
Local gyrokinetic simulations of tokamaks with

non-uniform magnetic shear

Justin Ball and Stephan Brunner

Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC),

CH-1015 Lausanne, Switzerland

E-mail: Justin.Ball@epfl.ch

Abstract.

In this work, we modify the standard flux tube simulation domain to include

arbitrary ion gyroradius-scale variation in the radial profile of the safety factor. To

determine how to appropriately include such a modification, we add a strong ion

gyroradius-scale source (inspired by electron cyclotron current drive) to the Fokker-

Planck equation, then perform a multi-scale analysis that distinguishes the fast

electrons driven by the source from the slow bulk thermal electrons. This allows us to

systematically derive the needed changes to the gyrokinetic model. We find new terms

that adjust the ion and electron parallel streaming to be along the modified field lines.

These terms have been successfully implemented in a gyrokinetic code (while retaining

the typical Fourier representation), which enables flux tube studies of non-monotonic

safety factor profiles and the associated profile shearing. As an illustrative example, we

investigate tokamaks with positive versus negative triangularity plasma shaping and

find that the importance of profile shearing is not significantly affected by the change

in shape.

1. Introduction

Gyrokinetic simulations are the highest-fidelity tool used to study turbulence in

magnetic fusion devices. While they typically require a supercomputer, nonlinear

gyrokinetic simulations can give quantitatively accurate predictions of energy transport

and many other statistical properties of turbulence [1, 2]. This capability is invaluable for

evaluating the performance of proposed designs, interpreting measurements on existing

experiments, and improving our understanding of the physics of plasmas.

The gyrokinetic model is a result of a formal asymptotic expansion of the Fokker-

Planck kinetic equation in ρ∗ ≡ ρi/a, the ratio of the ion gyroradius ρi to the tokamak

minor radius a. All quantities are given a size with respect to ρ∗ and, by proceeding order

by order, the equations governing turbulence, neoclassical physics, MHD equilibrium,

and transport can be systematically derived [3]. This expansion explicitly separates the

time and space scales of the turbulence from those of the background plasma equilibrium

— the amplitude of turbulent fluctuations are assumed to be a factor of ρ∗ smaller than

the background equilibrium, while the timescale of the turbulence is a factor of ρ2∗ faster
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than the equilibrium. Similarly, in the directions perpendicular to the magnetic field

the turbulent eddies have a spatial size comparable to ρi, a factor of ρ∗ smaller than the

background quantities, which vary over the scale of a. On the other hand, parallel to

the magnetic field, the eddies are very extended and have a length comparable to a.

Because of the separation of scales at the heart of gyrokinetics and the anisotropy

of turbulence, it is natural to use a “flux tube” [4] — a simulation domain that is very

elongated along the magnetic field line and narrow in the perpendicular directions. The

perpendicular box widths are measured in ρi, while the parallel length is measured in

number of poloidal turns around the tokamak cross-section. Thus, all the radial profiles

of equilibrium parameters (i.e. the density, flow, temperature, safety factor, and flux

surface shape) can be Taylor expanded to first order around the flux surface at the

center of the domain to reduce their variation to a simple linear dependence. For this

reason, simulations employing a flux tube are called “local.” Additional terms in the

Taylor expansion (e.g. the curvature of the profiles) are referred to as “profile shearing”

and are generally neglected in local gyrokinetics because they are small in ρ∗ ≪ 1. This

means the safety factor (i.e. the number of toroidal turns a magnetic field line makes

per poloidal turn of the tokamak) profile is parameterized in local simulations by just

two scalar quantities: the value of the safety factor at the center of the domain q0 and

the radial derivative of the safety factor ŝ ≡ (r0/q0)dq/dr. Specifically, it becomes

q(r) = q0

(
1 + ŝ

r − r0
r0

)
, (1)

where r is a flux surface label and r0 is its value at the center of the domain. Recently

there have been several efforts to include profile shearing in temperature and density

[5, 6, 7], flow [5, 8], flux surface shape [7], and the safety factor [7]. Importantly for this

work, the approach of [7] requires the safety factor profile to be monotonic and assumes

it varies over a much longer spatial scale than that of the turbulence. Additionally,

because flux tubes model an asymptotically narrow range of flux surfaces, it becomes

appropriate to apply periodic boundary conditions in the radial direction, in addition

to the binormal and parallel directions [4]. Thus, a Fourier representation is typically

employed in the directions perpendicular to the magnetic field line, which has several

advantages (e.g. the 3/2 rule can be employed to prevent aliasing issues [9, 10] and the

gyroaverage becomes a simple multiplication by a Bessel function [11]).

It is also common to perform gyrokinetic simulations using a “global” domain

[12, 13, 14, 15, 16], which spans a large fraction of the tokamak cross-section. While

global simulations generally still solve the same gyrokinetic model that results from the

asymptotic expansion in ρ∗ ≪ 1, they retain the full radial profiles of the background

quantities. Thus, such simulations include profile shearing as well as other effects that

are formally small in ρ∗. While global simulations cannot be claimed to be more accurate

as they don’t contain all terms that appear to next order in the ρ∗ expansion [17],

including some formally small terms can still be useful. For example, comparing global

and local simulations gives information about what numerical value of ρ∗ is needed for
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the asymptotic expansion to be valid [18].

Unfortunately, global simulations are substantially more computationally expensive

and less robust due to their greater complexity. They typically consider significantly

larger physical domains, which include a wider range of plasma conditions that must be

properly resolved. Additionally, because they include both turbulent and transport

timescales, they must include sources and sinks of particles and energy [12, 14] to

prevent turbulence from slowly flattening the driving gradients. Lastly, due to the

complexities of the plasma edge, the appropriate radial boundary conditions are unclear

[19]. Typically, Dirichlet boundary conditions are used together with buffer regions

[12, 14], but then the results must be tested to ensure that they are not contingent

on such an artificial boundary condition. The boundary conditions, together with the

explicit radial dependence of geometric coefficients in the equations, typically prevent

global simulations from employing a Fourier representation in the radial direction.

In this work, we will bridge the separation of scales in a novel way — we will

enable the flux tube simulation domain to model ion gyroradius-scale variation in the

radial profile of the magnetic shear. Specifically, we aim to model variation with a scale

that is tens to hundreds of gyroradii, yet still asymptotically smaller than the tokamak

minor radius. Importantly, this can be done in a computationally efficient manner, while

retaining the practical advantages of the flux tube. In particular, sources/sinks are not

required, periodic radial boundary conditions can be applied, and the perpendicular

spatial grid can still be discretized by a Fourier decomposition. This will enable reliable

local studies of profile shearing in the safety factor profile. Additionally, the model also

includes shearing in the steady-state profiles of temperature, density, and flow because

these will invariably adjust during the simulation to be consistent with the externally

imposed safety factor profile and the absence of sources/sinks. One interesting potential

application is reversed magnetic shear profiles, which have been found to enable internal

transport barrier formation [20, 21]. Such profiles include a point with ŝ = 0, which

may make profile curvature particularly important. As discussed in the conclusions,

other potential applications include reducing the computation cost of simulating very

low but finite values of magnetic shear, investigating turbulent broadening of current

drive sources, and performing self-consistent studies of profile shearing in the density,

flow, and temperature profiles.

In section 2, we will explain how ion gyroradius-scale radial variation might arise

in experimental magnetic shear profiles and explain how it can fit into the standard

gyrokinetic asymptotic ordering. Then, in section 3 we will derive the equations for a

flux tube with non-uniform magnetic shear and implement them in the local gyrokinetic

code GENE [22]. In section 4, we will benchmark the code against linear analytic results

as well as conventional nonlinear flux tube simulations. Next, in section 5 we will present

an example application to illustrate its potential uses: comparing the importance of

profile shearing in positive and negative triangularity tokamaks. Finally, in section 6 we

will provide some concluding remarks.
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2. Physical origins and orderings

There are at least two mechanisms that could plausibly create ion gyroradius-scale

variation in the radial profile of the magnetic shear — Electron Cyclotron Current

Drive (ECCD) and the bootstrap current. ECCD is one of the primary steady-state

methods used to drive the toroidal plasma current [23] (which gives rise to the poloidal

magnetic field and thereby determines the safety factor and magnetic shear profiles). It

is one of only two non-inductive current drive systems planned for the initial operating

phase of ITER [24]. Its widespread use is largely due to its ability to provide highly

localized current drive, thereby enabling fine control over the safety factor profile [23].

In fact, the skin depth of radio-frequency waves around the electron cyclotron resonance

can be just ∼ 10ρi [23, 25, 26, 27], similar to the typical size of turbulent eddies. Thus,

an ECCD system can be sufficiently localized to create a gyroradius-scale source of

toroidal current. Accordingly, there is evidence that ion gyroradius-scale structure can

be created experimentally (e.g. figure 15 of [28], figure 5.9 of [29]), although the magnetic

shear profile is difficult to measure directly. Alternatively, we note that the bootstrap

current arising from transport barriers can also have quite small-scale radial variation

(e.g. figure 5 of [30], figure 3.19 of [31], figure 1 of [32]). While we are not seeking to

rigorously model either of these sources of current drive, we will use the characteristics

of ECCD to motivate approximations to arrive at a plausible and internally consistent

simplified model that features non-uniform magnetic shear.

To show that a magnetic shear profile that varies across a flux tube and is fixed

in time can be made consistent with the gyrokinetic orderings, we will follow the

derivation in [3], but add a new source term S̃Ip
e (r). Prior to the asymptotic expansion,

this source term would appear on the right side of the Fokker-Planck kinetic equation

(i.e. equation (1) of [3]). We will define this term to be a source of toroidal plasma

current Ip that is carried by the electrons, varies radially on the ion gyroradius-scale (i.e.

dS̃Ip
e /dr ∼ S̃Ip

e /ρi), and averages to zero over the turbulent spatial scale in the radial

direction (i.e. ⟨S̃Ip
e (r)⟩turb = 0). We want to choose the strength of S̃Ip

e (r) such that the

modulation it creates in the magnetic shear s̃(r) competes against the standard magnetic

shear ŝ of the background linear safety factor profile (i.e. s̃(r) ∼ ŝ). Regardless, because

of its small radial scale, this causes a negligible modification to the safety factor (i.e.

(q0/r0)
∫
drs̃(r) ≪ q0). This is analogous to other background profiles, like temperature

or density, for which the turbulent fluctuations are strong enough to locally flatten the

background gradients, but not to modify the background value itself. To accomplish

this, we will order the strength of the source as S̃Ip
e ∼ ρ∗ωFs, where Fs is the background

distribution function and ω is the frequency of the turbulence.

Consequently, when performing the asymptotic expansion in ρ∗ ≪ 1, the new

current drive source term will first appear at the order of neoclassical theory and

gyrokinetics (i.e. at O(ρ∗ωFs)). Since the source averages to zero over the turbulent

spatial scale, it does not appear in the neoclassical drift kinetic equation, the Grad-

Shafranov equation, nor the evolution equation for the mean magnetic field. In fact,
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the only place it appears is on the right side of the electron gyrokinetic equation.

To next order (i.e. at O(ρ2∗ωFs)), it appears in the transport equations. There its

gyroradius-scale contributions still average to zero, but it should be pointed out that

it could have an equilibrium-scale contribution. Specifically if the source depends on

the distribution function, an equilibrium-scale contribution could arise from a beating

between the spatial variation of the source and the spatial variation of the turbulent

portion of the distribution function. This would have to be included in the transport

modeling, but it is outside the scope of this work as we are exclusively concerned with

the gyrokinetic calculation.

