
Cristina Baroglio
Jomi F. Hubner
Michael Winikoff (Eds.)

 123

LN
A

I 1
25

89

8th International Workshop, EMAS 2020
Auckland, New Zealand, May 8–9, 2020
Revised Selected Papers

Engineering
Multi-Agent Systems

Lecture Notes in Artificial Intelligence 12589

Subseries of Lecture Notes in Computer Science

Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

Founding Editor

Jörg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this subseries at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Cristina Baroglio • Jomi F. Hubner •

Michael Winikoff (Eds.)

Engineering
Multi-Agent Systems
8th International Workshop, EMAS 2020
Auckland, New Zealand, May 8–9, 2020
Revised Selected Papers

123

Editors
Cristina Baroglio
Dipartimento di Informatica
Università di Torino
Torino, Torino, Italy

Jomi F. Hubner
Federal University of Santa Catarina
Florianopolis, Santa Catarina, Brazil

Michael Winikoff
School of Information Management
Victoria University of Wellington
Wellington, New Zealand

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-66533-3 ISBN 978-3-030-66534-0 (eBook)
https://doi.org/10.1007/978-3-030-66534-0

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-2070-0616
https://orcid.org/0000-0001-9355-822X
https://orcid.org/0000-0002-5545-7003
https://doi.org/10.1007/978-3-030-66534-0

Preface

The International Workshop on Engineering Multi-Agent Systems (EMAS) was
formed in 2013 as a merger of three long-running workshops: Agent-Oriented Software
Engineering (AOSE), Programming Multi-Agent Systems (ProMAS), and Declarative
Agent Languages and Technologies (DALT). This merger established EMAS as a
reference venue for work concerned broadly with engineering of agents and
multi-agent systems.

The three parent events had a long history of association with the International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), and since its
inception EMAS has been co-located at AAMAS: EMAS 2013 at St. Paul (with
post-proceedings published as Springer LNCS/LNAI volume 8245), EMAS 2014 in
Paris (LNCS/LNAI 8758, and a special issue in the International Journal of
Agent-Oriented Software Engineering (IJAOSE) Vol. 5 No. 2/3, 2016), EMAS 2015 in
Istanbul (LNCS/LNAI 9318), EMAS 2016 in Singapore (LNCS/LNAI 10093), EMAS
2017 in São Paulo (LNCS/LNAI 10738), EMAS 2018 in Stockholm (LNAI 11375, and
a report in Software Engineering Notes1), and EMAS 2019 in Montreal (LNAI 12058).

EMAS 2020 aimed to build on this history by gathering researchers and practi-
tioners in the domains of agent-oriented software engineering, programming
multi-agent systems, declarative agent languages and technologies, artificial intelli-
gence, and machine learning to present and discuss their research and emerging results
in MAS engineering. The overall purpose of this workshop is to facilitate the
cross-fertilisation of ideas and experiences in the various fields to:

1. Enhance our knowledge and expertise in MAS engineering and improve the state
of the art

2. Define new directions for MAS engineering that are useful to practitioners, relying
on results and recommendations coming from different but contiguous research
areas

3. Investigate how practitioners can use or need to adapt established methodologies for
the engineering of large-scale and open MAS

4. Encourage masters and PhD students to become involved in and contribute to the
area

Like previous editions, this edition of the EMAS workshop was planned to be
co-located with AAMAS, which was planned to be held in May, in Auckland, New
Zealand. Then Covid-19 happened and borders closed.2

1 SIGSOFT Softw. Eng. Notes, 44(1): 18-28. https://doi.org/10.1145/3310013.3322175
2 On the 19th of March, New Zealand prime minister the Rt Hon Jacinda Ardern announced the
closure of the border to all but New Zealand residents and citizens. At the time of writing entry to New
Zealand is still very limited, and all arrivals are subject to a two-week isolation/quarantine.

https://doi.org/10.1145/3310013.3322175

EMAS 2020 was held as a virtual (online) event, spanning two days. It received 14
submissions, each of which was reviewed (single blind) by three reviewers. EMAS
2020 accepted 12 papers (7 full papers, 3 short papers, 1 doctoral paper, and 1
demonstration). In addition to these 12 papers, the chairs also invited presentations
from authors of recently published IJAOSE papers, and of relevant AAMAS 2020
Extended Abstracts. The chairs also invited talks from two relevant competitions (see
the last two papers in this volume). Finally, we also had an invited talk titled
“Explainable artificial intelligence: beware the inmates running the asylum (or How I
learnt to stop worrying and love the social and behavioural sciences)” by Professor
Tim Miller.3

The keynote was delivered synchronously over Zoom, but all other talks were
pre-recorded. Presentations were kept short (10 minutes for full papers, 5 minutes for
short). Participants were provided with a schedule4 that each followed in their own time
zone. This was carefully designed to encourage commitment and engagement, and also
to allow people in the same time zone to synchronise and engage both professionally
and socially (using Jitsi for video conferencing). Slack was used to discuss the papers,
and authors were expected to regularly check for questions, and respond.

Given this novel approach to running EMAS, and that many events are moving
online, we feel it might be useful to share lessons learned. A survey of participants after
the event found that:

– The approach of having a schedule interpreted in each participant’s local time zone
was seen very positively (52.2% of respondents said it was a good idea, and 43.5%
said it was a very good idea)

– Having short talks was seen very positively (91.3% said it was just right, with 8.7%
[two people] indicating they felt it was too short)

– Using Slack for questions and answers was seen as being very effective. On a 1-5
scale (1 = strongly disagree; 5 = strongly agree) no one responded with a 1, 1 person
indicated 2, 6 people said 3, 6 said 4, and 10 said 5. The mean of the responses was
around 4.1 and the median was 4

– On the other hand, only 1 person used Jitsi
– Overall, participants indicated that, compared with a traditional face-to-face event,

they found the experience of:

• watching pre-recorded presentations better in this online format (1 = much
worse, 5 = much better; 3 people responded with 2, 6 with 3, 9 with 4, and 5
with 5; mean = approx. 3.7)

• discussing papers better in this online format (5 people responded with 2, 7 with
3, 4 with 4, and 5 with 5; mean = approx. 3.6)

• interacting socially with people worse in this online format (7 people responded
with 1, 9 with 2, 5 with 3, and 1 each with 4 and with 5; mean = approx. 2.6)

– All respondents (100%) indicated that EMAS 2020 was useful and enjoyable

3 The talk and slides are available from the EMAS website at: https://emas2020.in.tu-clausthal.de/
invited-talk-tim-miller.html.
4 https://emas2020.in.tu-clausthal.de/schedule.html.

vi Preface

https://emas2020.in.tu-clausthal.de/invited-talk-tim-miller.html
https://emas2020.in.tu-clausthal.de/invited-talk-tim-miller.html
https://emas2020.in.tu-clausthal.de/schedule.html

– When asked whether they would prefer to have EMAS 2021 virtual or face-to-face
opinions were split between the four options: 17.4% indicated they would prefer
returning to face-to-face, 26.1% indicated that they would prefer retaining the
online model, 26.1% indicated that they would prefer something else, e.g. some sort
of hybrid model, and 30.4% indicated that it depended on details and circumstances

Overall, while the online format was not as successful in facilitating social inter-
action (hindered also by time zones), the presentations and professional interactions
were seen as very effective. We would recommend the model that we used as being
highly effective for a similar event.

This volume contains revised selected papers from the workshop, as well as two
additional papers about two relevant competitions: the agent programming competition,
and the intention progression competition (both papers were submitted for the
post-proceedings, and were peer reviewed).

The first paper, by O’Neill et al. is the winner of the best paper award at the
workshop.

We would like to thank:

– the authors for their work in writing papers, in recording talks, and in engaging on
Slack;

– the members of the Program Committee for their reviewing;
– the members of the EMAS Steering Committee for their valuable suggestions and

support;
– Associate Professor Matteo Baldoni for designing the EMAS 2020 logo;
– Tim Miller for his fantastic keynote; and
– The AAMAS workshop chairs, Jaime and Mehdi, for all their work and support.

November 2020 Cristina Baroglio
Jomi Fred Hübner
Michael Winikoff

Preface vii

Organization

Program Committee Chairs

Cristina Baroglio Università degli Studi di Torino, Italy
Jomi Fred Hübner Federal University of Santa Catarina, Brazil
Michael Winikoff Victoria University of Wellington, New Zealand

Steering Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Rafael H. Bordini PUCRS, Brazil
Mehdi Dastani Utrecht University, The Netherlands
Juergen Dix Clausthal University of Technology, Germany
Amal El Fallah Seghrouchni LIP6 - Pierre and Marie Curie University, France
Brian Logan University of Nottingham, UK
Jörg P. Müller TU Clausthal, Germany
Ingrid Nunes Universidade Federal do Rio Grande do Sul (UFRGS),

Brazil
Alessandro Ricci University of Bologna, Italy
M. Birna Van Riemsdijk University of Twente, The Netherlands
Rym Zalila-Wenkstern The University of Texas at Dallas, USA
Danny Weyns Katholieke Universiteit Leuven, Belgium
Michael Winikoff Victoria University of Wellington, New Zealand

Program Committee

Matteo Baldoni Università degli Studi di Torino, Italy
Luciano Baresi Politecnico di Milano, Italy
Olivier Boissier Mines Saint-Étienne, France
Rafael H. Bordini PUCRS, Brazil
Daniela Briola University of Milano-Bicocca, Italy
Rafael C. Cardoso The University of Manchester, UK
Moharram Challenger University of Antwerp, Belgium
Amit K. Chopra Lancaster University, UK
Andrei Ciortea University of St. Gallen, Switzerland
Stefania Costantini Università degli Studi dell’Aquila, Italy
Mehdi Dastani Utrecht University, The Netherlands
Maiquel de Brito Federal University of Santa Catarina, Brazil
Lavindra de Silva University of Cambridge, UK
Louise Dennis The University of Manchester, UK
Juergen Dix TU Clausthal, Germany
Amal El Fallah Seghrouchni LIP6 - Pierre and Marie Curie University, France

Angelo Ferrando The University of Manchester, UK
Lars-Ake Fredlund Universidad Politécnica de Madrid, Spain
Jorge Gomez-Sanz Universidad Complutense de Madrid, Spain
Zahia Guessoum LIP6, Pierre and Marie Curie University and CReSTIC,

Université de Reims Champagne-Ardenne, France
James Harland RMIT University, Australia
Koen Hindriks Vrije Universiteit Amsterdam, The Netherlands
Tom Holvoet Katholieke Universiteit Leuven, Belgium
Nadin Kokciyan The University of Edinburgh, UK
Yves Lespérance York University, Canada
Brian Logan University of Nottingham, UK
Viviana Mascardi Università di Genova, Italy
Philippe Mathieu University of Lille, France
John-Jules Meyer Utrecht University, The Netherlands
Frederic Migeon IRIT, Université Paul Sabatier Toulouse III, France
Jörg P. Müller TU Clausthal, Germany
Ingrid Nunes Universidade Federal do Rio Grande do Sul (UFRGS),

Brazil
Alessandro Ricci University of Bologna, Italy
Valeria Seidita Università degli Studi di Palermo, Italy
Jaime Sichman University of São Paulo, Brazil
Guillermo R. Simari Universidad del Sur in Bahia Blanca, Argentina
Wamberto Vasconcelos University of Aberdeen, UK
Jørgen Villadsen Technical University of Denmark, Denmark
Gerhard Weiss Maastricht University, The Netherlands
Rym Zalila-Wenkstern The University of Texas at Dallas, USA
Danny Weyns Katholieke Universiteit Leuven, Belgium
Pinar Yolum Utrecht University, The Netherlands

x Organization

Contents

Delivering Multi-agent MicroServices Using CArtAgO 1
Eoin O’Neill, David Lillis, Gregory M. P. O’Hare, and Rem W. Collier

