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Abstract 

Laser Powder Bed Fusion (LPBF) is an Additive Manufacturing (AM) process consolidating parts layer by 

layer, from a metallic powder bed. It allows no limitation in terms of geometry and is therefore of particular 

interest to various industries. Metallic LPBF samples can achieve near-full density and high resistance. How-

ever, to prevent defects from deteriorating the quality of the workpiece, process costly and time-consuming 

parameters optimization is required. The LPBF process lack of repeatability limits its applications. The Ph.D. 

thesis proposes an alternative solution to trial-and-error optimization, based upon real-time acoustic in-situ 

monitoring combined with state-of-the-art machine learning.  

We first investigated the use of a low-cost microphone AM41 combined with machine learning (ML) algo-

rithms. Three regimes (lack of fusion pores, conduction mode, and keyhole pores) and three alloys (316L 

stainless steel, bronze CuSn8, and Inconel 718) were selected. Three conventional ML algorithms and a Con-

volutional Neural Network (CNN) were chosen to perform the classification tasks. We proved that the acoustic 

emissions AE features are related to the laser-material interaction and do not originate from undesired machine 

or environmental noises. The regimes are classified with high accuracy (> 87%) regardless of the algorithms 

and materials. The AE features used for the classifications are material and regime dependent. Finally, a CNN 

multi-label architecture for classifying the material and the process regimes simultaneously reached a very 

high classification accuracy (93%), which is of great interest for multi-materials LPBF systems. We also in-

troduce alternative AI methods to reduce the amount of data needed to train the algorithms, as well as to 

transfer the knowledge from one material to another.  

Saliency maps are used to determine the frequencies responsible for the ML algorithm classification. The 

analysis of saliency maps allows the quality of the trained model to be evaluated. A second microphone with 

a flat frequency response from 2 kHz to 200 kHz is compared with the AM41, whose response is restricted to 

bands around 10, 20, and 40 kHz. The information needed for the classification is scattered in the range 2 kHz-

200 kHz, which allows both types of microphones to predict the regimes. Detailed investigation shows that 

most of the information is confined below 30 kHz, leading to an easier classification and a better model with 

the flat response microphone. 

The need to have a robust ML database is highlighted, with the flat response microphone. Twelve different 

laser parameter sets are chosen for each processing regime, to construct a database for the training of a CNN, 

applied to stainless steel 316L. We prove the possibility of generalization, i.e. using the model for classifying 

the regimes with high confidence (>96%), from AE signals recorded with unseen laser parameters. The influ-

ence of the “distance” in terms of power, speed, and enthalpy between the laser parameter sets included in the 

training database, and the unseen one, is studied. The position in the processing map is also investigated. At 
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least eight parameter sets should be included in the training database to predict the regime of any laser param-

eter set, Moreover, when a robust model is trained, a decrease in the classification accuracy can indicate the 

regimes domains frontiers. This monitoring solution can help construct processing maps for a given alloy. 

Keywords 

Additive Manufacturing, Laser Powder Bed Fusion, Acoustic Emission monitoring, Machine Learning 
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Résumé 

La fusion laser sur lit de poudre (LPBF) est un procédé de fabrication additive consolidant des pièces couche 

par couche, à partir d'un lit de poudre métallique. Il permet la fabrication de géométrie complexe. Les pièces 

peuvent atteindre une densité et une résistance élevée. Il faut optimiser les paramètres du procédé, ce qui est 

long et coûteux. Le manque de répétabilité du procédé LPBF limite ses applications. Cette thèse propose une 

solution alternative à l'optimisation par essais et erreurs, basée sur la surveillance acoustique in-situ en temps 

réel combinée à un apprentissage automatique de pointe.  

L'utilisation d'un microphone à faible coût AM41 a été combiné à des algorithmes d’apprentissage ML. Trois 

régimes (absence de pores de fusion, mode de conduction et pores keyhole) et trois alliages (acier inoxydable 

316L, bronze CuSn8 et Inconel 718) ont été sélectionnés. Trois algorithmes et un réseau neuronal convolutif 

(CNN) ont été choisis pour la classification. Les émissions acoustiques AE sont liées à l'interaction laser-

matière et ne proviennent pas de bruits indésirables de la machine ou de l'environnement. Les régimes sont 

classés avec une grande précision (>87%) indépendamment des algorithmes et des matériaux. Les caractéris-

tiques AE dépendent du matériau et du régime. Une architecture CNN multi-label pour la classification simul-

tanée du matériau et des régimes a atteint une précision de classification élevée, 93%, ce qui est d'un grand 

intérêt pour les systèmes LPBF multi-matériaux. Nous présentons également des méthodes d'IA alternatives 

pour réduire la quantité de données nécessaires à l'entraînement des algorithmes, ainsi que pour transférer les 

connaissances d'un matériau à un autre.  

Les cartes de saillance sont utilisées pour déterminer les fréquences responsables de la classification et per-

mettent d'évaluer la qualité du modèle entraîné. Un second microphone avec une réponse en fréquence plate 

de 2 kHz à 200 kHz est comparé à l'AM41, dont la réponse est limitée autour de 10, 20 et 40 kHz. Les infor-

mations nécessaires à la classification sont dispersées dans la gamme 2 kHz-200 kHz, ce qui permet aux deux 

types de microphones de prédire les régimes. Une étude détaillée montre les informations sont confinées en 

dessous de 30 kHz, ce qui conduit à une classification plus facile et à un meilleur modèle avec le microphone 

à réponse plate. 

La nécessité de disposer d'un model ML robuste est mise en évidence, avec le microphone à réponse plate. 

Douze ensembles de paramètres laser différents sont choisis pour chaque régime de, afin de construire une 

base de données pour l'apprentissage d'un CNN, appliqué à l'acier inoxydable 316L. Nous prouvons la possi-

bilité de généralisation, c'est-à-dire l'utilisation du modèle pour classer les régimes avec une confiance élevée 

>96%, à partir de signaux AE enregistrés avec des paramètres laser inconnus. L'influence de la "distance" et 

de la position en termes de puissance, de vitesse et d'enthalpie entre les ensembles de paramètres laser dans la 
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base de données d'entraînement et ceux qui n'ont pas été vus, est étudiée. Au moins huit ensembles de para-

mètres doivent être dans la base de données d'entraînement pour prédire le régime d'un ensemble non-vu. De 

plus, lorsqu'un modèle robuste est entraîné, une diminution de la précision de la classification peut indiquer 

les frontières des régimes. Cette solution de surveillance peut aider à construire des cartes de procédé pour un 

alliage donné. 

Mots-clés 

Fabrication additive, fusion laser en lit de poudre, surveillance par émission acoustique, apprentissage auto-

matique. 
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 Introduction 

1.1 Laser Powder Bed process 

Laser powder bed fusion (LPBF), also called Selective Laser Melting, has received the most focus among the 

different additive manufacturing methods for metals and alloys [1], [2]. It consolidates layer-by-layer metallic 

parts of a given alloy powder with a laser beam. Near full density and mechanical properties competing with 

those obtained by conventional manufacturing routes, can now be achieved due to recent progress [3]. Complex 

geometries can be manufactured with minimal feedstock waste [4]. It is of great interest to various industries. 

For example, aerospace applications contain complex geometries that require the assembling of different parts 

with different alloys or with a gradient of alloy compositions, using AM technologies results in lightweight 

structures with significant cost savings [5], [6]. With AM technologies for the medical industry, the patient’s 

own imaging data could be used as CAD input to process implants or devices [7]–[10]. Many other industries 

such as automotive [11] or jewelry [12] are as well more and more interested in AM technologies’ capabilities. 

Figure 1 presents schematically the different steps of the LPBF process and Figure 2 presents the interaction 

between the laser and the powder bed and the main process parameters [13]. 

 

Figure 1. Laser powder bed fusion process steps schematic representation [13] 
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Figure 2. Schematic of the LPBF laser-mater interaction with the main process parameters [13] 

1.2 Analytical monitoring and defects formation 

The LPBF process involves an important number of parameters, Yadroitsev [14] has identified 130 of them. 

Any change in any of them has a direct impact on the workpiece quality, leading to a lack of repeatability [15]. 

Most of the authors, however, agree on four significant process parameters: the laser speed 𝑣, laser power 𝑃, 

layer thickness 𝑡, and hatching distance ℎ, i.e the distance between two laser paths. The energy density, E, 

equation 1, is occasionally used to monitor the process [16], [17]. 

𝐸
∙

           (1) 

Two main types of defect can decrease the quality part: porosities and cracks [18]–[20]. The porosity and crack 

content related to the energy density is often reported or understood as illustrated in Figure 3 for the majority 

of alloys. The porosity content decreases as the laser energy increases, until reaching a short plateau and then 

increases again. The cracking behavior is alloy-dependent, nevertheless generally the trend is opposite. Three 

modes or process regimes can be distinguished in Figure 3 for increasing energy density E: Lack of Fusion 

(LoF) mode, conduction mode, and keyhole mode. An example of the melt-pool shape for each mode for a 

given alloy -stainless steel 316L- is shown in Figure 4. 
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Figure 3. Schematic trend of porosity and cracks density with changes of the energy density. The red circle indicates the 
optimum processing conditions.[R.Drissi-Daoudi, PhD thesis] 
 

 

Figure 4. Examples of microstructure of 316L LPBF work pieces: From left to right, keyhole mode, conduction mode, 
conduction mode with cracks, LoF mode. [R.Drissi-Daoudi, PhD thesis] 
 

In the LoF mode, LoF pores are created. Lack of fusion (LoF) porosities formation originates from the lack of 

bonding between two layers resulting from incomplete fused spots, incomplete fusion, or incomplete penetra-

tion [21]–[24] (Figure 5). The laser parameters and the powder distribution influence the LoF formation. When 

the energy input is very low in the LoF domain the balling phenomenon occurs. Under these conditions, only 

the top layer is melted and the layers below act as a substrate. The upper layer incomplete wetting, therefore, 

results in a weak anchor and the surface tension tendency to minimize the surfaces induces a solidification of 

the molten powder into a ball shape [25]–[27] (Figure 6). LOF can also occur with limited balling when insuf-

ficient hatch overlap is present. 

 

Figure 5. Schematic representation of LoF pores formation. [R.Drissi-Daoudi, PhD thesis] 
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Figure 6 . Cross-sectional of balling effect agglomerates of different sizes for high velocity (750 mm/s) and increasing 
power until high power 1430W [27] 
 

The keyhole mode can be stable with no formation of pores and when it becomes unstable, it may lead to 

entrap a gas bubble in the molten metal creating a porosity. The characteristic keyhole well is first created by 

the melt reaching the evaporation state [28], [29]. The keyhole is then filled with metal vapor at high temper-

ature which is partially or totally ionized and exercises a pressure – called recoil pressure – on the inner surface 

of the keyhole [30], [31]. The addition of the effects of gravity and surface tension creates the characteristic 

keyhole shape. A bubble is formed due to the well collapsing than an acoustic waves is generated driving pores 

near the keyhole tip far enough away from the large thermal gradient field around the keyhole that they can be 

trapped through solidification [143]. A second mechanism is the Marangoni effect whose driving force is the 

surface tension. It is a convection effect explained by the local variations in density and temperature. The 

bubble is brought into the molten pool behind the keyhole and is captured by the solidification front. The 

second mechanism is shown in the simulation in Figure 7 [32]. The formation of keyholes is a dynamic defect; 

the porosity follows the laser movement, thus one or multiple keyholes may be created in one laser line scan. 

 

Figure 7. Bubble formation due to keyhole collapsing [32] 
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The conduction mode is defined as the regime where the energy input is just enough to melt about 1.5 layer 

with depth divided by ½ the width and not create LoF pores, but where the energy input is not high enough to 

initiate keyholes. A conduction melt shape can be seen Figure 4. However, the conduction mode is the regime 

were the residual stresses are the highest, and is therefore prone to cracks formation. Large residual stresses 

are induced by the Thermal Gradient Mechanism (TGM) and the cool-down mechanism of the molten top 

layers. It implies a high degree of tensile residual stresses (TRS), producing distorted shape and reducing the 

mechanical properties and fatigue life. TRS is also always the driving force for the formation of cracks [33]. 

The cracking behavior is metal-dependent, but different types of cracks can be identified. The lack of fusion 

pores induce a stress concentration around their tip. The same phenomenon can occur at the grains or the melt-

pools boundaries. Cracking can also be driven by micro-segregation creating weakened and brittle phases. 

Solidification cracks arise between the solidified and the melt-pool areas. Solidification induced shrinkage 

entraps the remaining liquid in the interdendritic regions which then act as crack initiation sites. Finally, liqua-

tion cracks, unlike solidification cracks, take place in the heat-affected zone (HAZ) and do not reveal the 

dendritic morphology. The material is typically heated rapidly to a temperature lower than the overall liquidus 

of the material, but high enough to cause the melting of certain grain boundaries, leading to crack initiation 

[34]–[37]. 

The scanning strategy is often optimized to reduce residual stresses. However when the laser stops, depending 

on the energy of the laser, it creates a LoF or a keyhole pore. At this point, the velocity is very low, even zero 

for a short time-period, the energy input is therefore high, which can lead to keyholing (Figure 8). LoF are 

created if the energy is low, at the boundaries from LoF mode and conduction mode. At the end of the line 

some powder is ablated, and when the laser stops, the amount of powder do not have the time to melt com-

pletely (Figure 9). 

 

Figure 8. Slice from neutron tomography of a SS316 L sample (P=200 W, v=400 mm/s, t=20 μm, h=100 μm) with the 
associated scanning strategy forming keyhole in the T shape. [R.Drissi-Daoudi, PhD thesis] 
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Figure 9. Slice from neutron tomography of a SS316L sample (P=120 W, v=600 mm/s, t=40 μm, h=100 μm with the 
associated scanning strategy forming the LoF line. [R.Drissi-Daoudi, PhD thesis] 
 

In Figure 2 it can be seen that the range of laser parameters for defect-free parts is narrow, near the keyhole 

mode threshold, whereas the range of all possible parameters is very large. Obviously, the trial-error method 

is very costly and time-consuming. The relevance of equation (1) is often questioned [38], [39] since, for the 

same E, very different microstructures can be found [40]. Another equation taking into account the optical and 

thermal properties of the alloy has been developed to monitor the process and find conditions corresponding 

to the keyhole threshold. The normalized enthalpy (equation 2) considers an energy balance between the input 

and the dissipated energy, it is linked to the melt pool depth d  normalized by the laser spot size [41]. 

 

Δ𝐻 
√

          (2) 

d             (3) 

Where α is the absorptivity of the bulk material, P is the laser power (W), ρ the density (𝑘𝑔 𝑚 ), C the specific 

heat (𝐽 𝑘𝑔.𝐾), ΔT the difference between the melting and initial temperature (K), 𝐿 the latent heat of melting 

(𝑘𝐽 𝑘𝑔), ω the laser spot radius (m), v the laser speed (𝑚 𝑠⁄ , D the thermal diffusivity (𝑚 𝑠).  

The equation accounts for the heat diffusion mechanism in the sample (as opposed to equation (1)). Ghasemi 

et al. [42] developed a translation rule based on the powder absorptivity parameters, to be able to transfer 

optimal process parameters from one alloy to the other, using the normalized enthalpy (Figure 10). 
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Figure 10. The translation rule applied to the normalized enthalpy of bronze samples versus the normalized melt pool of 
red gold (in green) and 316L (in orange). [42] 
 

However, the laser-mater interaction still remains highly nonlinear and complex other phenomena such as 

spattering or denudation leading to defect creation remain stochastic and highly unpredictable. 

 

Figure 11. Formation mechanisms of different types of spatter: morphology of spherical splashing (type-I splashing); of 
coarse spherical morphology (type-II splashing); of irregular splashing (type-III splashing) [43] 
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Spattering can occur at low or high energy usually for high laser velocity. Three types of spatters are depicted 

in Figure 11. Type I: metallic jet is characterized by the recoil pressure coming from the evaporated pressure 

creating a depression below the laser. The high vapor surface flux exercises a pressure force that ejects the 

liquid metal. Type II: Droplet spatters are explained by surface tension temperature dependency, creating Ma-

rangoni effects and Plateau-Rayleigh instability which eject, from the surface liquid, metal with low viscosity 

[43]. Type III: Non-melted powder spatters at the front of the melt-pool are described by Matthews et al [25] 

who claim that the non-uniform heating of the particle, as the laser radius is on the order of particle diameter, 

leads to a strong lateral thermal gradient. Hence, one side of the particle reaches boiling and the extracted 

vapor’s highly localized recoil pressure is strong enough to propel the particle. The momentum transfer with 

the neighboring particles explains the powder spattering. When spatters lie on the powder bed, it will create 

large LoF defects in the next line scans, as illustrated Figure 12 [23]. 

 

Figure 12. Schematic illustration of a powder layer with a portion (in yellow) under the laser beam that melts and form 
the track N with a big LOF, considering the presence of a spatter [23] 
 

Denudation zones (Figure 13) appear when the strong flow due to the Marangoni effects makes the collapsing 

of a wall: the surface tension is then pulling adjacent particles and creates side pores close to the partially 

melted particles. It will also create pores in the next layer [25]. 
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Figure 13. Simulation of a denudation zone apparition. [25] 
 

This introduction to the defects formation in the LPBF process shows how difficult it is to monitor the process, 

from analytical approaches or through laser parameters optimization.  LPBF remains a process with reproduc-

ibility issues. The need for a robust monitoring system to broaden the industrialization of this manufacturing 

process is the motivation for this thesis. The next sections will propose a literature review on the monitoring 

methods of laser processes, and contextualize the thesis objectives.  
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 State of the art  

During a laser process, the laser beam hits the powder surface and it is absorbed, reflected, refracted, scattered, 

and transmitted. These phenomena result in heating, melting, vaporization, or plasma formation [44], which 

emit radiation, acoustic, and electromagnetic waves that can be monitored. The monitoring possibilities are 

here restricted to two categories: optical and acoustic methods. For both categories, the monitoring approach 

can be combined with Machine Learning solutions. 

2.1 Machine Learning solutions  

The learning algorithm can be categorized as supervised, semi-supervised or unsupervised. If the classes - 

input categories - are all or partially predicted and known examples, it is a supervised or semi supervised ML. 

In these cases, an expert has to previously label each class. A model is determined from the labelled data and 

then the label of a new piece of data is predicted knowing the previously learned model. When the system does 

not know the label or the nature and number of classes, it is called unsupervised. The system must target the 

data according to their available attributes, and classify them into homogeneous groups of examples. The sim-

ilarity is usually calculated according to a distance function. It is then up to the operator to associate the mean-

ing of each group and patterns in a group. The most used classification algorithms are briefly defined below.  

Logistic regression (LR) algorithm is a supervised ML algorithm, analysing the relation between one or more 

independent variables to classify data into discrete classes. LR uses a sigmoid function to map the predictions 

and their probabilities. This S-shaped function converts real value into a value ranged between 0 and 1. If its 

output is greater than a predefined threshold the model will predict that the instance belongs to that class, if it 

is lower it will predict that it does not. The classification is based on the maximum likelihood, assessing con-

cordance [45], [46].  

K-Nearest Neighbour (KNN) algorithm is a non-parametric instance based supervised classifier. It uses the 

proximity to predict the class of a data point. The main assumption is that the points that are similar are found 

near one another. A class is assigned on the basis of a majority vote of the data point near the tested point [47], 

[48].  

Support Vector Machine (SVM) algorithm have to find a hyperplanes with the maximum margin (the maxi-

mum distance between data points of the classes) in an N-dimensional space to distinctly classify the data 

points. Support vectors are data points closer to the hyperplanes that influence its position and orientation. The 

support vectors maximizes the margin of the classifier. The larger the margin the more confidence the classifier 

will have to predict a class. A class is predicted when the tested data is detected in the correspondent side of 

the hyperplane and its margin. [49] 
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Decision tree (DT) starts with a root nodes that expands on decision nodes and leaf nodes. Leaf nodes represent 

class labels (output of the decisions) and branches represent conjunctions of features that lead to those class 

labels. Each decision nodes is based on features of the dataset [50]. 

Random Forest (RF) algorithm consists of an ensemble of Decision Trees so that the decision about a new data 

sample is determined by majority voting. It is a nonparametric framework, and it is robust to the presence of 

outliers, noise, feature value transformations, and overfitting [51]. 

Gradient boost (GB) algorithm as the RF algorithm is based on the concept of ensemble learning. It combines 

multiple of weak classifiers to build a strong one. Several gradient descent procedures are combined to mini-

mize some global loss. Different loss function can be chosen and optimized for a specific classification task 

[52], [53]. 

All the algorithms described above rely on the labelling of the classes as well as on the features chosen to feed 

the supervised algorithm. The choice of the features have a great influence on the accuracy of the classifier. 

The features in laser processes can usually be extracted from the time domain, the spatial-temporal domain, 

the frequency domain or the time-frequency domain of the data.  

On the other hand, clustering in machine learning is a technique to group unlabelled datasets into different 

clusters of similar data points. Similar patterns are identified to group the data. It is an unsupervised learning 

method. The clustered can as well be fed as input to a supervised algorithm. A popular algorithm is the K-

Means clustering Algorithm. K defines the number of pre-defined clusters that need to be found. It is a cen-

troid-based technique. The aim is to minimize the sum of distance between the data point and their clusters 

[54]. 

Neural networks (NNs) also known as artificial neural networks (ANN) is based on nodes layers. Each node 

is called artificial neurons and model the neurons in the biological brain. ANNs contain an input layer, one or 

more hidden layers, and an output layer. Each artificial neuron, connects to another and has an associated 

weight, transfer function and a threshold. The node is activated and sends data to the next layer trough the 

transfer function if the output is above a specified threshold [55], [56]. An ANN model has to be trained and 

the difference between the processed output and the target output. The model adjusts its weights accordingly. 

After successive adjustments (epochs) the NN produce an output similar to the target and reaches a specified 

level of accuracy. This method of learning is called back-propagation rule [57]. The information from inputs 

is fed forward. Multilayer perceptron (MLP) is a fully connected class of ANN using the backpropagation 

training. Each node is one layer connects to every node in the following layer with a certain weight.  

Convolution neural network (CNN) are fed forwards ANNs where convolution layers are used in the hidden 

layers. It has attracted a lot of attention and research due to high performance for supervised or unsupervised 

classification tasks of complex or noisy datasets. CNNs have a lot of hyperparameter to optimize in order to 
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reach proper accuracy for a specific application (kernel size, number of layer, type of layer etc.). Some archi-

tectures have been developed and proven efficient for a range of application [58]. More information on deep 

learning CNN can be found in [55], [59].  

Spectral CNN are as well developed reaching high performance. They combine deep learning capabilities, 

inherited from conventional CNNs, and spectral graph theory [60]. In CNN the spatial is recovered from the 

input data using kernels while in SCNN a weighted graph G is used. [61], [62]. 

Another class of deep neural network found in the literature is a deep belief network (DBN). Its specification 

is that it is composed by multiple hidden units with connections between the layers but not between unis within 

each layer. It is a composition of restricted Boltzmann machines (RNMs) [63].  

Finally, recurrent neural network (RNN) are designed for times series or data involving sequences. Indeed, 

unlike feedforward NNs they allow previous outputs to be used as inputs. They have feedback connections. 

Each recurrent layer has an input weights set and a second one for the hidden unit [64], [65]. A popular RNN 

algorithm is the long short term memory (LSTM) capable of handling long-term dependencies. [66] 

2.2 Optical monitoring  

Optical monitoring methods can be differentiated as spatially resolved, when a camera (optical or IR) is used, 

spatially integrated when photodiodes or pyrometers are involved, and spectrally resolved when spectrometers 

are employed [44]. 

IR cameras measures melt pool size and temperature, while high-speed cameras monitor the powder bed / laser 

interaction. These methods are the most reported in the literature [39], [67]–[76]. The monitored length scale 

is typically about 10-100 μm, and the laser speed is usually in the range of 100-1000 mm/s. Thus, the cameras 

should have a high degree of spatial resolution and fast time response, increasing the cost as well as the amount 

of data to manage. Furthermore, these methods can only monitor the top surface layer. 

Photodiodes [77]–[79] and pyrometers [80] convert the light emission (LE) into a single voltage value, de-

creasing the amount of data to manage but also the accuracy. The surface temperature is measured. The wave-

length range that the semiconductor photodiode perceives is limited by optical filtering. More than one photo-

diode can be combined to extend the possible output data monitoring [79]. They are fast sensors and sensitive 

even at low cost. Light Emission (LE) is measured by spectrometers. The intensity can be a function of wave-

length or frequency. Spectrometers cover a wide frequency range from gamma rays to microwaves [81], [82]. 

Combining different methods is a solution that benefits from the advantages of several techniques. High-speed 

camera and temperature control techniques are often coupled. Melt-pool temperature monitoring, with a py-

rometer/camera combination, has been proven to be able to determine balling of the powder [83] and spattering 

behavior [68], [84]. A coaxial CMOS camera and a photodiode system to monitor the melt-pool have been 

associated and could dynamically adjust the laser power according to varying thermal conductivity regions 
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within the build [69], [85]. Spectrometers are coupled with interferometers to benefit from both methods of 

reflection in the process [86]–[90] 

Gaikwad et al. [91] combined pyrometer, optical sensing and a machine learning algorithm. They studied the 

effect of varying common LPBF process parameters, i.e. laser power (P) and laser velocity (V), on the quality 

of single laser tracks. Four categories have been identified: keyholing, conduction, lack-of-fusion, and balling. 

A designed sequential decision analysis neural network is used for the classification task. Its architecture is 

presented in Figure 14. The physical reasoning is included, facilitating interpretability and outperforming the 

other tested methods (CNN, LSTM and RNN). 121 laser power and laser velocity combinations were printed. 

Between 6 and 10 lines of each combinations were deposited for a total of 1009 single tracks. 60% of those 

lines are randomly chosen for the trained, 20% for the validation and 20% for the testing.  

 

 

Figure 14. Architecture of the designed sequential decision analysis neural network taking into account pyrometer 
measurement in the first ANN echelon and high speed camera images for the 2 next ANN echelons as well as the outcome 
of the first ANN echelon. [91] 
 

Thermal imaging is often combined with ML algorithms to monitor the LPBF process. Mahmoudi et al. [92] 

used thermal images from a two-wavelength imaging pyrometer, in LPBF fabrication of 300 layers of 17-4 
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PH stainless steel with artificially induced defects. Multiple classification techniques were investigated to dis-

tinguish good conditions from anomalies. LR, KNN, SVM and RF were tested and achieved over 90% classi-

fication accuracy. The algorithms were trained on 3 layers (225 ROIs) including faulty and faultless region 

and tested on 1 layer (75 ROIs) also including both categories. Khanzadeh et al. [75], [93] present thermal 

monitoring based on dual-wavelength pyrometer measurements as well. They captured time-varying melt pool 

signals of a Ti-6Al-V thin wall fabricated by LPBF. The categories are labeled as either pores or normal melt 

pools, according to X-ray tomography measurements. They used melt pool characteristics (e.g. length, width, 

longest axis) as input for several supervised classification techniques (KNN, SVM, DT); they all achieved over 

95% accuracy. One parameter for a thin wall is processed and the algorithms were trained on 80% of the 

dataset randomly chosen and tested on the remaining 20%. The methodology is described Figure 15. Similar 

methodologies can be found in Mitchell et al. [94]. 

Supervised ML algorithms such as SVM, or RF have been used to classify normal building and undesired flaw 

occurrence from high resolution single lens cameras, with an accuracy of 80% [95]. Colosimo and Grasso 

studied the temporal domain and the spatiotemporal domain in order to identify both the time and location of 

defect occurrences, the used a k-mean clustering algorithm for defect detection [96]. 

 

Figure 15. Schematic methodology of supervised classification of defect formation from the extracting of melt pool 
characteristics from thermal images. [93] 
 

Several studies proved that CNN was a performant classifier for thermal imaging, while avoiding the features 

extraction step [97]–[100]. Kwon et al [99] classified seven levels of laser power conditions of a stainless steel 



State of the art 

16 

workpiece. The algorithm is trained of 88% of the dataset of each power conditions and tested on the 12% 

remaining of each power condition The effect of hyperparameters of the CNN network was studied; they 

achieved a classification accuracy of 98.9 % Baumgartl et al. [100] used thermographic off axis images to 

classify delamination and metal splatter in the LPBF process of H13 steel. A CNN network was used for the 

classification task and achieved 96.80% of confidence. The dataset was split for the training and the validation. 

The model was evaluated with computing class activation gradient-weighted heatmaps. The heatmap indicated 

what part of the piece is used for the classification. It indicated that the temperature difference between the 

delaminated part and a non-delaminated part was determinant for the classification decision. The heatmap with 

the part responsible for the final decision is shown Figure 16. 

CNN has proven effective for detecting and classifying anomalies from optimal conditions from high-speed 

camera images as well [73], [101]–[105].Yazdi et al. [102] fed wavelet transforms extracted from raw optical 

images and reached a better classification with their hybrid deep learning model then with the classical machine 

learning method (SVM, KNN, LR, classical CNN) tested. Caggiano et al. reached as well 99.4% classification 

accuracy with a bi-stream CNN. Scime and Beuth [104], [105] worked on the detection of layer delamination 

and geometric deformation in the fabrication of Ti-6Al-4V and stainless steel 316L. A multi-scale CNN ana-

lyzed the images at two scales. The same group also examined [106] melt pool optical imaging anomaly de-

tection of In718 LPBF pieces. The features extractions was unsupervised, by the use of histogram of gradients 

clustering, then followed by a supervised classification with SVM. Three categories (balling, under-melting, 

keyholing porosity) are classified, reaching 85.1% accuracy.  

Larsen et al. [107] used two high speed cameras images to classify four categories (optimal, stable, marginal 

and unstable) in 316L LPBF pieces. One set of parameters per category is chosen. However, one build is kept 

for training, a second build for validation, and one for testing purpose. A CNN-based semi supervised algo-

rithm is trained and reaches at least 93% classification accuracy.  

Ye et al. as well as Grasso et al. [108], [109] used an IR camera to monitor the plume and spatter generation, 

to differentiate melting regimes and defects. Ye et al. classified five melting modes (from over-melted to under-

melted) with 5 different parameter sets, leading to 5 different densities in 304 L stainless steel, with a deep 

belief network (DBN). They achieved over 80% classification accuracy. Grasso et al. [109] used an SVM to 

classify defects generation from good conditions and reached over 90 % of classification accuracy.  
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Figure 16. Heatmap for a delamination defect. A. the thermal image b. the heatmap with areas of high importance for the 
classification highlighted.[100] 
 

Zhang et al. [110] used optical images to extract not only characteristics of the 316L melt pool, but also plume 

and spatters from single tracks of LPBF. Three qualities of line were achieved with three different powers. 

SVM and CNN were compared for the classification task. They both reached good classification accuracies, 

but CNN outperformed SVM with an average accuracy of 92%. Another study by Repossini et al. [111] con-

sidered the inclusion of spatter characteristics for the classification from optical images. Three qualities (under-

melted, normal-melted and over-melted) of 18Ni pieces were processed. It was confirmed that including spatter 

features improves the accuracy of classification. The presented studies split the datasets for the training and 

the testing of the algorithm. 

2.3 Acoustic monitoring 

Acoustic Emission (AE) is often used as non-destructive method to monitor laser processing. The advantages 

of AE are the easier management of one dimensional data, and the high sensitivity of accurate fast and rela-

tively cheap sensors. The most important feature is the possibility to detect any defect not only at the surface 

but also in the bulk during LPBF processing [112]–[114]. The cracks initiation, propagation, and 3D recon-

struction can also be studied with AE [115], [116]. 

Two types of acoustic methods can be distinguished. Ultrasonic waves can be focused into the process zone: 

it is then possible to identify the presence of defects and to estimate their dimensions by inspecting the scat-

tering pattern of the waves propagating in the material. It is, however, often desirable to have precise infor-

mation about the nature of the defects [117]–[120]. The second type is a direct measurement of the signals 

emitted by the process and defect formation. Three sensor types are described in the literature: structure-borne 

AE (SBAE), mostly piezoelectric sensors which need to be in direct contact with the process zone; air-borne 

AE (ABAE), mostly condenser microphones; and optical Fiber Bragg gratings (FBGs). ABAE sensors are 

reported to have a limited frequency range and be less accurate, but the coupling of SBAE with the process 

piece or build plate is not straightforward and their use is still restricted. FBG is an interferometric structure, 
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imprinted inside the core of an optical fiber with unique spectral characteristics of reflectivity. The acoustic 

waves created during the AM process result in periodical extensions/compressions of the optical fiber core. 

These deformations affect the reflectivity properties of the FBG that follow the behavior of the upcoming 

pressure waves. The high sensitivity and time resolution of those sensors make them very versatile for acoustic 

applications but their utilization necessitates expensive tunable lasers [121], [122].They are placed in the at-

mosphere near the process, but their functioning mode is closer to SBAE. They record information related to 

the distortion and the mass density related to the atmosphere near the melt pool. 

2.3.1 Acoustic monitoring in laser welding  

Acoustic monitoring was widely investigated for laser welding applications. It was deduced that different 

welds lead to different AE due to differences of pressure generated by the molten pool, plasma generation, 

thermal stress, metal vapor, or keyhole oscillation. 

Bastuck et al. [123] compared ABAE and SBAE sensitivities at high frequencies (ABAE: 700 – 1200 kHz, 

SBAE: 400 1000 kHz). Short-Time Fourier Transform (STFT) spectrograms were extracted from the acquired 

signal during laser welding of three steel alloys with one zinc coating. The power of the laser was linearly 

increased in the range from 80 W to 2000 W to achieve different weld depths. Both sensor signals could be 

correlated to the penetration depth. The signal of the SBAE vanished when the weld reached complete pene-

tration. Moreover, the presence of zinc coating was only detected by the ABAE sensor. Figure 17 presents 

these results schematically.  
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Figure 17. Schematic model for ABAE and SBAE during laser welding. The upper panel shows a typical trend for ABAE 
with respect to the laser power, the middle panel presents the trend for SBAE, and the lower panel a schematic 
representation of the soundwaves for each step of the welding penetration. [123] 
 

Most studies were first focused on the use of ABAE with a frequency range up to 50 kHz [124]–[131]. Mao et 

al. [132] compared frequency bands amplitudes for several laser powers, leading to different weld conditions 

in Al 1100 sheets. They detected keyhole welding between 3 kHz and 9 kHz. The microphone had a flat 

response from 1 kHz to 17 kHz. The amplitude of acoustic emission increased, at these frequencies, with 

penetration depth. These frequencies appeared to be associated with the hydro-dynamical instabilities leading 

to the transient closure of the keyhole. Lee et al. [131] ranged the information of interest in the frequencies 

from 500 to 2000 Hz for welding of steel AH36. Nava-Rüdiger et al.[127] studied the influence of the change 

of laser power in the frequency domain of the AE signals acquired. The amplitude of the frequencies around 

400-600 Hz increased when the laser power increased, leading to an increase in penetration depth.  

In 1994 Farson et al [126], [133], combined ABAE with a classifier to discriminate the good welds and the 

welds with insufficient penetration. Spectrograms of acoustic signals acquired with an ABAE sensor, with a 
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frequency spectrum from 50 Hz to 20 kHz, were recorded from from laser lap welds of 304 stainless steel. The 

amplitude difference in the range of [1-2] kHz could determine if the weld was penetrating enough. The relia-

bility of the classifier was found to be above 90 %.  

Gu and Duley [125] in 1996 used an ABAE flat response from 0 to 20 kHz frequency spectrum.[125] Normal-

ized acoustic spectra emitted during laser welding of 1 mm thick mild steel were investigated. They claimed 

that the AE in the 12–17 kHz frequency range is related to instabilities in the keyhole, and that changes can be 

measured when a phenomenon such as insufficient penetration or formation of porosities occurs. They used a 

linear discrimination algorithm from spectrum components to classify overheated, fully penetrated and par-

tially penetrated welds. The accuracy ranged from 67% to 83%. 