3. Analytic gyrokinetic derivation

The starting point of our derivation is the real-space electromagnetic gyrokinetic model

[33] with the addition of the new source term S̃Ip
e (r). The kinetic equation is given by

∂hs
∂t

+ v||b̂ · ∇⃗hs +
(
c⃗κv

2
|| + c⃗∇Bµ

)
· ∇⃗hs + ca||µ

∂hs
∂v||

−
∑
s′

〈
CL

ss′

〉
φ

(2)

− 1

B

(
∇⃗hs × ∇⃗⟨χ⟩φ

)
· b̂ = ZseFMs

Ts

∂⟨χ⟩φ
∂t

+
1

B

(
∇⃗FMs × ∇⃗⟨χ⟩φ

)
· b̂+

〈
S̃Ip
s

〉
φ
,

where S̃Ip
s is only non-zero for electrons. The unknowns are the non-adiabatic portion

hs = δfs + (Zseϕ/Ts)FMs of the perturbed turbulent distribution function δfs and the

gyroaveraged fluctuating generalized potential ⟨χ⟩φ ≡ ⟨ϕ⟩φ − v||⟨A||⟩φ − ⟨v⃗⊥ · A⃗⊥⟩φ,
comprising the electrostatic potential ϕ and the fluctuating magnetic field δB⃗ = ∇⃗ × A⃗

(which is determined through the magnetic vector potential A⃗). The distribution

function hs is a function of the guiding center position X⃗, parallel velocity v||, magnetic

moment µ ≡ v2⊥/(2B), and time t. The fields depend on the particle position x⃗ = X⃗+ρ⃗s,

but the gyroaverage ⟨. . .⟩φ ≡ (2π)−1
∮ 2π

0
|X⃗dφ(. . .) over the gyroangle φ is taken holding

the guiding center position constant. The subscripts || and ⊥ refer to the vector

components parallel and perpendicular to the direction of the background magnetic

field b̂ ≡ B⃗/B respectively, where B⃗ is the background magnetic field and B is its

magnitude. The curvature drift c⃗κv
2
|| = (v2||/Ωs)b̂ × (b̂ · ∇⃗b̂) and the grad-B drift

c⃗∇Bµ = (µ/Ωs)b̂ × ∇⃗B are written in a form to stress their velocity dependences, as

is the parallel acceleration ca||µ = −µb̂ · ∇⃗B (i.e. the mirror term). Collisions are

included through the linearized collision operator CL
ss′ between species s and s′. The

particle charge number of species s is indicated by Zs, e is the elementary charge, FMs is

the unshifted Maxwellian background distribution function with a temperature Ts and

number density ns, ρ⃗s = b̂ × v⃗⊥/Ωs is the gyroradius vector, v⃗⊥ is the perpendicular

velocity, Ωs = ZseB/ms is the gyrofrequency, and ms is the particle mass. Note that

we have ignored plasma rotation for simplicity. The model is closed through the field

equations of quasineutrality and the parallel and perpendicular components of Ampere’s
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law, given by

ϕ =

(∑
s

Z2
s e

2ns

Ts

)−1∑
s

ZseB

∫ ∞

−∞
dv||

∫ ∞

0

dµ

∮ 2π

0

∣∣∣∣
x⃗

dφ hs (x⃗− ρ⃗s) (3)

−∇2
⊥A|| = µ0

∑
s

ZseB

∫ ∞

−∞
dv||

∫ ∞

0

dµ

∮ 2π

0

∣∣∣∣
x⃗

dφ v||hs (x⃗− ρ⃗s) (4)

∇⃗δB|| × b̂ = µ0

∑
s

ZseB

∫ ∞

−∞
dv||

∫ ∞

0

dµ

∮ 2π

0

∣∣∣∣
x⃗

dφ v⃗⊥hs (x⃗− ρ⃗s) (5)

respectively, where µ0 is the permeability of free space. Throughout this paper, for

brevity, we will often omit some of the functional dependencies of quantities (e.g. the

velocity dependence of the distribution function or the poloidal dependence of the source

S̃Ip
e ) if they are not pertinent.

Rather than implementing a realistic current drive source in the gyrokinetic

equation [34], we will carry out a subsidiary asymptotic expansion inspired by properties

of ECCD. This will produce a reasonable and internally consistent simplified model that

features non-uniform magnetic shear. Specifically, we will perform multi-scale analysis

[35] to distinguish the standard electron thermal speed vthe from the characteristic speed

of the current drive source vf , which we will consider to be asymptotically fast. This

is the central approximation of the derivation and we believe it to be reasonable, given

that ECCD is thought to act on electrons with speeds several times larger than vthe [23].

To execute the multi-scale analysis, we substitute v|| → v|| + v||f and µ → µ + µf for

electron dynamics. Here v||f ≡ ϵv|| and µf ≡ ϵµ are the new fast velocity coordinates

and ϵ ≡ vthe/vf ≪ 1 is the small parameter of our subsidiary expansion (but ϵ is still

taken as O(1) in the context of the primary ρ∗ ≪ 1 expansion). The definitions of

v||f and µf were chosen to be appropriate for parameterizing fast velocity scales, while

v|| and µ parameterize thermal velocity scales. Accordingly, we adopt the orderings

v|| ∼ vthe, v||f ∼ vf , µ ∼ v2the/B, and µf ∼ vthevf/B. Note, in particular, the ordering

of µf , which is suitable if the source S̃Ip
s injects a similar amount of momentum in

the parallel and perpendicular components of the electron velocity. Moreover, we will

see that such an ordering for µf is needed to allow the fast and thermal contributions

to compete in both components of Ampere’s law (i.e. equations (4) and (5)). While

we have taken vthe ≪ vf , we still let vf ≪ (mi/me)vthi, so that the gyroradius of the

fast electrons remains much smaller than the thermal ion gyroradius. Next, we expand

hs = hs0(v||, µ, v||f , µf ) + hs1(v||, µ, v||f , µf ) + . . . as well as the fields within χ, where

the numerical subscript indicates the quantity’s relative size in ϵ ≪ 1. We carefully

choose our ordering in ϵ for the current drive source S̃Ip
e (v||f , µf ) ∼ ϵhevthe/a, which

will enable it to affect the turbulent dynamics, but not to dominate. Note that the

source is assumed to vary only on the fast velocity scale. Lastly, we will assume that

S̃Ip
e (v||f = 0, µf ) = 0, which could perhaps be relaxed by changing the ordering of µf ,

but simplifies the calculation (as will be seen in Appendix A).

The derivation starts by considering the ion kinetic equation to show that the ion
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distribution function does not have a high velocity tail. Since the current drive source

does not explicitly appear, S̃Ip
e can only affect ions indirectly through two quantities:

the electron distribution function or the electromagnetic fields. First, the electron

distribution function only appears in the ion kinetic equation through the collision

operator. Since the collisionality scales asymptotically as v−3, collisions that are ordered

to be O(1) in the thermal part of the distribution become much weaker (i.e. O(ϵ3)) in the

high velocity tail. Moreover, we will find that the lowest order electron distribution has

no high velocity tail, making this effect even weaker. Therefore, collisions with electrons

drive a negligibly small high velocity ion tail. Second, though the electromagnetic fields

can be modified by a fast electron tail, they themselves are not functions of velocity, so

they do not drive instability at high velocities. Thus, while S̃Ip
e can affect ion behavior

at ion thermal speeds through the fields, it is unable to excite a high velocity tail in the

ion distribution function. Therefore, the ion distribution function only has activity at

thermal speeds, which is governed by the standard ion gyrokinetic equation

∂hi0
∂t

+ v||b̂ · ∇⃗hi0 +
(
c⃗κv

2
|| + c⃗∇Bµ

)
· ∇⃗hi0 + ca||µ

∂hi0
∂v||

−
∑
s

〈
CL

is0

〉
φ

(6)

− 1

B

(
∇⃗hi0 × ∇⃗⟨χ0⟩φ

)
· b̂ = ZieFMi

Ti

∂⟨χ0⟩φ
∂t

+
1

B

(
∇⃗FMi × ∇⃗⟨χ0⟩φ

)
· b̂,

where ⟨χ0⟩φ = ⟨ϕ0⟩φ − v||⟨A||0⟩φ − ⟨v⃗⊥ · A⃗⊥0⟩φ.
Next we will consider the electron kinetic equation, which is considerably more

complicated to derive as it contains the current drive source on the right side. Thus, we

have relegated the details of the derivation to Appendix A and will only summarize

it here. We begin by taking the drift kinetic limit ρ⃗e ≪ x⃗ ∼ X⃗ of the electron

gyrokinetic equation (even for the high velocity electron tail as we have assumed that

vf ≪ (mi/me)vthi). We use drift kinetic electrons since it is a realistic assumption

that simplifies the calculation, and we are only seeking a reasonable and internally

consistent model for ion-scale turbulence. However, we believe it is possible to generalize

the calculation to gyrokinetic electrons by adjusting the orderings of v||f , µf , and S̃
Ip
e

somewhat. Then we substitute v|| → v||+v||f and µ→ µ+µf and perform the multi-scale

analysis by expanding order by order in ϵ ≪ 1. Due to the magnitude of the current

drive source S̃Ip
e (v||f , µf ) ∼ ϵhevthe/a, it does not appear until the third order of the

expansion, meaning that the zeroth, first, and second order distribution functions have

no high velocity tail. Thus, we find that the lowest order electron distribution function

only has a contribution at thermal velocity scales and is governed by equation (A.8),

which is identical in form to the standard drift kinetic equation. However, as with the

ion kinetic equation (i.e. equation (6)), this doesn’t imply that the current source has no

effect. Specifically, the electromagnetic fields can still be modified by the current source

through the field equations and affect the lowest order electron behavior at thermal

velocity scales. To see if this is the case, we must continue in our expansion in ϵ to find

the lowest order effect of the source S̃Ip
e . At third order, it appears and balances against
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the curvature drift to determine the lowest order fast electron distribution function

∂hfe3
∂r

=
S̃Ip
e0 (v||f , µf )

v2||f c⃗κ · ∇⃗r
, (7)

where the superscript f in hfe3 is simply a reminder that it contains a contribution at

fast velocity scales. Here we’ve adopted the standard field-aligned coordinate system

(α, r, θ) typical of local gyrokinetic codes [4], where

α(r, θ, ζ) ≡ ζ − q(r)θ (8)

is the binormal spatial coordinate, θ is the straight-field line poloidal angle, and ζ is the

toroidal angle.

