
Article
Striatal dopamine explains
 novelty-induced
behavioral dynamics and individual variability in
threat prediction
Highlights
d Novelty-induced behaviors are analyzed using modern

machine-learning methods

d Novelty induces risk assessment, which develops into

engagement or avoidance

d Dopamine in the tail of the striatum correlates with individual

behavioral variability

d Reinforcement learning with shaping bonus and uncertainty

explains the data
Akiti et al., 2022, Neuron 110, 3789–3804
November 16, 2022 ª 2022 The Author(s). Published by Elsevier
https://doi.org/10.1016/j.neuron.2022.08.022
Authors

Korleki Akiti, Iku Tsutsui-Kimura,

Yudi Xie, ...,

Mackenzie Weygandt Mathis,

Naoshige Uchida,

Mitsuko Watabe-Uchida

Correspondence
mitsuko@mcb.harvard.edu

In brief

Using automated analysis of mouse

behavior, Akiti et al. find diverse and

dynamic novelty exploration patterns,

including risk assessment, engagement,

and neophobia. These behaviors can be

explained by a subset of dopamine

neurons that treat physical salience as a

default threat estimate, thereby causing

progressive avoidance of the novel

object.
Inc.
ll

mailto:mitsuko@mcb.harvard.�edu
https://doi.org/10.1016/j.neuron.2022.08.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2022.08.022&domain=pdf


OPEN ACCESS

ll
Article

Striatal dopamine explains novelty-induced
behavioral dynamics and individual
variability in threat prediction
Korleki Akiti,1 Iku Tsutsui-Kimura,1 Yudi Xie,1,2 Alexander Mathis,1,3,4 Jeffrey E. Markowitz,5,6 Rockwell Anyoha,5

Sandeep Robert Datta,5 Mackenzie Weygandt Mathis,3,4 Naoshige Uchida,1 and Mitsuko Watabe-Uchida1,7,*
1Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02138, USA
4Swiss Federal Institute of Technology Lausanne, Geneve 1202, Switzerland
5Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
6Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Georgia Institute of Technology, Atlanta, GA

30322, USA
7Lead contact

*Correspondence: mitsuko@mcb.harvard.edu

https://doi.org/10.1016/j.neuron.2022.08.022
SUMMARY
Animals both explore and avoid novel objects in the environment, but the neural mechanisms that underlie
these behaviors and their dynamics remain uncharacterized. Here, we used multi-point tracking
(DeepLabCut) and behavioral segmentation (MoSeq) to characterize the behavior of mice freely interacting
with a novel object. Novelty elicits a characteristic sequence of behavior, startingwith investigatory approach
and culminating in object engagement or avoidance. Dopamine in the tail of the striatum (TS) suppresses
engagement, and dopamine responses were predictive of individual variability in behavior. Behavioral dy-
namics and individual variability are explained by a reinforcement-learning (RL) model of threat prediction
inwhich behavior arises from a novelty-induced initial threat prediction (akin to ‘‘shaping bonus’’) and a threat
prediction that is learned through dopamine-mediated threat prediction errors. These results uncover an
algorithmic similarity between reward- and threat-related dopamine sub-systems.
INTRODUCTION

In the natural world, animals continuously face the problem of

deciding whether to approach, avoid, or ignore a novel stimulus.

Maladaptation to novelty has been implicated in anxiety, autism,

and schizophrenia (Baron-Cohen et al., 2005; Hirshfeld-Becker

et al., 2014; Jiujias et al., 2017; Kagan et al., 1984; Orefice

et al., 2016). Behavioral responses to novelty have been

modeled in different ways across fields. Within the field of rein-

forcement learning (RL), novelty is often thought of as either a

rewarding outcome or a predictor of a potential reward, thereby

prompting exploration before the first rewards are received (Ka-

kade and Dayan, 2002; Xu et al., 2021). In this way, novelty can

be incorporated into existing RL frameworks. Similarly, artificial

intelligence models have been created that are ‘‘curious’’ or

intrinsically motivated (Colas et al., 2019; Oudeyer et al., 2007,

2016; Stout et al., 2005). Some of these models use information

gain, a reduction in the difference between the current event and

what was expected over time, to define event novelty (Jaegle

et al., 2019; Kaplan and Oudeyer, 2007). Notably, although

many computational models of novelty capture the neophilic as-

pects of novelty behavior, they fail to capture the neophobia and
Neuron 110, 3789–3804, Novemb
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the interplay between approach and avoidance in response to

novelty, observed in natural novelty responses.

Dopamine regulates reward-related behaviors, and electro-

physiology studies have shown that dopamine signals the

discrepancy between actual and predicted reward value

(Montague et al., 1996; Schultz et al., 1997). In RL, dopamine

can be used as an evaluation signal to reinforce a rewarding ac-

tion. However, recent studies have found that some dopamine

neurons are activated by novelty (Horvitz et al., 1997; Lak

et al., 2016; Ljungberg et al., 1992; Menegas et al., 2017, 2018;

Morrens et al., 2020; Schultz, 1998). To incorporate these nov-

elty responses into the RL framework, it has been proposed

that dopamine novelty response may correspond to optimism

or the potential for reward (Kakade and Dayan, 2002).

Although it has been widely assumed that dopamine neurons

broadcast reward prediction error signals to a wide swath of

targets, recent studies have shown that dopamine neurons

projecting to different targets send distinct information (Kim

et al., 2015; Lerner et al., 2015; Menegas et al., 2017; Parker

et al., 2016). Importantly, the canonical dopamine system—

comprising those neurons that project from the ventral tegmental

area (VTA) to the ventral striatum (VS)—does not respond to
er 16, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 3789
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novel stimuli at the population level (Menegas et al., 2017).

Recent studies in monkeys also found that dopamine neurons

in the substantia nigra pars compacta (SNc) do not respond to

novelty per se (Ogasawara et al., 2022) but rather respond to

novelty in the context of information seeking for reward (Brom-

berg-Martin and Hikosaka, 2009). In contrast, recent studies

found that dopamine neurons that project to the tail of the stria-

tum (TS) or the prefrontal cortex play a role in task-independent

novelty-related behaviors (Menegas et al., 2018; Morrens

et al., 2020).

A recent study found that dopamine in the TS displays unique

response properties (Kim and Hikosaka, 2013; Menegas et al.,

2017). TS-projecting dopamine neurons are strongly activated

by high-intensity or novel external stimuli in the environment (Me-

negas et al., 2017, 2018) or by salient visual cues, but not by

reward (Kim et al., 2015). Functionally, TS-projecting dopamine

neurons facilitate avoidance of a threatening stimulus, including

a novel object (Menegas et al., 2018).

However, it is not clearly understood how dopamine modu-

lates novelty-driven behaviors, as there are several limitations

in previous studies. First, previous studies treated novelty-

related behavior as a binary choice of either approach (orient,

saccade) or avoidance and often ignored the behavioral

complexity, dynamics, and individual variability that are essential

to understand the computations underlying novelty responses.

Variability in the novelty-triggered behavioral data had even

been interpreted as experimental deficits (Corey, 1978). Howev-

er, individual variability is an important factor to understand the

neural computations (Marder and Goaillard, 2006). Second,

many previous studies were conducted in constrained environ-

ments that limited behavioral choices (Menegas et al., 2017;

Morrens et al., 2020; Ogasawara et al., 2022). It has been re-

ported that animals respond differently to novel objects depend-

ing on whether they are in a small environment (‘‘forced expo-

sure’’) or in a sufficiently large enclosure to be able to choose

between exploring or totally avoiding a novel object (‘‘voluntary

exploration’’) (Corey, 1978; Rebec et al., 1997). Third, the defini-

tion of novelty has varied across studies. Recent studies empha-

size the computational difference between stimulus novelty and

contextual novelty: the former refers to the quality of not being

previously experienced or encountered, and the latter refers to

the ‘‘surprise’’ when what is experienced does not match with

what was expected in time and/or context (i.e., prediction error)

(Barto et al., 2013; Kumaran and Maguire, 2007; Ranganath and

Rainer, 2003; Xu et al., 2021).

In this study, we usedmachine learning to characterize individ-

ual variability in behavioral novelty responses while mice freely

explored a novel object placed in a large arena.We subsequently

examined the effects of two types of novelty, the first in which a

mouse explored a new stimulus (‘‘stimulus novelty’’) and the sec-

ond in which a mouse explored a familiar stimulus in a new loca-

tion (‘‘contextual novelty’’). These different noveltymanipulations

induced distinct patterns of behavior, which were differentially

affected by ablation of TS-projecting dopamine neurons. The di-

versity and the dynamics of the observed novelty behaviors were

well captured by a simple RLmodel, which incorporates the con-

cepts of initial estimation (‘‘shaping bonus’’) and uncertainty. We

propose that novelty avoidance is a critical defensive strategy in
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which a novel stimulus causes default estimation of potential

threat when the outcome is unknown. Because death or signifi-

cant injury prevent learning, the brain may have adapted to esti-

mate the degree of threat posed by a novel object through its

physical salience, signaled by dopamine in the TS.

RESULTS

Novelty triggers diverse behaviors with a stereotypical
risk-assessment response
We designed an open arena novelty exploration paradigm (Fig-

ure 1).Mousemovementswere captured using anoverheadcam-

era that recorded four channels: three color channels (RGB) and

one channel for depth (Microsoft Kinect). DeepLabCut (Mathis

et al., 2018) was used to track the nose, ears, and tail base of

the mouse (see STAR Methods). On the first day of novelty (N1),

when the mice were first encountering the object, they exhibited

diverse behaviors; some spent more and some spent less time

within theobject areacomparedwith habituationdays (Figure1B).