Luo et al. [129] used an electrets microphone with a frequency spectrum from 0 to 20 kHz to record AE from 

the laser welding of an undefined alloy. They used a designed ANN to classify a good weld from a defective 

one, with an accuracy up to 85%. With an FFT and a wavelet transform analysis, they highlighted that a good 

weld was mostly detectable from 10 to 20 kHz. The sound intensity from 10 to 20 kHz was however much 

higher in keyhole laser welding than that in conduction mode laser welding, as the pressure was directly related 

to the density and temperature of the electrons in the plasma. Moreover, they detected a decrease of amplitude 

around 781 Hz and 1562 Hz, which as associated to defect formation. 

Huang and Kovacevic [130] employed acoustic signals from an ABAE of frequency sensitivity from 20Hz to 

20 kHz to monitor the laser welding of steel DP980 plates. 28 different welding parameters were used to 

achieve different weld depths, and the corresponding acoustic signals were acquired. A noise reduction method 

was applied to the AE signals. Measurement of the depth of each weld was performed with optical microscope 

images of sample cross-sections. Sound pressure deviation (SPD) and band power (BP) ranged the information 

of interest from 500 to 2000 Hz. The different features were fed to a NN (Figure 18) and the trained model 

was applied on 14 other welds: the quality of the prediction of depth was dependent on the chosen 14 training 

parameter sets. If the power of a weld was not present in the training dataset the error was higher. Proving that 

the algorithm was detecting changes of parameters and not the laser-matter interaction. The mean error be-

tween the depth and the prediction could vary from 6% to 23%. A multiple regression analysis indicated that 

the relationship between the acoustic signatures, the welding parameters, and the depth of weld penetration is 

linear.  
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Figure 18. Schematic architecture of the ANN used by Huang and Kocacevic [130] 
 

Two main studies were carried out for laser welding, combining SBAE with ML solutions. Shevchik and 

Wasmer [114],  [134],  [135] used a piezoceramic transducer with a frequency spectrum up to 1850 kHz to 

monitor the laser welding of Titanium plates. They used a RF and a GB ML algorithm to distinguish with good 

accuracy (from 74% to 95%) between stable keyhole weld, unstable keyhole weld, conduction welding and 

spatter generation (Figure 19). 

 

Figure 19. Cross section of the weld with different power inputs leading to conduction weld, keyhole weld, or keyhole 
with porosity formation weld in a Titanium plate [134] 
 

Lee et al [136] used a back-propagation ANN (presented Figure 20) to classify three qualities of the weld (good 

weld, unsuccessful, and with defect) from the frequency range extracted from SBAE signals during the welding 

process of stainless steel 304 plates. They reached a classification accuracy of 88%. 15 different process con-

ditions were considered, and the labeling was performed by optical measurements. The frequencies of interest 

were from 100 kHz to 500 kHz, resulting from the fluctuation of the inert gas rather than from the welding 

process. 
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Figure 20. The ANN architecture used by Lee et al using frequency level to classify different weld type.[136] 

 
However, it has to be noted that the presented studies investigate different alloys with or without coating, and 

the presence of a coating could change the frequencies of interest. 

2.3.2 Acoustic monitoring in Additive Manufacturing  

Less research has been performed on AE monitoring of additive manufacturing. The laser-matter interaction 

due to the powder and the controlled atmosphere is more complicated and is noisier. However, especially with 

the coupling to machine learning (ML) solutions, the method is gaining weight and progressively shows great 

capabilities. 

2.2.2.1 Without Machine Learning 

Ito et al. [137] acquired AE signals from a wireless piezoelectric sensor for the monitoring of LPBF single 

laser tracks, or full layers. The analysis of the amplitude of the raw signal allowed to localize keyholes and 

cracks in a nickel-based alloy with an error of a few millimeters. The analysis was carried out on 3 different 

singles track conditions and on 6 different multitrack conditions. An example of the correlation of the defects 

with the acoustic signals is presented in Figure 21. The authors explain the delay between the occurrence of 

the defect and the change of amplitude to the time needed for the sound waves to travel until the sensor. The 

more distant the sensor from the printed piece, the higher the delay. The chosen SBAE has a flat response and 

high sensitivity between 150 and 600 kHz, except at the resonance frequency of 250 kHz. Two piezoelectric 

sensors were glued on top of the substrate as only one layer was printed.  
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Figure 21. Cross section of a LPBF single line with keyhole and cracks formation with the acoustic signal associated [137] 
 

Gutknecht et al. [138] compared a microphone, an on-axis two-color pyrometer, and an off-axis thermography 

camera for the monitoring of the LPBF process for 316L stainless steel. They measured the difference in the 

temporal resolution as well as the influence of the distance, the location, different scanning directions, and the 

laser speed. They used twelve different process conditions. For all sensors, they recorded process deviations 

such as lack-of-fusion, defocusing, and spatter. The distance and inclination of the microphone show a fre-

quency-dependent dissipation, especially critical above 300 kHz. The microphone chosen was a very sensitive 

ABAE, a membrane-free XARION Eta250. It is an optical microphone using the principle of interferometry 

to measure sound in a frequency range of 10 Hz to 1 MHz. Its sensitivity is 40 times higher than the camera 

and 15 times higher than the pyrometer. The frequencies below 40 kHz were filtered and considered as noise 

and machine-related. The ABAE high temporal resolution (about 80 us) is applicable only from 100 kHz be-

cause of reverberation in the build chamber. A spectrogram of one scanning layer extracted from the AE signals 

is presented in Figure 22. The authors detected millisecond phenomena at higher frequency bands. They high-

lighted the advantages to have several different monitoring methods simultaneously.  
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Figure 22. Example of a spectrogram of one scanning layer extracted from the AE signals acquired with a high sensitivity 
Xarion microphone [138] 
 

2.2.2.2 Combined with Machine Learning  

Taheri et al. [139] used the frequency spectrum features of AE signals to classify with a K-means Algorithm 

clustering the Directed energy deposition (DED) process conditions. Spectral features were used for the clus-

tering in two bands of frequencies (below and above 800 kHz). Three conditions - optimal, low laser power 

and low powder feed- were classified with 87% accuracy confidence. One parameter set per condition was 

used. The AE signals were acquired by four piezoceramic transducers attached below the build plate (Figure 

23). Their frequency range is 100-2000 kHz. They obtained a better clustering and a better classification ac-

curacy when the features were extracted in the higher frequency band. The alloy investigated was TI64. 

 

Figure 23. The schematic representation of the build plate with the four piezoceramic transducers attached below. [139] 
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Eschner et al. [140] studied the use of a mass less piezoceramic sensor for the monitoring of stainless steel in 

LPBF. 54 cubes were printed with 3 levels of laser power, 3 levels of scan speed, 2 levels of hatching distance, 

3 levels of complexity. The level of complexity is illustrated Figure 24. The SBAE sensor is placed below the 

substrate and the different levels of complexity are printed to study the influence of the recorded AE signals. 

The difference in laser power, scan speed, and hatching distance resulted in different densities. Three density 

classes were discriminated (Figure 25) and used as a measure of quality. Short-Time Fourier Transform (STFT) 

are computed, dividing a long time into short time period and applies a Fourier transform in order to extract 

spectrograms from the AE signals. The spectrograms are then fed to a designed ANN. The ANN is illustrated 

Figure 26. 70% of the data are randomly used for the training and 30% are kept for the validation. A classifi-

cation accuracy of 88% was obtained. No significant difference between the complexity levels was highlighted.  

 

 

Figure 24. Level of complexity below the printed and 
recorded layers.[140]  

 

Figure 25. Porosity density of the printed cubes divided 
in three classes.[140]  

 

 

Figure 26. The ANN achitecture used by Eschner et al.[140] 
 

In Shechnik et al. [121], AE signals were collected during LPBF of stainless steel CL20ES with a Fiber Bragg 

Grating (FBG). Three LPBF regimes were studied: poor quality (LoF porosity), medium quality (keyhole 
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pores) and high quality (conduction mode), with one set of laser parameters associated to each regime. Figure 

27 presents the corresponding micrographs. The study was performed in the time-frequency domain with the 

use of wavelet transforms. The spectrogram goes until 200 kHz and the information seems to be scattered 

below 100 kHz. The authors compared the classification results of a classic CNN and a Spectral CNN, and 

classified successfully with more than 83% confidence the three classes. The SCNN performance was better 

than a classical CNN. In a following work [122], they used two running windows (as illustrated in Figure 28) 

with various time spans as input to a SCNN to address the localization of defects. The classification accuracies 

varied between 73 and 91%, depending on the time span of the running window and the process quality. A 

localization of 2.2–5.8 mm2 was achieved for a given layer. The authors achieved a compromise for classifi-

cation accuracy and localization precision with a running window of 80 ms. 

 

Figure 27. The three LPBF regimes classified in [121] b.medium quality (keyhole pores), c. high quality (conduction 
mode) and d. poor quality (LoF porosity) 
 

 

Figure 28. The double running window methodology for localization purpose [122] 
 

Ye et al. [141] studied the monitoring with ABAE signals from single LPBF lines of 304 stainless steel, using 

a pulsed laser. A microphone with a frequency response from 0 to 100 kHz was used to acquire the AE signals. 

Five categories were considered: balling, slight balling, normal, slight overheating, and overheating (presented 

Figure 29). First, with one parameter set per condition, the classification results are compared according to the 

data treatment: raw data, after FFT, or after FFT and noising. Three ML algorithm classification results are 
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compared as well: DBN, MLP, and SVM. 60% of the data are taken for training and 40% are kept for testing 

and validating. For the three algorithms, the classification was more than 20% better with FFT or FFT and 

denoising data treatment. However no significant difference was highlighted between the FFT and FFT + 

denoising treatments. The DBN and SVM have comparable classification result (> 95%) but are 13% better 

than the MLP results. A DBN is then trained with two sets of parameters per category where random parameter 

combinations were employed for testing and validating. A classification accuracy of 93% is found. The FFT 

analysis narrowed the range of frequencies of interest below 65 kHz.  

 

Figure 29. Five categories are considered- balling, slight balling, normal, slight overheating, and overheating of single 
tracks studied in [141] 
 

The experimental plan of Tempelman et al.[142] is presented in Figure 30. Several lines are processed in one 

LPBF layer of 316L stainless steel powder. A low-frequency range microphone (the authors do not specify the 

frequency range of sensitivity) placed on one side of the build chamber, above the build surface, approximately 

25–30 cm from the center of the build area, records the emitted AE signals. The chosen laser parameters are 

scattered in the 2D power/speed processing maps. This results in keyhole porosity formation at certain posi-

tions. X-ray radiography segments confirmed the presence of keyhole pores or the absence of pores. A SVM 

algorithm is then used to classify the two categories, 75% of the data were randomly selected for the training 

and 25% for the testing. Different window sizes (2.5 ms, 3.5 ms, 5 ms and 7.5 ms) are compared as well as 

different features fed to the algorithm. Ensemble empirical mode decomposition (EEMD) features and FFT 

features led to high accuracy classification (92%) for all considered window sizes. Classification with basic 

statistical features had low performance (around 65%). For the shorter window size, EEMD performed (94%) 

a bit better than FFT features (92%) and for 7.5 ms window size, FFT features delivered 97% classification 

accuracy. However, FFT features were computationally cheaper to extract. Moreover, a trade-off had to be 

found between classification accuracy and spatial resolution. The authors confirmed the results of Shechnik et 

al. The content at signal frequencies from 10 to 50 kHz was found to be the most important for detecting pore 

formations. The reproducibility was evaluated by testing the trained SVM on 4 others plates processed with 

the same parameters.  
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Figure 30. Experimental plan used for the segmentation between keyhole formation and non-pores segments in [142] 
 

A reliable monitoring model in which the LPBF process parameters are controlled in real-time, using ML with 

AE, and that differentiates defects in the whole sample volume, is still lacking in the literature. A major draw-

back in the existing work is the lack of generalization and reproducibility of the monitoring methodologies. 

By generalization, we mean that the algorithm should be able to identify process regimes (categories) from AE 

signals recorded with laser parameters that were not used for the training of the algorithm. The development 

of such a model is possible only if a significant part of the learning relates to laser-material interaction and the 

related physical phenomena. 
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 Scope of the thesis 

In this chapter, we present the main objectives of the thesis, as well as the methodology followed to 

reach them.  

3.1 Scope of the thesis 

This thesis studies the possibility and the limits of acoustic emission monitoring of the LPBF process, 

when coupled with machine learning. The final goal is to design a robust in situ and real-time control of 

the LPBF process using acoustic emission. To reach this goal it is important to understand the process, 

how to acoustically monitor it correctly and how to construct a robust ML learning algorithm for this 

application. The scope of this thesis is, therefore, threefold (Figure 31). 

First, the LPBF process is studied in order to understand the thermal history associated to distinct types 

of laser-matter interactions and mechanisms of defects formation for three alloys:  stainless steel 316L, 

bronze CuSn8, and Inconel 718. This knowledge, with the help of 2D and 3D characterization, will 

allow the possibility to create intentionally the different process regimes studied in this thesis: keyhole 

mode, conduction mode, and LoF pores. An appropriate choice of laser parameters demonstrates that 

the ML algorithms classification is significantly related to laser-matter interaction. Moreover, effective 

processing maps are constructed, such that they can lead to the development of a a robust database for 

ML algorithms, and therefore to robust LPBF monitoring.  

Second, we propose the implementation of an acoustic emission-based solution to effectively monitor 

the regimes leading to creation of porosity in the LPBF process. Based on the literature and some pre-

liminary tests, the choice of an airborne sensor is made for the monitoring of pores formation. The 

installation of the microphones inside the build chamber as well as the right triggering to synchronize 

the recording is studied. The AE features in time, frequencies, and time-frequencies domains are inves-

tigated. The classification results and the saliency maps of two microphones with different frequency 

responses are detailed, highlighting the important frequency ranges involved in the classification of the 

LPBF process regimes.  

Different machine learning methods are compared to classify the three main LPBF processing regimes 

Moreover, alternative ML techniques to reduce the amount of data needed to train the AI algorithms and 

to transfer the knowledge from one material to another are investigated. The quality of CNN models are 
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evaluated thanks to saliency maps, and criteria are determined for constructing a robust database that 

can generalize the use of algorithms to conditions unseen by the training.  

The knowledge acquired in this thesis helps the fast construction of processing maps and a better under-

standing of laser-matter interaction phenomena in porosity related process regimes. It could also lead, 

in the future, to the spatial localization of porosities.  

The thesis contains 9 chapters and is constructed in a cumulative manner, from five distinct paper man-

uscripts, which have been published, submitted, or are about to be submitted to international peer-re-

viewed journals. 



S
co

p
e 

of
 t

h
e 

th
es

is
 

44
 

 

F
ig

ur
e 

31
. T

he
si

s 
ou

tli
ne

 a
nd

 c
ha

pt
er

s 
st

ru
ct

ur
e 

sc
he

m
at

ic
al

ly
 r

ep
re

se
nt

ed
 



Scope of the thesis 

45 

3.2 Thesis plan 

Chapter 1 – Introduction. 

This chapter presents a short introduction to AM techniques and especially the LPBF process, its main appli-

cations, and drawbacks. 

Chapter 2 – State of the art. 

This chapter provides a literature review of the understanding of the defects formation in the LPBF process, 

as well as the different monitoring solutions. The different acoustic monitoring techniques are detailed, to-

gether with the machine learning algorithms developed for this purpose. The objective is to contextualize the 

different papers presented in the thesis.  

Chapter 3 - Scope of the thesis. 

Chapter 3 presents the thesis objectives and structure with the help of a schematic illustration of the general 

goals.  

Chapter 4 - Differentiation of Materials and Laser Powder Bed Fusion Processing Regimes from Air-

borne Acoustic Emission Combined with Machine Learning. 

This chapter presents an analysis of the AE signals acquired during LPBF processing of three metallic alloys: 

stainless steel (316L), bronze (CuSn8), and Inconel (Inconel 718). Three metallurgical states are studied: key-

hole pores, conduction mode, and LoF pores. First, we show that the frequency distribution of AE signals for 

the three materials shows that a significant energy concentration between 1 and 60 kHz. Three ML algorithms 

LR, RF, and SVM, as well as a CNN, were trained, and high classification accuracy was obtained for all algo-

rithms. We also showed that generalization of the classification of LPBF defects between alloys seems not to 

be possible. Finally, a multi-label CNN is shown to classify the alloy AND the process regime at the same 

time, with high confidence. 

Chapter 5 - Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-

Based Laser Powder Bed Fusion Process. 

This chapter presents a deep transfer learning method using the experiments and the data collected in chapter 

4. It demonstrates the possibility to use a trained model on acoustic data from one material (stainless steel) and 

classify with high accuracy (above 80%) four metallurgical states (balling, LoF pores, conduction mode and key-

hole pores) in another bronze alloy, without retraining from scratch.  
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Chapter 6 - Semi-supervised Monitoring of Laser Powder Bed Fusion Process Based on Acoustic Emis-

sions. 

This chapter presents a semi-supervised method as an alternative to the fully supervised one in chapter 4, 

applied to Inconel 718 AE classification. The undesirable regimes, namely, balling, LoF pores, and keyhole 

pores could be differentiated from the reference (desired) regime of conduction mode. 

Chapter 7 - On the importance of acoustic emission frequencies for in-situ monitoring of Laser Powder 

Bed Fusion. 

This chapter compares the classification accuracies of a CNN model as well as the saliency maps, based on 

acoustic data obtained with two microphones with different frequency responses. It highlights the importance 

of frequency information in acoustic emission-based monitoring and shows how saliency maps of a trained 

CNN can be effective in determining the frequency footprints associated with three LPBF regimes: keyhole 

pores, conduction mode and LoF pores.  

Chapter 8 – Acoustic emission for the prediction of processing regimes in Laser Powder Bed Fusion, 

and the generation of processing maps. 

This chapter presents the results of a CNN model applied to spectrograms extracted from measurements of an 

air-borne acoustic sensor for the classification of LPBF processing regimes. The aim of this work is to establish 

a methodology for the construction of a robust training database from which the algorithm can predict the 

process regime  (among the three categories: keyhole pores, conduction mode, or LoF pores) at any point 

within the conventional LPBF processing map, i.e. in new regions that were not considered in the training 

database.  

Chapter 9.-. Conclusions and perspectives. 

This last chapter summarizes the main results of the thesis and provides an outlook for future work in the 

domain. 
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Abstract  

This study investigates the use of a low cost microphone combined with state-of-the-art machine learning 

algorithms as online process monitoring able to differentiate various materials and process conditions of Laser-

Powder Bed Fusion (LPBF). Three processing regimes (lack of fusion pores, conduction mode and keyhole 

pores) and three alloys (316L stainless steel, bronze (CuSn8), and Inconel 718) were selected. It was found, 

by analysing the acoustic signatures resolved in the time, frequency, and time-frequency domains, that the 

regimes are statistically distinct, which was also confirmed by the t-distributed stochastic neighbour embed-

ding (t-SNE) visualisation. Three conventional machine learning algorithms and a Convolutional Neural Net-

work (CNN) were chosen to perform the classification tasks resulting in five main findings. First, for the first 

time, it was proven that the AE features are related to the laser-material interaction and not from undesired 

machine or environmental noise. Second, it was found that the process regimes are classified with high accu-

racy (> 87%) regardless of the algorithms and materials. Third, it was demonstrated that it is possible to build 

a single model from the three materials and still reach high classification accuracy (>86%) of the different 

regimes. Forth, we proved that the AE features used for the classifications are material and regime dependent. 

Hence, it seems not possible to have a universal or generalised model for most metals. Finally, with LPBF 

processing of multi-materials on the rise, a strategy for classifying the material and the process regimes sim-

ultaneously using a CNN multi-label architecture reached a very high classification accuracy (≈ 93%). The 

results demonstrate the potential of our approaches for online LPBF process monitoring of different materials 

and regimes.  

 

Keywords: Acoustic emission; Additive manufacturing; In situ monitoring; Machine learning; Artificial In-
telligence; Laser material processing;  

 

4.1 Introduction  

Laser-Powder Bed Fusion (LPBF) is the most studied laser-based three-dimensional (3D) printing process, 

which consolidates parts, layer-by-layer, from powders (King et al. 2015). Metallic 3D printed workpieces via 

LPBF can achieve near full-density, and the resulting mechanical properties are comparable with (or even 

exceed) those obtained by conventional processing routes (Yap et al. 2015; DebRoy et al. 2018). Though the 

process looks conceptually simple, the underlying dynamics of rapid melting and cooling of the melt pool, the 

powder stock material properties, and the surrounding environments make it complicated and prone to defects 

such as balling, LoF pores, and keyhole pores. The formation of such defects limits technology applications 

(King et al. 2015; Dowling et al. 2020; Khairallah et al. 2016; du Plessis, Yadroitsava, and Yadroitsev 2020). 
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It is well known that the quality of the produced part during LPBF is directly dependent on the process window 

parameters such as laser energy density, the composition of the powder alloy, scanning speed, layer thickness, 

strategy for scanning, environment, etc. (Chua, Ahn, and Moon 2017; Van Elsen 2007; Spears and Gold 2016; 

Gu et al. 2006; Kurzynowski et al. 2012). The range of process parameters to achieve near full-density char-

acteristics is limited to a narrow window, called the keyhole threshold (Qi et al. 2017; King et al. 2014; Cun-

ningham et al. 2019; Ghasemi-Tabasi et al. 2020). Identifying the optimal processing window is tremendously 

time-consuming and expensive as it requires a trial and error approach (Aboulkhair et al. 2014), sometimes 

coupled with numerical simulations (King et al. 2015; Heeling, Cloots, and Wegener 2017; Mukherjee and 

DebRoy 2018). During the LPBF process, lack of energy input causes incomplete overlap of the melt pool 

with the adjacent layer resulting in porosity formation called Lack of Fusion (LoF) pores (Gong et al. 2014). 

LoF pores appear in two forms: weak bonding or incompletely melted metal particles (Zhang, Li, and Bai 

2017). LoF pores are irregularly shaped and can be larger than 500 μm, resulting in an epicentre of crack 

propagation during cyclic loading when the part is operational (Coeck et al. 2019). An increase in energy 

density produces melt pools with shallow depths known as conduction mode, where the ratio between the 

melting depth (D) and laser beam diameter (∅laser) is D/∅laser ≤ 1. In LPBF, the conduction mode refers to 

processing conditions with a density higher than 99.9%. A further increase in energy density leads to deeper 

melt pools depths, eventually resulting in the intense evaporation of the material, which causes the formation 

of a vapor channel called a keyhole. The stability of the keyhole mechanism is known to be rather unstable 

(Le-Quang et al. 2018). Its collapse during the process leaves behind trails of voids (King et al. 2014). Actually, 

this porosity occurs mainly when the volumetric energy density is too high; such pores are called keyhole pores 

(Thanki et al. 2019). Apart from porosities occurring due to suboptimal laser parameters, porosities can also 

occur based on the powder composition's physical property. Indeed, the physical property of the powder alloys 

influences heat absorption and heat transfer during the process. The high solidification rate traps the gas bub-

bles before it rises and escapes, resulting in defect inclusions in the shape of spherical pores (Zhang, Li, and 

Bai 2017). Even when the parameters have been well defined, the defect formation due to laser-material inter-

action is known to be highly non-linear and stochastic by nature, making it significantly non-reproducible 

(Dowling et al. 2020; du Plessis, Yadroitsava, and Yadroitsev 2020; Nassar et al. 2019). One solution to this 

drawback is developing an in situ and real-time process regime monitoring technique, which is the main aim 

of this contribution. Monitoring the process and interpretation of the sensor data helps to understand and mit-

igate the numerous unfavourable events happening in the process zone (Shevchik et al. 2018; Everton et al. 

2016). 

In recent years, process monitoring and control of metal-based LPBF processes have been the main focus of 

several investigations. It helps in a broader adaptation as a mainstream manufacturing technique in industries 

(Masinelli et al. 2020). Based on the reviews of Tapia and Elvany (Tapia and Elwany 2014), Everton et al. 

(Everton et al. 2016), Grasso and Colosimo (Grasso et al. 2018), and Yan et al.(Yan et al. 2018), the most 
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popular monitoring method is by in situ optical inspections of the process zone using photodiodes and high-

speed cameras. For the former method, which also includes pyrometers, the optical radiations emitted and 

reflected from the process zone are sensed by photodiodes. Information regarding the temperature, laser energy 

coupling inside the workpiece, and process stability can be derived using photodiodes (Shevchik et al. 2020a; 

Shevchik, Le-Quang, et al. 2019; Forien et al. 2020; Yan et al. 2018). The advantage of this method is that it 

is cost-efficient and has outstanding temporal resolutions. Commercial photodiodes detect bandwidths of sev-

eral megahertz up to gigahertz, making them capable of following highly dynamic processes such as laser-

material interaction (Le-Quang et al. 2018; Zhao et al. 2017). Nevertheless, as the signals are averaged over 

the photodiode field-of-view, this method lacks spatial resolution. The use of high-speed cameras can over-

come this issue. With a suitable camera and optical setup, information regarding the melt pool's geometry, 

temperature distribution on the workpiece's surface, evolution and fluctuation of the vapour plume, and even 

the ejections of liquid droplets (spatters) can be obtained (Grasso et al. 2018; Hooper 2018; Yan et al. 2018). 

High-speed cameras are significantly advantageous for the physical understanding of the process. However, 

its industrial implementation for process monitoring suffers from the very high cost of the system. Another 

common disadvantage of optical detection methods is that they are limited to the process zone's surface region. 

Consequently, the detection of defects, such as porosity and cracks, is challenging. An alternative to optical 

methods is the acoustic emission (AE) technique. Acoustic sensors can detect sound waves generated by an 

additive manufacturing machine. It includes the laser-material interaction, propagating inside the workpiece 

(structure-borne) and atmosphere (airborne). Therefore, they are very sensitive to the process zone's volumetric 

behaviours and can detect better the process instabilities that lead to porosity and cracks (Shevchik et al. 2020b; 

Shevchik, Masinelli, et al. 2019; Shevchik et al. 2018; Shevchik, Le-Quang, et al. 2019). Obviously, the origin 

of AE source in metal-based LPBF processes are manifolds such as laser-material interaction (rapid melting 

and cooling, defect formation and related process regime) as well as undesired environment and machine 

noises and finally even from the process parameters themselves. Like photodiodes, acoustic sensors are also 

cost-efficient and have been successfully implemented to monitor other industrial dynamic processes (Pandi-

yan, Shevchik, et al. 2020; Pandiyan and Tjahjowidodo 2019, 2017). The acoustic emission combined with 

machine learning methods has a proven track record in carrying information of the process zone when a ther-

mal source (Chen, Kovacevic, and Jandgric 2003; Wu, Wang, and Yu 2016; Wu, Yu, and Wang 2017) or laser 

(Gu and Duley 1996; Wasmer et al. 2017; Shevchik, Masinelli, et al. 2019) interacts with a material and more 

details are given below. 

The accomplishment of real-time monitoring in any dynamic process requires the computers to learn and model 

the patterns in the sensor data. The perspectives of using Machine Learning (ML) in metal-based LPBF has 

been written by Sing et al. (Sing et al. 2021) and the one in 3D bioprinting by Yu and Jiang (Yu and Jiang 

2020). Scime and Beuth (Scime and Beuth 2018a, 2018b, 2019; Scime et al. 2020) published several ap-

proaches using cameras and Machine Learning (ML) to identify process footprints leading to defect creation. 
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They used computer vision algorithms (Scime and Beuth 2018a) and Convolutional Neural Network (CNN) 

(Scime and Beuth 2018b) during the powder spreading stage of the process to detect and classify anomalies 

automatically. They used a similar approach (computer vision algorithms) and unsupervised ML to differenti-

ate between observed melt pools Scime and Beuth (2019). Digital camera images were combined with a deep 

residual neural network and region proposal network to detect the powder bed defects, namely, the warpage, 

part shifting, and short feed (Xiao, Lu, and Huang 2020). Alessandra Caggiano et al. (Caggiano et al. 2019) 

have combined the powder bed and process zone images with a Bi-stream CNN to detect the process quality. 

Apart from optical methods, thermal sensor data have been used along with ML algorithms such as K-Nearest 

Neighbor (KNN) and Decision Tree (DT) to predict part quality (Khanzadeh, Chowdhury, et al. 2018). 

Khanzadeh et al. (Khanzadeh, Tian, et al. 2018) have also proposed a multilinear principal component analysis 

(MPCA) approach for extraction of low dimensional features from thermal maps to monitor AM process. In 

the literature, AE has been combined with Spectral CNN (Shevchik et al. 2018; Shevchik, Masinelli, et al. 

2019; Wasmer et al. 2017), deep belief networks (Ye, Hong, et al. 2018), reinforcement learning (Wasmer et 

al. 2019), and Support Vector Machine (SVM) (Ye, Fuh, et al. 2018) for real-time monitoring of the LPBF 

processes, but always for a single material and one process condition per regime. In recent years, in addition 

to online monitoring, ML algorithms have been either applied in other fields of AM such as developing process 

model or are combined with physics based-models such as Finite Element (FE) simulations to overcome the 

problem of data-driven approach. Jiang et al. (Jiang et al. 2020) exploited deep neural networks to predict the 

connection status between printed lines taking into account four process parameters; filament extrusion speed, 

print speed, line distance and layer height. Ren et al. (Ren et al. 2021)  published a work where they used a 

Temperature-Pattern Recurrent Neural Networks (TP-RNN) model to predict the temperature field for multi-

layer cube deposition planning. Finally, a comprehensive review of ML algorithms used in the context of 

additive manufacturing has been reported by Goh et al. (Goh, Sing, and Yeong 2020).  

While literature reports monitoring the LPBF process dealing with one material, artificial intelligence (AI) 

techniques in monitoring different materials are seldom mentioned. When analysing AE signals with ML, the 

identification of different types of porosities in 316L stainless steel was demonstrated successfully (Shevchik, 

Masinelli, et al. 2019; Shevchik et al. 2018). Moving to another material or generalisation among materials 

would require the building of a new database, which leads to the following questions:  

(i) Are the acoustic signatures material dependent, or instead, can it be generalised for broader 

scenarios?  In other words, a distinct database for materials having different mechanical, op-

tical and thermal properties are needed?  or can a single database be used?  This question was 

not examined so far in the literature.  
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(ii) Can a single ML model monitor the process regimes when dealing with different materials be 

built if the acoustic signatures are material-dependent?  

(iii) Can we distinguish both the material and the regime when dealing with different materials? If 

so, it would provide precious information on the material(s) in which defects are formed with-

out the need for time-consuming microscopy analysis. 

The reported work investigates the AE features recorded during LPBF, resolved in time, frequency, and time-

frequency domains, and statistically correlates them with the occurrence of three process regimes: LoF pores, 

keyhole pores, or with the absence of pores (conduction mode). As mentioned earlier, the conduction mode 

refers to processing conditions with a density higher than 99.9%.The analysis is performed on three different 

material alloys, stainless steel (316L), bronze (CuSn8), and Inconel (Inconel 718), that have distinct optical, 

mechanical and thermal properties. Four ML models based on Logistic regression (LR), Random Forest (RF), 

Support Vector Machines (SVM), and a CNN were selected for classification tasks of the process regimes. 

The rising attention for producing different materials part using the LPBF techniques brings new process mon-

itoring challenges. To address them, a new approach by developing a CNN architecture able to classify the 

process regimes and the processed alloy is proposed. The ability to analyse AE features of different alloys 

provides key information for answering questions (i) and (ii) related to the generalisation of ML algorithms 

and to the possibility of distinguishing the different alloys using a single model. Finally, a CNN-based multi-

label classification model addresses question (iii) on distinguishing regimes and materials.  

The paper is organised into 6 Sections. Experimental considerations are presented in Section 4.2. The analysis 

of the acoustic signal emitted during the LPBF process in time, frequency, and time-frequency domains for 

the three alloys is summarised in Section 4.3. The representations and visualisation of the acoustic features in 

low dimensional space using t-distributed Stochastic Neighbour Embedding (t-SNE) is discussed in Section 

4.4. Section 4.5 starts by determining the origin of AE features used for classification. Then, it presents the 

results of the developed online monitoring systems for the different materials and process regimes using tra-

ditional ML and CNN architectures; focusing on the universality and material identification aspects. Finally, 

this paper's findings and future works on in situ and real-time monitoring for the LPBF process are discussed 

in Section 4.6. 

4.2 Experimental setup and data acquisition 

In this work, the experiments were performed on an in-house LPBF system shown in Figure 32. The custom-

ised LPBF system can have a scan speed up to 20 mꞏs-1. The enclosed chamber of the LPBF system has a 

Continuous-Wave (CW) modulated Ytterbium fibre laser for melting the powder and a recoater mechanism 

for creating a new powder layer. The fibre laser operates in continuous mode with a 1070 ± 10 nm wavelength, 
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and the beam is around 82 microns (1/e2) at the focal plane with an M2 < 1.1. The recoater mechanism spreads 

the metal powder to a thickness of around 40 μm. The chamber's atmosphere is controlled under a laminar 

flowing closed loop of argon and a monitored maximum oxygen level of 200 ppm. The LPBF system is 

equipped with a PAC AM4I (Physical Instrument, Germany) airborne acoustic sensor, hereafter referred to as 

microphone, and an Advantech Data Acquisition (DAQ) card (Advantech, Taiwan) to get feedback from the 

process zone.  

 

Figure 32. Experimental setup of the LPBF process with the PAC AM41 acoustic sensor installed. 
 

All experiments were performed with the in-house LPBF system. To start with, we built some transition layers 

of a selected material on the base plate. These transition layers have two main purposes. First, it will act as a 

transition material from the base plate to the one processed. Second, it must be thick enough to ensure that our 

experiments will have the same heat flow as processing a single material. As these transition layers do not 

require to be of high quality, faster processing parameters were selected layers to save preparation time. On 

top of these transition layers, high-density layers were built to guarantee the same initial condition for the 

experiments with chosen proves parameters. Finally, a series of overlapping line tracks were produced during 

which the AE signals were recorded with the PAC AM4I microphone. The transition layers, the high-density 

layers and the overlapping line tracks can be seen in Figure 35. To simplify the design space, the scanning 

strategy selected is one-directional and parallel, with a hatch distance of 0.1 mm. The experiments were per-

formed with three different alloys, stainless steel (316L), bronze (CuSn8) and Inconel (Inconel 718), and their 

corresponding chemical composition are summarised in Table 1. The Stainless Steel 316L micro powder, 

MetcoAdd 316L, was bought from Oerlikon Metco with a particle size distribution between 45 and 15 µm. 

The bronze (CuSn8) powder having an average particle size of 30 µm was purchased from Heraeus Materials 

SA. The nickel-based super-alloy Inconel 718 powder was purchased from Oerlikon Metco, exhibiting a bi-

modal particle size distribution with peak values at 45 and 15 µm. 
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Table 1. Chemical composition of the powders of Nickel-based super-alloy (Inconel 718)), bronze (CuSn8), and 
stainless steel (316L),  

 
 

Chemical composition of stainless steel (316L) powder 
Fe Cr Ni Mo Other C   

Balance 18 12 2 < 1.00 <   0.03   
 

Chemical composition of Bronze (CuSn8) powder 
Cu P S Fe Ni Zn As Zr 

Balance 0.06 ± 0.02 ≤ 0.05 ≤ 0.05 < 0.03 ≤ 0.2 ≤ 0.05 ≤ 0.05 
 

Chemical composition of Inconel (718) powder 
Ni Fe Cr Nb+Ta Mo Ti Al Other 

Balance 18 18 5 3 1 0.60 <   0.5 
 

The microphone was positioned at a distance of approximately 10 cm from the build plate, as shown in Figure 

32. It has a frequency response in the range of 0-100 kHz. The AE signals were acquired at a rate of 1 MHz 

and stored locally for further processing with a custom-built C# code on the Advantech DAQ card. The data 

acquisition rate was chosen to ensure that the Nyquist Shannon theorem (Jerri 1977) is satisfied. The captured 

signal was triggered by a photodiode using a beam splitter setup. This configuration ensures that the process 

and the data obtained are synchronised. Once the laser interacts with the powder bed, the photodiode's mini-

mum amplitude threshold is surpassed, which triggers the acquisition of the acoustic signals and the data re-

cording. Prior to analysing the signal features in time, frequency, and time-frequency domains, they were fil-

tered with a low-pass Butterworth filter to remove frequency contents higher than 100 kHz as they do not fall 

inside the sensitivity range of the AE sensor. 

