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Machine learning‑derived gut 
microbiome signature predicts 
fatty liver disease in the presence 
of insulin resistance
Baeki E. Kang 1,12, Aron Park 2,12, Hyekyung Yang 3, Yunju Jo 1, Tae Gyu Oh 4, 
Seung Min Jeong 1,5, Yosep Ji 5, Hyung‐Lae Kim 6, Han‐Na Kim 3,7, Johan Auwerx 8, 
Seungyoon Nam 2,9*, Cheol‑Young Park 10,11* & Dongryeol Ryu 1,11*

A simple predictive biomarker for fatty liver disease is required for individuals with insulin resistance. 
Here, we developed a supervised machine learning‑based classifier for fatty liver disease using fecal 
16S rDNA sequencing data. Based on the Kangbuk Samsung Hospital cohort (n = 777), we generated a 
random forest classifier to predict fatty liver diseases in individuals with or without insulin resistance 
(n = 166 and n = 611, respectively). The model performance was evaluated based on metrics, including 
accuracy, area under receiver operating curve (AUROC), kappa, and F1‑score. The developed classifier 
for fatty liver diseases performed better in individuals with insulin resistance (AUROC = 0.77). We 
further optimized the classifiers using genetic algorithm. The improved classifier for insulin resistance, 
consisting of ten microbial genera, presented an advanced classification (AUROC = 0.93), whereas 
the improved classifier for insulin‑sensitive individuals failed to distinguish participants with fatty 
liver diseases from the healthy. The classifier for individuals with insulin resistance was comparable 
or superior to previous methods predicting fatty liver diseases (accuracy = 0.83, kappa = 0.50, 
F1‑score = 0.89), such as the fatty liver index. We identified the ten genera as a core set from the 
human gut microbiome, which could be a diagnostic biomarker of fatty liver diseases for insulin 
resistant individuals. Collectively, these findings indicate that the machine learning classifier for 
fatty liver diseases in the presence of insulin resistance is comparable or superior to commonly used 
methods.

Fatty liver disease (FL), or hepatic steatosis, is diagnosed when a liver has at least 5% hepatocytes containing 
 fat1. Depending on its etiology, it can be categorized into alcoholic fatty liver disease (AFLD) or nonalcoholic FL 
disease (NAFLD). The international prevalence of NAFLD was estimated to be 25.2%2. However, it was estimated 
to be 55.5% in participants with type 2 diabetes mellitus (T2DM)3. Insulin resistance (IR), a major pathological 
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contributor to T2DM and metabolic syndrome, is a potential driver of NAFLD progression in nonalcoholic 
steatohepatitis (NASH)4,5. IR is a common pathological factor of NASH and T2DM. It may also be involved in 
hepatocellular carcinoma (HCC)  development6.

Liver biopsy or magnetic resonance imaging/spectroscopy (MRI/MRS) is the gold standard for diagnosing 
 FL7. However, it has certain disadvantages. For instance, liver biopsy is invasive, and the examination is spatially 
limited to the sample. MRI/MRS is inaccessible and expensive. The most popular method for FL diagnosis is 
ultrasonography (USG). However, it also has several limitations: (i) variability depending on the spots observed, 
(ii) low sensitivity in mild hepatic steatosis occupying < 30% of the  liver8; and (iii) inconsistencies in diagnosis 
between interpreters. Therefore, an additional non-invasive diagnostic biomarker for FL is required urgently.

The symbiosis or dysbiosis between the human gut microbiome (HGM) and hosts is linked to the health or 
disease of the host,  respectively9. According to recent reports, alterations in the gut microbiome could be a driver 
of obesity and  IR10–12. It has also been shown that specific signatures of the HGM can serve as biomarkers of liver 
diseases, including NASH, liver fibrosis, and  cirrhosis13–15. However, only a few studies have proposed the HGM 
as a biomarker for general FL rather than for advanced liver diseases. Most studies investigated either the correla-
tion or causality of HGM with liver diseases only in a pathological cohort rather than a healthy one. Furthermore, 
those studies did not invest in participants with IR, who have a higher risk for advanced FL disease, in the healthy 
cohort. Therefore, our study established a potential gut microbiome to identify the FL of participants with IR in a 
healthy cohort using supervised machine learning (ML) methods for classification, such as random forest (RF), 
gradient boosting machine (GBM), extreme gradient boosting (XGB) algorithm, along with genetic algorithm 
(GA), a random-based algorithm inspired by natural selection in biology to obtain the optimized  solution16.