To understand the impact of this fast electron tail, we must also consider the

electromagnetic fields, which are calculated through the quasineutrality equation and

Ampere’s law. We will give a summary of the derivation here, while the details can

be found in Appendix B. As done above, we start by taking the drift kinetic limit

for electrons, this time in equations (3) through (5). Then we expand to lowest order

in ϵ ≪ 1, finding that the fast electron tail is one order too small to contribute to

the lowest order quasineutrality equation. This means that the charge density and,

hence, the electrostatic potential are determined solely by the distribution functions at

thermal velocity scales. However, in Ampere’s law the fast electron tail is one order

larger (because the electric current is proportional to velocity), so it is the same size as

the thermal contribution. Thus, the current source does affect the dynamics at thermal

velocity scales — it drives a high velocity tail in the electron distribution function (i.e.

equation (7)), which modifies the electric current in Ampere’s law and alters the lowest

order perturbed magnetic field through δB||0 and A||0. Because Ampere’s law is linear

in both A|| and δB||, we can choose to divide the perturbed magnetic field into the

portion arising from the thermal distribution and a new portion from the fast electron

tail according to A||0 = Ath
||0 +Af

||0 and δB||0 = δBth
||0 + δBf

||0. The thermal component of

these fields must satisfy the standard Ampere’s law already solved by gyrokinetic codes

(i.e. equations (B.7) and (B.8)), while the fast component of these fields must satisfy

−∇2
⊥A

f
||0 = µ0

(
2πZeeB

∫ ∞

−∞
dv||f

∫ ∞

0

dµf v||fh
f
e3

)
(9)

∇⃗δBf
||0 × b̂ = µ0

(
−2πmeB

∫ ∞

−∞
dv||f

∫ ∞

0

dµf µf∇⃗hfe3 × b̂

)
. (10)

From equations (7), (9), and (10) we see that, since S̃Ip
e is independent of t and

α, so are Af
||0 and δBf

||0. Thus, in the kinetic equations for electrons and ions, Af
||0

and δBf
||0 are eliminated by the time derivative and drop out of the turbulent drive

term too. They only survive through the nonlinear term. Substituting A||0 = Ath
||0+A

f
||0,

δB||0 = δBth
||0+δB

f
||0, and the form of c⃗∇B into the standard electron drift kinetic equation
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(i.e. equation (A.8)), we see that the electron kinetic equation can be written as

∂hthe0
∂t

+ v||

(
b̂+

1

B

∂Af
||0

∂r
∇⃗r × b̂

)
· ∇⃗hthe0 + c⃗κv

2
|| · ∇⃗hthe0 +

µ

Ωe

(
b̂× ∇⃗

(
B + δBf

||0

))
· ∇⃗hthe0

+ ca||µ
∂hthe0
∂v||

−
∑
s

CL
es0 −

1

B

(
∇⃗hthe0 × ∇⃗χth

0

)
· b̂ (11)

=
ZeeFMe

Te

∂χth
0

∂t
+

1

B

(
∇⃗FMe × ∇⃗χth

0

)
· b̂,

where χth
0 = ϕ0 − v||A

th
||0 +meµ/(Zee)δB

th
||0. This equation is identical to the standard

electron drift kinetic equation except for two terms: the one proportional to ∂Af
||0/∂r and

the one proportional to δBf
||0. These arise from the current drive source S̃Ip

e creating a

high velocity electron tail that modifies the magnetic field. The perpendicular magnetic

field modification Af
||0 alters the parallel streaming term as particles follow the modified

magnetic field lines, rather than the original background field. The modification to the

parallel component of the magnetic field δBf
||0 changes the local field strength, thereby

altering the grad-B drift. Similarly, we can separate the fast and thermal components

of the fields in equation (6) and write the ion kinetic equation as

∂hi0
∂t

+ v||

(
b̂+

1

B

∂⟨Af
||0⟩φ
∂r

∇⃗r × b̂

)
· ∇⃗hi0 + c⃗κv

2
|| · ∇⃗hi0 (12)

+
µ

Ωi

(
b̂× ∇⃗

(
B − Ωi

µB

〈
v⃗⊥ · A⃗f

⊥0

〉
φ

))
· ∇⃗hi0 + ca||µ

∂hi0
∂v||

−
∑
s

⟨CL
is⟩φ

− 1

B

(
∇⃗hi0 × ∇⃗⟨χ0⟩thφ

)
· b̂ = ZieFMi

Ti

∂⟨χ0⟩thφ
∂t

+
1

B

(
∇⃗FMi × ∇⃗⟨χ0⟩thφ

)
· b̂,

where ⟨χ0⟩thφ ≡ ⟨ϕ0⟩φ − v||⟨Ath
||0⟩φ − ⟨v⃗⊥ · A⃗th

⊥0⟩φ. Thus, we see that the ion gyrokinetic

equation has modifications analogous to the electron drift kinetic equation.

In the remainder of this paper, we will ignore the modification to the grad-B drift

from the current source (i.e. δBf
||0 = A⃗f

⊥0 = 0). It is an interesting physical effect

worth exploring and implementing in gyrokinetic codes, as we expect it to have just

as large of an impact as the modifications to the parallel streaming term. However,

it is outside the scope of the present paper. Instead we will focus on the new parallel

streaming term and show how it can represent a modification to the safety factor profile.

To demonstrate this, we will include an arbitrary safety factor modification q̃(r) in the

standard binormal coordinate α (defined by equation (8)) to produce

α̃ ≡ ζ − (q(r) + q̃(r))θ (13)

= α− q̃(r)θ. (14)

For simplicity we’ve chosen this form so that the modified field lines remain straight in

the (θ, ζ) plane. In the (α̃, r, θ) coordinate system, the ion parallel streaming term in
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equation (12) becomes

v||

(
b̂+

1

B

∂⟨Af
||0⟩φ
∂r

∇⃗r × b̂

)
· ∇⃗hi0 = v||b̂ · ∇⃗θ

∂hi0
∂θ

∣∣∣∣
α̃

(15)

+ v||

(
∂⟨Af

||0⟩φ
∂ψ

− b̂ · ∇⃗θ q̃(r)

)
∂hi0
∂α̃

,

after ignoring several small terms in ρ∗ ≪ 1. Note that we’ve replaced r in some places

with the poloidal magnetic flux ψ because B⃗ = ∇⃗α × ∇⃗ψ. Thus, we see that (α̃, r, θ)

corresponds to an exactly field-aligned coordinate system if

q̃(r) =
1

b̂ · ∇⃗θ

∂⟨Af
||0⟩φ
∂ψ

. (16)

Combining this result with equations (7) and (9), we find

∂2q̃

∂r2
= − 2πµ0ZeeB

(b̂ · ∇⃗θ)(c⃗κ · ∇⃗ψ)|∇⃗r|2

∫ ∞

−∞
dv||f

∫ ∞

0

dµf

⟨S̃Ip
e0 ⟩φ(v||f , µf )

v||f
. (17)

It is not necessarily possible to find a q̃(r) that satisfies this equation, except for

particular choices of S̃Ip
e0 . This is because the left side of the equation depends only

on minor radius, while the right side can also depend on species and magnetic moment

(through the gyroaverage) and poloidal angle (through the geometric factors and S̃Ip
e0 ).

However, we remind the reader that the aim of this work is to model variation with a

scale that is tens to hundreds of ion gyroradii. Thus, if we choose S̃Ip
e0 to vary radially

over distances significantly longer than the ion gyroradius (i.e. ∂S̃Ip
e0/∂r ≪ S̃Ip

e0/ρi), then

the gyroaverage vanishes (i.e. ⟨S̃Ip
e0 ⟩φ = S̃Ip

e0 as well as ⟨Af
||0⟩φ = Af

||0) and the species

and magnetic moment dependences with it. Similarly, we are free to choose

S̃Ip
e0 ∝ (b̂ · ∇⃗θ)(c⃗κ · ∇⃗ψ)|∇⃗r|2

B
(18)

so that the right side of equation (17) is independent of θ (with the caveat that the

poloidal locations where c⃗κ · ∇⃗ψ = 0 must be treated properly as is done in Appendix

C). Thus, equation (17) shows that, by carefully choosing S̃Ip
e0 , we can create any radially-

periodic safety factor perturbation, so long as q̃(r) is long wavelength compared to the

ion gyroradius. Ultimately, this means we can specify q̃(r) as a free function instead of

having to specify S̃Ip
e0 .

Note that if you wanted to study a shorter wavelength current modification, you

can by specifying Af
||0(r) instead of q̃(r) (while also retaining the ion gyroaverage).

Additionally, we chose the form of equation (13) for simplicity, but other choices with

a more complicated dependence on θ are also possible. These would be represented by

a q̃(r, θ) that depends on θ and would correspond to different functional forms of S̃Ip
e0

through equation (17). Adding θ variation to q̃ would have the effect of altering the local
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magnetic shear, in addition to the global shear, which could be interesting to explore.

If you wanted to model a given ECCD source as faithfully as possible, you would just

specify S̃Ip
e0 directly and the modification to the safety factor would be an output of the

calculation.

To derive a form suitable for implementation in a gyrokinetic code, we will

substitute equation (16) into the parallel streaming term of the kinetic equations and

use the standard (α, r, θ) coordinate system to find

v||

(
b̂+

1

B

∂Af
||0

∂r
∇⃗r × b̂

)
· ∇⃗hs0 = v||b̂ · ∇⃗θ

(
∂hs0
∂θ

∣∣∣∣
α

+ q̃(r)
∂hs0
∂α

)
. (19)

We’ve chosen to use α instead of α̃ because geometric coefficients that appear elsewhere

in the gyrokinetic equation (e.g. ∇⃗r · ∇⃗α̃) would gain an explicit dependence on r from

the ion-scale variation of q̃(r), complicating the Fourier space treatment typically used.

Additionally, keeping the standard coordinates allows us to maintain all of the same flux

tube boundary conditions (including the twist-and-shift parallel condition [4]) without

needing any modifications. However, the downside of using α is that the coordinate

system is not exactly field-aligned when the modification to the magnetic geometry is

included. Specifically, increasing the amplitude of q̃(r) eventually requires proportionally

increasing the resolution in θ. This is because, as q̃(r) is increased, turbulent eddies

(which stretch along modified magnetic field lines) begin to angle diagonally across the

(α, θ) grid. As a result, the spatial scale of the variation along the rows of θ grid points

(at constant α) can become dominated by the perpendicular variation of the eddies.

To investigate this mathematically, we can imagine an idealized turbulent

perturbation written in the exactly field-aligned (α̃, r, θ) coordinate system as

ϕ(α̃, r, θ) = cos (λα̃α̃) cos (λθθ) , (20)

where λα̃ and λθ are the wavelengths of the perturbations in the α̃ and θ directions

respectively. These wavelengths represent the typical scale of variation, so one would

need grid resolutions of ∆α̃ ∼ λα̃ and ∆θ|α̃ ∼ λθ to properly resolve the perturbation.

Next, we can take equation (20), substitute equation (14), and use trigonometric

identities (i.e. the angle sum and product-to-sum relations) to write the perturbation

in the standard (α, r, θ) coordinate system as

ϕ(α, r, θ) = cos (λα̃α)
cos ((q̃(r)λα̃ + λθ) θ) + cos ((q̃(r)λα̃ − λθ) θ)

2
(21)

+ sin (λα̃α)
sin ((q̃(r)λα̃ + λθ) θ) + sin ((q̃(r)λα̃ − λθ) θ)

2
.

Thus, we see that while the resolution in α can remain similar to the resolution in α̃,

the θ resolution in the standard coordinate system ∆θ|α must scale as

∆θ|α ∼ q̃(r)λα̃ + λθ ∼ q̃(r)∆α̃ + ∆θ|α̃ . (22)
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For small q̃(r), the second term dominates and the required number of θ grid points

remains unchanged between the two coordinate systems. However, as q̃(r) is increased,

the first term eventually dominates and the required parallel resolution ∆θ|α ∼ q̃(r)∆α̃

becomes proportional to q̃(r). Note that, because q̃(r) ∼ ρ∗q0 the coordinate system

always remains field-aligned to lowest order in ρ∗, so we never need parallel grid spacing

on the scale of ρi. We just require progressively finer resolution on the equilibrium scale

a.