In this contribution, the three most common process regimes known in LPBF are investigated; they are LoF 

pores, conduction mode (or absence of pores), and keyhole pores (Qi et al. 2017; King et al. 2014; Cunningham 

et al. 2019; Ghasemi-Tabasi et al. 2020). The conduction mode regime is considered the normal regime since 

it results in the highest material density in conjunction with adequate material properties. In contrast, LoF 

pores and keyhole pores are considered as abnormal regimes and must be avoided. In addition, two process 

parameters were selected per regime. The reasons lying behind the selection of process regimes and parameters 

are fourfold. First, selecting two sets of parameters for each regime was motivated by the fact that, in the 

literature, most studies used a single process parameter per regime, such as in Shevchik et al. (Shevchik et al. 

2018), and this limits the sampling of the process space. Adding a second process parameter for each regime 

will increase the process space and demonstrate that our approach is valid for multi-process parameters. Sec-

ond, to ensure that AE features selected for the classification task are solely related to the process regimes and 

not from the undesired environment, the machine noises, or machine parameters; one set of laser parameters 

(bold red values in Table 2) were identical for all three alloys for the regimes, LoF pores and keyhole pores. 

Having the same process parameter for a specific regime across the material guarantees that the undesired 

environment, the machine noises, and the machine parameters are identical. Hence, under such circumstances, 
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being able to differentiate the material will prove that AE features are exclusively correlated to the laser-

material interaction and so the process regime. Third, rather than selecting the second set of parameters ran-

domly within both regimes, it was decided to have them based on a physical basis. Consequently, they were 

chosen to have the same normalised enthalpy (Qi et al. 2017; King et al. 2014; Cunningham et al. 2019; 

Ghasemi-Tabasi et al. 2020) across all alloys (blue values in Table 2 and also shown in Figure 33). Finally, as 

it is not possible to achieve the regime conduction mode with the same laser parameters sets due to the differ-

ences in material properties, we selected the process parameters having a normalised enthalpy around 25, 

which was proven to be an optimised value for high-density conduction mode in three materials, including 

316L stainless steel and bronze (Ghasemi-Tabasi et al. 2020) (green values in Table 2, and circled points in 

Figure 33). Based on these considerations, the selected laser parameters for inducing or avoiding defects are 

listed in Table 2 for the three selected alloys. A total of 100 line track experiments were performed for each 

set of process parameters on each alloy. The analysis of the corresponding acoustic signatures is reviewed in 

Section 3.   

 

Table 2: Two set of laser parameters for stainless steel, bronze and Inconel to induce the process regimes (regimes) 
LoF pores, conduction mode and keyhole pores. In bold, the first set of parameters for LoF pores, and keyhole pores 
is kept constant for the three alloys. 

Regimes 

Stainless steel Bronze Inconel 

Laser 
power 
(W) 

Scan 
speed 

(mm/s) 

Normal-
ized en-
thalpy 

Laser 
power 
(W) 

Scan 
speed 

(mm/s) 

Normal-
ized en-
thalpy 

Laser 
power 
(W) 

Scan 
speed 

(mm/s) 

Normal-
ized en-
thalpy 

LoF pores 
50 350 7 50 350 4.4 50 350 13.4 
70 400 9.2 110 400 9.2 36 400 9.2 

Conduction mode 
180 350 25 300 350 26.5 100 350 27 
135 200 25 215 200 25 69 200 25 

Keyhole pores 
450 350 63 450 350 39.4 450 350 124 
250 150 53.5 396 150 53.5 127 150 53.5 
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Figure 33. Processing map showing the normalised melt pool depth (i.e. depth divided by the laser spot size) as a 
function of the normalised enthalpy (as defined in (Ghasemi-Tabasi et al. 2020)) for the printed stainless steel, 
Inconel and bronze samples. The optimal processing condition is around a normalised enthalpy of 25 for all alloys 
(Ghasemi-Tabasi et al. 2020). Lower normalised enthalpies lead to LoF pores, while larger values lead to keyhole 
pores. Experimental setup of the LPBF process with the PAC AM41 acoustic sensor installed. 

 

The diagnostic on the type of defect regimes (regime) for data labelling was obtained and confirmed via X-ray 

tomography (Figure 34) and cross-sectioning of selected lines (Figure 35). Based on this analysis and experi-

ence, the same process regime was assumed for each of the 100 lines using the same process parameters. 

Typical micrographs, representative of the three labelled regimes for the three materials, are shown in Figure 

35. In this figure, the three process zones are visible. At the bottom of the figure, the preparation cube is 

characterised by a large melt zone and high defect content. It is followed by a high-density layer, which for 

the conduction mode are identical to the top layer. The latter is made of overlapping line tracks during which 

the AE signals are recorded. The samples were etched to reveal the melt pools, whose depths are reported in 

Figure 33. The stainless steel, bronze and Inconel samples were etched with (i) Aqua regia diluted (100 mL 

HNO3,100 mL HCl,100 mL H2O ) for 30 seconds, (ii) ASTM No.30 (5 mL H2O2, 25 mL NH3, 25 mL H2O) 

for 5 to 10 seconds, and (iii)  Kalling’s No.2 Reagent (5 g CuCl, HCl 100 mL, C2H6O 100 mL, H2O 100 mL) 

for 10 to 20 seconds, respectively. Micrographs were taken with a Leica DM6000M light optical microscope 

in bright field mode. 
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Figure 34. Keyhole porosity formation along one laser track, in stainless steel (316L), and its corresponding 
acoustic emission signal; a) 3D reconstruction of the keyhole pores formed in one line; b) 2D section of region 
shown in (a); c) acoustic emission signal corresponding to the selected laser track. 

 

Figure 35. Typical micrographs of the three regimes (LoF pores, conduction mode and keyhole pores) for stainless 
steel (316L), bronze (CuSn8), and Inconel (Inconel 718).  
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4.3 Analysis of acoustic emission signature from LPBF process 

As already mentioned, the LPBF process suffers from a lack of repeatability due to defect formation's stochas-

tic nature. This inconvenience results in the occurrence of defects such as LoF pores and keyhole pores. For 

real-time identification of these defects, it is imperative to have information about the changes taking place in 

the process zone over time. In Pandiyan et al. (Pandiyan, Drissi-Daoudi, et al. 2020), such analysis was per-

formed for 316L for the three regimes investigated in this study, along with balling (another type of lack-of-

fusion mechanism). The study's outcomes proved features in time, frequency, and time-frequency domains are 

specific for different regimes. A similar analysis on the three selected alloys is performed to determine whether 

the conclusion can be generalised for other alloys too. Besides, we will investigate whether the features in the 

three domains are specific to each alloy. To perform the feature analysis, similar to Pandiyan et al. (Pandiyan, 

Drissi-Daoudi, et al. 2020), a window of 5 ms is used to split the sensor's signals to extract several features in 

the three domains. It was selected after an exhaustive search to reach the best compromise between time reso-

lution and classification accuracy. A short running window increases defect detection time and spatial resolu-

tion but are also sensitive to limited information and noise. The period must be minimum enough to cover a 

defect formed with the chosen parameters. The choice of the window size for features analysis is the same as 

the one chosen for the classification which will be discussed later. 

Figure 36 compares typical raw AE signals (peak-to-peak) corresponding to the three regimes from the three 

alloys. Specifically, it indicates that irrespective of the alloy, the AE signals' amplitude increases from LoF 

pores to keyhole pores.  
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4.3.1 Time-domain analysis 

The time-domain analysis gives the features as a function of amplitude changing over time. The statistical 

distribution of the features based on time-domain such as Root Mean Square (AERMS), mean, crest-power, 

standard deviation, skewness, variance, kurtosis, median, etc., were analysed to correlate with the three se-

lected regimes. As the conclusions are similar for all features distributions, only the AERMS distribution for the 

three regimes in the three alloys is shown in the form of a ridge plot in Figure 37. The range of AERMS distri-

bution values in LoF pores for stainless steel and Inconel are higher less than for bronze. This may be related 

to the absorptivity at the laser Near-Infrared Red (NIR) wavelength, lower in bronze than the two other alloys. 

Therefore, the required input energy to reach the conduction mode for the bronze alloy needs to be higher, 

even though the bronze melting point is lower (Ghasemi-Tabasi et al. 2020). The distribution of AERMS starts 

to spread as the regime moves from LoF pores to conduction mode, while keyhole pores have a much larger 

deviation. This may be due to the highly unstable behaviour of the keyhole (Shevchik et al. 2020b). The ex-

amination of time-domain features such as skewness, crest-power, median, kurtosis, etc., also exhibited distinct 

distributions amongst the regimes for all three alloys. Such a distinct distribution of statistical time-domain 

features motivates the use of ML algorithms to perform real-time monitoring. 

 

Figure 36. Raw AE signals correspond to the three different regimes: LoF pores, conduction mode, and keyhole 
pores for stainless steel, bronze and Inconel (Note: Signal corresponding to LoF pores and Keyhole pores regimes 
for the three alloys are using same process parameter). 
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4.3.2 Frequency domain analysis 

The periodic components of a signal can be identified when the signal is resolved in the frequency domain. To 

be specific, decomposing a signal with Fast Fourier Transforms (FFT) analysis reveals these periodic compo-

nents'. The representation of AE in the frequency domain for all three regimes provided additional interesting 

insights compared to the time domain. Figure 38 presents the Power Spectral Density (PSD) distribution in the 

FFT plots, which was calculated using the Welch method (Welch 1967) for a window of 5 ms. Irrespective of 

the alloys, distinct peaks are visible at more or less 10 and 40 kHz, as evident from Figure 38 across the three 

regimes. Most peaks were found around these frequency bands, as the PAC AM4I acoustic sensor's response 

was also higher in this region. Besides, for the regime keyhole porosity of bronze, it can be inferred that the 

magnitude of the frequency content in the vicinity of 10 kHz is higher than at 40 kHz.  

In contrast, the PSD distribution values corresponding to LoF pores were much lower than for other alloys for 

bronze. This decrease may again be related to the lower absorptivity of bronze at the NIR wavelength. When 

processing Inconel, the frequency peaks were found at more or less 10 and 40 kHz for all regimes except for 

the conduction mode. For Inconel, a surge in frequency peaks around 10 kHz compared to other frequency 

ranges seems to be correlated to a high-density conduction mode process. It is also to be noted that regimes 

across alloys showed some degree of resemblance, for example, as indicated by arrows in Figure 38 on LoF 

pores between stainless steel and Inconel. 

 

Figure 37. Distribution of AERMS features for the three regimes occurring in stainless steel, bronze and Inconel. 
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Figure 38. Typical FFT plots for stainless steel, bronze and Inconel depicting discrete frequency distributions 
among the alloys and across the three regimes. 

 

One of the most critical aspects of the frequency domain analysis is understanding the correlation between 

signal power densities in different frequency bands for each regime. The microphone's operating range of 1–

100 kHz was divided into five frequency bands, namely 0–20 kHz, 20–40 kHz, 40–60 kHz, 60–80 kHz, and 

80–100 kHz for such an analysis. All results, in terms of cumulative energy density values for a window size 

of 5 ms calculated by the periodogram method (Babtlett 1948), are presented in Figure 39. This figure is im-

portant since the energy density distribution plots between the five bands were calculated on the whole dataset. 

Therefore, it gives an overall sparse representation between the alloys and regimes. For bronze, stainless steel, 

and Inconel, the energy contents were concentrated within the frequency range of 0–60 kHz. 

In contrast, the frequency bands below 40 kHz have more significant contributions for stainless steel, espe-

cially in the conduction mode. As shown in Figure 39, the energy level concentration of the regimes LoF pores 

was prevalent in the frequency band of 0–20 kHz for all alloys. However, for the regime conduction mode of 

Inconel (Figure 39 (a)), there is a decrease in the energy density value of the frequency band 40–60 kHz as 

compared to the other alloys. From the energy density distribution plots, it can be concluded that laser inter-

action with the molten pool causes AE signals to carry more energy at 0-20kHz than other frequency bands. 

The discrete frequency and energy density distribution plots of the AE signals between the different bands 

motivate the use of these frequency domain features as input to ML algorithms to classify the regimes and the 

different alloys. 
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Figure 39. Comparison of cumulative energy content between five frequency bands for three regimes in stainless 
steel, bronze and Inconel. 
 

4.3.3 Time-frequency domain analysis 

Though the frequency domain analysis gives the frequency components in a signal, it lacks the time localisa-

tion of frequencies. The analysis of the AE signals in the frequency domains with time localisation via Wavelet 

transformation (WT) (Mallat 1999) is presented in this section. The Continuous Wavelet Transformation 

(CWT) was carried on the filtered AE signals on window sizes of 5 ms. The CWT was calculated on the 

acoustic signals with the mother wavelet as Morlet (Lin and Qu 2000), as it has a very good approximation 

error compared to other mother wavelets (Cohen 2018). The wavelet transforms are represented in a 3-dimen-

sional (3D) plot in Figure 40. In this figure, in order to have the distinct peaks visible, the scale of each figure 

had to be adapted. As for the frequency domain, the wavelet coefficient values were also found to be in the 

range of around 0–60 kHz for all regimes and alloys. This figure has been depicted with absolute values to 

show how the intensity of temporal frequency components corresponding to acoustic signals originates during 

the laser's interaction on different alloys in the process zone. These results also corroborate with the study 

results made in the frequency domain analysis in Section 4.3.2. Figure 40 indicates that the values were not 

continuous with the time scale, and plots appeared in the form of distinct peaks as indicated in the figure by 

arrows. Also, the wavelet coefficient values were dominant at around 10 kHz for LoF pores in Inconel and 

stainless steel. In contrast, the wavelet coefficient values for bronze were greater at around 40 kHz for keyhole 
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pores, still to be correlated with a higher energy density. For Inconel, similar to the results of frequency domain 

analysis of the regime conduction mode, the wavelet coefficient values were observed to be around 10 kHz, 

whereas they were much higher than the other two regimes. As the resonant sensor was used in this study, the 

peaks across different regimes for the three materials were populated around 20 kHz and 40 kHz. But it should 

be noted that irrespective of similarity in the population of the peaks, they carry different intensity values, 

which is a statistical indicator that laser-material interaction across material and within regimes are different. 

Based on the distribution and intensity of the wavelet energy coefficients, it can be concluded that the time-

resolved frequency features computed using WT will allow the classification of regimes and alloys during real-

time monitoring. 

It is important to state that the statistical study in Section 4.3 primarily focuses on understanding and correlat-

ing acoustic emissions when laser interacts with a material causing different regimes. Hence, we have not tried 

to monitor or localise defects that form due to different process regimes inside the process zone. 

 

Figure 40. 3D wavelet representation of the AE signal for three laser regimes occurring in stainless steel, bronze 
and Inconel depicting the absolute intensities in temporal frequency distribution among the alloys. 
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4.4 t‐SNE visualisation 

The visualisation of the plots corresponding to the three regimes in Section 4.3 motivates extracting statistical 

features from each one to be used as inputs for ML models. A total of 304 features, as listed in Figure 41, were 

calculated based on a few works focused on classification in material processing (Pandiyan, Shevchik, et al. 

2020; Pandiyan et al. 2018) using standard python libraries such as NumPy, Scipy, etc. (Lee et al. 2019; Harris 

et al. 2020) with 23 features from the time domain, 18 features from the frequency domain, and 263 features 

from the time-frequency domain.  

 

Figure 41. A comprehensive list of statistical features extracted for training the ML model in this work. 
 

Prior to feeding them into the ML models for classification, finding correlations between them will help choose 

ML model complexity. With the numerous statistical features calculated from the three domains, the search 

for recognisable correlations becomes problematic. Dimensional reduction techniques such as t-SNE enable 

the visualisation of high-dimensional datasets by their projection into the lower-dimensional space, from which 

they can be easily recognised. t-SNE is a dimensionality reduction technique that non-linearly models the 

neighbour's probability distribution around each point for mapping the input multi-dimensional data into a 

lower-dimensional space. In this context, compared to other non-linear dimensionality techniques, t-SNE can 

retain both the local and global structure of the data simultaneously, enabling data exploration and cluster 

visualisation in a low-dimensional space (Maaten and Hinton 2008). Since it is a dimensionality reduction 

technique, the input features after computation is no longer identifiable. In our case, the acoustic features (304 

features for a window of 5 ms) from the time, frequency, and time-frequency domains, that were previously 

discussed were the inputs to perform the t-SNE computation. The motivation to use t-SNE is to interpret and 
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visualise a lower dimension representation to ensure that selected statistical features can form distinct clusters 

in the lower dimension space. 

The perplexity is a hyper-parameter, which gives a ratio of preserving the data's local structure (number of 

neighbours) and global structure (overall shape). For the perplexity parameter, a value of 10 was chosen after 

an exhaustive search to visualise the low feature space representation on the AE data acquired during the 

experiments, and the results are presented in Figure 42. In this figure, the features for each regime are plotted 

in two shades of colour depending on whether the set of parameters 1 or 2 in Table 2 for a given regime was 

used. In Figure 42, the t-SNE plots show that the three regimes (LoF pores, conduction mode, and keyhole 

pores) appear as distinctive clusters independently of the alloy. There is no drastic change when changing the 

number of process parameters from 1 to 2 to define a regime. The primary objective of t-SNE was to check 

the presence of clusters and also to visualise them. Nevertheless, a slight overlap among the three regimes 

exists for stainless steel (see Figure 42 (a)). 

 

 

Figure 42. Low-dimension feature space representation using t-SNE with perplexity =10 for three different regimes 
in the LPBF processing of stainless steel, bronze, and Inconel. Subscripts 1 and 2 indicate the number of process 
parameters considered to define a regime. 
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4.5 Classification results for different process regimes and materials 

In 2018, Shevchik et al. (Shevchik et al. 2018) demonstrated that they could classify AE signals for the cate-

gories LoF pores, conduction mode, and keyhole pores with an accuracy ranging from 83 to 89% for 316L. To 

achieve these results, they acquired the AE data with a highly sensitive optoacoustic sensor (Fiber Bragg Grat-

ing (FBG)). The acoustic features were the relative energies of the WT's narrow frequency bands extracted 

from all signals. The window size was 160 ms. This section aims to generalise the findings for other metals 

but using a simple, low-cost microphone, multi-process parameters, and with a window size reduced by a 

factor of 32 (5 ms). Having two process parameters per category is important to extend the process phase 

space. The latter is of high importance as it allows a more precise location when the process changes from a 

"defect-free regime to a defect regime (e.g. from conduction mode to keyhole pores). 

In this section, the extracted time, frequency, and time-frequency domain features from windows of 5 ms are 

concatenated to form a vector made out of 304 features. These features will be the input of the selected ML 

algorithms for classifying the three categories. For each of the three categories —LoF pores, conduction mode, 

and keyhole pores from the LPBF process — a discrete label was assigned for each alloy. The schematic flow 

of the monitoring methodology is illustrated in Figure 43. A dataset consisted of 3000 rows of features (3000 

X 304) and their corresponding ground truth classifier labels for each alloy. The dataset prepared for all three 

alloys was balanced, with 1000 rows corresponding to each category. The dataset was stochastically split into 

two subsets, with 70% for training and 30% for testing. This approach simulated real-life conditions where the 

trained system has to operate with new input data (the test subset). The ML classification models were trained 

in a supervised manner on the training dataset with the help of the Scikit-learn ML library (Pedregosa et al. 

2011). The robustness of the trained model was evaluated by comparing the model's predictions on the test set 

with the ground truth. 
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Three ML algorithms based on different complexities are used to perform the three alloys' classification task 

for comparison. The three ML algorithms selected for the classification tasks are Logistic Regression (LR), 

Random Forest (RF), and Support Vector Machines (SVM). The logistic regression model combines linear 

regression and the sigmoid function to return probability values, which can then be mapped to the three discrete 

categories. The Random forest algorithm used in this work for the classification task had 100 decision trees, 

and the splits were based on entropy (Pedregosa et al. 2011). Finally, the SVM algorithm used radial basis 

function (RBF) kernel during training for performing classification.  

As an alternative to the use of the extracted features for the classification task, a CNN fed by the raw acoustic 

signals for the individual alloys is also used in this study. The CNN was preferred over other neural network 

architectures such as recurrent networks to better compare with ML algorithms, using a vector input. The CNN 

architecture used to classify the mechanisms for all the individual alloys is illustrated in Figure 44. This archi-

tecture design was inspired based on the VGG-16 model (Simonyan and Zisserman 2014) and included five 

layers with a kernel size of 16. The total number of kernels for the first layer was four and was doubled across 

each layer, eventually leading to a total number of kernels to 64 in the fifth convolutional layer. A stride of 1 

and a padding of 0 was applied across all five convolutional layers. Each layer, except the final fully connected 

layer, after 1D convolution, was batch normalised before applying the Rectified Linear Units (ReLU) activa-

tion function.  

 

Figure 43. Schematic flow of the monitoring methodology in the LPBF process for the three ML models. The acoustic 
signals are divided into fixed-width sliding windows of 5 ms, then 304 features are extracted and feeded to the 3 ML 
algorithms. 70% of the data are used for training, and 30% are kept for testing.  The objective is to classify the different 
regimes (LoF pores, conduction mode, keyhole pores). 
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As stated, the CNN network's input was the raw acoustic signal with windows of 5 ms, which is a time-series 

signal consisting of 5,000 data points. During the network training for the individual alloys, the weight was 

updated by back-propagating the cross-entropy loss. The model's training for 300 epochs, with a batch size of 

100 and a learning rate of 0.01 lasted for two hours. Out of the 3,000 rows of raw signals (1,000 rows for each 

category), 70% of the rows were stochastically picked for training with equal weight to the categories, and the 

remaining 30% was used for testing the model performance. The training of the network was done using the 

PyTorch library and a Titan RTX Nvidia GPU. To avoid overfitting, batch normalisation was applied across 

layers in the CNN model. Additionally, it was also ensured that the datasets were shuffled across epochs. 

4.5.1 Origin of the acoustic emission features  

In this work, a microphone PAC AM4I (Physical Instrument, Germany) was used, which is a high sensitivity 

airborne sensor. Obviously, such a non-contact sensor captures any acoustic signals (or sounds) reaching it. 

Their origins are multiple, and the main ones can be summarised as workplace environment, machine and laser 

noises, and laser-material interactions. The latter is directly related to the process regimes and so the selected 

categories (LoF pores, conduction mode, keyhole pores). Under such circumstances and for this study, it is 

imperative to demonstrate that the features used for the classification task come solely from the categories; 

this is the core objective of this sub-section.   

To address this issue, experiments with the same process parameters for all three alloys for the categories LoF 

pores and keyhole pores (bold red values) in Table 2 were performed. It was not possible for the category 

conduction mode due to the distinct properties of the selected alloys (stainless steel, bronze and Inconel). When 

 

Figure 44. An illustration of the CNN architecture used in this work with five convolutional layers and 
fully connected layers. 
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the same process parameter leads to a single process regime for all three alloys, only the laser-material inter-

action is not identical, caused by the differences in the optical, mechanical, and thermal properties. Conse-

quently, if the features extracted from the microphone are related to this laser-material interaction, it will be 

possible to classify with high accuracy the alloys using the categories LoF pores and keyhole pores (bold red 

values) separately in Table 2. In contrast, the classification results being poor would have implied that the 

features originated from either the workplace environment, machine or laser noises, or process parameters.  

The 3 by 3 confusion matrix for the classification of three alloys for the categories LoF pores and keyhole 

pores using the four algorithms (LR, SVM, RF and CNN) are shown in Table 3, giving the categories (stainless 

steel, bronze, Inconel) (in rows) versus the ground truth (in columns). The accuracy for the classification in 

Table 3 is defined based on the number of true positives divided by the total number of tests in each category. 

These values are given in the diagonal cells of Table 3 (dark grey cells). The misclassifications or the classifi-

cation errors are computed as the sum of the false positives and false negatives divided by the total number of 

the tests for each category. These corresponding values are filled in off-diagonal row cells. For example, the 

classification accuracy of the category stainless steel using the RF model for LoF pores, in violet in Table 3, 

is 98%. The classification error is 1% with the categories bronze and Inconel. From this table, it is observed 

that most classification results are higher than 95% independently of the category, alloy and algorithm used. 

With these results, the obvious conclusion is that the features extracted from the microphone indeed represent 

the laser-material interaction and the associated process regime. 
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Table 3: Confusion matrices of the LR, SVM, RF and CNN models trained on the laser 

regimes across three alloys. Tables for the classification accuracy results in the three al-

loys. The classification results in each cell are organised in the following descending or-

der: LR (Bold), SVM (Normal), RF (Italics), and CNN (Bold Italics). All values are in %. 
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9 
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1 
1 
1 
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94 
90 
88 
99 

4.5.2 One on one alloy classification 

The previous sub- section demonstrated that the AE features are related to the laser-material interaction and 

associated process regimes (categories LoF pores, conduction mode, and keyhole pores). As already men-

tioned, in 2018, Shevchik et al. (Shevchik et al. 2018) classified the AE signals for one of the selected alloy 

(stainless steel - 316L) and for the same categories using an FBG as an airborne opto-acoustic sensor. How-

ever, they used only one process parameter per category, which restrains the process phase space. It was de-

cided here to add a second process parameter for each category to increase the process phase space and to 

demonstrate that our approach is valid for multi-process parameters. 

The 3 by 3 confusion matrix for the classification of three mechanisms and three alloys using the three ML 

models using the extracted features (LR, SVM, and RF) are shown in Table 4. As for Section 4.5.1, although 

the ML algorithms vary in terms of complexity and implementation, they all had excellent accuracy. Perfor-

mance measure experiment with 30% test dataset and 304 features on the LR model had an average classifi-

cation accuracy of 90.3% for stainless steel, 98.6% for bronze, 98% for Inconel. From the confusion matrices, 
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we can interpret that only a minimum fraction of samples is misclassified. Consequently, three main conclu-

sions can be drawn. First, the classification accuracy is not sensitive to the ML algorithms. Second, the classi-

fication accuracy results demonstrate that not only the conduction mode mechanism can be distinguished from 

defective regimes, but it is possible to differentiate the pore formation regime (LoF pores and keyhole pores). 

Finally, considering the wide range of metals used, the proposed approach is robust for an extensive range of 

materials for classification on the explicit condition that the acoustic features corresponding to the materials 

of interest are part of the training database. 

Table 4 also shows the 3 by 3 confusion matrices using the proposed CNN architecture. Although the base 

CNN architecture used for the classification task was the same as in Section 4.5.1, their performance was 

different. The average CNN prediction accuracy in bronze was higher at 98.2%, followed by Inconel (98%) 

and stainless steel (92.8%). The CNN network's prediction accuracy suggests that raw signals can also be used 

directly instead of extracting the features independently. Scrutinising Table 4, it is seen that the classification 

accuracy of stainless steel is lower than in bronze or Inconel. The nature of these results is unknown, but it is 

due to the non-distinct acoustic patterns inside the signals from the different categories of stainless steel that 

affect the classification performance. 

Table 4: Confusion matrix (results of the classification accuracy) of the LR, SVM, RF, and CNN 

models trained on each individual alloy dataset. The classification results in each cell are organ-

ised in the following descending order: LR (Bold), SVM (Normal), RF (Italics), and CNN (Bold 

Italics), All values are in %. 
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4.5.3 One on all alloy classification 

The previous section demonstrated that our approach is valid for monitoring while processing single alloy 

workpieces. Still, the major drawback of industrial application is twofold. First, a classification model has to 

be built for any material used. Second, the correct material-dependent model has to be "loaded" prior to the 

processing. Any mistakes at this stage will result in the loss of raw material, machining time, and human 

resources. Thus, instead of developing one individual classification model for each material, a single classifi-

cation model was also trained to classify the regimes irrespective of the material by grouping the three alloy 

datasets according to the ground-truth labels. This approach will answer question (ii) in the introduction.  

Similarly to Table 4, Table 5 shows the 3 by 3 confusion matrices for the three regimes on the combined dataset 

for all ML algorithms. The average classification accuracy is slightly lower than the individual models but 

remains very high, ranging from 90 to 94.6%, depending on the regime and ML algorithm. The CNN model 

prediction accuracy suggests that raw acoustic signals can also be used for classifying the three process regimes 

irrespective of the alloy. We can infer that real-time monitoring of multi-materials using a single ML model 

will be feasible.  

Table 5: Confusion matrices of the LR, RF and SVM model trained on the combined 

alloy dataset and tested for each alloy and process regimes. The classification results in 

each cell are organised in the following descending order: LR (Bold), SVM (Normal), 

RF (Italics), and CNN (Bold Italics). All values are in %. 
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4.5.4 Cross alloy classification- towards generalisation 

In Sections 4.5.2 and Error! Reference source not found., we have proven that ML algorithms can classify 

the categories of the alloys they have been trained for — either in separate or combined models. However, a 

question remains whether the same models to classify a new, unseen material (See question (i) in the introduc-

tion) can be used. To address this question, several classification tasks were performed on alloys that were not 

part of the training dataset to understand this hypothesis, using three combinations: one on one (e.g., Inconel 

on stainless steel) and combinations of two alloys on one (e.g., bronze and Inconel on stainless steel). For this 

study, RF was selected as the significance of the features for classification can be extracted. Out of the 9 

possible combinations among the three alloys, 3 cases had poor average classification accuracy (below 50%), 

5 had average accuracies around 70%, and 1 had an average accuracy above 80%. To illustrate these results, 

one case with good classification and another with poor classification are discussed in this section. 

As an example of a good classification case, Table 6 (left) shows the 3 by 3 confusion matrix for a classification 

RF model built from stainless steel and bronze and tested on Inconel for the three different categories. We can 

interpret that only a minimum fraction of samples between keyhole pores and conduction mode are misclassi-

fied. As an example of a poor classification case, the RF model built from stainless steel and Inconel and tested 

on bronze, also shown in Table 6 (right), was chosen. Scrutinising the different classification results, no trend 

could be found between alloys' choice to train the RF model and the alloy on which the model was tested. In 

other words, it seems not possible to have a universal or generalised model for most metals. Further investiga-

tion on identifying the similarity of features distributions between the alloys, with Kullback–Leibler (KL) 

divergence, will enable us to understand these results. This analysis will be performed in future work. 

Table 6: Confusion matrix of the RF model trained on two alloys and tested on a new 

alloy.  Left table is a good case: Bronze and Stainless steel on Inconel, Right table is 

a bad case:   Inconel and Stainless steel on bronze. All values in %. 
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4.5.5 Multi-label classification 

In Sections 4.5.2 and Error! Reference source not found., most of the ML models discussed were able to 

classify regimes with high confidence on models trained with single material models or different material. In 

contrast, in Section 4.5.4, it was shown that features are material dependent and the possibility to have a uni-

versal model is low. Considering these facts, it seems possible to classify the regimes and the alloys (See 

question (iii) in the introduction). Such classification task can be performed via a multi-label classification. If 

successful, it will bring three significant advantages to the AM community for the LPBF process of different 

materials. First, using various materials on the same machine to build single material parts, our methodology 

could be used for automatic process parameters selection. Second, in the case of defect regime detection, it 

will determine in which of the materials the defect is created. If most defects are localised within one particular 

material, the machine operator will know that this specific material's process parameters must be enhanced. 

Finally, the knowledge of the material and regimes could be used as feedback information to adapt the process 

parameters if regular deviations in quality are detected.  

We propose a multi-label classification CNN architecture to classify the regime and the material simultane-

ously on a given signal window, as illustrated in Figure 45. The architecture used included five layers with a 

kernel size of 16, followed by three fully connected layers. The flattened fully connected layer is split into two 

linear layers, out of which one predicts the regime, and the other one predicts the material. The CNN architec-

ture for multi-label classification, as depicted in Figure 45, is an improvised architecture from the CNN archi-

tecture used for classifying regimes in mono-materials in Figure 44. The CNN network input was the raw 

acoustic signal with a window length of 5 ms with two ground truth labels corresponding to the regime and 

the material. During the network training, weights were updated by back-propagating the summation of the 

two cross-entropy losses corresponding to the two branches of the output layer. During the network training, 

weights were updated by back-propagating the summation of the two cross-entropy losses corresponding to 

the two branches of the linear layer, as shown in Equation (1).  

𝐿𝑜𝑠𝑠 𝐶𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 1 𝐶𝑟𝑜𝑠𝑠 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝐿𝑜𝑠𝑠 2  
(1) 
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Figure 45. A illustration of the multi-label CNN architecture used in this work with five convolutional layers and 
two branches of fully connected layers.  

 

The network was trained for 300 epochs, with a batch size of 100 and a learning rate of 0.01 lasted for two 

hours. Figure 46 confirms the network's accuracy in classifying regimes and alloys increases with training and 

update of the weights. 

 

Figure 46. Accuracy curves confirming that CNN models trained for classifying regimes on individual materials 
and multi-materials learn with training epochs. 

 

The newly configured CNN network for multi-label had the AE raw signals as inputs data. The multi-label 

classification of the mechanism and the alloy was performed simultaneously, and their accuracy is shown in 

Table 7. From this table, the overall classification accuracies were 93.3% for the process regimes and 94% for 

the alloys. Considering the selected process parameters for the process regimes and alloys (See Table 2), these 
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results are of utmost importance for two reasons. First, it establishes that our approach can be successfully 

applied as a robust and low-cost in situ and real-time process monitoring of multi-material LPBF processes. 

Second, it confirms the results of Section 4.5.1; the features used for the classification task originated from the 

laser-material interaction and the associated process regime. Had it been the process parameters, the classifi-

cation accuracies for the materials in Table 7 would not exceed 77.6%. As a reminder, for the process regimes, 

LoF pores and keyhole pores, one set of process parameters was identical for all alloys (bold red values in 

Table 1), and so it would have equal probability to be classified for any of the three alloys. In other words, 

these two common process parameters would classify the material correctly with a maximum probability of 

33.3%. In contrast, it would be 100% for the other four process parameters, giving the 77.6% (466 out of 600). 

4.5.6 Summary of the classification tasks 

The results of the classification tasks in this section can be summarised as follows. 

 We demonstrated that the AE signatures used for the classification task are strongly related to the 

laser-material interaction and are unique for each material. 

Table 7: Confusion matrices of the multi-label CNN model trained on two ground-truth labels. 

Left table: classification accuracy on the regimes. Right table: classification accuracy on the 

materials. All values are in %. 
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 When coupled with ML algorithms, the features from low-cost airborne acoustic sensors can classify 

the type of defect regimes (regimes) with very high confidence irrespective of the materials consid-

ered. 

 The classification of defect regimes irrespective of the material based on a single ML model is feasible 

by combining the dataset from different alloys. 

 The generalisation of the classification of LPBF defects to other (untrained) alloys cannot be made, as 

the acoustic signals representing the defect formation mechanisms are material-dependent. Failure of 

generalisations have the positive outcome of successful classification of alloys and regimes simulta-

neously. 

 The multi-label CNN model proposed in this work can simultaneously identify the processing regime 

and the alloy, with excellent accuracy. 

4.6 Conclusions 

This contribution presents an analysis of the AE signals acquired during LPBF processing of three metallic 

alloys: stainless steel (316L), bronze (CuSn8), and Inconel (Inconel 718). The experiments were conducted in 

a custom-designed LPBF machine equipped with an acoustic sensor. The AE sensor used is the PAC AM4I 

sensor, an airborne sensor with a frequency response in the range of 1–100 kHz. Data acquisitions are made 

with an Advantech DAQ system at a sampling rate of 1 MHz to record the AE during the experiments. Differ-

ent laser powers and laser velocities were used to produce overlapping line tracks to simulate three major 

material qualities (regimes) in LPBF: LoF pores, conduction mode, and keyhole pores. This main contribution 

objective focuses on the correlation of the three regimes with their corresponding AE signals. The acoustic 

data resolved in three different domains (time, frequency, and time-frequency) were statistically quantified and 

visualised to characterise the three regimes for all three alloys. The following generalised conclusions based 

on the experimental results are summarised below. 

