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ABSTRACT Anomaly Detection systems based on Machine and Deep learning are the most promising
solutions to detect cyberattacks in the industry. However, these techniques are vulnerable to adversarial
attacks that downgrade prediction performance. Several techniques have been proposed to measure the
robustness of Anomaly Detection in the literature. However, they do not consider that, although a small
perturbation in an anomalous sample belonging to an attack, i.e., Denial of Service, could cause it to be
misclassified as normal while retaining its ability to damage, an excessive perturbation might also transform
it into a truly normal sample, with no real impact on the industrial system. This paper presents a methodology
to calculate the robustness of Anomaly Detectionmodels in industrial scenarios. Themethodology comprises
four steps and uses a set of additional models called support models to determine if an adversarial sample
remains anomalous. We carried out the validation using the Tennessee Eastman process, a simulated testbed
of a chemical process. In such a scenario, we applied the methodology to both a Long-Short Term Memory
(LSTM) neural network and 1-dimensional Convolutional Neural Network (1D-CNN) focused on detecting
anomalies produced by different cyberattacks. The experiments showed that 1D-CNN is significantly more
robust than LSTM for our testbed. Specifically, a perturbation of 60% (empirical robustness of 0.6) of the
original sample is needed to generate adversarial samples for LSTM, whereas in 1D-CNN the perturbation
required increases up to 111% (empirical robustness of 1.11).

INDEX TERMS Adversarial attacks, evasion attacks, industrial control systems, machine learning, deep
learning, robustness.

I. INTRODUCTION
The industry is experiencing its fourth revolution, also known
as Industry 4.0, which is mainly driven by the adaptation
of industrial processes to new technologies and computa-
tional paradigms. Among the most relevant changes affect-
ing current industries we highlight the integration of the
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fifth generation of mobile networks (5G), bringing to reality
minimum latency and high bandwidth in communications;
the big data, optimizing the analysis of large amounts of
data; and the Industrial Internet-of-Things (IIoT), connecting
large amounts of heterogeneous and resource-constrained
devices to the Internet [1]. However, despite the benefits of
Industry 4.0, it is also opening the door to new cyberat-
tacks affecting devices and critical industrial processes [2].
Every year, the number and variety of cyberattacks are
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growing, making traditional security approaches outdated in
short time windows. In this context and due to the number
of highly specialized and new (zero-day) attacks affecting
heterogeneous industries, the research community is evolving
towards the use of semi-supervised or unsupervised Machine
Learning (ML) and Deep Learning (DL) techniques to detect
cyberattacks [3].

In such a scenario, the current Anomaly Detection (AD)
systems relying on ML and DL are the most promising and
effective solutions to detect unseen attacks [4]. In contrast to
traditional approaches, these systems discriminate between
the normal and abnormal behavior of the industrial processes
without relying on existing databases that store the cyberat-
tacks patterns. However, the current AD solutions based on
ML/DL are vulnerable to adversarial attacks, making them
inappropriate for real systems. Adversarial attacks consist of
manipulative actions to ML/DL models intending to cause
model misbehavior or acquire protected information. Among
the existing adversarial attacks, evasion attacks are some of
the most relevant as they are performed during the evaluation
phase of the system, once the model is trained. In industrial
scenarios affected by malware, the main goal of evasion
attacks is to craft samples modeling the malware behavior
(anomalous samples) to misclassify them (as normal sam-
ples) and allow the malware to affect industrial devices or
processes without being detected.

Adversarial attacks raise new trust and security challenges
affecting ML/DL in general, and AD-based solutions to
detect cyberattacks in particular. In this context, data sci-
entists are already making efforts to provide highly precise
and trustworthy AI-based solutions in different application
scenarios [5]. Recently, IBM has identified a set of pillars
needed to achieve trusted AI [6]. One of these pillars is
robustness, whose main goal is to measure how resilient
ML/DL models are against adversarial attacks. Once the
robustness level is calculated, it can be notified to end-users,
in conjunction with classical performance metrics, or even
be used to improve the model’s robustness using adversarial
training, where the network is fine-tuned with adversarial
samples.

The literature has offered different metrics to measure
model’s robustness. The three most widespread are Empiri-
cal Robustness (ER) [7], Local Loss Sensitivity (LLS) [8],
and Cross Lipschitz Extreme Value for nEtwork Robust-
ness (CLEVER) [9]. These metrics are highly effective in
different application fields such as computer vision. How-
ever, they present limitations when used to evaluate the
robustness of AD in industrial scenarios. One of the most
relevant limitations is the impossibility of distinguishing
between an adversarial sample that deceives the anomaly
detector and an adversarial sample converted into a nor-
mal sample by an excessive alteration. For example, con-
sider a water distribution process where a denial of service
(DoS) cyberattack is launched. This cyberattack aims to
stop the water supply for a certain geographical area. The
water supply is controlled by valves that can take values

between 0 (completely closed) and 1 (completely open).
Therefore, the DoS cyberattack can modify such features to
close the valves and stop the supply. Besides, an attacker
who wants to launch a DoS cyberattack that goes unnoticed
by the AD system could modify the DoS samples to make
them adversarial. However, these features could take the
value 1 (completely open) due to excessive disturbance, leav-
ing the DoS cyberattack without effect. In both cases, the
adversarial attack is considered successful, but in the second
case, it does not have not a negative impact on the industrial
device. For this reason, a mechanism is needed to differen-
tiate these two adversarial versions, thus providing a reli-
able measurement of the model’s robustness. An additional
drawback is the heterogeneity of data types used in industrial
environments. Unlike image recognition and other domains
such as audio signals, where values are usually floats, there
are discrete values, continuous values or even timestamps,
usually with internal consistency constraints, which makes it
not always possible to calculate a gradient or generate a valid
adversarial sample [10], [11], [12].