Because of our decision to use α, we can easily Fourier-analyze the parallel streaming

term on the right side of equation (19) (as well as the entire gyrokinetic model) to find

v||b̂ · ∇⃗θ

(
∂hs0
∂θ

∣∣∣∣
kr,kα

+ i
kα
2

∞∑
n=1

[(
q̃Cn + iq̃Sn

)
hs0

(
kr +

2π

Lr

n, kα

)
(23)

+
(
q̃Cn − iq̃Sn

)
hs0

(
kr −

2π

Lr

n, kα

)])
,

where Lr is the radial width of the flux tube domain and kr and kα are the radial and

binormal Fourier wavenumbers respectively. For clarity we have explicitly written this

in terms of the sine and cosine coefficients of the Fourier-analyzed the safety factor

modification given by

q̃(r) =
∞∑
n=1

[
q̃Cn cos

(
2πn

Lr

(r − r0)

)
+ q̃Sn sin

(
2πn

Lr

(r − r0)

)]
. (24)

Hereafter, for brevity we will use the coefficients of the exponential form of the Fourier

series, q̃En ≡ (q̃Cn − iq̃Sn )/2 and q̃E−n ≡ (q̃Cn + iq̃Sn )/2 (emphasizing that q̃Cn = q̃Sn = 0 for all

n ≤ 0). Note that we have ignored q̃C0 as it is an infinitesimal perturbation to q0. We

see from equation (23) that turbulence beats against the various radial wavenumbers

of the non-uniform safety factor profile to drive activity at other radial wavenumbers

through the three-wave coupling mechanism [36]. Note that this three-wave coupling

persists in linear as well as nonlinear calculations. Additionally, we see that one does

not need to specify the current drive source S̃Ip
e and add equations (A.15) and (9) to

the gyrokinetic model. Instead one can simply specify the Fourier coefficients of the

safety factor modification and solve the standard gyrokinetic system with the changes

to the parallel streaming term given by equation (23). Any long-wavelength choice for

q̃(r) corresponds to a physically possible current drive source through equation (17).

Importantly, equation (23) is straightforward to implement in a gyrokinetic code.

This has been done for the local gyrokinetic code GENE [22]. In practice, we chose

to specify the Fourier coefficients of the magnetic shear profile s̃(r) = (r0/q0)dq̃/dr,

s̃Cn = (r0/q0)(2πn/Lr)q̃
S
n and s̃Sn = −(r0/q0)(2πn/Lr)q̃

C
n , because the magnitude of these

coefficients can be directly compared against the background magnetic shear ŝ value

(e.g. setting s̃C1 = ŝ and all other Fourier coefficients to zero will exactly cancel the

effective magnetic shear at r = r0 regardless of the radial box size Lr).
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4. Benchmarking

We will perform two benchmarks, one linear and one nonlinear, to verify our

computational implementation of non-uniform magnetic shear in GENE.

In the first benchmark, we will use the cold ion limit and an adiabatic treatment

of electrons to enable the analytic calculation of linear growth rates in the presence of

non-uniform magnetic shear. Though not the most realistic, these simplifications are

often used together to facilitate the study of plasma dynamics [37, 38, 39, 40, 41]. We

will start from the derivation in [42], which models Parallel Velocity Gradient (PVG)

turbulence in a slab geometry. By assuming the cold ion limit Ti ≪ ZiTe and adiabatic

electrons, it rigorously derives two coupled fluid equations that exactly correspond to

the full electrostatic, collisionless gyrokinetic model. No fluid closure is required. We

will start from equations (16) and (17) in [42], but include the modifications to the

parallel streaming term arising from non-uniform magnetic shear (i.e. equation (23)).

The density evolution equation (after enforcing quasineutrality) is given by

(
1 + k2xρ

2
S + k2yρ

2
S

) ∂ϕ
∂t

(25)

+
Te
e

(
∂δu||
∂z

+ iky

∞∑
n=1

[
q̃E−nδu||

(
kx +

2π

Lx

n

)
+ q̃En δu||

(
kx −

2π

Lx

n

)])
= 0

and the parallel velocity evolution equation is

∂δu||
∂t

+
Zie

mi

(
∂ϕ

∂z
+ iky

∞∑
n=1

[
q̃E−nϕ

(
kx +

2π

Lx

n

)
+ q̃En ϕ

(
kx −

2π

Lx

n

)])
= i

ky
B
ωV ||ϕ,

(26)

where ρS ≡ cS/Ωi is the sound gyroradius, cS ≡
√
ZiTe/mi is the sound speed,

ωV || ≡ −du||/dx is the radial gradient of the background parallel flow velocity u||,

δu|| ≡ (2πB/ni)
∫∞
−∞ dv||

∫∞
0
dµ v||gi is a perturbed parallel flow velocity, gi = hi −

(ZieFMi/Ti)⟨ϕ⟩φ is the so-called complementary distribution function evolved by GENE,

and we take the normalized coordinate system used by GENE where x is analogous

to r, y to α, and z to θ. To produce these two equations, we have made several

choices to simplify the problem as much as possible, while still appropriately testing

the computational implementation of the non-uniform magnetic shear. Specifically, we

have assumed the most basic slab geometry in order to neglect the magnetic drifts and

simplify all geometric factors (ωMx = ωMy = ∂B/∂z = 0 and |∇⃗x| = |∇⃗y| = |∇⃗z| =
b̂ · ∇⃗z = J = 1 in the terminology of [42]). We also chose to omit the density gradients,

temperature gradients, perpendicular velocity shear, and background global magnetic

shear (ωV⊥ = uf = ŝ = 0 again in the terminology of [42]). Lastly, we have ignored

the nonlinear term as non-uniform magnetic shear already modifies the linear dynamics,

which are much less computationally expensive to calculate with GENE.

Combining the density and parallel velocity moments of equations (25) and (26),
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then Fourier-analyzing in ∂/∂t→ iω and ∂/∂z → ikz gives[(
1 + k2xρ

2
S + k2yρ

2
S

)
ω2 + kyρSkzcSωV || − k2zc

2
S

]
ϕ

+
(
k2yρ

2
SωV || − 2kyρSkzcS

)
Ωi

∞∑
n=1

[
q̃E−nϕ

(
kx +

2π

Lx

n

)
+ q̃En ϕ

(
kx −

2π

Lx

n

)]
(27)

− k2yρ
2
SΩ

2
i

∞∑
n=1

∞∑
m=1

[
q̃E−nq̃

E
−mϕ

(
kx +

2π

Lx

(n+m)

)
+ q̃E−nq̃

E
mϕ

(
kx +

2π

Lx

(n−m)

)
+ q̃En q̃

E
−mϕ

(
kx +

2π

Lx

(−n+m)

)
+ q̃En q̃

E
mϕ

(
kx +

2π

Lx

(−n−m)

)]
= 0.

Note that, when the non-uniform shear and finite sound gyroradius effects are ignored,

this reduces to the typical PVG stability limit [37, 43]. For comparison against GENE,

we are interested in solving equation (27) for ω, given a single ky mode and a finite grid

of kx modes. Thus, equation (27) can be cast as an eigenvalue problem
↔
A · ϕ⃗kx = λϕ⃗kx

with eigenvalues of λ = 0, where the elements of the vector ϕ⃗kx are the amplitudes of ϕ

for the different discrete kx modes present in the simulation. The elements of the matrix
↔
A are given by

Ajk =
[(
1 + k2x,jρ

2
S + k2yρ

2
S

)
(ωLz/cS)

2 + kyρSkzLz(ωV ||Lz/cS)− k2zL
2
z

]
δjk

+ 2
[
k2yρ

2
S(ωV ||Lz/cS)− 2kyρSkzLz

]
q̃Ej−kρ

−1
∗ (28)

− k2yρ
2
S

[
jmax∑

m=jmin

q̃Ej−k+mq̃
E
−mρ

−2
∗ +

jmax+j∑
m=jmin

q̃Ej−k−mq̃
E
mρ

−2
∗

+

jmax−j∑
m=jmin

q̃Ej−k+mq̃
E
−mρ

−2
∗ +

jmax∑
m=jmin

q̃Ej−k−mq̃
E
mρ

−2
∗

]
,

where δjk is the Kronecker delta, in the cold ion limit ρ∗ = ρS/Lz, Lz is the domain length

of the slab geometry, the radial modes present in the system are kx,j = kx,0+2πj/Lx for

j ∈ [jmin, jmax], and the upper bounds of the summations are carefully chosen to prevent

modes from coupling to parallel velocity perturbations δu|| that are off the numerical

grid. Since the right side of equation (27) is zero, we are seeking the values of ω that

correspond to eigenvalues of λ = 0. Thus, all the non-trivial solutions can be found by

simply requiring the determinant of
↔
A to be equal to zero. This produces a polynomial

in ω2 with an order equal to the total number of radial modes in the grid. Thus, a closed

analytic solution exists for a grid with three radial modes (i.e. the general solution to

the cubic equation) and larger radial grids are straightforward to solve numerically.

Figure 1 shows a comparison between such a semi-analytic solution and GENE for

two cases, which both display excellent agreement. All simulations have Ti/Te = 10−4,

kyρS = 0.3, Lx = 20ρS, and a radial grid with kx,0 = 0. All unspecified Fourier

coefficients, s̃Sn and s̃Cn , are zero. Since GENE discretizes the z coordinate in real space,

one cannot cleanly select a particular value of kz to simulate. Thus, to ensure that

the simulation converges to the fastest-growing instability, it is important to initialize
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Figure 1. A linear PVG benchmark in a simple slab geometry for a range of different

s̃C1 values with either (a) jmin = −1, jmax = 1, ωV ||Lz/cS = 20/3, s̃S1 = 0.8, s̃C2 = 1,

s̃S2 = 1.2 or (b) jmin = −3, jmax = 3, ωV ||Lz/cS = 3, s̃S1 = 0.5, s̃C2 = 0.5,

s̃S2 = 1.6. The fastest-growing instabilities calculated by GENE (black crosses) are

shown together with the semi-analytic result for k||Lz = 0 (green circles), k||Lz = 1

(blue triangles), k||Lz = −1 (red triangles), k||Lz = 2 (blue squares), k||Lz = −2 (red

squares), k||Lz = 3 (blue pentagons), and k||Lz = −3 (red pentagons).

all kx modes using a perturbation with the fastest-growing value of kz (or test several

different simulations initialized with different kz perturbations). Otherwise unstable,

but sub-dominant kz modes can temporarily prevail causing the initial value solver of

GENE to terminate prematurely and return a lower growth rate. Additionally, we note

that the presence of non-uniform magnetic shear can allow PVG modes with kz = 0 to

be unstable. This initially appears surprising, given that the typical PVG instability

requires a finite parallel wavenumber k|| (i.e. a variation in δu|| along the field line)

[37, 42]. However, our result is not a numerical problem — it is a subtlety related to

the definition of kz. Since the coordinate system is no longer field-aligned due to non-

uniform magnetic shear, changing the z coordinate at constant x and y takes you across

field lines. Thus, kz is not actually the parallel wavenumber, so, even when kz = 0, the

parallel wavenumber k|| can be finite and enable instability.

As a second benchmark, a nonlinear simulation was performed in tokamak geometry

using parameters inspired by the Cyclone Base Case (CBC) [44]. In it we employed

non-uniform magnetic shear to create the safety factor profile shown in figure 2. The

profile has two distinct regions within a single flux tube, both with a constant value

of magnetic shear. The left half has ŝ = −0.4, while the right half has ŝ = 0.6. This

creates significant differences in the transport properties of the two regions, which can be

compared with conventional simulations to verify our computational implementation.

This “two-region simulation” was electrostatic, used adiabatic electrons, and ignored
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Figure 2. (a) The desired total safety factor profile q(x) + q̃(x) (solid black),

its approximation using 16 Fourier terms (dotted red), and the unmodified safety

factor profile q(x) (dashed black). The solid black and dotted red profiles are nearly

indistinguishable. (b) The desired total magnetic shear profile ŝ + s̃(x) (solid black),

its approximation using 16 Fourier terms (dotted red), and the unmodified magnetic

shear profile ŝ (dashed black), where x0 = r0/R0.

collisions in order to minimize computational cost. We used 16 Fourier terms in

equation (23) to approximate the desired s̃(x) profile. Adding additional terms did

not substantially change the results. The other simulation parameters and resolutions

are given in table 1. Note that the cold ion limit was not used and that a large value

of Nz was chosen to ensure fully resolved turbulence despite the loss of an exactly field-

aligned grid (i.e. see discussion surrounding equation (22)). It is also important to

ensure that the simulation domain is sufficiently large in x so that the dynamics are

local and the middles of the two regions do not directly interact.