Airborne AE is a potential contender for real-time monitoring when processing different materials. They can 

capture discrete AE signatures corresponding to different laser-material interaction regimes across different 

alloys. The statistical distribution of different time-domain features among the regimes for all three alloys 

appear to be different, suggesting that they can be used as an input feature to ML algorithms for in situ and 

real-time monitoring. The frequency distribution of AE signals for the three materials shows that a significant 

energy concentration is located between 1 and 60 kHz. The frequency peaks were dominant at around 10 and 

40 kHz, as the PAC AM4I acoustic sensor's sensitivity is higher in this region. The comparison of the energy 
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concentration in five energy bands divided equally between 1 Hz to 100 kHz showed that these three regimes 

under study exhibit discrete energy levels for all three alloys. The distinct energy levels corresponding to the 

different regimes can also be used as a feature input to any ML algorithm for classification. The visualisation 

of wavelet plots for a time scale of 5 ms suggests that the energy coefficient distributions are almost synony-

mous with the frequency-domain results. Discrete peaks from the wavelet plot during the line scan experiments 

assert that the regimes are distinct, and a proper selection of the window size is vital for real-time defect 

localisation. The feature reduction based on the t-SNE technique hinted that the regimes features are clustered 

in the feature space irrespective of the three alloys. The visualisation of the clustered feature space suggests 

that the LPBF process involving Inconel, bronze, and stainless steel is highly dynamic, and only algorithms 

capable of classifying data in non-linear spaces would be able to identify them. 

Traditional ML algorithms such as LR, RF, and SVM were trained on selected features for classification. Apart 

from these conventional models, CNN was also trained to classify the raw acoustic signals corresponding to 

the 3 regimes. Very high classification accuracy was obtained from the ML models such as LR (> 90%), RF 

(> 92%), SVM (> 89%), and CNN (> 92.5%) on the individual alloys. To address the challenge of the LPBF 

process of different materials, an ML model built from the three materials showed that the acoustic features 

prove promising for real-time monitoring, as the classification accuracy was higher than 86%. The study also 

showed that generalisation of the classification of LPBF defects between alloys is not possible in most cases 

as the acoustic signals representing the regimes are material dependent. Finally, the multi-label CNN results 

suggest that — apart from classifying the regimes in different materials with good accuracy — it can also be 

used to classify the alloy and the regime at the same time. This is of great interest for the LPBF process of 

multiple materials. 

 In general, these research outcomes confirm that the extraction of acoustic signals and their features in time, 

frequency, and time-frequency domains — combined with ML — is a promising technique for in situ and real-

time quality monitoring for most metals. We also propose data acquisition strategies, data pre-processing, and 

ML algorithms to build a complete monitoring system for the LPBF process. The study of the phenomena at 

frequencies higher than 100 kHz requires a contact AE sensor, a work under investigation. Out of the many 

events in the laser-material interaction zone, only three processing regimes are correlated to acoustic signals 

in this research work. The feasibility of understanding the acoustic features corresponding to the early detection 

of other phenomena such as the evolution of microstructure, propagation of cracks, and delamination are also 

part of our future work. Also, ML models used in this work are discriminative models, which means they draw 

boundaries in the data space. As the dataspace changes, they are susceptible to error. And as we move from 

one machine to another, there is a high probability that this data space will change owing to the geometry of 

the chamber, machine parameters, the initial condition of the powder spread, location of the airborne acoustic 

sensor etc. Therefore, for the purpose of universality across machines, developments can be foreseen in gen-

erative models or techniques like domain adaptation or transfer learning. 
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Learnings and following work:  

The design of experiment of the chapter four proved that the classification is mainly performed on the laser-

matter information of the AE signals. This is a sine qua non condition to the use of AE based monitoring. It is 

also the foundation to the generalization to condition outside of the training conditions, i.e other alloy, param-

eters or machine AE signals. The chapter four proved that, with the chosen sensor, the generalization from one 

alloy to another is not possible. The features on the studied frequencies are material dependent. To reach a 

more robust monitoring approach, two methodologies are investigated. The first one consists in developing 

ML solutions based on transfer learning (chapter five) or semi-supervised (chapter 6) algorithms, and the sec-

ond one is to optimize the choice of the microphone, considering a flat frequency response (chapters 7 and 8).  

The chapter five investigated a deep leaning network transferring knowledge from stainless steel (316L) to 

bronze (CuSn8), considering four LPBF process regimes such as balling, LoF pores, conduction mode, and 

keyhole pores, reducing the computational need and the amount of data required for a reliable classification. 

The chapter six investigates a semi-supervised approach where the defect categories are differentiated from 

the conduction mode regime. This method reduced the amount of data needed for the classification as well as 

computational needs and the requirement of a balanced dataset.  

These two following chapters take into consideration the balling defect as an independent category, the other 

chapters considers balling as a sub-category of the LoF domain.  
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Abstract 

The defective regimes in metal-based Laser Powder Bed Fusion (LPBF) processes can be minimized by de-

ploying in-situ monitoring strategies comprising Machine learning (ML) algorithms and sensing techniques. 

So far, algorithms trained for monitoring a particular material type cannot be re-used to monitor another ma-

terial in Additive Manufacturing (AM). This is a topic rarely researched in AM. Inspired by the idea of transfer 

learning in ML, we demonstrate the knowledge learned by the two native Deep Learning (DL) networks, 

namely VGG and ResNets, on four LPBF process mechanisms such as balling, Lack of Fusion (LoF) pores, 

conduction mode, and keyhole pores in stainless steel (316L) can be transferred to bronze (CuSn8).  In this 

work, the spectrograms computed using Wavelet Transforms (WT) on Acoustic Emissions (AE) during the 

LBPF process of stainless steel and bronze are used for training the two DL networks. Either network is first 

trained for classification by spectrograms representing four mechanisms during the processing of stainless 

steel. The trained model is then re-trained using transfer learning with spectrograms from bronze data for a 

similar classification task. The accuracy of the two networks during transfer learning shows that it is effectively 

possible to learn transferable features from one material to another with minimum network training time and 

dataset collection. 

 

Keywords: Powder bed fusion; In-situ monitoring; Wavelet Transform; Convolutional neural network; Trans-

fer learning. 
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5.1 Introduction  

Additive manufacturing (AM) has become a prominent method in fabricating complicated and intricate shapes 

in leading industrial sectors compared to the traditional manufacturing techniques (Tapia and Elwany, 2014). 

AM offers advantages such as minimum wastage of material and a cleaner production environment compared 

to subtractive machining techniques that were traditionally practiced. Laser Powder Bed Fusion (LPBF) is a 

variant among metal additive manufacturing techniques that have been quite well known for a while and are 

the most investigated. In LPBF, the parts are built-in sequential layers. A laser beam moves around a powder 

bed of thickness ranging from 20-60 m prepared by a re-coater mechanism. The laser irradiation melts and 

fuses the particles in a powder bed with their neighboring layers as well as with adjacent particles in the same 

layer. The laser irradiation scans are performed selectively by moving optical elements in the laser head based 

on the original 3D computer-aided design (CAD). The process of irradiating and refilling the powder bed 

continues until the whole part is built, typically going up to thousands of layers. 

Building parts without defects in processing a specific material involves choosing optimum parameter levels 

to achieve desired properties. Numerous parameters such as laser power (Spears and Gold, 2016), scanning 

speed (Esmaeilizadeh et al., 2020), scanning pattern (Liu et al., 2021), the material composition of the powder 

(Knieps et al., 2021), surrounding environment (Ch et al., 2019), laser beam size (Gerstgrasser et al., 2021), 

etc., affect the LPBF process quality. During the process, any deviation from the optimum window parameters 

for any material causes significant changes in the laser-material interaction affecting the melt pool's depth, 

width, and length. The resulting melt pool geometry influences the quality of the built part. Conversely, unfa-

vourable melt pool geometries lead to the formation of defect mechanisms such as balling, porosity, LoF pores, 

delamination, cracks and deviation from the desired microstructure. Some effects of the parameters on laser-

material interaction and the corresponding defect mechanism are listed in Table 8. 
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Table 8. Effect of parameter level on laser-material interaction in LPBF process. 

Parameter 
Parameter 

level 
Mechanism evolved 

Remarks on laser-material interac-
tion 

Reference 

Laser  
power 

High 
Cracks, Distortion and 
keyhole pore formation 

 Evaporation of material, the oc-
currence of residual stresses 

(Simson et al., 
2017) 

Low 

Balling 
 Weak flowability of the melt 

pool resulting in a small contact 
area to the substrate 

(Li et al., 2012) 

LoF pores 

 Less likelihood of powder abla-
tion and plasma formation re-
sulting in low absorptivity 

 Neighbouring scan tracks are 
not connected sufficiently 

(Li et al., 2012) 

Beam 
quality, 
intensity 
profile, 
spot size 

- Microstructure 
 Affects the spatial distribution 

of energy delivered and the 
cooling rate 

(McLouth et 
al., 2018) 

Scanning 
speed 

High 

Balling 

 Higher scan speeds cause more 
shear stress in the liquid phase 
resulting in higher surface ten-
sion inside the melt pool 

(Gu et al., 
2013) 

Thermal-induced cracks 
 Extremely high cooling rates 

caused by very high scan 
speeds 

(Gu et al., 
2013) 

Low Porosity  Increase of the energy density 
(Aboulkhair et 

al., 2014) 

Scan  
pattern/ 
strategy 

- 
Delamination, Micro-
structure, Thermal in-
duced cracks 

 Influences the heat transfer 
with the environment in the vi-
cinity of the melt pool and also 
energy absorption due to modi-
fied surface morphology from 
previous scans 

(Parry et al., 
2016) 

Scan  
spacing 

Overlapping 
distance 

Microstructure, Ther-
mal induced cracks, Po-
rosity 

 Optimum overlaps ensure the 
material is sufficiently dense, 
achieves full strength and also 
affects energy absorption. 

(Aboulkhair et 
al., 2014) 

Powder 
particle 
shape 

- Porosity 

 These impact light absorption 
and the heat transfer between 
the particles 

 Flowability of the powder dur-
ing the recoat affecting packing 
density and uniformity 

(Brika et al., 
2020) 

 

At present, the industrial standard for non-destructive examination of the build quality regarding the defect 

mechanisms listed in Table 8 is carried out via off-line quality control methods such as X-ray tomography 

(Maskery et al., 2016), ultrasonic inspection (Rieder et al., 2016), etc. The major disadvantage of off-line 

methods is that it does not allow taking corrective actions on the occurrence of the defect, resulting in wastage 

of the material and valuable manpower and machine time. Though LPBF techniques have made some progress 

concerning building parts out of different materials, production speed, machine construction, etc., the technol-

ogy still lacks repeatability. Hence, there is a need for robust and cost-effective in-situ quality monitoring 
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systems, but their development is in the early stages. Understanding the defect mechanism formation is crucial 

for such development, followed by strategies to suppress these defect formations. The defect mechanisms can 

be understood with the help of suitable sensing (Everton et al., 2016) and signal processing techniques (Pan-

diyan et al., 2020).  With mechanisms happening in the order of microseconds, sensors should have good 

sensitivity along with high spatial and temporal resolution. Sensors such as pyrometer (Artzt et al., 2020), 

infrared imaging (Grasso et al., 2018), cameras (Scime et al., 2020), optoacoustic (Gutknecht et al., 2021), 

acoustics (Shevchik et al., 2018), etc., have been reported in the literature for monitoring the melt pool dynam-

ics and the defect mechanisms. One promising approach for automatic detection of defects is using a Machine 

Learning (ML) algorithm capable enough to recognize patterns from the sensor signature. 

Craeghs et al. (2010) demonstrated that based on the response of the photodiode sensor, the laser power can 

be altered by a feedback control loop in real-time. Craeghs et al. (2012) have also mapped the melt pool and 

thermal behaviour with a high-speed camera and a photodiode for monitoring the build. Photodiodes and sem-

iconductor (CMOS) cameras have also been used to detect process failures based on the interpretation of the 

melt pool dynamics (Clijsters et al., 2014). Berumen et al. (2010) showed that coaxially mounted cameras can 

be used to monitor the shape and size of the melt pool. Solidification mechanisms of the melt pool have been 

studied by correlating the surface temperature with the pyrometer (Furumoto et al., 2013). Detection of unsta-

ble behaviors in the process has been demonstrated by infrared imaging of the melt pool (Grasso et al., 2018). 

The plume properties for challenging materials like zinc and its alloys have been imaged using infra-red sen-

sors for in-process sensing (Grasso et al., 2018).  

The dimensions of the melt pools in the LPBF process range between 50 to 250 μm and appear for a few 

microseconds. Monitoring systems based on visual and optical sensors require high spatial and temporal reso-

lution to capture these phenomenon, making them very expensive.  Additionally, the cost for processing the 

data from these sensors are also high as they require heavy computational resource. Alternatively, AE air-

borne and structure-borne sensors with the reliable temporal resolution are proposed as an economical solution 

for monitoring the additive manufacturing process (Shevchik et al., 2019). Pandiyan et al. (2020) have demon-

strated that air-borne acoustics captured across four different LPBF regimes exhibited different characteristics 

in time, frequency and time-frequency domains. Gutknecht et al. (2021) presented that AE has 40 times higher 

sensitivity than the camera and 15 times more sensitive than the pyrometer in detecting flaws. Furthermore, 

AE events have been correlated with the location of the micro defects that occur in the LPBF process (Ito et 

al., 2021). A defect detection system based on a deep belief network (DBN) and microphone data have been 

successfully developed to classify balling and other mechanisms (Ye et al., 2018). Shevchik et al. (2019) de-

veloped a spectral convolutional neural network classifier to distinguish the acoustic features for different 

mechanisms occurring in the LPBF process. Generative models such as Variational Autoencoders (VAEs) and 

Generative Adversarial Networks (GANs) has been applied on acoustic signatures corresponding to different 

laser regime in LPBF to distinguish defect-free regimes from anomalies (Pandiyan et al., 2021).  A bi-stream 
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Deep Convolutional Neural Network (DCNN) trained with images acquired during the LPBF layering process 

was able to identify defective conditions (Caggiano et al., 2019). Unsupervised machine learning algorithms 

have also been implemented to detect and classify anomalies in the LPBF process (Scime and Beuth, 2018). 

A few review works have extensively reported the application of ML techniques for monitoring 3D printing. 

Yu and Jiang (2020) focused their review on 3D bioprinting; Meng et al. (2020) wrote their review from the 

perspective of the ML algorithms; whereas Goh et al. (2021) concentrated not only on the application but also 

challenges and potential of ML in AM processes 

The in-situ monitoring techniques based on ML have been successfully demonstrated for various base materi-

als such as Stainless-steel (Eschner et al., 2018), Bronze (Scime et al., 2020), Inconel (Pandiyan et al., 2021) 

and Titanium (Kouprianoff et al., 2021). Owing to the significant differences in optical and thermal physical 

properties of the base powder particles, the experimental parameters listed in Table 8 vary considerably for the 

occurrence of defect mechanisms among the different materials. It is well-known that the melt pools formed 

are mainly a function of the powder material and thermodynamic properties. As a result, there would be a 

change in the distribution of process signatures captured by the sensors, which would make any algorithm 

developed for in-situ monitoring for a particular material non-reusable for another material with confidence. 

The present work is a feasibility study that focuses on using the idea of Transfer Learning (TL) in Convolu-

tional Neural Networks (CNN). This work aims to demonstrate that the knowledge learned by a CNN from 

the sensor signatures corresponding to the four mechanisms; balling, LoF pores, conduction mode and keyhole 

pores during the processing of stainless steel can be transferred to bronze. In this work, wavelet transforms are 

used to extract spectrograms which were subsequently used as input to two architectures, namely VGG-16 and 

ResNets-18.  

The paper is organized into five sections: a brief outline of the LPBF process, the mechanisms in the process 

and the research gaps in-process monitoring are discussed in Section 0. Section 5.2 gives a brief theoretical 

basis on the VGG-16, ResNet-18 architecture and Transfer Learning. Section 5.4 presents the experimental 

conditions and methodology proposed. Section 5.5 discusses the transfer learning results on VGG-16 and Res-

Net-18. Finally, the main contribution of this paper and future works for further optimization of the proposed 

methodology is discussed in Section 4.5. 

5.2 Theoretical basis 

5.2.1 VGG-16 and ResNet-18 

VGG-16 is one of the state-of-the-art CNN architectures built for object recognition by Oxford's renowned 

Visual Geometry Group (VGG) (Simonyan and Zisserman, 2014). The number 16, in this case, indicates the 

total number of layers involved in building this architecture, as shown schematically in Figure 47. VGG-16 

was one of the first architectures to demonstrate the benefit of increasing the depth of neural nets for better 
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classification accuracy. VGG16 network architecture's uniqueness is that all convolution layers have only a 

3X3 filter with a stride one and always use a 2X2 filter of stride 2 for max-pooling layers. Even though it was 

designed for classifying 1000 categories, it can be used to classify a smaller number of categories (Pandiyan 

et al., 2019) and sometimes a higher number of categories (Grm et al., 2018). However, due to its numerous 

fully connected nodes, it is a rather large network, with approximately 138 million parameter weights com-

pared to other networks. The network's size is the main drawback in terms of its deployment (Alippi et al., 

2018) as well as the time required for its training (Qassim et al., 2017). To date, it is still considered to be an 

excellent pretrained vision model for solving image recognition and segmentation problems (Long et al., 2015). 

However, Canziani et al. (2016) indicated it could be replaced by more recent advanced and lighter networks 

such as Inception and Residual Networks (ResNets). 

 

Figure 47. Schematics of the VGG-16 block 
 

The accuracy of any neural network architecture would saturate, or in worst scenarios, would potentially de-

crease with the increase in the number of layers. The training of very deep networks is complicated due to the 

vanishing gradient problem. Indeed, the gradients' repeated multiplication during the backpropagation results 

in making the gradient significantly small, which was presented by Huang et al. (2016). To address this issue, 

He et al. (2015) developed a newer type of architecture to overcome this vanishing gradient problem, namely 

ResNets. The ResNets employs a shortcut connection skipping the layers to ease the flow of gradients, and it 

is schematically represented in Figure 48. The identity skip connection enables the deep networks to go deeper 

to learn representations with a higher level of abstractions. Canziani et al. (2016) showed that skip connections 

enable the network to converge faster than plain counterparts such as VGG-16. There are different variants of 

Resnets; typically, ResNet-18, 34, 50, 101, corresponding to the depth of the layers. Apart from the depth of 

the layers, the significant difference between these architectures is that, as the layer depth increases beyond 

50, the expensive 3X3 convolution is replaced by 1X1 convolutions to reduce computation. 
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Figure 48. Schematics of the ResNet -18 architecture. 

5.3 Transfer Learning 

Traditional machine learning algorithms are trained based on a particular feature space to solve specific tasks. 

With a change in feature distribution or with the introduction of a new task, the algorithm might fail to adapt. 

In this case, the algorithm has to be re-trained from scratch. Transfer learning is a paradigm where a model 

already trained on a similar task is re-used with minimum training to accomplish the second task. With neural 

architectures built with deep layers, the pretrained weights in them can be re-used with minimum training and 

usage of computing resources. But, it is also to be noted that transfer learning is handy in deep learning if the 

features learned by the pre-trained model from the first task are general. Figure 49 presents different strategies 

adapted based on the complexity of the second task. In the case of tasks with higher complexity, the whole 

network is trained from the saved weights, as shown in Figure 49(a). For a similar task, the few convolution 

layers or classification layers are trained, as illustrated in Figure 49(b) and(c). The training time is directly 

proportional to the number of learnable parameters to be updated during training.  Apart from image recogni-

tion and segmentation applications, the transfer learning paradigm has also been applied to fault diagnosis in 

locomotive bearings (Yang et al., 2019), to identifying useful life prediction of the tool in manufacturing pro-

cesses (Sun et al., 2018), which prompted us to exploit this technique towards AM. 
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Figure 49. Different strategies in transfer learning based on the problem complexity. 

5.4 Experimental setup and methodology 

5.4.1 Experimental setup 

A series of LPBF line tracks were produced for two different materials using a customized setup shown in 

Figure 50. In this study, two materials with significant differences in mechanical, optical and thermal proper-

ties. The first powder is a 316L stainless steel (MetcoAdd 316L) from Oerlikon Metco, whereas the second 

material was a bronze (CuSn8) purchased from Heraeus Materials SA (Ghasemi-Tabasi et al., 2020). The 

chemical composition of the stainless steel and bronze powders are listed in Table 9 and Table 10. The spher-

ical powder particle size distributions and their relative densities are listed in Table 11. The process parameters 

inducing the four build qualities; balling, LoF pores, conduction mode and keyhole pores, are listed in Table 

12. From this table, it is seen that two process parameters per condition have been used. The single-line tracks 

were performed on a defect-free cube built previously having a 40 μm thickness over the build plate using a 
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reciprocating recoating mechanism, as depicted in Figure 50. The line tracks were of length 13 mm were 

produced with a parallel uni-directional scan strategy with a spacing of 0.1mm between them. A continuous-

wave fiber laser with a 1070 ± 10nm wavelength with a spot size of 82 μm (1/e2) at the focal plane with an M2 

< 1.1  was used. The enclosed process chamber prevented the powder bed from being contaminated during the 

experiments, and nitrogen was used as the inert gas with a flow rate of 1m/s. Additional it was ensured that 

the oxygen content inside the chamber was below 200 ppm, which corresponds to 0.01%. 

 

Figure 50. Experimental setup involving LPBF process 
 

Table 9. The alloy composition of austenitic steel 316L powder given in weight percent (nominal) 
Fe (Iron) Ni (Nickel) Cr Mo C (Carbon) Other 

Balance 122 18 2 < 0.03 <   1.00 

Table 10. Composition of Bronze CuSn8 powder given in weight percent (nominal) 
Cu P S Fe Ni Zn As Zr Sn Other 

Ba-
lance 

0.06 
± 

0.02 
≤ 0.05 ≤ 0.05 < 0.03 ≤ 0.2 ≤ 0.05 ≤ 0.05 7.80 ± 

0.8 <   1.00 

Table 11. Powders particles details 

 D10 (μm) D50 
(μm) D90 (μm) Relative 

density % 

316 L 18.24 30.04 45.65 55.3 

Bronze 20.11 31.11 44.25 59.7 

Table 12. Scanning parameters for single line tracks experiments. 

Mechanism 

Stainless steel Bronze 
Laser power 

(W) 
Scan speed 

(mm/s) 
Laser power 

(W) 
Scan speed 

(mm/s) 

Balling 
25 500 25 300 
90 800 50 300 

LoF pores 
50 500 100 300 
150 525 150 300 

Conduction 
mode 

150 300 170 150 
170 400 250 300 

Keyhole pores 
200 250 350 300 
450 300 450 300 
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The four build qualities were simulated on both powders based on the normalized enthalpy calculations as 

plotted in Figure 51 and Figure 52. The normalized enthalpy over the normalized melt pool depth was calcu-

lated (Ghasemi-Tabasi et al., 2020) based on Equations (2) and (3), where ρ is the density , α is the 

absorptivity of the bulk material, P is the laser power (W), C the specific heat 
.

, ΔT the difference be-

tween the melting and initial temperature (K), Lm the latent heat of melting , ω the laser spot radius (m), 

V the laser speed , D the thermal diffusivity , and d the melt pool depth (m). 

d
ΔH
Δh

αP

ρ  CΔT Lm  √πω  VD
 

(2) 

d
d
ω 

(3) 

The work's primary focus was to evaluate whether the proposed transfer learning strategy can be applied for a 

larger process space and independent of the process parameters across the materials. As confirmed from Figure 

51 and Figure 52 we can see that two sets of parameters were chosen across mechanisms with different nor-

malized enthalpies covering a larger process space. Again comparing between Figure 51 and Figure 52, the 

enthalpies of the mechanisms across stainless steel and bronze are different, confirming that if transfer learning 

works, it might be independent of the process parameters across materials. Also, to make the classification and 

transfer learning task a bit trickier, the dataset was prepared by including data corresponding to balling and 

LoF pores for the two alloys. Laser energy density is considered a critical factor affecting the properties of as-

built parts (Gu et al., 2013). Out of the four build qualities studied in this work, three of them, namely balling, 

LoF pores and keyhole, are unfavourable. The occurrence of balling and LoF pores is the result of a deficit in 

laser power. On the other hand, porosity caused by keyholes is due to excessive laser power absorbed.  How-

ever, due to the two materials' optical reflectivity, the energy required for the same mechanism is higher for 

bronze than for stainless steel. Lastly, cross-sections perpendicular to the line track is investigated by a light 

microscope to confirm either the occurrence or absence of defects. Typical optical microscopic images of the 

different build qualities for stainless steel and bronze are shown in Figure 51 (stainless steel) and Figure 52 

(bronze). 
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Figure 51. Normalized enthalpy of the printed stainless steel samples of different build qualities versus the normalized 
melt pool depth (Pandiyan et al., 2020). 

 

 

Figure 52. Normalized enthalpy of the printed bronze samples of different build qualities versus the normalized melt 
pool depth. 

5.4.2 In situ sensing setup and data processing 

An air-borne acoustic emission (AE) sensor PAC AM4I with a working range of 0 – 100 kHz was used to 

capture the process signatures emitted during line track trials for both materials. The acoustic sensor is a reso-

nant sensor with peak frequencies around 40 and 80kHz. It is kept in proximity to the build plate at 10 cm, as 
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shown in Figure 50. The sensor location was fixed for all experiments to ensure repeatability and consistency. 

The AE signals were captured at a rate of 1 MHz, satisfying the Nyquist Shannon theorem using an Advantech 

Data Acquisition (DAQ) card. The acquisition of the DAQ card was triggered once the laser hits the powder 

based on thresholding. The data captured are locally stored for further processing. In this work, 200 line tracks 

were performed for each material, and the four build qualities resulted in 1600 lines. 

The acquired AE signals were sequentially processed, as illustrated in Figure 53, to obtain spectrograms which 

were subsequently used as input to the VGG and ResNet architectures. For each set of process parameters, the 

signals were split into window sizes of 2500 µs. Based on the operating range of the acoustic PAC AM4I 

sensor, frequencies higher than 100 kHz was removed using a low pass Butter-worth filter. Next, the filtered 

signal was convoluted with a scaled and translated version of the wavelet to compute the Continous Wavelet 

Transform (CWT) coefficients. After an exhaustive search, the Morlet was used as the mother wavelet with a 

scaling value of 500. The application of Morlet wavelet for feature extraction and analysis has been well es-

tablished for fault diagnosis in ball bearings (Kankar et al., 2011) and gear-box (Lin and Qu, 2000). The coef-

ficients computed after the transform are converted into a 2D spectrogram of size 512 X 512 pixels. The max-

imum and minimum limits were computed from the CWT coefficients of all build quality to scale all the 

spectrogram images. For each material and build quality, 2000 spectrogram images were produced per mech-

anism. This database is balanced in order to avoid biasing during the CNN training. 

 

Figure 53. Workflow to build the spectrogram dataset from line track experiments. 
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5.4.3 Methodology 

The proposed methodology for transferring knowledge acquired about different build qualities by a convolu-

tional network from one material to another material is depicted in Figure 54. First, the network is supervisely 

trained with labelled spectrogram images from stainless steel for each build condition. It is important to note 

that the network weights are initially randomized during training. The performance of the network is assessed 

by comparing the prediction of the network and the corresponding ground truth. Once a reliable accuracy is 

achieved, indicated by the training accuracy and loss curves reaching a plateau, the training is stopped. Second, 

the pre-trained model is used as the base model to train the build quality found in another material, in this case, 

bronze. However, during the training with the second material, the network is not trained from the beginning. 

Actually, only a part of the network weights is re-trained, as shown in Figure 54. A part of the knowledge 

learned by the network from the first material (stainless steel) is preserved, and the new knowledge of the 

second material (bronze) is augmented. Once a reasonable accuracy is achieved on the second material, the 

training is stopped. This work trains deep networks such as VGG -16 and ResNet -18 on spectrogram images 

corresponding to four different build qualities. The trained VGG-16 and ResNet-18 architecture weights are 

frozen until the last layer, thereby restoring the learned knowledge. Only the last layer weights are allowed to 

be updated during training with spectrogram images corresponding to bronze. The transfer learning was per-

formed in two modes. In the first mode, the freezed network was trained on the bronze spectrogram dataset 

with a size similar to the stainless steel training dataset. In the second mode, the bronze dataset was reduced 

to half (50%) the size of the stainless steel dataset during re-training of the freezed network. 

 

Figure 54. Workflow of the proposed methodology. 
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5.5 Transfer learning using VGG-16 and ResNet-18 architecture 

The spectrogram images created, as discussed in section 5.4.2, with a resolution of 512 X 512 pixels, is given 

as input to two types of CNN architectures, namely VGG-16 and ResNet-18. From a dataset of 8000 spectro-

gram images for each material, 5200 images were stochastical selected for the training and the remaining 2800 

images were used for testing. We ensured that the weightage, i.e. the number of spectrogram images of all four 

build qualities in the train and test datasets, is balanced during this stochastical selection. The VGG-16 and 

ResNet-18 CNN architectures are trained with a GeForce RTX 2080 Ti Graphical Processing Unit (GPU). The 

training process of the two CNN architectures was implemented in Pytorch (Paszke et al., 2019). The training 

parameters for both VGG-16 and ResNet-18 architectures are listed in Table 13. The 200 epochs for training 

was chosen over an exhaustive search to have a fair comparison across two different architectures and the 

respective accuracy of the two models. Furthermore, batch normalization was applied across layers in the 

respective model to ensure that overfitting does not occur. It was also ensured that the datasets were shuffled 

across epochs, and a dropout of 0.5 was applied during training. Additionally, we have stabilized the training 

by reducing the learning rate to half after every 25 epochs. 
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Table 13. Parameters used in VGG and ResNet Architectures for training. 
Training parame-
ters 

VGG-16 
VGG-16-Transfer 
learning 

ResNet - 18 ResNet – 18 
Transfer learning 

Type of analysis Classification Classification Classification Classification 

Solver name 'sgdm' 'sgdm' 'sgdm' 'sgdm' 

Learn rate  0.001 0.001 0.001 0.001 

Rate of change in 
learning rate 

50% every 25 
epoch 

50% every 25 
epoch 

50% every 25 
epoch 

50% every 25 
epoch 

Momentum 0.9 0.9 0.9 0.9 

Total Epochs 200 200 200 200 

BatchSize 10 10 40 40 

Shuffle Every-epoch Every-epoch Every-epoch Every-epoch 

Batch normaliza-
tion 

True True True True 

Training set 
65% / 5200 stain-
less steel spectro-

grams 

Mode 1: 5200 
bronze spectro-

grams 

Mode 2: 2600 
bronze spectro-

grams 

65% / 5200 stain-
less steel spectro-

grams 

Mode 1: 5200 
bronze spectro-

grams 

Mode 2: 2600 
bronze spectro-

grams 

Testing set 
35% / 2800 stain-
less steel spectro-

grams 

Mode 1: 2800 
bronze spectro-

grams 

Mode 2: 1400 
bronze spectro-

grams 

35% / 2800 stain-
less steel spectro-

grams 

Mode 1: 2800 
bronze spectro-

grams 

Mode 2: 1400 
bronze spectro-

grams 

Input image size 512 x 512 pixels 512 x 512 pixels 512 x 512 pixels 512 x 512 pixels 

Loss function Cross-entropy Cross-entropy Cross-entropy Cross-entropy 

GPU training 
GeForce RTX 

2080 Ti 
GeForce RTX 

2080 Ti 
GeForce RTX 

2080 Ti 
GeForce RTX 

2080 Ti 

Dropout  0.5 0.5 0.5 0.5 

Library Pytorch Pytorch Pytorch Pytorch 
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5.5.1 Transfer learning using VGG -16 Architecture 

The Fully Connected (FC) classification layer of the VGG-16 architecture, which typically classify 

1000 classes, is modified based on our objective for classifying four build qualities, i.e. balling, LoF pores, 

conduction mode and keyhole pores. During training with the stainless steel data, the cross-entropy was the 

loss function on a batch size of 10 for 200 epochs. After every epoch, the model with updated weights is tested 

against the test dataset consisting of 2800 images. During the entire training process of the VGG-16 network, 

the ≈ 134 million parameter weights were updated. The learning rate was initialized at 0.001 and halved after 

every 25 epochs. Figure 55 shows the accuracy and loss curves for the VGG-16 model trained on the spectro-

gram images. It is seen that the accuracy increases and the loss decrease with every epoch, confirming that the 

network learns patterns during the training process. The classification accuracy of the trained VGG-16 on the 

test dataset is shown in the confusion matrix in Table 14. In this table, trained VGG-16 model prediction of 

built qualities (balling, LoF pores, conduction mode and keyhole pores) (in rows) versus the ground truth (in 

columns) using the parameters listed in Table 13 after 200 epochs are given. The classification accuracies in 

the table are defined as the number of true positives divided by the total number of tests for each category. 

These values are given in the diagonal cells of the table (dark grey cells). The classification errors are computed 

as the number of the true negatives divided by the total number of the tests for each category. These corre-

sponding values are filled in non-diagonal row cells. After 200 epochs, using the training parameters listed in 

Table 13, the trained VGG-16 model achieves an accuracy of  ≈96% for classifying the four build qualities. 

The model training on the GPU listed in lasted for 18 hours. 

 

Figure 55. Accuracy and training loss plots during the training of the VGG-16 model on stainless-steel spectrogram 
dataset. 
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Table 14. Confusion matrix depicting the accuracy of trained VGG-16 network on stainless-steel mechanisms in the test 
set. 

Ground truth 
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Balling 97.75 0 1.75 0.5 

LoF pores 3.0 95 1.50 0.50 

Conduction mode 0.75 0.25 96.75 2.25 

Keyhole pores 0.75 0.25 4.25 94.75 

 

For the transfer learning, the weights of the VGG-16 model trained on classifying the stainless steel build 

qualities are frozen except the FC layer, as shown in  

Figure 56. The weights in the FC layer get updated during the transfer learning of the pre-trained VGG-16 

network with the bronze spectrogram dataset. During the transfer learning of the pre-trained VGG-16 network 

with the bronze dataset, about ≈119 million weight parameters get updated, whereas ≈15 million weight pa-

rameters from the convolutions layers have learned the patterns are frozen. The transfer learning was executed 

in two modes. First, training the freezed network with the bronze spectrogram dataset with a size similar to the 

stainless steel training dataset (8000 images). Second, by reducing the bronze dataset to half (4000 images). 

 

Figure 56. Freezing weights of the pretrained VGG-16 for transfer learning. 

The training parameters used during the transfer learning of the pre-trained VGG-16 are listed in Table 13. 

Figure 57 shows the accuracy and loss curves during transfer learning on the full bronze dataset. Comparing 
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loss curves between Figure 55 and Figure 57, it is evident that the loss values are more stable during the base 

VGG-16 network training process than during the transfer learning.  

 

Figure 57. Accuracy and training loss plots during transfer learning of pretrained VGG-16 model on bronze 
spectrogram dataset. 

 

The classification accuracy of the VGG-16 model from the transfer learning on the full bronze test dataset is 

given in the confusion matrix in Table 15 (a). After 200 epochs computed in 9 hours, the VGG-16 model from 

the transfer learning reached an average accuracy of  ≈85%. Missclassification was found between two mech-

anisms, such as LoF pores and conduction mode. For transfer learning in the second mode, where the freezed 

VGG-16 network is trained with the bronze dataset, which is 50% in size of the stainless steel dataset, an 

accuracy of  ≈82% was achieved, and evidence of this is in Table 15 (b). The transfer learning in the second 

mode lasted for 6 hours for 200 epochs. The training times were considerably reduced two-fold during the 

transfer learning of the VGG-16 model in the first mode and threefold in the second mode. 

