Geometry of the vision system on the mobile robot................................... 14
Figure 8: Original image (left), disparity map unprocessed (middle) and

processed (right) to correct disparity.. 14
Figure 9: Person width w’ in the image plane is proportional to disparity 15
Figure 10: Histogram peak definition and peak extraction.. 16
Figure 11: Histogram peak extraction and connection.. 17
Figure 12: Original image (left) and disparity map of processed image portion

(right), which shows unconnected blobs .. 17
Figure 13: Schema of 3D Object Extraction.. 18
Figure 14: Geometrical model of a human being (left) and possible postures

(right) ... 20
Figure 15: Is this the same person? ... 20
Figure 16: Two normalized histograms of the same person, different views 21
Figure 17: The blue line is the intersection of the two histograms 22
Figure 18: noise does not have much influence on the result................................... 23
Figure 19: Program schema of 3D object extraction... 25
Figure 20: Program schema for continuous tracking .. 25
Figure 21: Program schema color tracking... 26
Figure 22: Program schema Gesture Extraction... 28
Figure 23: Classes overview... 29
Figure 24: Successful tracking of two people (partial overlap in the middle and

right image).. 30
Figure 25: Successful object extraction with overlap (left) and unsuccessful

(right) due to objects overlapping and same disparity values 30
Figure 26: Successful gesture extraction: go back, follow me, stop, go forward

(from top left to bottom right) ... 31
Figure 27: No gesture could be extracted because hand has no skin color (due

to saturation effects around the hand) ... 31
Figure 28: The person to track, standing alone .. 32
Figure 29: Second person appearing (left), coming closer but stays untracked

(right) ... 32
Figure 30: Even closer (left), third person appearing (right) 32

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

4

I. Introduction

I.1. Goal of the project
Our goal is to develop an active interface to interact with a mobile robot using
gestures. Gestures are a natural way of communication between human beings
without the need to know the complexity of the machine. To achieve this goal, the
robot must detect people in front of it and should identify and recognize their
gestures. The main task is to implement a real-time tracking system on a low-
processing power, mobile platform. Several applications can benefit from this
technology.
As many conditions are not invariant, this is a very challenging task. We have to deal
with varying lighting and background conditions. In a first step, the robot has to be
aware of the presence of a potential operator. This is done by processing color,
motion and depth information from a camera pair mounted on the mobile robot. Even
though processing power has evolved rapidly over the last years, a “slow” processor
is used and therefore efficient algorithms have to be designed. These algorithms
could also be used for portable devices such as PDAs, which begin to spread very
fast. Many applications can be thought of for these devices, especially vision
systems, which may have a promising future in teleoperation or visualization of
geographical or other 3D data. The PDAs still have and will have in the next few
years a very limited processing power because of their size and minimal energy
consumption requirement.
Robots also often require small, cheap and low-power controllers in order to make
them small (sewer inspections) and lightweight (humanoid robot, mars rovers).
Another interesting application lies in augmented reality or wearable computing
where an extra set of eyes may provide additional information to a human. Here the
electronic device must be as small and as light as possible too.

I.2. People tracking
People tracking is done only by using the depth information from a stereovision
camera pair for two reasons:
• Color invariance (changing background and illumination does not affect stereo-

vision).
• Efficiency (the used stereovision algorithm is very fast)

This can be advantageous when no color information in the scene can be exploited
(many person tracking projects use skin color filtering in order to find humans, but in
space or in a nuclear reactor where humans wear protective clothes, no skin color
will be visible). In addition, if the robot tries to follow a person, no skin color might be
visible. To make the system more robust, color-based identification is used to ensure
that only one person is tracked at a time.

I.2.1. Problems

• Our robot is equipped with limited processing power. Therefore, low-resolution
images are used and timesaving algorithms have to be designed.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

5

• The cameras are mounted on a mobile robot, so illumination can change
dramatically. In addition, background subtraction is not possible, because of the
moving cameras.

• The robot must be able to track the person even if there is more than one person
in sight or if the person is partially occluded.

I.2.2. Hypotheses

• The distance between the robot and its operator is limited to a certain range due
to stereovision geometry.

• Skin color filtering cannot be used while following a person, because skin color
may not be visible.

• Only a very simple robot controller has been implemented (no autonomous
navigation). We focused our effort on the vision system.

I.3. Gesture recognition
In order to demonstrate how gestures can be used as a control modality, we have
defined a discrete set of postures. These are based on a simple geometrical model,
including only head and hands in order to have efficient recognition. Sensor fusion of
depth and color information is used in order to extract the operator’s head and hands
in a robust manner.

I.3.1. Problems

• Defining a simple set of postures. Only the head and the hands are used for that.
• For simplicity reasons, static gestures are implemented. At a later stage, the

speed of the moving hands can be used as further information in order to control
the robot’s speed as well (dynamic gestures).

I.3.2. Hypotheses

• Only a limited set of commands is implemented in order to control the robot (stop,
follow me, go forward, go backward).

• These commands let the robot move only on a straight line (otherwise it looses
sight of its operator).

• The user must stand in front of the robot.
• The robot only receives commands from people that stand still.
• The person who wants to command the robot must be the closest one in the

scene.
• The system must be person independent. Everybody, experts and novices alike,

have to be able to control the robot by simple gestures without training (whether
of the user or of the robot)

• The robot must not perform an unwanted action that could endanger itself.
Therefore, gesture recognition must be very conservative. An ignored command
is safer than a false interpretation.

I.4. People Identification
To track a person, we use the geometrical properties of a human more than colors.
This works fine for finding persons, but it is hard to differentiate two objects that are
identified as human. In this case, we use the color scheme (a histogram) of a human

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

6

to discriminate. It is important that, in the case where more than one person are seen
by the robot, the program will be able to find the right person to follow and doesn’t
start to track somebody else. To create a color scheme we use either the whole
human, separated as much as possible from the background (called the mask of the
human), or just a portion, such as a rectangle.

I.4.1. Problems

• As the robot is quite limited in its capacities, the routine to compare people has to
be simple and fast

• Color intensity changes very fast and is not a very reliable value for color
detection

• Clothing may be similar so it is not sufficient to uniquely check the color of the
pullover or the trousers. The comparison must base on the whole color scheme of
the human in question including skin and hair.

• The information received from the cameras is limited, i.e. a resolution of 160x120
pixels. If the human in question moves away from the robot, he becomes small
very quickly. This means that we have to compare objects that have very different
sizes i.e. some color scheme may have more than 5 times more pixels than an
other to compare to.

• For the same reason (bad resolution) we may not use other typical attributes of a
human like it’s height.

• When comparing two people, it is not given that the two color schemes compared
to each other represent the humans. Is the entire human represented? Does the
scheme include parts of the background?

I.4.2. Hypotheses

• The color information and the mask received include a major part of the human
although it is not necessary to have a perfect mask

• The lighting conditions do not change too dramatically.
• People do not wear too similar clothes (i.e. no twin look).

I.5. Robot Control
The robot is running on a Pentium 233Mhz processor, with Windows 98. It has ultra
sonic range sensors that can be used for obstacle avoidance. To control the robot,
we make use of the ARIA 0.7 C++ library [1]. It’s quite a complete library that let’s
you control the robot in depth and implement very specific behavior. But one is not
only well in control of the robots behavior, but also of exception handling, the way the
connection has to be made and the way the robot should receive commands.

I.5.1. Hypotheses

• We assume that we don’t have many obstacles, as our goal is to follow a human
and not to avoid obstacles.