In order to face the previous limitations affecting ER,
LLS, and CLEVER, the current paper presents the following
contributions:
• A methodology for estimating the robustness of an
AD model based on ML and DL techniques in indus-
trial scenarios, using a set of additional ML models
(support models) to determine if an adverse sample
remains anomalous. This methodology considers four
fundamental steps and proposes a robustness metric that
is amodification of the ERmetric. It is worthmentioning
that the proposed methodology does not focus on train-
ing a robust AD model, but on measuring the robustness
of AD model already trained.

• Validation of the proposed methodology using a dataset
generated from the Tennessee Eastman Process [13],
an industrial scenario that, although simulated, is real-
istic. Specifically, we show the robustness calcu-
lation for Long Short-Term Memory (LSTM) and
1-Dimensional Convolutional Neural Network
(1D-CNN) models, which are well suited to deal with
time-series data. The model that achieves the highest
robustness should be considered to be deployed in a real
scenario. Our experiments show that the 1D-CNNmodel
achieves a robustness of 1.1, approximately twice that of
the LSTM model (0.6).

The remainder of this paper is structured as follows.
Section II reviews the state of the art. Section III shows a
motivating example explaining the difficulty of generating
adversarial samples in industrial scenarios. In Section IV,
we detail the four-step methodology proposed to mea-
sure the model’s robustness when using the AD paradigm
with ML and DL techniques in an industrial scenario.
The methodology implementation using the Tennessee
dataset and its validation are detailed in Section V.
Finally, the conclusions and future work are included
in Section VI.
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II. RELATED WORK
In this section, we present a brief review focusing on robust-
ness to adversarial attacks in AD. In addition, we introduce
different solutions in the context of AD in industrial environ-
ments to fully understand the proposed methodology.

A. ANOMALY DETECTION IN INDUSTRIAL SETTINGS
Cybersecurity in industrial environments is a field of great
interest to the research community. In this context, a wide
variety of approaches have been proposed. For example, the
authors of [14] propose a collaborative trust-based unbiased
control mechanism that performs a dynamic assignment of
industrial control to avoid malicious nodes attacking indus-
trial devices. However, the most widely used techniques are
those in charge of detecting anomalies. These techniques can
be categorized into DL techniques specially designed to work
with time-series data and classical ML techniques.

In the first category, we highlight the models LSTM and
1D-CNN, which are especially designed to deal with time-
series data. For example, the authors of [15] presented a
scalable and efficient solution for real-time AD in indus-
trial settings. In particular, the authors proposed a hybrid
statistical-ML model that integrated a SARIMA (seasonal
autoregressive integrated moving average)-based dynamic
thresholdmodel and an LSTMmodel to identify the abnormal
behavior in a joint way with a low false-positive rate. Another
example of LSTM usage can be found in [16] where the
authors proposed a Variational LSTM learning model for AD
based on reconstructed feature representation. The authors
designed an encoder-decoder architecture associated with the
Variational LSTM in order to learn low-dimensional repre-
sentation from high-dimensional raw data. Then, the trans-
formed data was fed into a lightweight estimation network to
identify anomalies.

As an example of using 1D-CNN in AD, we highlight [17].
In this study, the authors proposed an AD method based
on measuring the statistical deviation of the predicted value
from the observed value. Besides, the authors tested differ-
ent configurations of 1D-CNN. After detecting 32 out of
36 attacks, the authors claimed the effectiveness of 1D-CNN
in AD problems. Another example is presented in [18], where
the authors introduced the 1D-CNN to diagnose anomalies
from 1D time-series data generated by industrial sensors.
To reduce the number of parameters, a 1D global average
polling (1D-GAP) layer was designed to replace the fully
connected layers. Furthermore, the authors replaced the usual
final softmax layer with a nonlinear multi-class Support
Vector Machine (SVM). The authors of [19] presented a
novel approach that combined 1D-CNN and Gated Recurrent
Units (GRU) to learn the spatiotemporal correlation between
parameters.

In the category of classical ML approaches, we highlight
the solution proposed in [20], where the authors presented
an adaptive approach for defense against cyber-attacks in the
context of industrial systems. In particular, the solutions

combined several algorithms such as Artificial Neural Net-
works (ANN), LSTM, Isolation Forest (IF), and One-Class
Support Vector Machine (OCSVM). In [21], the authors per-
formed a study to compare different ML and DL models
to detect anomalies in industrial settings. In particular, the
models compared were Random Forest (RF), SVM, DNN,
OCSVM, and IF. The authors conducted experiments with the
traffic of Modbus TCP and S7comm protocols, concluding
that SVM and RF were the models with a higher F1-score
in both scenarios. Despite the fact that classical ML models
cannot deal with time-series data out of the box, several
modifications can be made to use such models in time-series
data. The most popular approach is to preprocess the dataset
to create a lagged dataset as shown in [22].

B. ROBUSTNESS TO ADVERSARIAL ATTACKS IN AD
The contributions in the context of adversarial attacks to
ADmodels in industrial systems are relatively recent. In [12],
the authors briefly describe the techniques used in the gen-
eration of adversarial samples, illustrating the main differ-
ences between the cyber-physical domain and the traditional
image domain (constraints in the sample perturbation, system
knowledge of the attacker, the timing of the attack, and the
existence of a human detector). They demonstrate this by
performing an attack on the SWaT testbed. Similarly, the
authors of [23] describe how to slightly modify sensor values
in the Tennessee-Eastman Process Control System so that
they remain unnoticed by an anomaly detector. In addition,
the authors of [24] present a new adversarial attack especially
designed for industrial scenarios. They compare adversarial
samples generated with the proposed technique and those
generated with existing methods such as Fast Gradient Sign
Method (FGSM) and Basic Iterative Method (BIM).