For the benchmark, we also ran two standard simulations to separately recreate each

half of the two-region case. Thus, one simulation had ŝ = −0.4, the other had ŝ = 0.6,

and neither included non-uniform magnetic shear. Both of these simulations had a radial

box size and radial resolution half as large as the two-region case and could employ a
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Parameter Value Parameter Value

Minor radius of flux tube, r0/R0 0.18 Ion-e- temperature ratio, Ti/Te 1.0

Safety factor, q0 1.4 Magnetic shear, ŝ 0.1

Temperature gradient, R0/LTs 9.0 Density gradient, R0/Ln 2.2

Ion-e- mass ratio, mi/me 3672 Effective ion charge, Zeff 1.0

4th order χ hyperdiffusion [45], ϵχ 0.2 4th order v|| hyperdiffusion [45], ϵv|| 0.2

x/ρi range, [0, Lx) [0, 400) Number of x grid points, Nx 512

y/ρi range, [0, Ly) [0, 125) Number of y grid points, Ny 64

z range [−π, π) Number of z points, Nz 128

v||/vths range [−3, 3] Number of v|| grid points, Nv|| 32√
µ/(Ts/Br) range (0, 3.43] Number of

√
µ grid points, Nµ 20

Table 1. The CBC parameters [44] (with a modified temperature gradient) and grid

resolutions used for the two-region simulation, where the geometry is specified using

the Miller model [46]. Note that all grids are equally spaced and R0 is the tokamak

major radius.

lower parallel resolution of just Nz = 32. The crucial aspect of the benchmark concerns

the values to take for the background gradients in the two standard simulations. Since

the flux tube includes no sources of particles or energy, the quasi-steady state radial

fluxes are constrained to be constant across the minor radial extent of the domain. This

is true regardless of the presence of non-uniform magnetic shear. Because the local value

of the magnetic shear varies across the two-region domain, the flux-gradient relationship

is different at different radial locations. This means that turbulence must rearrange

energy, momentum, and particles within the flux tube to create the appropriate steady-

state zonal perturbations such that the fluxes are radially constant. In other words, the

turbulence modifies the background gradients to ensure uniform flux profiles. Therefore,

we computed the radial gradients of the time-averaged zonal temperature ⟨δTi⟩y,t and
density ⟨δn⟩y,t perturbations in each half of the two region domain (see figure 3(a)).

Specifically, we averaged across x/Lx ∈ [1/8, 3/8) and x/Lx ∈ [5/8, 7/8) to omit the

transition zones between the two regions and over tvthi/R0 ∈ [700, 1000] to ensure that

the zonal perturbations had time to fully form. We found the total ion temperature

gradient to be R0/LTi = 9.5 in the ŝ = −0.4 region and R0/LT i = 8.3 in the ŝ = 0.6

region. The direction of this result is intuitive as ŝ < 0 is usually stabilizing compared

to 0 < ŝ < 1 [47]. The density profile was not modified because the particle flux is

constrained to be zero when electrons are treated adiabatically.

Figure 3(b) shows the heat flux (normalized to the gyroBohm value QgB) from the

two-region simulation along with the standard simulations. We see from the dark red

and dark blue curves that, if the temperature gradient is not adjusted, the heat fluxes

disagree. However, if we use the local gradient values extracted from the respective

regions of the two-region simulation (the light red and blue curves), we get good

agreement. Thus, the flux-gradient relationship is the same in the standard and two-
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Figure 3. (a) The radial variation of the time-averaged, zonal turbulent temperature

perturbation at the outboard midplane with best-fit gradients for both regions, (b)

the ion heat flux time trace (thin) with its time average (thick), and (c) the two-point

parallel correlation function between the inboard and outboard midplanes with the

vertical grid lines indicating integer surfaces. Each plot shows the two-region, non-

uniform shear simulation with R0/LTi = 9 (black) as well as standard simulations

with ŝ = 0.6 and R0/LTi = 8.3 (blue) as well as ŝ = −0.4 and R0/LTi = 9.5 (red).

In addition, (b) shows standard simulations with ŝ = 0.6 and R0/LTi = 9 (dark blue)

as well as ŝ = −0.4 and R0/LTi = 9 (dark red). Note that the radial domain of the

standard simulations are half as wide and their correlation functions have been shifted

in x for ease of comparison.
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region simulations. This indicates that identical physical equilibria behave the same,

regardless of whether or not they were created with non-uniform magnetic shear. Lastly,

figure 3(c) shows the two-point parallel correlation between the inboard and outboard

midplanes [48]. Due to the parallel boundary condition [4], the flux tube topology

features several integer surfaces (i.e. flux surfaces with magnetic field lines that bite their

own tails after one poloidal turn) [48]. Importantly, these surfaces cause peaks in the

parallel correlation and their locations can be analytically calculated from the magnetic

equilibrium. In standard flux tube simulations with constant ŝ, the integer surfaces are

equally spaced, but this is no longer true in the presence of non-uniform shear. For

the two-region simulation, we see that the peaks occur at the calculated locations (i.e.

the vertical grid lines), indicating that the non-uniform shear modifies the magnetic

topology as expected. Furthermore, the widths and heights of the peaks in each half of

the radial domain agree nicely with those from the corresponding standard simulation.

Thus, the linear and nonlinear benchmarks give confidence that our implementation of

non-uniform magnetic shear in GENE is correct.

5. Illustrative example

To illustrate the possibilities that are enabled by non-uniform magnetic shear, we will

use our modifications to GENE to study the importance of profile shearing in tokamaks

with Positive Triangularity (PT) and Negative Triangularity (NT) plasma shaping.

Pioneered by JET and DIII-D [49] in the 1980s, the “D” shaped plasma cross-

section, termed positive triangularity, was found to significantly improve plasma

performance. However, recent experiments on TCV [50, 51, 52], DIII-D [53], and

ASDEX Upgrade [54] have revealed that flipping the sign of triangularity to produce a

negative triangularity reversed-“D” cross-section also carries considerable advantages.

While there have been relatively few gyrokinetic studies of negative triangularity

[55, 56, 57], there has been one study [58] specifically investigating global effects.

Comparing standard nonlinear local and global GENE [14] simulations of a PT and

a NT TCV [59] equilibrium, it found that global effects were more important for NT.

The two equilibria had similar safety factor profiles and total heating powers, but the

background temperature profiles were considerably different (due to the different heat

diffusivity in PT versus NT). Both equilibria were found to be dominated by Trapped

Electron Mode (TEM) turbulence.

We will complement [58] by using flux tube simulations with non-uniform magnetic

shear to perform a second study of the impact of profile shearing in PT versus NT.

We will base the simulations on the standard CBC [44], which is dominated by Ion

Temperature Gradient (ITG) turbulence. We will include a full kinetic treatment of

electrons as it was found to be important to capture the differences in transport between

PT and NT. The parameters are identical to those of table 1 with a few exceptions: we

use the standard magnetic shear ŝ = 0.8, strong elongation κ = 1.7, strong triangularity

δ = ±0.5, and a modified domain discretization with Lx = 125ρi, Nx = 128, Nz = 32,
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Nv|| = 64, and Nµ = 10. The radial gradients of the shaping parameters were

omitted for simplicity (i.e. dκ/dr = dδ/dr = 0). The domain parameters are the

result of an extensive resolution study to adequately resolve the simulation at minimal

computational cost. In order to introduce profile shearing, we will add a single Fourier

harmonic with q̃Sn/ρ∗ = 35.8 (which corresponds to s̃C1 = 0.25 for Lx = 125ρi and n = 1)

to the safety factor profile specified according to equation (24). Then, we will scan its

wavelength λ holding the amplitude of the safety factor modification q̃Sn constant. In

practice λ is changed using the Fourier mode number n appearing in equation (24) and

increasing the radial box width Lx if needed. Note that none of the non-uniform shear

simulations required an increased parallel resolution Nz because the first term on the

right side of equation (22) was always dominant.

Figure 4(a) shows the results of a linear scan. We see that at short wavelength

the growth rate is strongly reduced, while it converges to the uniform ŝ result at long

wavelength. This makes sense. Since the amplitude of the radial variation in magnetic

shear is proportional to dq̃/dr ∼ q̃Sn/λ, at short wavelength the variation in the magnetic

shear across the domain is very strong, while at sufficiently long wavelength the variation

in the shear becomes negligible. We also see that profile shearing is stabilizing, which

is consistent with past work using global simulations [18, 58, 60]. Figure 4(a) shows

data for PT and NT equilibria that have the same background gradients of density and

temperature. However, due to the stabilizing effect of its geometry, the linear growth rate

is much lower for NT. To control for the change in the linear drive, we ran two additional

cases in which we modified the strength of the background temperature gradients in

order to match the linear growth rates for PT and NT at large λ. Surprisingly, we see

that the NT cases converge more quickly as λ → ∞, regardless of the strength of the

linear drive. This indicates that, in this linear study, global effects are less important

for negative triangularity, which is the opposite result of the nonlinear study in [58].

However, linear studies have important limitations. Individual linear results can be

idiosyncratic as the fastest-growing mode can be localized to particular radial regions.

Additionally, it does not include any of the physics of turbulent saturation, which can

be substantially different between PT and NT [61].

Thus, we performed an analogous nonlinear study, shown in figure 4(b). Because

the total heat fluxes in the standard PT and NT cases were fairly similar, we investigated

the impact of the drive by reducing the gradients in both cases, but such that their total

heat fluxes roughly matched one another’s. We see that all of the cases converge quite

similarly with λ — neither the plasma shape, nor the strength of the drive appear to

significantly influence the impact of the profile shearing effect. To understand this,

we further analyzed the data by looking at the metric lx/λ, where lx is a measure of

the radial size of the turbulent eddies and λ is radial wavelength of the profile shearing.

One would expect the impact of profile shearing to decrease as lx/λ gets smaller because

eddies can’t be stabilized by profile shearing if they aren’t large enough to perceive the

profile shearing. Figure 4(c) shows this metric computed for each simulation (taking

lx to be the e-folding eddy diameter of the radial two-point correlation function of the
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Figure 4. The (a) linear growth rate γ, (b) total nonlinear heat flux Q, and (c) profile

shearing strength metric lx/λ as a function of the wavelength λ of a sinusoidal safety

factor modification for PT with R0/LTs = 9 (solid dark blue, filled right-pointing

triangles), NT with R0/LTs = 9 (solid dark red, filled left-pointing triangles), PT

with R0/LTs = 6 (dashed light blue, empty right-pointing triangles), and NT with

R0/LTs = 12.9 in (a) or R0/LTs = 7.2 in (b) (dashed light red, empty left-pointing

triangles). The horizontal grid lines in (a) and (b) indicate the result for uniform

magnetic shear.
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non-zonal ϕ). We find that lx/λ is relatively insensitive to the plasma shape and, more

surprisingly, to the drive as well. Since stronger turbulent drive causes higher heat

flux, we expected that this would have to result from larger eddies. However, while the

simulations with stronger drive did have larger heat flux, the average radial size of the

eddies remained approximately unchanged. In hindsight, this might still be consistent

with scaling arguments that predict lx ∼ R0/LTs [62], since R0/LTs is only varying by a

relatively small amount (i.e. 25% or 50%). Granted this surprise, however, the results

between figures 4(b) and (c) are consistent. The metric lx/λ is relatively insensitive to

plasma shape and drive while varying much more substantially with λ, which is also

true of the total heat flux.