• We run the robot on a flat ground so that the camera always receives more or
less the same portion of the human to follow. The tracking routines wouldn’t work
well if the robot’s camera experienced vertical movement.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

7

II. Related research

II.1. Human tracking
Much research has already been performed in the field of human tracking, using
many different techniques. Most of them rely on static cameras permitting
background subtraction and / or on skin color filtering. Konolige and Beymer [2] only
used depth information from a stereo camera pair. They performed template
matching in order to extract people from a disparity map. Templates describing the
form of a standing person are matched in the disparity map and positive results are
extracted.

Figure 1: Templates used for person detection. The larger templates have zeros in the center since
stereo may fail in the center region if the person is wearing clothing with little texture.

Figure 2: Results from template matching

Advantages of this method are that it is adaptable to any object where the shape is
known a priori and that no color filtering is used. It can handle partial occlusions of
objects. It also segments the space in depth, which is very useful information for

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

8

tracking. The real world size and speed may be used to determine whether the object
might be a human or not. However, it is very demanding in terms of processor power.
In addition, they use static cameras and background subtraction in order to extract
interesting objects, which cannot be used on a mobile robot. The background
subtraction could be omitted, but would demand even more processing power and
would be a noisier process. Nevertheless, even with background subtraction, this
process is too slow for our application.

Rawasek Tanawongsu, Alexander Stoytchev, Irfan Essa [3] use the combination of
color, motion and depth information in order to extract people. From a set of pictures,
they derived a skin color locus in the normalized red / green plane:

(1)
BGR

R
r

++
= and

BGR

G
g

++
=

Images are filtered with the knowledge of the skin color locus in order to detect
human faces and hands. The color filtering method is a very noisy process because
wood and leather have similar colors in the normalized red / green plane as human
skin. However, the filter works for every skin color from people from different
continents. Also, in order to find the skin locus (which differs for every camera, lens
and lighting configuration), it has to be found empirically. Because the skin locus
changes if illumination changes, an adaptive skin locus should be implemented.
Gi-jeong Jang and In-So Kweon [4] propose such an adaptive skin locus algorithm.
Others use statistical models in order to find the best skin locus. Our approach is to
define quite a large skin locus and to use depth information to filter the noise that is
generated by this procedure.

Figure 3: Example of a skin locus in the normalized red / green plane: Nogatech camera skin locus [5]

Another possibility that is a very easy and simple to implement are the use of
markers (colored gloves or similar). However, wearing these markers is considered
too inconvenient. On the other hand, this method can be very robust and fast tracking
can be achieved (see Aibo [6] going after its pink ball).

Detecting people with sound is not always possible, especially in crowded places, in
space or underwater (everywhere humans must wear heavy protective clothes with
helmets/masks). However, under some circumstances, it can help to find the user

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

9

faster, because his position relative to the robot can be estimated quite accurately.
Using only sound is certainly not sufficient, but it may be a very useful additional
sensor [7].

II.2. Gesture Recognition
Jochen Triesch and Christoph von der Malsburg [8] implemented a single hand
tracking based on a static camera, in order to command a robot’s hand (grasp an
object, put the object somewhere). This is done for a robot that is fixed so they can
use background subtraction for simpler object detection. They use skin color
detection and motion cues to extract the human’s hand and to determine the
meaning of the hand posture. In order to detect the fingers, which are very important
to determine the posture’s meaning, they have to use a better resolution than we
have. It is also person independent, requiring no training and using no markers,
which is very important in order to have a natural way of communication between the
robot and (any) human.

Stefan Waldherr, Sebastian Thrun and Roseli Remero [9] implemented an arm
gesture recognition system on a mobile robot using neural networks. While following
a person, they adapt their skin locus to the changing illumination. This requires
continuous tracking of the head and hands and therefore treating the whole image at
any time, which takes much more time than processing only a small band of the
image, as we will do.
Sébastien Grange [10] uses sensor fusion of depth and color information in order to
extract the user’s hands and head. The sensor fusion permits to filter to noise of the
color filtering process. Only a simple skin locus has been implemented (a rectangle in
the normalized red / green plane). The model of the human is very simple (only head
and hands, ignoring the shoulders and the chest). For our application where only a
limited set of possible postures is needed we will implement the same model.

Yuanxin Zhu [11] tracks only one hand with motion and color cues. He implemented
motion templates in order to extract dynamic gestures. However, this system has to
be trained for every gesture. Higher resolution images than in our system has been
used as well in order to detect enough details (fingers).

David Kortenkamp, Eric Huber, R. Peter Bonass [12] propose the proximity space
method: They implemented a model of a human defining shoulder, arm and head of
one side only (due to limited processing power) where every part of the modeled
body is represented by a proximity space and the links between them by stiff springs.
The joints are similar to the human joints in regard to the limitations, permitting the
model to ignore impossible configurations and augment robustness. In our model,
impossible configurations are also ignored, but only regarding the angles between
head and hands.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

10

Figure 4: Proximity spaces with links representing head, shoulder, arm

Guangyou Xu, Yuanxin Zhu, Xueyin Lin, Haibing Ren, Xiaoping Zhang [13] use only
monocular vision and color detection. Because the lighting conditions and
background changes too much on a mobile robot, the robustness of this system is
not sufficient for our application. Therefore, stereovision must be added.

II.3. People identification

II.3.1. Color Histograms

It is partly believed that color and surface characteristics of an object play only
secondary roles in object identification, because geometric algorithms (i.e. stereo
vision, motion) do give more information about an object, than its color.
In an article of Michael J. Swain and Dana H. Ballard [14], the role of color in vision is
being discussed and they show that colors can be a robust criteria to detect and
identify objects.
For that purpose, they use multidimensional color histograms. A histogram is
obtained by discretizing the image colors and counting the number of times each
discrete color occurs in the image array. To define a color, three values of “red”,
”green” and ”blue” are used. The color of each pixel is defined with these three
values.
Histograms are invariant to translation and rotation of the object and they vary slowly
with the change of angle of view, change in scale and occlusion of the object.
Point by point matching of histograms may be one approach to compare histograms
but does not work very well, because of shading and camera noise.
To make a histogram insensitive to light intensity changes it is common to normalize
it. To do a red-green normalization, each red and green value of a pixel is divided by
the sum of the red, green and blue value, as shown by the formula (1). The 3-
dimensional histogram becomes 2-dimensional.
To be able to judge the similarity between histograms Swain and Ballard introduce
the method Histogram intersection, which tells how many of the pixels of one picture
are found in the one to compare to.

II.3.2. Histogram Intersection

As a histogram can be seen as a function, the histogram intersection can be
interpreted as the minima of two histogram functions. For a given pair of histograms
A and B, each containing n values, the intersection of the histograms is defined as
follows:

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

11

(2) ∑
=

n

j
jj BA

1

),min(

The result of the intersection of two histograms is the number of pixels that have the
same color in both histograms. To obtain a match value between zero and one the
intersection is normalized by the number of pixels in one of the two histograms (the
one we would like to refer to, also called the model). The match value becomes then:

(3) ()
∑

∑

=

==
n

j
j

n

j
jj

A

BA

BAH

1

1

),min(

,

Distracting pixels in the background do not reduce the normalized histogram
intersection match value. It is only increased by a pixel in the background if
• The pixel has the same color as one of the colors in the model, and
• The number of pixels of that color in the histogram to compare (also called object)

is less than the number of pixels of that color in the model.

III. System overview

The following figure gives an overview of the system and its dataflow characteristics
showing some performances of our system. The following paragraphs introduce the
single sub-systems.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

12

Figure 5: Dataflow chart

III.1. Hardware
The hardware of our system is presented in the following subsections:

III.1.1. Robot

Our system is implemented on an all-terrain mobile robot from Active Media [15]
(Pioneer 2-AT).

• Skid-steer platform.
• Autonomy up to 4 to 8 hours on three fully charged batteries.
• Embedded PC104+ Pentium MMX @233MHz (see appendix IX.4.3).
• 128 MB RAM.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

13

• The operating system is Windows98 (which can easily be programmed using
Microsoft Visual C++).