Table 15. Classification accuracy of the VGG-16 model via transfer leaning for mechanisms occurring during the LPBF 
process of bronze a) Full dataset b) 50% of the dataset. 

a) Full dataset (Mode I) b) 50% of the dataset (Mode II) 
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Balling 94.0 3.50 2.50 0  89 5.5 5.25 0.25 

LoF pores 2.0 76.5 21.0 0.50  3.0 74.5 20.75 1.75 

Conduction mode 3.0 17.75 75.75 4.0  2.5 21.25 72.0 4.25 

Keyhole pores 0 1.5 5.0 93.5  0 1.75 7.25 91.0 
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5.5.2 Transfer learning using ResNet - 18 Architecture 

Similar to the training of the VGG-16 network, the ResNet-18 architecture was also trained using the param-

eters listed in Table 13 on the spectrogram dataset from stainless-steel line track experiments. Figure 58 shows 

the accuracy and loss curves increasing and decreasing with every epoch, confirming that network weights 

adapt to classify the build quality. During the entire training process with a batch size of 40, about ≈11 million 

parameter weights of ResNet-18 architecture were updated using backpropagation. As indicated in the confu-

sion matrix in  

Table 16, the trained ResNet-18 model was able to classify with an overall accuracy of ≈94% after 12 hours 

of training.  

 

 

Figure 58. Accuracy and training loss plots during the training of ResNet-18 model on stainless-steel spectrogram 
dataset. 

 

Table 16. Confusion matrix depicting the accuracy of trained ResNet-18 network on stainless-steel mechanisms. 
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Balling 93.8 4.3 1.7 0.2 

LoF pores 3.5 93.3 2.2 1.0 

Conduction mode 0.7 0.3 93.3 5.7 

Keyhole pores 0.4 0.8 5.4 93.4 
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For the transfer learning of the pre-trained ResNet-18 model, only the fifth bottleneck block layer and FC 

layer's weight is trainable, as shown in  

Figure 59. The knowledge and patterns learned by the ResNet-18 network during the previous training on the 

stainless steel dataset are preserved as those weights are frozen. Out of  ≈11 million parameter weights, only 

≈8 million parameter weights are updated via backpropagation during transfer learning. The training parame-

ters listed in Table 13 are used for transfer learning. Similar to VGG-16, the transfer learning on the Resnet -

18 architecture was also performed in two modes. Figure 60 shows the accuracy and loss curves during the 

transfer learning using the ResNet architecture on the full bronze dataset. Unlike VGG-16, the loss curves for 

the ResNet-18 during transfer learning and regular learning are stable. The transfer learned ResNet-18 model 

achieves an overall accuracy of ≈87% in the first mode as shown in the confusion matrix in Table 17 (a). When 

training the network with the bronze dataset, which is 50% in size of the stainless steel data set, the freezed 

ResNet-18 model from the transfer learning still reaches an overall accuracy of  ≈84%, and evidence of this is 

in Table 17 (b). The training times were considerably reduced by 6 hours in the first mode and 4 hours in the 

second mode during transfer learning of the ResNet-18 model. 
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Figure 59. Freezing weights of pretrained ResNet-18 for transfer learning 

 

Figure 60. Accuracy and training loss plots during transfer learning of pretrained ResNet-18 model on bronze 
spectrogram dataset. 

Table 17. Classification accuracy of the ResNet-18 model via transfer learning for mechanisms occurring during the 
LPBF process of bronze. a) Full dataset b) 50% of the dataset. 

                    a) Full dataset (Mode I) b) 50% of the dataset (Mode II) 
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Balling 92 4.50 3.50 0  89 6.25 4.50 0.25 

LoF pores 1.25 81.25 17 0.50  2.5 78.25 18.25 1.0 

Conduction mode 0 16.50 80.25 3.25  1.25 20. 76.25 2.50 

Keyhole pores 0 1.25 4.50 94.25  0 1.5 5.0 93.5 
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Based on both CNN architectures' prediction results, we demonstrated that with spectrograms images as input, 

the material build qualities commonly occurring in additive manufacturing such as balling, LoF pores, con-

duction mode and keyhole pores could be classified on original materials. Secondly, with transfer learning, the 

qualities in another material could be predicted with the patterns and knowledge trained with build qualities in 

a first material. Comparing two CNN architectures used in this study, the ResNet-18 performs better in transfer 

learning with only ≈11 million parameter weights as compared to VGG-16 (≈134 million parameter weights) 

for the two transfer learning modes. Finally, we demonstrated that the transfer learning technique is very ad-

vantageous from an industrial perspective in terms of minimum training time and dataset collection when 

transferring the knowledge from one material to another in processing Functionally Graded Materials (FGM) 

or multi-materials. In this study, the training times were also considerably reduced by three-fold and two-fold 

in the two modes during transfer learning for Resnet-18 and VGG-16 models, respectively.  

5.5.3 Comparison of VGG-16 and ResNet - 18 without transfer learning. 

A comparative study was also performed to understand the performance of the models trained from scratch 

and using transfer learning on the bronze dataset. For training of the two models, namely VGG-16 and ResNet 

- 18, from scratch, the training parameters listed in Table 13 were used. As indicated in the confusion matrix 

in Table 18(a), the trained VGG-16 was able to classify with an overall accuracy of ≈ 91% after 18 hours of 

training. For the case of the trained ResNet – 18, the classification accuracy was ≈ 89% after 12 hours, and 

evidence of this is in the confusion matrix in Table 18(b). In terms of classification accuracy, the two models 

trained from scratch were higher on the full bronze dataset as compared to the one using transfer learning. 

However, in the case of training time, as previously known, models trained using transfer learning took only 

half of the time required to train the model from scratch. 

Table 18. Classification accuracy of the VGG-16 and ResNet-18 model via normal learning for mechanisms occurring 
during the LPBF process of bronze. 

a) VGG-16  b) ResNet - 18 
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Balling 98.1 0.7 1.1 0  98.2 0.9 0.9 0 

LoF pores 3.1 85.3 10.7 0.9  3.1 80.6 15.6 0.7 

Conduction mode 1.7 14 82.3 2  2.7 14.8 78.9 3.6 

Keyhole pores 0 0.4 0.4 99.1  0 0.4 1.2 98.4 
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5.6 Conclusion 

In this contribution, we have investigated a novel method for classifying four build qualities such as balling, 

LoF pores, conduction mode and keyhole pores occurring during the LPBF process across two materials. When 

processing line track experiments, the AE signals were recorded using a microphone that had an operating 

range of 0-100kHz. From the AE signals, spectrograms images were computed using wavelet transforms with 

Morlet as the mother wavelet for a window size of 2500 µs. The spectrogram-based classification was per-

formed in two different materials: stainless steel (316L) and bronze (CuSn8). Instead of training the network 

from scratch to classify the four qualities occurring in bronze, we have proposed a transfer learning technique 

using pretrained models from the stainless steel data as an alternate methodology. The methodology has been 

applied to state-of-the-art CNN architectures, namely VGG-16 and ResNet-18, to explore the interest of trans-

fer learning on additive manufacturing. Moreover, transfer learning was applied to these two architectures in 

two modes: The bronze training dataset size was similar to the stainless steel original dataset in the first mode. 

The bronze training dataset size was 50% of the stainless steel original dataset size in the second mode. The 

following generalized conclusions can be drawn based on the experimental results: 

 The VGG-16 network outperforms the ResNet-18 network slightly in terms of accuracy in classi-

fying the build quality from line track stainless steel experiments. However, taking the size of the 

network into account, the improved performance of the ResNet-18 network with ≈11 million train-

able parameters versus VGG-16 with ≈134 million trainable parameters is commendable. 

 The ResNet-18 outperforms VGG-16 during the classifications of the build quality in the bronze 

during the transfer learning in both modes. For the two modes, the transfer learning of VGG-16 

had an overall classification accuracy of 85% and 82%, respectively. In contrast, the Resnet-18 

model had overall classification accuracy of 87% and 84%. Despite the ResNet- 18 network's 

small size compared to VGG-16, it outperformed with a better classification accuracy, especially 

in the second mode of transfer learning. 

 Apart from accuracy, the computational times were reduced twofold in the first mode and threefold 

in the second mode during transfer learning of Resnet-18 and VGG-16 models. 

The proposed approach asserts that the knowledge of LPBF processes acquired from one material can be used 

and further augmented to assess other materials with minimum effort. This work proposes to work on 2D 

spectrogram image input on two native architectures; however, transfer learning can also be performed on 

simpler architectures with 1D convolutions. Only four build qualities resulting from LPBF processing are 

studied in this research work, using transfer learning. Transfer learning of mechanisms such as delamination, 

crack propagation, microstructure formation among various material combinations across machines is also 

under investigation. The direction towards optimizing hyperparameters for these networks will increase accu-

racy and optimize training, which is a part of future work. It is to be noted that appropriate sensing techniques 
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capable of capturing these mechanisms are also to be optimized and is a study in progress. Though the proposed 

strategy is promising for AM process monitoring, there is an inherent disadvantage of such a technique as they 

unlearn some of the previously gained knowledge acquired on one material when re-trained on another. In 

other words, these models are specific to the material composition and cannot be generalized. Also, the com-

plexity of the CNN model required for monitoring may not be homogeneous when processing all the materials, 

therefore in some cases complex model may be applied on trivial tasks. The data and codes for this work are 

present in the following repo (https://c4science.ch/diffusion/11778/). 
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Abstract 

Metal-based Laser Powder Bed Fusion (LPBF) suffers from a lack of repeatability and is challenging to model, 

making their quality monitoring essential and demanding. The reason lies in the high dynamics taking place 

during the interaction of the laser with metallic powders. To bring this technology to mass production, indus-

tries are only interested in the process regime where the built layer’s quality meets their standards.  All other 

process regimes leading to poor mechanical properties and/or defect formation such as balling, Lack of Fusion 

(LoF) pores, keyhole pores, delamination, and crack propagation irrespective of their different regimes are 

considered anomalies. Today, the common methodology for monitoring uses conventional/supervised Ma-

chine Learning (ML) algorithms for the classification task requires collecting a balanced dataset corresponding 

to each investigated regime from the sensors, which is very expensive and time-consuming. As an alternative, 

the article proposes a semi-supervised approach where the defect-free regime can be differentiated from the 

anomalies by familiarising the ML algorithms only with the distribution of acoustic signatures corresponding 

to the defect-free regime. This work presents two generative Convolutional Neural Network architectures 

based on Variational Auto-Encoder and General Adversarial Network. As a result, we could classify the anom-

aly regimes with 96 and 97% accuracy, respectively. 

Keywords: Laser powder bed fusion; Monitoring; Laser processing; Convolutional Neural Network; Acoustic 

Emission. 

6.1 Introduction  

Laser Powder-Bed Fusion (LPBF) is one of the Additive Manufacturing (AM) techniques allowing the build-

ing of 3D complex geometries components from an alloy powder layer by layer (King et al. 2015). The main 

advantages of this technology are a considerable reduction of geometrical design constraints (Khairallah et al. 

2016; Brandt 2016), lead-time optimization due to computer-aided design (CAD) (Guessasma et al. 2015), the 

possibility to use various powder materials, and last but not least revolutionize the production of spare parts in 

the supply chain (Khajavi, Partanen, and Holmström 2014). The major drawback of this technology is a defi-

ciency in the process reproducibility and the lack of robust and economical process monitoring which impacts 

the mechanical properties (e.g., part density and grain structure) and quality (e.g., pore formation and delami-

nation) of the built parts. The build quality is highly dependent on the process parameters such as laser energy 

density, the scanning speed and strategy, layer thickness, hatching spacing, environment, etc. (Chua, Ahn, and 

Moon 2017; Spears and Gold 2016; Gu et al. 2006). The parameter window dictates the complex physical 

phenomena and transients in the laser-material interaction zone and melt pool morphology, such as rapid heat-

ing, melting, cooling, evaporation of the materials and also potentially defect formation. For a desirable build 

quality in the LPBF process, a correct choice of parameter levels is primary (Chua, Ahn, and Moon 2017; Van 

Elsen 2007; Spears and Gold 2016). However, in practice, even though the process operates in a favourable 
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parameter window — owing to highly nonlinear dynamic transformations that arise in the laser interaction 

zone, especially in keyhole regime — the LPBF processes are prone to defects (Everton et al. 2016; Tapia and 

Elwany 2014). 

Implementing sensors around the process zone and the correlation between the data and the process behaviour 

enable a better process real-time feedback and understanding. Several sensors have been used for defect mon-

itoring in real-time during the LPBF process (Everton et al. 2016; Tapia and Elwany 2014; Grasso et al. 2018; 

Yan et al. 2018). Predominantly high-speed imaging and thermal-based vision system have been reported in 

the literature (Mani et al. 2017). Sensing and monitoring the temperature field around the process zone using 

pyrometers have been investigated for a decade (Pavlov, Doubenskaia, and Smurov 2010; Furumoto et al. 

2013; Kruth et al. 2007). The major advantage of pyrometers is that the process zone's temperature can be 

measured without physical contact and can be converted to a digital signal for further analysis and correlation. 

However, the downside of the sensors is twofold. First, owing to the melt pools occurring in sizes of 10-250 

microns (Cheng et al.; Gong et al. 2014), they often lack spatial resolution, except if these imaging techniques 

are combined with suitable optics to retrieve the spatial information from the melt pool morphology (Wang et 

al. 2017; Bayle and Doubenskaia 2008; Zhang et al. 2018; Clijsters et al. 2014). Second, only information 

about the surface can be detected, and understanding the mechanism beneath is unsolved at present. Though 

these imaging systems are a viable solution in AM monitoring, it is to be noted that they are not an economical 

solution in terms of cost, hardware and data management. Air and structure-borne acoustic emission (AE) 

based monitoring techniques for laser processing pose as an alternative and effective, low-cost solution for 

two main reasons (Shevchik et al. 2018; Masinelli, Shevchik, et al. 2020; Pandiyan et al. 2020). First, they are 

able to sense volumetric information of the process, e.g., melt pool fluctuation and keyhole instabilities leading 

to defect formation (Brandt 2016). Second, they have a high temporal resolution suitable to monitor melt pool 

events on a time scale between roughly 10 to 100 μs (Khairallah et al. 2016; Fisher et al. 2018; Zhao et al. 

2017). However, due to the 3D nature of acoustic waves, the sensors’ installation in terms of location, distance, 

angle, and filtering must be crucially ensured. The AE sensing element's proximity and positioning are directly 

proportional to sensitivity and signal strength from the source, which will impact the decision making. The 

portability of AE sensing across the different configuration of LPBF requires these factors to be considered. 

From an industrialization and commercialization perspective, installing an AE monitoring system requires 

minimum alteration to the existing machines available in the market [29], which gives an edge over other 

sensing techniques. 

Real-time monitoring, defect detection, and subsequent counteractive measures have been proven to be effi-

cient for LPBF processes when the sensor data is analysed with Machine Learning (ML) algorithms. ML 

methods, indeed, are capable of recognizing patterns and correlations hidden in the sensors data. A compre-

hensive review of supervised, semi-supervised, unsupervised, and reinforcement learning techniques applied 

in monitoring the AM processes has been reported by Goh et al., Meng et al. and Sing et al. (Goh, Sing, and 
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Yeong 2021; Meng et al. 2020; Sing, Kuo, et al. 2021). Gaussian Mixture Models (GMM) have also been 

proven to identify the build quality using randomized Singular Value Decomposition (SVD) features extracted 

from a photodiode sensor (Okaroa et al. 2018).  Luke Scime and Jack Beuth proposed computer vision algo-

rithms trained on the powder bed images to automatically detect and classify anomalies during the powder 

spreading process (Scime and Beuth 2018a, 2018b). Different Convolutional Neural Networks (CNN) archi-

tectures and ML algorithms have been successfully applied in classifying the quality of the build, melt states 

and melt-pool morphology using melt-pool imaging (Kwon et al. 2020; Tan et al. 2019; Ye, Fuh, et al. 2018a; 

Gobert et al. 2018). Deep Learning (DL) algorithms have been able to effectively detect flaws in each layer 

using digital camera images compared to algorithms such K-nearest neighbour (KNN), logistic regression, 

SVM, decision tree (DT), linear discriminant analysis (LDA), and boosted trees (BT) (Imani et al. 2019). 

Although, as mentioned, ML methods have implemented into AM processes in many ways in recent years, 

those methods have just started to be applied to bioprinting. Yu and Jiang (Yu and Jiang 2020) presented the 

perspective on the use of ML methods to improve 3D bioprinting whereas An et al. (An, Chua, and Mironov 

2021) articulated the vision of future of 3D bioprinting via two missing links; big data and digital twin. 

Several studies exist in a combination of ML algorithms with AE during the processing of metal-based mate-

rials with lasers for AM processes such as welding, direct energy deposition etc., to monitor and control the 

quality of the processes (Masinelli, Le-Quang, et al. 2020; Bastuck et al. 2015; Sumesh et al. 2015; Wasmer 

et al. 2018). With the feasibility of AE based monitoring proven in laser processing, there is a recent trend in 

the monitoring of the LPBF processes based on AE by exploiting state of the art ML algorithms. The linear 

SVM classifier was proven to be effective in classifying different processing regimes using statistical features 

computed on acoustic signals (Ye, Fuh, et al. 2018b). Shevchik et al. (Shevchik et al. 2019; Shevchik et al. 

2018) successfully demonstrated that wavelet spectrograms computed on signals from optoacoustic fibre sen-

sors corresponding to three porosity content could be classified with different CNN architectures Spectral 

CNN, Xception and ResNet. Deep belief networks have also been used to classify raw acoustic signals corre-

sponding to defect patterns such as balling, normal and overheating (Ye, Hong, et al. 2018). Long short-term 

memory networks trained on AE have been able to detect process flaws such as keyhole porosity, lack of 

fusion, and bead up (Zhang et al.). Reinforcement learning approaches have also been combined with acoustic 

data for in situ quality monitoring (Wasmer et al. 2019). Structure-borne acoustic sensor data represented in 

the form of a spectrogram have been combined with neural networks to classify printed specimens' density in 

the LPBF process (Eschner et al. 2020). Most of the approaches discussed in material processing with lasers 

were based on a supervised learning paradigm. Semi-supervised CNN architectures for anomaly detection 

using AE signals in LPBF has been rarely reported in the literature (Goh, Sing, and Yeong 2021; Meng et al. 

2020; Sing, Kuo, et al. 2021)., which will be bridged in this work.   

Conventional supervised ML classification problems involve collecting datasets corresponding to each inves-

tigated process regime (e.g., balling, lack of fusion, conduction, keyhole). It is also important to have each 
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dataset with equal weightage (a balanced database for each class) or otherwise requiring some compensation 

to be added during training to avoid biasing. Hence, developing and being aware of process maps for each 

class is a prerequisite before collecting the data. This is very time and material demanding and therefore ex-

pensive for industries. Also, supervised classification models would not be able to classify new regimes from 

the trained ones if they are unfamiliar. It will classify the new regime into the class, which is statistically the 

closest. This may have dramatic consequences if the new mechanism decreases either the mechanical proper-

ties or the lifetime of the parts but is statistically close to the best regime. Under such a situation, the model 

has to be retrained again with the inclusion of data from the new class, increasing the cost of the process maps. 

A solution to this problem is using semi-supervised anomaly detection models, which are helpful in two main 

circumstances. First, when it is difficult, if not possible, to have a balanced dataset between the investigated 

regimes. This is particularly the case, for example, for machines or parts subjected to tribological failures 

(Shevchik et al. 2021). Most of the time, the process runs in the "normal" condition until an abrupt failure takes 

place. Second, when out of all the classes that are to be identified, only one is the most important or of interest. 

The semi-supervised models are trained only from the data distribution corresponding to the desired class, 

enabling the model to differentiate the data from which it was not trained. Works on monitoring the LPBF 

process using AE signatures reported so far have been more focused on discriminative models that are super-

visedly trained. The novelty of the present work is on exploiting the generative models such as Variational 

autoencoder (VAE's) and General adversarial network (GAN's) trained semi-supervisedly to monitor the 

metal-based AM process. In this work, AE signals were acquired by a low-cost microphone during the process 

of the LPBF of a nickel-based super-alloy (Inconel 718) powder. The laser processes parameters were selected 

to produce parts of different qualities; a defect-free regime and three regimes containing defects. The main 

goals were to train two generative CNN models based on VAE and GAN with AE signals of the defect-free 

regime to detect anomalies (defects) such as balling, LoF pores, and keyhole pores. 

The paper is organized into 4 Sections. Section 6.1 presents a succinct literature review of the LPBF process 

regimes, sensing techniques, and machine learning algorithms used for real-time process monitoring. Section 

5.2 gives a brief overview of autoencoders and GAN. Section 5.3 describes the LPBF experimental setup, 

processing parameters, and data acquisition setup than presents and discusses the anomaly prediction results 

using the AE signals emitted during LPBF by the two generative CNN architectures, such as VAE and 

GANomaly. Finally, Section 6.4 summarizes this investigation's findings and the future works on in situ mon-

itoring for the LPBF process. 

6.2 Theoretical basis 

6.2.1 Variational Auto Encoder 

Autoencoders and their variants find their applications predominant in image denoising (Gondara 2016), di-

mensionality reduction (Mahmud, Huang, and Fu 2020), feature extraction (Nishizaki 2017), image generation 
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(Pandiyan et al. 2019; Cai, Gao, and Ji 2019), machine translation (Pagnoni, Liu, and Li 2018), and anomaly 

detection (Sakurada and Yairi 2014; Hahn and Mechefske 2021; Pandiyan et al. 2021). An autoencoder archi-

tecture generally consists of a pair of networks, namely an encoder and a decoder whose purpose is to learn 

the identity function for the data distribution they had been trained on. The encoder-decoder combination learns 

the data representation efficiently in a dense manner and reconstructs the original input. The encoder network 

maps the original data 𝑥 ∈ X, to z belonging to low dimensional latent space 𝑧 using a function Ф. Subse-

quently, the decoder network recreates 𝑥′ ∈ X similar to the original data from z by a function Ψ, as depicted 

in Equations (4) and (5): 

Ф: Х → z,       𝒛 𝒇 𝒙,Ф   (4) 

Ψ: z→ X,      𝒙 𝒇 𝒛,  Ф   (5) 

During training, the model learns to retain the minimal information to encode the original data X so that it can 

be regenerated as the output on the other side by back-propagating the reconstruction loss as presented in 

Equation (6), which is the difference between the input and output. 

𝓛 𝒙,  𝒙 ‖𝒙 𝒙 ‖𝟐 ‖𝒙 𝒇 𝒇 𝒙,Ф ,  Ф ‖𝟐 (6) 

Once the autoencoder has been trained, we both have an encoder and a decoder to reconstruct the input. How-

ever, still, there are chances of overfitting as the latent space is not regularised, as illustrated in Figure 61(a). 

Variational autoencoder (VAE) is one of the types of autoencoders where latent space distribution is regular-

ised during the training. The VAE provides a probabilistic manner for describing an observation in latent space. 

Thus, instead of building an encoder that outputs a single value to describe each latent state attribute, we will 

make our encoder define a probability distribution for each latent feature. In other words, the encoder does not 

directly map to the latent space as depicted in Figure 61(a), instead it generates two quantities, mean 𝜇  and 

variance 𝜎  describing the distribution as shown in Figure 61(b) . 

 

Figure 61. Illustration of (a) an autoencoder and (b) variational autoencoder architecture depicting latent space with 
and without regularisation. 
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Unlike vanilla autoencoders (An and Cho 2015), the loss function of the VAE network consists of two terms. 

The first term maximizes the reconstruction likelihood similar to Equation (6). The second term, also known 

as the Kullback–Leibler (KL) divergence, encourages the learned distribution q(z|x) to be identical to the true 

prior distribution p(z), for each dimension j of the latent space as depicted in Equation (7). The KL divergence 

score ensures that the distribution learned q is similar to the true existing distribution p. 

𝓛 𝒙,  𝒙 ‖𝒙 𝒙 ‖𝟐  𝑲𝑳 𝒒𝒋 𝒛|𝒙   𝒑 𝒛
𝒋

 (7) 

6.2.2 Generative Adversarial Network  

A Generative Adversarial Network (GAN) is based on the idea that two adversarial networks, as shown in 

Figure 62, a generative network G and a discriminative network D that are set against one another during 

model training. The goal of the generative network's is to create new distribution samples that are different but 

still reminiscent enough from the training data. The goal of the discriminator network is to differentiate the 

synthetic distribution created by the generator network from the original training set. 

 

Figure 62. Illustration of a GAN architecture with generator network G and a discriminator network D. 
 

Based on the set objective, the two networks iteratively improve during training such that the generator net-

work is capable of creating synthetic data resembling the actual distribution. An example is presented in Figure 

63. 
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Figure 63. Comparisons of the distribution generated by the generator with training iteration with the actual 
distribution. 
 

The training of the two networks requires a loss function, which primarily depends on the second network. 

The update of the weights does not occur simultaneously in the networks. The loss function for the vanilla 

GANs are of the form shown in Equation (8), where D is the discriminator, G is the generator, 𝑝 𝑧) is the 

input noise distribution, 𝑝 𝑥) is the original data distribution, and 𝑝 𝑥) is the generated distribution. The 

objective of the architecture is to maximize the discriminator (D) and minimize the generator (G). V is the sum 

of the Expected log-likelihoods for real and generated data. The loss function aims to move 𝑝 𝑥) towards 

𝑝 𝑥) for an optimal D. 

 

𝒎𝒊𝒏

𝑮

𝒎𝒂𝒙

𝑫
V(D, G)=𝔼𝒙~𝒑𝒅𝒂𝒕𝒂 𝒙 𝔼𝒛~𝒑𝒛 𝒛 𝐥𝐨𝐠 𝟏 𝑫 𝑮 𝒛  (8) 

 

GANomalies are recent variants of the GAN network architectures where — based on known input — the 

network would generate a manifold representation of the input. However, when unusual input is encoded, its 

reconstruction can be poor, which can be used for anomaly detection. GANomaly (Akcay, Atapour-Abar-

ghouei, and Breckon 2018), AnoGan (Schlegl et al. 2019), and Efficient-GAN-Anomaly (Zenati et al. 2018) 

are the adversarial networks based on GAN architecture for identifying anomalies and outliers. 

6.3 Experimental setup 

6.3.1 Experimental setup and materials 

The experimental setup, presented in Figure 64, consists of an enclosed chamber hosting a base plate, a re-

coater, and a laser. The laser operates in continuous mode at a 1070 ± 10 nm wavelength and has a spot size 

of 82 m (1/e2) with a beam quality with an M2 < 1.1. The experiments were a series of overlapping lines track 

to build on a defect-free cube of the same material. The chosen scanning strategy was one-directional parallel 

lines with a hatch distance of 0.1 mm. The scanning speed and laser power were altered simultaneously to 

induce the four main process regimes (balling, Lack of Fusion pores (LoF pores), conduction mode, keyhole 
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pores). The material used for the experiments was a nickel-based super-alloy known as Inconel 718. The pow-

der was acquired from Oerlikon Metco, and its chemical composition is listed in Table 19.  The size of the 

Inconel 718 powder particles used in this study varied between 15 and 45 µm and followed a normal distribu-

tion. The combination of laser power and scanning velocity for the investigated process regimes balling, LoF 

pores, conduction mode, and keyhole pores is listed in Table 20. The occurrence of the four process regimes 

was confirmed by cross-section analysis. The samples were sectioned perpendicular to the scan direction and 

polished. The melt pool was revealed by etching with Kalling’s No.2 Reagent (5 g CuCl, HCl 100 mL, C2H6O 

100 mL, H2O 100 mL) for 10 to 20 seconds. The cross-sections were inspected with a Leica DM6000M light 

optical microscope in bright field mode. The optical pictures acquired for the four regimes are shown in Figure 

65. Based on the picture "no pores", the porosity of the built layer on the defect free cube was less than 0.01% 

in conduction regime. 

 

 

Figure 64.Customized LPBF experimental setup with the embedded acoustic sensor setup for anomaly detection. 
 

 

Table 19. Chemical composition of the Inconel 718. 

Ni Ti Cr Mo Nb+Ta Fe Al Other 

Balance 1 18 3 5 18 0.60 <   0.5 
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Figure 65. Optical pictures of different regimes such as balling, LoF pores, conduction mode, and keyhole pores 
occurring during LPBF of Inconel 718. 

6.3.2 Data acquisition and dataset preparation 

In this work, the airborne AE of the process zone was acquired with a PAC AM4I (Physical Instruments, US) 

airborne resonant acoustic sensor with an operating range of 0-100 kHz and Advantech Data Acquisition 

(DAQ) card. The AE sensor was fixed at a distance of more or less 5 cm from the process zone, as shown in 

Figure 64. The data acquisition rate of 1 MHz was chosen to ensure that the Nyquist Shannon theorem (Jerri 

1977) is satisfied. The data acquisition was automatically triggered with a photodiode, and a schematic of the 

sensor setup is given in Figure 66. Owing to the 0-100 kHz sensor sensitivity range, an offline low-pass But-

terworth filter with a cut-off frequency of 100 kHz is applied on the raw signal to omit noises. The raw signal 

corresponding to the four different process regimes is chopped into windows of 5ms (Pandiyan et al. 2020). 

Figure 67 presents the moving average plot of the normalized raw signals corresponding to all four process 

regimes. In building up an ML pipeline, emphasis should be made on the pre-processing of the signal based 

on the nature of the sensor used and the process environment.  The data and codes for this work are present in 

the following repo (https://c4science.ch/diffusion/11519/).  

Table 20. Energy densities for line track experimental trials to induce the four regimes. 

Categories Laser power [W] Scan speed [mm/s] Normalized enthalpy (Ghasemi-Tabasi et al. 2020) 

Balling 30 300 8.9 

LoF pores 50 300 14.9 

Conduction mode 120 300 35 

Keyhole pores 450 200 164 
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Figure 66. Schematic of the data acquisition pipeline with PAC AM4I acoustic sensor and photodiode trigger. 
 

 

Figure 67. Normalized AE signals acquired of the four investigated process regimes, namely balling, LoF pores, 
conduction mode, and keyhole pores. 

 

6.3.3 Anomaly detection  

The primary idea of this work is to predict outliers or anomalies in the LPBF process based on acoustic emis-

sions. The parts printed in the conduction mode regime are considered ideal conditions for the best mechanical 

properties. In contrast, each regime (balling, LoF pores and keyhole pores) is considered as process anomaly. 

Consequently, the acoustic signals from these regimes are grouped as anomalies, whereas the signals corre-

sponding to conduction mode are used for training the neural networks. The anomaly detection accuracy de-

pends on understanding the "normal" data (AE signature from conduction mode in our case) so that abnormal 
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data (AE signature from balling, LoF pores, and keyhole pores in our case) can be easily differentiated. Table 

21 shows the dataset to train the two CNN architectures. The parameter inputs for training the two architec-

tures, namely VAE and GANomaly, for identifying the anomalies, are listed in Table 22.  

Table 21. Acoustic signal datasets for training and testing. 

Class AM process regime 
Samples of window size 

(5ms) 

Training 

model 
Testing model 

Normal Conduction mode 2700 
75% of the 
total sample 

25% of the total sam-
ple 

Anomaly 
/ Outlier 

Balling, LoF pores 
and keyhole pores 

13680 
(2730-balling, 2750- key-

hole pores, 8200-  LoF 
pores) 

- 
100% of the total 

sample 

 

Table 22. Parameters used in VGG and ResNet Architectures for training. 

Training  

parameters 
VAE 

GANomaly 

Type of analysis Anomaly detection Anomaly detection 
Solver name ‘adam’ ‘adam’ 
Learn rate  0.001 0.001 

Architecture 
Encoder / Decoder architecture with 5 
layers  

Generator / Discriminator architec-
ture with 5 layers  

Momentum 0.9 0.9 
Total Epochs 300 300 
BatchSize 100 100 
Shuffle Every-epoch Every-epoch 
Batch normalization True True 

Training set 
(Conduction mode) 

AE signal corresponding to conduc-
tion mode with a window size of 5ms 

AE signal corresponding to conduc-
tion mode with a window size of 
5000 μs 

Anomaly set 
AE signal corresponding to balling, 
LoF pores and keyhole pores with a 
window size of 5ms 

AE signal corresponding to balling, 
LoF pores and keyhole pores with a 
window size of 5 ms 

Input tensor size 1 x 1 x 5000 1 x 1 x 5000 

Loss function 
Mean squared error (MSE) with KL 
divergence loss 

Customized loss functions 

GPU training GeForce RTX 2080 Ti GeForce RTX 2080 Ti 
Dropout  0.2 0.2 
Library Pytorch Pytorch 
Training parameters 786736 892691 
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6.3.4 VAE based anomaly detection 

The variational autoencoder architecture selected in this research consists of 10 layers with 5 layers corre-

sponding to the encoder (E) and 5 layers corresponding to the decoder (D), as illustrated by Figure 68. The 

choice of the VAE design was to have good accuracy with a minimum number of parameters to train. The 

input to the network is a tensor of size 1x1x5000, which is the windowed acoustic signal of 5 ms corresponding 

to the conduction mode regime. The five-layer architecture of the encoder (E)  compresses the raw acoustic 

signal into a latent space of the size of  1x256x10,  sampled randomly from the training distribution via 1-

Dimensional convolution, batch normalization, and tanh activation. The compressed latent space representa-

tion of the signal is then reconstructed to its original form by the decoder (D), whose architecture consisting 

of 5 layers. The decoder (D) architecture is an inverse of the encoder architecture with 1-Dimensional convo-

lution replaced by the 1-Dimensional transpose convolution for upsampling. The overall architecture of the 

VAE is symmetrical, and evidence of this is in Figure 68. The VAE is trained with the combination of Adam 

as its optimizer with a batch size of 100, a dropout rate of 0.5, and a learning rate of 0.001 for 300 epochs. The 

training parameters were selected based on trial and error. At each epoch of the model training, the normal 

dataset is passed into the network. The reconstruction loss is back-propagated to alter the weights of the net-

work for better performance. The variational autoencoder's loss function is the sum of the reconstruction loss, 

given by Mean Squared Error (MSE) with the KL divergence loss. 

 

 

Figure 68. The architecture of the proposed variational autoencoder network. 
 

Figure 69 represents the loss curves of the VAE model trained on raw acoustics signals corresponding to the 

conduction mode regime. From this figure, it is observed that the loss decreases with every epoch, confirming 

that the network learns the "normal" dataset patterns (conduction mode) and can reconstruct them efficiently. 

The saturation of the training loss with epochs suggests that the VAE network is trained. 
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Figure 69. Training loss plot of VAE model on acoustic signals corresponding to conduction mode regime. 
 

With the trained VAE network, the next step is to identify the reconstruction loss distribution on the "normal" 

dataset (conduction mode regime). Examining Figure 70(a), the maximum area of the reconstruction loss dis-

tribution lies in the range of 0 to 0.35 with a confidence of ≈ 95%. The threshold loss is calculated from the 

reconstruction distribution shown in Equation (6). We can define that any reconstruction loss corresponding 

to a signal more than the threshold value is classified as an anomaly. 

Threshold = mean (μ)+ 3ꞏ standard deviations (σ) (9) 

Based on Equation (9), the threshold for anomaly detection for the trained VAE model has a value of 0.35, 

which is also synonymous with the visual examination. The VAE network's predictability is evaluated by 

comparing the reconstruction loss for each acoustic signal window in the anomaly dataset (balling, LoF pores, 

and keyhole pores) to the threshold value. The acoustic signals with reconstruction loss greater than threshold 

values are flagged as an anomaly. The reconstruction loss distribution of the balling, LoF pores and keyhole 

pores anomaly regimes are also plotted in Figure 70(b)-(d), respectively. It can be seen in   Figure 70(b)-(d) 

that the reconstruction loss distribution density for the anomaly regimes are higher than 0.35. We can conclude 

that our proposed VAE architecture will differentiate normal conditions from other undesirable events for the 

selected time window from the reconstruction losses. 
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Figure 70. Distribution plots of reconstruction losses for normal and abnormal conditions. 
 