The observeddiversity was not randomnoise because time spent

near the object (see STAR Methods) in each individual was

strongly correlated across sessions (Figure 1B). Novel object

approach frequency and approach bout duration also varied

across mice, although both of these parameters co-varied within

a given mouse (Figures 1C and 1D).

Close examination of nose and tail trajectories revealed that

during the first several approach bouts, mice oriented them-

selves to face the object (Figure 2). As a result, when the mouse

reached the closest point to the object, the closest body part

was always the nose, not the tail (Figure 2C, N1). These data sug-

gest that the novelty response characterized by ‘‘approach with

tail behind’’ is unique to early interactions with a novel object.

To quantify this prominent novelty-related behavior, we classi-

fied approach bouts based upon orientation, which revealed that

every mouse approached the object with the tail behind in the

first 10 min of the first day of novelty (Figure 2D, n = 26 animals).

The frequency of approach with the tail behind decreased over

time (Figure 2D). Over the course of the first day, some mice

started to expose their tails to the object, while some mice did

not expose their tails to the object during entire sessions

(Figure 2E).

Thus, mice exhibit a robust and stereotyped response at the

beginning of interactions with a novel object, one that resembles

a form of behavior described as ‘‘risk assessment’’ (Blanchard

et al., 1991; Gottlieb and Oudeyer, 2018; Kidd and Hayden,

2015). In contrast, post-assessment behaviors were diverse,

with individual animals exhibiting a wide spectrum of approach

or avoidance behaviors. We operationally refer to post-assess-

ment approach as ‘‘tail exposure engagement,’’ to distinguish

it from risk assessment.

Post-assessment engagement is suppressed by
stimulus novelty
Initial encounters with a novel object inevitably include both stim-

ulus novelty (as the object has not yet been encountered) and

contextual novelty (as the object has not been encountered in

any context). In order to understand that the stimulus is novel,

the brain has to search its stored memory of all objects
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Figure 1. Diversity of novelty behavior is captured in open arena

(A) Trajectory of nose from an example animal in the first 10 min of each session.

(B) Time spent within object area (7 cm radius). Left: thick black, average value across mice. Right bottom: mean ± SEM. Time spent near object was significantly

correlated across novelty days but not between novelty and habituation days (R =�0.02, p = 0.89, H1; R = 0.29, p = 0.13, H2; R = 0.87, p = 0.0000, N2; R = 0.69,

p = 0.001, N3; R = 0.66, p = 0.0002, N4, Pearson’s correlation coefficient with N1, n = 26 animals).

(C) Frequency of approaches.

(D) Duration of approach bouts.
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encountered in the past (Barto et al., 2013). To understand that,

in addition, the object is unexpected in the current context, the

brain has to compare the current state with the predicted state

(Ranganath and Rainer, 2003).

To separate the impact of different kinds of novelty on

behavior, we incorporated object pre-exposure into our behav-

ioral paradigm (Figure 3), which dramatically changed the ani-

mal’s reaction to the object in test sessions. As shown above

(Figures 1 and 2), somemice spent more time near a novel object

on N1, while others spent less (Figure 3A, left). In contrast, mice

consistently approached an unexpected familiar object (Fig-

ure 3A, middle). As a population, mice with an unexpected

familiar object spent significantly more time near the object

than mice with a novel object (Figure 3A, right); they exhibited

a limited tail-behind approach and quickly switched to tail expo-

sure (Figure 3B). Mice interacting with a novel object used the

tail-behind approach significantly more frequently than mice

with an unexpected familiar object and used the tail-exposure

approach significantly less frequently (Figures 3B and 3C).

Our observation that the tail-behind approach was consis-

tently observed at the beginning of N1 in both groups

(Figures 3B and 3D) suggested that risk-assessment behavior

is driven by unexpectedness, not specifically by stimulus nov-

elty. However, in response to an unexpected familiar object,

mice exhibited a quick transition to an approach with tail expo-

sure (engagement), suggesting that stimulus novelty suppresses

engagement.
Ablation of TS-projecting dopamine neurons biases
post-assessment behavior toward approach
To understand the computational role of dopamine in the TS in

novelty-driven behaviors, we performed ablation of TS-projec-

ting dopamine neurons with 6-hydroxydopamine (6OHDA) (Fig-

ures 4 and S1). Consistent with our previous study (Menegas

et al., 2018), animals with the ablation of TS-projecting dopamine

neurons spent more time near a novel object than animals with

the injection of a vehicle (Figure 4B) and showed longer duration

of approach bouts (Figure S2). When analyzing risk assessment

and engagement, all ablation mice as well as sham-lesioned an-

imals expressed approach with the tail behind in early periods of

N1 (Figure 4C, left). After risk assessment, more ablation mice

showed a transition to the tail exposure approach, resulting in

a higher frequency of tail exposure as a population (Figures 4C

and 4D).

These results demonstrate that the ablation of TS-projecting

dopamine neurons increased approach with tail exposure, i.e.,

premature transition to engagement, suggesting that intact

dopamine in the TS suppresses post-assessment engagement.

Behavioral segmentation of novelty-driven behaviors
Thus far, we had classified approach types by focusing on the

animal’s tail position relative to its nose. To segment behavioral

responses to novel objects into constituent components, we

next analyzed the same data using MoSeq (Wiltschko et al.,

2015), an unsupervised machine-learning-based behavioral
Neuron 110, 3789–3804, November 16, 2022 3791
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Figure 2. Stereotypic behavioral response to novelty

(A) Trajectory of nose or tail (in red and black, respectively) from an example mouse in the first 20 bouts of each session.

(B) Nose and tail position relative to object in an example animal.

(C) The closest position to object within each bout for nose and tail in an example animal.

(D) Frequency of approach bout with tail behind. Bottom: mean ± SEM. Right: average frequency normalized with baseline on habituation for each mouse. Tail-

behind approach frequency decreases over time (p = 2.8 3 10�11, t test, n = 26 animals, beta coefficients of linear regression of frequency with time).

(E) Fraction of tail exposure.
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characterization method that identifies behavioral motifs or ‘‘syl-

lables’’ fromdepth imaging data (Figure 5).We noticed that some

syllables were overrepresented near the time of retreat. One syl-

lable stood out (Figure 5B, syllable 79, purple) in both the novel

object mice and the sham mice. To examine whether any of

the syllables were frequently and specifically expressed in

different novelty conditions, we first identified a set of syllables

that was both highly used and enriched in the novel or unex-

pected familiar object condition (see STAR Methods; Figure S3).

We found that the identified syllables 79 and 14 were highly en-

riched at the time of retreat compared with the whole session,

nearly always occurring during an approach with tail behind

rather than with tail exposure (Figure 5C, usage was 46.3%

and 22.9% of all approach with tail behind [n = 684] for syllables

79 and 14, respectively). Interestingly, syllable 79 was expressed

just before the time of retreat and was reliably followed by sylla-

ble 14 (14 follows 79, 71.3% ± 18.9% of usages, mean ± SEM,

n = 17 sham animals; Figure 5F, left).

Visual inspection of the videos (Videos S1 and S2) and video

clips (Figure 5D) revealed that syllable 79 represented a

‘‘cautious approach’’ behavior and that syllable 14 represented
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a ‘‘cautious retreat’’ behavior. These results indicate that

cautious approach and retreat are linked, and together make

up risk-assessment behavior. Thus, both syllables enriched in

the novel object condition were related to risk-assessment

behavior, which is consistent with our observations made

through body part tracking (DeepLabCut), demonstrating that

the approach with tail behind is more pronounced with a novel

object (Figure 3).

Consistent with the temporal dynamics of risk assessment

characterized above, syllables 79 and 14 showed a gradual

decay in usage (Figure 5E). Interestingly, both syllables were

also expressed more frequently in sham mice compared with

ablation mice (Figures 5E and S3, sham versus ablation, p =

0.010, syllable 79; p = 0.030, syllable 14, Kolmogorov-Smirnov

[K-S] test). Thus, ablation of TS-projecting dopamine neurons

decreased both novelty responses and usage of risk-assess-

ment syllables 79 and 14, although our manual classification

using DeepLabCut could not detect the small difference

(Figure 4D).

Our finding that the expression of both syllables 79 and 14

were decreased in ablation mice indicates that TS dopamine
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Figure 3. Suppression of post-assessment engagement with stimulus novelty
(A) Time spent near an object. Right: cumulative probability on N1.Mice spend less time near a novel object (p = 0.018, n = 9 animals for each group, Kolmogorov-

Smirnov [K-S] test).

(B) Frequency of each approach type. Right: mean ± SEM.

(C) Average frequency of approaches onN1 for eachmouse. Approachwith tail behind ismore frequent toward novel objects (p = 0.0031), whereas approachwith

tail exposure is more frequent toward unexpected familiar objects (p = 0.0031, n = 9 animals for each group, t test).

(D) Fraction of animals with approach with tail behind in each approach bout.
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Figure 4. Ablation of TS-projecting dopamine neurons promotes post-assessment engagement

(A) Coronal sections (bregma �1.5 mm) from sham (left) and ablation (right) animals. Dopamine axons were labeled with anti-tyrosine hydroxylase (TH) antibody.

BLA, basolateral amygdala; CeA, central amygdala.

(B) Time spent near object. Right: cumulative probability on N1. Ablation versus sham, p = 0.030 (K-S test).

(C) Frequency of each approach type bout. Right: mean ± SEM.

(D) Average frequency of approach with tail behind (left: p = 0.069, t test) and approach with tail exposure (right: p = 0.010, t test) on N1. n = 17 animals for

each group.