Aplib: Tactical Agents for Testing Computer Games 21
I. S. W. B. Prasetya, Mehdi Dastani, Rui Prada, Tanja E. J. Vos,
Frank Dignum, and Fitsum Kifetew

Exploiting Simulation for MAS Development and Execution—The
JaCaMo-Sim Approach . 42

Alessandro Ricci, Angelo Croatti, Rafael H. Bordini, Jomi F. Hübner,
and Olivier Boissier

Fragility and Robustness in Multiagent Systems . 61
Matteo Baldoni, Cristina Baroglio, and Roberto Micalizio

Fault Tolerance in Multiagent Systems. 78
Samuel H. Christie V and Amit K. Chopra

Multi-agent Control of Industrial Robot Vacuum Cleaners 87
Joe Collenette and Brian Logan

Orthos: A Trustworthy AI Framework for Data Acquisition 100
Moin Hussain Moti, Dimitris Chatzopoulos, Pan Hui, Boi Faltings,
and Sujit Gujar

Simulating Vehicular IoT Applications by Combining a Multi-agent System
and Big Data . 119

Ryo Neyama, Sylvain Lefebvre, Masanori Itoh, Yuji Yazawa,
Akira Yoshioka, Jun Koreishi, Akihisa Yokoyama, Masahiro Tanaka,
and Hiroko Okuyama

Accept a Challenge: The Multi-Agent Programming Contest: Challenging
Tasks and How to Deal with Them . 129

Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas, and Tabajara Krausburg

The Intention Progression Competition . 144
Simon Castle-Green, Alexi Dewfall, and Brian Logan

Author Index . 153

Delivering Multi-agent MicroServices
Using CArtAgO

Eoin O’Neill, David Lillis , Gregory M. P. O’Hare ,
and Rem W. Collier(B)

School of Computer Science, University College Dublin, Dublin, Ireland
eoin.o-neill.3@ucdconnect.ie,

{david.lillis,gregory.ohare,rem.collier}@ucd.ie

Abstract. This paper describes an agent programming language agnos-
tic implementation of the Multi-Agent MicroServices (MAMS) model
- an approach to integrating agents within microservices-based archi-
tectures. In this model, agents, deployed within microservices, expose
aspects of their state as virtual resources that are externally accessible
using REpresentational State Transfer (REST). Virtual resources are
implemented as CArtAgO artifacts, exposing their state to the agent
as a set of observable properties. Coupled with a set of artifact opera-
tions, this enables the agent to monitor and manage its own resources. In
the paper, we formally model our approach, defining passive and active
resource management strategies, and illustrate its use within a worked
example.

Keywords: Multi agent systems · Microservices · CArtAgo

1 Introduction

This paper builds on previous work that has introduced the Multi-Agent
MicroServices (MAMS) model [24,34]: a model that promotes a view of agents
as hypermedia entities whose body includes a set of virtual resources that can be
interacted with using REpresentational State Transfer (REST) [10] and can be
deployed as microservices. Overall, the work has three main objectives: to facil-
itate the seamless deployment of Multi-Agent Systems (MAS) within microser-
vices ecosystems; to exploit modern industry tools to enhance the deployment of
MAS; and ultimately, to enable the development of an emerging class of systems
known as Hypermedia MAS [4,5].

The specific focus of this paper is to improve on the approach described in [34]
by proposing an agent-programming language independent approach based on
CArtAgO [28] and to introduce support for hypermedia links through the use
the Hypertext Application Language (HAL) [16] as described in [24]. To achieve
this, Sect. 3 describes the refined MAMS model; Sect. 4 introduces the suite
of CArtAgO artifacts developed to implement the model; Sect. 5 describes the
integration with the ASTRA agent programming language; and Sect. 6 illustrates
its use through a worked example. Finally, Sects. 7 and 8 present discussion and
concluding remarks.
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 1–20, 2020.
https://doi.org/10.1007/978-3-030-66534-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_1&domain=pdf
http://orcid.org/0000-0002-5702-4463
http://orcid.org/0000-0002-5124-1686
http://orcid.org/0000-0003-0319-0797
https://doi.org/10.1007/978-3-030-66534-0_1

2 E. O’Neill et al.

2 Related Work

There has been a significant amount of research into the integration of agents
and services. A good historical perspective on this can be found in [5]. An
excellent overview of agent-based service-oriented computing is provided in [12],
with a focus on Web Services technologies. [25] is an excellent recent survey of
agent-based cloud computing applications that is heavily focused on agent-based
service-oriented computing (in the cloud). Much of it tackles the relationship
between agents and services from a more traditional perspective. In this paper,
the objective is to focus more closely on the relationship between agents and
microservices - an architecture style linked to service-oriented computing that
promotes a more decentralised approach to software development.

Microservices are increasingly seen as an important innovator in software
design. They champion the decomposition of monolithic systems into loosely-
coupled networks of services [33] that are necessary to deliver internet-scale appli-
cations [9]. This has the effect of reducing the complexity of many of the com-
ponents, but comes at the cost of increasing the complexity of deployment [32].
However, this challenge has been met through the rise of DevOps [3] and Con-
tinuous Software Engineering methods [23].

The rise of microservices presents an opportunity for Multi-Agent Systems
(MAS) research. As is illustrated in [34], there is a strong affinity between the
principles of microservices and MAS that can be exploited to deliver innovations,
both in terms of the use of MAS technologies with microservices and the use of
microservices technologies with MAS. This affinity is reinforced in [30], which
argues that microservices can be used to facilitate agility of development for
agent-based Internet of Things (IoT) systems. This view is further reinforced
in [18], which argues that microservices-based IoT systems can be modelled as
agents, and in [17], which presents a multi-agent trust model for IoT.

While not directly referencing microservices, [21] argues for a new “Agents as
a Service” paradigm that would enable a new generation of agile services founded
on the MAS models and techniques. Similarly, [34] argued for the emergence of
an “Organisation as a Service” paradigm in which MAS implementations of
organisational models are implemented and deployed as microservices that can
be utilised by other non-agent-based microservices.

Key to realising this vision of agents and microservices is the need for dedi-
cated programming tools and frameworks that help to simplify the development
process. To date, there have been two main attempts to achieve this. Firstly, [35]
introduces CAOPLE: a Caste-centric Agent-Oriented Programming Language
and Environment for programming microservices. Conversely, [34] presents an
extension to ASTRA [6] (a variant of AgentSpeak(L) [26]) that supports the
implementation of microservices.

3 Multi-agent Micro-Services

The concept of Multi-Agent Micro-Services (MAMS) was originally introduced
in [34]. The paper argues that microservices share many common traits with

Delivering Multi-agent MicroServices Using CArtAgO 3

Multi-Agent Systems (MAS), to the extent that both approaches can be broadly
characterised as being concerned with the creation of loosely-coupled distributed
systems comprised of small independent (autonomous) components with internal
state. Of course, there are also many differences between the two approaches,
not least the incorporation of practical reasoning, but this commonality suggests
that we are beginning to see the emergence of approaches within industry that
are, at least, compatible with the MAS perspective.

As mentioned in the introduction, the ultimate goal of MAMS is to allow
agents to be deployed as entities that co-exist with other agents and resources in
a hypermedia space. This space encompass all resources that can be: addressed
using a Uniform Resource Identifier (URI); accessed using the HyperText Trans-
fer Protocol (HTTP); and connected through a network of hyperlinks. Through
these aspects, agents become not only identifiable and discoverable, but also
observable. That is, the body of an agent can be directly observed and inter-
acted with through the use of appropriate HTTP requests.

This notion of observability can lead to direct benefits in terms of enabling
emergent behaviour. To illustrate this, consider a scenario in which a person
overhears a conversation between other people in a public space. By listening to
the conversation, the person is able to build not only models of the beliefs and
goals of the other people, but also the protocols/rules that underpin the conver-
sation. At some point the person may interject into the conversation simply by
applying the learnt protocols/rules. With MAMS, this type of behaviour could
be replicated by modelling inboxes as virtual resources that return a filtered
view of the agents conversation history upon receipt of a GET request. Perform-
ing the GET request is the agent equivalent of listening in to the conversation
of the other agent. Upon receipt of the conversation history, it could mine the
messages to not only understand: what beliefs the other agent has, what services
it provides, and what protocols it uses for that interaction; but also the URIs of
the other agents that it has interacted with. This approach would also facilitate
integration with a model of agent conversation reasoning (e.g. [1,19]).

3.1 Basic MAMS Model

At its core, MAMS adopts the view of a microservice as a container for one
or more agents. Agents may be internal (private) to the container or external
(public). Public agents are associated with a Uniform Resource Identifier (URI)
based on a combination of the host name and port of the service plus the name of
the agent. They are also associated with a hypermedia body that is constructed
from a set of virtual resources. Private agents have standard string-based identi-
fiers and no hypermedia body. Both types of agent should be implemented using
a common agent programming language or framework. A microservice is not
considered a MAMS service if there are no public agents.

Figure 1 presents a sketch of a standard layered microservices architecture,
access to which is mediated by an API Gateway, a common microservices design

4 E. O’Neill et al.

Fig. 1. Agent/Service integration

pattern1 that employs a front-facing service that acts as a single point of entry
to the layered architecture. In the context of this architecture, one of the
goals of MAMS is to facilitate interaction between agent-based (A) and non
agent-based (S) microservices (i.e. agent-agent, agent-service, service-agent and
service-service). Agent-service interaction is achieved by giving agents the ability
to submit HTTP requests and process HTTP Responses. Service-agent interac-
tion is achieved by exposing the virtual resources through REST using URIs -
based on the associated agent’s URI - providing a HTTP-based interface that
does not require knowledge of agent concepts.

Agent-agent interaction, using an Agent Communication Language (ACL)
or equivalent, can also be realised through virtual resources. Specifically, each
agent’s inbox can be modelled as a virtual resource. Sending a message to an
agent is reduced to submitting a HTTP POST request to the receiver agent’s
inbox URI, with the content of the request being the message. This approach is
demonstrated later in Sect. 4.4. It is useful to note that FIPA’s HTTP message
transport service specification [22] works in a similar, if more convoluted, way:
the sender agent passes the message to a message transport service which wraps
the message in an envelope. It then POSTS the wrapped message to an Agent
Communication Channel hosted on the receiver agents platform which unwraps
the message and delivers it to the relevant agent.

Another form of agent-agent communication that is supported by MAMS is
through non-ACL-based virtual resources. Each agent is also able to interact
with other agents using the same model that is used for agent-service interac-
tion. While this can be used in place of ACL-based interaction, the more inter-
esting scenario is where the virtual resources represent abstractions of the agent
state, such as public beliefs and goals, lists of acquaintances, or services offered.
Such resources would be publicly accessible and, as such, discoverable by other
agents. This posits a view where agents could directly observe the behaviour of
other agents, explore the acquaintance networks of their own acquaintances, and
potentially seek out other agents that provide the services that they need access
to. Hyperlinks are essential to achieving this vision. While hyperlinks could be

1 https://microservices.io/patterns/apigateway.html.

https://microservices.io/patterns/apigateway.html

Delivering Multi-agent MicroServices Using CArtAgO 5

used externally to identify virtual resources, relevant links were not included in
the resource representations returned by HTTP requests. [24] extended the basic
MAMS model to include such hyperlinks based on the Hypertext Application
Language (HAL). This extended model is described briefly in the next section.