Since an AD model can suffer an adversarial attack, it is
necessary to improve its adversarial robustness. In this con-
text, a variety of defense mechanisms have been proposed
to make the model more robust [25]. However, to the best
of our knowledge, there are no proposed methodologies for
determining the robustness of an AD model in industrial
environments. The most similar approach -although applied
to images- is the one presented in [25]. Additionally, when
new adversarial defense techniques are presented, the authors
tend not to measure the robustness achieved with a metric, but
on the contrary, they use indirect methods like plotting the
loss of accuracy with each technique. By way of illustration,
in [26] the determination of the robustness of a model is based
on the plotting of the drop in accuracy experienced in the
presence of each adversarial attack. Nevertheless, we can find
several robustness metrics [27] that can be used as a starting
point to develop a suitable metric for industrial environments.

Learning from the limitations of existing approaches, our
proposal consists in a methodology to estimate the robustness
of a model taking into account the exposed constraints of
industrial environments when determining the adversarial-
ness of a sample.
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III. MOTIVATING EXAMPLE
In scenarios such as computer vision, an adversarial attack
is successful if it simply causes the modified sample to
be misclassified. In industrial scenarios, it is often further
required that the adversarial sample be classified as harmless
while preserving its anomalous nature. Misclassification can
easily be achieved by altering the original anomalous sample
until a clearly normal sample is obtained. However, this is
not the goal of an adversarial attack. The modification of
the adversarial sample has to be such that the model con-
siders it as normal, but without belonging to the distribution
of normal samples to have a negative impact on the target
industrial process or system. This is achieved by techniques
that take advantage of the peculiarities of the class separation
boundary established by the trained model. However, there
is an additional difficulty, which is how to determine when
an adversarial sample has been altered so much that it has
become a true and innocuous normal sample.

Fig. 1 illustrates a simplified example in an industrial
setting where adversarial attacks are applied on a binary clas-
sification model. Fig. 1 (left) shows the probability density
function (p.d.f) of two classes, from which a set of samples
has been extracted. We assume that class 2 is the normal class
and take a sample from class 1 that is considered hazardous
to the industrial system. After altering the sample, one of
the three situations shown could happen. Sample a is clearly
adversarial, because it belongs to the anomalous distribution,
but the model classifies it as normal. Sample b, on the other
hand, has been classified as normal by themodel but, actually,
it does belong to neither the anomalous nor normal classes.
Finally, sample c has become a harmless sample, because it
clearly belongs to the normal class.

Fig. 1 (right) illustrates the real situation, where the p.d.f.
of the classes are unknown and the boundary of the trained
model serves as an estimate. Unfeasible areas, whose sam-
ples, would be considered corrupt and the industrial system
would discard them, are also depicted (d sample). Addi-
tionally, the boundaries of two different models trained
with the same dataset (support models) have also been
plotted.

The boundary of each model has a different shape, and,
therefore, we can distinguish three zones: the region where
all the models agree on classifying the samples as class 1, i.e.
(a); the region where they agree on classifying the samples as
class 2, i.e. (c); and finally the remaining region, where there
are discrepancies in the classification, i.e. (b). Our proposal is
based on how to use these support models to estimate whether
an adversarial sample has reached the p.d.f of the normal class
ceasing to be adversarial, e.g. (c). However, some samples
retain their adversarial nature after alteration, e.g. (b) and (a),
and we call them truly adversarial samples.

IV. METHODOLOGY
This section describes the proposed methodology to evalu-
ate the robustness of anomaly detectors against adversarial
attacks in industrial scenarios. A graphical representation of

FIGURE 1. A Simplified example of binary classification to illustrate the
potential evolution of an adversarial sample in the context of industrial
environments. A given sample from class 1 can go to different zones
when altered adversarially, sometimes even falling into the actual p.d.f.
of class 2 if the modification is excessive. Left: P.d.f of each class and the
boundaries of the trained model. Right: boundaries of each trained model
and the infeasible regions. The intersection of the support models gives
us an estimate of the core of the actual p.d.f. of class 2.

the methodology can be seen in Fig. 2. It can be divided into
the following four steps:

1) Models Preparation: This step guides through the
process of selecting and training models. In particu-
lar, it considers two types of models: the AD model
employed to detect anomalies and whose robustness
needs to be evaluated, and the support models that will
help to discriminate between non-adversarial and truly
adversarial samples. The support models are the core
of the methodology and its main novelty. All these
models need to be selected considering their suitability
to be used with time-series data since most industrial
systems produce this type of data. Once the models are
selected, they need to be trained following a methodol-
ogy focused on AD.

2) Adversarial Samples Generation: This step guides
through the generation of adversarial samples. In this
context, different approaches to performing an adver-
sarial attack based on the AD model selected in the
previous step are discussed. Besides, the methodology
makes some recommendations about the parameters
used together with the adversarial attack selected.

3) Adversarial Dataset Generation: This step draws the
guidelines to generate a truly adversarial dataset that
will be used later to evaluate robustness. Firstly, this
step uses the support models trained in step 1 to
discriminate between truly adversarial samples and
non-adversarial ones. Finally, the adversarial dataset
is generated considering only the truly adversarial
samples.

4) Robustness Considerations: This step recommends
using a specific metric to evaluate the model’s robust-
ness and discuss the considerations that must be taken
into account. Specifically, the proposed metric is a
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FIGURE 2. Graphical representation of the methodology proposed.

slight modification of the original ER metric because it
does not depend on the model. In other words, it can be
applied to any model whether it is based on a gradient
or not. Finally, once the robustness is evaluated, it is
necessary to consider if the AD model achieves the
desirable robustness.