See also Figures S1 and S2.
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impacts both the cautious approach and retreat behaviors. This

is surprising because if approach and retreat are opposing be-

haviors, and dopamine in TS reinforces only retreat, ablation

of TS-projecting dopamine neurons should predominantly

affect retreat. However, the specific syllables associated with

approach and retreat were both affected by ablation. We next

compared the transition from syllable 79 to 14 in sham and abla-

tion animals. Transition from syllable 79 to syllable 14 was simi-

larly high in both animal groups (Figure 5F), indicating that choice

of retreat types, characterized by a combination of syllables 79

and 14, was already determined before approach. Ablation of

TS-projecting dopamine neurons decreased risk assessment,

characterized by a specific posture of approach-retreat, but

did not change the structure of risk-assessment behaviors, char-

acterized by the sequence of unique syllables.
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TS dopamine response to novelty reflects individual
variability in behavior
To better understand the role that TS dopamine plays in novelty

behavior, wemonitored dopamine release in TS using fiber fluor-

ometry with a dopamine sensor, GRAB-DA2m (Sun et al., 2020;

Figures 6 and S4). Consistent with our previous observations of

dopamine axon calcium in TS (Menegas et al., 2018), we

observed dopamine release in TS around the time of retreat

onset when animals were at the closest point from an object,

but not at the start of approach or at the end of retreat (Figure 6A),

consistent with the idea of risk assessment or evaluation.

As described above (Figures 1 and 2), behavioral responses to

novelty were variable across animals. Interestingly, the dopa-

mine responses to a novel object were also variable (Figure 6B).

Further, mice with high average TS dopamine responses on N1



Figure 5. Behavioral segmentation of novelty responses using MoSeq

(A) MoSeq workflow.

(B) Top: syllable usage across all approach bouts on N1 in all mice. Bottom: fraction of syllable usage at retreat (�1 to 1 s).

(C) Syllable usage in novel object group.

(D) Top: example image series and superimposed images (full videos in Videos S1 and S2). Bottom: spatial expression.

(E) Syllable usage in each group. Top: time course (mean ± SEM). Bottom: total syllable expression (novel object versus unexpected familiar object, p =

4.93 10�4, syllable 79; p = 4.93 10�4, syllable 14, n = 9 animals for each; sham versus ablation, p = 0.010, syllable 79; p = 0.030, syllable 14, n = 17 animals for

(legend continued on next page)
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tended to spend less time near the object (Figure 6C, left),

showed less frequent tail exposure (Figure 6C, second from

left), and were slower to transition to the first approach with tail

exposure (Figure 6C, right). These correlations held true even if

we considered the same number of approach bouts in each anal-

ysis (Figure S4C). Thus, the individual variability of dopamine re-

sponses corresponded to individual variability in behavior.

On a trial-by-trial basis, dopamine responses were signifi-

cantly correlated with current and next approach types (Fig-

ure S4D). Dopamine responses were higher during the early

risk-assessment phase before the first approach with tail expo-

sure (phase 1) than the late engagement phase after it (phase 2)

(p = 0.0059, n = 12 animals, paired t test; Figures 6E, S4E, and

S4F). However, within phase 2, dopamine responses were

similar between approach types (p = 0.90, n = 12 animals, paired

t test; Figure 6F). After normalizing for trial number dopamine re-

sponses were still correlated with the next approach type but

were no longer correlated with the current approach type

(Figure S4E).

Taken together, our recording results reveal that dopamine

release in the TS correlates with approach types, with smaller re-

sponses correlating with individual engagement. However, the

specific level of dopamine release in the TS was not correlated

with the current approach type after normalizing for trial number

or within phase 2, suggesting that acute dopamine concentra-

tion in the TS does not fully explain retreat movement in this

paradigm.

RL model with a shaping bonus and uncertainty for
novelty response
We sought to develop a simple model to understand how dopa-

mine signals algorithmically relate to novelty-driven behaviors. In

standard RLmodels, dopamine is typically modeled as a tempo-

ral difference (TD) error. This is the difference between reward

predictions (or values) of adjacent states, which can be used

as a teaching signal for incremental learning of reward predic-

tions (Sutton and Barto, 2018). Using similar logic, we first

modeled simple threat prediction learning with TD error (Fig-

ure 7). In this model, trials are denoted by bouts of approach to-

ward and sampling of the object. We added ‘‘threat’’ at the time

when an agent reached the object (‘‘object location’’ hereafter;

Figure 7, far left), instead of adding reward as in reward predic-

tion learning. Threat prediction is used to determine immediate

behavioral choice by comparing prediction with a constant

threat threshold. If the current threat prediction is lower than

the threat threshold, an agent will engage the novel object. If

threat prediction is higher than threat threshold, an agent will

avoid the object (Figure 7, far right).

In this model, TD error shows a positive response at the object

location, which gradually decreases over many encounters (Fig-

ure 7, second panel from right). The decrease of TD error is solely

because threat is more predicted, thus generating a smaller pre-
each, K-S test). Expression of both syllables decreased over time (�0.10/min, p =

7.2, syllable 14, linear regression with time and animals in the novel object group

(F) Left: fractional expression of each syllable after syllable 79. Right: fraction of syl

each, t test).

See also Figure S3.
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diction error, but the level of threat assigned to the object is kept

constant (Figure 7, far left). We then examined how threat predic-

tions developed near the object location. Threat prediction

before an agent reaches the object location gradually increased

over multiple encounters and eventually plateaus (Figure 7, far

right). Because the threat threshold is a constant, the increase

of threat prediction translates into a behavioral change from

approach to avoidance (Figure 7, far right). While increasing

threat prediction explains the later avoidance exhibited by

some animals in the novel object group, this explanation is

inconsistent with our observation that some animals eventually

showed engagement. Further, it does not explain why animals

engage with familiar objects if the object is threatening.

We previously found that TS dopamine responses to a novel

stimulus decayed when not associated with an outcome,

whereas this decay slowed when it was associated with an

outcome, especially a threatening outcome (Menegas et al.,

2017). In this case, a novel stimulus can be interpreted as a

threat-predicting cue instead of unconditioned threat stimulus.

We therefore modeled threat learning with a positive default

value of threat prediction assigned to a novel object, similar to

a ‘‘shaping bonus’’ (Kakade and Dayan, 2002). A fixed value

for the shaping bonus functions as a preliminary, initializing value

of threat prediction, which speeds up (‘‘shapes’’) but does not

distort eventual learning. In ourmodel, an agent would eventually

learn no outcome (no threat) associated with a novel object, but

in the meantime, threat prediction and behaviors would be

shaped by the initial estimation of threat prediction.

We examined the dynamics of TD errors and threat prediction

using different levels of shaping bonus (i.e., initial threat predic-

tion level) (Figure 8). The shaping bonuswas applied at the object

location to model a tentative guess of threat prediction accord-

ing to the sampled sensory featureswithout knowing the ultimate

outcome. Threat prediction at the object location was defined by

the shaping bonus (Figure 8A, fourth column, cyan) and gradually

decreased over trials to 0 (Figure 8A, fourth column at time 10),

because the actual outcome is nothing. In other words, the

agent’s initial guess of threat prediction associated with the sen-

sory features was wrong and subsequently updated by learning

(Figure 8A, third column).

In the meantime, the threat prediction near the object initially

increases because of positive TD errors caused by a shaping

bonus, then decreases afterward and eventually becomes 0 after

learning has finished (Figure 8A, fourth and far right columns).

Across different conditions, as the shaping bonus increases,

the peak of the threat prediction near the object increases,

whereas the time course is similar (Figure 8A, far right). The

concave shape of threat prediction development near the object

explains approach agents who eventually engage with a novel

object (Figure 8A, second row) and avoidance agents who

first approach but ultimately avoid the object (Figure 8A, third

row, see below for termination of learning with avoidance).
6.83 10�15, F-statistic 9.0; syllable 79;�0.07/min, p = 2.03 10�12, F-statistic

, degree of freedom 215).

lable 14 expression following syllable 79 expression (p = 0.72, n = 17 animals for
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Figure 6. Individual variability in behavior correlates with dopamine in TS
(A) Dopamine signals in each trial in an example animal (top) and mean ± SEM (bottom: n = 15 animals). Tick marks, approach start (cyan), retreat start (red), and

retreat end (green).

(B) Average dopamine signals on N1 in each animal.

(C) Average dopamine signals of each animal plotted against behavioral measurements and Pearson’s correlation coefficient, n = 15 animals. First tail exposure

for mice that never showed tail exposure (3 animals) was set to 25 min.

(D) Time course of dopamine signals across trials for each animal (top) or aligned to the first tail exposure (bottom).

(E) Dopamine signals in mice that never showed approach with tail exposure (left: n = 3 animals) and in other mice (right: n = 12 animals). Mean ± SEM.

(F) Dopamine signals during phase 2. Mean ± SEM, n = 12 animals.

See also Figure S4.
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Figure 7. Basic reinforcement-learning model with constant threat

The time course of variables within each trial (left) and over trials (right). Color, Trial 1–161, every 20 trials.
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Differences in the level of shaping bonus can thus produce

different patterns of behavior throughout learning (Figure 8C).

However, animals do not choose behaviors based solely on

threat prediction level. Even if their estimate of potential threat

is low, they should be still cautious if the estimation is uncertain.

We therefore added uncertainty of threat prediction to the model

as another determinant of behavior. To implement uncertainty in

a principled manner, we used a Kalman filter to incrementally

determine estimation uncertainty (see STAR Methods) and

plotted this together with threat prediction (Figures 8A and 8B).

In these examples, threat prediction is plotted with a 95% confi-

dence range.