• The robot is equipped with 16 sonar sensors for obstacle avoidance (8 in front, 8
behind).

Figure 6: Pioneer II from Active Media

III.1.2. Imaging system

Two cameras from PacificCam (see appendix IX.4.1) and two frame-grabbers
PXC200 (see appendix IX.4.2) from ImageNation are mounted on the mobile robot.
For efficiency the image resolution is 160 by 120 pixels. Fifteen frames per second
range image acquisition and computation can be achieved with the SRI small vision
system [16] with the given image resolution.

III.1.3. Geometry

We need a wide field of view so that the robot sees humans on a wide range (as well
in x and y as in z). In addition, the robot, which is much smaller than a human, must
be able to see the head and raised hands of the user for gesture extraction even if
the user is very close to the robot. In order to save processor time, we only process a
part of the image. However, we must be sure that the human is always inside this
small area in order to track continuously. Using wide-angle lenses and tilted cameras
fulfills all these requirements. See Figure 7 for details. The disadvantage of this
system is that distant objects tend to be warped, which could be solved by a software
dewarp function. As the image resolution is small and we mostly track close objects,
and the shape of hands or the head do not change dramatically, this need not be
done. Also, when using the disparity map of the whole image, objects in the upper
part of the image seems to be further away than they actually are. Therefore a
software correction is performed (see Figure 8). Note that the hands, which are the
closest objects to the robot, have the brightest values after processing.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

14

Figure 7: Geometry of the vision system on the mobile robot

Figure 8: Original image (left), disparity map unprocessed (middle) and processed (right) to correct
disparity

III.1.4. Overview of techniques

As mentioned above, we only use stereo information in order to detect objects (in our
case humans) in front of the robot. But this information is treated in several ways in
order to obtain a robust object tracker from the different results.

Stereo delivers many advantages:
• Even partially occluded objects can be detected, which is major problem for other

techniques.
• Gives information about the real size of an object, the real-world velocity and the

real distance between object and robot.
• The presence of distracting shadows, lighting changes, and camera dynamics has

little effects [17].

However, there are some limitations as well:
• Any object is detected. Tracking is not human-specific.
• If two objects are very close to each other, they might not appear as separate

objects.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

15

• Depth measurement is limited.
• Depth measurement is not linear. It follows an 1/x relationship (which is

implemented in all functions and calculations in our system).
• Stereovision is a noisy process. Especially if there are not enough textures, some

parts of the range image cannot be calculated. However an interpolation
technique can be used in order to estimate if two objects belong together (if there
is a non calculated region between two regions with same disparity, they will be
connected).

Histogram processing of the stereo image also delivers useful information:
• Information about the zones of interest in depth (z-slices or layers) by searching

peaks in the histogram. Every peak in the disparity histogram represents one or
several objects.

• Background/foreground detection: As the background is also processed from the
stereovision, we may say that the peak with the lowest disparity value represents
the background. Then all values below that threshold are considered as
background and are ignored.

III.1.5. Stereo geometry

Some geometrical information is needed in order to work on the disparity image. The
disparity is inversely related to depth, and we have to be aware of confusing pixel
values (width and height) and real world lengths. In the entire program, real world
lengths (centimeters) have been implemented in order to estimate the object’s width,
height and especially the distance between objects in the image.

Figure 9: Person width w’ in the image plane is proportional to disparity

Mathematically this is expressed as follows:

(4)
'w

f

w

z = and
z

bf
d = and finally

d

w
Kw

'=

With d the disparity value of object, b the stereo head baseline and f the camera focal
length, and K a constant that has to be determined for every vision system through
calibration.

III.2. People tracking

III.2.1. Histogram processing

A histogram is processed from the small portion of the stereo image (Figure 10).

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

16

Peak extraction
From this histogram, all peaks are extracted. Any object is visible as a peak in this
histogram (very close objects may be represented by one peak only). A peak is
defined around its maximum value, its area, its width and its distances between the
maximum and the start / end point. If the area of a peak is smaller than a predefined
minimum area, this peak is considered to be noise and will be ignored. Also, the peak
that is the furthest away (having the lowest disparity values) is considered as
background and will not be processed. Then we segment the 3D space into layers (z-
slices) containing all disparity values defined by a peak. Each layer is then 2D
segmented.

Figure 10: Histogram peak definition and peak extraction

(5)
h

xfxf
g

)()(21 −= Gradient calculation [18]

Peak connection
Because of the noise in the image, too many peaks are extracted. Therefore, another
test is performed in order to try to connect two close peaks. The distance, which
defines if two peaks can be connected, is inversely proportional to the disparity value.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

17

Figure 11: Histogram peak extraction and connection

III.2.2. 2D Segmentation

Once an interesting z-slice has been extracted, a binary image is produced from this
slice. This image is 2D segmented using the well-known recursive Connected
Compound Labeling algorithm. A list of objects (blobs) is then created containing the
information about the object's distribution in the x-y plane, the center of gravity and
the position in the image plane. No classic image filters are used in this process, but
the blobs are filtered by area (removes single pixel noise) and blobs that are very
close to each other will be connected to one blob. This had to be added because the
blobs can be un-connected due to the stereo effect of missing textures of a body (see
figure below).

Figure 12: Original image (left) and disparity map of processed image portion (right), which shows
unconnected blobs

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

18

III.2.3. 3D Segmentation and 3D Object Extraction

By putting the histogram processing and 2D segmentation together and performing it
for all peaks, we obtain layers of the real world having each at least one object inside.
From this information, we try to extract all 3D objects from the scene that are
potentially human beings.

Figure 13: Schema of 3D Object Extraction

For each z-slice or layer, all 3D objects are extracted containing each its distribution
of pixel in the x-y plane (blob), the disparity information, the real world and image
coordinates and an identification number (ID). Even though much filtering and
connection has already been performed on the blobs and on the peaks, errors may
still be present. Therefore, the 3D objects are compared to each other and, in case of
an overlap (in x, y and z), they are merged.

Advantages of our system are:
• No image processing filters (binary, morphology, matrix) are used, only pixel

operators, which are very fast. Filtering is done within the peak-, blob- and object-
space and is therefore very fast. Noise can be very easily eliminated in this high-
level approach.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

19

• Any object can be tracked. No limitation to humans. Filtering of the objects can be
done with respect to the object’s real world size.

III.2.4. Continuous tracking

Once an object to follow has been detected, it is better practice to use the information
from the previous step in order to try to forecast the objects new position calculating
its speed and its direction. This is done using Kalman filtering [19] for least square
estimate of real-world velocity and direction of travel of the object. This helps to
minimize the tracking area in order to accelerate the tracking sequence. In order to
minimize errors, we need a smooth robot trajectory and therefore an improved robot
control algorithm.

III.2.5. Color based tracking

Another variant for the tracking is using the re-identifying algorithm in order to keep
track on the same object all the time. This is especially useful when the robot is not
moving smoothly but follows a person in a zigzag way. Then the forecast algorithm is
not robust enough and prevents the system from erroneous tracking. Also, as only a
small part of the image is processed to compare the object’s color, this is not
significant in terms of processing power.