Materials and methods
Human participants and data collection. Stool samples were collected from the study participants 
(n = 1,463) from the routine annual comprehensive physical examination of the Kangbuk Samsung Health 
(KSH) cohort. The study participants underwent extensive periodic PE between June and September  201417 
and 213 participants were excluded from 1,463 participants because of missing data and poor detection. FL 
was diagnosed using abdominal USG with a 3.5-MHz transducer based on conventionally captured images by 
trained radiologists who were blinded to the study’s predetermined parameters as previously  described18,19. In 
the diagnosis, the inter-observer reliability value was Cohen’s kappa coefficient of 0.74, and the intra-observer 
reliability value was 0.9420.

The Institutional Review Board of Kangbuk Samsung Hospital authorized the study’s protocol (2019-05-015). 
All participants signed a written informed consent form after being informed of possible outcomes and the nature 
of the study. In the study, we obeyed all applicable regulations of institutions and governments regarding human 
research ethics for participants, following the guidelines of the Declaration of  Helsinki21.

DNA purification and 16S rDNA gene sequencing. The Illumina MiSeq platform was used to sequence 
the fecal DNA samples, following the provided protocol (Illumina, San Diego, CA, USA)22. The DADA2 plugin 
of the QIIME 2 package (v.2020.8) was utilized in filtering out chimeras and low-quality sequences and to pro-
duce amplicon sequence variants (ASVs)23,24. The naïve Bayes classifier were trained, and the classifier was used 
to assign ASVs to microbial taxonomy against the SILVA 132 with a 99% operational taxonomy unit dataset. 
All 16S rDNA gene sequencing files are available in the Clinical & Omics Data Archive of the Korea National 
Institute of Health (accession number: R000635).

Development of ML classifier and evaluation. R Package “caret” v.6.0-86. was used for ML approach 
using three ML algorithms (RF, GBM, and XGB)25. The RF parameter options were set to default option in 
the ML approach. In the GBM models’ hyperparameter settings, 10, 20, 30, 40, and 50 were used as “n.trees”; 
one, two, three, and four as “interaction.depth”; 0.01 and 0.001 as “shrinkage”; three, five, seven, and nine 
as “n.minobsinnode.” For the hyperparameter setting in the XGB models, 10, 20, 30, 40, and 50 was used as 
“nrounds”; three, five, seven, and nine as “max_depth”; 0.01 and 0.2 as “eta”; 0.01 as “gamma”; 0.75 as “colsample_
by_tree”; 1 as “min_child_weight”; and 0.5 as “subsample.” The microbiome dataset was randomly partitioned 
into training (80%) and test (20%) datasets using the createDataPartition function. The dataset was preproc-
essed using the zv, scale, and center methods of the training function. The Synthetic Minority Over-sampling 
Technique (SMOTE) function in the R package “smotefamily” (v.1.3.1) was used to handle the sample imbal-
ance issue. The tenfold three-times repeated cross-validation were applied to the training dataset for ML-based 
development into the previously described classification  model13. The sequential feature selection was conducted 
based on the Gini importance of the features. The performance of the developed classifiers was assessed using 
the area under the receiver operating curve (AUROC), representing their sensitivity and specificity in the train-
ing dataset. Using the test dataset, the classifiers were evaluated using AUROC, accuracy, F1-score, and kappa.

The optimal feature selection by GA. For a GA-based optimal feature selection, 300 individuals were 
randomly generated as the initial population to be sequentially evolved further by GA. The individuals carry a 
specific number of genera (described as “genes”) randomly selected from 87 gut microbial genera detected in the 
fecal samples. The selected genera were encoded as one, and the other genera were encoded as 0 in individuals to 
be evolved by GA. Each individual in the population was evaluated using a fitness score as follows:

(1)Fitness score = 100×

∑
M

k=1
Sk

M
−W× |x − b|
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where Sk is the AUROC score from the RF model in the k-th fold during M fold cross-validation; x is the number 
of genera selected by the RF; W is a penalty weight; and b ∈ {6, 7, 8, 9, 10} is the optimal number of biomarker 
genera. M was set to 3 and W to 10.

According to the fitness score, GA repeatedly searches for the best solution for classifying every generation. 
Firstly, in the initial population, GA selected the fittest individual with the highest fitness score in the initial 
population (first generation). To generate the population of the next generation, the fittest individual of the pre-
vious generation is kept, while the other individuals of the previous generation are influenced by crossovers and 
mutations, resulting in different individuals. Thus, we obtained 300 individuals in each generation. Then, these 
steps were iterated 100 times (generations) to get the best solution through the entire generation.