We find that the uncertainty of threat prediction explains dy-

namics of risk-assessment behaviors. With a low initial estima-

tion of threat, uncertainty of threat prediction is high at the begin-

ning, inducing risk-assessment behaviors, but the uncertainty

quickly decays and allows a fast switch to engagement (Fig-

ure 8A, first row). Similarly, an unexpected familiar object causes

an initial risk assessment because of threat uncertainty but does

not induce avoidance because the initial estimation of threat pre-

diction with the object features is already canceled out by

learning during pre-exposure (Figure 8A, bottom row). On the

other hand, with a high initial estimation of threat, uncertainty

is high at the beginning, after which threat prediction increases,

causing longer risk assessment (Figure 8A, second row). If threat

prediction gets bigger than a threshold, the agent chooses to

avoid. Once it avoids, it loses a chance to further learn threat pre-

diction that would eventually become 0, which results in persis-

tent avoidance (neophobia) (Figure 8A, third row). Thus, the de-

gree of shaping bonus may determine whether an agent

becomes neophobic or not.

The shaping bonus in this model is determined by the initial

responses of dopamine in TS to an object, and initial responses

vary by individual. Our previous studies found that responses

of TS-projecting dopamine neurons are monotonically modu-

lated with the physical salience (intensity) of an external
3798 Neuron 110, 3789–3804, November 16, 2022
stimulus in the environment (Menegas et al., 2018). Thus, rep-

resentation of physical salience in TS dopamine will deter-

mine the shaping bonus in this model, which in turn facilitates

development of threat prediction and affects future actions.

Taken together, these results suggest that behavioral engage-

ment with a novel object is well captured by a RL model

with a shaping bonus, one in which threat prediction builds

up according to the representation of physical salience of

the object in TS dopamine. By changing the level of shaping

bonus, which can be inferred from the level of TS dopamine,

the model predicts the diverse and dynamical patterns

of behaviors observed across individuals and experimental

conditions.

As an alternativemodel, we next modeled that TS actively pro-

motes assessment by signaling prediction of prediction errors

(‘‘salience’’), while too much salience causes avoidance (Fig-

ure S5; see STAR Methods). A simple TD-learning model was

applied. We found that salience near an object initially increases

and then decreases as an agent learns an object. By setting a

threshold for avoidance, this model also predicts diverse and dy-

namic behaviors depending on TS dopamine.

DISCUSSION

In this study, we propose a RL model that captures behavioral

dynamics and variability in response to novelty. We were led to

this model by examining novelty-induced behaviors in freely

moving animals using supervised (DeepLabCut) and unsuper-

vised (MoSeq) machine-learning tools. These approaches

demonstrate that all mice initially exhibit risk-assessment behav-

iors toward a novel object, followed by engagement or avoid-

ance. Behavioral syllables that are enriched at the beginning of

a novel object exploration correspond to cautious approach

and cautious retreat, which together constitute a set of risk-

assessment behavior. Thus, our application of machine-

learning-based analysis methods allowed us to identify distinct
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Figure 8. Reinforcement-learning model with shaping bonus and uncertainty
(A) The time course of variables within each trial (left) and over trials (right). Color, trial 1–321, every 40 trials.

(B) Components to determine behaviors. Left: threat prediction near object (t = 8). Second from left: threat uncertainty near object. Third from left: threat prediction

plotted together with threat uncertainty (shading). Black dotted line, threat threshold. Right: threat prediction distribution in example trials (trial 1 and trials shown

with blue and cyan dotted line in third from left).

(C) Development of behaviors based on different degrees of shaping bonus.

See also Figure S5.
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behavioral motifs that are dynamically driven during an

encounter with a novel object.

The observed distinct approach behaviors depart from the

previous studies that categorized novelty-induced behaviors

merely by two opposing choices (approach versus avoidance)

along a single dimension. By distinguishing the approach types,
we found that stimulus novelty and dopamine in the TS specif-

ically suppress post-assessment engagement, but not risk

assessment. We constructed a simple TD-learning model by

incorporating an initializing value (shaping bonus) and uncer-

tainty of threat prediction. In this model, TS dopamine, which

conveys a threat prediction error, gradually builds up threat
Neuron 110, 3789–3804, November 16, 2022 3799
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prediction over multiple encounters with a novel object. This in

turn suppresses the transition from the risk-assessment phase

to post-assessment engagement, causing neophobia in extreme

cases. Thus, in contrast to classical animal behavior models of

novelty, neophobia can be caused by the development of threat

prediction rather than novelty detection per se. As the object

turns out not to be threatening, threat prediction gradually de-

creases, which models habituation. In this way, the model

captured not only the temporal dynamics of novelty responses

but also individual variability in the behaviors. Importantly, we

found that variability in TS dopamine responses corresponded

to individual variability in behavioral responses, providing a neu-

ral readout of shaping bonus for threat learning. Together, our

findings provide insights into the computations and neural mech-

anisms that may underlie the dynamics of novelty-induced be-

haviors, including neophobia.

Shaping bonus and neophobia
Novelty drives both immediate behavioral responses and

learning. Various computational models incorporate novelty

components to understand optimal strategies and animal behav-

iors because the generation of appropriate novelty responses

has been linked to behavioral strategy and learning in daily life

(Jaegle et al., 2019; Kakade and Dayan, 2002). While most

computational models have focused on the approach aspect

of novelty responses, our study has extended these ideas to

model approach suppression by incorporating a shaping bonus

and uncertainty into a RL framework.

Learning an appropriate action is often difficult because the

action is too complicated to learn at once and because an action

and its outcome are too temporally separated to easily establish

causality. Therefore, in operant conditioning, it is often the case

that behaviors are ‘‘shaped by making the contingencies of rein-

forcement increasingly more complex’’ (Skinner, 1975). In ma-

chine learning, some powerful learning models are often slow.

To make learning more efficient and fast, some models have

copied the idea of shaping from psychology by adding an extra

reward (‘‘shaping,’’ sometimes called an intrinsic reward) at an

intermediate step for the learning of longer sequential choices

(Ng et al., 1999; Singh et al., 2010). However, adding an extra in-

termediate reward distorts the eventual learning; an agent might

learn to acquire only themid-point reward, which prevents it from

learning from the actual reward in the future. To overcome the

problem of learning distortion, a specific form of shaping (‘‘po-

tential-based shaping’’) has been proposed (Ng et al., 1999). In

this method, instead of adding an extra reward, reward expecta-

tion is added at an intermediate step to preserve the original

reward function but still ‘‘shape’’ an agent’s actions and learning

(Wiewiora, 2003). As a consequence, reward prediction of a state

is initialized with a positive value even before an agent has visited

that state.

Optimal initialization of control systems plays a critical role,

not only in machine learning but also in animal behaviors. For

example, animals can avoid some threatening stimuli using

species-specific defensive systems even if they have never

encountered them. These phenomena can be interpreted as

an initialization of threat prediction with a pre-programmed

value. In addition to these pre-programmed mechanisms, the
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initializing value could in principle be set by experiences in

other states without visiting the actual state. Such flexible

initialization is critical for efficient machine learning (‘‘smart

initialization’’; Simsek et al., 2011) and for behavioral choices

in daily life, where agents/animals continually face novel states.

Rather than starting from a uniform estimation over all states,

an initial guess (generated via evolution and/or generalization)

can help such agents/animals to quickly learn more accurate

estimation.

In RL learning, the approach to novel objects or cues is often

modeled using a ‘‘novelty bonus’’ or ‘‘shaping bonus.’’ We

adapted this approach to model avoidance of a novel object.

Our model differs from previous animal behavior models of nov-

elty, where fear is simply a decaying function with novelty (Blan-

chard et al., 1991; Gordon et al., 2014; Halliday, 1966; Hogan,

1965; Hughes, 1997; Lester, 1967; Montgomery, 1955; Thorpe,

1956) in that it predicts that threat prediction first builds up and

then (potentially) decays. These dynamics explain a variety of

observed behavioral patterns. We also incorporated uncertainty

of the threat prediction into our model, thereby accommodating

threat predictions ranging from risk assessment to engagement.

Interestingly, we found a unique phenomenon specific to threat

learning. Once an agent learns that the object is threatening, it

avoids the object entirely and loses a chance to further learn.

As a consequence, the agent gets trapped in an avoidance state.

Thus, our model changes the way in which we interpret neopho-

bia. Neophobia may not be simply driven by abnormal novelty

detection per se but instead form dynamically in two steps. Un-

certainty of safety induces initial risk assessment, which is fol-

lowed by a learning process about which objects should be

avoided.

Because neophobia was thought to be linked to novelty, brain

areas engaged during neophobia have been proposed to be

involved in novelty detection. In this study, we found that TS

dopamine plays a role in neophobia. While we cannot exclude

the possibility that TS dopamine is involved in novelty detection,

TS dopamine likely signals the physical salience (such as inten-

sity) of external stimuli. Activity of dopamine in the TS is initially

correlated with the intensity of novel stimuli (Menegas et al.,

2018) and then gradually decays, depending on associated

future events (Menegas et al., 2017). Thus, dopamine responses

in the TS, instead of detecting novelty, are initialized depending

on stimulus salience, and then responses are adjusted after-

ward. Our model further predicts that TS dopamine excitation

with positive initialization (‘‘potential threat’’ associated with

strong physical salience) is used as an evaluation signal for

learning of threat prediction at an earlier time point (before

approach), which in turn prevents animals from approaching a

potential threat. In this way, the TS dopamine system uses phys-

ical salience of a stimulus as a default value of threat prediction

to shape defensive behaviors even before animals learn the

exact threat level. Hence, neophobia may be caused by

abnormal threat prediction due to general sensitivity to sensory

stimuli rather than aberrant novelty detection.