III.3. Gesture recognition
If the operator stops for a while, the robot turns into the gesture recognition mode.
Then the whole image is processed (stereo as well as skin color) in order to extract
head and hands. This is with respect to the band processing used for tracking a
much slower process, but gestures do not need to be updated as fast as tracking
information and the resulting lower refresh rate still permits to command the robot at
an acceptable speed.
For representing a human being, a very simple model has been developed. A small
set of postures has been defined for the basic control of a robot:
• Stop
• Move forward/backward
• Follow me

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

20

Figure 14: Geometrical model of a human being (left) and possible postures (right)

III.4. People identification
As introduced in the section II.3.2, histogram intersection is used to identify the right
person in case there is more than one. To compare two people, normalized colors
are used to minimize the influence of changing intensity. A rectangle that covers part
of the trousers and part of the pullover is used to build the histogram. To find the
degree of coincidence of the histograms in question, we first have to assure that they
have a comparable size. Therefore, both histograms are normalized, which means
that all values of the histogram are multiplied by a certain factor so that the peaks of
both histograms have the same value (i.e. 100).
In Figure 15, we see two different views of a person:

Figure 15: Is this the same person?

Let’s say the person is tracked and we would like to compare them to each other to
know if it’s the same person. In Figure 15, the green rectangle shows the parts that
will be used for the histograms:

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

21

Two Histograms To Compare

0

20

40

60

80

100

120

1 21 41 61 81 101 121 141 161 181 201 221 241

color index

am
ou

nt
of

pi
xe

ls
(n

or
m

al
iz

ed
)

Figure 16: Two normalized histograms of the same person, different views

The green line represents the histogram of the colors in the rectangle of the left
image and the red line stands for the right image. Although the right rectangle is
obviously greater than the left one, its histogram (red) seems to include fewer values
than the green histogram. This is because the histograms had been normalized.
Then the histogram intersection is applied:

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

22

Histogram Intersection

0

20

40

60

80

100

120

1 21 41 61 81 101 121 141 161 181 201 221 241

color index

pi
xe

la
m

ou
nt

(n
or

m
al

iz
ed

)

Figure 17: The blue line is the intersection of the two histograms

For each color, the minimum of the two histograms to compare is taken and
compared to one of the histograms. For each color, we receive a value between zero
and one, where zero means no correspondence and one means complete
correspondence. Then we calculate the total correspondence of the whole histogram
by averaging all values. The total correspondence (or the match) for the example
shown above is 0.95.

This method to compare histograms has some advantages:
• It happens that a histogram to represent an object has peaks that are not typical

for its surface, but they are temporarily there because of light reflections, camera
or digitizer noise, etc. This (red circle in Figure 18) noise do not have a significant
influence on the result of the comparison.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

23

Figure 18: noise does not have much influence on the result

• The quality of the result does not depend on the color or the structure of the
clothes the human wears because the whole color spectrum and especially the
histograms curve is taken in account. The form of the histogram curve changes
little with size or angle of view whereas the peaks may vary quite a bit.

III.5. Robot Control

III.5.1. Overview

Here is a short overview of how to control the robot with ARIA:
Device Connections are the object that ARIA uses to talk to the robot. After creating
and opening a device connection, its association has to be set to a robot. After a
device connection is set on a robot, one has to connect to the robot.
ArRobot is the heart of ARIA. ArRobot is the gateway through which information is
read about the robot and through which commands are sent to the robot.
The robot has motors, which must be enabled for the robot to move before any
commands can be sent. There are two ways of controlling the robot. One is by
Actions (the normal method of controlling a robot) and the other one is with Direct
Motion Commands.
• Each action usually embodies one idea of some kind, such as avoiding obstacles

in front of the robot, or recovering from a stall. They work together to let the robot
move around robustly.

• Direct Motion Commands are the method of giving the robot explicit movement
commands, they should not be used in conjunction with actions.

Some more things that should be mentioned:
• State reflection is what the ArRobot class is basically for; it takes readings from

the robot and reflects them, and takes movement commands and reflects them
back down the connection to the robot.

• State reflection can be turned off but be careful with sending too many commands
(as they are not being reflected anymore, and the robot receives directly each
command sent)

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

24

• Aria is highly multithreaded:
- With threads, multiple operations can happen in the same instant in time.

So careful with reading from the same data from two different threads or
writing data another thread is reading.

- Sync tasks are the tasks that are run once per robot cycle, in a specified
order. The sync task list is actually a tree, with 5 major branches by default,
packet handling, sensor interpretation, action handling, state reflecting, and
user tasks

- An asynchronous task runs in its own thread

III.5.2. Simplified robot control

To simplify the robot control, we use the direct motion commands and we let the
robot run in its own thread. First, a serial connection is created and set to the robot.
Then the connection is opened. Now we can send commands to the robot and we let
it run in its own asynchronous thread. We have defined a set of simple direct motion
commands:
• Go (distance in mm, velocity in mm per second)
• Turn (angle in degree, rotation velocity in degree per second)
• Stop
• Beep (different sounds)

This small command collection can easily be extended, for example with a command
that sets the acceleration or makes the robot go to a given point etc.

IV. Implementation

IV.1. People Tracking
In order to save a lot of processor time, a different algorithm has been implemented
for keeping track of a person once he / she is found. At startup, the robot has no
person to track, so it waits until an object appears in its field of view (which is only
scanned partially). As soon as an object appears in front of the robot, a full image
scan is performed, the object is assigned an ID and its position and size are
calculated. Then only the sub band is processed again and the dx, dy, dz is
constantly updated in order to estimate the objects trajectory. If the object moves
within these boundaries, there is no need to re-process the full image and the object
keeps being tracked. Another method to track people is using the color-indexing
algorithm in order to keep track of the right object (person). This is especially
advantageous, if the robot’s trajectory is not smooth.
If the object to be tracked / followed is lost, the robot tries to find the person again
(using the color indexing method). In case of lost track, the robot stops and tells the
user to slow down, respectively to come back (using a simple beep).

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

25

Figure 19: Program schema of 3D object extraction

Figure 20: Program schema for continuous tracking

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

26

Figure 21: Program schema color tracking

IV.2. Gesture recognition
The gesture recognition part of the program reuses big parts from the code described
above for the 3D object extraction. It is however combined with information from the
skin color filtering. When the robot expects a gesture, it uses the result from the
tracker engine in order to estimate the search area for the head. As the lower part of
the body is tracked, we can make the hypothesis that the head is above that area but
not further away than approximately one meter. In this search region, the biggest and
closest skin color blob is searched and, if found, stored in a class tlSimpleGesture. If
no head can be found using this method, the rest of the image is scanned and the
biggest object (in the real world) is supposed to be the head. As we now know the
position of the head, we try to localize the hands on the left (respectively on the right)
of the head’s x-position. In this area also, the biggest and closest skin colored object
is searched. An additional test is performed which checks the angle between head
and hand and rejects the invalid hand objects.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

27

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

28

Figure 22: Program schema Gesture Extraction

IV.3. People Identification
People identification is done with the class tlbPerson2. An instance of this class
represents a person with the normalized color histograms as attributes. To define an
instance of the class tlbPerson2 one can both use the constructor or the method
setPerson (tlRect *anyRect, tlImage *anyImage) and pass the rectangle as well as
the image out of which the rectangle should be extracted from as argument. Then the
normalized red-green histograms will be created.
The method float comparePerson (tlbPerson2 *person) takes another person as
argument and gives back the matching value between zero (no match at all) and one
(complete match).

IV.4. Robot Control
The class to control the robot is called tlbRobot3. Its attributes include a connection
ArSerialConnection and a robot ArRobot. The constructor first enable the robots
motors, turn off its ultra sonic sensors (not needed) and turn on the sounds (so the
robot can beep). Then it will open the device connection ArSerialConnection (return if
failed) and set it to the robot (and shut it down in case of failure). If connection to the
robot is established, the robot will be run in its own thread with the command
runAsync().
Once the constructor has been called, the simple commands go, turn, beep, stop,
exit can be used. The state reflection has been turned off because it causes weird
behavior with direct motion commands. The commands are sent with the
comInt(ArCommands) method, where ArCommands is a useful enumeration (enum)
of commands.