A. MODELS PREPARATION
We define the next three tasks to prepare models.

1) AD MODEL SELECTION
The first task is to select the proper model that will
be implemented in the AD system. When selecting the
AD model, it is essential to pay attention to the properties of
the dataset used. Different model architectures have different
implicit biases. For example, for tabular datasets with tem-
poral dependencies, as in industrial systems, LSTM models
might be the best option since they process features over the
temporal dimension. In contrast, for datasets with tabular data
but without temporal dependencies, Dense Neural Networks
(DNN) models should be considered. Since, in industrial
environments, most of the data have temporal dependence,
the methodology recommends the use of models that can deal
with time series out of the box, such as LSTM or 1D-CNN
models.

2) SUPPORT MODELS SELECTION
The second task is to select the proper support models used
to identify the truly adversarial samples and avoid the prob-
lem explained in Section III. The support models need to
be trained using the same dataset employed to train the
AD model, and they will be in charge of evaluating each
adversarial sample. In further steps, when a particular adver-
sarial sample is evaluated as normal by a majority of the
support models, the sample will be considered as belonging
to the p.d.f of the normal class and, hence, non-adversarial.
However, it is important to highlight that the support models

need to be selected following a specific criterion. In particu-
lar, we defined three criteria to select such models.
• Support models need to be as much deterministic as
possible. Otherwise, each time they are trained they
may result in a different boundary and, therefore, the
robustness of a particular model may vary. With this
restriction, those DL models with a large number of
hyper-parameters should be discarded. Nevertheless,
there are ML models with interesting properties which
make them suitable as support models.

• Supporting models need to achieve sufficient general-
ization ability to ensure that the p.d.f. of the normal
class lies inside the intersection of their boundaries. This
could cause support models to underperform the chosen
AD models.

• Support models do not need to evaluate samples as
quickly as the AD model, and therefore, we can select
models that do not achieve a high degree of parallelism,
such as classical ML models.

In particular, the methodology recommends using ensem-
ble models like RF or gradient boosting models like
XGBoost. These models have lesser hyper-parameters than
DL models and, since their results are based on the average
decision of many estimators, they achieve a high degree of
determinism. Besides, both models can deal with time series
data [28], [29] which is predominant in industrial scenarios.

3) MODELS TRAINING
In this task, all the previously selected models are trained.
A difference in the training process of both AD and support
models is that AD in industrial scenarios is typically based
on a multi-class classifier in order to discriminate between
the different types of anomalies. In contrast, support models
should be binary classifiers, since we are only interested in
detecting if the sample is normal or abnormal. Considering
this particularity, both models should be trained using the
same dataset, but in the case of support models, the classes
should be reduced to normal and abnormal. To train all the
models, we recommend the methodology presented in [30].

Besides, to reduce the complexity of the AD model,
we propose training such models using as few parameters
as possible. We also recommend including regularization
techniques such as dropout. Regularization smooths the deci-
sion boundary, improving the ability of the support models to
distinguish between non-adversarial and adversarial samples.
This recommendation is supported by the fact that industrial
systems carry out repetitive actions, and therefore, the behav-
ior of such systems should be able to be modeled with less
complex models.

In case the introduction of regularization techniques is not
possible, either because we must use a pre-trained AD model
or because they reduce the performance of the ADmodel, it is
advisable to increase the number of models in the ensemble
to capture the complexity of the AD model.

Finally, one more circumstance that can arise in model
training is that the support models do not achieve
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sufficient performance to distinguish between non-adversarial
and adversarial samples. In this case, themethodology recom-
mends carrying out an exhaustive grid-search strategy to find
the optimal hyper-parameters for RF and XGBoost, paying
special attention to the number of estimators, the maximum
depth of the trees and the maximum number of leaf nodes.

B. ADVERSARIAL SAMPLES GENERATION
In this step, we identify three tasks to generate adversarial
samples.

1) ADVERSARIAL ATTACK SELECTION
The first task consists in selecting the proper adversarial
attack to generate adversarial samples. In this task, the
AD model previously chosen needs to be taken into account
because not all attacks apply to all models. On the one hand,
we need to consider what information we have concerning the
model and the dataset. If we have full access to the model and
the dataset, the methodology suggests using an adversarial
attack based on the white-box approach. Similarly, if we do
not have access to the model, but we have the dataset, the
methodology suggests training a substitute model and using a
white-box approach. Finally, if we do not have access to either
dataset or model, the methodology recommends a black-box
approach.

In addition, the data types present in the dataset and the
AD model need to be considered. In DL and other differ-
entiable models, we can use attacks exploiting the model
gradient. The drawback of these attacks is that they are specif-
ically designed to work on continuous data. However, a slight
modification of the adversarial attack can be made to become
compatible with categorical data [24]. On the contrary, if the
target model is based on certain ML techniques, such as RF,
whose gradient cannot be computed, an adversarial attack
based on the black-box approach needs to be adopted.

Another consideration to keep in mind is whether to use
a targeted or untargeted adversarial attack. A targeted attack
attempts to deceive the model into predicting a particular
class that is specified beforehand. In contrast, untargeted
attacks perturb the sample to maximize the model loss, giving
no special preference towards a particular class as long as it
is not the original label. If an untargeted attack is used, the
samples could change their class between different abnormal
classes, but not necessarily to the normal class. A sample
that changes between the different abnormal classes is not
a problem as long as the AD system detects it as abnormal
and it cannot reach the industrial target device. However,
an abnormal sample classified as a normal sample could
affect industrial devices. All in all, this methodology recom-
mends using targeted adversarial attacks whenever possible.

The methodology presented in this paper is designed to
evaluate the robustness of AD models against a single and
several adversarial attacks. In the second case, it would be
necessary to select all those attacks we are interested in.
In addition, in the case of being interested in estimating
the robustness against a large number of adversarial attacks,

the methodology recommends including adversarial samples
generated by different adversarial attacks based on the gradi-
ent since they are the most common.