3.2 Extending MAMS with HAL

The introduction of a resource representation that includes hyperlinks is a key
step in achieving the vision of agents as hypermedia entities. There are many
potential technologies for use in this area, and [20] presents a good summary
of those in the context of the Web of Things. In [24], we selected Hypertext
Application Language (HAL) [16] for adoption with MAMS. While HAL is not
an IEFT standard, it is one of the simplest linked data models to have been
proposed, it is relatively easy to implement, and it is currently in use in multiple
projects2.

{

"_links": {

"self": { "href": "/api/books/1234" }

}

"id": 1234,

"title": "Hitchhiker's Guide to the Galaxy",

"author": "Adams, Douglas"

}

Fig. 2. Example HAL resource representation (from [11])

HAL augments JSON representations with additional keys prefixed by an
underscore (). The links key is used to define a set of named hypermedia
links relevant to the resource being represented. For example, the JSON in Fig. 2
represents a book resource. The self link, is the URI of the representation itself.
Additional links can added that define operations specific to the resource (e.g. a
library system may add a link to the loan resource for that book).

A weakness of HAL is that the semantics associated with the links is appli-
cation dependent. Using HAL requires the definition of what valid links can be
used for each resource. In response to this, best practice for the use of REST
in industry was reviewed. This highlighted that many REST APIs focus on two
styles of resource: individual items and lists of items [29] that were manipulated
through the mapping of HTTP verbs to Create/Read/Update/Delete (CRUD)
operations. Based on this, it was decided that a generalised implementation of
these resource types would be developed based on this best practice.

2 https://github.com/mikekelly/hal specification/wiki/APIs.

https://github.com/mikekelly/hal_specification/wiki/APIs

6 E. O’Neill et al.

Table 1. Core resource types and key HTTP verb mappings

Resource
type

URI POST GET PUT/ PATCH DELETE

Item /id n/a Get the item Update the item n/a

List /list name Add to
the list

Get entire list
of items

n/a n/a

ListItem /list name/id n/a Get the item Update the item Remove item
from list

Table 1 contains a summary of the standard set of HTTP verbs that are asso-
ciated with these resource types and their associated behaviours. For example,
as can be seen in this table, it is increasingly common for individual items (sin-
gleton resources) to support retrieval of their state using a GET request and a
partial/full update using PATCH/PUT. POST operations are typically not per-
mitted because they are creation-oriented (which does not apply to a singleton).
Similarly, DELETE operations are typically not supported because there is no
way to recreate the resource once it is deleted.

The choices described above represent just one possible resource implemen-
tation strategy for MAMS. It was made in an effort to facilitate exploration of
the MAMS model. Our long-term goal is to explore the use of JSON-LD [31]
due to its use of the Resource Definition Framework (RDF) as a schema [7].

4 An Artifact-Based Framework for Building MAMS
Agents

To illustrate the MAMS model, a prototype implementation has been devel-
oped. When designing the prototype, two potential approaches were discussed:
creating a bespoke implementation from first principles, or adapting an existing
framework. In this paper, the latter approach was preferred because our goal
is to provide an implementation that is agnostic to agent programming lan-
guage. To this end, the CArtAgO framework [28] was chose because it was felt
that virtual resources can be modelled as artifacts and because CArtAgO is an
established and tested technology that is integrated with multiple established
agent programming languages. This has allowed us to focus on the model rather
than lower-level integration issues.

A key difference between MAMS and the CArtAgO approach is that arti-
facts combine observable properties (state) and operations (behaviour) while
virtual resources support only state. In our implementation, the state of a vir-
tual resource is modelled as observable properties. Operations are provided to
enable the agent to manipulate the resource (e.g. updating an observable prop-
erty, linking the artifact, etc.) in a way that is compliant with the MAMS model.
A limitation of using CArtAgO is that virtual resources are private, but arti-
facts are designed to be shared. This means that it is possible to misuse our
implementation and an agent within the same microservice could gain access to

Delivering Multi-agent MicroServices Using CArtAgO 7

another agent’s virtual resources. As the aim of this study is to demonstrate a
prototype concept, rather than provide an industry standard deployable system,
we have not attempted to address this issue at this stage.

To implement the MAMS model, a number of artifacts have been developed
that represent key concepts. A high-level view of our approach is illustrated in
Fig. 3, where each agent is associated with a hypermedia body, consisting of
a set of CArtAgO artifacts that model the virtual resources of the agent. A
base artifact is provided as a shared base to which each resource artifact is
linked and this in turn is linked to a shared webserver artifact that exposes the
resources over HTTP. The webserver artifact is implemented using Netty: an
asynchronous Java-based event-driven network application framework for high
performance protocol servers3.

Fig. 3. Modelling a RESTful agent body as artifacts

The base artifact acts as the root of a resource tree that implements our
model of a MAMS agent. To be clear, we are using CArtAgO to implement our
model rather than attempting to extend CArtAgO to support the model. As a
result, we do not make use of underlying concepts such as the CArtAgO agent
body in this work.

Modelling resources explicitly as artifacts allows for clearly-defined semantics
that includes a description of how each HTTP verb will affect the state of the
artifact modelling the associated resource. It also specifies the interface between
the agent and the resource, which is defined in terms of the operation, observable
property, and signal concepts of CArtAgO. This paper describes two approaches
to implementing virtual resources as artifacts: a passive resource management

3 https://netty.io/.

https://netty.io/

8 E. O’Neill et al.

model (Sect. 4.2), and an active resource management model (Sect. 4.3). How-
ever, before discussing these approaches, Sect. 4.1 describes how artifacts are
used to implement virtual resources.

Two additional artifacts are created when a MAMS microservice is started.
The restclient artifact implements a REST client that can be used to perform
REST API calls. For example, the postRequest operation takes a URI and
string representation of a JSON body as input and generates a response code
and string content. Similar operations exist for GET, PUT and DELETE. The
comms artifact provides support for sending FIPA-ACL style messages to other
MAMS agents. More information on this is provided in Sect. 4.4.

4.1 Implementing Virtual Resources as Artifacts

Figure 4 illustrates how MAMS exposes artifact-based virtual resources on the
web and the relationship between an agent and the associated set of artifacts
that implement those resources. Each artifact created by the agent is linked to
another artifact, creating a back channel through which incoming HTTP requests
are routed to the relevant artifact. The back channel consists of a set of handlers
that implement the routing behaviour. Collectively, the set of handlers form a
tree structure rooted at the base artifact. Each handler is associated with a
single artifact and each path from the root to a handler represents the URI of a
virtual resource of the agent.

Fig. 4. Use of CArtAgO artifacts for linking RESTful resources to agents

Listing 1 contains some pseudocode for creating the body of an agent. As
can be seen, the agent starts by retrieving a reference to the webserver artifact.
Once it has this, a base artifact is created. This artifact is given a name of the
form base-<aid> (where “<aid>” is the agent’s unique identifier) and is then
linked to the webserver artifact. The agent focuses on the newly created artifact
so that it will receive updates on observable properties and signals. Finally, a

Delivering Multi-agent MicroServices Using CArtAgO 9

createRoute() operation is executed on the newly created base which creates
the associated handler and links it to the webserver artifact’s handler.

1 lookupArtifact("webserver", id)

2 makeArtifact("base-<aid>", "mams.BaseArtifact",[<aid>], id2)

3 linkArtifacts(id2, "out-1", id)

4 focus(id2)

5 createRoute()[id2]

Listing 1: Pseudo Code for Creating the body of a MAMS Agent

To support the model described in Table 1, three additional types of artifact
are required: item, list and listitem. However, the exact form that each of
these artifacts takes depends on whether a passive or active management model
is being used.

Section 4 defined the representation of an item resource as the set of observ-
able properties associated with it. Receipt of a request for a representation of
that resource involves transforming the observable properties into that relevant
representation format. For the model described in Sect. 3.2, we use a Java object
and an intermediary format that is transformed to/from JSON using the Jack-
son API4. For GET requests, the links field is appended to the resulting JSON
object based on the linkages that exist between artifacts (those that are used
to form the backchannel). For POST, PUT and PATCH requests, the JSON is
transformed into a Java object whose fields correspond to the observable prop-
erties of the artifact and whose values are used to update those propertied. To
facilitate this, each item or list artifact is associated (at creation time) with
a Java class that defines what type of object is to be used for the intermedi-
ary format. On creation, either default values are used to initialise observable
properties or an instance of the class is passed to provide the initial values.

4.2 Passive Resource Management

In the passive model, agents are not responsible for enforcing the changes associ-
ated with any HTTP requests received. They simply act in response to resource
changes. How the resource is updated depends on an associated set of semantics
which is loosely described in Table 1.

As the artifact receives each request, depending on the HTTP verb used,
the agent receives a CArtAgO signal indicating the nature of the update that
was applied. This allows the agent to act in response to expected changes in the
resources, but does not affect the speed by which the response is returned to the
system making the request. Additionally, the agent is also able to make changes
to the state of the resources through a suite of internal operations. The passive
model is illustrated in Fig. 5.

4 https://github.com/FasterXML/jackson.

https://github.com/FasterXML/jackson

10 E. O’Neill et al.

Fig. 5. Schematic of a passively managed resource

This idea allows rapid interaction between the resource and the entity making
the request, while maintaining that the agent is still informed about the state of
each resource. A key factor of this method is the fact that although the agent may
have control over the resource, the resource is open to the world as an endpoint.
This permits any service (or agent) to make a request and receive a timely response
from this entity, something that may not be possible when the mentalistic aspect
of deliberation that is associated with agents is introduced. In terms of usage, this
type of resource model seems suited either to closed systems where trust is not an
issue and all resource changes follow expected patterns of behaviour, or to open
systems where the manipulation of resources is a desirable aspect.

4.3 Active Resource Management

For active management, each artifact also has a set of HTTP verbs that it can
handle based on Table 1. In contrast, however, the agent is now placed in control
of the response given by any artifacts under its stewardship. This is illustrated
in Fig. 6.

Once a valid HTTP request is made of an artifact, a CArtAgO signal is
generated based on the type of HTTP verb passed to the agent. For GET and
DELETE requests, the request body is ignored. Conversely, the body is included
for POST, PUT and PATCH requests. This event is passed to the agent which
then deliberates to decide on the correct response.

If deemed acceptable, the agent executes the “accept” operation on the arti-
fact. The request is then be removed from the event queue and processed. A
response detailing that the request made was handled correctly would be issued.
In the case where the request was rejected by the agent, the “refuse” operation
would be invoked, issuing a response that the request was denied.

Delivering Multi-agent MicroServices Using CArtAgO 11

Fig. 6. Schematic of an actively managed resource

With regard to a use case, this scenario can be utilised when dealing with
a resource that is highly constrained and only wants to accept requests of a
given standard/type. This then lends itself to Quality of Service (QoS) based
systems, as it allows the system to guarantee certain criteria with regard to the
manipulation of resources.

4.4 FIPA-ACL Based Interaction

ACL-based communication between MAMS services is supported through the
creation of a custom inbox virtual resource. This resource is somewhat similar
to a standard list resource, with the exception that it only accepts POST
requests. This resource is designed to be used in tandem with the comms artifact,
which includes an operation for sending messages to MAMS agents via a POST
request. The content of the message is submitted in the form of a JSON string.
It is left to the developer to decide how to generate this content.

In its current form, the FIPA Message class that models messages only
includes the: sender, receiver, performative, language and content fields. The
content itself is converted into a JSON string that is transmitted as the body of
the POST. A signal is generated by the inbox resource for each message received.
The content of this signal the performative, the sender URI, and a string rep-
resentation of transmitted content. Again, conversion of this JSON into a more
useful form is left to the developer. The current prototype is currently released
as part of the ASTRA-MAMS integration, which is described in more detail next
in Sect. 5 and comes with built-in support for converting functional terms into
JSON and vice versa. It should be noted that the artifacts described here do
not map onto the model defined in Sect. 3.2 but are purpose-built to facilitate
FIPA-based interaction.