The reconstructions of the VAE model on the acoustic signals corresponding to the "normal" conditions (the 

conduction mode regime) are presented in Figure 71(a). In this figure, the VAE model can recreate the true 

signal envelopes and patterns for the conduction mode regime. However, the reconstruction is pretty poor for 

the acoustic signals corresponding to the anomalies, and evidence of this is by the reconstruction losses in 

Figure 71(b). To achieve a statistically sound conclusion, we tested our approach on a total of 2100 windows 

(each 5 ms) corresponding to anomalies (700 each of balling, LoF pores and keyhole pores) and 700 windows 

(each 5 ms) corresponding to the normal regime. The trained VAE model correctly classified 2690 signal 

windows out of the 2800 windows giving an accuracy rate higher than 96% compared with the ground-truth 

labels. 
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Figure 71. Reconstructions of the VAE model on (a) the "normal" and (b) the anomaly conditions. 
 

6.3.5 GANomaly based anomaly detection 

The signal analysis procedure for the GANomaly network is identical to VAE, and so only a summary is given 

here. The GANomaly network is trained on the acoustic signals corresponding to the conduction mode regime 

during training. Once trained, its parametrization is not suitable for generating distributions different from the 

trained samples. As a result, anomalies can be identified. The GANomaly architecture used in this work is 

inspired by the work of Akcay et al. (Akcay, Atapour-Abarghouei, and Breckon 2018).  

Figure 72 is a schematic of the GANomaly architecture for time-series anomaly detection. The GANomaly 

model contains two encoders (GE1, GE2), a decoder (GD), which forms the generator (G) and discriminator (D) 

network. The generator (G) learns the input data representation of the "normal" time-series signal distribution 

and reconstructs the signal via the use of an encoder (GE1) and a decoder (GD) network combination. Owing to 

the symmetrical VAE encoder-decoder architecture performance discussed in Section 6.3.4, the same layers 

and kernel filters are exploited to build the generator part. The second encoder (GE2) design, a part of the 

generator, is a replica of the first encoder (GE1). The encoder (GE1) network downsamples the raw acoustic 

signal into a latent representation of size 1x256x10, and the decoder (GD) network reconstructs the original 

signal from the latent space. The second encoder (GE2) of the generator part compresses the reconstructed time-

series signal into a latent size of  1x 256x 10. The discriminator (D) network plays the role of identifying fake 

and real signals like vanilla GANs. The GANomaly architecture is trained with adam optimizer with a batch 

size of 100, a drop out rate of 0.2, and a learning rate of 0.01 for 300 epochs similar to VAE training parameters. 

At each epoch of the model training, the conduction mode dataset is passed into the network, and the computed 

loss is back-propagated to alter the network's weights for better performance. The loss function used for the 

training is a cumulative sum of three losses function as given in Equation (1). 
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Loss = 𝝎𝒄𝒐𝒏. 𝑳𝒄𝒐𝒏 𝝎𝒆𝒏𝒄.𝑳𝒆𝒏𝒄 𝝎𝒈𝒆𝒏.𝑳𝒈𝒆𝒏 

Where, 𝑳𝒈𝒆𝒏 ‖𝒇 𝒙 𝒇 𝒙′ ‖,𝑳𝒆𝒏𝒄 ‖ 𝒛 𝒛 ‖ 𝒂𝒏𝒅  𝑳𝒄𝒐𝒏 ‖ 𝒙

𝒙′ ‖ 

(10) 

The construction loss 𝐿   penalizes the generator as it is the MSE between the original sample x and the 

reconstructed one (x’ = G(x)). The encoder loss (𝐿 ) is an additional loss minimizing the distance between 

the bottleneck features of the input (z = GE(x)) and the encoded features of the generated image (z’ = E(G(x))). 

Finally, the discriminator loss (𝐿 ) is the distance between the feature representation of the original acoustic 

signal and the generated signal. Unlike traditional vanilla GANs, where the generator (G) is not updated by 

back-propagating the output of discriminator (D) (real/fake), in this case, we update the generator (G) based 

on the internal representation of discriminator (D). Apart from the losses, there are weights (𝜔 ,𝜔 ,𝜔 ) 

that can be tuned to the loss terms, which gives flexibility for the training. The weight values used for 

𝜔 ,𝜔  and  𝜔  during training are 20, 5 and 1, which were down-selected based on exhaustive search. 

Figure 73 shows the three training loss curves for the GANomaly model trained on the raw acoustics signals. 

The plots indicate that all three losses decrease with every epoch, confirming that the network is learning the 

training dataset's representation. 

 

 

Figure 72. The architecture of the proposed GANomaly network comprising the generator and discriminator. 
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Figure 73. Training loss plot (a) Encoder loss, (b) Generator loss and (c) Construction loss of GANomaly model 
on acoustic signals corresponding to conduction mode regime. 

 

After training the GANomaly, the next step is to identify the distribution of the reconstruction loss on the 

conduction mode dataset, similar to VAE, and the threshold value to flag the anomaly is calculated. Figure 

74(a) is the distribution of the reconstruction loss for the conduction mode regime, and it is seen that it lies in 

the range of 0.0 to 0.22. With Equation (9), the threshold for anomaly detection is found to be 0.40. In other 

words, the reconstruction losses greater than the threshold value of 0.22 will be flagged as an anomaly. Figure 

74(b) – (d) shows the reconstruction loss for each acoustic signal window in the anomaly datasets balling, LoF 

pores and keyhole pores, respectively. From these figures, it is seen that the reconstruction loss distribution of 

the anomaly regimes is higher than the threshold value of 0.22. Consequently, inferring from the reconstruction 

losses, we can conclude that the proposed GANomaly architecture will differentiate normal conditions from 

other undesirable events. 
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Figure 74. Distribution plots of reconstruction losses for normal and abnormal conditions. 
 

Figure 75 presents the boxplot distribution of the losses predicted by the GANomaly model on the acoustic 

signals corresponding to the "normal" regime (conduction mode regime) and abnormal conditions (balling, 

LoF pores and keyhole pores). The plot shows that the losses for the trained conduction mode dataset are below 

the threshold of 0.22 as the parameterization are biased towards the distribution corresponding to the conduc-

tion mode dataset. A total of 2100 windows (each 5 ms) corresponding to anomalies (700 each of balling, LoF 

pores and keyhole pores) and 700 windows (each 5 ms) corresponding to the normal regime were tested. The 

trained GANomaly model correctly classified 2720 signal windows out of the 2800 windows giving an accu-

racy rate higher than 97% compared with the ground-truth labels.  
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Figure 75. Box plots of reconstruction losses for normal and abnormal conditions confirm that the AE signal 
corresponding to anomaly regimes is greater than the threshold of 0.22. 
 

6.3.6 Summary of the main results 

Based on both the VAE and GANomaly models' prediction results, we demonstrated that the raw acoustic 

signals could be used as an input dataset to detect with high accuracy abnormal regimes such as balling, LoF 

pores, and keyhole pores occurring during LPBF processing of Inconel 718. VAE and GANomaly models 

distinguished the anomaly regimes such balling, LoF pores, and keyhole pores from the normal regime, i.e. 

conduction mode, with 96 and 97% accuracy. Comparing the two CNN architectures used in this study, it is 

found that the VAE performs slightly better in anomaly detection compared to GANomaly when the size of 

the network, trainable parameter, computational resource, and training time is taken as benchmarks and vice-

versa if accuracy is taken into account. 

6.4 Conclusions 

We have demonstrated an approach based on semi-supervised methods to detect deviations from chosen qual-

ities during the LPBF processes. In particular, based on the airborne acoustic signals from the process, the 

undesirable regimes, namely, balling, LoF pores, and keyhole pores could be differentiated from the reference 

regime conduction mode. Two CNN architectures, VAE and GANomaly, were tested. The two models were 

trained on acoustic signals divided into windows of 5 ms corresponding to the conduction mode regime. These 

acoustic signals were captured during line track experiments on Inconel 718 in a customized LPBF setup. The 

sensor used in the study was an airborne resonant microphone with an operating range of 0–100 kHz. The data 
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acquisition was made with an Advantech DAQ board at 1MHz. Based on the experimental results, the follow-

ing generalized conclusions are drawn: 

 Both the VAE and GANomaly models with symmetrical encoder-decoder architecture were able 

to detect undesirable regimes with ease. The GANomaly architecture with three losses and larger 

weights had better detection accuracy compared to VAE. Though GANomaly is a reasonably large 

network compared to the VAE architecture used in this work, it comes with a loss function that 

can be optimized during training to similar tasks on time-series signals. 

 The two models' accuracy suggests that the reference regime's sensor signatures, i.e., defect re-

gimes, can be differentiated from the too many ambiguous unfavourable regimes involved in the 

LPBF process with minimum effort spent on data collection and labelling. 

The proposed approach establishes that the knowledge of LPBF processes on one regime in a material can be 

used to assess other regimes with minimum effort. The size of the Inconel 718 powder particles used in this 

study varied between 15 and 45 µm and followed a normal distribution. The laser-material interaction is af-

fected by the powder characteristics, machine parameters and surface topography (Vock et al. 2019; Han et al. 

2020; Sing, Huang, et al. 2021). Therefore trained GAN and VAE models cannot be generalized across differ-

ent powder distributions, process parameters and alloying compositions. Though the models cannot be gener-

alized, the VAE and GAN framework can be applied to process different powders with process map knowledge 

in Industrial LPBF setups to identify the abnormal regimes in a production environment. We have presented 

our work based on a window size of 5 ms, and the performance of the network in smaller window sizes is also 

a study in progress. The methodologies robustness in a more demanding situation where there are soft bound-

aries between anomaly and normal regimes is the planned research direction. As a final word, the optimization 

and fine-tuning of weights by adding skip connections in VAE architectures and performing a grid search to 

identify suitable weights for the loss function in GANomaly architecture will further optimize training and is 

also a part of future work. The data and codes for this work are present in the following repo (https://c4sci-

ence.ch/diffusion/11519/).  
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Learnings and following work: 

Two last chapters proved the possibility of using DL to transfer knowledge from one alloy to another avoiding 

retraining from scratch. They also proved the possibility to have a semi-supervised AE monitoring. 

The two following chapters 7 and 8 are now investigating the change of used microphone. The analysis in 

chapters 4-6 were conducted on the AE acquired with a narrow wide frequency response microphone. A second 

microphone, with a flat frequency response and acquiring in the same frequency range, is chosen to highlight 

the importance of the frequencies for in-situ AE monitoring. The following chapter 7 will compare the two 

microphones. A CNN is chosen for this comparison. The chapters 4-6 have proven its great efficiency for AE 

classification. Moreover, it is not feature based and it allows the computation of saliency maps. Saliency maps 

are performed to highlight the frequencies that have the most influence on the outcome of the CNN for four 

categories: keyhole pores, conduction mode, LoF pores and noise. To reach a robust monitoring it is essential 

to evaluate the quality of the CNN model used. A methodology based on the saliency map computation is 

developed. The noise category is added in the chapter 7 analysis to help evaluate the quality of the models. 

Indeed the saliency map highlighting the most influent frequencies should not be highlighted specific ones for 

the noise category. The noise being the AE signal acquired when the laser is off, no laser matter interaction is 

recorded.  

For the following analysis of the chapter 7 and 8, the design of experience is extended for stainless steel 316L 

to 13 samples with different parameters sets for each process regimes. To develop an accurate processing map, 

independent from the thermal history, one second delay is applied between each laser line track. 

A reliable CNN model with the appropriate microphone can then be chosen in order to study the generalization 

to unseen conditions.  The prediction of the processing regime based on AE produced during the LPBF process 

for parameters sets that are unseen by the training database is studied in chapter 8. The choice of processing 

conditions used in the training database (training sets) is then discussed, looking at the influence of their num-

ber, relative normalized distance, and position in the processing map on the classification accuracy. 



 

146 

 On the importance of acoustic emis-

sion frequencies for in-situ monitoring of Laser 

Powder Bed Fusion 

 

 

 

On the importance of acoustic emission frequencies for in-situ monitoring of La-

ser Powder Bed Fusion  

Rita Drissi-Daoudi1, Giulio Masinelli2, Charlotte de Formanoir1, Sergey Shevchik2, Kilian Wasmer2, Jamasp Jhabvala1, 

Roland Logé1 

 

1Thermomechanical Metallurgy Laboratory – PX Group Chair, Ecole Polytechnique Fédérale de Lausanne 
(EPFL), Neuchâtel, Switzerland 
2Laboratory for Advanced Materials Processing (LAMP), Swiss Federal Laboratories for Materials Science 
and Technology (Empa), Thun 
 

 

This manuscript is submitted to Journal of Materials Processing Technology 

 

 

 

 

Contribution: Rita Drissi-Daoudi developped the experimental plan and printed the samples. She optimized 

the CNN models and performed the different classification and saliency maps investigations. She wrote the 

manuscript.  



On the importance of acoustic emission frequencies for in-situ monitoring of Laser Powder Bed Fusion 

147 

Abstract  

Acoustic emission analysis gains an increasing interest in the context of Laser powder bed fusion (LPBF) 

quality monitoring. In this work, different Convolution Neural Networks are used to classify acoustic spectro-

grams based on the acoustic emissions of four categories in stainless steel 316L: three LPBF process regimes 

(keyhole pores, conduction mode, and LoF pores) and the machine background noise. Saliency maps are com-

puted to estimate the distinct frequencies that provide efficient classification of each category.  Here, we com-

pare classification results and corresponding saliency maps from two microphones with different frequency 

responses. Classification accuracy for both microphones is above 91 %. However, the quality of the learning 

of a Convolution Neural Network can be evaluated through the inspection of the saliency maps. The micro-

phone with narrow-wide frequency response, use frequencies that lie outside of the microphone’s high sensi-

tivity frequencies. A better model could be trained with the flat response microphone. The frequencies respon-

sible for the classification of the three processing regimes were found to be below 30 kHz. The methodology 

presented here contributes to the development of robust acoustic monitoring of the LPBF process and offers 

perspectives for wider generalization of Convolution Neural Network models, e.g. to process conditions out-

side of the trained conditions, and to other machines or alloys. 

 

Keywords: Laser powder bed fusion, acoustic monitoring, convolution neural networks, saliency maps, fre-

quencies 

7.1 Introduction  

Laser powder bed fusion is the most studied additive manufacturing method for metals and alloys. It fabricates 

metallic parts layer-by-layer, by laser consolidation of a given alloy powder [1]. Recent progress allows reach-

ing near-full density and mechanical properties competing with (or even exceeding) those obtained by con-

ventional processing routes [2]. Furthermore, complex geometries can be manufactured with minimal feed-

stock waste as all the non-used matter is recycled. Hence, this technology is of great interest to various indus-

tries such as medical [3]–[6], automotive [7] or aerospace [8], [9]. However, the range of process parameters 

to achieve such high material and mechanical properties is limited to a narrow window, called the keyhole 

threshold [10]. Identifying the optimal processing window often requires a trial-and-error approach, sometimes 

coupled with numerical simulations [11], [12]. It is tremendously time-consuming and expensive [13], [14]. 

Moreover, the laser-material interaction is known to be highly non-reproducible [15]–[19].  

Porosity is one of the main defects in LPBF process. Two types of pores are distinguished. Lack of fusion 

(LoF) pores originate from insufficient bonding between two layers or adjacent line tracks, resulting from an 

insufficient energy input [20]–[23]. Keyhole pores are formed on the contrary when an excess of energy is 
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provided to the system. A characteristic keyhole depression is created when the metal reaches an evaporation 

state. The keyhole is filled with metal vapor exercising a recoil pressure whose instability results in the collapse 

of the wall and possible entrapment of a gas bubble [24]–[28]. The process parameters can be optimized to 

reach the conduction mode, which can be predicted using equations that combine the most relevant process 

parameters (power, speed, hatching distance and layer thickness). The Volumetric Energy Density (VED) is 

wildly used [29]–[31] but raises debate due to significant drawbacks [32]. The concept of normalized enthalpy 

introduced by Hann et al [33] takes into account key material properties, in addition to the process parameters 

employed in the VED, and provides a more accurate prediction of the melt pool geometry. As recently demon-

strated [10], optimal process parameters can be translated from one material to another, based on a rule derived 

from the normalized enthalpy.  

However, even when the parameters are optimized, spatter generation [34]–[38], denudation [39], and powder 

pollution [18] make it difficult to have a reproducible and predictive process. One of the solutions to detect the 

occurrence of pores is in-situ monitoring. Two types of monitoring, either based on optical (OE) or on acoustic 

(AE) emissions, are distinguished. OE monitoring can be classified as follows: spatially resolved (e.g. camera), 

spatially integrated (e.g. photodiode, pyrometers) and spectrally resolved (e.g. spectrometers) [40]. The spa-

tially resolved methods either measure the melt-pool size and temperature with an IR camera or monitor the 

powder bed/laser interaction with a high-speed camera [37][40]–[51]. However, these methods are costly and 

the 2D data management heavy. Spatially integrated methods, including photodiodes [49][50][52]–[55] and 

pyrometers [51][56]–[58], can convert the light input emission (LE) into a single voltage value, which de-

creases the amount of data but also the possible monitoring output. These sensors collect data relative only to 

the surface temperature. Spectrometers measure and filter the intensity of Light Emission (LE) as a function 

of wavelength or frequency. The deflection of light is produced either by refraction in a prism or diffraction 

gratings. Spectrometers cover a wide frequency range from gamma rays to microwaves [60], [61]. The infor-

mation gathered by all these methods are restricted to surface information.  

Acoustic Emission (AE) sensors acquire one-dimension data, which is easier to manage, and offer high sensi-

tivity, and temporal resolution while being relatively cheap. A key advantage of this approach is the possibility 

to detect features not only at the surface but also in the bulk, during LPBF processing. Two types of acoustics 

sensors can be distinguished: air-borne acoustics emission (ABAE) and structure-borne acoustics emission 

(SBAE) [62], [63].  

Acoustic monitoring was first wildly investigated for other laser-based processes, particulary laser welding. In 

most cases, signal analysis is performed in the frequency domain by applying a Fast Fourier Transform or a 

wavelet transform. SBAE, with piezoceramic transducers, have a higher frequency spectrum that can go up to 

1850 kHz [64]–[66]. The correlation between the acoustics emission signals and the penetration depth of the 

weld was studied by Shevchik et al. [64], Le Quang et al. [65] as well as Bastuck et al. [62]. Shevchik et al. 

[64] and Le Quang et al. [65] used  SBAE sensors to detect keyhole porosity. In a following study, Wasmer et 



On the importance of acoustic emission frequencies for in-situ monitoring of Laser Powder Bed Fusion 

149 

al. [67] used a gradient booster ML algorithm to classify with good accuracy (from 74% to 95%) among stable 

keyhole weld, unstable keyhole weld, conduction welding and spatter generation. Saifi et al. [68] as well as 

Lee et al. [69] also used SBAE sensors to differentiate different qualities of weld. Lee et al. [69] employed 

artificial neural network (ANN) to classify three qualities of the weld (good weld, unsuccessful, and with 

defect). They claimed that the frequencies of interest range from 100 kHz to 500 kHz and that the low frequen-

cies (<100 kHz) result from the fluctuation of the inner gas rather than from the welding process.  

However, SBAE sensors do not acquire the same information as ABAE even though both can provide relevant 

guidance regarding the weld depth or quality [62]. The use of SBAE is more limited due to the difficulty and 

lack of reproducibility of the coupling to the workpiece. Most studies using ABAE correlate the AE signals 

with the weld penetration depth and they all agree to say that the differentiation between a good weld, a defec-

tive one or an insufficient penetration one comes from the evaporation dynamics and temperature gradients. 

In most cases, condenser microphones – with a frequency range of up to 50 kHz – are studied [70]–[77]. Some 

have a higher frequency ranging up to 100 kHz [78], 500 kHz [79]or 1200 kHz [62]. Based on the frequency 

analysis, the different studies establish ranges of frequencies correlated with defect formation or good welding. 

However, there is not a definitive consensus on which band of frequencies contains the information that can 

determine the quality of the welding. For Li et al. [80] the information lies between 0 and 50 kHz. Luo et al. 

[75] claim that a good weld can be detected from 10 to 20 kHz, while a weld having defect has a lower ampli-

tude between 781 Hz and 1562 Hz. Mao et al. detected keyhole welding between 3 kHz and 9 kHz. Farson et 

al. [72], [81], Lee et al. [77], and Huang et al.[76] reported that the information of interest lies in  frequencies 

ranging from 500 to 2000 Hz. Finally, Nava-Rüdiger et al.[73] studied the frequencies around 400-600 Hz 

where they correlate the increase in the amplitude of these frequencies to an increase of laser power leading to 

a larger penetration depth. Mao et al. [70], [78] and Gu et al. [71] used flat response microphones but the 

frequency responses of the other microphones was not specified. Gu et al. [71] and Bordatchev et al.[79] em-

ployed pattern recognition to differentiate weld classes and Luo et al. [75] and Huang et al. [76] used a designed 

ANN with a classification accuracy of up to 85%. However, it has to be noted that the presented studies inves-

tigate different alloys with or without coating, which could lead to a difference in the frequencies of interest. 

In additive manufacturing processes, less research has been done so far on AE monitoring. Due to the presence 

of powder and gas flow, the laser-matter interactions are more complex and the processes are noisier. However, 

combined with machine learning (ML) solutions, this approach is gaining more and more interest and showing 

increasing capabilities for in-situ monitoring of regime changes and defects formation. 

Two main studies of AE for monitoring of the LPBF process were performed without the use of ML. Ito et al. 

[82] used a SBAE sensor, a wireless piezoelectric with a flat response and a high sensitivity between 150 and 

600 kHz, except at the resonance frequency of 250 kHz. They used the acquired signal to localize, with an 

error of few millimeters, keyholes and cracks in a nickel LPBF piece, based on the changes of amplitude in 

the time domain. Gutknecht et al. [83] investigated the use of a very sensitive ABAE, a XARION Eta250 Ultra 
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membrane-free microphone. Its sensitivity is 40 times higher than a camera and 15 times higher than a pyrom-

eter. Its operating principle differs from that of a condenser microphone, as it consists in an optical microphone 

that utilizes the principle of interferometry to measure sound in a frequency range of 10 Hz to 1 MHz. They 

investigated the influence of the inclination of the sensor and the effect of its distance to the melt pool. Both 

factors induce a frequency-dependent dissipation. They consider that the frequencies below 40 kHz are noise 

and machine-related and filtered these frequencies with a butterwoth high-pass filter. This microphone has a 

high temporal resolution but is applicable only from 100 kHz because of reverberation in the build chamber. 

They detect millisecond phenomena at the higher frequency bands.  

Taheri et al. [84], [85] as well as Eschner et al. [63] used SBAE monitoring sensors coupled with ML solutions 

to classify different regimes. Taheri et al. [84], for the monitoring of DED of Ti64, employed four piezoceramic 

transducers attached below the build plate, with a frequency range from 100-2000 kHz. They chose a K-means 

algorithms clustering for the classification of three conditions (optimal, low laser power and low powder feed). 

They obtained an 87% accuracy with a higher classification confidence in the higher frequency band (>800 

kHz). Eschner et al. [63] monitored LPBF of stainless steel using a mass-less piezoceramic sensor with a 

frequency of up to 2 MHz. They used STFT spectrograms extracted from the acquired AE signals to train a 

designed ANN algorithm and classify three density classes with an averaged classification accuracy of 83%. 

Shevchik et al. [86] used a Fiber Bragg Grating (FBG) for recording AE signals during LPBF of stainless steel 

CL20ES. The FBG sensor is an interferometric structure, imprinted inside the core of an optical fiber with 

unique spectral characteristics of reflectivity. The AE waves result in periodical extension/compression of the 

optical fiber core. These deformations affect the reflectivity properties of the FBG. Based on this principle, the 

variations in intensity of the reflected light encode the deformation states of the fiber core. These sensors can 

have a linear response in a frequency range of 0–60 GHz. They have a behavior similar to a piezoelectric 

sensor but are not placed in contact with the build plate and record the information from the waves propagation 

in the controlled atmosphere, as in the case of an ABAE sensor. In this study, the spectrogram from wavelet 

transform goes until 200 kHz and the information seems to be scattered below 100 kHz. They compared a 

classic Convolution Neural Network (CNN) and a Spectral NN and successfully classified with more than 85% 

confidence three classes: poor quality (LoF porosity), medium quality (keyhole pores) and high quality (con-

duction mode).  

Ye et al. [87], [88] employed a microphone with a frequency response from 0 to 100 kHz to acquire AE from 

single lines scanned with a pulsed laser on a stainless steel 304 powder bed. Using a FFT analysis, they nar-

rowed the range of frequencies below 65 kHz and managed to classify five categories – balling, slight balling, 

normal, slight overheating, overheating –  with high confidence (above 90%). A deep-belief networks was 

chosen for the classification tasks. 
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Tempelman et al.[89] used as well a low-frequency-range microphone but the authors did not specify the 

frequency range of sensitivity. They studied the frequency distribution of the “no pores” and “keyhole” cate-

gories from 10 to 40 kHz. Support Vector Machine (SVM) with a window size down to 2.5 ms was used to 

detect keyhole and no-pores segments using process parameters scattered in the 2D processing map and with. 

Drissi-Daoudi et al. [90] and Pandiyan et al. [91] employed a low-cost condenser microphone with a frequency 

range from 0 to 100 kHz but with a non-flat frequency response. The sensitivity of the acquisition was mainly 

around 10 kHz, 20 kHz, 40 kHz, and 80 kHz. With a feature analysis in the frequency domain, they could 

highlight that the frequencies of interest are below 60 kHz. Four ML algorithms were compared (Logistic 

Regression, Random Forest, Support Vector Machine and a CNN) for the classification of three process re-

gimes (LoF pores, Conduction mode, and Keyhole pores) for three different alloys (stainless steel 316L, 

bronze, and Inconel). All algorithms classified the regimes with high accuracy (around 90%) for the three 

alloys. The authors selected two process parameters per regimes with specific normalized enthalpy to prove 

that the AE features extracted and used as inputs for training algorithms are related to the laser-material inter-

action and not to the difference of parameters. However, they proved that with this microphone the generali-

zation of the classification from one alloy to the other was not possible. Finally, they designed a CNN capable 

of simultaneously classifying the alloy and the process regime.  

CNN has become a common algorithm for classification tasks, demonstrating great efficiency and enabling 

the possibility of suppressing stationary noise [86], [90]. Drissi Daoudi et al. [92] proved that a CNN model 

trained with at least eight different processing conditions is able to predict the process regime for any unseen 

laser parameters within the processing map. They also proved that with a robust model, a decrease in the 

classification accuracy can help identify the boundaries between different processing regimes in the 2D pro-

cessing map. 

All presented works used frequency features analysis to identify the frequencies with higher intensity. How-

ever, the frequencies responsible for the classification of different categories by a ML algorithm are not inves-

tigated. In this work, we propose the use of saliency maps to perform this task. Saliency maps are often used 

for controlling the quality of a CNN model for image classification [93]. They have been employed for spec-

trograms from AE data, in the context of end milling for example [94], but never to determine if a model has 

learned the physical characteristics of a given regime or how to distinguish the different types of defect for-

mation in LPBF (or other laser processes).  

This work compares the classification accuracy of CNN models as well as the saliency maps, based on acoustic 

data obtained with two microphones with different frequency responses. We highlight the importance of fre-

quency information in acoustic-emission-based monitoring and show how the analysis of saliency maps of a 

trained CNN can be an effective tool in determining the frequency footprints associated with three LPBF re-

gimes (keyhole pores, conduction mode and LoF pores), as well as the quality of the CNN model.  
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7.2 Methodology and experimental plan  

The experiments were performed on an in-house LPBF system, shown in Figure 76. The machine uses a con-

tinuous wave modulated Ytterbium laser (1070 nm wavelength) with a maximum power of 500 W and a Ray-

lase triaxial scan-fiber scanning head. The process can reach scanning speeds of up to 20 m.s-1. The beam has 

a measured diameter of 42 μm (1/e2) at the focal plane. For this work, the build chamber is equipped with two 

microphones, as shown in Figure 76: a PAC AM41 (Physical Instrument, Germany) airborne acoustic sensor 

(used in previous studies [90]) and a CM16/CMPA40-5V ultrasound microphone (Avisoft Bioacoustics). Both 

are placed on the top of the build chamber, with the recording face directed to the process zone in order not to 

disturb the deposition system and to be protected from powder, spatters and fumes. AE sensors are placed at 

approximate distance of 23 cm from the center of the substrate. An Advantech Data Acquisition (DAQ) card 

(Advantech, Taiwan) acquires the output from the microphones. The acquisition rate of DAQ is set to 0.6 

MHz, ensuring the satisfaction of Nyquist Shannon theorem [95]. Data acquisition is triggered by the laser 

start, providing synchronization of LPBF and recorded AE. 

 

Figure 76. Experimental set-up of the custom-built LPBF with the CM16 and the AM41 microphones 
 

The printed alloy is stainless steel MetcoAdd 316L micro powder (Oerlikon) with a particle size between 15 

µm and 45 µm (composition in Table 23). 

Table 23. Chemical composition of stainless steel 316L powder 
Fe  

 

Cr  Ni  Mo  Other  C 

Balance 18 12 2 <1.00 <0.03 
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The metallurgical states of the printed material are distinguished by 3 categories or regimes: keyhole pores, 

conduction mode, and LoF pores. In addition, a fourth category is defined as the noise of the process when the 

laser is off. Thirteen cubes of 13x13x3 mm with thirteen different processing parameters, reported in Table 

24, were printed for each category. This design of experiment is also presented and detailed in [92]. An exam-

ple of the microstructure of each category is shown in Figure 77.  

 

Figure 77. Typical example of microstructure of the three regimes, a. Keyhole pores, b. Conduction mode, c. LoF pores. 
 

For a better visualization, the parameters used for the building of each sample are represented in the 2D pro-

cessing map in Figure 78. The black point (parameter set n°13) in each domain is called the central point and 

corresponds to the unseen parameter set, while the 12 other points (n°1 to 12) compose the training databases 

for ML algorithms built from AE recorded with both microphones.   

Table 24. Process parameters (laser power and speed) used for the experimental plan for the three categories (keyhole 
pores, conduction mode, and LoF pores). The sample 13 in bold is the central point, unseen by the training of the ML 
algorithm (in black in Figure 78).  

 Keyhole pores Conduction mode LoF pores 

N° 
Power  
[W] 

Speed 
[mm/s] 

Power  
[W] 

Speed 
[mm/s] 

Power  
[W] 

Speed 
[mm/s] 

1 282 350 107 450 68 450 

2 267 350 96 450 64 450 

3 235 350 82 450 57 450 

4 220 350 71 450 51 450 

5 251 276 89 350 61 358 

6 251 310 89 400 61 400 

7 251 398 89 500 61 500 

8 251 457 89 550 61 550 

9 240 320 85 410 59 430 

10 245 333 87 432 60 443 

11 256 364 91 466 61 457 

12 261 378 93 490 62 470 

13 251 350 89 450 61 450 
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For each cube, a 1 mm support structure is printed on top of which a 2 mm thickness is built, with a low 

porosity content. Then, 10 layers of 110 overlapping line tracks were processed with the parameters listed in 

Table 24, and the acoustic signals of these lines were recorded with both microphones simultaneously. A total 

of 1100 acoustic signals were acquired per sample. Twelve parameter sets (samples 1 to 12) are taken in the 

ML training set, resulting in 13’200 signals in each category. The scanning strategy was unidirectional and 

parallel with a hatching distance of 0.1 mm and a layer thickness of 40μm.  

 

Figure 78. Process parameter map with thirteen parameter sets for each category, in yellow for the keyhole domain, in 
green for the conduction mode, and in blue for Lof pores. The parameter sets are numbered from 1 to thirteen for the 
keyhole pores domain. The same numbering strategy can be transferred to the two other domains. The “central point” 
(i.e. the set unseen by the ML training) is depicted in black. The dotted line represents the limits of each process regime 
domain.  
 

Between each recorded line, a one-second delay is applied to ensure that all lines are independent of the thermal 

history. A pre-delay of 0.03 ms is applied to guarantee that the AE signal is recorded over the complete line. 

27’000 data points are acquired for the keyhole category, 21’000 for the conduction mode and 18’000 for the 

LoF pores category. The first 3’000 points were removed from all AE signals and only the 10’000 following 

points were kept, so that the non-steady state conditions (when the laser has not yet reached the required ve-

locity and speed) are removed from the analysis. An example of a keyhole line recording is given in Figure 

79. It presents the signals recorded with both microphones as well as the triggering laser signal. The analyzed 

signals have the same duration and number of acquisition points. It can be seen that the CM16 is more sensitive 

than the AM41 microphone. 
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Figure 79. Signal of an LPBF scan line with keyhole pores generation parameters. In black the signal recorded with the 
CM16 microphone, in yellow with the AM41 microphone and in orange the laser voltage signal used as trigger for data 
acquisition.  
 

The CNN models were developed with pyTorch library (Meta, USA). For all signals, the spectrograms were 

extracted from acoustic signals using the span of 16 ms. The training of the optimized CNN was performed on 

80% of the 13’200 signals per category, which were randomly chosen, while the validation of the model per-

formance was done on the remaining 20%. The model was then tested on 1100 signals of the central black 

point in Figure 78, corresponding to completely unseen conditions by the trained algorithm.The labeling of 

each category was done by metallographic analysis of each sample’s cross section (Figure 77). To reveal the 

melt pool morphology, the samples were etched with diluted Aqua regia (100 mL HNO3, 100 mL HCl, 100 

mL H2O) for 30 s. 

 

Figure 80. FFT responses of the averaged AE signals for 
each category, recorded by the CM16 flat frequency 
response microphone 

 

Figure 81. FFT responses of the averaged AE signals 
for each category, recorded by the AM41 microphone. 
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Figure 80 and Figure 81 represent the Fast Fourier Transforms (FFT) of signals from the four categories, either 

using the CM16 or the AM14 microphone. The CM16 microphone has a flat response from 0 to 200 kHz. It is 

however polarized for the higher frequencies. The AM41 microphone acquires information principally from 0 

to 20 kHz, and around 40 kHz and 80 kHz. 

 

Figure 82. The position in the base plate of the 13 samples (see Table 24 for the corresponding process parameters). The 
positions are the same for the three printed metallurgical regimes (keyhole pores, conduction mode and LoF pores). 
 

 

Figure 83. RMS for different low pass filter 
frequencies (from 20 kHz to 130 kHz), for the 
keyhole pores category. 

 
Figure 84. RMS for the three regimes categories (keyhole 
pores, conduction mode and LoF pores) when all the 
samples are filtered with a low pass filter at 60 kHz, 
compared to the raw signal of the keyhole pores category 

 

The Root Mean Square (RMS) of signals for each sample is calculated for different low pass filter frequencies 

(from 20 kHz to 130 kHz) for the keyhole pores category, and represented in Figure 83. The influence of the 

position of the samples on the substrate on the quality of the acquired signals is highlighted. Each process 

regime or category (thirteen cubes) was printed on a different substrate. The position of the samples on the 

substrate are shown in Figure 82. For the cubes 2, 6 and 10, when no filter is applied, the RMS is significantly 

lower than for the other cubes. When the filter threshold is around 60 kHz, the RMS becomes stable enough 



On the importance of acoustic emission frequencies for in-situ monitoring of Laser Powder Bed Fusion 

157 

across all samples for the three categories (Figure 83 and Figure 84). In light of this analysis, two post-pro-

cessing approaches of the signal for the CM16 microphone are studied. In the first case, the CM16 signals are 

only normalized (between 0 and 1). The result is then compared with an algorithm trained with signals filtered 

with a low pass filter at 60 kHz, downsampled 4 times, and normalized. In these conditions, the database 

associated to the CM16 microphone is position-independent. The AE signals of the AM41 microphone are 

filtered with a low pass filter at 90 kHz (as no data is recorded above this frequency), then downsampled three 

times, and finally normalized.  