2) PARAMETERS SELECTION
This task makes some recommendations when selecting the
adversarial attack parameters. These parameters fundamen-
tally influence the model’s robustness and the time required
to generate the adversarial samples. Let us suppose an attack
based on the gradients, which has two parameters frequently
shared with other attacks of the same type. These two param-
eters are the maximummagnitude of the final perturbation, ε,
and the number of iterations.

If an extremely large ε is chosen, the reported robustness
will be wrongly high. This is due to the high distortion
introduced in each iteration, greatly increasing the difference
between adversarial and original samples. However, this leads
to a misleading measure, since introducing such a large dis-
tortion may cause the samples to cease to have a physical
meaning and, therefore, have no effect on the physical world.
Likewise, if a small ε is chosen, the adversarial perturbations
will be less prone to leave the anomalous class, and the model
will seem overly robust.

Concerning the number of iterations, a trade-off is
observed. The greater the number of iterations specified,
which allows for lower values of ε, the greater the quality
of the adversarial samples. However, it comes at the cost of
taking a long time to generate them.

3) ADVERSARIAL ATTACK DEPLOYMENT
Once the adversarial attack and its parameters are selected,
the third task involves its deployment. During this task, the
attack will convert the original samples into adversarial ones.
To do so, the methodology proposes employing the test
dataset used to validate the performance of the AD model.
Although it is also possible to use the training or validation
dataset, it is more realistic to use the test dataset. Note that in
a real adversarial attack, the attacker may not have access to
the training dataset, and needs to use samples not previously
seen by the AD model.

C. ADVERSARIAL DATASET GENERATION
The following tasks are suggested to generate a dataset with
truly adversarial samples.

1) ADVERSARIAL SAMPLES EVALUATION
The first task is to evaluate the adversarial samples previously
generated to decide which are actual adversarial samples. Let
X be a set of anomalous samples for the model M , and Xadv

the set of adversarial samples obtained from X . Then, the
truly adversarial samples are determined using the support
models M1, . . . ,Mn. A sample xadvj ∈ Xadv is considered as
non-adversarial if (Mi(xadvj ) == Normal) for the majority of
i values. Otherwise, it will be considered as a truly adversar-
ial sample. There are two reasons why support models can

VOLUME 10, 2022 124587



Á. L. Perales Gómez et al.: Methodology for Evaluating the Robustness of Anomaly Detectors

evaluate an adversarial sample as normal. The first is the
transferability of the adversarial perturbation between mod-
els. This methodology minimizes this possibility by recom-
mending the use of support models whose architecture varies
substantially from the model to be evaluated. The second
reason is that the variations introduced by the adversarial
attack can convert an abnormal sample into a truly normal
sample as illustrated in Fig. 1.

2) ADVERSARIAL DATASET GENERATION
D. ROBUSTNESS CONSIDERATIONS
In this step, we establish the following tasks.

1) MODEL’s ROBUSTNESS COMPUTATION
This task consists in quantifying the model’s robustness.
For this purpose, the original sample dataset and the truly
adversarial dataset are required. With these two datasets,
the methodology uses the ER metric for the computation of
robustness because it is independent of the chosen model.
Many of the robustness metrics in the literature are targeted
at specific models, e.g., differentiable models. However, the
methodology allows the use of any other suitable metric.

The formal definition of ER metric is presented in
Equation 1.

ER =
1
|X true|

|X true|∑
i=1

‖o(x truei )− x truei ‖

‖o(x truei )‖
(1)

where o(x truei ) ∈ X is the original anomalous sample from
which x truei ∈ X true was generated. This gives a measure of
how robust the evaluated model is. The higher the ER, the
larger the disturbance necessary to convert original samples
into truly adversarial samples, and therefore, the greater the
robustness of the model.

2) DETECTION PERFORMANCE AND ROBUSTNESS
TRADE-OFF
In this task, the methodology suggests evaluating both detec-
tion performance and robustness to decidewhichmodel needs
to be deployed in the industrial scenario. Both aspects are
crucial in industrial scenarios. On the one hand, if the detec-
tion performance is low, the possibility that a non-adversarial
attack impacts the physical world is high. On the other hand,
if the model’s robustness is significantly low, it is easy to
deploy adversarial attacks to generate adversarial samples.
Therefore, the possibility of adversarial attacks impacting
the physical world is high. In general, the methodology rec-
ommends selecting a model with the highest robustness as
long as the detection performance does not differ significantly
from the other candidate AD models.

V. METHODOLOGY VALIDATION
In this section, the methodology proposed in Section IV
is applied to validate it in an industrial scenario. To val-
idate the methodology, we used the dataset generated by
Rieth et al. [31] using the Tennessee Eastman (TE) process,

which is a simulated testbed of a chemical process where
the authors introduced 20 anomalies. The authors published
four files: training and test files with anomalies and training
and test files free of anomalies. Each file contains 500 sim-
ulations for each anomaly type. The training files contain
500 samples in each of these simulations, while the test files
contain 960 samples. These files contain 52 features, includ-
ing 41 measurement variables and 11 manipulated variables
sampled every 3 minutes. This amounts to 25 hours for the
training datasets and 48 hours for the test datasets.

The experiments performed in this work were carried out
in a workstation with 94 GB of RAM, an Intel(R) Core(TM)
i7-5930K CPU @ 3.50GHz, and an NVIDIA GEFORCE
GTX 1080.