IV.5. Coding
The whole program has been written in C++. Classes have been extensively used.
There is one tlTracker3D1 class, which performs 3D object extraction and tracking.
The tlSimpleGesture class performs the correct transformation from a gesture into an
executable command for the robot. In order to process a histogram a tlPeak class
has been implemented. For re-identification, the tlPerson class is available which
stores the color information of the people to track. Finally, a tlObject3D class (used
by tlSimpleGesture and tlTracker3D) implements a 3D object.

1 Note: As this program is based on the tracking library from Sébastien Grange (tLib), the prefix tl has
been used.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

29

IV.5.1. Class overview

Figure 23: Classes overview

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

30

V. Results

V.1. People Tracking
Figure 24 and Figure 25 illustrate the performance of the people detection and
tracking algorithm in typical configurations.

Figure 24: Successful tracking of two people (partial overlap in the middle and right image)

Figure 25: Successful object extraction with overlap (left) and unsuccessful (right) due to objects
overlapping and same disparity values

V.1.1. Problems

The tracking performance depends on many parameters, which have to be
determined empirically, and which depends on the vision system. First, there are
parameters for the histogram processing:
• A peak’s minimal area (HIST_MIN_AREA2).
• The gradient, respectively the speed with which the peak is falling

(HIST_MIN_GRADIENT).
• The distance between two peaks in order to connect them (which follows a 1/x

law, but which also needs empirically determined correction factors: a/x+b)
(_tlDisparityThreshold()).

For the 2D segmentation we need:
• The minimal distance between two blobs in order to connect them (given in

centimeters, so this also follows the 1/x law). (_tlConnectDistance())
• The minimal area of a blob in order to distinguish between noise and relevant

blobs (BLOB_MINIMAL_AREA)

The same occurs for the 3D object processing. We need again a connection distance
and a minimal area (all in real world lengths, therefore again 1/x). Finally we need
many camera / system specific constants such as the baseline, the focal length, the
angle between the camera’s optical axis and the floor, the height of the cameras from

2 Note: The constant’s name from the source code is between parenthesis

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

31

the floor and a constant for doing the conversion from disparity to real world lengths
(used in all 1/x calculations). At last the skin locus has to be defined as a part of the
normalized red / green plane. Tests only have been performed on static cameras,
because our robot‘s power supply failed and could not be repaired before finishing
this report. In order to see all our constants refer to our definition file in the appendix
IX.3.

V.2. Gesture recognition
As mentioned before, it is very important that the robot interprets the gestures very
conservatively. This is achieved by using sensor-fusion of depth and color
information and by defining some limits to the degrees of freedom of the human’s
arms.

Figure 26: Successful gesture extraction: go back, follow me, stop, go forward (from top left to bottom
right)

Figure 27: No gesture could be extracted because hand has no skin color (due to saturation effects
around the hand)

Problems
• Better no action perform then perform a false action
• Very noisy

V.3. People Identification
Below we see some examples where more than one person appears in front of the
robot. The robot should only track the person with white trousers and ignore the other
people appearing. Each person that appears is compared to the person to track and
in case of a correspondence less than 0.5, the person found is considered as
different from the one to track.

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

32

Figure 28: The person to track, standing alone

Figure 29: Second person appearing (left), coming closer but stays untracked (right)

Figure 30: Even closer (left), third person appearing (right)

The lightning conditions influence the robustness of re-identification even when using
normalized colors. The results under strong illumination are superior to those with
less lighting, because the difference between darker colored clothes and pure black
tends towards zero. Also the direction of illumination influences the system, because
shadows can be interpreted as darker colors and thus changes the histogram.

Another problem is that the tracker does not always detect the center of a person
correctly so the wrong area is chosen as a reference for identification. Maybe a
higher but thinner rectangle would give better results.

V.3.1. Problems

Result depends
• On the difference of the clothes being used
• On the light conditions
• On the result of the tracking (Is the person where the tracker thinks it is?)

VI. Future Work

Our work already covers the bases for a successful people tracking and gesture
recognition system. Although a lot of work still can be performed in order to improve
this system:

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

33

• Adding an infrared camera could be very useful to distinguish between humans
and dead objects.

• Adding more processor power (a portable computer) would make it possible to
use higher resolution images, having more details, especially for skin color
detection. Higher resolution images would result in more z-slices, and therefore
more detailed 3D objects could be extracted.

• With a better stereovision algorithm, more details would be visible and less noise
would be present (see [20]).

• Implement a more complex model of human beings for more gesture recognition.
• VRML on PDA. For collection and visualization of 3D data, PDAs can be used. In

order to acquire a model of objects in VRML a stereovision system and the
presented 3D tracker may be used. Applications: geographic information systems,
distant visualization.

• Adding a more sophisticated robot controller for smoother following, allowing this
way better forecasting of the objects trajectories (in fact, this has not been tested
yet).

• Adding pan / tilt / zoom cameras to the robot. Therefore, it could track the
operator even when he is giving a command like “go there”. The zoom would help
to command the robot in a larger zone. An auto-focus finally would result in more
sharpen images, showing much more details, but would bring up significant
calibration problems that would have to be solved.

• Add voice feedback. If the robot could tell the user that it has lost him, or that the
user is going too fast it would improve the communication between man and
machine. A simple beep or so is too annoying in long terms.

• Add voice processing. The robot should also understand spoken commands.

VII. Conclusion

Even with limited processing power, it was possible to design very efficient algorithms
in order to
• Track people,
• (Re-)identify them
• Understand their (static) gestures
• Control a robot

These algorithms were implemented on a mobile platform where changing
background and lighting conditions made it more difficult to extract meaningful
information from the images. Stereovision has proved to be a very robust and fast
method for a tracking engine. As mentioned before, the conditions may change
rapidly, being a problem for our color based methods such as gesture recognition
and (re-)identification. The color indexing process updates the color profile of a
person from time to time, so the changing illumination poses no problem. For the skin
color filtering, we simply set our skin color locus to be very tolerant, though producing
more noise, which is eliminated by sensor-fusion with the depth information. With
these settings, our system worked in office locations.
Our software has been designed to be reusable and many behaviors that are more
complex may be added to our work. Because we limited ourselves to low processing
power, our work could easily be made more performing by adding a state-of-the-art
processor. The use of end-user operating systems such as Windows 98 made

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

34

software development easier, but a real embedded OS could also improve our
system in terms of speed and stability.
In addition, implementing more sensor modalities would improve robustness even in
very complex scenes. Our system has shown the possibility that interaction with
machines through gestures is a feasible task and the set of detected gestures could
be enhanced to more commands by implementing a more complex model of a
human being. In the future, service robots executing many different tasks from
house-maid work to nuclear power plant services might arise and become a common
part of everyday live normal as computers nowadays.