An additional experiment was conducted by printing two adjacent lines with different parameters, and record-

ing the AE signals as one single line on the top layer of a cube. The first line is built with the parameters of the 

central black point of the keyhole pores category (251 W and 350 mm/s) while the second line is built with the 

parameters of the central black point of the conduction mode (89 W and 450 mm/s). Figure 85 shows the 

recording of one of these double lines, with a time delay of 1.6 ms when the laser stops between the two lines. 

The micrographs of the cross-section of each part of this double-line are presented as well in Figure 85. A total 

of 546 of such double-lines were recorded. The aim of this experiment was to validate the quality of the trained 

model. If the AE features associated to the formation of pores are successfully learned by the model, the re-

gimes of these lines should be predicted with a high confidence as belonging to the keyhole regime. Indeed, in 

keyhole regime the characteristics of the conduction mode are present as well, so the classifier should recog-

nize the characteristic features of the keyhole mode in the first half of the signal and classify the whole as 

keyhole accordingly. It can be noted that no evident differences can be noticed between the two half of the 

signal. 

 
Figure 85. Scheme of the double line experiments. Two adjacent LPBF lines with different laser parameters are recorded 
as one line. The first line in red in c. is built with the parameters of the central black point, in Figure 78, of the keyhole 
pores category (251 W and 350mm/s). The second line in orange in c. is built with the parameters of the central black 
point of the conduction mode (89 W and 450 mm/s). a. Micrograph of the keyhole part of the line, b. micrograph of the 
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conduction mode part of the same line and c. raw acoustic signal acquired with the CM16 microphone for one of these 
double-lines .No evident differences can be noticed between the two half of the signal. 
 

Saliency maps are used to determine the distinct frequencies that provide efficient classification, and to eval-

uate the quality of the trained model. A saliency map is defined as the partial derivative of the network output 

𝑆  with respect to the input 𝑥 (Equation 1). In other words, the saliency of every input data point is defined as 

how big the influence of the data point on the outcome of the classifier. The bigger the saliency of a data point, 

the bigger the change the output undergoes if the data point is changed. Hence, the results of the saliency is a 

possible explanation for the model decision. [96], [97] 

𝑀 𝑥 | 𝛻 max 𝑜𝑢𝑡 𝑥         (1) 

where 𝑆  is the saliency score function for each label candidate. The derivative is computed for the maximally 

excited output unit 𝑜𝑢𝑡 𝑥 . 

To highlight the frequencies that consistently remain in the saliency map even by adding noise, we calculated 

the average gradients of signals resulting from the addition of Gaussian noise to the input.. 

𝑀 𝑥 ∑ 𝑀 𝑥 𝜖 , 𝜖~𝒩 0,𝜎 .         (2) 

For 𝑘  𝑛, the 𝑘-th noise is denoted by 𝜖 , 𝜎 being the noise level. 

The average gradient of 200 iterations with a Gaussian noise level of 0.001 is used to remove the noise of all 

saliency maps presented in the rest of this work. 

Four criteria were considered to determine the quality of a CNN model: 

 An accuracy of classification in validation and in test higher than 80%; 
 Stabilization of the loss function; 
 Saliency maps highlighting specific frequencies for the three process regimes while being undeter-

mined for the noise category;  
 Classification of the double line experiment as keyhole, with saliency results distinguishing the con-

duction mode zone from the keyhole mode zone. 
 

7.3 Results 

The analysis of recorded AE signals is reported below, considering two microphones with two different fre-

quency responses (Figure 80 and Figure 81) and technology. The AM41 is a transducer microphone with an 

enclosed diaphragm and the CM16 microphone is a condenser microphone with an externally polarized film 

diaphragm.  
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7.3.1 AM41 microphone  

The CNN architecture is illustrated in Figure 86. It includes two 2D convolution layers max pooled by 2x2 

followed by one 2D convolution layer. The Rectified Linear Units (ReLU) activation function is applied for 

three convolution layers. Two fully connected layers follow these layers. The model is trained for 200 epochs 

with a batch size of 1000, a learning rate of 5e-4 and an Adam optimizer [98]. 

 

Figure 86. Scheme of the CNN architecture with two max pooled convolution layers, followed with one convolution layer 
and 2 fully connected layers. 
 

Figure 87 presents the losses of the training and validation over the training epochs. It can be seen that they 

stabilize after 150 epochs. The losses are of the same order magnitude, implying that the model does not seem 

to be overfitting. 



On the importance of acoustic emission frequencies for in-situ monitoring of Laser Powder Bed Fusion 

160 

 

Figure 87. Validation and training losses in function of the epochs for the model Figure 86 trained for 200 epochs. 
 

Table 25 presents the confusion matrix of the classification of the four categories (keyhole pores, conduction 

mode, LoF pores, and noise) on the 13th sample (central black point in Figure 78) of each category, unseen by 

the training. The accuracy, in %, (diagonal values, in bold in Table 25) is defined as the number of true posi-

tives divided by the total number of tests in each category. The misclassifications are the false positives and 

false negatives divided by the total number of tests in each category. The classification accuracy is very high 

(> 91%) for all categories.  

Table 25. Confusion matrix of the CNN model (Figure 86) applied to the prediction of the process regime of the central 
black point in Figure 78, with the AM41 signals 

Ground truth 

  

Classification  

accuracy [%] 

Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 92 8 1 0 
Conduction mode  6 91 0 0 
LoF pores 2 1 99 0 
Noise 0 0 0 100 

 

Figure 88 provides a typical spectrogram of one signal of each category of the tested set, the unseen parameter 

set (n°13, Table 24). Figure 88 also presents the average as well as the standard deviation of the saliencies of 

the 1100 signals in each category of the tested unseen parameter set.   
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Figure 88. Example of a spectrogram of one signal of each category (keyhole pores, conduction mode, and LoF pores) of 
the unseen parameter tested set with averaged the saliencies of the 1100 signals in each category of the unseen parameter 
tested set (central black point) as well as its standard deviation σ for the CNN model (Figure 86) trained with the AM41 
signals. 
 

As expected from the frequency response of the AM41 microphone, the spectrograms show that the signals 

are mostly recorded around 80 kHz, 40 kHz, 18 kHz, and 9 kHz. In the saliency maps, it can be seen that for 

all categories, the frequencies that seem that seem to provide efficient classification lie below 40 kHz. The 

saliency of the keyhole pores indicates that the important frequencies range between 6 and 8 kHz. In the case 

of the conduction mode, the relevant frequencies are around 10 kHz, 12 kHz, and in the [21-35] kHz range. 

The frequencies of high importance for the formation of the LoF pores are a bit below those observed for the 

keyhole regime, namely in the range of 5 to 7 kHz and around 30 kHz. For the background noise, as expected, 

the saliency maps display all frequencies scattered below 40 kHz. The saliency standard deviations confirm 

that similar frequency ranges hold for the majority of the 1100 signals of each category. However, it can be 

observed that, for the three metallurgical regimes, the frequencies of higher importance for the classification 

are not in the ranges of sensitivity of the AM41 [90], [91]. Several CNN models have been trained and none 

performed the classification – according to the saliency maps – based on frequencies inside the high sensitivity 

range of the microphone. In addition to the information gathered on these frequencies, the algorithm also for 

other frequencies to highlight differences between the classes. 
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The trained model was tested on 547 double-lines described in Figure 85, and 87% (Table 26) of those lines 

were successfully classified as keyhole, when compared to the same conduction and LoF experiments consid-

ered inTable 26. Only 5% of accuracy was lost (87 versus 92%). Figure 89 presents the average saliency maps 

of these double-lines, assuming the conduction mode. It appears to be consistent with the experiments and with 

the frequencies highlighted in Figure 88. In particular, the high saliency values are, as expected, in the second 

line. 

Table 26. Confusion matrix equivalent to Table 25, but replacing the keyhole pores tested category by the double-lines 
experiments presented in Figure 85 

Ground truth 

  

Classification  

accuracy [%] 
Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 87 8 1 0 
Conduction mode  9 91 0 0 
LoF pores 4 1 99 0 
Noise 0 0 0 100 

 

 

Figure 89. An example of the spectrogram of one double-line AE signal, the averaged saliency maps of the 547 recorded 
double-lines assuming the conduction mode, and their standard deviation σ. 

7.3.2 CM16 microphone  

i. Raw data model  

The results presented in the previous section motivate the use of a flat response microphone. The frequencies 

that have the most influence in the model trained with the narrow wide frequency response microphone for the 

classification were in regions of least sensibility of the microphone. The use of flat response microphone will 

avoid to the classifier to be biased and to discard frequencies present in all categories. As a first study of the 

acquisition signals obtained with the CM16 microphone, a CNN model trained and tested on the spectrograms 
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extracted from the raw signals is presented schematically in Figure 90. It includes two first 2D convolution 

layers with the first layer max pooled by 2x2. Three fully connected layers are following these layers. The 

Rectified Linear Units (ReLU) activation function is applied for the two convolution layers and the first fully 

connected one. The model is trained for 50 epochs with a batch size of 1000, a learning rate of 5e-4 and an 

Adam optimizer. The losses of the training and validation classification are presented in Figure 91, and it can 

be seen that they stabilize and that the model does not overfit.  

 

Figure 90. Scheme of the CNN architecture with one max pooled convolution layer, followed with one convolution layer 
and 3 fully connected layers. 

 

Figure 91. Validation and training losses in function of the epochs for the model Figure 90 trained for 50 epochs. 
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Table 27 presents the confusion matrix of the classification accuracies when trying to predict the process re-

gime of the central black point (Figure 78) for each category, unseen by the training. The classification accu-

racy is very high (>97%).  

Table 27. Confusion matrix of the CNN model (Figure 90) for the prediction of the process regime of the unseen central 
black point (Figure 78), with the CM16 raw signals 

Ground truth 

  

Classification  

accuracy [%] 
Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 97 0 0 0 
Conduction mode  3 100 0 0 
LoF pores 0 0 100 0 
Noise 0 0 0 100 

 

Figure 92, as did Figure 88 for the other microphone, presents a typical spectrogram as well as the average and 

standard deviation of the saliency maps, for each category of the model trained, tested on the unseen parameter 

set (black central point Figure 78). 

 

Figure 92. Example of a spectrogram of one signal of each category (keyhole pores, conduction mode, and LoF pores) of 
the unseen parameter tested se (black central point Figure 78)  with the averaged saliency values of the 1100 signals in 
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each category of the unseen parameter tested set (black central point Figure 78), as well as their standard deviation σ, for 
the CNN model in Figure 90 trained with the CM16 raw signals. 
 

The spectrograms of the conduction mode and the keyhole pores regime seem closer to each other than that of 

the LoF category. Indeed, the information present in the conduction mode is also present in the keyhole mode. 

It can be seen that the frequencies highlighted by the saliency maps are mostly from 5 to 12 kHz for the four 

categories, with some intensity changes. Higher frequencies are highlighted around 110 kHz and 140 kHz for 

the conduction mode classification, these frequencies are as well underlined for the keyhole pores but at lower 

intensity compared to the 12 kHz range. For the LoF pores category, frequencies around 112 kHz are empha-

sized. The noise category saliency maps highlight only the frequencies from 5 kHz to 12 kHz, which can be 

an indication of a bad model quality despite the high classification accuracy. In fact, no specific frequency 

should be highlighted by the saliency map for the noise category because there is laser-matter interaction pre-

sent in this category. 

A low-pass filter with threshold at 60 kHz was applied to the spectrograms of the tested signals. The trained 

model was then tested on the resulting spectrograms. Table 28 displays the confusion matrix of the test per-

formed on the central black point (Figure 78), unseen in the training. The classification accuracies are high, 

above 89%, indicating that the interval of frequency below 60 kHz contains enough features to classify with 

high confidence the four categories. 

Table 28. Confusion matrix of the CNN model presented in Figure 90 on the tested central point, when the data is treated 
with a low pass filter at 60 kHz. 

Ground truth 

  

Classification  

accuracy [%] 
Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 89 0 0 0 
Conduction mode  9 99 0 0 
LoF pores 1 1 100 0 
Noise 0 0 0 100 

 

Figure 93 presents the averaged saliency maps for the four categories when the trained CNN model of Figure 

90 is tested on the unseen sets with the 60 kHz low-pass filter. The saliency maps are very similar to the ones 

presented Figure 92. Even the high frequencies highlighted for the conduction mode occurrence in Figure 92 

are also highlighted in Figure 93, despite the filtering.   
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Figure 93. aA example of a spectrogram of AE signal filtered with a low pass filter at 60 kHz of the tested set.  The 
average saliency maps of the tested category keyhole pores,  The average saliency maps of the tested category conduction 
mode,  The average saliency maps of the tested category LoF pores, The average saliency maps of the tested category 
noise. 
 

ii. Filtered at 60kHz, four times downsampled, and normalized model  

Another CNN model is trained with all the data filtered with a low pass filter at 60kHz, down-sampled four 

times to avoid aliasing, and normalized between 0 and 1 As the microphone is polarized above 60 kHz, the 

aforementioned signal post-processing was chosen to lead to signals for all samples in the substrate to be 

position independent. This signal processing ensures that the data is sample-position-independent and allows 

the frequency resolution to be increased. Moreover, the normalization ensures that the model classifies on the 

basis of the features responsible for the formation of a given metallurgical state rather than on the difference 

in process parameters between different categories (especially the power variations, which are known to induce 

differences in signal amplitude). 

The architecture of a bigger model is presented in Figure 94. Five 2D convolutions layers with ReLU function 

activated and batch normalized are present in this model. They are followed with three fully connected layers. 

The losses stabilize after 15 epochs (Figure 95). The confusion matrix in Table 29 shows high classification 

accuracy for each category.   
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Figure 94. Scheme of the CNN architecture with four convolution layer folowed by 3 fully connected layers. 

 

Figure 95. Validation and training losses in function of the epochs for the model of Figure 94 trained for 15 epochs. 

Table 29. Confusion matrix of the CNN model Figure 94 on the tested central sample with the CM16 signals, filtered 
with a low pass filtered at 60 kHz, downsampled 4 times and normalized. 

Ground truth 

  

Classification  

accuracy [%] 
Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 98 2 1 0 
Conduction mode  1 98 2 0 
LoF pores 1 0 97 0 
Noise 0 0 0 100 
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Figure 96 presents a spectrogram of each category of the central black point conditions (Figure 78), as well as 

the average saliency maps and their standard deviation. It can be observed that no specific frequencies are 

highlighted in the noise category. For the three other regimes, the main frequency ranges responsible for clas-

sification lie below 30 kHz. For the keyhole pores, the main frequency is around 5 kHz, although the frequen-

cies around 13 kHz and 20 kHz seem to be decisive as well. For the conduction mode, the frequencies empha-

sized for the classification are around 9-10 kHz. In the case of the LoF pores classification, the saliency maps 

underline mainly two frequencies, namely 4 and 8 kHz. The standard deviations confirm that the emphasized 

frequencies are common to all signals in the tested conditions. 

 

Figure 96. Example of a spectrogram of one signal of each category (keyhole pores, conduction mode, and LoF pores) of 
the unseen parameter tested set (black central point Figure 78 with  saliencies averaged over the 1100 signals in each 
category, and the corresponding standard deviations σ for the CNN model described in Figure 94, trained with the CM16 
signals, filtered with a low-pass filter at 60 kHz, downsampled 4 times and normalized. 
 

This model is tested on the spectrograms extracted from the signals of the 2 lines experiments (Figure 85), as 

was done in Table 26. In Table 30 it can be seen that these lines are classified with a good accuracy of 92%, 

compared to the other conduction mode and LoF experiments. The accuracy is 5% better than with the other 

microphone (Table 26). Figure 97displays an example of a spectrogram of one double-line recorded with the 

CM16 microphone with the same AE signal post-processing as for the training data, along with the average 

and standard deviation of the saliency maps when assuming the conduction mode. The saliency maps show 
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higher values on the second half of the line where the conduction mode was processed. The frequencies are 

scattered between 5 and 30 kHz. While the model has learned correctly how to differentiate the conduction 

mode zone from the keyhole zone, it still classifies the whole scan line as keyhole pores due to the first half 

processing conditions.  

Table 30. Confusion matrix of the CNN presented in Figure 94, for the prediction of the process regime between double-
lines experiments and conduction and LoF experiments (corresponding to the black central point in Figure 78). 

Ground truth 

  

Classification  

accuracy [%] 
Keyhole pores Conduction mode LoF pores Noise 

Keyhole pores 92 2 1 0 
Conduction mode  5 98 2 0 
LoF pores 3 0 97 0 
Noise 0 0 0 100 

 

 

Figure 97. An example of the spectrogram of one double-line AE signal, the averaged saliency maps of the 547 recorded 
double-lines assuming the conduction mode, and their standard deviation σ. 

7.4 Discussion  

Four criteria to assess the quality of a model were defined earlier. A model should have a classification accu-

racy of at least 80%, its loss function should have stabilized, it should classify the double-line data set as 

keyhole category with an accuracy of at least 80%, and it saliency map should highlight specific frequencies 

for each category, but not for the noise category. The hypothesis underlining the last criterion is that the CNN 

model should train on events characteristic of a specific LPBF regime, happening at specific frequencies. If 

this criteria is not met, it would mean the model is relying on noise not necessarily related to specific laser-

material interactions, and it would therefore not be reliable. Moreover, the saliency maps investigation of the 
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background noise can help ascertain the quality of a model. Indeed if no information is recorded, no specific 

frequency should be highlighted by the saliency map. 

The model with the microphone AM41 with a non-flat response has a general classification accuracy of over 

92% and a classification accuracy of the double-line data set over 87%, while its loss function is stabilized. It 

could be considered as a good CNN model. However, the analysis of its saliency map shows the model does 

not use much the frequencies around 10 kHz, 20 kHz, 40 kHz for the classification. As those frequencies are 

the ones for which the microphone is the most sensitive, it means the model is not using the principal infor-

mation that the microphone provides. It could also mean that the information is not in the frequency range for 

which the microphone AM41 is the most sensitive. The microphone CM16, that has a flat frequency response, 

was used for the next models, to avoid this issue. Moreover, it can be seen in Figure 79 that the CM16 is more 

sensitive than the AM41.  

The first model trained with the microphone CM16 also had a good general classification accuracy (over 97%). 

The investigation of the saliency maps emphasized mainly frequencies below 20 kHz but the information is 

also scattered until 120 kHz. The analysis of the saliency map of the category noise highlights specific fre-

quencies in the low frequency range. It is an indication of learning of unphysical features.  

As this microphone is polarized at high frequencies, the tested signals are treated with a low pass filter at 60 

kHz and the trained model is applied on these treated signals. The classification accuracy reached above 89%. 

This seems to indicate that the information below 60 kHz is relevant enough for the classification decisions. 

However, the saliency maps show that the model also considers frequencies above 60 kHz, despite the fact 

that they have been filtered.  

A third model with the microphone CM16 with input data filtered under 60 kHz, down-sampled four time and 

normalized, was therefore trained. The data from all the samples can be included in the database without bias, 

as the response is flat below 60 kHz regardless of the sample position. Moreover, normalizing the data ensures 

that model will more easily learn on the features and frequencies responsible of the regime formation, rather 

than on the differences in laser parameters (e.g. the amplitude is higher with a higher power). This model 

fulfills the four defined criteria. The accuracy classification is above 97%. The losses stabilize after 15 epochs. 

The analysis of the saliency maps highlights that the three LPBF regimes are classified based on signal fre-

quencies from 5 kHz to 30 kHz. And the noise category saliency maps do not underline any specific frequency. 

The frequencies of interest are in accordance with other LPBF studies using  ABAE microphones with a low 

frequency spectrum[88], [89]. However, exceptions exist, e.g. Gutknecht et al.[83] filtered all frequencies be-

low 40 kHz, considering them as the noise of the machine. Moreover, they highlighted a reverberation in the 

build chamber of frequencies below 100 kHz. However, their very sensitive Xarion ABAE does not use the 

same technology compared to condenser membrane microphones. As for SBAE sensors, the critical frequen-

cies of each process regime can vary depending on the type of sensor. 
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7.5 Conclusions 

This study presents the results of different CNN models trained with spectrograms extracted from the acoustic 

signal acquired by two air-borne sensors, for classifying three LPBF processing regimes (keyhole pores, con-

duction mode, and LoF pores). The two microphones are placed inside a custom-design LPBF machine sim-

ultaneously recording the AE of thirteen laser parameter sets per regime. The first microphone AM41 has a 

frequency response limited to distinct spectral peaks centered at around 10 kHz, 20 kHz, 40 kHz, and 80 kHz. 

The second microphone CM16 has a flat response from 2 Hz to 200 kHz. The two microphones are able to 

classify with high confidence (>91%) a tested set with parameters that is not present in the training database, 

regardless of the CNN architecture and signals post-processing. All model losses of the training and validation 

stabilize, and the models do not seem to be overfitting. The information for classifications of the four categories 

(keyhole pores, conduction mode, LoF pores and, noise) are scattered in the studied frequencies. For both 

microphones, the frequencies mainly responsible for the classification lie below 40 kHz. 

It is also proposed in this work to evaluate the quality of a CNN model with saliency maps. These can for 

example demonstrate how a model can learn unphysical features and still classify with high accuracy. The first 

trained CNN model with the AE from the AM41 microphone did not learn on its high sensitivity frequency 

range. To avoid a model to discard frequency ranges, a flat response microphone is better suited for the mon-

itoring of a complex and noisy process such as LPBF. However, it is important to optimize the CNN model 

correctly, and to post-process the data according to the selected sensor. The CM16 being polarized at high 

frequencies, a better model is trained on data filtered below 60 kHz, down-sampled 4 times, and normalized. 

With this model, the frequencies responsible for the classification of the three regimes are found to be below 

30 kHz, for 316L stainless steel. 

The methodology developed here is of utmost importance for the possible generalization of monitoring meth-

ods to other alloys or machines. The comparison of the frequencies responsible for the classification of the 

three process regimes with those of other alloys is part of the future work.  

In this work, we emphasize the frequencies associated with process regimes, resulting in a relatively poor time 

resolution. However, if a model is trained only in the time domain, such as to have the highest resolution in 

time, localization of defects could be implemented with saliency maps applied to raw acoustic data.  
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Abstract  

The Laser Power Bed Fusion (LPBF) process is of high interest to many industries, such as motors and vehi-

cles, robotics, biomedical applications, aerospace, and others. LPBF workpieces can indeed achieve near full 

density and high resistance. However, a large amount of pore formation, in conjunction with the probabilistic 

nature of defect formation, results in a lack of process repeatability and reproducibility. This limits the range 

of industrial applications requiring high quality and defect free workpieces. To overcome this issue, we devel-

oped an acoustic monitoring system able to classify with high confidence three processing regimes (lack of 

fusion pores, conduction mode, keyhole pores) using a Convolution Neural Network (CNN). For the first time, 

we infer the processing regime based on AE waves produced during the LPBF process for conditions that are 

new and not part of the training database (>96%). The choice of processing conditions used in the database 

(training sets) is discussed in details, looking at the influence of their number, relative normalized distance, 

and position in the processing map on the classification accuracy. We found that the higher the number of 

processing conditions in the database, the higher the classification accuracies. Moreover, the higher the relative 

normalized “distance” between training and testing sets (measured in terms of laser speed and power), the 

lower the classification accuracies. Finally, the threshold defining the minimum number of training processing 

conditions is identified as eight to obtain a robust model able to identify the processing regimes for new laser 

parameters within the processing map. This number can be lowered to six if the training sets are in the sur-

rounding region of the testing set. When one process parameter (speed, power, or normalized enthalpy) is 

constant between all the training and the testing sets, only four parameter sets allow a high classification ac-

curacy (>88%). These results demonstrate the potential of in situ acoustic emission for monitoring the additive 

manufacturing process, in particular when the process conditions may deviate from the conduction mode. Fi-

nally, for a well-chosen set of training conditions, the model is able to construct a full processing map without 

additional experiments. 

 

Keywords: Laser powder bed fusion, acoustic monitoring, convolution neural networks, generalization, ro-

bustness, processing maps.  
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8.1 Introduction  

In the past years, additive manufacturing (AM) has brought a new paradigm in the production of metallic parts, 

allowing the design of complex and intricate geometries while minimizing both lead time and buy-to-fly ratios 

[1]. Among the various categories of AM processes, Laser Powder Bed Fusion (LPBF), also known as Selec-

tive Laser Melting (SLM), consists in building up successive layers of pre-alloyed metallic powder according 

to a predefined 3D CAD model by selectively melting each layer of powder with a high-power laser beam [5–

8]. Although this technology has gained significant interest from many industries [2–8] due to its versatility 

and accuracy, a number of drawbacks still limit its range of applications and impede a wider industrial use [9]–

[13]. 

In particular, LPBF suffers from a frequent and sometimes hard-to-predict formation of defects, such as pores, 

which impedes certification processes. Porosity in as-built LPBF parts can originate from multiple causes, 

including the quality of the powder feedstock and the laser-material interactions. This latter source includes 

lack-of-fusion and keyhole pores. Lack-of-fusion pores result from an insufficient energy input, inducing in-

complete melting of the powder during laser processing [14]–[17]. On the other hand, keyhole pores are caused 

by an excessive heat input: vaporization of the metal creates a deep keyhole-shaped depression zone whose 

collapse can generate a void in the lower region of the melt pool [18]–[23]. Optimal conditions for minimal 

porosity content are encountered in the conduction mode, a transition regime between lack-of-fusion and key-

hole [23], [24]. 

Different tools have been developed in order to determine and thus mitigate the occurrence of pores. For a 

given material, processing maps based on parameters such as laser power and speed can be built to find the 

optimum conditions for high-density parts [24]–[28]. However, establishing such 2D-processing maps is a 

laborious procedure, requiring extensive printing of specimens using a variety of process parameters followed 

by a very time-consuming metallurgical characterization of the as-built parts. Furthermore, this trial-and-error 

process optimization needs to be reiterated when transitioning from either one alloy [29], or one LPBF ma-

chine, to another. 

In most laser processes dealing with powders, the laser-material interaction is highly non-linear and always 

exhibits a non-negligible stochastic component. This leads to non-reproducibility of microstructures and prop-

erties, and non-homogeneity of the printed parts. Moreover, the generation of unpredictable spatter [30]–[35] 

and contamination leads to irregular defect formation [12]. In order to detect the formation of defects during 

the LPBF process, and identify the melting regime (lack-of-fusion, conduction, or keyhole), real-time process 

monitoring is a promising solution/approach. In the past 10 years, various optical techniques have been inves-

tigated, including spatially integrated sensors such as photodiodes [36]–[38], pyrometers [39]–[43], infrared 
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and high speed cameras [36], [37], [41], [43], [44]. Complementary to these optical techniques, acoustic emis-

sion (AE) has been reported as a high sensitivity, low-cost and robust technique for monitoring laser processes.  

The analysis of AE was first identified as a valid technique for monitoring laser welding [45]–[48]. One draw-

back of the AE sensors is that they record any AE waves produced during the laser processes, including the 

undesired noise from the machine or the environment [38], [49], [50]. Consequently, it is not a trivial task to 

isolate the AE information coming from the laser-material interactions [51]. To address this issue, state-of-the-

art machine learning algorithms were able to classify welds of various regimes and quality based AE signals 

[50], [52]–[55]. More recently, the potential of AE as a monitoring tool has been extended to the field of laser-

based additive manufacturing. Several papers have demonstrated the ability to differentiate lack-of-fusion, 

conduction, and keyhole regimes with high confidence, based on AE signal analysis [29], [49], [56]–[67].  

To be specific, over the past few years, Convolutional Neural Networks (CNN) have become a common algo-

rithm for acoustic classification tasks [29], [56], demonstrating great effectiveness and enabling the possibility 

of suppressing stationary noise. For example, Shevchik et al. [56] used a Fiber Bragg Grating (FBG) as AE 

sensor, and combined two types of CNN (a Spectral one and a conventional one). They have successfully 

classified the quality of LPBF with a classification accuracy around 80%. In a following work, Shevchik et al. 

[62] used two running windows with various time span as input to several types of CNNs, to address the 

localization of defects. The classification accuracies varied between 73 and 91%, depending on the time span 

of the running window and the process quality. Similarly, Ye et al. [63] used a deep belief network to classify 

acoustic data of five category – balling, slight balling, normal, slight overheating, overheating –with high ac-

curacy (95%) in the LPBF process. Eschner et al. [61] have designed a Neural Network to classify three density 

classes of laser operation with 90% accuracy. Drissi-Daoudi et al. [29] have compared four ML algorithms 

(Logistic Regression, Random Forest, Support Vector Machine and a CNN) for the classification of three 

process regimes (LoF pores, Conduction mode, and Keyhole pores) for three different alloys (stainless steel, 

bronze, and Inconel), using a low cost airborne AE sensor. All algorithms had comparable and high classifi-

cation accuracies (around 90%), for all alloys. The authors selected two process parameters per regimes, with 

specific normalized enthalpy, to prove that the extracted AE features used for training the ML algorithms relate 

to the laser-material interaction. Finally, they designed a CNN capable of simultaneously classifying the alloy 

and the process regime. 

Tempelman et al. [64] used a Support Vector Machine (SVM) to detect keyhole and non-pore segments of 

single lines using process parameters scattered in the 2D processing map. The data segmentation and labeling 

were obtained by X-ray tomography. Their approach confirmed the previous works from Shevchik et al. [29], 

[62] that keyhole pore formation can be detected using airborne AE sensors combined with ML algorithms. 

However, in all AE-based studies for LPBF, the techniques’ performance was evaluated on random AE signals 

that are, obviously, not part of the training database but coming from the collected database using the same 
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parameters set; which raises two questions. First, does the ML algorithm classify the process parameters or the 

laser-material interaction? Clearly, the main goal is to monitor the laser-material interaction leading to the 

different process regimes (LoF, conduction, and keyhole) and not the process parameters themselves; other-

wise, we would just extract this information from the machine directly. The second question is the ability of 

the ML algorithm to classify AE signals from trained process regimes but from new (unseen) parameter sets. 

This generalization of the ML predictability is a critical step towards AE based process monitoring. Finally, 

significant factors and exhaustive details for constructing a robust database are overall lacking in the literature. 

Consequently, the novelty of this contribution is twofold. First, it focuses on the ability of ML algorithms to 

classify AE data outside the parameters sets they were trained on. Second, the present study provides all the 

necessary tools to help building an otherwise time-consuming processing map for a given alloy. 

The present work studies the classification of AE signals recorded by a microphone during LPBF of a 316L 

stainless steel alloy. The occurrence of three process regimes (lack-of-fusion (LoF), keyhole, and conduction 

mode) is identified through metallurgical characterization. The CNN algorithms are trained with three catego-

ries representing the three different process regimes; as well as with the background noise as the fourth cate-

gory, i.e., the noise of the machine and process when the laser is off. A CNN is selected for the classification 

tasks of these four categories. 

The paper is organized into 4 Sections. Section 2 details the method and experimental plan, while Section 3 

presents the results and discussion. The generalization of the CNN model, trained with twelve parameter sets, 

is tested on an unseen thirteenth parameter set. We check in what extent the accuracy of the classification 

relates to: (i) the position (in the 2D space) and number of the parameter sets used in the training database with 

respect to the tested set, (ii) the influence of key process parameters – normalized enthalpy, laser power and 

speed, (iii) the relative normalized “distance” in terms of power, speed and normalized enthalpy between the 

training and the tested set. The results provide insights into the collection of a robust model for classification 

of LPBF processing regimes based on AE, which are summarized in the conclusion. 

8.2 LPBF Experiments  

8.2.1 Experimental setup and data acquisition 

All experiments of this work were performed on an in-house LPBF system shown in Figure 98. The customized 

LPBF contains a hopper filled with powder that deposits each layer by gravity when the piston below the 

substrate moves down by the required layer thickness. A continuous-wave (CW) modulated Ytterbium fiber 

laser is used for melting the powder. The fiber laser operates in a continuous mode with a 1070 ± 10 nm 

wavelength and a maximum power of 500 W. The beam diameter is around 42 µm (1/e2) at the focal plane 

with M2 < 1.1. The laser scan speed is up to 20 mꞏs−1. The chamber’s atmosphere is controlled under a laminar 

flow of argon and a monitored oxygen level of maximum 200 ppm.  
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The build chamber is equipped with a CM16/CMPA40-5V ultrasound microphone (Avisoft Bioacoustics), as 

shown in Figure 98 (6). This main advantage of this microphone is that it has a flat response up to 200 kHz. It 

is positioned on the top of the build chamber so that the recording face points to the process zone while not 

disturbing the deposition system and being protected from powder, spatters, and fumes. It is placed at a distance 

of approximately 23 cm from the center of the substrate. An Advantech Data Acquisition (DAQ) card (Ad-

vantech, Taiwan) records the output from the microphone. The AE signals are acquired at a rate of 0.6 MHz 

and stored locally for processing with a custom-built C# code that interacts with the Advantech DAQ card. 

The data acquisition rate was chosen to ensure that the Nyquist Shannon theorem [68] is satisfied. The data 

acquisition is triggered by the laser head signal. This ensures synchronization between the LPBF process and 

the obtained data.  

 

Figure 98. Experimental set-up of the custom-built LPBF with the CM16 microphone 
 

All experiments were performed with a stainless steel MetcoAdd 316L micro powder (Oerlikon Metco) with 

a particle size distribution between 15 and 45 µm. Its composition is presented in Table 31 and the correspond-

ing physical and optical properties are given in Table 32. 

Table 31. Chemical composition of stainless steel (316L) powder 
Fe  
 

Cr  Ni  Mo  Other  C 

Balance 18 12 2 <1.00 <0.03 
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8.2.2 Experimental plan 

We considered three distinct process regimes: LoF pores, conduction mode, and keyhole pores. For each re-

gime, thirteen cubes of 13x13x3 mm3 with thirteen different parameter sets were printed. The thirteen process 

parameters are given in Table 33 and plotted in Figure 99. 1-mm-thick porous structures were built on top of 

the base plate as support for the samples in order to ensure that the experiments would have the same heat flow 

as when processing bulk material. On top of these support structures, high-density layers were built over 2 mm 

to guarantee similar initial conditions for all experiments. Finally, for each of the three above-mentioned pro-

cess regimes, 10 layers (above the red line in Figure 99) of 110 overlapping line tracks were produced, during 

which the AE signals were recorded with the microphone. The scanning strategy was unidirectional and par-

allel, with a hatch distance of 0.1 mm and a layer thickness of 40 µm. For all 39 cubes, the data labeling of the 

process regime was identified via cross-section analysis. Typical examples of the microstructure for each pro-

cess regime are presented in Figure 99. The samples were etched with diluted Aqua regia (100 mL HNO3, 100 

mL HCl, 100 mL H2O) for 30 s to reveal the microstructure and melt pool morphology. Micrographs were 

taken with a Leica DM6000M light optical microscope in bright field mode. 

 
Figure 99. Typical example of microstructure of the three regimes, a. Keyhole pores, b. Conduction mode, c. LoF pores. 
The dotted red line delimits the recorded lines from the printed cube. 
 

As illustrated in Figure 100, the process parameters were chosen to have, for each process regime, five sets of 

parameters with iso-power (P=61 W, P=89 W and P=251 W), five with iso-speed (v=350 mm/s or v=450 

mm/s), and five with iso-normalized enthalpy (ΔH=17, ΔH= 25 or ΔH= 80).  