Nevertheless, it is important to note that the irrelevance of the plasma shape to

profile shearing differs from the global nonlinear results of [58]. The reasons behind this

are not obvious and a deeper understanding would require additional simulations of the

TCV equilibria (both global and local with non-uniform magnetic shear). This is outside

the scope of this work. Still, there are several differences between the studies that could

be important. First, this study holds the magnitude of the profile shearing constant,

while [58] uses measured TCV plasma profiles that are substantially different between

PT and NT. Perhaps the NT TCV profiles happen to have stronger profile shearing.

Additionally, this study and [58] use equilibria with different physical parameters and

hold different quantities constant in the PT-NT comparison. Perhaps in some regions

of parameter space switching from PT to NT changes the eddy size substantially,

while in others it doesn’t. Other more technical differences between the two studies

include the physical effects included in the simulation (e.g. [58] includes collisions,

impurities, and electromagnetic effects), the model used (non-uniform magnetic shear

versus global simulations), and the geometry specification (idealized analytic Miller

versus numerical TCV). Regardless of the reason, this study indicates that global effects

are not universally more important in tokamaks with NT plasma shaping.

6. Conclusions

In this work, we have rigorously derived a reasonable and internally consistent

gyrokinetic model that includes ion gyroradius-scale variation in the magnetic shear

profile. This was done by adding an ECCD-inspired current drive source to the

Fokker-Planck equation, performing the standard gyrokinetic expansion, and making

a subsidiary asymptotic expansion to separate the velocity scale of the fast electrons

driven by ECCD from the typical thermal velocity of the electrons. Using this, we

modeled a current drive source that varies on a radial scale of tens to hundreds of

gyroradii, yet still asymptotically smaller than the tokamak minor radius. We found

that the effect of such a source can be made identical to locally modifying the radial

profile of the safety factor. The derivation produces a gyrokinetic model with new

terms that adjust the ion and electron parallel streaming to be along the modified field

lines. This functionality was implemented in the gyrokinetic code GENE (retaining the
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typical Fourier-space representation in the perpendicular spatial directions) and was

successfully benchmarked against analytic results as well as standard nonlinear flux tube

simulations. This functionality enables one to add arbitrary periodic radial variation to

the magnetic shear profile within the flux tube. However, it does cause the coordinate

system to depart from being exactly field-aligned. As a result, if the amplitude of the

variation becomes too large, properly resolving the turbulence requires one to increase

the parallel resolution proportionally.

As an additional benefit of the model, the non-uniform magnetic shear causes

the turbulent transport characteristics to vary within the domain. Thus, since there

are no sources of energy, particles, or momentum, the turbulence creates steady zonal

perturbations that adjust the corresponding background gradients such that all fluxes

are constant across the domain. This means that these simulations naturally include

the profile shearing in temperature, density, and flow that are self-consistent with the

imposed profile shearing in the safety factor. To illustrate possible applications, we

used the modified GENE code to study the importance of profile shearing in equilibria

with positive and negative triangularity. Using nonlinear simulations, we found little

difference between the two.

In the future, a flux tube with non-uniform magnetic shear, as developed in this

paper, could have a number of applications. First, it could enable efficient and reliable

simulations of reversed shear safety factor profiles, which is particularly relevant for

studying internal transport barriers. Second, non-uniform magnetic shear may reduce

the computational cost of simulating very low but finite values of magnetic shear. One

can create wide radial regions of very low shear within the flux tube, while still having

a moderate value of magnetic shear on average across the box. Thus, unlike standard

low shear simulations, the radial size of the flux tube will not be constrained to be very

large by the box discretization condition [4]. Third, using electromagnetic simulations,

one can study how the turbulence self-generates magnetic fields in reaction to the

externally imposed safety factor variation. In other words, at finite β, to what degree

can the plasma cancel out the non-uniform safety factor profile? This may be useful

in understanding how, for example, turbulence broadens the current driven by ECCD.

One could create a safety factor profile with a single sharp spike and see how it is

broadened by the magnetic fields generated by the turbulence. Fourth, one could search

for non-uniform magnetic shear profiles that create large variation in the self-consistent

temperature and density profiles, and then use them to directly study the impact of

temperature and density profile shearing.
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Appendix A. Derivation of the modified electron kinetic equation

In this appendix we will rigorously derive the kinetic equation governing electron

dynamics in the presence of the ion gyroradius-scale current drive source, using the

multi-scale asymptotic analysis described in section 3. Since we plan to model ion

scale turbulence, we will start by taking the drift kinetic limit (i.e. ρ⃗e ≪ x⃗ ∼ X⃗) for

simplicity. Even the high velocity electron tail can be treated as drift kinetic because

we have assumed that vf ≪ (mi/me)vthi. In this limit, the electron kinetic equation is

∂he
∂t

+ v||b̂ · ∇⃗he +
(
c⃗κv

2
|| + c⃗∇Bµ

)
· ∇⃗he + ca||µ

∂he
∂v||

−
∑
s

CL
es (A.1)

− 1

B

(
∇⃗he × ∇⃗χ

)
· b̂ = ZeeFMe

Te

∂χ

∂t
+

1

B

(
∇⃗FMe × ∇⃗χ

)
· b̂+ S̃Ip

e ,

where the generalized potential has become ⟨χ⟩φ = χ = ϕ − v||A|| +meµ/(Zee)δB|| for

electrons. Substituting v|| → v|| + v||f and µ→ µ+ µf , then expanding to lowest order

in ϵ≪ 1 gives the O(ϵ−2hevthe/a) equation

c⃗κv
2
||f · ∇⃗he0 = 0. (A.2)

Note that no turbulent drive terms ever appear at the fast velocity scales because

the Maxwellian distribution function becomes exponentially small at high velocities.

Given that the perturbed distribution function has no spatially uniform contribution,

equation (A.2) implies that the electron distribution function can only be non-zero when

v||f = 0 (except at poloidal locations where components of c⃗κ vanish, which are treated in

Appendix C). Since equation (A.2) gives no information about the distribution function

when v||f = 0, we define h
||
ej(v||, µ, µf ) ≡ hej(v||, µ, v||f = 0, µf ) for any asymptotic order

j in the ϵ≪ 1 expansion. This allows us to write

he0(v||, µ, v||f , µf ) =

{
h
||
e0(v||, µ, µf ) v||f = 0

0 else
. (A.3)
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Expanding to O(ϵ−1hevthe/a) and employing equation (A.3) gives

c⃗κv
2
||f · ∇⃗he1 + c⃗∇Bµf · ∇⃗h||e0 + ca||µf

∂h
||
e0

∂v||
− 1

B

(
∇⃗h||e0 × ∇⃗

(
meµf

Zee
δB||0

))
· b̂ = 0.

(A.4)

Evaluating this at v||f = 0 and noting that there are no drive terms, we see that h
||
e0 = 0

unless µf = 0. Combining this result with equation (A.3) demonstrates that

he0(v||, µ, v||f , µf ) =

{
hthe0(v||, µ) v||f = µf = 0

0 else
, (A.5)

where we define hthej(v||, µ) ≡ h
||
ej(v||, µ, µf = 0) at any asymptotic order j. Here hthej is

the electron distribution function at thermal velocities, which is what standard kinetic

codes calculate. In other words, the lowest order electron distribution function has no

high velocity tail and can only have activity at thermal speeds. This is the same result

as we obtained earlier for the ion distribution function and is intuitive given that the

source S̃Ip
e has yet to appear. Substituting equation (A.5) into equation (A.4) gives

c⃗κv
2
||f · ∇⃗he1 = 0. (A.6)

Therefore, as at lowest order we find

he1(v||, µ, v||f , µf ) =

{
h
||
e1(v||, µ, µf ) v||f = 0

0 else
. (A.7)

Going to O(hevthe/a) in our expansion of equation (A.1) and then evaluating the

result at v||f = µf = 0 gives

∂hthe0
∂t

+ v||b̂ · ∇⃗hthe0 +
(
c⃗κv

2
|| + c⃗∇Bµ

)
· ∇⃗hthe0 + ca||µ

∂hthe0
∂v||

−
∑
s

CL
es0 (A.8)

− 1

B

(
∇⃗hthe0 × ∇⃗χ0

)
· b̂ = ZeeFMe

Te

∂χ0

∂t
+

1

B

(
∇⃗FMe × ∇⃗χ0

)
· b̂,

where χ0 = ϕ0 − v||A||0 + meµ/(Zee)δB||0. This equation determines the lowest order

electron distribution function at thermal velocities hthe0 and has an identical form to the

standard electron drift kinetic equation. Substituting equations (A.5), (A.7), and (A.8)

into the O(hevthe/a) equation at v||f = 0 gives

c⃗∇Bµf · ∇⃗h||e1 + ca||µf
∂h

||
e1

∂v||
− 1

B

(
∇⃗h||e1 × ∇⃗

(
meµf

Zee
δB||0

))
· b̂ = 0. (A.9)

Thus, since there are still no drive terms, we see that h
||
e1 = 0 unless µf = 0. Combining

this result with equation (A.7) demonstrates that

he1(v||, µ, v||f , µf ) =

{
hthe1(v||, µ) v||f = µf = 0

0 else
. (A.10)
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Substituting equations (A.5), (A.8), and (A.10) into the O(hevthe/a) equation gives

c⃗κv
2
||f · ∇⃗he2 = 0, (A.11)

so we know that

he2(v||, µ, v||f , µf ) =

{
h
||
e2(v||, µ, µf ) v||f = 0

0 else
. (A.12)

Lastly, the O(ϵhevthe/a) electron drift kinetic equation is fairly lengthy, but finally

features the lowest order current drive source S̃Ip
e0 . Evaluating this equation at v||f =

µf = 0 gives an equation that determines hthe1, but this quantity will not be needed.

Substituting this equation into the O(ϵhevthe/a) electron drift kinetic equation evaluated

at v||f = 0 produces

c⃗∇Bµf · ∇⃗h||e2 + ca||µf
∂h

||
e2

∂v||
− 1

B

(
∇⃗h||e2 × ∇⃗

(
meµf

Zee
δB||0

))
· b̂ = 0. (A.13)

Importantly, we used the assumption that S̃Ip
e (v||f = 0, µf ) = 0 to prevent the current

drive source from appearing on the right-hand side. Equation (A.13) demonstrates that

he2(v||, µ, v||f , µf ) =

{
hthe2(v||, µ) v||f = µf = 0

0 else
(A.14)

has no high velocity electron tail. Finally, substituting this all into the O(ϵhevthe/a)

electron drift kinetic equation produces

c⃗κv
2
||f · ∇⃗he3 = S̃Ip

e0 (v||f , µf ), (A.15)

which governs the lowest order non-zero high velocity electron tail. We will label the

third-order distribution function hfe3 ≡ he3 with a superscript f as a reminder that

it contains activity at fast velocity scales. Given that we can assume that the source

doesn’t vary in the binormal direction within the flux tube and the parallel derivative is

small due to the anisotropy of the turbulence, we can finally calculate the fast electron

tail to be given by equation (7).