Package “DEAP” v.1.3.1 under python 3.7.1 was used for the GA simulations, revealing the optimal genera 
having the best fitness. The optimal genera served as the features of an optimal RF classification model. The 
crossover rate, mutation rate, and generations for GA simulations were set at 0.8, 0.003, and 300, respectively.

Data visualization and statistical analyses. All statistical analysis and visualizations were conducted 
using RStudio with R v.4.1. The normality of the overall data was analyzed using Shapiro’s test. Statistical sig-
nificance was computed with either two-tailed Wilcoxon’s test or Kruskal–Wallis test upon the normality and 
distribution, and a p-value < 0.05 was deemed statistically significant. The R package “ggplot2” and “pROC” were 
used for data visualization.

Evaluation of model performance. To evaluate the model performance, we obtained a 2 × 2 confusion 
matrix from each classifier using the test dataset and calculated true positive, true negative, false positive, and 
false negative using predicted and observed classes. Then, we calculated and adopted four metrics for the model’s 
performance evaluation:  accuracy26,27, F1-score27, kappa  index28, and AUROC, plotted using true positive rate 
and false positive rate (FPR)29.

Results
Data processing in the healthy and FL cohort. Physical examination data, including high throughput 
16S rDNA sequencing results from 1463 participants of KSH cohorts, were collected for the study. After remov-
ing missing and poorly detected values, 1,250 participants were included in the analysis. Subsequently, partici-
pants whose ASV number were < 5 000 were filtered out, leaving only 777 participants for the study (Fig. 1). It 
was revealed that 290 of the 777 participants had FL, while the remaining 487 did not. We regarded participants 
as insulin resistant or sensitive if their values for homeostatic model assessment of IR (HOMA-IR) were over 
the following cutoff: 1.8 for men and 2.2 for women, calculated as the critical threshold for T2DM development 
based on the KSH cohort internal investigation (data not shown). Among the 777 participants, 611 were clas-
sified into the insulin-sensitive (IS) group, while 166 were classified into the IR group based on the criteria for 
insulin resistance. The biological and physical characteristics of these groups are described in Table 1.

Subject demographics. Among the 777 participants in the study, IS and IR included 611 and 166 indi-
viduals, respectively. Men accounted for 55.97% of IS and 84.94% of the IR group. The IS group had signifi-
cantly lower values than those of the IR group for age, body mass index (BMI), waist circumference, heart rate, 
HOMA-IR, glucose, insulin, HbA1c, albumin, aspartate aminotransferase, alanine transaminase, triglycerides 
(TG), low-density lipoprotein cholesterol (LDL-C), and both diastolic and systolic blood pressure (BP). The IS 
group had lower total cholesterol than the IR group, but the difference was not statistically significant. Moreover, 
participants of IS group had higher high-density lipoprotein cholesterol (HDL-C) levels than those of the IR 
group with statistical significance (Table 1).

Microbiome comparison and classification between the groups with or without FL. Alpha 
diversity, particularly Shannon’s entropy, was used to compare the diversity of the gut microbiome in partici-
pants of the non-fatty liver control group (NF) and FL groups. For Shannon’s entropy, representing biodiversity 
integrated with community richness and evenness, NF (median = 6.677; interquartile range [IQR] = 6.179–7.103) 
had a significantly higher value than that of FL (median = 6.475; IQR = 5.961–6.941; p = 0.0017; Fig. 2a). Consist-
ent with previous reports, FL (median = 15.090, IQR = 12.859–18.057) had a significantly lower value of Faith’s 
phylogenetic diversity (PD: biodiversity based on phylogeny) than that of NF (median = 15.848, IQR = 13.648–
18.594) (p = 0.004; Fig. 2b). Additionally, FL (median = 0.910; IQR = 0.885–0.928) had a lower value of Pielou’s 
evenness (a measure of biodiversity and species richness) than that of NF (median = 0.918; IQR = 0.899–0.931; 
p = 0.00045; Fig. 2c). Subsequently, we performed principal coordinate analysis (PCoA) to obtain representa-
tive relationships between the NF and FL groups. However, the two groups had no observable distant clusters 
(Fig. 2d).