A. TESTBED
The TE process is shown in Fig. 3, where five main modules
can be observed: the reactor, the condenser, the liquid-vapor
separator, the compressor, and the stripper. The process pro-
duces two products through the reaction of eight components:
A, B, C, D, E, F, G, and H. These reactions are defined by the
following equations:

A(g)+ C(g)+ D(g) → G(liq) Product1

A(g)+ C(g)+ E(g) → H (liq) Product 2

A(g)+ E(g) → F(liq) Byproduct

3D(g) → 2F(liq) Byproduct

During the process, reactants A, D, E, and C are injected
into the reactor, where parts of the reactions described above
occur. This results in products in the form of vapor and
unreacted components that pass to the condenser, where they
change from gas to liquid through a cooler. These products
and unreacted components pass through the liquid-gas sep-
arator, where the unreacted components are recycled and
reinjected at the inlet through the compressor. Conversely, the
products condensed go to a product stripping module where
the remaining reactants are removed. Finally, products G and
H are generated from the output of the stripper.

Furthermore, all the reactions that take place are irre-
versible and exothermic, and they are approximately
first-order with respect to the reactant concentrations. The
reaction rates are a function of the temperature over an Arrhe-
nius expression. Among all components, G is the one with
the highest sensitivity to the temperature since it has more
activation energy.

The control objectives for this process are the following:
• Maintain process variables at desired values.
• Keep process operating conditions within equipment
constraints.

• Minimize variability of product rate and product quality
during disturbances.

• Minimize movement of valves which affect other pro-
cesses.

• Recover quickly and smoothly from disturbances, pro-
duction rate, or product mix changes.
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FIGURE 3. Tennessee eastman process.

B. MODELS PREPARATION
This section details the implementation of the first step of the
methodology where the AD and support models are trained.

1) AD MODEL SELECTION
In this task, and considering the properties of the TE process,
we chose two models that can deal with continuous data and
manage time series. On the one hand, we selected an LSTM
model that accepts time-series sequences as input and pre-
dicts the target class as output. On the other hand, we selected
a 1D-CNN model that also accepts time-series sequences
as input but whose internal architecture substantially differs
from the LSTM model.

2) SUPPORT MODELS SELECTION
Following the second task, we chose the support models
used to determine truly adversarial samples. As suggested
by the methodology, we selected two ensemble models that
typically achieve a high degree of determinism. In particular,
we selected RF and XGBoost models.

3) MODELS TRAINING
Following the third task, we carried out the training of both
AD and support models. With this aim, we created our train-
ing, validation, and test datasets from the training and test
files provided by [31], considering the 52 features included
in the dataset. To generate our training dataset, we selected
all the samples of the first 400 simulations from the original
training files. Our validation dataset was created by taking
all the samples from the training files corresponding to the
last 100 simulations. In both datasets, for each simulation,
we ignored the initial 20 samples of the files containing
anomalies because these samples were mislabeled as anoma-
lous. Finally, our test dataset was generated by selecting all

the simulations included in the original test files but consider-
ing only 500 samples of each anomaly, starting from sample
160 because the previous 159 samples were mislabeled as
anomalous.

Since our proposal does not focus on training the
AD model, but measuring the robustness of such models,
we did not carry out any feature engineering step except
grouping samples, and therefore, the data used were identical
to the ones provided by the authors of the dataset in [31].
As the last step, we created sequences with 5 timesteps,
resulting in samples of shape (5, 52) to train both AD and
support models.

Subsequently, the samples referring to anomalies 3, 9, and
15 were eliminated since they did not suffer enough varia-
tion to be considered as anomalies, as pointed out by [32].
In conclusion, taking into account the remaining 17 anomaly
types, the size of the training, validation and testing datasets
were 3 264 000, 816 000, and 4 250 000 samples, respectively.
Additionally, we scaled the three datasets by using the mean
and standard deviation of the training dataset.

As an additional step to train, validate, and test the sup-
port models, we generated a two-class version of the dataset
with only the normal and anomalous labels. The number of
anomalous samples becomes much higher than the number of
normal samples. Therefore, we obtained a balanced version
of the dataset by taking all the normal samples and the same
number of samples randomly chosen among all the anoma-
lies.

Before training the 1D-CNN and LSTM models, we per-
formed a hyper-parameters optimization with training and
validation datasets, resulting in the architectures shown in
Table 1. A similar procedure was performed with the support
models using the balanced binary dataset, and the results are
listed in Table 2.
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TABLE 1. Architectures of 1D-CNN and LSTM models.

TABLE 2. Hyper-parameters used in support models.

TABLE 3. Detection performance achieved by each model.

To objectively compare the performance of these models,
we used accuracy, precision, recall, and F1-score metrics on
the test. Since the last three metrics are designed to be used
with binary classifiers, we used for multiclass the weighted
version of these metrics provided by the library Scikit-Learn.
As can be observed in Table 3, the model that achieved
the best F1-score was 1D-CNN (0.976) followed by LSTM
(0.929). In contrast, the supported models achieved the worst
F1-scores (0.781 for XGBoost and 0.844 for RF).

C. ADVERSARIAL SAMPLES GENERATION
In this step, we selected an adversarial attack to be deployed
and to generate adversarial samples from LSTM and
1D-CNN models.

1) ADVERSARIAL ATTACK SELECTION
Following the first task, we chose an adversarial attack
according to the characteristics of the model and the testbed.
To be specific, we selected an attack that handles continuous
data and targets DLmodels.We also assumed that the attacker
had access to both the model and the dataset, and, therefore,
we applied a white-box approach.

The adversarial attack selected was a slight modification
of BIM, targeted and unclipped. The method is the same as
proposed in [24], except for the mask for categorical features.
We did not use such a mask because we wanted to modify
all the features and the dataset does not have categorical
features. The formal definitions of this method can be seen in
Equation 2, where X is the original array of samples, X ′0 is the
first iteration where the original samples are considered, and

X ′n+1 are the successive iterations. In this step, the gradient,
∇, of the cost function, J , of the previous samples, Xn with
respect to the target label, ytarget , is computed and added to
the samples, modulated by the perturbation parameter, ε.