12 E. O’Neill et al.

5 Integration with ASTRA

To further explore our MAMS model, we have integrated our CArtAgO based
solution with the ASTRA agent programming language [6,8]. ASTRA is an imple-
mentation of AgentSpeak(ER)[27] a recent evolution of AgentSpeaK(L)[26].

All of the source code for MAMS and for the ASTRA integration with MAMS
is open source and available to download from Gitlab5. This includes:

– mams-cartago-core package: webserver, restclient, and base artifacts;
support for handlers and a basic web server.

– mams-cartago-hal package: implementation of item, list and itemlist
artifacts together with support for Java classes as schema.

– mams-astra-hal package: integration of ASTRA and also the MAMS +HAL
model and the prototype FIPA-ACL based communication model.

– examples: a set of sample programs (implemented as Maven projects).

1 agent MAMSAgent {

2 rule +!setup() {

3 cartago.startService();cartago.link();

4 cartago.makeArtifact("webserver", "mams.artifacts.WebServerArtifact",

5 cartago.params([9000]), cartago.ArtifactId id);

6 +artifact("webserver", "webserver", id);

7 cartago.makeArtifact("restclient", "mams.artifacts.RESTArtifact",

8 cartago.params([]), cartago.ArtifactId id2);

9 +artifact("restclient", "restclient", id2);

10 cartago.makeArtifact("comms", "fipa.artifact.Comms",

11 cartago.params([]), cartago.ArtifactId id3);

12 +artifact("comms", "comms", id3);

13 }

14 inference have(string name) :-

15 artifact(name, string qname, ArtifactId id);

16 rule +!init() {

17 cartago.link();!have("webserver");!have("restclient");

18 }

19 rule +!have(string name) : ~have(name) {

20 cartago.lookupArtifact(name, cartago.ArtifactId id);

21 +artifact(name, name, id);

22 }

23 rule +!created("base") : ~created("base") &

24 artifact("webserver", string qualifiedName, ArtifactId id2) {

25 string baseName = S.name()+"-base";

26 cartago.makeArtifact(baseName, "mams.artifacts.BaseArtifact",

27 cartago.params([S.name()]), cartago.ArtifactId id);

28 cartago.linkArtifacts(id, "out-1", id2);

29 cartago.focus(id);cartago.operation(id, createRoute());

30 +artifact("base", baseName, id);

31 }

32 }

Listing 2: Part of the mams.MAMSAgent program

5 https://gitlab.com/mams-ucd.

https://gitlab.com/mams-ucd

Delivering Multi-agent MicroServices Using CArtAgO 13

The main ASTRA code for creating a MAMS Agent is implemented in the
MAMSAgent class. Partial code for this class is shown in Listing 2. The +!setup()
rule on lines 2–13 is invoked only once by the first agent to be created. This plan
configures the MAMS service, creating all the default artifacts. In contrast, the
+!init() rule on lines 16–18 are to be used by all other MAMS agents. The
associated goal is used to link the agent to the already created artifacts. Once
the !init() goal has been achieved, the agent is able to create the base artifact
using the rule on lines 23–31.

1 agent MAMSAgent {

2 module mams.HALConverter hal;

3

4 rule $cartago.signal(string sa,

5 message(string perf, string sender, string content)) {

6 !signal_message(perf, sender, hal.toRawFunct("content", content));

7 }

8 rule +!signal_message(string performative,

9 string sender, content(funct content)) {

10 !message(performative, sender, content);

11 }

12 rule +!transmit(string perf, string receiver, funct content)

13 : artifact("comms", string qname, ArtifactId id) {

14 !itemProperty("base", "uri", funct agentUri);

15 cartago.operation(id, transmit(perf, F.valueAsString(agentUri, 0),

16 receiver, hal.toJsonString(content(content))));

17 }

18 }

Listing 3: FIPA ACL Code from mams.MAMSAgent class

The snippet of code in Listing 3 relates to the support for FIPA ACL based
communication. The module on line 2 includes support for for converting func-
tional term into JSON and vice-versa. The +!transmit() rule on lines 12–17
implement support for sending messages. This is matched by the rule on lines
4–7 which intercepts the raw CArtAgO signal relating to an incoming message.
The rule invokes a chain of subgoals that results in the conversion of the raw con-
tent of the message back into a form that corresponds more closely to a normal
ASTRA message event. The !message(...) goal generated on line 10 should be
could by the implementing agent to handle receipt of specific FIPA messages.

6 Illustration

To demonstrate our approach, a version of the Vickrey Auction example pre-
sented in [34] has been built using the framework described in Sect. 5. The resul-
tant code base is quite different because the original approach mixed code for
handling HTTP requests and responses with code for implementing the auc-
tions. In contrast, the code in our approach is more focused on implementing
the auctions.

14 E. O’Neill et al.

The implemented system exposes a set of virtual resources that are linked
to specific agents within the implementation. As shown in Fig. 7, the Manager
agent is associated with the /clients and the /items resources and the Bidder
agents, which are created by the Manager, are each responsible for their own
/wanted resource.

Fig. 7. Vickrey auction implementation (taken from [34])

1 agent PassiveMAMSAgent extends MAMSAgent {

2 rule +!listResource(string name, string cls)

3 : ~have(name) & artifact("base", string baseName, cartago.ArtifactId id2) {

4 string resName = baseName+"-"+name;

5 cartago.makeArtifact(resName, "mams.passive.PassiveListArtifact",

6 cartago.params([name, cls]), cartago.ArtifactId id);

7 cartago.linkArtifacts(id, "out-1", id2);

8 cartago.focus(id);

9 cartago.operation(id, createRoute());

10 +artifact(name, resName, id);

11 +listResource(name, cls);

12 }

13 }

14 agent Manager extends PassiveMAMSAgent {

15 rule +!init() {

16 MAMSAgent::!init();!created("base");

17 !listResource("clients", "auction.Client");

18 ...

19 }

20 rule $cartago.signal(string A,listItemCreated(string N,string T))

21 : bidder_count(int cnt) {

22 -+bidder_count(cnt + 1);

23 !monitorPassiveItem(N, T, A+"-"+N);

24 string BN = "bidder_"+cnt+"_"+N;

25 system.createAgent(BN, "Bidder"); +for_client(BN, A+"-"+N);

26 }

27 }

Listing 4: Part of the mams.PassiveMAMSAgent program

Delivering Multi-agent MicroServices Using CArtAgO 15

The mams.PassiveMAMSAgent agent program provides plans to support the
creation of passively-managed artifacts. Listing 4 shows a plan that can be used
to create a list resource. Below this, a second piece of code from the Manager
agent program illustrates how to use this to create a list of clients. It also demon-
strates how CArtAgO signals are used to alert the agent to the creation of new
items. A templating mechanism is provided that uses Java classes (here the
auction.Client class) as a schema for items.

7 Discussion

One of the main benefits of the approach presented in this paper is that it
standardises how to build MAMS-based applications. This has led to a num-
ber of improvements compared against the initial implementation of MAMS as
described in [34]:

– Explicit Modelling of Resources: The original MAMS model maintained an
implicit model of resources whose state was represented within the agents’
beliefs. The approach advocated in this paper models resources explicitly. A
key benefit of this has been the ability to define explicit resource types (see
Table 1), with associated semantics for valid HTTP requests, that are encoded
within the the resource model.

– Support for Extensibility: The implementation of resources is designed to be
extensible and permit the addition of other resource types as is necessary.
This is essential as it permits the development of bespoke resource models
and types. We view the creation of such resources as essential to support the
implementation of concepts such as decentralised trust management [2] and
social reputation [13].

– Use of a Linked Data Model: Linking of resources provides a way for external
systems to discover and navigate complex APIs. Support for this has been
realised through the use of the Hypertext Application Language (HAL) and
through the adoption of agreed standards for representing the specific types
of resource supported in this paper.

– A Cleaner Approach to Resource Management: The original MAMS model
supported only one form of resource management, which was intimately linked
to the agent program. The developer of the program was responsible for
handling all HTTP requests. The model presented in this paper offers a more
refined approach, where valid HTTP requests (those that are permitted for
the given resource type) are vetted by the associated agent (invalid requests
are automatically rejected). In this paper, we term this agent-in-the-loop
approach active resource management (see Sect. 4.3).

– A Passive Resource Management Model: In addition to the active model, this
paper introduces a passive resource management model that separates agents
from resource updates. Instead, agents are passive observers that monitor
their associated resources for changes or who can modify the state of their
resources directly (through internal operations that are equivalent to those
supported by HTTP Requests).

16 E. O’Neill et al.

– Language Independence: Finally, a last key advantage of the approach
described in this paper is that it is agnostic to the agent programming lan-
guage used. This has been achieve by focusing on an artifact-based model of
virtual resources that is language independent.

For this project, we chose HAL as the hypermedia resource representation
as it has many beneficial qualities that were suitable for a project such as ours
which is working towards the idea of Hypermedia MAS [4]. HAL enables ease of
navigation around a set of resources by maintaining a set of links that describe
relationships between individual resources. This lends itself to the idea of an
agent exploring, discovering and reasoning about a given set of resources. HAL
provided us with a very simplistic way of displaying how an agent’s ‘body’ is
made up of the virtual resources that it manages. HAL was very useful in terms
of allowing us to showcase our theoretical model in a very simple view, how-
ever, it is not without its limitations. HAL does not support resource metadata
for describing the semantics of resources and can only specify the media type
expected when de-referencing a linked resource. Additionally, HAL does not
support hypermedia controls other than simple links and so cannot describe the
service-specific semantics of operations on resources.

After reviewing hypermedia APIs, [20] provides a great breakdown of the
state of the art in this field. It describes two main approaches to implementing
hypermedia APIs: a bottom-up approach as well as a top-down approach. Bot-
tom up approaches include HAL as well as the Constrained RESTful Application
Language (CoRAL). As this paper is written from a Web of Things (WoT) per-
spective, both HAL and CoRAL are described as being able to represent both
Things in a WoT context but also to represent complex web resources, which ties
in with our research. Interestingly, CoRAL provides a solution to some of the
shortcomings of HAL in that it supports the representation of simple resource
metadata, as well as providing hypermedia controls by describing operations
that can be performed on resources via forms.

The top-down approaches include the W3C Web of Things Specification that
describes the Thing Description (TD) and a Web Thing Description provided
by Mozilla. The top-down approaches are quite restrictive, insofar as that they
have to represent a ‘thing’ as a cohesive unit of data and functionality. A key
difference between these two approaches from the perspective of this research is
that in the examples of the top-down approaches, any navigation away from that
cohesive unit results in a JSON object that represents data, not another resource.
Based on the working examples provided, there seemed to be no clear navigation
from generated data back to a description of the resource. In contrast, when
navigating the hyperlinks provided in both HAL and CoRAL, one is navigating
between resources, and each resource has its own set of relevant hyperlinks. It is
the expressiveness of the bottom-up approaches that is key to allowing services
and agents to navigate a resource. The top-down approaches, however, support
semantic descriptions of resources using JSON-LD, which provides a level of
context. Additionally, based on the latest draft specification of CoRAL [14], it
also allows for the expressions of simple RDF statements. However, it currently

Delivering Multi-agent MicroServices Using CArtAgO 17

does not support more extensive representations such as JSON-LD. CoRAL is
still a working draft but is a forerunner for a resource representation that can
represent complex web resources related to this research, as it contains many
key attributes.