As NF and FL showed differential alpha diversity but not beta diversity, we generated a classification model 
with informative gut microbial features. We can perform Gini importance-based core informative feature selec-
tion based on the algorithm. The predictive power of the models from the training dataset with two, four, eight, 
12, 16, 24, and 32 features were 0.53, 0.59, 0.60, 0.59, 0.62, and 0.64 of AUROC, respectively (Fig. 2e). The FL 
prediction using the model featuring 32 gut microbial features displayed 0.65 (0.56–0.73) of AUROC in the test 
dataset (Fig. 2f). This implies an inefficient classification based on a set of most informative features between 
the NF and FL groups.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21842  | https://doi.org/10.1038/s41598-022-26102-4

www.nature.com/scientificreports/

Classification between NF and FL using reported gut microbial features. Recent reports have 
proposed a novel microbiome-based diagnostic tool for liver cirrhosis, the most advanced  FL13. We built an 
RF classifier using gut microbial markers to test whether the markers could distinguish between FL and NF 
in our data. Differential abundance of gut microbial genera features, including Acidaminococcus spp., Alistipes 
spp., Bacteroides spp., Dorea spp., Enterobacter spp., Escherichia-Shigella spp., Eubacterium spp., Faecalibac-
terium spp., Klebsiella spp., Ruminococcus (gnavus group) spp., Streptococcus spp., and Veillonella spp., were 
selectively observed between FL and NF (Supplementary Fig. 1a). Among these features, Acidaminococcus spp. 
(p = 8.9e−05), Alistipes spp. (p = 7.5e−07), Faecalibacterium spp. (p = 0.011), and Ruminococcus spp. (gnavus 
group; p = 0.0018) had significantly different abundances in NF and FL, consistent with previous studies. Fur-
thermore, we evaluated the sensitivity and selectivity of a set of these features using the AUROC. However, the 
predictive power of each model with different number of features was insufficient to distinguish between NF 
and FL (0.60 AUROC for a 12-feature model, 0.60 AUROC for an 8-feature model, 0.56 AUROC for a 6-feature 
model, and 0.56 AUROC for 4-feature model; Supplementary Fig. 11).

Microbiome comparison and classification between IRNF and IRFL. NAFLD is considered the 
hepatic component of IR. Therefore, it is critical to distinguish FL from NF in participants with IR. The partici-
pants in the IR groups were divided into the following based on the presence of FL: NF featuring IR (IRNF) and 
FL featuring IR (IRFL), to find the most informative microbial features differentiating FL from NF in the partici-
pants with IR. Then, we observed the differential biodiversity of the two microbiomes. IRNF (median = 6.808, 
IQR = 6.289–7.183) had a significantly higher value of the index than that of IRFL (median = 6.403, IQR = 5.988–
6.805; p = 0.032) in terms of Shannon’s entropy (Fig. 3a). Additionally, IRFL (median = 14.906, 12.876–17.804) 
had significantly lower Faith’s PD than that of IRNF (median = 16.293, IQR = 14.311–20.455; p = 0.032; Fig. 3b). 
In terms of other alpha diversity indices, IRFL (median = 0.902, IQR = 0.878–0.921) had lower Pielou’s evenness 
than that of IRNF (median = 0.915, IQR = 0.905–0.930; p = 0.021; Fig. 3c). However, PCoA and uniform manifold 

Figure 1.  Schematic of the analysis pipeline. Participants (n = 777) from the KSH cohort were included in the 
final analysis and were divided into four subgroups, ISNF (n = 449), ISFL (n = 162), IRNF (n = 38), and IRFL 
(n = 128). ASV: amplicon sequence variants; HOMA-IR: homeostatic model assessment of insulin resistance 
index; IR: insulin resistant; KSH cohort: Kangbuk Samsung Hospital cohort.
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approximation and projection (UMAP) of the total microbiome of both groups showed no difference in clusters 
between IRFL and IRNF (Fig. 3d, e, Supplementary Fig. 2a and b).