Lausanne, 11th of February 7, 2002

Christian Wengert Björn Poëll

VIII. References

[1] ARIA by ActivMedia Robotics, LLC
44 Concord Street, Peterborough, NH 03458, USA
www.ActivMedia.com/robots

[2] Real-time Tracking of Multiple People Using Continuous Detection
David Beymer and Kurt Konolige
Artificial Intelligence Center
SRI International, Menlo Park, CA 94025, USA

[3] Robust Tracking of People by a Mobile Robotic Agent
Rawasek Tanawongsu, Alexander Stoytchev, Irfan Essa
College of Computing, GVU Center
Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

[4] Robust Real-time Face Tracking Using Adaptive Color Model
Gi-jeong Jang and In-So Kweon
Department of Electrical Engineering & Computer Science
Korea Advanced Institute of Science and Technology
373-1 Kuseong-dong, Yuseong-gu, Taejon, Korea

[5] Using the skin locus to cope with changing illumination conditions in color-
based face tracking
Maricor Soriano, Birgitta Martinkauppi, Sami Huovinen, and Mika Laaksonen
Machine Vision and Media Processing Unit, Dept. of Elec. Eng. and Infotech
Oulu
P.O.Box 4500, FIN-90014 University of Oulu, Finland

[6] http://www.aibo.sony.com
[7] Real-Time Face Tracking Using Audio and Image Data

Prof. Michael Brandstein
Harvard Intelligent Multi-Media Environment Laboratory (HIMMEL)

[8] A gesture Interface for Human-Robot-Interaction
Jochen Triesch and Christoph von der Malsburg
Institut für Neuroinformatik

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

35

Ruhr-Universität Bochum,
44780 Bochum, Germany

[9] A Neural-Network Based Approach for Recognition of Pose and Motion
Gestures On a Mobile Robot
Stefan Waldherr, Sebastian Thrun and Roseli Remero
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA, USA

[10] Vision-based Sensor Fusion for Active Interfaces: H.O.T. – Human Oriented
Tracking
Diploma Thesis 1999/2000
Sébastien Grange
Computer Human Interaction Center
SRI International
Stanford, CA, USA

[11] Toward Real-time Human-Computer-Interaction with Continuous Dynamic Hand
Gestures
Yuanxin Zhu
Department of Computer Engineering and Computer Science
University of Missouri-Columbia
Columbia, MO 65211, USA

[12] Recognizing and interpreting gestures on a mobile robot
David Kortenkamp, Eric Huber, R. Peter Bonasso
Metrica Inc.
Robotics and Automation Group
NASA Johnson Space Center – ER2
Houston, TX 77058

[13] Toward Robot Guidance by Hand Gestures Using Monocular Vision
Guangyou Xu, Yuanxin Zhu, Xueyin Lin, Haibing Ren, Xiaoping Zhang
Department of Computer Science and Technology
Tsinghua University
Beijing 100084, China

[14] Color Indexing.
Michael J. Swain and Dana H. Ballard.
International Journal of Computer Vision, 7(1):11--32, 1991

[15] http://www.activrobots.com
[16] SRI International

Menlo Park, CA, USA
[17] Background modeling for segmentation of video-rate stereo sequences.

Christopher Eveland, Kurt Konolige and Robert C. Bolles.
In proceedings IEEE Conf. On Computer Vision and Pattern Recognition, pages
266-271, June 1998

[18] Introduction à l’analyse numérique
Jacques Rappaz, Marco Picasso
Presses polytechniques et universitaires romandes, 1998, ISBN 2-88074-363-X

[19] An Introduction to the Kalman Filter, Greg Welch and Gary Bishop, TR 95-041,
Department of Computer Science, University of North Carolina at Chapel Hill,
NC 27599-3175

[20] Global Matching Criterion and Color Segmentation Based Stereo
Hai Tao and Harpreet S. Sawhney

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

36

Sarnoff Corporation
201 Washington Rd., Princeton, NJ 08543

IX. Appendix

IX.1. Class documentations
Every piece of source code is extensively documented. Some fixed rules have been
used in order to extract the documentation from the source code into a HTML help
file using doxygen3. This permits easier reuse of these classes.
The help files as well as all the source code can be found on the CD going with this
report.

IX.2. File overview

Header Implementation Description
defines.h - Constants, Macros, empirical

values
tlObject3D.h tlObject3D.cpp 3D object
tlPeak.h tlPeak.cpp Histogram peak
tlTracker3D.h tlTracker3D.cpp Tracking engine
tlSimpleGesture.h tlSimpleGesture.cpp Simple gesture extraction
tlbPerson.h tlbPerson.cpp Color indexing and re-

identification
tlbRobot.h robot3.cpp Robot control
tlProcessBlobs.h tlProcessBlobs.cpp 2D segmentation
tlProcessObjects3D.h tlProcessObjects3D.cpp 3D objects extracting and

tracking
tlProcessHistogram.h tlProcessHistogram.cpp Histogram processing
tlProcessGestures.h tlProcessGestures.cpp Gesture preprocessing

Table 1: File overview

3 http://www.doxygen.org

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

37

IX.3. Header files

tlObject3D.h

#include "tlVision.h"
#include "tlStereo.h"
#include "defines.h"
#include "tlPeak.h"
/**

* class tlObject3D
* An object describing a 3D object.
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*
*/

class tlObject3D {
private:

//fields
tlMask *innerBlob; ///x,y,area,width,height,cx,cy,pixels;
tlMask *disparity; ///contains the disparity map of the object
tlPeak *peak; ///corresponding peak in the histogram
int dAverage; ///Average disparity of this blob
int realWidth; ///width in the real world
int realHeight; ///height in the real world
int realDistance; ///distance in the real world
int ID; ///the ID of this objects, is given by tracker
bool tracked; ///true if already tracked, false otherwise
int lastDisparity; ///lastDisparity from being tracked (z)
tlPoint *lastPos; ///the last position in (x,y)
int deltaX; ///the speed of this object (disparity speed)
int deltaY; ///the speed of this object (disparity speed)
int deltaZ; ///the speed of this object (disparity speed)
int realdeltaX; ///the real world speed
int realdeltaY; ///the real world speed
int realdeltaZ; ///the real world speed
//methods

public:
//constructors
tlObject3D::tlObject3D();
tlObject3D::tlObject3D(tlObject3D *o);
tlObject3D::tlObject3D(tlMask *b, int objID);
tlObject3D::tlObject3D(tlMask *b, tlImage *stereo, int objID);
tlObject3D::tlObject3D(tlMask *b, tlImage *stereo, int avgD, int ID);
tlObject3D::tlObject3D(tlMask *b, tlMask *d, int avgD, int ID);
tlObject3D::tlObject3D(tlMask *b, tlImage *stereo, tlPeak *p,

int ID);
tlObject3D::~tlObject3D();

//methods
int tlObject3D::distance(tlObject3D *o);
///measures distance between two objects in real world coords [cm]
int tlObject3D::xyAngle(tlObject3D *o);
///measures angle between two objects in real world coordinates [°]
int tlObject3D::xzAngle(tlObject3D *o);
///measures angle between two objects in real world coordinates [°]
void tlObject3D::set(tlMask *b, tlMask *d, int avgD,int id);
///sets the object
int tlObject3D::createDisparityMask(tlMask *d, tlImage *stereo);
///creates disparity mask from stereo image

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

38

tlMask *tlObject3D::getBlob();
///returns a pointer to this objects blob
tlMask *tlObject3D::getDisparityMask();
///returns a pointer to this objects disparity mask
int tlObject3D::getRealWidth();
///returns the real world width
int tlObject3D::getRealHeight();
///returns the real world height
int tlObject3D::getRealDistance();
///returns the real world distance between robot and object
int tlObject3D::getAverageDisparity();
///returns the average disparity from this objet
int tlObject3D::getDisparity(tlPoint *p);
///returns the disparity at point p from this objet
tlPoint *tlObject3D::getCenterOfGravity();
///returns the the center of gravity
tlRect *tlObject3D::getRect();
///returns the boundaries of the object
tlPeak *tlObject3D::getPeak();
///returns the peak
int tlObject3D::getID();
///gets the ID of this object
void tlObject3D::setID(int ID);
///sets to ID of the object
tlPoint *tlObject3D::getLastPosition();
///returns the last position
int tlObject3D::getLastDisparity();
///returns the last disparity value (distance)
int tlObject3D::getRealdeltaY();
///returns the real world speed
int tlObject3D::getdeltaY();
///returns the speed
int tlObject3D::getRealdeltaX();
///returns the real world speed
int tlObject3D::getdeltaX();
///returns the speed
int tlObject3D::getRealdeltaZ();
///returns the real world speed
int tlObject3D::getdeltaZ();
void tlObject3D::update(tlMask *b, tlImage *stereo, tlPeak *peak);
///updates an already tracked object