There are several positive elements to each of these approaches to imple-
menting hypermedia APIs. However, from the perspective of this research, it
is our view that a combination of these positive elements would be best suited
as a mechanism for representing resources. Another popular resource that we
believe should be considered when discussing the correct path to choose with
regard to resource representation is the likes of the OpenAPI6 specification and
RAML7. These tools are used to build a representation of an API that is both
human and machine-readable, in both JSON and XML. These tools have been
used in industrial contexts in order to provide in-depth descriptions of how to
interact with services with minimal implementation on the consumer side. These
services provide very clear and detailed information on how to interact with a
given resource, including the correct HTTP verb to use. This is very useful from
a RESTful perspective as it allows each resource to define all the HTTP verbs
each resource supports. It is this level of detail that we see being included in
hypermedia resource representation in order to promote autonomous interaction
among services and agents. Understanding which approach is most suitable, or
combination there of, is a key challenge to the evolution of MAMS.

Finally, [15] presents recent work on CArtAgO that exposes artifacts through
a Web API. This contrasts with the work presented in this paper as it focuses
first on simply exposing artifacts and secondly does so as a web API rather
than as REST resources. As discussed in Sect. 4, the MAMS approach is quite
different to the CArtAgO approach. As a result of using CArtAgO, steps such
as the exposing of an agent’s virtual resource became a much more complicated
process. This is due to the fact that artifacts in the CArtAgO framework are
inherently shared among all the entities in the environment, and in order to
portray the fact that an artifact ‘belonged’ to a given agent, each artifact had
to be linked to the base artifact of each agent. Although using CArtAgO was a
limitation from this perspective, using CArtAgO as an environment framework
allowed us to showcase that MAMS has cross-compatibility with other agent
programming languages and is not tightly-coupled with any particular language.

8 Conclusions

This paper presents a novel approach to the implementation of Multi-Agent
MicroServices (MAMS), a model that sits at the intersection between Multi-
Agent Systems and Microservices. The model embraces current industry best
practice and technology stacks and proposes introduces the idea of virtual
resources as a mechanism for facilitating the seamless integration of agents into
microservices-based architectures. Through this, we gain access to a wealth of
6 https://swagger.io/specification/.
7 https://raml.org/.

https://swagger.io/specification/
https://raml.org/

18 E. O’Neill et al.

technologies and experience in how to deploy systems at scale while at the same
time situating those agents in a larger web-enabled ecosystem.

Future work will seek to address a number of limitations of the model
described here. This includes some improvements to the underlying architec-
ture, but more significantly, the decoupling of resources and representations to
allow multiple representations to be returned for a given resource. A main goal
of this research in the near future is to work towards creating a hypermedia
resource representation that can provide semantically enriched navigational cues
that describe possible actions on given resources with enough detail in order to
allow for interaction with minimal implementation on the side of the consumer,
a combination of the solutions discussed in Sect. 7, from our perspective, asso-
ciated with the current working standards. Ultimately, the aim is to support all
the linked data formats described in [20] as well as any others that evolve over
time.

A specific target is the implementation of support for JSON-LD [31] repre-
sentations which we intend to use in CONSUS8: a research project that seeks,
in part, to develop multi-agent decision-support tools for smart agriculture.

Acknowledgements. This research is funded under the SFI Strategic Partnerships
Programme (16/ SPP/3296) and is co-funded by Origin Enterprises Plc.

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

2. Aref, A.M., Tran, T.T.: A decentralized trustworthiness estimation model for open,
multiagent systems (DTMAS). J. Trust Manag. 2(1), 3 (2015). https://doi.org/10.
1186/s40493-015-0014-4

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

4. El Fallah-Seghrouchni, A., Ricci, A., Son, T.C. (eds.): EMAS 2017. LNCS (LNAI),
vol. 10738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91899-0

5. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1659–1663. International Foundation for
Autonomous Agents and Multiagent Systems (2019)

6. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with AgentS-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8 22

8 http://www.consus.ie.

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1186/s40493-015-0014-4
https://doi.org/10.1186/s40493-015-0014-4
https://doi.org/10.1007/978-3-319-91899-0
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
http://www.consus.ie

Delivering Multi-agent MicroServices Using CArtAgO 19

7. Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: the roles of XML and RDF. IEEE
Internet Comput. 4(5), 63–73 (2000)

8. Dhaon, A., Collier, R.W.: Multiple inheritance in agent speak (l)-style program-
ming languages. In: Proceedings of the 4th International Workshop on Program-
ming based on Actors Agents and Decentralized Control, pp. 109–120 (2014)

9. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

10. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation (2000). http://www.ics.uci.edu/
∼fielding/pubs/dissertation/top.htm

11. Framework, Z.: Hypertext application language website (2019). https://
weierophinney.github.io/hal/hal/. Accessed 29 Oct 2019

12. Griffiths, N., Chao, K.-M. (eds.): Agent-Based Service-Oriented Computing. AIKP.
Springer, London (2010). https://doi.org/10.1007/978-1-84996-041-0

13. Hahn, C., Fley, B., Florian, M., Spresny, D., Fischer, K.: Social reputation: A
mechanism for flexible self-regulation of multiagent systems. J. Artif. Soc. Soc.
Simul. 10(1), 1–8 (2007)

14. Hartke, K.: The constrained restful application language (coral) (2020). https://
datatracker.ietf.org/doc/draft-ietf-core-coral/. Accessed 08 Apr 2020

15. International Foundation for Autonomous Agents and Multiagent Systems: Engi-
neering Scalable Distributed Environments and Organizations for MAS (2019)

16. Kelly, M.: Json hypertext applicaion language specification (2016). https://tools.
ietf.org/html/draft-kelly-json-hal-08. Accessed 29 Oct 2019

17. Kravari, K., Bassiliades, N.: Storm: a social agent-based trust model for the internet
of things adopting microservice architecture. Simul. Model. Pract. Theory 94, 286–
302 (2019)

18. Krivic, P., Skocir, P., Kusek, M., Jezic, G.: Microservices as agents in IoT systems.
In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2017. SIST, vol. 74, pp. 22–31. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-59394-4 3

19. Lillis, D.: Internalising Interaction Protocols as First-Class Programming Elements
in Multi Agent Systems. Ph.D. thesis, University College Dublin (2012)

20. Martins, J.A., Mazayev, A., Correia, N.: Hypermedia APIs for the web of things.
IEEE Access 5, 20058–20067 (2017)

21. Mascardi, V., Weyns, D.: Engineering multi-agent systems Anno 2025. In: Weyns,
D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 3–16.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7 1

22. O’Brien, P.D., Nicol, R.C.: FIPA-towards a standard for software agents. BT Tech-
nol. J. 16(3), 51–59 (1998). https://doi.org/10.1023/A:1009621729979

23. O’Connor, R.V., Elger, P., Clarke, P.M.: Continuous software engineering-a
microservices architecture perspective. J. Softw. Evol. Process 29(11), e1866 (2017)

24. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources
for multi-agent microservices using the cartago framework. In: 2020Proceedings of
the 18th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, Auckland, NZ. International Foundation for Autonomous Agents and
MultiAgent Systems (IFAAMAS) (2020)

https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://weierophinney.github.io/hal/hal/
https://weierophinney.github.io/hal/hal/
https://doi.org/10.1007/978-1-84996-041-0
https://datatracker.ietf.org/doc/draft-ietf-core-coral/
https://datatracker.ietf.org/doc/draft-ietf-core-coral/
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-030-25693-7_1
https://doi.org/10.1023/A:1009621729979

20 E. O’Neill et al.

25. De la Prieta, F., Rodŕıguez-González, S., Chamoso, P., Corchado, J.M., Bajo, J.:
Survey of agent-based cloud computing applications. Future Gener. Comput. Syst.
100, 223–236 (2019)

26. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

27. Ricci, A., Bordini, R.H., Hubner, J.F., Collier, R.: Agentspeak (er): An exten-
sion of agentspeak (l) improving encapsulation and reasoning about goals. In: The
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018). International Foundation for Autonomous Agents and MultiA-
gent Systems (IFAAMAS) (2018)

28. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71103-2 4

29. Roy, C.: Restful API design: Microserices. https://medium.com/@cknextmove/
restful-api-design-microservices-f983e3ea3563. Accessed 25 Oct 2019

30. Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., Fortino, G.:
Agent-based internet of things: State-of-the-art and research challenges. Future
Gener. Comput. Syst 102, 1038–1053 (2020)

31. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: Json-ld 1.0.
W3C Recomm. 16, 41 (2014)

32. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
33. Villamizar, M., et al.: Evaluating the monolithic and the microservice architec-

ture pattern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp. 583–590. IEEE (2015)

34. Collier, R.W., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-agent microservices.
In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 655–662.
ACM (2019)

35. Xu, C., Zhu, H., Bayley, I., Lightfoot, D., Green, M., Marshall, P.: Caople: a pro-
gramming language for microservices SaaS. In: 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), pp. 34–43. IEEE (2016)

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-3-540-71103-2_4
https://medium.com/@cknextmove/restful-api-design-microservices-f983e3ea3563
https://medium.com/@cknextmove/restful-api-design-microservices-f983e3ea3563

Aplib: Tactical Agents for Testing Computer
Games

I. S. W. B. Prasetya1(B) , Mehdi Dastani1 , Rui Prada2 , Tanja E. J. Vos3,4 ,
Frank Dignum5 , and Fitsum Kifetew6

1 Utrecht University, Utrecht, The Netherlands
s.w.b.prasetya@uu.nl

2 Inst. de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento,
Lisbon, Portugal

3 Universidad Politecnica de Valencia, Valencia, Spain
4 Open University, Heerlen, The Netherlands

5 Umeå University, Umeå, Sweden
6 Fondazione Bruno Kessler, Trento, Italy

Abstract. Modern interactive software, such as computer games, employ com-
plex user interfaces. Although these user interfaces make the games attractive and
powerful, unfortunately they also make them extremely difficult to test. Not only
do we have to deal with their functional complexity, but also the fine grained inter-
activity of their user interface blows up their interaction space, so that traditional
automated testing techniques have trouble handling it. An agent-based testing
approach offers an alternative solution: agents’ goal driven planning, adaptivity,
and reasoning ability can provide an extra edge towards effective navigation in
complex interaction space. This paper presents aplib, a Java library for program-
ming intelligent test agents, featuring novel tactical programming as an abstract
way to exert control over agents’ underlying reasoning-based behavior. This type
of control is suitable for programming testing tasks. Aplib is implemented in such
a way to provide the fluency of a Domain Specific Language (DSL). Its embedded
DSL approach also means that aplib programmers will get al.l the advantages that
Java programmers get: rich language features and a whole array of development
tools.

Keywords: Automated game testing · AI for automated testing · Intelligent
agents for testing · Agents tactical programming · Intelligent agent
programming

1 Introduction

With the advances of technologies, computer games have become increasingly more
interactive and complex. Modern computer games improve realism and user experience

This work is supported by European Union’s Horizon 2020 research and innovation programme
under grant agreement No 856716 Project iv4XR (Intelligent Verification/Validation for Extended
Reality Based Systems).

c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 21–41, 2020.
https://doi.org/10.1007/978-3-030-66534-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_2&domain=pdf
http://orcid.org/0000-0002-3421-4635
http://orcid.org/0000-0002-4641-4087
http://orcid.org/0000-0002-5370-1893
http://orcid.org/0000-0002-6003-9113
http://orcid.org/0000-0002-5103-8127
http://orcid.org/0000-0003-1860-8666
https://doi.org/10.1007/978-3-030-66534-0_2

22 I. S. W. B. Prasetya et al.

Fig. 1. A 3D game called Lab Recruits where aplib were deployed aid testing.

by allowing users to have fine grained control/interactions. A downside of this develop-
ment is that it becomes increasingly difficult to test computer games. For example, to
test that a computer game would maintain the correctness invariant of a certain family
of states, the tester will first need to operate the game to bring it to at least one of such
states. This often requires a long series of fine grained interactions with the game. Only
then the tester can check if the said invariant does hold in that state. Such a test is hard,
error-prone, and fragile to automate. Consequently, many game developers still resort
to expensive manual play testing. Considering that the game industry is worth over 100
billions USD, speeding up testing by effectively automating manual testing tasks is a
need that cannot be ignored.