Why, then, do animals avoid a novel salient stimulus in the first

place? A recent series of studies found that in appetitive situa-

tions, the taste of food is not an ultimate outcome but instead

functions as a prediction of nutrients, which are the ultimate
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consequence of eating (Fernandes et al., 2020; Han et al., 2018;

Tellez et al., 2016). From these results, Dayan proposed that

taste is a kind of shaping, an initial guess for the value of eating,

which can be updated according to an actual outcome, i.e., nu-

trients (Dayan, 2021). In this framework, dopamine responses to

food rewards (taste or odor; Morrens et al., 2020) are tentative

feedback based on the shaping bonus, but not the ultimate

reward outcome, to facilitate learning. We can interpret our

threat prediction data by analogy to the idea in appetitive value

(Figure S6). Similar to well-known pre-programmed threats,

such as looming stimuli and predator odors, the physical

salience of stimuli may help animals to estimate threat without

actual experiences. While many salient stimuli end up being

non-threatening, caution against exploring high-intensity novel

stimuli may be lifesaving. Physical salience can be easily and

quickly computed and easily generalized. Therefore, animals

may routinely use physical salience as an initial guess of a poten-

tial threat for an immediate action and learning, because learning

threat only from ultimate outcomes such as pain, injury, and

death may come at a high cost. Thus, the idea of shaping can

be broadly applicable, and dopamine neurons with distinct activ-

ities can share a common framework.

Diversity of dopamine neurons
While the role of dopamine in reward prediction has been rela-

tively well established (Eshel et al., 2013; Glimcher, 2011;

Schultz, 2016; Watabe-Uchida and Uchida, 2018), our knowl-

edge of the functional diversity of dopamine neurons is still

incomplete (Cox and Witten, 2019; Watabe-Uchida and Uchida,

2018). In particular, it is not yet clear whether non-canonical

dopamine signals can be understood in the similar theoretical

framework or algorithm to those in RL theories. In our previous

studies, we found that TS-projecting dopamine neurons do not

signal rewards but respond to a set of external stimuli in the envi-

ronment, especially high-intensity or novel stimuli (Menegas

et al., 2017, 2018), and play a role in avoidance of them (Menegas

et al., 2018).

Based on precise observation of behaviors and dopamine

signals in response to novelty, we have obtained a clearer

view on how TS dopamine functions during novelty exploration.

First, it should be noted that, unlike previous experiments

(Cohen et al., 2012; Menegas et al., 2017; Schultz et al., 1997;

Tsutsui-Kimura et al., 2020), our work involves animals freely in-

teracting with an environment. Nonetheless, discrete approach-

retreat bouts in our novelty paradigms can be regarded as being

equivalent to ‘‘trials’’ in more structured behavioral paradigms,

albeit with a critical difference in that the animal can control

‘‘task’’ structure. Our results support the possibility that the

non-canonical dopamine signals found in the TS work as an

evaluation signal, even in a naturalistic setting, in a manner

similar to canonical dopamine signals observed in many struc-

tured tasks (Cohen et al., 2012; Glimcher, 2011; Schultz, 2015)

or during social interactions (Dai et al., 2021; Gunaydin et al.,

2014). Further, dopamine in the TS, although signaling totally

different information from canonical dopamine, may facilitate

salience prediction (threat prediction if salience is too strong)

in a similar manner to which canonical dopamine facilitates

reward prediction.
Together, our results suggest the possibility that even if infor-

mation contents are diverse, the function of dopamine neurons

can be understood within the common framework of RL,

including the idea of bonuses for fine tuning.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mitsuko

Watabe-Uchida (mitsuko@mcb.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Matlab code files are available on GitHub (https://github.com/ckakiti/Novelty_paper_2021). Video tracking and dopamine fluorom-

etry data are deposited at Dryad (https://doi.org/10.5061/dryad.41ns1rnh2).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
78 adult male and female mice were used. Behavioral experiments were performed on C57BL/6J mice (Jackson Laboratories, RRID:

IMSR_JAX:000664), aged 9-17 weeks, on the dark cycle of a 12-hr dark/12-hr light cycle (dark from 7:00 to 19:00). Behavioral tests

and recordings were conducted between 8:00 and 18:00. Animals were group-housed until testing or surgery, then individually

housed throughout testing. All procedures were performed in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals and approved by the Harvard Animal Care and Use Committee.

METHOD DETAILS

Behavioral apparatus
To assess naturalistic behaviors in mice, an open-field arena was developed that allowed the recording of free movement (see key

resources table for parts list). Mice were able to explore freely in a 60cm by 60cm flat arena, either empty or containing a single novel

object in one corner. To record movement, a single camera was mounted on a beam �70cm above the floor of the arena. A bright

white LED light (Westek Indoor Outdoor White LED Rope Light) illuminated arena from above.

Experiment workflow
Before start of experiment, mice were separated and individually housed at least 1 day in advance. Once separated, mice were then

handled for 30 minutes per day for 3 days (see handling). For a novel object/an unexpected familiar object tests, mice were then pre-

exposed to the test object (or dummy object) in their home cage for 30 minutes per day for 4-7 days. Test objects were either legos

(Mega Bloks First Builders 80-piece Classic Building Bag, 72 mice) or rubber dog toys (Kong Classic dog toy size M, 6 mice). Brand

new test objects were used at the start of each set of mice (fresh out of packaging). Dummy objects were plastic coconut cups (Shin-

digz 16-oz Coconut Cups, 5.5-in tall). For each animal, the same object was used for the duration of the experiment (1 object per

animal, each animal’s object was wiped with ethanol after every day). A novel object group and a sham surgery group were pooled

for Figure 1.

Handling

Handling consisted of weighingmice (on first day) and scoopingmice into a transport box. This scoopingwas to acclimate amouse to

the way they would later be transferred from the behavioral arena back to their home cage. To scoop a mouse, the experimenter

would hold a takeout box in a corner of the home cage, laying sideways with opening facing center of cage. The experimenter would

wait until the mouse approached and walked into the box before lifting the box up and tilting it gently upright. Then the box would be

tilted back sideways, replaced onto the floor of the cage, and the mouse would be allowed to return to cage. If the mouse did not

voluntarily approach the box within 10 minutes, the opening of the box would be moved closer to the mouse to encourage entry.

Sessions lasted for 30 minutes or until the mouse was scooped at least 5 times, whichever occurred first.

Pre-exposure

During pre-exposure, one object was placed in each mouse’s cage according to experimental condition (test object or dummy ob-

ject). Each mouse’s object was kept consistent across pre-exposure days, with each object being wiped with ethanol between days.

Sessions lasted 30 minutes per day for 7 days. During session, mouse would be allowed to explore object freely within home cage

(including touching, moving, etc). Pre-exposure sessions occurred in dimly lit rooms.

Habituation

During habituation, animals were placed in empty behavioral arena and allowed to explore freely. Mice were transferred from their

home cage into the behavioral arena and transferred out of the arena by scooping with a takeout box. Behavior was recorded

with a single overhead camera (Xbox Kinect; see key resources table for materials list). Habituation sessions lasted 25 minutes

per animal per day for 2 consecutive days. Mice were run in the same order each day (order determined randomly at the beginning

of the experiment, and held constant for the rest of the experiment). If arena was soiled at the end of a session, feces would be
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removed and floor of arena would be spot cleaned using ethanol-soaked wipes before the next session began. Between rounds of

experiments, arena was thoroughly cleaned and base of arena was wiped down with odorless eliminator (Ah! Products All Clear

Odorless Odor Eliminator).

Novelty testing

Novelty testing sessions consisted of animals exploring a single novel object within the behavioral arena. Object was placed in the

corner of a behavioral arena (taped to floor to prevent animal from moving it, �12-15cm from either wall). Sessions lasted for 25 mi-

nutes per animal per day for 4-12 days, andmicewere run in the same order as habituation each day. One object was used per animal

for duration of experiment and the objects were not shared between animals. Before each session, object would be submerged in

soiled bedding (mixture of bedding from each mouse’s cage in current round, 6 animals) and wiped off with dry kimwipe to remove

excess bedding dust. Objects were wiped with ethanol after each day and allowed to air out overnight before use.

Video recording and analysis
Recording

An Xbox One Kinect camera (key resources table) was mounted 70cm above the behavioral arena. Mice were videotaped with four

channels: three color channels (RGB, 15fps) and one depth channel (30fps). The RGB video was used to locate body part locations

(DeepLabCut) and the depth video was used to segment behavior (MoSeq). Data was saved using custom recording software

(Wiltschko et al., 2015). Analysis code and instructions for running them are deposited on GitHub (https://github.com/ckakiti/

Novelty_paper_2021).

DeepLabCut analysis

For body part tracking, we used DeepLabCut version 1.0 (Mathis et al., 2018). Separate networks were used for different experi-

mental settings: namely for mice without fiber implants (network A) and mice with fiber implants (network B). Both networks were

run using a ResNet-50-based neural network (He et al., 2016; Insafutdinov et al., 2016) with default parameters for 1,030,000 training

iterations. We providedmanually labeled locations of four mouse body parts within video frames for training: nose, left ear base, right

ear base, and tail base. For network A: We labeled 1760 frames taken from 64 videos. For network B: We labeled 540 frames taken

from 17 videos. For both networks, 95% of labeled frames were then used for training.

After running DeepLabCut on each video file, we processed the output files (csv array with x/y coordinates and likelihood values for

each body part). First, we trimmed the early frames that had low (<10%) likelihood values, indicating that the mouse was not present

in the arena yet, or they had poor tracking. We then corrected ‘‘jumps’’ in tracking, defined as a >15cm/frame change in Euclidian

distance. Points identified as jumps were replaced by themean of the previous frame and the following frame. Jumps were corrected

separately for each body part (nose, left ear, right ear, and tail). Trajectories for each body part were then smoothed using a lowest

moving average filter (5 points, default).