};

tlPeak.h

#include "tlVision.h"
#include "defines.h"
/**

* class tlPeak
*
* Describes a peak in a histogram
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*/

class tlPeak {
private:

int position; ///position in the histogram
int area; ///area that peak and its neighbors occupy
int width; ///width of the peak
int sigmaLeft; ///distance to the left to next zero position
int sigmaRight; ///distance to the right to next zero position
int maxVal; ///maximum value

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

39

public:
//constructors
tlPeak();
tlPeak(tlPeak *p);
tlPeak(int position);
tlPeak(int position, int area, int width, int sl, int sr, int mv);
~tlPeak();
int getPosition();
///returns the position of the peak
int getArea();
///returns the area of this peak
int getWidth();
///returns the width of this peak
int getSigmaLeft();
///returns distance to next zero to the left
int getSigmaRight();
///returns distance to next zero to the right
int getMax();
///returns the max Val of this peak
void setPosition(int position);
///sets this peaks position
void setArea(int area);
///sets this peaks area
void setWidth(int width);
///sets this peaks width
void setSigmaLeft(int sigmaLeft);
///sets this peaks sigma left
void setSigmaRight(int sigmaRight);
///sets this sigma right
void set(int pos, int area, int width, int sl, int sr, int mv);
///sets all properties

};

tlTracker3D.h

/**
* class tlTracker3D
*
* Contains a full 3D-objects processing and extracting engine.
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*/

//include files
#include "tlVision.h"
#include "tlDisplay.h"
#include "tlStereo.h"
#include "tlObject3D.h"
#include "tlProcessBlobs.h"
#include "defines.h"
//defines
class tlTracker3D {
private:

//fields
tlStereo *stereo; ///the stereo processor
tlHist *hist; ///the stereo histogram for 3D segmentation
tlImage *stereoImage; ///the processed stereo image
tlImage *bin; ///the binary for the 2D segmentation (x,y)
tlImage *limage; ///the left eye image
tlImage *rimage; ///the right eye image
tlRect *rect; ///the portion of the image to process
tlObject3D* objects[MAX_3D_OBJECTS];

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

40

///a list of all objects,
int objectCount; ///the number of objects
int time; ///used to calc the speed of objects
//methods
void sortObjects(int left, int right);
void swapObjects(int i, int j);

public:
//methods
tlStereo *getStereo();
///returns the tlStereo
tlImage *getLeftImage();
///returns the left image
tlImage *getRightImage();
///returns the right image
void getHist(tlHist *hist);
///returns the tlHist
tlImage *getStereoImage();
///returns the stereoImage
void getBinaryImage(tlImage *image);
///returns the processed binary Image
void getProcessedStereoImage(tlImage *img);
///returns the processed stereoImage
void getProcessedStereoImage(tlImage *img, tlRect *rect);
///returns the processed stereoImage
tlRect *getRect();
///returns the tlRect
tlObject3D *tlTracker3D::getObject3D(int i);
///returns a 3D object
void setRect(tlRect *rect);
///sets the working rectangle
void setStereoPair(tlImage *left, tlImage *right);
///sets the stereoEngine
void setStereoPair(tlImage *left, tlImage *right, tlRect *rect);
///sets the stereoEngine
int extract3D(int histMinArea, int histMinGrad);
///extracts the 3D objects and returns the objectCount
int filterObjects(int minW, int maxW, int minH, int maxH);
///deletes smaller then minW/minH [cm] and bigger then maxW/maxH [cm]
int connectObjects(int dz, int dxy);
///connects objects if disparity value is +/- the same
///deltaDisparity) of both objects and if distance between them
///below the parameter
bool trackObject(int objectID, int histMinArea, int histMinGrad);
///tracks an object by ID
void drawObjects(tlImage *img);
///draws the object in different colors on img
void drawObject(tlImage *img, int index, int r, int g, int b);
///draws the object i color color
void printObjects();
///prints the main properties of the objects
void mergeObjects(int index1, int index2, bool realMerge=true);
///merges two objects
//constructors
tlTracker3D::tlTracker3D();
tlTracker3D::tlTracker3D(tlImage *left, tlImage *right);
tlTracker3D::tlTracker3D(tlImage *left, tlImage *right, tlRect *r);
tlTracker3D::~tlTracker3D();

};

tlSimpleGesture.h

#include "tlVision.h"
#include "tlObject3D.h"
#include "defines.h"

#define NO_ACTION_FOUND 0
#define STOP_ACTION 1
#define FORWARD_ACTION 2

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

41

#define BACKWARD_ACTION 3
#define FOLLOW_ACTION 4
#define TURN_LEFT_ACTION 5
#define TURN_RIGHT_ACTION 6
#define STAY_HERE_ACTION 7
/**

* class tlSimpleGesture
*
* Desribes a simple gesture
* Can be adjusted to a amore complex human model than just head and hands
* by deriving a complexer class from this one
*
* @Author: Christian Wengert
* @Date: 1.02.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*/

#define LEFT 1
#define RIGHT 2
class tlSimpleGesture {
private:

int action; /// meaning of a posture
tlObject3D *head; ///a object representing the head
tlObject3D *leftHand; ///a object representing the left hand
tlObject3D *rightHand; ///a object representing the right hand
int radiusLeft; ///distance head left hand
int radiusRight; ///distance head right hand
int xyAngleLeft; ///angle in xy plane head left hand
int xzAngleLeft; ///angle in xz plane head left hand
int xyAngleRight; ///angle in xy plane head right hand
int xzAngleRight; ///angle in xz plane head right hand
int extractAction(); ///calculates from the above 6 parameters
int extractBodyParts(tlObject3D *objects[], int objectCount);
///extracts the body parts from a list of 3D objects

public:
//constructors
tlSimpleGesture();
///standard constructor
tlSimpleGesture(tlObject3D *head, tlObject3D *l, tlObject3D *r);
///constructor with initial posture
tlSimpleGesture::tlSimpleGesture(tlObject3D *objects[], int count);
///extracts itself the objects!!
~tlSimpleGesture();
///destructor
void set(tlObject3D *head, tlObject3D *left, tlObject3D *right);
///sets a new posture
int getAction();
///returns the command of this gesture
int getxzAngle(int leftright);
///returns the vertical angle between head and left/right arm
int getxyAngle(int leftright);
///returns the horizontal angle between head and left/right arm
int getRadius(int leftright);
///returns the distance between head and left/right arm
void drawGesture(tlImage *overlay);
///draws the posture on the image overlay

};

tlbPerson.h

/**
* class tlbPerson
* Used for color indexing and re-identification
*
* @Author: Bjoern Poell

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

42

* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*
*/

class tlbPerson2
{
private:
public:

tlMask *mask;
tlRect *rect;
tlHist *histNR;
tlHist *histNG;
tlImage *image;
//constructors
tlbPerson2();
tlbPerson2(tlMask *anyMask, tlImage *anyImage);
tlbPerson2(tlRect *anyRect, tlImage *anyImage);
~tlbPerson2();
//person functions...
void setPerson(tlRect *anyRect, tlImage *anyImage);
///sets person properties
float compareTo(tlbPerson2 *person);
///compares two persons

};

tlbRobot.h

#include "Aria.h"

/**
* class tlbRobot
* Used for robot control
*
* @Author: Bjoern Poell
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* @see method descriptions
*
*/

class tlbRobot {

public:
//constructor
tlbRobot();
//destructor
~tlbRobot();