As indicated above, a common manual expensive test related task is to bring the
game under test to a certain state of interest (goal state), either because we want to
check if the state is correct, or because we need to do a specific action on this state
that is required for the given test scenario. In principle this task is a search problem,
for which solutions exist. However, in the context of computer games the problem is
challenging. A game often employs randomness and it often consists of many entities
that interact with each other and with the user. Some interactions might be coopera-
tive while others can be adversarial. These and other factors lead to a vast and fine
grained interaction space which is hard to deal with for the existing automated test-
ing techniques such as search based [20,29], model based [15,43], or symbolic [4,42].
The key to handle such a space, we believe, is to have an approach that enables the
programming of domain reasoning to express which parts of the interaction space of a
particular game are relevant to consider, and likewise what kinds of plans (for reaching
given goal states) are needed. This allows the underlying test engine to focus its search
on the parts of the interaction and plan spaces that semantically matter. We propose to
base such a solution on a multi-agent approach since autonomous distributed planning
and reasoning based interactions with environments are already first class features.

Contribution. This paper presents aplib1, a Java library for programming intelligent
agents suitable for carrying out complex testing tasks. They can be used in conjunction

1 “Agent Programming Library”, https://iv4xr-project.github.io/aplib/.

https://iv4xr-project.github.io/aplib/

Aplib: Tactical Agents for Testing Computer Games 23

with Java testing frameworks such as JUnit, e.g. to collect and manage test verdicts.
Figure 1 shows a 3D game we use as a pilot where aplib was used to automate testing
(we will also use it later as a running example). Aplib features BDI (Belief-Desire-
Intention [23]) agents and adds a novel layer of tactical programming that provides an
abstract way to exert control on agents behavior. Declarative reasoning rules express
when actions are allowed to execute. Although in theory just using reasoning is enough
to find a solution (a plan that would solve the given goal state) if given infinite time, such
an approach is not likely to be performant enough. For testing, this matters as no devel-
opers would want to wait for hours for their test to complete. The tactical layer allows
developers to program an imperative control structure over the underlying reasoning-
based behavior, allowing them to have greater control over the search process. So-called
tactics can be defined to enable agents to strategically choose and prioritize their short
term actions and plans, whereas longer term strategies are expressed as so-called goal
structures, specifying how a goal can be realized by chosing, prioritizing, sequencing,
or repeating a set of subgoals.

While the concept of a hierarchical goal is not new, e.g. it can be solved by Hierar-
chical Task Networks (HTN) and Behavior Trees (BT), or can be encoded directly as
BDI reasoning rules [9], aplib allows it to be expressed in terms of imperative program-
ming idioms such as SEQ and REPEAT, which are more intuitive for programming
control. The underlying reasoning based behavior remains declarative. Our tactical pro-
gramming approach is more similar to tactical programming in interactive theorem
proving, used by proof engineers to script proof search [12,22,40]. The use of this
style in BDI agents and for solving testing problems is as far as we know new.

As opposed to dedicated agent programming languages [37,41] aplib offers a
Domain Specific Language (DSL) embedded in Java. This means that aplib program-
mers will program in Java, but they will get a set of APIs that give the fluent appearance
of a DSL. In principle, having a native programming language for writing tests is a
huge benefit, but only if the language is rich enough and has enough tool and commu-
nity support. Otherwise it is a risk that most companies will be unwilling to take. On the
other hand, using an embedded DSL means that the programmers have direct access to
all the benefit the host language, in this case Java: its expressiveness (OO, λ-expression
etc.), static typing, rich libraries, and wealth of development tools.

Paper Structure. Section 2 first introduces the concept of testing tasks; these are
the tasks that we want to automate. Section 3 explains the basic concepts of aplib agents
and shows examples of how to create an agent with aplib and how to write some simple
actions. Section 4 introduces the concept of goal structures, to express complex test
scenarios, and our basic constructs for tactical programming. The section also explains
aplib’s ‘deliberation cycle’, which necessarily deviates from BDI’s standard due to its
tactical programming. Large scale case studies are still future work. However, Sect. 5
will briefly discuss our experience so far. Section 6 discusses related work, and finally
Sect. 7 concludes and mentions some future work.

24 I. S. W. B. Prasetya et al.

2 Testing Task

This section will introduce what we mean by a ‘testing task’, and what ‘automating’ it
means. The typical testing task that we will consider has the form:

φ
︸︷︷︸

situation

⇒ ψ
︸︷︷︸

invariant

(1)

where φ is a state predicate characterizing a situation and ψ is a state predicate that
is expected to hold on all instances of the situation φ (that is, on all states satisfying
φ). We call ψ an invariant, which is the term used by Ernst et al. [16] to refer to a
predicate that is expected to hold at a certain control location in a program, e.g. when a
program enters its loop, or when it exits; φ would then be a predicate that characterizes
the control location of interest. This concept generalizes the well known pre- and post-
conditions. E.g. if φ captures the exit of a method m, the invariant ψ then describes m’s
post-condition.

Since game testing typically has to be done in the so-called blackbox setup [3] where
we abstract away from the source code (because it would otherwise be too complex),
and hence also away from concepts such as programs’ control location, we further gen-
eralize Ernst et al. by allowing φ to describe a family of game states that are semantically
meaningful for human users; we call this a situation. For example φ could characterize
the situation where a certain interactable game element, e.g. a switch, is visible, and ψ
could then express the expectation that the switch should be in its ‘off’ state.

Since φ can potentially describe a very large, even infinite, set, the specification
φ ⇒ ψ is tested by sampling a finite number of states, and then checking whether the
invariant ψ holds in these states. Obviously such tests are only relevant when applied
on sample states that satisfy the situation φ. Getting the game into a relevant state for
testing φ ⇒ ψ is a non-trivial task for a computer. Since a game typically starts in
specific initial states, it first needs to be played to move it to any specific other state.
Consequently, when we want to automate the testing of φ ⇒ ψ, the hard part is typically
not in checking its invariant part, but in finding relevant states to test the implication.

Playing a game can be seen as the execution of a sequence of actions, e.g. moving
up or down, interacting with some in-game entity, etc. The set of available actions might
be different on different states. We will call a sequence of actions a plan. A solution is a
plan that, when executed, would drive the game under test to a state relevant for φ ⇒ ψ.
In manual testing, a human is employed to search for such a solution. There are tools
that can be used to record a script that can execute the plan and replay it whenever we
need to re-test the corresponding situation. A major challenge, however, with script-
based test automation is the manual effort required for maintaining the scripts when
they break [2]. If the game designers introduce even a small change in a the game
layout (e.g. an in-game door is moved to a different position), which happens very often
during the development, a recorded script would typically break. Moreover, games are
non-deterministic due to all sorts of random behavior (e.g. random moves by computer
controlled enemies, or randomness due to timing effect). This makes such automation
scripts for games even more fragile.

By ‘automated testing’ of φ ⇒ ψ we mean to replace the human effort by letting
an agent search for solutions. This is a search problem: the space of possible plans is

Aplib: Tactical Agents for Testing Computer Games 25

searched to find at least one that would solve φ. We can define the robustness of an
automated test as how well it can cope with the non-determinism of the system under
test. Since agents are typically reactive to the environment, agent-based test automation
can thus be expected to be robust; this will be discussed later in Sect. 4.3.

Testing tasks can be generalized to test ‘scenarios’:

φ0 ; ... ; φk−1
︸ ︷︷ ︸

scenario

⇒ ψ
︸︷︷︸

invariant

(2)

Each φi is a state predicate describing a situation. The sequence φ0; ... ;φk−1 describes
a scenario where executions of the game under test passes through the states satisfy-
ing each φi in the same chronological order as the sequence. In the state where φk−1 is
satisfied, the invariant ψ is expected to hold. For example, if developers employ UML
Use Cases, these can be converted to the above form: each flow in a use case can be
translated to a scenario, and its post condition to ψ. Testing a scenario is not fundamen-
tally harder than testing a situation, since the next situation φi+1 in the scenario defines
the same kind of search problem as we had in situation testing where φi describes the
starting states for the search.

3 Aplib Agency

This section will introduce our agent programming framework aplib and show how to
use it to automate testing tasks.

Preliminary: Java functions. Since Java 8, functions can be conveniently formu-
lated using so-called λ-expressions. E.g. the Java expression:

x → x+1

constructs a nameless function that takes one parameter, x, and returns the value of x+1.
Unlike in a pure functional language like Haskell, Java functions can be either pure (has
no side effect) or impure/effectful. An effectful function of type C→D takes an object
u:C and returns some object v:D, and may also alter the state of u.

Importantly, a λ-expression can be passed as a parameter. Since as a function a λ-
expression defines behavior, passing it as a parameter to a method or object essentially
allows us to inject new behavior to the method/object. This allows us to extend the
behavior of an agent without having to introduce a subclass. While the latter is the
traditional OOway to extend behavior, it would clutter the code base if we plan to create
e.g. many variations of the same agent. Our use of λ-expressions to inject behavior is
essentially a generalization of the well-known Strategy Design Pattern [21].

26 I. S. W. B. Prasetya et al.

3.1 Agent, Belief, and Goal

Fig. 2. Typical deployment of aplib agents. Ai are agents, controlling the game under test through
an interface called Environment. A communication node allows connected agents to send mes-
sages to each other.

Figure 2 illustrates the typical way aplib agents are deployed. As common with software
agents, aplib agents are intended to be used in conjunction with an external environment
(in our case, this is the game under test) which is assumed to run independently. In
aplib, the term ‘Environment’ refers, however, to a Java interface between the agents
and the game. Aplib agents do not directly access nor control the game. Having the
Environment in between keeps aplib neutral with respect to the technology used by the
game under test. Developers do have to provide an implementation of this interface
for each game what they want to test with aplib. This indeed requires effort, but it is a
one-off investment, after which the developers would benefit from aplib’s automation
for the rest of the development process, as well as that of future versions of the game.
The minimum functionality that an Environment should provide is a function to let an
agent obtain relevant information about the current game state visible to it, and to send
a command to some in-game entity that it is allowed to control.

Multiple agents can be deployed if the game is multi-player. In such a setup, agents
may want to work together. A group of agents that wish to collaborate can register to a
‘communication node’ (see Fig. 2). This enables them to send messages to each other
(singlecast, broadcast, or role-based multicast).

BDI with Goal Structure.As typical in BDI (Belief-Desire-Intent) agency, an aplib
agent has a concept of belief, desire, and intent. An agent’s state reflects its belief. It
contains information on the current state of the game under test. Such information is a
‘belief’ because it may not be entirely factual. E.g. the game may only be willing to pass
current information of in-game entities in the close vicinity of the agent. So, the agent’s
information on far away entities might over time become obsolete. The agent can be
given a goal structure, defining its desire. Unlike flat goal-based structures used e.g. in
2APL [9] and GOAL [24], in this paper we employ a richly structured goal structure,
with different nodes expressing different ways a goal could be achieved through its
subgoals; more on this will be discussed Sect. 4. Abstractly, an aplib agent is a tuple:

A = (s,E,Π,β)

where s is an object representing A’s state and E is its environment.