Appendix B. Derivation of the modified field equations

In this appendix we will rigorously carry out the multi-scale asymptotic expansion of

the quasineutrality equation and Ampere’s law, as described in section 3. Given that
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we have taken the drift kinetic limit for electrons, equations (3) through (5) become
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Expanding each of these to lowest order in ϵ≪ 1 and using equations (7), (A.5), (A.10),

and (A.14) gives
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Here, in both the parallel and perpendicular components of Ampere’s law, we stress the

appearance of a new term arising from the fast electron tail created by the current drive

source. Even though the size of the fast electron distribution function is very small, its

high characteristic velocity causes it to carry electric current that competes with the

thermal contribution. Given that equations (B.5) and (B.6) are linear in A||0 and δB||0,

we can choose to divide the perturbed magnetic field into the portions arising from the

thermal distribution and from the fast electron tail according to A||0 = Ath
||0 + Af

||0 and
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δB||0 = δBth
||0 + δBf

||0. These fields are defined to satisfy

−∇2
⊥A

th
||0 = µ0

(∑
i

ZieB

∫ ∞

−∞
dv||

∫ ∞

0

dµ

∮ 2π

0

∣∣∣∣
x⃗

dφ v||hi0 (x⃗− ρ⃗i) (B.7)

+2πZeeB

∫ ∞

−∞
dv||

∫ ∞

0

dµ v||h
th
e0

)
∇⃗δBth

||0 × b̂ = µ0

(∑
i

ZieB

∫ ∞

−∞
dv||

∫ ∞

0

dµ

∮ 2π

0

∣∣∣∣
x⃗

dφ v⃗⊥hi0 (x⃗− ρ⃗i) (B.8)

−2πmeB

∫ ∞

−∞
dv||

∫ ∞

0

dµ µ∇⃗hthe0 × b̂

)
as well as equations (9) and (10). The first two equations are the standard field equations

solved by gyrokinetic codes, while equations (9) and (10) are the new contributions to

the perturbed perpendicular and parallel magnetic field from the current drive source.

Analogously, we can write the generalized potential appearing in the electron drift kinetic

equation as

χ0 = χth
0 + χf

0 , (B.9)

where χth
0 = ϕ0 − v||A

th
||0 +meµ/(Zee)δB

th
||0 and χf

0 = −v||Af
||0 +meµ/(Zee)δB

f
||0, and the

generalized potential appearing in the ion gyrokinetic equation as

⟨χ0⟩φ = ⟨χ0⟩thφ + ⟨χ0⟩fφ, (B.10)

where ⟨χ0⟩thφ ≡ ⟨ϕ0⟩φ − v||⟨Ath
||0⟩φ − ⟨v⃗⊥ · A⃗th

⊥0⟩φ and ⟨χ0⟩fφ ≡ −v||⟨Af
||0⟩φ − ⟨v⃗⊥ · A⃗f

⊥0⟩φ.
From equations (7), (9), (10), and the form of χf

0 we see that, since S̃Ip
e is

independent of t and α, so is Af
||0, δB

f
||0, and χf

0 . Thus, in the kinetic equations for

ions and electrons (i.e. equations (6) and (A.8)), χf
0 only survives through the nonlinear

term and is eliminated by the time derivative and the turbulent drive term. Substituting

equation (B.9) and the forms of χf
0 and c⃗∇B into equation (A.8), we see that the electron

dynamics are governed by equation (11). Similarly, by substituting equation (B.10) into

equation (6), we see that the ion dynamics follow equation (12).

Appendix C. Special case of vanishing magnetic drift components

Poloidal locations where components of the magnetic drifts vanish can create

singularities in the derivation presented in section 3 (e.g. equation (7) diverges where

c⃗κ · ∇⃗r = 0). The purpose of this appendix is to show that, even at these locations,

a current drive source S̃Ip
e can always be found to create the pure form of the safety

factor modification assumed by equation (13) (i.e. a modification to the magnetic field

that preserves the straight-field line coordinate θ and corresponds to arbitrary long-

wavelength radial variation of q̃(r)). Strictly-speaking, doing this is necessary to justify

specifying q̃(r) as an input to a gyrokinetic code, instead of having to use S̃Ip
e .
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In practice, a vanishing binormal component does not cause any issues because the

current drive source S̃Ip
e is uniform in this direction, as is the fast electron tail that it

drives. However, poloidal locations where c⃗κ · ∇⃗r = 0 clearly require special treatment.

This occurs only where ∂B/∂θ = 0 (typically the inboard and outboard midplanes),

which also implies that c⃗∇B · ∇⃗r = ca|| = 0.

When the radial magnetic drifts vanish, the dominant term balancing the current

drive source becomes parallel streaming, which is one order weaker in ϵ ≪ 1 than the

curvature drift term. Thus, we will order S̃Ip
e ∼ S̃Ip

e1 ∼ ϵ2hevthe/a to be one order smaller

at these locations, which we will see results in the size of the high velocity electron tail

remaining the same. Where c⃗κ · ∇⃗r = c⃗∇B · ∇⃗r = ca|| = 0, the O(ϵ−2hevthe/a) electron

drift kinetic equation (i.e. equation (A.2)) becomes

c⃗κv
2
||f · ∇⃗α

∂he0
∂α

= 0, (C.1)

showing that he0 must be constant in α when v||f ̸= 0. Using this result in the

O(ϵ−1hevthe/a) equation gives

v||f b̂ · ∇⃗he0 + c⃗κv
2
||f · ∇⃗α

∂he1
∂α

+ c⃗∇Bµf · ∇⃗α
∂he0
∂α

(C.2)

+
v||f
B

∂he0
∂r

∂A||0

∂α

(
∇⃗r × ∇⃗α

)
· b̂− meµf

ZeeB

(
∇⃗he0 × ∇⃗δB||0

)
· b̂ = 0.

Evaluating this at v||f = 0 and noting the lack of drive terms, we see that he0 = 0

when µf ̸= 0. Substituting this result into equation (C.2), averaging over α with

(1/Ly)
∮ Ly

0
dα(. . .), and using the binormal periodicity of the flux tube, we find that

v||f b̂ · ∇⃗θ
∂he0
∂θ

= 0. (C.3)

We can then enforce continuity in θ, using the solution of equation (A.5) at high

velocities, to demonstrate that he0 = 0 even at locations where c⃗κ · ∇⃗r = 0. Substituting

this result into equation (C.2) shows that he1 must be constant in α, analogously to

equation (C.1). This process can be repeated order by order, noting that the equations

at thermal velocity scales (e.g. equation (A.8) and higher order versions) are valid at all

poloidal locations and can be employed to remove the thermal terms from an equation.

Using this method, one can show that he1 = he2 = 0 when v||f ̸= 0 or µf ̸= 0, and he3
must be constant in α when v||f ̸= 0. At O(ϵ2hevthe/a), the current drive source finally

enters and we find

∂hfe3
∂θ

=
S̃Ip
e1 (v||f , µf )

v||f b̂ · ∇⃗θ
, (C.4)

the analog to equation (7) at poloidal locations where c⃗κ · ∇⃗r = 0. Interestingly, this

is a constraint on the poloidal derivative of the distribution function, meaning that the

distribution function itself is determined by continuity with the solution at neighboring
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poloidal locations. Thus, we see that equation (7) still holds where c⃗κ · ∇⃗r = 0, where

we stress that equation (7) does not diverge because we have chosen that S̃Ip
e0 ∝ c⃗κ · ∇⃗r

according to equation (18).

To show that a current drive source S̃Ip
e exists for every q̃(r) modification, we

combine equations (9) and (16) to find

∂2q̃

∂r2
= − 2πµ0ZeeB

(b̂ · ∇⃗θ)|∇⃗r|2

∫ ∞

−∞
dv||f

∫ ∞

0

dµf v||f
∂hfe3
∂ψ

. (C.5)

We must show that ∂2q̃/∂r2 is continuous with θ and it is constant with θ (i.e. its

poloidal derivative is zero) across locations with c⃗κ ·∇⃗r = 0. Given that we just enforced

continuity for hfe3 following equation (C.4), equation (C.5) itself is clearly continuous

with θ. To demonstrate that equation (C.5) is constant with θ, we will prove that its

poloidal derivative is zero everywhere. Since all other quantities are well-behaved with

θ and we already showed in section 3 that ∂(∂2q̃/∂r2)/∂θ = 0 where c⃗κ · ∇⃗r ̸= 0, we

only need to show that ∂(∂hfe3/∂ψ)/∂θ is continuous in θ across the locations where

c⃗κ · ∇⃗r = 0. Thus, we can take the radial derivative of equation (C.4) and equate it to

the poloidal derivative of equation (7) to show that

∂S̃Ip
e1

∂r
=
b̂ · ∇⃗θ
v||f

∂

∂θ

(
S̃Ip
e0

c⃗κ · ∇⃗r

)
, (C.6)

which again does not diverge as we have chosen that S̃Ip
e0 ∝ c⃗κ · ∇⃗r. As long as the next

order contribution to the source is chosen according to this equation, the modifications to

the magnetic field created by the current drive source will correspond to the pure safety

factor modification assumed by the form of equation (13), even at poloidal locations

where c⃗κ · ∇⃗r = 0. Thus, we are free to specify the safety factor profile q̃(r) as an input

to gyrokinetic codes, rather than the current drive source S̃Ip
e .
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T. Dannert, H. Doerk, D.R. Hatch, J.W. Haverkort, J. Hobirk, G.M.D. Hogeweij, P. Mantica,

M.J. Pueschel, O. Sauter, L. Villard, and E. Wolfrum and. Global and local gyrokinetic

simulations of high-performance discharges in view of ITER. Nucl. Fusion, 53(7):073003, may

2013.

[2] T. Görler, A. E. White, D. Told, F. Jenko, C. Holland, and T. L. Rhodes. A flux-matched

gyrokinetic analysis of DIII-D L-mode turbulence. Phys. Plasmas, 21(12):122307, 2014.

[3] I.G. Abel, G.G. Plunk, E. Wang, M.A. Barnes, S.C. Cowley, W. Dorland, and A.A. Schekochihin.

Multiscale gyrokinetics for rotating tokamak plasmas: Fluctuations, transport, and energy flows.

Rep. Prog. Phys, 76:116201, 2013.

[4] M.A. Beer, S.C. Cowley, and G.W. Hammett. Field-aligned coordinates for nonlinear simulations

of tokamak turbulence. Phys. Plasmas, 2(7):2687, 1995.

[5] M.J. Pueschel, T. Görler, F. Jenko, D.R. Hatch, and A.J. Cianciara. On secondary and tertiary

instability in electromagnetic plasma microturbulence. Phys. Plasmas, 20(10):102308, 2013.

[6] J. Candy, E.A. Belli, and G. Staebler. Spectral treatment of gyrokinetic profile curvature. Plasma

Phys. Control. Fusion, 62(4):042001, 2020.



Local gyrokinetic simulations of tokamaks with non-uniform magnetic shear 31

[7] D.A. St-Onge, M. Barnes, and F.I. Parra. A novel approach to radially global gyrokinetic

simulation using the flux-tube code stella. J. Comput. Phys., page 111498, 2022.

[8] J. Candy and E.A. Belli. Spectral treatment of gyrokinetic shear flow. J. Comput. Phys., 356:448,

2018.

[9] S.A. Orszag. On the elimination of aliasing in finite-difference schemes by filtering high-

wavenumber components. J. Atmos. Sci., 28(6):1074, 1971.

[10] D. Told and F. Jenko. Applicability of different geometry approaches to simulations of turbulence

in highly sheared magnetic fields. Phys. Plasmas, 17(4):042302, 2010.

[11] P.J. Catto. Linearized gyro-kinetics. Plasma Phys., 20(7):719, 1978.

[12] J. Candy and R.E. Waltz. An Eulerian gyrokinetic-Maxwell solver. J. Comput. Phys., 186(2):545,

2003.