//a pointer to the robot,"new ArRobot()" will be called in tlbRobot()
ArRobot *robot;
ArTcpConnection con;
//methods
//arg: distance in mm
void go(double dist);
//arg: distance in mm velocity in mm per second
void go(double dist, double vel);
//arg: delta heading in degree
void turn(double deltaHeading);
//arg: delta heading in degree,rotation velocity in degree per second
void turn(double deltaHeading, double rotVel);

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

43

//arg: dist in mm
void goArCom(int dist);
//arg: deg per sec
void setRotVelArCom(int rotVel);
//arg: acc in deg per sec per sec
void setRotAccArCom(int rotAcc);
//arg: delta heading in degree, this is with the comInt command,
void turnArCom(int degree);
//arg: each int makes a diffrent sounds
void beep(int sound);
void stop();
void exit();

};

tlProcessBlobs.h

/**
* tlProcessBlobs.h
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* 2D segmentation from binary image
* Blob processing routines
*/

#ifndef __TLPROCESSBLOBS_H__
#define __TLPROCESSBLOBS_H__
#include <string.h>
#include "tlVision.h"
#include "defines.h"
#define _TL_CAMERA_EXTRA_BLOB_WIDTH 10
#define _TL_CAMERA_EXTRA_BLOB_HEIGHT 10

int _tlFindBlobs(tlImage *image, tlRect *rect);
///low level extraction method
int _tlLabelBlobs(tlPixel *src, tlPixel *dest, int w, int h, int x, int y);
///low level extraction method
int _tlExtractBlobs(tlImage *image, tlRect *rect);
///low level extraction
int _tlFilterBlobs(int min_size, int max_size, int ratio);
///filters blobs by size and ratio
int _tlFilterBlobs(int area, int ratio);
///filters blobs by area and ratio
int _tlFilterBlobs(int area);
///filters blobs by area
int _tlProcessBlobs (tlImage *bin, tlRect *rect);
///extracts blobs from binary image
int _tlProcessBlobs (tlImage *bin, tlRect *rect, int connectDist);
///extracts blobs from binary image and connects those which inter-distance
///is below connect_distance
int _tlProcessBlobs (tlImage *bin, tlRect *rect, int connectDis, int area);
int _tlProcessBlobs (tlImage *bin, tlRect *rect, int minBlobArea,

int connectDist, tlImage *stereo, int diparity);
///extracts blobs from binary image and connects those which inter-distance
///is below connect_distance and filters those which area is below min_area
tlMask *_tlGetBlob(int index);
///returns a blob from the list
int _tlGetBlobCount();
///returns the blob count
void _tlSwapBlobs(int i, int j);
///swaps two blobs in the list
void _tlSortBlobs(int left, int right);
///sorts the blobs in the list by area
int _tlConnectBlobs(int distance);

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

44

///connects blobs which inter distance is below distance
int _tlConnectBlobs(int distance, tlImage *image, int disp);
///connects blobs which inter distance is below distance. But also checks
///(dis-)continuities in the disparity image
void _tlMergeBlobs(int index1, int index2, bool realMerge=true);
///merges two blobs. Called by connect blobs
void _tlPrintBlobs();
///prints all relevant infos about the blobs in the list
int tlTrackBlobs(tlImage *bin, tlImage *stereo, tlRect *rect, int area,

int threshold, int distance);
///high level blob tracking routine
int _tlTrackBlobs(tlImage *bin, tlImage *stereo, int area, int threshold,

int distance);
///high level blob tracking routine
int _tlDrawBlobs(tlImage *refImage, int obj, int r, int g, int b);
///draws all blobs
float _tlConnectDistance(int dist, int disp);
///returns the connect distance by 1/x law

tlProcessObjects3D.h

/**
* tlProcessObjects3D.h
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* 3D segmentation from 2D segmentation and histogram and stereo data
* tlObjects3D processing routines
*/

#include "tlVision.h"
#include "tlObject3D.h"
#include "defines.h"

int _tlExtractObjects3D(tlImage *stereo, tlRect *rect, tlHist *hist,
tlObject3D *objects[], int histMinArea,
int histMinGrad);

///extracts all 3D objects
void _tlDrawObjects3D(tlImage *temp,int numberOfObjects,

tlObject3D *objects[]);
///draws all 3D objects
bool _tlTrackObjects3D(tlImage *stereo, tlImage *bin, tlRect *rect,

tlHist *hist, tlObject3D *objects[],
int histMinArea, int histMinGrad,
int oldObjectCount, int objectID);

///tracks all 3D objects
tlObject3D *getObject3DByID(int id, int objectCount,

tlObject3D *objects[]);
///returns the object which corresponds to the ID
void _tlMergeObjects3D(tlObject3D *objects[], int index1, int index2);
///merges two objects and also all properties
int _tlConnectObjects3D(tlObject3D *objects[], int objectCount, int dz,

int distance, tlImage *stereo);
///connects objects thar are overlapped
void _tlSortObjects(int left, int right, tlObject3D *objects[]);
void _tlSortObjectsByX(int left, int right, tlObject3D *objects[]);
void _tlSortObjectsByRealSize(int left, int right, tlObject3D *objects[]);
void _tlSwapObjects(int i, int j, tlObject3D *objects[]);
int tlcmToPixel(int cm, int disparity);
int tlPixelTocm(int pixel, int disparity) ;
int _tlFilterObjects3DBySize(int wmin, int wmax, int hmin, int hmax, int

objectCount, tlObject3D *objects[]);

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

45

tlProcessHistogram.h

/**
* tlProcessHistogram.h
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* Histogram processing routines
* extracts peaks and permits to process them
*
*/

#include "defines.h"

int _tlProcessHist(tlImage *stereo, tlRect *rect, tlHist *hist, int
min_area, int min_gradient);

///processes the histogram and creates a list of the peaks of this
///histogram
void _tlSortPeaks(int left, int right);
///sorts peaks in the list by disparity
void _tlSwapPeaks(int i, int j);
///swaps two peaks in the list
void _tlPrintPeaks(int peakCount);
///prints relevant informations about the peaks in the list
void _tlDrawHist(tlImage *imageIn, tlImage *imageOut, tlHist *hist,

tlRect *rect);
///draws the histogram
tlPeak *_tlGetPeak(int index);
///returns a peak from the list
int tlGetForegroundStart(); 1
///returns the disparity value where the foreground starts
int _tlMergePeaks(int index1, int index2,int peakCount);
///merges the properties of peaks into one
void _tlDrawPeaks(tlImage *imageOut, int peakCount);
///draws the peaks
double _tlDisparityThreshold(int d);
///calculates the distance, two peaks must have between them in order to be
///considered as one peak (follows a 1/x law)
int _tlConnectPeaks(int peakCount);
///connects peaks

tlProcessGestures.h

#include "tlVision.h"
#include "defines.h"
#include "tlTracker3D.h"
#include "tlSimpleGesture.h"
/**

* tlProcessGestures.h
*
* @Author: Christian Wengert
* @Date: 7.01.2002
* @Project: TLIB
* @Version: 1.0
* @ToDo: -
*
* Gesture processing routines
*
*
*/

tlSimpleGesture *tlExtractGestures(tlTracker3D *tracker);
///extracts the gesture from the image and returns the action code
void tlFlattenDisparity(tlImage *stereo, tlRect *rect, float angle);
///corrects the disparity, if cameras are tilted
void tlStereoProjection(tlImage *stereo, tlRect *rect, tlImage *output,

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

46

tlHist *hist);
///makes a projection of the stereo image->view from top

IX.4. Datasheets and specs

IX.4.1. Camera

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

47

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

48

IX.4.2. Frame grabber

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

49

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

50

IX.4.3. On-board computer

Human Oriented Tracking and Mobile Robot Gesture Driving

Virtual Reality and Active Interfaces Group - Christian Wengert, Bjoern Poell

51