A body part was determined to be ‘‘near’’ the object if it fell within a radius of 7cm (Euclidean distance) from the center of the object.

An approach bout is defined as either the nose or tail entering near the object, and the end of this bout is determined when the nose

and tail are no longer near the object. Habituation sessions did not have an object present; therefore the area of analysis was chosen

based on the position where the object would be in later sessions. This radius was chosen to not be too large and include edge

walking (since the object was placed near the corner) but also not to be too small and fail to capture enough of the animals’ trajectory.

These approach bouts can be further broken down into whether the nose was closer to the object than the tail for the entire bout

(approach with tail behind) or whether the tail was closer at some point (approach with tail exposure). Frequency of tail behind or

tail exposure were calculated based on the number of bouts with tail behind approach versus tail exposed approach. Retreat timing

was determined to be the closest point of the nose relative to the object before the mouse moves away. Previous studies have used

"stretched-attend" posture to detect risk assessment (Blanchard et al., 1991; Fanselow, 1994).

MoSeq analysis

Raw imaging data was collected from the depth camera, pre-processed (filtered, background subtracted, and parallax corrected),

and submitted to a machine learning algorithm that evaluates the pose dynamics over time (Wiltschko et al., 2015). During video

extraction (moseq2-extract), 900 frames were trimmed from the beginning of the video to correct for time between when video

was started and when the mouse was placed in arena. During model learning (moseq2-model), a hyperparameter was set to the total

number of frames in the training set (kappa=2,711,134, 52 sessions, 52 animals). This exceeds the recommended >=1 million frames

(at 30 frames per second) needed to ensure quality MoSeq modeling.

To align syllables to retreat timing, MoSeq data was aligned to DeepLabCut timeframes. This alignment was necessary because

the depth and rgb videos have different frame rates (depth=30fps, rgb=15fps; timestamps are saved alongside raw data). We first

extracted the timestamps and syllables associated with each frame in the depth video (scalars_to_dataframe function; see

GitHub repository ‘‘moseq2-app’’, code available on request: datta.hms.harvard.edu/research/behavioral-analysis/). We then

aligned the depth video timestamps to the corresponding rgb video timestamps (custom MATLAB script, see GitHub repository

‘‘Novelty_paper_2021’’). This alignment was then used to determine which syllables were expressed at each frame in the RGB

videos. We then identified retreat timing and the corresponding MoSeq syllable in each RGB video.

MoSeq was first used to categorize postures into a total of 100 syllables using a combined data on novelty day 1 across the 4

experimental groups: novel object, familiar object, control, and ablation. In order to find a set of syllables that was both highly

used and enriched in the novel or unexpected familiar object condition, we chose 10 most frequently occurring syllables around
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the object (-1s to 1s from retreat time) in each of 4 experimental groups, a total of 21 syllables, and compared the frequency of syl-

lables in each animal. We identified 2 syllable (syllables 79 and 14) that were enriched in the novel object group (p=0.00049 both for

syllables 14 and 79, K-S test). Bonferroni correction was applied to correct for multiple comparison. No syllables were significantly

enriched in the familiar object group with this analysis, although we observed multiple syllables that showed the tendency.

Surgical procedures
All surgeries were performed under aseptic conditions with animals anesthetized with isofluorane (1-2% at 0.5-1.0 l/min). Analgesia

was administered pre- (buprenorphine, 0.1mg/kg, I.P.) and post-operatively (ketoprofen, 5 mg/kg, I.P.). At the time of surgery, mice

were 2-4 months old. We used the following coordinates to target injections and implants for tail of striatum (TS): Bregma: -1.5 mm,

Lateral: +3.0 mm, Depth: -2.4 mm (relative to dura) (Paxinos and Franklin, 2019).

6OHDA surgical procedure

To bilaterally ablate dopamine neurons projecting to TS, we followed an existing protocol (Menegas et al., 2018; Thiele et al., 2012).

The following solution was injected (I.P.) to animals at 10 mg/kg:

d 28.5 mg desipramine (Sigma-Aldrich, D3900-1G)

d 6.2 mg pargyline (Sigma-Aldrich, P8013-500MG)

d 10 mL water

d NaOH to pH 7.4

Most animals (weighing�25g) received�250 mL of this solution. This was given to prevent dopamine uptake in noradrenaline neu-

rons and to increase the selectivity of uptake by dopamine neurons. After injection, mice were anesthetized as described above. We

then prepared a solution of 10 mg/mL 6-hydroxydopamine (6OHDA; Sigma-Aldrich, H116-5MG) and 0.2% ascorbic acid in saline

(0.9% NaCL; Sigma-Aldrich, PHR1008-2G). The ascorbic acid in this solution helps prevent 6OHDA from breaking down. Control

animals were injected with vehicle ascorbic acid solution. To further prevent 6OHDA from breaking down, we kept the solution on

ice, wrapped in aluminum foil, and it was used within three hours of preparation. If the solution turned brown in this time (indicating

that 6OHDA has broken down), it was discarded and fresh solution was made. 6OHDA (or vehicle, ascorbic acid solution) was in-

jected bilaterally into TS (200nL per side). Each injection was spread out over several minutes (70-100 nl per minute) tominimize dam-

age to the tissue. Surgeries occurred 1 week before handling.

Dopamine sensor surgical procedure

For TS neurons to express dopamine sensor for fluorometry, we unilaterally injected mixed virus solution (AAV for dopamine sensor

and tdTomato, 1:1 mixture, 350 nl total) into TS inWTmice. Virus injection lasted around 5minutes (injection of 70-100 nl per minute),

after which the pipette was slowly removed to prevent damage to the tissue. We also implanted optic fibers (400 mm diameter, Doric

Lenses, Canada) unilaterally into the TS (one fiber per mouse). Once fibers were lowered, we attached them to the skull with UV-

curing epoxy (Thorlabs, NOA81), then waited for 15 min for this to dry. We then added a layer of black Ortho-Jet dental adhesive

(Ortho-Jet, Lang Dental, IL). We used magnetic fiber cannulas (Doric Lenses, MFC_400/430) to allow for recording in freely moving

animals. We waited for 15 min for the dental adhesive to dry, and then the surgery was complete.

Histology and immunohistochemistry
Histology was conducted in the same manner as previously reported (Tsutsui-Kimura et al., 2020). Mice were perfused using 4%

paraformaldehyde, then brains were sliced into 100mm thick coronal sections using a vibratome (Leica) and stored in PBS. These

slices were then stained with rabbit anti-tyrosine hydroxylase (TH; AB152, EMD Millipore, RRID: AB_390204) at 4�C for 2d to reveal

dopamine axons in the striatum, dopamine cell bodies in the midbrain, and other neurons expressing TH throughout the brain. Slices

were then stained with fluorescent secondary antibodies (Alexa Fluor 594 goat anti-rabbit secondary antibody, A-11012, Invitrogen,

RRID: AB_2534079) at 4�C for 1d. Slices were then mounted in anti-fade solution (VECTASHIELD anti-fade mounting medium,

H-1200, Vector Laboratories, CA) and imaged using Zeiss Axio Scan Z1 slide scanner fluorescence microscope (Zeiss, Germany).

Fluorometry (photometry) recording
Overview

Fiber fluorometry signal was recorded from the striatum in mice performing open field novelty behavior tasks (15 animals). Mice were

injectedeitherwithAAV toexpressdopamine sensor.After undergoing surgery (details inSurgicalProcedures), animalswereallowed to

recover for 2weeks before the start of behavior testing. In the last 3 days of this period, animals were handled (details in handling). Then

animals went through habituation and novelty testing in the arena (described in a previous section). During photometry recordings, a

long flexible optic fiber (see recording section)wasattached to connector on the animal’s skull which didnot impede animalmovement.

Handling

In addition to weighing and scooping mice in the takeout box, photometry mice also had a patch cord attached and removed once

during the session (not connected to laser, no light transmitted). Animal was allowed to briefly move about cage with patch cord

attached (�10s) before being picked back up and disconnected from patch cord. Attachment and removal were conducted in

same manner that they would be later in behavioral sessions.
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Recording

Fluorometry recording was performed as previously reported (Menegas et al., 2018; Tsutsui-Kimura et al., 2020). The following de-

scribes this established setup: We use an optic fiber to stably access deep brain regions and interfaces with a flexible patch cord

(3 m, Doric Lenses, Canada) on the skull. The patch cord simultaneously delivers excitation light (473 nm, Laserglow Technologies,

Canada; 561 nm, Opto Engine LLC, UT) and collect dopamine sensor and tdTomato fluorescence emissions. Activity-dependent

fluorescence emitted by cells in the vicinity of the implanted fiber’s tip (NA=0.48) was spectrally separated from the excitation light

using a dichroic, passed through a single band filter, and focused on a photodetector connected to a current preamplifier (SR570,

Stanford Research Systems, CA).

During photometry recording, optic fibers on the animal’s skull were connected to a magnetic patch cable (Doric Lenses,

MFP_400/430) which both delivered excitation light (473 and 561 nm) and collected emitted light. The emitted light was then filtered

using a 493/574 nm beam-splitter (Semrock, NY), followed by a 500 ± 20 nm (Chroma, VT) and 661 ± 20 nm (Semrock, NY) bandpass

filters and collected by a photodetector (FDS10 X 10 silicone photodiode, Thorlabs, NJ) which is connected to a current preamplifier

(SR570, Stanford Research Systems, CA). This preamplifier outputs a voltage signal which was collected by a NIDAQ board (National

Instruments, TX) and custom Labview software (National Instruments, TX, RRID:SCR_014325).