To classify IRFL and IRNF from their gut microbiome, we constructed ML models using three ML algorithms 
for classification, RF, GBM, and XGB. Among the three ML models featuring different numbers of gut micro-
bial genera, the RF model demonstrated the most reliable prediction in the test dataset (AUROC 0.77), while 
the AUROCs of classification for the other two ML models, GBM and XGB, were 0.62 and 0.63, respectively 
(Fig. 3f). Next, we built the models in the same manner, but individually for each gender, to see if any gender 
had better predictive results. In the training dataset, the RF model for females displayed AUROC values of 0.81, 
0.96, 0.88, and 0.73 for the models using six-, eight-, twelve-feature, and entire gut microbiome, respectively 
(Supplementary Fig. 2c). The predictive power of the eight-feature model showed 0.67 AUROC. Surprisingly, 
the aforementioned outcome in the training dataset was superior to the results from the RF model for male, 
presenting AUROC values of 0.63 (six-feature model), 0.76 (eight-feature model), 0.69 (twelve-feature model), 
and 0.58 (entire gut microbiome-based model) (Supplementary Fig. 2d). During model validation using the 
male test dataset, the RF model had an AUROC of 0.76, the GBM model had an AUROC of 0.62, and the XGB 
model had an AUROC of 0.77 (Supplementary Fig. 2e). Together, it was determined that the models using the 
RF algorithm are appropriate for further research.

Then, we built RF models and assessed their efficacy in predicting FL in the IR groups after applying the 
SMOTE algorithm to the dataset to minimize the present class imbalance (30% IRNF: 70% IRFL). The model’s 
predictive power was 0.87 AUROC in the training dataset, but it only displayed 0.72 AUROC in the test dataset 
(Supplementary Table S1).

Classification between IRNF and IRFL by using GA‑optimized classifier (IRFL‑GARF classi‑
fier). GA is a heuristic algorithm that determines the global optimum based on natural  selection30–32. It can 
be used to select model features such that the model demonstrates the best prediction. We used GA to create 
an ML classifier with better prediction performance using the RF algorithm. We developed an RF classifier 
presenting higher accuracy in distinguishing IRFL from IRNF, based on the features selected by GA. The RF 
classifier optimized by GA was termed “IRFL-GARF classifier,” with the potential gut microbial  biomarkers33. 
Using the fitness score, the classifier can repeatedly search for the best solution for classifying IRFL and IRNF 
every generation.

In the development of the IRFL-GARF classifier, we first generated 300 individuals to be evolved further as 
the initial population (Fig. 4). Then, the fittest individual was selected following evaluation based on the fitness 

Table 1.  Characteristics of participants in the Kangbuk Samsung Health cohort. *ALT Alanine 
aminotransferase, AST Aspartate aminotransferase, BMI Body mass index, BP Blood pressure, HbA1c 
Hemoglobin A1c, HDL-C High-density lipoprotein cholesterol, HOMA-IR Homeostatic model assessment of 
insulin resistance index, LDL-C Low-density lipoprotein cholesterol.

Characteristics

Group

P-valueInsulin sensitivity Insulin resistance

Number 611 166

Male (%) 55.97 84.94

Age (years) 44.86 ± 8.783 46.94 ± 8.526 0.007

BMI (kg/m2) 22.87 ± 2.688 26.25 ± 3.062 < 0.001

Waist circumference (cm) 80.27 ± 8.219 89.98 ± 7.709 < 0.001

Heart rate
(beats per minute) 61.43 ± 7.909 64.90 ± 8.608 < 0.001

HOMA-IR 1.016 ± 0.421 2.901 ± 1.521 < 0.001

Glucose (mg/dL) 93.04 ± 12.98 107.7 ± 21.79 < 0.001

Insulin (µIU/mL) 4.407 ± 1.753 10.98 ± 5.235 < 0.001

HbA1c (%) 5.524 ± 0.441 5.814 ± 0.578 < 0.001

Albumin (g/dL) 4.475 ± 0.229 4.517 ± 0.241 0.041

AST (IU/L) 20.40 ± 7.972 26.20 ± 11.02 < 0.001

ALT (IU/L) 18.83 ± 12.62 34.73 ± 24.79 < 0.001

Triglycerides
(mg/dL) 104.5 ± 58.55 170.3 ± 103.3 < 0.001

Total cholesterol
(mg/dL) 193.1 ± 33.50 197.7 ± 37.83 0.152

HDL-C (mg/dL) 58.96 ± 14.78 48.16 ± 12.96 < 0.001

LDL-C (mg/dL) 115.7 ± 30.10 121.0 ± 33.19 0.049

Systolic BP
(mmHg) 107.5 ± 12.55 116.0 ± 13.09 < 0.001

Diastolic BP
(mmHg) 69.75 ± 9.636 75.75 ± 9.717 < 0.001
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scores of every individual. With the fittest individual, the next generation is produced with crossover and muta-
tion (Supplementary Fig. 3).