X ′0 = X;X ′n+1 = X ′n + ε · sign(∇J (Xn, ytarget )) (2)

This method generates a batch of adversarial samples from
a batch of original samples. Since it is a gradient-based attack,
the fundamental parameters are the number of iterations and
epsilon, ε, which indicates the magnitude of the disturbance
introduced in each iteration. In the original BIM, all samples
are altered in every iteration. This means that when a sample
in the batch is converted to adversarial, i.e., its class changes
from abnormal to normal according to the model, it will
continue being modified until the algorithm reaches the last
iteration. The main consequence is that a significant number
of samples will undergo a great and unnecessary change.

Conversely, our version considers, in each iteration, only
those samples that are not adversarial. In other words, when a
sample changes from abnormal to normal class, it is excluded
from the following iterations. This means that only the min-
imum disturbance will be applied to change the class of the
sample.

2) PARAMETERS SELECTION
Following the second task, we selected the parameters used
with the adversarial attack. The main goal of this task in
our specific attack is to select the right parameter to craft
adversarial samples as similar as possible to the original ones.
To this end, we chose an ε of 0.005 since we considered this
value small enough so that a large disturbance is not intro-
duced at each iteration. Concerning the number of iterations,
we selected 100, which may seem to be an excessive value.
However, our version of BIM stops modifying the samples
that have become adversarial regardless of the number of
iterations.

3) ADVERSARIAL ATTACK DEPLOYMENT
Following the third task, we generated the adversarial sam-
ples. To accomplish this goal, we employed all the anomalies
of the test dataset. Then, we applied our version of BIM using
the gradients of the LSTM model and the original abnormal
samples in the test dataset (4 000 000), creating a new dataset
of adversarial samples. This dataset was used to evaluate the
robustness of the LSTM model. The same process was per-
formed with the 1D-CNN model. After executing the adver-
sarial attackswe obtained 3 007 479 and 2 652 192 adversarial
samples for 1D-CNN and LSTM (see Table 4), respectively.
As can be seen in the row labeled non-adversarial samples,
the AD models (LSTM and 1D-CNN) generated samples
that were subsequently classified as anomalous samples by
the support models (RF and XGBoost), considering them
as non-adversarial samples. The number of samples consid-
ered to compute robustness is presented in the row labeled
truly adversarial samples, i.e., 2 545 456 and 2 382 082 for
1D-CNN and LSTM, respectively.
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TABLE 4. Number of truly adversarial and non-adversarial samples
generated by 1D-CNN and LSTM.

D. ADVERSARIAL DATASET GENERATION
In the third step, we used the support models to decide which
samples were truly adversarial and create the adversarial
dataset employed to measure the robustness of the models.

1) ADVERSARIAL SAMPLES EVALUATION
Since we were evaluating the robustness of LSTM and
1D-CNN models, we carried out this first task twice. When
both support models classified an adversarial sample as
normal, it was removed from the dataset in the next task.
Specifically, Table 4 shows the number of truly adversarial
samples that were preserved, the number of non-adversarial
samples that were removed, and the total adversarial sam-
ples generated after executing the adversarial attack. As can
be seen, the adversarial attack managed to generate more
truly adversarial samples using 1D-CNN than LSTM. Simi-
larly, the number of non-adversarial samples was also greater
for 1D-CNN than for LSTM. In particular, considering the
1D-CNN model, around 15% of samples were non-
adversarial, whereas considering the LSTMmodel, this num-
ber decreases up to 10 %.

The final output of this task is two sets. One set contains
those adversarial samples that are not truly adversarial but
are generated by the LSTM model. Similarly, the second set
contains those adversarial samples not truly adversarial by the
1D-CNN model.

2) ADVERSARIAL DATASET GENERATION
Following the second task, we generated the final adversarial
dataset for each model, which was used to evaluate their
respective robustness. To be specific, the final dataset is
equal to the original dataset but removing the non-adversarial
samples. Therefore, this dataset only contained truly adver-
sarial samples, resulting in a dataset with 2 545 456 and
2 382 082 samples for 1D-CNN and LSTM robustness evalu-
ation, respectively.

E. ROBUSTNESS CONSIDERATIONS
In this step, we followed the two tasks proposed in the
methodology. In particular, we computed the robustness using
Equation 1 and discuss the robustness and detection perfor-
mance trade-off.

1) MODEL’s ROBUSTNESS COMPUTATION
Following the first task, we computed the ER of the LSTM
and the 1D-CNN models previously trained. Fig. 4 shows
the distribution of the ER (horizontal axis) for each of the
considered models after 100 iterations. To clearly show the

FIGURE 4. Empirical robustness for iteration number 100. The blue violin
plot shows the ER distribution for the CNN model, while the orange violin
plot displays the ER for the LSTM model. Each plot represents the
probability density and they are vertically symmetric about the horizontal
gray bar. The thick part of the bar shows the interquartile range, and the
white point represents the median.

ER distribution, extremely large values were removed. As the
figure also shows, the 1D-CNN model is more robust. To be
specific, if we compute the median of ER (the white point
in Fig. 4), we see that the 1D-CNN model achieved a
robustness of 1.110, while the LSTM achieved a robustness
of 0.601. This means that for generating adversarial samples
for the LSTM model, it is necessary to modify the sample
introducing a perturbation greater than 60.1% of the original
sample for more than 50% of samples. In contrast, to generate
adversarial samples for 1D-CNN, the perturbation needed is
around 111% of the original sample. The model’s robust-
ness is related to the perturbation needed to convert original
samples into adversarial ones. The larger the perturbation,
the more robust the model. In this specific case, it seems
that a more complex model (1D-CNN) is more robust than a
simpler one (LSTM). In particular, the 1D-CNN model has
12 597 trainable parameters, while the LSTM model has
2 453 trainable parameters. Besides, the 1D-CNN model
used the dropout regularization technique during the training
phase, while the LSTM did not apply that technique. This
implies that the boundary decision of the 1D-CNN model is
smoother and, therefore, simpler than the LSTM model.