[13] Y. Idomura, M. Ida, T. Kano, N. Aiba, and S. Tokuda. Conservative global gyrokinetic toroidal

full-f five-dimensional Vlasov simulation. Comput. Phys. Commun., 179(6):391, 2008.

[14] T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, and D. Told. The global

version of the gyrokinetic turbulence code GENE. J. Comput. Phys., 230(18):7053, 2011.

[15] V. Grandgirard, J. Abiteboul, J. Bigot, . Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier,

C. Ehrlacher, D. Esteve, X. Garbet, P. Ghendrih, et al. A 5d gyrokinetic full-f global semi-

lagrangian code for flux-driven ion turbulence simulations. Comput. Phys. Commun., 207:35,

2016.

[16] E. Lanti, N. Ohana, N. Tronko, T. Hayward-Schneider, A. Bottino, B.F. McMillan, A. Mishchenko,

A. Scheinberg, A. Biancalani, P. Angelino, et al. ORB5: a global electromagnetic gyrokinetic

code using the PIC approach in toroidal geometry. Comput. Phys. Commun., 251:107072, 2020.

[17] I. Calvo and F.I. Parra. Radial transport of toroidal angular momentum in tokamaks. Plasma

Phys. Control. Fusion, 57(7):075006, 2015.

[18] B.F. McMillan, X. Lapillonne, S. Brunner, L. Villard, S. Jolliet, A. Bottino, T. Görler, and

F. Jenko. System size effects on gyrokinetic turbulence. Phys. Rev. Lett., 105(15):155001,

2010.

[19] A. Geraldini, F.I. Parra, and F. Militello. Solution to a collisionless shallow-angle magnetic

presheath with kinetic ions. Plasma Phys. Control. Fusion, 60(12):125002, 2018.

[20] E. Joffrin, C.D. Challis, G.D. Conway, X. Garbet, A. Gude, S. Günter, N.C. Hawkes, T.C. Hender,

D.F. Howell, G.T.A. Huysmans, et al. Internal transport barrier triggering by rational magnetic

flux surfaces in tokamaks. Nucl. Fusion, 43(10):1167, 2003.

[21] R.E. Waltz, M.E. Austin, K.H. Burrell, and J. Candy. Gyrokinetic simulations of off-axis

minimum-q profile corrugations. Phys. Plasmas, 13(5):052301, 2006.

[22] F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers. Electron temperature gradient

driven turbulence. Phys. Plasmas, 7(5):1904, 2000. GENE website: http://genecode.org.

[23] R. Prater. Heating and current drive by electron cyclotron waves. Phys. Plasmas, 11(5):2349–

2376, 2004.

[24] A.R. Polevoi, A.A. Ivanov, S.Yu. Medvedev, G.T.A. Huijsmans, S.H. Kim, A. Loarte, E. Fable,

and A.Y. Kuyanov. Reassessment of steady-state operation in ITER with NBI and EC heating

and current drive. Nucl. Fusion, 60(9):096024, 2020.

[25] T.P. Goodman, R. Behn, Y. Camenen, S. Coda, E. Fable, M.A. Henderson, P. Nikkola, J. Rossel,

O. Sauter, A. Scarabosio, et al. Safety factor profile requirements for electron ITB formation

in TCV. Plasma Phys. Control. Fusion, 47(12B):B107, 2005.

[26] M. Maraschek, G. Gantenbein, T.P. Goodman, S. Günter, D.F. Howell, F. Leuterer, A. Mück,

O. Sauter, H. Zohm, et al. Active control of MHD instabilities by ECCD in ASDEX Upgrade.

Nucl. Fusion, 45(11):1369, 2005.

[27] R.W. Harvey and F.W. Perkins. Comparison of optimized ECCD for different launch locations in

a next step tokamak reactor plasma. Nucl. Fusion, 41(12):1847, 2001.

[28] C. Zucca, O. Sauter, E. Asp, S. Coda, E. Fable, T.P. Goodman, and M.A. Henderson. Current

density evolution in electron internal transport barrier discharges in TCV. Plasma Phys.



Local gyrokinetic simulations of tokamaks with non-uniform magnetic shear 32

Control. Fusion, 51(1):015002, 2008.

[29] F.B. Argomedo, E. Witrant, and C. Prieur. Safety factor profile control in a Tokamak. Springer,

2014.

[30] R.J. Groebner and T.H. Osborne. Scaling studies of the high mode pedestal. Phys. Plasmas,

5(5):1800, 1998.

[31] S. Gibson. Measurement of the current profile in fusion tokamaks using the motional Stark effect

diagnostic. PhD thesis, Durham University, 2021.

[32] X. Lapillonne, S. Brunner, O. Sauter, L. Villard, E. Fable, T. Görler, F. Jenko, and F. Merz. Non-

linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers.

Plasma Phys. Control. Fusion, 53(5):054011, 2011.

[33] F.I. Parra, M. Barnes, and A.G. Peeters. Up-down symmetry of the turbulent transport of toroidal

angular momentum in tokamaks. Phys. Plasmas, 18(6):062501, 2011.

[34] P. Donnel, J.-B. Fontana, J. Cazabonne, L. Villard, S. Brunner, S. Coda, J. Decker, and

Y. Peysson. Electron-cyclotron resonance heating and current drive source for flux-driven

gyrokinetic simulations of tokamaks. Plasma Phys. Control. Fusion, 64(9):095008, 2022.

[35] C.M. Bender and S.A. Orszag. Advanced mathematical methods for scientists and engineers I:

Asymptotic methods and perturbation theory, page 549. Springer Science & Business Media,

New York, 1999.

[36] A. Hasegawa, C.G. Maclennan, and Y. Kodama. Nonlinear behavior and turbulence spectra of

drift waves and rossby waves. Physics of Fluids, 22(11):2122, 1979.

[37] P.J. Catto, M.N. Rosenbluth, and C.S. Liu. Parallel velocity shear instabilities in an

inhomogeneous plasma with a sheared magnetic field. Physics of Fluids, 16(10):1719–1729,

1973.

[38] A. Hasegawa and K. Mima. Pseudo-three-dimensional turbulence in magnetized nonuniform

plasma. Physics of Fluids, 21(1):87–92, 1978.

[39] J.-Z. Zhu and G.W. Hammett. Gyrokinetic statistical absolute equilibrium and turbulence.

Physics of Plasmas, 17(12):122307, 2010.

[40] R. Jorge, P. Ricci, and N.F. Loureiro. A drift-kinetic analytical model for scrape-off layer plasma

dynamics at arbitrary collisionality. Journal of Plasma Physics, 83(6):219–232, 2017.

[41] P.G. Ivanov, A.A. Schekochihin, W. Dorland, A.R. Field, and F.I. Parra. Zonally dominated

dynamics and Dimits threshold in curvature-driven ITG turbulence. J. Plasma Phys.,

86(5):855860502, 2020.

[42] J. Ball, S. Brunner, and B.F. McMillan. The effect of background flow shear on gyrokinetic

turbulence in the cold ion limit. Plasma Phys. Control. Fusion, 61(6):064004, 2019.

[43] S.L. Newton, S.C. Cowley, and N.F. Loureiro. Understanding the effect of sheared flow on

microinstabilities. Plasma Phys. Control. Fusion, 52(12):125001, 2010.

[44] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dorland, G.W. Hammett, C. Kim, J.E.

Kinsey, M. Kotschenreuther, A.H. Kritz, and others. Comparisons and physics basis of tokamak

transport models and turbulence simulations. Phys. Plasmas, 7:969, 2000.

[45] M.J. Pueschel, T. Dannert, and F. Jenko. On the role of numerical dissipation in gyrokinetic

Vlasov simulations of plasma microturbulence. Comput. Phys. Commun., 181(8):1428, 2010.

[46] R.L. Miller, M.S. Chu, J.M. Greene, Y.R. Lin-Liu, and R.E. Waltz. Noncircular, finite aspect

ratio, local equilibrium model. Phys. Plasmas, 5(4):973, 1998.

[47] R.E. Waltz, G.D. Kerbel, J. Milovich, and G.W. Hammett. Advances in the simulation of toroidal

gyro-Landau fluid model turbulence. Phys. Plasmas, 2(6):2408–2416, 1995.

[48] J. Ball, S. Brunner, and Ajay C.J. Eliminating turbulent self-interaction through the parallel

boundary condition in local gyrokinetic simulations. J. Plasma Phys., 86(2):905860207, 2020.

[49] P.-H. Rebut. The Joint European Torus (JET). Eur. Phys. J. H, 43(4):459–497, 2018.

[50] Y. Camenen, A. Pochelon, R. Behn, A. Bottino, A. Bortolon, S. Coda, A. Karpushov, O. Sauter,

G. Zhuang, and others. Impact of plasma triangularity and collisionality on electron heat

transport in TCV L-mode plasmas. Nucl. Fusion, 47(7):510, 2007.



Local gyrokinetic simulations of tokamaks with non-uniform magnetic shear 33

[51] M. Fontana, L. Porte, S. Coda, O. Sauter, TCV Team, et al. The effect of triangularity on

fluctuations in a tokamak plasma. Nucl. Fusion, 58(2):024002, 2017.

[52] S. Coda, A. Merle, O. Sauter, L. Porte, F. Bagnato, J. Boedo, T. Bolzonella, O. Février, B. Labit,

A. Marinoni, et al. Enhanced confinement in diverted negative-triangularity L-mode plasmas

in TCV. Plasma Phys. Control. Fusion, 64(1):014004, 2021.

[53] M.E. Austin, A. Marinoni, M.L. Walker, M.W. Brookman, J.S. Degrassie, A.W. Hyatt, G.R.

McKee, C.C. Petty, T.L. Rhodes, S.P. Smith, et al. Achievement of reactor-relevant performance

in negative triangularity shape in the DIII-D tokamak. Phys. Rev. Lett., 122(11):115001, 2019.

[54] T. Happel, T. Pütterich, D. Told, M.G. Dunne, R. Fischer, J. Hobirk, R.M. McDermott, U. Plank,

et al. Overview of initial negative triangularity plasma studies on the ASDEX Upgrade tokamak.

Nucl. Fusion, 63(1):016002, 2023.

[55] A. Marinoni, S. Brunner, Y. Camenen, S. Coda, J.P. Graves, X. Lapillonne, A. Pochelon, O. Sauter,

and L. Villard. The effect of plasma triangularity on turbulent transport: modeling TCV

experiments by linear and non-linear gyrokinetic simulations. Plasma Phys. Control. Fusion,

51(5):055016, 2009.

[56] G. Merlo, S. Brunner, O. Sauter, Y. Camenen, T. Görler, F. Jenko, A. Marinoni, D. Told,

and L. Villard. Investigating profile stiffness and critical gradients in shaped TCV discharges

using local gyrokinetic simulations of turbulent transport. Plasma Phys. Control. Fusion,

57(5):054010, 2015.

[57] G. Merlo, M. Fontana, S. Coda, D. Hatch, S. Janhunen, L. Porte, and F. Jenko. Turbulent

transport in TCV plasmas with positive and negative triangularity. Phys. Plasmas,

26(10):102302, 2019.

[58] G. Merlo, Z. Huang, C. Marini, S. Brunner, S. Coda, D. Hatch, D. Jarema, F. Jenko, O. Sauter,

and L. Villard. Nonlocal effects in negative triangularity TCV plasmas. Plasma Phys. Control.

Fusion, 63(4):044001, 2021.

[59] S. Coda, J. Ahn, R. Albanese, S. Alberti, E. Alessi, S. Allan, H. Anand, G. Anastassiou,
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