Lasers were turned at least 30minutes prior to recording to allow them to stabilize. Before each recording session, laser power and

amplifier settings were individually adjusted for each mouse. First, the laser power was set low enough to avoid bleaching and high

enough to detect signal. Then, the amplifiers were set such that the baseline signals recorded through LabView were similar across

mice and days (3-6 a.u. at start of session). Behavior and photometry signal were measured simultaneously using Labview software

(see synchronization section below). After each recording session, collected light intensity wasmeasured from the patch cord using a

photometer. Light intensity fell within a range of 15-180mW across animals and days.

Signal analysis

DA sensor (green) and tdTomato (red) signals were collected as voltage measurements from current pre-amplifiers (SR570, Stanford

Research Systems, CA). Green and red signals were cleaned by removing 60 Hz noise with bandstop FIR filter 58-62 Hz and smooth-

ing with a moving average of signals in 50 ms. The global change within a session was normalized using a moving median of 100 s.

Then, the correlation between green and red signals was examined by linear regression. If the correlation was significant (p<0.05), the

fitted red signals were subtracted from green signals. Z-scores were calculated using an entire recording session. Retreat start was

defined as the time point when the animal’s nose was closest to the object within an approach bout. Only one retreat start was de-

tected in each approach bout to avoid usingmultiple time points close each other. Approach start was defined as the time point when

the distance between the animal’s nose and the object started decreasing before each retreat start. Retreat end was defined as the

time point when the distance between the animal’s nose and the object started decreasing after each retreat start. Responses

aligned at a behavioral event were calculated by subtracting the average baseline activity (-3s to -1s before the event) from the

average activity of the target window (0-1s after the event). To show overall activity patterns (Figure 6A), the average activity (-3s

to -1s before approach start) was used as baseline.

Synchronization

In order to match photometry signal to behavior, it was important to synchronize the rgb video and photometry data. To achieve this,

an LEDwasmountedwithin view of rgb camera such that it appeared in video, but did not overlap the floor of the arena or obscure the

mouse. Custom LabView software was programmed to send a short TTL signal for a brief LED pulse every 10s for the duration of

recording. TTL pulses and photometry signal were recorded simultaneously. After recording, the timing of LED flashing in the rgb

video was determined and matched with the corresponding TTL pulses that had been saved alongside photometry signal. The result

is two arrays of the same length: one containing the RGB frame number for each LED flash and the other containing the photometry

timestamp for each TTL pulse (i.e. every 10s). The time for other frames were determined by evenly spacing those frames within 10s

intervals.

Modeling
Reinforcement learning of threat prediction

We applied the standard formulation of temporal difference (TD) learning (Schultz et al., 1997; Sutton and Barto, 1990) to threat pre-

diction. In standard TD learning models (Sutton and Barto, 2018), an agent predicts the cumulative future rewards, or value. In our TD

model, an agent predicts the cumulative future threats (threatening outcomes) to guide its behavior. We note that TD learning algo-

rithm was originally developed for explaining the strength of association in a type of aversive conditioning (nictitating membrane

response) (Sutton and Barto, 1987, 1990). There have also been some efforts to generalize TD learning algorithms to predictions

of other quantity or outcomes (or ‘‘cumulants’’) than value (Dayan, 1993; Schlegel et al., 2021). Our application of TD learning to threat

prediction takes a similar approach to these precedents.

The threat prediction at time t is denoted as TPðtÞ, and is defined by,

TPðtÞ = E

"XN� t

k = 0

gk , threatðt + kÞ
#
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where E½.� denotes expectation, threatðtÞ denotes a threatening outcome occurring at time t, and g˛ ð0;1Þ is a discount factor.

The model contained N (N=350) discrete states or timesteps, which constitute an entire bout of novel object exploration, with a novel

object occurring upon entering to the 100th state (t = 10) (for convenience, we express time t as the number of timesteps divided by

10). For simplicity, we applied a form of state representation called a complete serial compound, in which an agent deterministically

traverses each of the 35 states in sequence (Schultz et al., 1997; Sutton and Barto, 1990), without considering avoidance action that

would terminate state transitions and, thus, learning (see below).

In the first model (Figure 7), we assumed that a threatening outcome occurred when the animal encountered a novel object (i.e. t =

10). That is, the novel object itself is a threat. Thus,

threatðt = 10Þ = c; threatðt s 10Þ = 0

where c is a constant (in the Figure, c = 2 was used). Threat prediction, TP, was initialized to 0 for all the states before trial 1.

TPðtÞ = 0 for all t

In each trial, the eligibility trace, et, was initialized to 0 at the beginning of a trial. At each time t, TD errors, d, were computed similar

to a standard definition of TD error (Sutton and Barto, 1987) as the difference between the threat prediction at consecutive time steps

plus received threats at each time step.

d = threatðtÞ + g 3TPðt + 1Þ � TPðtÞ
Eligibility trace, et; for each statewas updated by decaying et by the discount factor (g) and the eligibility trace parameter (l). For the

current state, 1 was added.

et = g 3 l 3 et if tscurrent state
et = g 3 l3 et + 1 if t = current state

Threat prediction was updated according to the obtained d and et,

TPðtÞ = TPðtÞ + a 3 d 3 et

where a˛ ð0;1Þ is a learning rate. Then, an agent moves to the next time step, starting the next iteration of threat prediction. In this

model, TD error at object (t = 10) is expressed as:

dðt = 10Þ = c � TPðtÞ
which is simply threat minus learned threat prediction.

The secondmodel (Figure 8) does not experience an actual threatening outcome but an initializing value (0 to 2) of threat prediction

(i.e., shaping bonus F) was added to the state containing a novel object (t = 10) that gradually decays, to simulate lingering threat

prediction until the animal finds out that there is no threat outcome. Thus, before starting the trial 1,

Fð10 % t % 34Þ = c3decayt� 10 ðshaping bonusÞ
threatðtÞ = 0

We used constant c from 0 to 2, and decay=0.98 in the Figure 8 Different levels of c yielded different time-course of threat predic-

tion and prediction error in this model. Since F is an initializing value of threat prediction, threat prediction can be expressed as:

TP = F + TPl

where TPl denotes learned component of threat prediction. Iteration of threat prediction was performed similarly to the model 1.

TPðtÞ = TPðtÞ + a 3 d 3 et

Since shaping bonus is fixed across trials, the learning rule can be also expressed as:

TPlðtÞ = TPlðtÞ + a 3 d 3 et

In this model, TD error is expressed as:

d = g 3 TPðt + 1Þ � TPðtÞ
because there is no actual threat in any time step.

In all simulations, the learning rate a, the discounting rate g and the parameter for eligibility trace lwere fixed to 0.02, 0.98, and 0.9,

respectively, without model exploration.

For broader application, threat prediction at the decision point can be interpreted as prediction associated with an "object",

whereas the shaping bonus is linked to physical salience of sensory features. While the shaping bonuswas applied at the object loca-

tion (thus representing proximal sensory features including visual details, odors and textures) to simplify the model, shaping bonus
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can be applied to multiple time points to accommodate other sensory features at a distance. Of note, different from shaping of food

approach, which also shapes learning itself by promoting visits, shaping of threat avoidance, which is associated with avoidance of

an object, does not promote threat learning itself.

Uncertainty

Uncertainty of threat prediction (estimation uncertainty), ppðnÞ, in each trial nwas determined incrementally using the following equa-

tion (Kalman filter):

K =
ppðnÞ

ppðnÞ + pmðnÞ
ppðn + 1Þ = ð1 � KÞ3ppðnÞ
where pm is a measurement uncertainty. The model used standard normal distribution for estimation (threat prediction) in trial 1,

and measurement (actual threat) in all trials, so that both variance ppð1Þ and pmðnÞ was set to 1.

While we used a frequency-based simple Kalman filter to compute uncertainty, other methods � such as those based on proba-

bility distributions over threat levels � could be used to compute uncertainty. While a recent study analyzing single neuron activity

found evidence supporting distributional reinforcement learning in the canonical dopamine neuron population (Dabney et al., 2020;

Lowet et al., 2020), whether the distributional code observed in dopamine activity is actually used in biology, and whether similar

diversity consistent with distributional reinforcement learning is observed in TS-projecting dopamine neurons remain to be clarified.

Behavioral choice

Behavior (risk assessment, engagement and avoidance) was chosen every time the agent entered the state near the object (t = 8),

according to the threat prediction near the object, TPðt = 8Þ and uncertainty, ppðnÞ, compared to a threat threshold, thresh.

risk assessment if TPðt = 8Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23ppðnÞÞ

p
< thresh <TPðt = 8Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23ppðnÞÞ

p
engagement if TPðt = 8Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23ppðnÞÞ

p
< thresh

avoidance if thresh <TP ðt = 8Þ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð23ppðnÞÞ

p
where engagement was chosen only if threat prediction is below threat threshold with > 95% confidence level. thresh = 0:2 was

used for Figure 8.

Reinforcement learning of salience prediction

The above models propose that TS works together with a separate system that provides an approach drive. Risk assessment is per-

formed when uncertainty of threat prediction is high, but not directly promoted by threat prediction. However, it is also possible that

assessment is directly promoted by TS. Pearce and Hall proposed that attention to a specific stimulus is induced by prediction error

of its outcome,which in turn promotes learning of the stimulus in the next trial (Pearce andHall, 1980). Applying this idea, Gordon et al.

modeled hierarchical reinforcement learning where prediction error promotes active sensing so that an agent is encouraged to learn

what is unexpected (Gordon and Ahissar, 2012; Gordon et al., 2014). The authors also combined it with the notion that too much

novelty (prediction error) is fearful, causing retreat.