Consequently, the GA reported ten optimal features (equivalently, genera) for an optimal RF model: Chris-
tensenellaceae (R-7 group) spp., Lachnospiraceae (UCG-004) spp., Fusicatenibacter spp., Butyricimonas spp., 
Weissella spp., Ruminococcaceae (UCG-004) spp., Erysipelatoclostridium spp., UBA1819 spp., Allisonella spp., 
and Collinsella spp. The classifier model’s predictive power was 0.93 in the test dataset (95% confidence interval: 
0.83–1.00; Fig. 5a). Between gut microbial features in the classifier model, Butyricimonas spp. (mean of IRNF: 
0.111%; IRFL: 0.070%), Christensenellaceae (R-7 group) spp. (IRNF: 0.736%; IRFL: 0.202%), Collinsella spp. 
(IRNF: 0.052%; IRFL: 0.021%), Erysipelatoclostridium spp. (IRNF: 0.153%; IRFL: 0.020%), and UBA1819 spp. 
(IRNF: 0.104%; IRFL: 0.014%) displayed higher relative abundances in IRNF than in IRFL. In contrast, Alli-
sonella spp. (IRNF: 0.008%; IRFL: 0.049%), Fusicatenibacter spp. (IRNF: 0.216%; IRFL: 0.305%), Lachnospiraceae 
(UCG-004) spp. (IRNF: 0.219%; IRFL: 0.358%), Ruminococcaceae (UCG-004) spp. (IRNF: 0.020%; IRFL: 0.026%), 
and Weissella spp. (IRNF: 0.089%; IRFL: 0.117%) were more abundant in IRFL than in IRNF. Notably, Butyrici-
monas spp. (p = 0.0094), Christensenellaceae (R-7 group) spp. (p = 0.00056), and Ruminococcaceae (UCG-004) spp. 
(p = 0.026) had significantly different relative abundances between the two groups (Fig. 5b). The visualization 
of fold change in ten GA-selected features in the rate per hundred showed that Christensenellaceae (R-7 group) 
spp. (fold change of log2 [log2FC]: − 1.006), Weissella spp. (log2FC: − 0.168), UBA1819 spp. (log2FC: − 1.967), 
Collinsella spp. (log2FC: − 0.185), and Erysipelatoclostridium spp. (log2FC: − 0.032) had lower relative abun-
dances in IRFL. In contrast, Lachnospiraceae (UCG-004) spp. (log2FC: 0.536), Fusicatenibacter spp. (log2FC: 
0.823), Butyricimonas spp. (log2FC: 0.070), Allisonella spp. (log2FC: 0.408), and Ruminococcaceae (UCG-004) 
spp. (log2FC: 1.229) were more abundant in both groups (Fig. 5c). Then, we performed UMAP projection to 
dimensionally reduce the dataset, presenting an IRNF clustering. Christensenellaceae spp. (R-7 group) were highly 
distributed in the green circle, where most IRNFs were distributed, whereas the Lachnospiraceae (UCG-004) 
group was highly distributed in the purple circle, where most of the dots represent IRFL (Fig. 5d–f).

Also, we developed a GA-optimized classifier for IS (a classification between IS participants without FL, ISNF, 
and IS participants with FL, ISFL). The model featured eight gut microbial genera, namely, Eubacterium spp. 
(coprostanoligenes group), Alistipes spp., Bifidobacterium spp., Erysipelotrichaceae spp. (UCG-003), Lachno-
clostridium spp., Parabacteroides spp., Ruminococcus spp. (torques group), and Subdoligranulum spp. However, 

Figure 2.  Comparison of the alpha and beta diversity of gut microbiome between fatty liver disease (FL) 
and nonfatty liver control (NF) groups. (A–C) Alpha diversity of NF and FL was measured using Shannon’s 
entropy (A), Faith’s phylogenetic diversity (PD) (B), and Pielou’s evenness (C). Boxes represent the IQR, 
whereas the upper whiskers represent the range from minimum (upper quartile − 1.5IQR) to maximum (lower 
quartile + 1.5IQR), and black dots represent outliers excluded in the range. (D) Beta diversity among participants 
in NF and FL was measured using the Principal Coordinates Analysis (PCoA). (E–F) The predictive power 
(AUROC) of the RF prediction model featuring different discriminative gut microbial genera in the training 
dataset (E) and test dataset (F). Statistical significance was analyzed using the Kruskal–Wallis test. *p < 0.05, 
**p < 0.01. FL: participants with fatty liver disease; IQR: interquartile range; ML: machine learning; NF: nonfatty 
liver control group; RF: random forest.
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the model’s predictive power was insufficient to classify ISNF and ISFL (0.52 of an AUROC; Supplementary 
Fig. 4a and b).