The normalized enthalpy ΔH is defined as [24], [69]:  

Δ𝐻 
√

          (1) 

Where α is the absorptivity of the bulk material, P is the laser power (W), ρ the density (𝑘𝑔 𝑚 ), C the specific 

heat (𝐽 𝑘𝑔.𝐾), ΔT the difference between the melting and initial temperature (K), 𝐿 the latent heat of melting 

(𝑘𝐽 𝑘𝑔), ω the laser spot radius (m), v the laser speed (𝑚 𝑠⁄ , D the thermal diffusivity (𝑚 𝑠).  
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Table 32. Physical and optical properties of stainless steel 316L 
 Parameters values 

Absorptivity α [-] 0.52 

Density ρ [kg/m3] 7900 

Specific heat C [J/kg.K] 490 

Melting point [K] 1640 

Latent heat of melting Lm [kJ/kg] 260 

Laser spot diametre [µm]  42 

Thermal diffusivity [m2/s] 3.5ꞏ10-6 

 

All three iso-conditions share a common central point (in black in Figure 100) corresponding to line n°13 in 

Table 33, which leads to a total of thirteen experiments for each regime. The enumeration in Figure 100, given 

for the keyhole regime, is transferable to the two other process regimes (Table 33).  

The DOE is designed such as to allow predicting the process regime with an unseen parameter set (central 

point, n° 13) with the training performed on a database composed of 12 parameter sets surrounding it. It also 

allows predicting the process regimes related to parameter sets that are off-centered (n° 1, 4, 5 and 8) with 12 

parameter sets that are further away in the processing map. The influence of the “distance” (in the processing 

map) between the data points used for the training and the prediction will be studied, by comparing the results 

of the classification when the database is formed with the 6 closest points (full markers in Figure 100, n° 2, 3, 

6, 7, 10, 11) to the results when the training is based on the 6 other more distant points (empty markers in 

Figure 100, n°1, 4, 5, 8, 9, 12). Moreover, the prediction of the central point process regime will be tested with 

three databases trained with the 4 parameter sets in iso-power, iso-speed, or iso-normalized enthalpy, respec-

tively, in order to highlight the influence of the choice of process parameters on the training. Finally, the 

influence of the relative normalized “distance” in terms of normalized enthalpy, power, and speed as well as 

the number of parameter sets needed for a high-confidence prediction of an unseen point will be determined. 

The relative normalized “distance” in terms of normalized power is defined in equation (2). 

𝑑  
∑

∑
 ∙ 100 %  ,       (2) 

where n is the number of parameter sets in the training database, Ptraining the power [W] of each set in the 

training database, and Punseen the power [W] of the unseen parameter set. The same definition can be applied to 

dS and 𝑑 , by considering the laser speed values and the normalized enthalpy values, respectively.  
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Table 33. Process parameters (power, speed, and normalized enthalpy) used for the experimental plan for the three 
categories, keyhole pores, conduction mode, and LoF pores. The values in bold are iso-speed, iso-power, and iso-
normalized enthalpy for each category. The sample n°13 in Italics Bold is the black central point in Figure 100, common 
for the three iso-parameters.  
 Keyhole pores Conduction mode LoF pores 

N° Power 
[W] 

Speed 
[mm/s] 

Normalized 
enthalpy [-] 

Power 
[W] 

Speed 
[mm/s] 

Normalized 
enthalpy [-] 

Power 
[W] 

Speed 
[mm/s] 

Normalized 
enthalpy [-] 

1 282 350 89.9 107 450 30.1 68 450 19.1 
2 267 350 85.1 96 450 27.0 64 450 18.0 
3 235 350 74.9 82 450 23.1 57 450 16.0 
4 220 350 70.1 71 450 19.9 51 450 14.3 
5 251 276 90.1 89 350 28.4 61 358 19.2 
6 251 310 85.0 89 400 26.5 61 400 18.2 
7 251 398 75.1 89 500 23.7 61 500 16.3 
8 251 457 70.0 89 550 22.7 61 550 15.5 
9 240 320 80.0 85 410 25.0 59 430 17.0 
10 245 333 80.1 87 432 25.0 60 443 17.0 
11 256 364 80.0 91 466 25.1 61 457 17.0 
12 261 378 80.1 93 490 25.0 62 470 17.1 
13 251 350 80.0 89 450 25.0 61 450 17.1 

 

Figure 100. Process parameter map with the thirteen parameter sets for each category, in green for the keyhole domain, 
in orange for the conduction mode, and in blue for Lof pores. The parameter sets are numbered from 1 to 13 for the 
keyhole pores domain. The same numbering strategy can be transferred to the two other domains. The “central point” is 
depicted in black. Three iso-normalized enthalpies at 80, 25 and 17 are plotted. The full markers are the six parameter 
sets closest to each central points, and the six empty markers are the six parameter sets the furthest away from the central 
points.  
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A one-second delay was applied between each line track to ensure that the recording of each line is done under 

the same thermal conditions. Moreover, this delay guarantees that the reverberation of the sound inside the 

build chamber, which can last ~100 ms after the laser stops, is completely attenuated. Again, this guarantees 

that the recording of a new line always starts under the same conditions [70]. However, as compared to the 

processing maps reported by Tucho et al. [25], the one-second delaying time reduces the size of the conduction 

regime domain, and even more significantly, the one of the LoF regime. In contrast, the stable keyhole regime 

domain (i.e., with no porosity formation) becomes larger.  

8.3 Data processing 

A pre-delay of 0.5 ms is implemented to make certain that the acoustic signal is recorded from the beginning 

of the laser process. To ensure having recorded the signal over the entire line, 27’000 data points were acquired 

for the keyhole pores process regimes, 21’000 for the conduction mode and 18’000 for the LoF pores. All 

acoustics signals were then extracted as follows: the first 3’000 points were removed, the next 10’000 points 

were kept, and the remaining points were also removed. With this procedure, all analyzed signals have the 

same length, and the non-steady state conditions (when the laser has not yet reached the required speed) are 

excluded from the analysis. 

A CNN is chosen for the classification tasks. CNN have been proven to be effective for noisy signal [29], [62] 

and they avoid the feature extraction step. It is implemented using a PyTorch library is chosen for the classifi-

cation tasks. The AE signals have been filtered with a low pass filter at 60 kHz, as the microphone is polarized 

for higher frequencies and because [29] showed that the information responsible for the three regimes for-

mation where mostly below 40 kHz. The signals were then downsampled by a factor of four, and finally nor-

malized between 0 and 1. 

For all signals, spectrograms, after the post-processing, were extracted from the acoustics signals. A short 

window increases the time and spatial resolution of defect detection, but could be more affected by noise. The 

time span must also be large enough for at least one defect to form. A good compromise was obtained with a 

window of 16 ms (10’000 data points). In order to have the best tradeoff between the resolution in time and in 

frequency, a spectrogram of size 97x626 was selected after an exhaustive search. A typical spectrogram for 

each process regime is presented in Figure 101.  

1,100 acoustics signals were taken per sample. As a result, if twelve parameters sets (samples) are included in 

the training set, then 13,200 signals (and thus the same amount of spectrograms) are considered per category. 
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Figure 101. Example of a spectrogram for the three regime related categories. 
 

The training of the CNN is performed on 80% of the signals (randomly picked), and the remaining 20% of the 

signals are kept for the validation of the model’s performance. The model is then tested on 1,100 signals from 

the same process regime or category but with another parameter set unseen by the algorithm. The CNN archi-

tecture is illustrated in Figure 102. It includes two 2D convolution layers max pooled by 2x2, each batch-

normalized to reduce overfitting. The Rectified Linear Units (ReLU) activation function is applied to both 

layers. Two fully connected layers are following these layers. The model is trained for 50 epochs with a batch 

size of 1,000, a learning rate of 5e-4, and the Adam optimizer. The same architecture is kept unaltered for all 

the classifications in this work, for comparison purpose. The use of the background noise in the training is only 

to help the algorithm. The classification accuracy for the background noise was always 100 %. Hence, it will 

not be further mentioned in the description of this work.  

 

Figure 102. Scheme of the CNN architecture with two convolutional layers and two fully connected layers 



Acoutics emission for the prediction of processing regimes in Laser Powder Bed Fusion, and the 
generation of processing maps 

191 

8.4 Results and discussion 

8.4.1 Toward the generalization of the ML model over the entire processing map 

One important objective of this paper is to investigate to what extent the proposed ML algorithm can predict 

the process regime of an unseen parameter set (i.e. not part of the training) from its recorded AE signals. 

As already described in section 2.2, the airborne AE signals from a chosen number of parameter sets are used 

for training the ML, which is then tested on a new parameter set. In this work, the CNN architecture in Figure 

102 has been trained first with twelve parameter sets (experiments n°1 to 12 in Figure 100 and Table 33) for 

each process regime (LoF pores, conduction mode, and keyhole pores). Then, the model was tested by classi-

fying the process regime on an unseen parameter set (black point in Figure 100, n°13 in Table 33). As shown 

in Figure 100, the unseen parameter is surrounded by the ones used for training the ML model. 

The results of the classification accuracies for the three process regimes (LoF pores, conduction mode, and 

keyhole pores) are given in the confusion matrix in Table 34. The accuracy, in % (diagonal values in Table 34) 

is defined as the number of true positives divided by the total number of tests in each category. The misclassi-

fications are the false positives and false negatives divided by the total number of tests in each category as 

well. For example, the conduction mode was classified with a very high accuracy rate of 96%. The classifica-

tion distributed equally between the conduction mode and keyhole pores with 2% each. From this table, it is 

observed that classification results are higher than 96% for all three categories. We can therefore conclude that 

the model can be generalized to predict, with high confidence, the regime of a new, unseen parameter set, if it 

is surrounded (in the processing map) by parameters sets used to train the algorithm. The generalization here 

can be thought as a type of interpolation.  

Table 34. Confusion matrix for a CNN model trained on 12 parameter sets and tested on an unseen 13th parameter set 
Ground truth 

  

Classification  

accuracy [%] 

Keyhole pores Conduction mode LoF pores 

Keyhole pores 96 2 0 
Conduction mode  2 96 0 
LoF pores 2 2 100 

 

8.4.2 Influence of the position, number of parameter sets and choice of process parameters on the 

classification accuracy 

While the previous sub-section demonstrated the interpolation abilities of our CNN algorithm, the present 

section investigates the influence of different factors on the classification accuracy of the tested parameter sets 

to establish the conditions required to construct a robust model.  
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For each process regime, the factors considered to influence the classification accuracy are: 

 The position (in the processing map) of the parameter sets chosen for the training database as com-

pared to the tested (unseen) parameter set. 

 The number of sets in the training database  

 The influence of the chosen process parameters: laser power, laser speed, and normalized enthalpy. 

 The relative normalized “distance”, in terms of laser power, laser speed, and normalized enthalpy (𝑑 , 

𝑑  and,𝑑 ) between the average values of the parameter sets considered in the training, and the tested 

(unseen) parameter set. 

The same CNN architecture (Figure 101) is used.  

iii. Influence of the position of the parameter sets in the training database with respect to the tested 

(unseen) parameter set 

To study the influence of the position of the training parameter sets with respect to the unseen parameter set, 

the four extreme parameter sets (n° 1, 4, 5, and 8 in Figure 100 and Table 33), in terms of laser power and 

speed, are successively chosen as the unseen parameter set. The remaining 12 other parameter sets are, each 

time, used for training the ML. Table 35 shows the corresponding 3-by-3 confusion matrices for the classifi-

cation of the three regimes. The unseen parameter set has either the highest speed (n°8, Bold font in Table 35), 

the lowest speed (n°5, Normal font in Table 35), the highest power (n° 1, Bold Italics font in Table 35), or the 

lowest power (n°4, Italics font in Table 35).  

Overall, it can be seen that the classification accuracy remains high, although slightly lower values are obtained 

in keyhole and conduction modes for the “highest speed” unseen parameter set, when compared to the earlier 

case for which the unseen parameter was the central black point (Table 34). However, the classification accu-

racy in conduction mode for the “lowest power” unseen parameter set, sample n°4, is significantly lower (75%). 

This decrease can be correlated to the fact that this set is located near the boundary between the conduction 

mode domain and the LoF domain (see Figure 100). The micrographs of the sample n°4 of the conduction 

mode and of the sample n°1 of the LoF mode are displayed in Figure 103.a. and in Figure 103.b., respectively. 

Although scattered LoF pores can be observed in Figure 103.b., it can be seen that the microstructures are 

similar in terms of melt pool dimensions. The average melt pool depth and length for the conduction mode 

sample are equal to 63 um and 87 um, respectively. In the case of the LoF sample, they are of 57 um and 82 

um, respectively. In Ghasemi et al. [24], the minimal ratio between the melt pool depth and the layer thickness 

that guarantees the conduction mode state was reported around 1.5-1.6. This ratio is here equal to 1.57 and 

1.43 in sample 4 (conduction mode) and sample 1 (LoF mode), respectively. It is possible that a low amount 
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of LoF pores is present in sample 4 (conduction mode) while not visible in the analyzed cross sections. The 

proximity between these microstructures could explain the decrease in classification accuracy for this sample 

set, as the AE signals are expected to have many similar features. This means that for a reliable and robust 

model, a local decrease in accuracy could be indicative of a parameter set located at the border between two 

processing regimes. In other words, it could help identifying the frontiers of the processing regime domains 

when constructing a processing map.  

Table 35. Confusion matrices for CNN models trained with twelve parameter sets and tested on the highest speed set 
(Bold), on the lowest speed set (Normal), highest power set (Italic Bold), and lowest power set (Italic). 

Ground truth 

  

Classification  

accuracy [%] 

Keyhole pores Conduction mode LoF pores 

Keyhole pores 

83 
96 
97 
98 

15 
1 
9 

17 

4 
3 
3 
4 

Conduction mode  

6 
3 
2 
2 

84 
99 
90 
75 

1 
2 
1 
2 

LoF pores 

1 
1 
0 
0 

1 
0 
1 
8 

95 
95 
96 
95 

 

 

Figure 103. Micrograph of a cross section of the sample. a) n°4 in the conduction mode domain and b) of the n°1 in the 
LoF pores domain. The parameter sets used for these samples are at the boundary between the conduction and LoF 
domains.  
 

iv. The number of parameter sets  

The influence of the number of sets in the training database was also evaluated. In addition to the 12 sets 

previously used (Table 33), training databases with six, eight, and ten different process parameter sets were 

employed. Once again, the trained CNN algorithm was used to predict the process regime of an unseen param-

eter set, chosen among the four most extreme points in the processing map (n°1, 4, 5, and 8 in Figure 100). 
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The parameter sets present in each training database were selected in order to maximize dS and dP. Similar to 

Table 35, Table 36 presents the 3-by-3 confusion matrices for the three categories (process regimes) on the 

four tested unseen conditions when ten, eight, and six parameter sets are included in the training database. The 

classification accuracies with ten parameter sets in the training database are similar to the ones obtained with 

twelve parameter sets (Table 35). The accuracies are high, except for the prediction of the unseen parameter 

set n°4, located at the border of the conduction mode domain. The lower accuracy can again be explained by 

this particular location, as discussed above when using 12 parameter sets. The average classification accuracy 

for the models trained with 8 parameter sets is remarkably high for all tested unseen parameter sets. However, 

when six parameter sets are included in the training, the classification accuracies on unseen parameter sets are, 

on average, lower and more scattered, depending on the considered tested point. Six parameter sets do not 

seem to be sufficient to obtain a robust model able to perform accurate predictions in other unseen locations 

of the processing map.  

Table 36. Confusion matrices for CNN models trained with ten, eight, and six parameter sets and tested on the highest 
speed set (Blod), lowest speed set (Normal), highest power set (Italic Bold), and lowest power set (Italic). 
 10 sets 8 sets 6 sets 

Ground truth 

 

  

Classification  

accuracy [%] 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole pores 

88 
93 
91 
95 

17 
1 
9 

14 

4 
3 
4 
3 

100 
93 
94 
94 

3 
0 

11 
5 

1 
3 
2 
0 

78 
83 
91 
92 

16 
2 

13 
7 

3 
16 
7 
4 

Conduction 
mode 

2 
6 
8 
4 

83 
99 
91 
74 

1 
5 
5 
2 

0 
7 
4 
3 

97 
100 
88 
93 

0 
4 
0 
0 

8 
15 
6 
6 

82 
98 
80 
71 

1 
15 
3 
2 

LoF pores 

10 
1 
1 
1 

0 
0 
0 

12 

95 
91 
91 
95 

0 
0 
1 
3 

0 
0 
1 
2 

99 
93 
98 

100 

14 
2 
3 
2 

2 
0 
7 

22 

96 
70 
90 
94 

 

In addition to the number of parameter sets in the training database, the position of the sets with respect to the 

unseen parameter set was also considered. In the first case, the six sets with full markers (n° 2, 3, 6, 7, 10, 11) 

in Figure 100 constitute the training database, and the model is applied for predicting the processing regime of 

the central point, n°13 (in black in Figure 100). The accuracy results are compared with those obtained in the 

second case, i.e., when the six sets with empty markers (n°1, 4, 5, 8, 9, 12) in Figure 100 are in the training 

database, and the model is also applied on the unseen central point, n°13. In both cases, the average value of 

the process parameters considered in the training database are the same as for the unseen parameter set (both 

in terms of laser power and speed); however, the full marker sets are closer to the central point than the empty 
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markers. It can be seen in Table 38 that all classification accuracies are very high (>91 %), and that no signif-

icant difference between the two configurations can be noted.  

From these results, it can be highlighted that the number of parameter sets in the training base can be lowered 

down to six if the points are surrounding the unseen parameter set. The average RMS “distance” in power 

(dp_RMS) and in speed (ds_RMS) between the training sets and the unseen parameter set is given in Table 37, 

considering either the closest or the most distant sets.   

𝑑 _  ∑ 𝑃 𝑃          (3) 

The RMS distances (dp_RMS, ds_RMS) give us an evaluation of how far the training set is from the testing set. 

Where the normalized relative distances (dS, dP) give us an indication on how the training sets are distributed 

around the tested set.  

The model has a good classification accuracy both when the sets are close to the unseen set (small dp_RMS and 

ds_RMS values as shown in Table 37) as when the sets are more distant from the tested set. Therefore, the pa-

rameters that seems to have a higher importance are the relative normalized distances.  

Table 37. The RMS “distance” values dp_RMS (considering laser power) and ds_RMS (considering laser speed) between 
the training parameter sets and the central unseen parameter set. The close parameter sets and distant ones are 
distinguished. 
 dP_RMS (W) ds_RMS (mm/s) 

Distant training sets to the unseen set 12 61 
Closest training sets to the unseen set 5 16 

 

Table 38. Confusion matrices for CNN models trained with the six closest parameter sets to the unseen central parameter 
set, and the six more distant points, for each regime. 

 

 

 

 

 

 

  

 Closest 
(i.e. full markers) 

 Furthest 
(i.e. empty markers) 

Ground truth 

  

Classification  

accuracy [%] 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

 
Keyhole 

pores 
Conduction 

mode 
LoF 
pores 

Keyhole pores 97 1 0  91 1 1 
Conduction mode 2 98 1  7 98 2 
LoF pores 1 1 99  2 1 97 
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v. The process parameters: speed, power, normalized enthalpy 

The influence of the choice of process parameters in the training set was also studied. The processing map is 

expressed in terms of laser speed and power. The normalized enthalpy (equation 1) is a function of these two 

process parameters. In each process regime, the four-parameter sets with the same speed (i.e., “iso-speed” 

parameter sets, n°1, 2, 3, 4 in Figure 100) were chosen to compose the training database, and the trained CNN 

was used for predicting the process regime of the central unseen parameter set (n° 13). The same strategy was 

used with the four “iso-power” (n° 5, 6, 7, 8 in Figure 100) and four “iso-normalized enthalpy” (n° 9, 10, 11, 

12 in Figure 100) parameter sets. The aim was to determine how the algorithm behaves if one parameter (speed, 

power, or normalized enthalpy) is constant for all parameter sets in the training database, and remains the same 

for the unseen parameter set. The confidence matrices in Table 39 show that for the three considered training 

sets, the classification accuracies are high (> 88%), despite the fact that only four parameter sets were used for 

the training. 

Table 39. Confusion matrices for CNN models predicting the process regime of an unseen ‘central’ parameter set, with 
one of the parameters being the same as the one in the training set. Three training databases made of 4 parameter sets 
were considered with iso-speed, iso-power, and iso-enthalpy. 
 Iso-speed Iso-power Iso-enthalpy 

Ground truth 

 

 

  

Classification  

accuracy [%] 

Keyhole 

pores 

Conduction 

mode 

LoF 

pores 

Keyhole 

pores 

Conduction 

mode 

LoF 

pores 

Keyhole 

pores 

Conduction 

mode 

LoF 

pores 

Keyhole pores 88 3 2 96 4 0 93 1 0 

Conduction mode 11 97 6 2 93 1 5 97 0 

LoF pores 1 0 92 2 3 99 2 2 100 

 

Additionally, for each process regime (LoF pores, conduction mode, and keyhole pores), the set with the high-

est power (n°1) was selected as the unseen parameter set, and the two sets with the lowest power values (n° 3 

and 4) were used for the training database. The resulting classification accuracy was then compared with the 

one obtained with a training database made of the two sets with the smallest dP to the unseen parameter set n°1 

(i.e., n°2 and 13). The same procedure was applied considering the laser speed or the normalized enthalpy, 

instead of the power. In the former case, the unseen parameter was chosen as n°8, and the CNN was either 

trained with the parameter sets n°5 & 6 or with the n°13 & 7. In the latter case, the unseen parameter was 

chosen as n°12, and the CNN was either trained with the parameter sets n°9 & 10 or with the n°11 & 13. The 

results are presented in Table 40.  

One can observe that the average classification accuracy is 18% higher when the training parameter sets are 

closer to the unseen parameter set in terms of laser speed (smaller dS), and 5% higher when they are closer in 
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terms of laser power (smaller dP). The difference can be explained by the fact that, in the present DOE, the 

power range is smaller than the speed range. It can still be concluded that the smaller dS and dP, the higher 

would be the classification accuracies for the unseen parameter set. However, when comparing the influence 

of 𝑑 , it can be seen that the accuracies are similar for both conditions (in average 75% for a smaller 𝑑 , 

and 78% for a higher 𝑑 ). Table 41 presents the values of 𝑑  along with the corresponding values of of dS 

and dP, for the predictions where the difference in 𝑑  is considered. While 𝑑  is higher for the sample in 

conduction mode, the corresponding dS is equal to zero, which could explain that a higher classification accu-

racy (94% compared to 64%) is achieved, even though 𝑑  is higher. It can be presumed from these observa-

tions that the relative normalized distance in terms of normalized enthalpy is not a very relevant parameter. 

Table 40. Confusion matrices for CNN models trained on two parameter sets and used for predicting the process regime 
on an unseen condition with the highest power, speed or enthalpy values compared to the training parameter sets, 
distinguishing training databases with the smallest and highest dS, dP, and 𝑑  values. 
Closest 

Distance in speed Distance in power Distance in enthalpy 

Ground truth 

 

 

  

Classification  

accuracy [%] 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole pores 88 21 18 85 9 10 80 25 15 

Conduction mode 3 78 15 13 90 4 18 64 4 

LoF pores 9 1 67 2 1 86 2 11 81 

Average  78   87   75  

Most distant  
Distance in speed Distance in power Distance in enthalpy 

Ground truth 

 

 

  

Classification  

accuracy [%] 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole 
pores 

Conduction 
mode 

LoF 
pores 

Keyhole pores 61 46 30 88 13 14 85 6 25 

Conduction mode 9 52 3 10 87 13 14 94 18 

LoF pores 30 1 67 2 0 73 1 2 56 

Average   60   82   78  
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Table 41. Values of dS, dP, and 𝑑  when predicting the process regime of an unseen condition with the lowest and the 
highest 𝑑  . 

 dS [%] dP [%] 𝑑  [%] 

Closest 
Most 

distant 
Closest 

Most 
distant 

Closest 
Most 

distant 
Keyhole pores 21 31.6 8.6 6.6 3 28.6 
Conduction mode 6 0 15.7 39.8 12.5 40 
LoF pores 6 5.3 8.5 18 5.5 22 

 

vi. Relative normalized distance in terms of power and speed 

All the aforementioned CNN prediction results motivate an in-depth investigation of the influence of the num-

ber of parameter sets and the relative normalized distance in terms of power and speed (dP and dS) on the 

robustness of the models performance. Several models were trained with various numbers of parameter sets 

(from two to twelve), with different relative positions of the training sets with respect to the unseen parameter 

set, and with different values of dP and dS. The resulting classification accuracies were averaged between the 

three process regimes (LoF pores, conduction mode and keyhole pores). Figure 104 and Figure 105 present 

the average classification accuracy for the unseen parameter sets, as a function of the relative normalized dis-

tance in terms of speed (dS) and power (dP), respectively, for the different numbers of training sets used in the 

CNN database. The linear regressions of accuracies, obtained with a common number of training sets, are 

plotted in dotted lines (Figure 104 and Figure 105) in order to highlight tendencies. 

 

Figure 104. Average classification accuracy of the 
processing regime of the unseen parameter set, as a 
function of the relative normalized distance in terms of 
speed dS for different numbers of parameter sets included 
in the training database (from 2 to 12). 

 

Figure 105. Average classification accuracy of the 
processing regime of the unseen parameter set, as a 
function of the relative normalized distance in terms of 
power dP for different numbers of parameter sets included 
in the training database (from 2 to 12). 

 

It can be first observed that the higher the number of parameter sets included in the training database, the 

higher the average classification accuracy. Additionally, a general trend can be highlighted: the higher the 
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relative normalized distance (for both dP and dS), the lower the classification accuracies. One outlier is the 

prediction of the sample n°4 regime (conduction mode), when using 10 and 12 training sets. The processing 

conditions refer, as aforementioned, to the intersection between the conduction mode domain and the LoF 

domain. In the context of predicting processing maps, and as already noted, this feature is interesting, as it 

indicates a transition zone between 2 process regimes. When eight parameters are included in the database, the 

prediction for this condition n°4 has a higher accuracy (93%), which explains the excellent average results 

with 8 training sets, even better than those with 10 or 12 training sets. The relatively scattered nature of the 

results can be explained by the statistical behavior of the CNN. 

Nevertheless, if at least eight parameter sets compose the training database, the resulting model seems to be 

robust and able to predict with high confidence (>88%) the entire studied processing map, regardless of the 

distance in term of speed and power (up to a difference of approximatively 30%). When training with only two 

parameter sets, the results are very scattered and seem more related to the process parameters differences 

(power and speed) than to the laser-material interaction. In other words, using only two training sets is not 

enough to have a reliable model.  

 

Figure 106. Linear regressions of the average classification accuracy when predicting the process regime of an unseen 
parameter set, as a function of the distance dS (speed) and dP (power). 
 

In order to compare the influence of the relative normalized distance in power and the relative normalized 

distance in speed, Figure 106 presents the linear regressions of all results displayed in Figure 104 and Figure 

105, when at least four parameter sets were included in the training database, and distinguishing between the 

two types of distance. The systematically larger slopes of accuracies as a function of dP point towards a bigger 

influence of the relative normalized distance in power.  
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The difference in slope between the two considered linear regressions (as a function of dS and dP) varies sig-

nificantly depending on the number of training parameter sets (from 17% with 4 and 6 parameter sets, up to 

80% with 10 parameter sets).  

Although the influence of dp appears somehow larger, both dS and dP should be minimized to guarantee high 

classification accuracies.  

8.5 Conclusions  

This work presents the results of a CNN model applied to spectrograms extracted from measurements of an 

airborne acoustic sensor for the classification of LPBF processing regimes. The microphone placed inside a 

custom-design LPBF machined recorded the acoustic signals of the process for 39 different process parame-

ters, i.e., thirteen parameter sets per process regime (keyhole pores, conduction mode, or LoF pores). The 

labeling of the categories for each process condition was verified by cross-section analysis. A CNN model was 

optimized for spectrograms extracted from the acoustic signals filtered with a low pass filter at 60 kHz, 

downsampled 4 times and normalized.  

The aim of this contribution was to establish a methodology for the construction of a robust training database, 

leading to a CNN able to predict the processing regime in conditions unseen in the database, covering the entire 

LPBF processing map of 316L steel. The three considered regimes are LoF pores, conduction mode, and key-

hole pores. The CNN model is trained on a given number of laser parameter sets, and used for predicting the 

process regime of an unseen parameter set. The resulting classification accuracy is very high (>97%), proving 

that it is possible to construct a model general enough for identifying the features related to specific laser-

material interactions and leading to specific metallurgical states. Three main parameters are found to influence 

the classification accuracy. The first one is the relative normalized distance in terms of power and speed be-

tween the average laser parameters used in the training sets, and those of the unseen parameter set (dS, dP). The 

second is the number of parameter sets included in the training database, and the third is the position (in the 

processing map) of the training sets relative to that of the unseen parameter set. These three parameters have 

been proven to be interdependent. Results highlight that higher dS and dP values lower the classification accu-

racies. The influence of the relative normalized distance in terms of normalized enthalpy 𝑑  does not seem 

to be relevant. However, the influence of dP seems to be higher than that of dS. Moreover, it has been concluded 

that on average, the higher the number of parameter sets in the training database, the higher the classification 

accuracy. Two parameter sets are not enough to allow a model to generalize. An minimum number of eight 

training sets is identified, leading to high classification accuracies (>88 %) for all relative normalized distances 

and position considered in the present DOE. This number can be lowered to six if the training sets surrounding 

the unseen parameter set have a dS and dP lower than 5 %. If one process parameter (speed, power, or normal-

ized enthalpy) is constant among all sets in the training database, and common to the unseen parameter set, 
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then four training sets are enough for predicting the process regime with a high accuracy, regardless of the 

particular choice of process parameters.  

In summary, one model trained with eight distinct laser parameter sets randomly distributed in each process 

regime domain would be sufficient to classify the entire processing map. Once a robust model is obtained, a 

decrease in the classification accuracy can help identifying the boundaries between different domains in the 

2D processing map. This can significantly facilitate the time-consuming building of an LPBF processing map 

for a given alloy. In the context of in-situ acoustic monitoring for the control of the LPBF process, we demon-

strate here that unexpected processing conditions happening during the fabrication of a 3D part could be de-

tected, for example, by predicting from the AE signals a regime different from the conduction mode. In future 

work, the understanding of the features and frequencies responsible for specific laser material interactions, in 

each process regime, will be investigated based on the present results. The same methodology could be applied 

to the detection of other various critical events, such as crack propagation or microstructure changes.  
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 Conclusions and future work 

9.1  Conclusions 

Throughout the present PhD thesis, the acoustic monitoring of laser powder-bed fusion (LPBF) with the help 

of machine learning algorithms was investigated. AE signals were acquired during LPBF processing of three 

metallic alloys: stainless steel (316L), bronze (CuSn8), and Inconel (Inconel 718). Processing maps are devel-

oped to produce three principal LPBF regimes: LoF pores, conduction mode, and keyhole pores. This contri-

bution focuses on the correlation of the three regimes with their corresponding AE signals. The main conclu-

sions are summarised below. 

Airborne sensors are proven to be efficient for real-time monitoring of processing regimes, for different alloys. 

With the first low-cost microphone investigated, the AM41, the frequency distribution of AE signals for the 

three materials three process regimes is positioned between 1 and 60 kHz. The peaks were principally around 

10 and 40 kHz, as the AM4I acoustic sensor's sensitivity is higher in this region. The wavelet transform plot 

presents discrete peaks asserting that the regimes are distinct, and the selection of the window size for the 

classification task is essential for real-time defect localization. The clustered feature space visualization proves 

that the LPBF process is highly dynamic, and algorithms capable of classifying data in non-linear spaces are 

necessary. 

Four ML algorithms, LR, RF, SVM, and a CNN, were trained to classify the three process regimes individually 

for each alloy, but also with all materials mixed. Very high classification accuracy was obtained from all 

algorithms (at least 86%) on the individual alloys. A multi-label CNN was designed and shown capable of 

simultaneously classifying the alloy and the process regime, with high confidence (>91%). This is of great 

interest for the LPBF processing of multi-materials.  

Two process parameters per regime with specific normalized enthalpy and with the same laser parameters for 

the keyhole pores and LoF pores formation across materials proved that the AE features extracted and used as 

inputs for training algorithms are strongly related to the laser-material interaction. The generalization of the 

classification of LPBF defects to new alloys (not considered in the training) has been proven most of the time 

not possible with the chosen microphone. 

To reach a more robust monitoring approach, two methodologies are investigated. The first one consists in 

developing ML solutions based on semi-supervised or transfer learning algorithms, and the second one is to 

optimize the choice of the microphone, considering a flat frequency response. 
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The first methodology investigated a semi-supervised approach where the defect categories are differentiated 

from the conduction mode regime. This method reduced the amount of data needed for the classification as 

well as computational needs and the requirement of a balanced dataset. As a result, we could classify the 

anomaly regimes with 96% accuracy for the Inconel 718. A Deep Learning (DL) network has also been proven 

to be effective in transferring knowledge from stainless steel (316L) to bronze (CuSn8), considering four LPBF 

process regimes such as balling, LoF pores, conduction mode, and keyhole pores in . The classification accu-

racy was above 80%. 

The second methodology compared the classification results as well as saliency maps of the microphone AM41 

(with a high sensitivity around specific frequencies) to the ones of a second microphone CM16 (a flat response 

from 2 Hz to 200 kHz). The two microphones’ AE signals recorded from stainless steel 316L, considering 

three regimes, led to models able to classify with high confidence (>91%) a tested set of parameters not present 

in the training database, regardless of the CNN architecture and signals post-processing. However, a better 

CNN could be trained as the CNN models trained with the AM41 discarded information in the band of high 

sensitivity of the microphone. With this model, the frequencies responsible for the classification of the three 

regimes are found to be below 30 kHz. A methodology is determined to evaluate the quality of a CNN model 

using saliency maps. 

With a good CNN model, we finally determined the important criteria leading to a robust model able to predict 

the process regime in conditions unseen by the trained database. The minimum number of training processing 

conditions is identified as eight, in order to predict the process regime for any (unseen) laser parameters within 

the processing map. This number can be lowered to six if the training set is in the surrounding of the unseen 

parameters set. When one laser parameter (speed, power, or normalized enthalpy) is constant between all train-

ing and unseen parameter sets, only four training parameter sets allow a high classification accuracy. Once a 

robust model is obtained, a decrease in the classification accuracy can help identify the boundaries between 

different processing regimes in the 2D processing map. 

Overall, the thesis demonstrates that ML algorithm can effectively learn enough about laser-material interac-

tion, with adequate choice of training conditions, such that a robust real-time acoustic emission control of the 

LPBF process becomes possible. It also provides the means to numerically construct an entire processing map. 

9.2 Future work 

The results of this thesis open new avenues toward robust acoustic emission-based monitoring for additive 

manufacturing. However, there are still some challenges that require in-depth investigations.  

First, the use of the CM16 flat response microphone should be tested with other alloys and other LPBF ma-

chines. The comparison of the frequencies involved with the saliency map investigation for the three regimes 
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studied for other alloys and other machines can deepen the understanding of the phenomena that lead to the 

differentiation of acoustic footprints in relation to defect formation mechanisms.  

This knowledge could lead to the understanding of the next steps to reach a universal model for process mon-

itoring. In the same spirit, the study should be reiterated with a SBAE sensor and the saliency maps analyzed. 

The involved frequencies as well as the conditions to reach a robust training database that provide a model 

able to predict regimes in unseen conditions could be different. The combination of ABAE and SBAE should 

as well be investigated.  

The combination with optical and acoustics monitoring is rare and deserves further investigation. With the 

developed methodology, it can lead to a more reliable monitoring system able to better capture the complex 

process dynamics.  

Moreover, to reach a fully robust monitoring, the methodology developed in this thesis can be applied to var-

ious other critical events, such as crack propagation or microstructure changes.  

ML models used in this thesis are discriminative models, they draw boundaries in the data space. As the data 

space changes, they are susceptible to error. To reach a universal and robust modeling, the development of 

generative ML models, for example using domain adaptation, could also be investigated. The presented trans-

fer learning method can also be tried from one machine to the other. 

Finally, some preliminary analysis during this thesis led to promising results towards the localization of pores 

with saliency maps. A robust CNN trained with the raw data in the time domain (to have the best time resolu-

tion) should be developed. Another method could be the use of several ABAE sensors, such as to implement-

localization through signal triangulation. 
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