Aplib: Tactical Agents for Testing Computer Games 27

Fig. 3. A setup where we have to test that a closet door (circled white) can be opened.

Π is a goal structure, e.g. it can be a set of goals that have to be achieved sequentially.
Each goal is a pair, let’s denote it with g���T ∗, where g is the goal itself and T is
a ‘tactic’ intended to achieve g. In BDI terms, T reflects intention. When the agent
decides to work on a goal g���T ∗, it will commit to it: it will apply T repeatedly over
multiple execution cycles until g is achieved, or the agent has used up its ‘budget’ for g.

The β in the tuple represents the agent’s computing budget. Budget is used to con-
trol how long the agent should persist on pursuing its current goal. Executing a tactic
consumes some budget. So, this is only possible if β>0. Consequently, a goal will auto-
matically fail when β reaches 0. Budget plays an important role when dealing with a
goal structure with multiple goals as the agent will have to decide how to divide the
budget over different goals. This will be discussed later in Sect. 4.

Example. Figure 3 shows a scene in a game called Lab Recruits2. Imagine that we
want to test that the door (white circled) works (it can be opened). Two buttons (red
circled) are present in the room. In a correct implementation, the door can be opened by
activating the button closest to the door. A player (yellow circled) can activate a button
by moving close to it and interacting with it. Suppose the door is identified by door1 and
its corresponding button button1. The testing task above can be specified as follows:

button1 is active
︸ ︷︷ ︸

situation

⇒ door1 is open
︸ ︷︷ ︸

invariant

(3)

Figure 4 shows how we create a test agent named Smith to perform the aforemen-
tioned testing task. First, lines 1–3 show the relevant part of the environment the agent
will use to interface with the Lab Recruits game; it shows the primitive commands
available to the agent. The method interact(i, j) will cause an in-game character with id
i (this would be the character controlled by the agent) to interact with another in-game
entity with id j (e.g. a button). The method also returns a new’Observation’, contain-
ing information on the new state of game-entities in the visible range of i. The method
moveToward(i, p,q) will cause the character i to move towards a position q, given that
p is i’s current position. Simply teleporting to q is not allowed in most games. Instead,
the method will only move i some small distance towards q (so, it may take multiple
update cycles for a to actually reach q). The method also returns a new observation.

2 https://github.com/iv4xr-project/labrecruits.

https://github.com/iv4xr-project/labrecruits

28 I. S. W. B. Prasetya et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Fig. 4. Creating an agent named Smith to test the Lab Recruits game. The code is in Java, since
Aplib is a DSL embedded in Java. The notation x→e in line 7 is Java lambda expression defining
a function, in this case a predicate defining the goal.

Line 5 creates an empty agent. Lines 11–13 configure it: line 11 attaches a fresh state
to the agent; then, assuming labrecruitsEnv is an instance of LabRecruitsEnv (defined in
lines 1–3), line 12 hooks this environment to the agent. Line 13 assigns a goal named Π
to the agent. The goal is defined in lines 6–10, stating that the desired situation the agent
should establish is one where the in-game button1 is active (line 7). Line 9 associates a
tactic named activateButton1Tac to this goal, which the agent will use to achieve the
latter. Line 10 lifts the defined goal to become a goal structure. More precisely, line 6
creates a’test-goal’. An ordinary goal, created using a constructor named goal rather
than testgoal, simply formulates desired states to be in. A test-goal additionally spec-
ifies an invariant (line 8). It formulates a testing task as discussed in Sect. 2. E.g. lines
7 and 8 formulate the testing task in (3). When the goal part is achieved, the invariant
will be tested on the current agent state. If this returns true, the test passes, otherwise
it fails. Its automation is provided by the tactic activateButton1Tac that should specify
some strategy to go towards the button and activate it.

3.2 Action (Elementary Tactic)

A tactic is made of ‘actions’, composed hierarchically to define a goal-achieving strat-
egy. Such composition will be discussed in Sect. 4.1. In the simple case though, a tactic
is made of just a single action. An action is an effectful and guarded function over the
agent’s state. The example below shows the syntax for defining an action.

var α = action(”id”) . do2(f)
︸ ︷︷ ︸

behavior

. on (q)
︸ ︷︷ ︸

guard

(4)

Aplib: Tactical Agents for Testing Computer Games 29

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 5. An action that would move an agent closer to button1. Notice that we again use λ-
expressions (lines 3 and 7) to conveniently introduce functions without having to create a class.

This statement3 defines an action with “id” as its id, and binds the action to the
Java variable α. The f is a function defining the behavior that will be invoked when the
action α is executed. This function is effectful and may change the agent state. The q, is
a pure function, called the ‘guard’ of the action, specifying when the action is eligible
for execution. Notice that the pair f ,q can be seen as expressing a reasoning rule q→ f .

The guard q can be a predicate or a query. More precisely, let Σ be the type of the
agent state and R the type of query results. We allow q to be a function of type Σ→R.
Whereas a predicate would inspect a state s:Σ and simply return a true or a false, a
query inspects s if it contains some object r satisfying a certain property. E.g. q might
be checking if s contains a closed door. If such a door can be found, q returns it, else it
returns null. This gives more information than just a simple true or false.

More precisely, the action α is executable on a state s if it is both control and guard-
enabled on s. For now we can ignore control-enabledness. The action is guard-enabled
on swhen q(s) returns some non-null r. The behavior function f has the type Σ→R→V
for some type V . When the action α is executed on s, it invokes f (s)(r)4. The result
v= f (s)(r), if it is not null, will then be checked if it achieves the agent’s current goal.

For example, Fig. 5 shows an action that can help agent Smith from Fig. 4. In the
game Lab Recruits, to interact with a button a player character needs to stand close to
the button. Although in Fig. 3 the character seems to stand close to button1, it is not
close enough. The tactic in Fig. 5, when invoked, will move the character closer to the
button (but will not interact with it, yet). It may take several invocations to move the

3 Note that action, do2, and on are not Java keywords. They are just methods. However, they
also implement the Fluent Interface design pattern [19] commonly used in embedded Domain
Specific Languages (DSLs) to ‘trick’ the syntax restriction of the host language to allow meth-
ods to be called in a sequence as if they form a sentence to improve the DSL’s fluency.

4 This scheme of using r essentially simulates unification a la pgrules in 2APL. Unification plays
an important role in 2APL. The action in (4) corresponds to pgrule q(r)? | f (r) The parameter
s (the agent’s state/belief) is kept implicit in pgrules. In 2APL this action is executed through
Prolog, where q is a Prolog query and r is obtained through unification with the fact base
representing the agent’s state.

30 I. S. W. B. Prasetya et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Fig. 6. An example action whose guard, line 18, is formulated declaratively in the Prolog style.

character close enough to the button. The action’s guard specifies that the action is only
enabled if button1 exists (line 9) in the agent’s belief. and furthermore its distance to
the agent is ≥0.01 unit (line 3). The behavior part of the action, line 4, will then move
the agent some small distance towards the button. Line 4 will incorporate the returned
new observation (of the game state) into the agent’s state.

Reasoning. Most of agent reasoning is carried out by actions’ guards, since they
are the ones that inspect the agent’s state to decide which actions are executable. The
reader may notice that the guard in the example in Fig. 5 is imperatively formulated,
which is to be expected since aplib’s host language, Java, is an imperative programming
language. However, aplib also has a Prolog backend (using tuprolog [13]) to facilitate a
declarative style of state query.

Figure 6 shows an example. To use Prolog-style queries, the agent’s state needs to
extend a class called StateWithProlog. It will then inherit an instance of a tuprolog
engine to which we can add facts and inference rules, and then pose queries over these.
Imagine a level in Lab Recruits where we have multiple doors and buttons. Some but-
tons may crank multiple doors when toggled. Suppose a test agent wants to get to a
state where two doors, door1 and door2, are open. The example shows the definition of
an action named “open doors 1and2′′ that will do this. Note that after opening one of
these doors, the agent should be careful when trying to open the second. It needs to find
a button that indeed opens the second door, but without closing the first one again. The
reasoning needed to handle this is formulated as a Prolog rule called openDoors defined
in lines 3–7. With the help of this rule, the guard for the action ”open doors 1and2”
can now be formulated as a Prolog query openDoors(B,door1,door2), which in aplib
is expressed as in line 18. The predicate is true if door1 is closed and B is a button
connected to it (so, toggling the button would crank the door). Else, if door1 is open,

Aplib: Tactical Agents for Testing Computer Games 31

B should be connected to door2, but not to door1 (so, toggling it will not close door1
again). So, assuming a solution exists, invoking the action above multiple times will first
open door1, unless it is already open, and then door2. Notice that the guard is declar-
ative, as it only characterizes the properties that a right button should have; it does not
spell out how we should iterate over all the buttons in the agent’s belief to check it.

4 Structured Goals and Tactics

A goal can be very hard for an agent to achieve/solve directly. For example imagine a
level in the game Lab Recruits, similar to Fig. 1, where we have to test some feature
F located in some specific room. Let isInteractedF be the goal representing the agent
is at F and manages to interact with it (and hence test it). To achieve this the agent
will first need to reach the room where F is. To access this room a door D needs to
be opened first. The door can be closed, in which case the agent first needs to find a
specific button B that opens it. If the agent does not know all these steps, then directly
solving isInteractedF will be very difficult.

We can help the agent by providing intermediate goals that it needs to solve first.
We can formulate this as a ’goal structure’ as the one below:

SEQ(FIRSTof(isOpenD,SEQ(isActivatedB, isOpenD)),
isInteractedF)

where isOpenD and isActivatedB are intermediate goals. SEQ and FIRSTof are exam-
ples of so-called goal combinators explained below.

In aplib a composite goal is called a goal structure. It is a tree with goals as the
leaves, and goal-combinators as nodes. The goals at the leaves are ordinary goals or
test-goals, and hence they all have tactics associated to each. The combinators do not
have their own tactics. Instead, they are used to provide a high level control on the order
or importance of the underlying goals. Available combinators are as follows; let G and
G1, ...,Gn be goal structures:

– If g���T∗ is a goal with the tactic T associated to it, g.lift() turns it to a goal structure
consisting of the goal as its only leaf. T is implicitly attached to this leaf.

– SEQ(G1, ...,Gn) is a goal structure that is achieved by achieving all the sub-
goals G1, ...,Gn, and in that order. This is useful when Gn is hard to achieve; so
G1, ...,Gn−1 act as helpful intermediate goals to guide the agent. Goal structures of
this form also naturally express test scenarios as in (2).

– H = FIRSTof(G1, ...,Gn) is a goal structure where, given H to achieve, the agent
will first try to achieve G1. If this fails, it tries G2, and so on until there is one goal
Gi that is achieved. If none is achieved, H is considered as failed.

– H =REPEATG is a goal structure where, given H to achieve, the agent will pursue
G. If after sometime G fails, e.g. because it runs out of budget, it will be tried again.
Fresh budget will be allocated for G, taken from what remains of the agent’s total
budget. This is iterated until G is achieved, or until H’s budget runs out.

32 I. S. W. B. Prasetya et al.

Dynamic Subgoals. Rather than providing a whole goal structure to an agent,
sometimes it might be better to let the agent dynamically introduce or cancel sub-
goals. For example imagine an agent A which initially is given a goal structure Π =
SEQ(isOpenD, inRoomR). As the agent works on the first subgoal, isOpenD imagine
that it discovers that the door D is closed, and hence the subgoal cannot be reached
before another subgoal is solved (i.e. activate the button that opens the door).