2) DETECTION PERFORMANCE AND ROBUSTNESS
TRADE-OFF
Following the second task, we discuss next the trade-off
between detection performance and robustness. Table 5
shows a summary of the detection performance and both the
ER using our methodology and without using it. Besides,
although different metrics are not comparable, we decided to
include the CLEVER score since it can tell us if one model is
more robust than another. The CLEVER score was computed
using the default parameters specified in the ART library.
In addition, we set themaximumball distortion to 10 and used
l2 as the norm. Finally, we selected 5 000 uniformly random
samples from the original dataset and computed the median
of their CLEVER scores.
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TABLE 5. Detection performance and empirical robustness achieved by each model.

In this specific case, the 1D-CNN model achieved the
best results in both detection performance and robustness.
Therefore, this model should be used in the core of anAD sys-
tem. Furthermore, the robustness varies substantially depend-
ing on whether our methodology is used or not. As previously
mentioned, this is because calculating robustness without
applying our methodology will include non-adversarial sam-
ples and may lead to wrong results. For example, in this
particular case, both models are apparently twice as robust,
and actually they are not. In general, the selection of a model
depends on the particular scenario. In our case, due to the
malicious intention that attackers could have, it is better to
choose the model with the highest robustness. Otherwise,
the model with the highest evaluation performance should be
selected.

As can be seen in Table 5, the median of the CLEVER
scores also shows that the 1D-CNNmodel is more robust than
the LSTM model. In this case, the value tells us the lower
bound l2 minimum distortion needed to convert the samples
into normal ones. In particular, as shown by our approach,
the distance required to craft an adversarial sample using the
1D-CNN (0.046)model is twice that using the LSTM (0.023).

F. DISCUSSION
Our work establishes a clear four-step methodology for
computing the robustness of ML and DL models specially
designed for AD in industrial scenarios in relation to adver-
sarial attacks. Although we presented a general methodology,
we applied it to a specific scenario. In particular, we validated
it using the TE process [31], a simulated testbed of a chemical
process widely used in works related to AD. The results of
the experiments demonstrated that it is not only necessary
to take into account the detection performance but also the
robustness of the model against adversarial attacks. Thus, our
work fills in a gap in the literature regarding methodologies
to evaluate the robustness of ML and DL models. As we
observed in Section I, there are several metrics to compute the
robustness of a model. However, these metrics have impor-
tant limitations. On the one hand, most metrics are specific
to differentiable models, e.g., CLEVER [9] and LLS [8].
On the other hand, other proposals focus on computing the
robustness in terms of the minimal perturbation needed to
change the sample class [7]. However, in AD, the robustness
needs to be computed considering the change from one of the
abnormal classes to the normal class.

One relevant aspect of the methodology that we propose is
that only the truly adversarial samples are considered when
computing the robustness. When an adversarial attack is per-
formed, some samples can change their actual class to the

normal class. As we discussed in Section III, in industrial
scenarios, abnormal samples that change to normal classes
are harmless. Furthermore, in contrast to other fields such
as computer vision, identifying if an adversarial sample
presents a potential threat to the industrial system requires
expert knowledge. Therefore, when computing the robust-
ness, we need to discard these harmless samples and only
consider the adversarial samples that are misclassified by
the AD system but continue being anomalous. In order to
filter these samples, which we call non-adversarial samples,
we propose using support models. Specifically, to discard
non-adversarial samples, we propose a voting process carried
out by these support models.

Another relevant aspect of our methodology is that it can
be applied to all ML and DL models irrespective of whether
the model is not differentiable. This is because the metric that
we propose computing the robustness is ER, which considers
the original samples and the adversarial samples generated.
However, unlike the original ER metric proposed in [7], our
methodology allows computing the metrics using targeted
adversarial attacks.

Finally, the most critical limitation of our methodology
is the selection of the support models. On the one hand,
these models allow discriminating between truly adversarial
samples and non-adversarial samples. However, these models
also introduce a degree of uncertainty. In fact, the selection of
different support models can lead different authors to obtain
different robustness results. Therefore, as proposed in the
methodology, these models need to be selected following
specific criteria. For example, those models with a relevant
number of hyper-parameters, such as DL models, need to be
avoided. In contrast, an ensemble based on a voting process
between different models achieves a high degree of certainty.
Therefore, they are a convenient choice to be selected as
support models.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a newmethodology to measure the
robustness of AD models to adversarial attacks in industrial
scenarios. Its novelty is the consideration of the possibil-
ity that, after applying adversarial attacks, some adversarial
samples become truly normal and do not need to be taken
into account in the robustness computation. The method-
ology comprises four steps: models preparation, adversar-
ial samples generation, adversarial dataset generation, and
robustness consideration. To be precise, the methodology
uses a set of models called support models to discriminate
between truly adversarial and non-adversarial samples, and
robustness is computed considering only the truly adversarial
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samples. Besides, we applied this methodology to the TE pro-
cess, which is a realistic industrial scenario. In this scenario,
we evaluated the robustness of two AD models: 1D-CNN
and LSTM. The experiments showed that, in this specific
scenario, 1D-CNNmodel achieved higher robustness (1.110)
than LSTM (0.601). This means that to generate adversarial
samples, the perturbation required in the LSTM is equals
60.1% of the original samples, while the perturbation needed
in the 1D-CNN is about double, 110%.

As future work, we plan to continue evaluating the robust-
ness of AD systems in other industrial scenarios using dif-
ferent industrial datasets. In addition, we plan to study the
properties of different models to be used as support mod-
els. Besides, we also plan to study the relationship between
robustness, adversarial samples, and interpretability method.
One application of this study can be the improvement of the
robustness of the AD model by detecting adversarial samples
using interpretability techniques.
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