Model evaluation. To assess the GA-optimized model’s performance in IR, the model’s predictive power 
was compared with previously and broadly used non-invasive indexing scores calculated from clinical data for 
predicting FL, including FL index (FLI)34, NAFLD liver fat score (NAFLD-LFS)35, hepatic steatosis index (HSI)36, 
and Framingham steatosis index (FSI)37. For comparison, each score was calculated for each IR analyzed for the 
study and used for FL prediction with a partitioned test dataset. Our classifier displayed 0.93 AUROC, as the FLI, 
NAFLD-LFS, HSI, and FSI values were 0.82, 0.62, 0.80, and 0.82, respectively (Fig. 6a). The prediction accuracies 
of the GA-optimized classifier, FLI, NAFLD-LFS, HSI, and FSI were 0.83, 0.57, 0.60, 0.67, and 0.84, respectively 
(Fig. 6b). Additionally, the FL prediction by our classifier presented a kappa of 0.50, while the kappa of FLI, 
NAFLD-LFS, HSI, and FSI were 0.24, 0.17, 0.33, and 0.53, respectively (Fig. 6c). Finally, our classifier displayed 
0.89 F1-score, which was similar to the FSI (0.90), whereas FLI, NAFLD-LFS, and HSI displayed 0.63, 0.63, and 
0.72 of F1-scores, respectively (Fig. 6d). As shown above, among all measuring methods for predicting the power 
of predictors, our classifier gave the highest diagnostic accuracy compared with other predictors. This result 
implied that our gut microbiome-based classifier could be used with the abovementioned established predictors.

Discussion
In this study, we performed an RF classification model using the KSH cohort comprising 777 healthy individu-
als, and we applied GA to improve the predictive efficiency of the RF-generated classifier (an AUROC of 0.77) 
(Fig. 3f). Based on the IRFL-GARF, we proposed ten genera as biomarkers for identifying FL in IR individu-
als, including Christensenellaceae (R-7 group) spp., Weissella spp., UBA1819 spp., Collinsella spp., Erysipelato-
clostridium spp., Lachnospiraceae (UCG-004) spp., Fusicatenibacter spp., Butyricimonas spp., Allisonella spp., and 
Ruminococcaceae (UCG-004) spp. The IRFL-GARF classifier containing ten microbial genera had an AUROC, 

Figure 3.  Comparing the alpha and beta diversity of the gut microbiome of IRNF and IRFL. (A–C) Alpha 
diversities of IRNF and IRFL were measured using Shannon’s entropy (A), Faith’s phylogenetic diversity (PD) 
(B), and Pielou’s evenness (C). Boxes represent the IQR. The upper whiskers represent the range from minimum 
(upper quartile − 1.5IQR) to maximum (lower quartile + 1.5IQR), and black dots represent outliers excluded 
in the range. (D–E) Beta diversity among participants in IRNF and IRFL was measured using PCoA (D) and 
UMAP analyses (E). (F) The model’s predictive power featuring different number of gut microbial genera 
constructed using RF, GBM, and XGB algorithms in the test dataset. The statistical significances were analyzed 
using Wilcoxon’s test. *p < 0.05, **p < 0.01. IRFL, fatty liver participants featuring insulin resistance; IQR: 
interquartile range; IRNF: nonfatty liver control group featuring insulin resistance.
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accuracy, kappa, and F1-score of 0.93, 0.83, 0.50, and 0.89, respectively, which are comparable or even superior 
to common diagnostic indices for FL diseases, such as FLI (AUROC of 0.82), HSI (AUROC of 0.80), NAFLD-
LFS (AUROC of 0.60), and FSI (AUROC of 0.82). This demonstrates the potential of a diagnostic marker for FL 
disease in insulin-resistant participants (Fig. 6a–d).

GA is an adaptive metaheuristic search algorithm that identifies the global optimum based on the principle 
of natural selection in evolution. GA does not evaluate solutions individually but evaluates a group of solutions 
simultaneously and explores the space of possible solutions. Furthermore, GA has the advantage of being less 
likely to fall into a local minimum and does not require assumptions about the interaction between features.