In the third model (Figure S5), we applied reinforcement learning to model prediction of prediction error, similar to hierarchical cu-

riosity loops (Gordon and Ahissar, 2012; Gordon et al., 2014). The first order learner collects information of an object using a predic-

tion error. To simplify, object information was modeled as a single dimension (e.g. size F), although multiple dimensions of object

features are likely to be learned. The second agent models TS and learns prediction of object information gain (we will call "salience"

here), which induces assessment, but also causes avoidance if the prediction is too high.

The object information Vwas updated only when an agent is at object (t = 10, following Rescorla-Wagner rule (Rescorla andWag-

ner, 1972).

d1 = F � V
V = V + a 3 d

The salience prediction at time t is denoted as SPðtÞ, and is defined by,

SPðtÞ = E

"XN� t

k = 0

gk , salienceðt + kÞ
#

similar to threat prediction in models 1 and 2. We assumed that a salience outcome occurred when the animal encountered a sur-

prising feature of a novel object (i.e. t = 10).

salienceðt = 10Þ = d1; threatðt s 10Þ = 0

Salience prediction, SP, was initialized to uniform small number 0.1 for the states approaching object.

SPðtÞ = 0:1 for 0< t < 10
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Update rules for SP is the same as TP.

Behavior (risk assessment, engagement and avoidance) was chosen according to the salience prediction near the object, TPðt =

8Þ, compared to a threat threshold, thresh, and an approach threshold, athresh.

risk assessment if athresh <SPðt = 8Þ< thresh
engagement if SPðt = 8Þ< athresh
avoidance if thresh <SPðt = 8Þ
thresh = 0:28; athresh = 0:05 was used for Figure S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was performed using custom software written in MATLAB (MathWorks, Natick, MA, USA, RRID:SCR_001622). All error

bars in the figures are SEM. In boxplots, the edges of the boxes are the 25th and 75th percentiles, and the whiskers extend to themost

extreme data points not considered outliers. The exact value of p and n are indicated in figure legends unless otherwise noted.

Time-course of behaviors
Time spent near object is defined as fraction of time when the nose or tail fell within a radius of 7cm (Euclidean distance) from the

center of the object (Figures 1B, 3A, and 4B). Fraction of time spent near object per day and permin in individual animals, and average

of all animals (mean ± SEM, n=26 animals) per min are shown in Figure 1B. Time spent near object was significantly correlated across

novelty days, but not between novelty and habituation days (R=-0.02, p=0.89, H1; R=0.29, p=0.13, H2; R=0.87, p=0.0000, N2;

R=0.69, p=0.001, N3; R=0.66, p=0.0002, N4, Pearson’s correlation coefficient with N1, n=26 animals; Figure 1B). Fraction of time

spent near object per min in individual animals are shown in Figures 3A and 4B. Cumulative probability of each group of mice

spending certain amounts of time near object on the first day of novelty (N1) is shown (Figures 3A and 4B). Mice spend less time

near a novel object than familiar object (p=0.018, n=9 animals for each group, Kolmogorov-Smirnov (K-S) test; Figure 3A). Ablation

mice spend more time near a novel object than sham mice (p=0.030, n=17 animals for each group, K-S test; Figure 4B).

An approach bout is defined as an event from the time when either the nose or tail enters an area within 7cm from the center of the

object to the time when both nose and tail are no longer within the area. Approach frequency is defined as frequency of approach

bouts per min (Figure 1C), and approach bout duration is defined as average duration of approach bouts in 1 min (Figure 1D).

Both data of individual animals and average of all animals (mean ± SEM, n=26 animals) are shown.

Distance from object is defined as distance between either nose or tail and the center of the object (Figure 2B). Closest point to

object is defined as the shortest distance from the nose or tail to the center of the object in each bout (Figure 2C).

Approach bouts were broken down into two types depending on whether the nose was closer to the object than the tail for the

entire bout (approach with tail behind) or whether the tail was closer at some point (approach with tail exposure). Frequency of

approach with tail behind or tail exposure per min were calculated (Figures 2D, 2E, 3B, and 4C). Both data of individual animals

and average of all animals (mean ± SEM, n=26 animals for Figures 2D and 2E, n=9 animals for Figure 3B, n=17 animals for Figure 4C)

are shown. For violin plots, average frequency are subtracted with average frequency in habituation days in each animal. Frequency

of approach with tail behind decreases over time (p=2.8310-11, t-test, n=26 animals, beta coefficients of linear regression of fre-

quency with time; Figure 2D). Frequency of approach with tail behind does not show significant linear change over time (p=0.20,

t-test, n=26 animals, beta coefficients of linear regression of frequency with time; Figure 2E). In boxplot in Figure 3C, average fre-

quency of approach with tail behind and approach with tail exposure on N1 for each animal are shown. Approach with tail behind

on N1 is more frequent towards a novel object than an unexpected familiar object (p=0.0031, n=9 animals for each group, t-test),

whereas approach with tail exposure on N1 is more frequent towards an unexpected familiar object than a novel object

(p=0.0031, n=9 animals for each group, t-test). Frequency of approach with tail behind on N1 was not significantly different between

sham and ablation animals (p=0.069, n=17 animals for each, t-test) and approach with tail exposure on N1 was significantly more

frequent in ablation animals than sham animals (p=0.010, n=17 animals for each, t-test). The distribution shape of data points

was not formally tested. In Figure 3D, fraction of animals with approach with tail behind towards novel or unexpected familiar objects

in each approach bout were plotted (total 9 animals).

Moseq analysis
Figure 5B shows fraction of video frames where each syllable is used in total video frames around retreat (-1s to 1s) in all approach

bouts in all mice of the same condition. Syllable usage in each approach bout is shown above each plot. Figure 5C left shows fraction

of approach bouts during which each syllable is used in all approach bouts in all novel object group at each time point. Syllable fre-

quency is defined as frequency of emergence of each syllable regardless of duration of the syllable in the whole session (25min), at all

retreat (-1s to 1s), at retreat (-1s to 1s) of approach with tail behind, or at retreat (-1s to 1s) of approach with tail exposure in each

animal (Figure 5C, right). Figure 5E top shows average frequency of syllable usage in each group at each time point (mean ±
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SEM, n=9 animals for novel object and unexpected familiar object groups, n=17 animals for sham and ablation group). Figure 5E

boxplots show distribution of total syllable expression on N1 in each animal (novel object vs unexpected familiar object,

p=4.9310-4, syllable 79; p=4.9310-4, syllable 14, n=9 animals for each; sham vs ablation, p=0.010, syllable 79; p=0.030, syllable

14, n=17 animals for each, K-S test). Expression of both syllables decreased over time (-0.10/min, p=6.8310-15, F-statistic 9.0; syl-

lable 79; -0.07/min, p=2.0310-12, F-statistic 7.2, syllable 14, linear regression of frequency of syllable usage with time and animals in

the novel object group, degree of freedom 215). Figure 5F, left shows fraction of each syllable expression following syllable 79

expression in sham and ablation animals. Figure 5F boxplots show distribution of fraction of syllable 14 expression following syllable

79 expression in sham and ablation animals (p=0.72, n=17 animals for each, t-test). Distribution shape of data points was not formally

tested.

Fluorometry analysis
Z-scores were calculated using an entire recording session. Retreat start was defined as the time point when the animal’s nose was

closest to the object within an approach bout. Only one retreat start was detected in each approach bout to avoid using multiple time

points close each other. Approach start was defined as the time point when the distance between the animal’s nose and the object

started decreasing before each retreat start. Retreat end was defined as the time point when the distance between the animal’s nose

and the object started decreasing after each retreat start. Responses aligned at a behavioral event were calculated by subtracting the

average baseline activity (-3s to -1s before the event) from the average activity of the target window (0-1s after the event). To show

overall activity patterns (Figure 6A), the average activity (-3s to -1s before approach start) was used as baseline. Figure 6A, bottom

shows average dopamine sensor signals in all animals (mean ± SEM, n=15 animals). Figure 6B shows average dopamine sensor sig-

nals on N1 aligned to time of retreat in each animal.

Figure 6C plots average dopamine sensor signals of each animal against time spent near the object, frequency of approachwith tail

exposure, or time of the first approach with tail exposure in session. Dopamine sensor signals negatively correlate with time spent

near the object (R=-0.72, p=0.0022), negatively correlate with frequency of approach with tail exposure (R =-0.71, p=0.0028), and

positively correlate with time of the first approach with tail exposure in session (R=0.80, p=3.2310-4) (Pearson’s correlation coeffi-

cient, n=15 animals). First approach with tail exposure for mice that never showed approach with tail exposure (3 animals) was

set to 25min, the last time point.

Figure 6D shows time-course of dopamine sensor signals across approach bouts ("trials") and time-course aligned to the first

approach with tail exposure for each animal (total 15 animals). Figure 5E shows average dopamine sensor signals in mice that never

showed approach with tail exposure (mean ± SEM, n=3 animals) and in mice that showed approach with tail exposure (mean ± SEM,

n=12 animals). Approach bouts in animals with approach with tail exposure were divided into phase 1 and phase 2 by time of first

approach with tail exposure. On average, dopamine response at retreat (0 to 1s) was higher in phase 1 than in phase 2

(p=0.0059, n=12 animals, paired t-test). Figure 6F shows dopamine sensor signals during phase 2 in mice that express approach

with tail exposure (mean ± SEM, n=12 animals). On average, dopamine responses at retreat (0 to 1s) were similar between approach

types in phase 2 (p=0.90, n=12 animals, paired t-test). These numbers are indicated in the main text. The distribution shape of data

points was not formally tested.
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