The ten genera could be developed into a non-invasive biomarker for FL disease in insulin-resistant par-
ticipants, who could have a higher chance of developing advanced chronic liver diseases. To the best of our 
knowledge, this is the first study that used GA to successfully classify FL diseases, encouraging GA application in 
future studies. The development of a non-invasive, inexpensive, and accurate method for diagnosing FL disease 
is required. Several recent studies have proposed the gut microbiome as a potential biomarker for advanced 
chronic liver  diseases13–15,38; however, only a few studies have been conducted in generally healthy populations 
to identify individuals at higher risk of developing advanced chronic liver diseases based on the gut microbiome. 
For instance, it would be important to identify generally healthy participants showing IR without symptoms with 
a higher risk of advanced FL diseases.

In this study, alpha diversity, which reflects the gut microbiome structure concerning its  richness39, decreased 
significantly in the FL participants. In contrast, the PCoA plots, representing beta diversity of the gut microbi-
ome, failed to generate two distinct groups, inconsistent with previous  studies13,38. Estimating alpha and beta 
diversities implies that reduced richness was sufficient to show differences in alpha diversity between the groups. 
However, it occurred in only a few genera (components). Although it is insufficient to determine whether the 
altered genera drove FL or vice versa, several studies have reported that the family Christensenellaceae correlates 
with  BMI40, and the Ruminococcaceae (R-7 group) genera correlate with blood TG, very-low-density lipoprotein- 
and HDL-particles  levels41. Another recent human study observed a strong correlation between Collinsella spp. 
and NASH and  cirrhosis42. Few studies have indicated that Butyricimonas spp. is altered in AFLD and  HCC43,44, 
implying that Butyricimonas spp. might contribute to FL disease or hepatic inflammation.

There are a few limitations to our study. Firstly, our research was based on a Korean hospital cohort with not 
quite large patients; thus, our results could be racially and geographically biased. However, we tried to prove the 
feasibility of the discovered ten genera as a biomarker to identify FL disease among patients with IR from the 
supporting studies. Secondly, it was implied that predicting FL using gut microbiome-based ML in the female 
IR groups could be more reliable rather than in the male group. However, greater sample size is needed for fur-
ther validation. Additionally, to our knowledge, there was no independent external validation cohort available; 
thus, we expect that further validation studies population will address these limitations. Although our study 

Figure 4.  The overview of biomarker genera mining using GA. From the randomly generated initial 300 
individuals consisting of genera, the classification model was optimized using GA methods, including crossover 
and mutation. The model with the highest fitness score is selected for each generation and further sequentially 
optimized in the next generation. The final model was evaluated using the average AUROC of the tenfold CV 
model. Further model validation was conducted using test data for the corresponding biomarker subset and 
accuracy, an F1-score, a kappa, and an AUROC.
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Figure 5.  Prediction of FL in the presence of insulin resistance using GA-optimized classifier. (A) The 
predictive power (AUROC) derived from the test dataset using GA-optimized RF classifier with ten features. 
(B) Violin plots displaying relative abundances of core informative features in IRNF and IRFL. (C) Average 
relative abundances of discriminative features in the 10-feature prediction model in IRNF and IRFL. (D–F) 
UMAP analysis and heatmap of Christensenellaceae (R-7 group) spp. (E) and Lachnospiraceae (UCG-004) spp. 
onto UMAP. *p < 0.05, **p < 0.01, and ***p < 0.001 (Wilcoxon’s test). IRFL: fatty liver participants featuring 
insulin resistance; IRNF: nonfatty liver control group featuring insulin resistance; UMAP: uniform manifold 
approximation and projection.
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is primarily correlative, our data strongly support the value of future work exploring the causal role of the ten 
genera in liver diseases.

Conclusively, these findings indicate that the ML classifier combined with GA for FL in the presence of IR is 
comparable or superior to commonly used methods. The ten genera we discovered are useful as a non-invasive 
biomarker for FL among patients with IR.

Figure 6.  Evaluating prediction using GA-optimized classifier differentiating IRFL from IRNF. Bar plots 
comparing the predictive power derived from the test dataset using the GA-optimized classifier with other 
predictors by (A) AUROC, (B) accuracy, (C) kappa, and (D) F1 score. IRFL: fatty liver participants featuring 
insulin resistance; IRNF: nonfatty liver control group featuring insulin resistance.
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Data and material availability
All 16S rDNA gene sequencing files are available in the Clinical & Omics Data Archive of the Korea National 
Institute of Health (http:// coda. nih. go. kr; accession number: R000635). The source code for the GA simulation 
is available on GitHub (https:// github. com/ labna ms/ FLIRG AMB).
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