Rather than pre-programming how to handle this in Π we can let the tactic of
isOpenD to make this decision instead. Since a tactic has access to the agent’s state, it
can inspect this state. Based on what it discovers it may then decide to insert a new sub-
goal, let’s call it isActivatedB, that will cause the agent to first find the button B and acti-
vate it in order to open D. The agent can do this by invoking addBefore(isActivatedB),
that will then change Π to:

SEQ(REPEAT(SEQ(isActivatedB, isOpenD)), inRoomR)

The REPEAT construct will cause the agent to move back to isActivatedB upon failing
isOpenD. The sequence SEQ(isActivatedB, isOpenD)will then be repeatedly attempted
until it succeeds. The number of attempts can be controlled by assigning budget to the
REPEAT construct (budgeting will be discussed below).

Budgeting. Since a goal structure can introduce multiple goals, they will be compet-
ing for the agent’s attention. By default, aplib agents use the blind commitment policy
[31] where an agent will commit to its current goal until it is achieved. However, it is
possible to exert finer control on the agent’s commitment through a simple but powerful
budgeting mechanism.

When the agent was created, we can give it a starting computing budget β0 (else it is
assumed to be ∞). Let Π be the agent’s root goal structure. For each sub-structureG in Π
we can specify G.bmax: the maximum budget G will get. Else, the agent conservatively
assumes G.bmax = ∞. By specifying bmax we control how much the agent should
commit to a particular goal structure. This limit can be specified at the goal level (the
leaves of Π), if the programmer wants to micro-manage the agent’s commitment, or
higher in the hierarchy of Π to strategically control it.

Once it runs, the agent will only work on a single goal at a time. The goal g it
works on is called the current goal. Every ancestor of a current g is also current. For
every goal structure G, let βG denote the remaining budget for G. At the beginning,
βΠ = β0. When a goal or goal structure G in Π becomes current, budget is allocated
to it as follows. When G becomes current, its parent either becomes current as well, or
it is already current (e.g. the root Π is always current). Ancestors H that are already
current keeps their βH unchanged. Then, the budget for G is allocated by setting βG

to min(G.bmax,βparent(G)), after we recursively determine βparent(G). This budgeting
scheme is safe: the budget of a goal structure never exceeds that of its parent.

When working on a goal g, any work the agent does will consume some budget, say
δ. This will be deducted from βg and from the budget of its ancestors. If βg becomes
≤0, the agent aborts g. It must then find another goal from Π.

Aplib: Tactical Agents for Testing Computer Games 33

Fig. 7. The tactic for agent Smith in Fig. 4, composed from three other tactics. The first (its full
code is not shown) is an action to activate button1 if it is close enough to the agent. Otherwise, the
action approachButton1 (defined in Fig. 5) will move the agent towards the button, if it is visible
to the agent (see the action’s guard). Else, FIRSTof falls back to the last tactic that will explore
the area around the agent to search the button. Note that without using a combinator like FIRSTof
the control flow will have to be explicitly programmed into the actions’ guards, resulting in a less
abstract agent program, not to mention that the control flow would then be implicit, which makes
the code harder to understand and more error prone.

4.1 Tactic

Rather than using a single action, Aplib provides a more powerful means to achieve
a goal, namely tactic. A tactic is a hierarchical composition of actions. Methods used
to compose them are also called combinators. Figure 7 shows an example of a tactic,
composed with a combinator called FIRSTof. Structurally, a tactic is a tree with actions
as leaves and tactic-combinators as nodes. The actions are the ones that do the actual
work. Furthermore, recall that the actions also have their own guards, controlling their
enabledness. The combinators are used to exert a higher level control over the actions,
e.g. sequencing or choosing between them. This higher level control supersedes guard-
level control5. The following tactic combinators6 are provided; let T1, ...,Tn be tactics:

1. If α is an action, T = α.lift() is a tactic. Executing this tactic on an agent state s
means executing α on s, which is only possible if α is enabled on s (if its guard
results a non-null value when queried on s).

2. T = SEQ(T1, ...,Tn) is a tactic. When invoked, T will execute the whole sequence
T1, ..., Tn.

3. T = ANYof(T1, ...,Tn) is a tactic that randomly chooses one of enabled Ti’s and
executes it. A SEQ tactic is enabled if its first sub-tactic is enabled. For other com-
binators, it is enabled if one of its sub-tactic is enabled.

4. T = FIRSTof(T1, ..,Tn) is a tactic. It is used to express priority over a set of tactics
if more than one of them could be enabled. When invoked, T will invoke the first
enabled Ti from the sequence T1, ..,Tn.

5 While it is true that we can encode all control in action guards, this would not be an abstract
way of programming tactical control and would ultimately result in error prone code.

6 Earlier, in Sect. 1, we mentioned a relation with theorem provers. LCF-family theorem provers
like HOL and Isabelle also have a concept of ’tactic’, which basically is a function that con-
structs a proof of a given conjecture [12,22,40]. Since the solving proof is usually not known
upfront, similar tactic combinators are used to control a search over the possible proof space.
E.g. in HOL we have THEN, andORLSE. These correspond to our SEQ and FIRSTof. HOL’s
REPEAT has no direct tactical counterpart in aplib, though aplib’s deliberation cycles implic-
itly introduce a top-level repetition —this will be elaborated in Sect. 4.2.

34 I. S. W. B. Prasetya et al.

4.2 Aplib Deliberation Cycle

Consider a goal g���T ∗. When this goal becomes current, recall that the agent will
then repeatedly execute T until g is achieved (or until its budget is exhausted). Aplib
agents execute their tactics in cycles. In BDI agency these are called deliberation cycles
[10,32,38]: in each cycle, an agent senses its environment, reasons which action to do,
and then performs this action. To make itself responsive to changes in the environment,
an agent only executes one action per cycle. So, if the environment’s state changes at
the next cycle, a different action can be chosen to respond to the change. However, if
T contains a sub-tactic T ′ of the form SEQ(T1, ..,Tn) things become more complicated.
If T ′ is selected, the agent has to execute the whole sequence7 which will take least n
cycles, before it can repeat the whole T again. This makes the execution flow of a tactic
non-trivial. We therefore have to deviate from the standard BDI deliberation [38].

Imagine an agent A = (s,E,Π,β). At the start, A inspects its goal structure Π to
determine which goal g���T ∗ in Π it should pursue, and calculates how much of the
budget β should be allocated for achieving g (βg). A will then repeatedly apply T over
multiple cycles until g is achieved, or βg is exhausted. At every cycle, A does the fol-
lowing:

1. Sensing. The agent asks the Environment to provide a fresh state information.
2. Reasoning. The agent determines which actions α in T are executable on the current

state s. This is the case if α is guard-enabled on s and furthermore also control-
enabled. The definition of latter is somewhat complicated. Let us explain it with
an example instead. Suppose T = ANYof(α0,SEQ(α1,α2),α3). The first time T is
considered for execution, α0, α1 and α3 becomes control-enabled, but not α2. If α0

turns out to be not guard-enabled, and α1,α3 are, only the latter two are executable.
Suppose α1 is chosen for execution. At the next cycle only α2 is control-enabled.
If it is also guard-enabled it can be executed, else it remains control-enabled for the
next cycle. After α2 is executed, the execution of the whole T is completed, and it
can be repeated again.

If no action is executable, the agent will sleep until the next cycle. Note that since
the game under test runs autonomously, it may in the mean time move to a new state,
and hence in the next cycle some actions may become enabled.

3. Execution and resolution. Let α be the selected action. It is then executed. If its
result v is non-null, it is considered as a candidate solution to be checked against
the current goal g. If v achieves g (so, g is solved), the agent inspects the remaining
goals in Π to decide the next one to handle. The whole cycle is repeated, but with
the new goal. If there is no goal left, then the agent is done. If g is not achieved, it is
maintained and the whole cycle is repeated.

4.3 Test Robustness

Let us now explain more concretely why aplib test automation is more robust. Recall
the tactic activateButton1Tac (Fig. 7) to activate button1. Notice that it uses the tactic

7 Breaking off in the middle can be expressed using a combination of FIRSTof and SEQ.

Aplib: Tactical Agents for Testing Computer Games 35

approachButton1.lift() (defined in Fig. 5) to approach the button first in case the agent
is not standing next to it. Notice that the location is not hard-wired in this tactic, but
instead queried from the button itself. Let us also replace the call to moveTowards in
line 3 in Fig. 5 with navigateTo. This will cause the agent to use aplib’s 3D-space path
finding to guide itself towards the given location. If the game designer now moves the
button elsewhere, e.g. to swap its position with the far button in Fig. 3, the tactic will
still work, as long as there is a path that reaches the button. The tactic approachButton1
requires however that the button is already in the agent’s belief, which would not be the
case if the developer moves it to a new position that is initially not visible to the agent.
Fortunately the enclosing tactic activateButton1Tac can deal with that, by falling back
to the ‘explore’ tactic to search the button first.

If the level contains some random fire hazard, we can replace approachButton1 in
activateButton1Tac with a more adaptive variant e.g.:

FIRSTof(avoidHazardTac, approachButton1.lift())

If the agent now detects fire when it on its way to button1, it will first try to evade the fire
before resuming its navigation to button1. Importantly, since the tactic executability is
re-checked at every deliberation cycle, the agent will be able to timely invoke the above
re-planning.

5 Proof of Concept

Lab Recruits
cols4253,selfi46stpircs#C
senil3672,selfi21lortnocnoitamina

Implementation of Environment
#Ccols393edis-emag

Java-side 1056 sloc Java
Support

avaJcols505scitcatcfiicepsniamoD
General support (world representation, pathfinding) 1250 sloc Java

avaJcols042seitilitU
Tests with

(game logic) button & door 74 sloc Java (28 sloc actual test-code)
(level test) state transitions (3) 117 sloc Java (61 sloc actual test-code)
(level test) simple reachability 69 sloc Java (19 sloc actual test-code)
(level test) complex reachability 98 sloc Java (46 sloc actual test-code)

Fig. 8. Some statistics of the experiment with the Lab Recruits game.

We conducted a pilot on the previously mentioned Lab Recruits game8, as a proof of
concept, and to get a preliminary idea on the effort to integrate aplib into the develop-
ment cycle and to write tests. Lab Recruits is developed by a group of students using
an established game development framework called Unity 3D. It consists of about 3500
lines of C# scripts. In Unity, not all dynamics are programmed in such scripts. E.g.

8 https://github.com/iv4xr-project/labrecruits.

https://github.com/iv4xr-project/labrecruits

36 I. S. W. B. Prasetya et al.

animation is designed with a separate tool, from which meta files (≈ 2700 lines) are
generated and compiled to behavior.

To extend their entertainment, most games are replayable on different instances of
the playing world, so-called levels. Levels have unique layout, monsters and items drop,
etc. The logic (game rules) is however the same over all levels. Levels are often metic-
ulously hand crafted (it is an art that computers have not mastered yet), hence requiring
significant human effort. A level in Lab Recruits represents a laboratory building, con-
sisting of rooms, in one or multiple floors, populated by in-game objects, such as tables,
and chairs. Some of them are interactable, such as buttons. Some of them represent haz-
ard, such as, fire. In addition to testing the correctness of the general game logic, note
that every newly crafted level also requires testing, e.g. to make sure that in-game enti-
ties which are necessary for completing the level are indeed reachable by the player.

Integration Effort. As remarked in Sect. 3.1 to use aplib the developers need to
first provide an implementation of the interface Environment for their game. For Lab
Recruits this amount to about 1400 lines of Java and C# —see Fig. 8. While this gives
test agents basic control over the game, an important lesson we learned is that this is
not enough. More abstract ways to control and navigate through the game are necessary.
These are provided as a library of tactics (≈ 500 lines) and support classes e.g. to do
path-planning on a 3D surface (≈ 1200 lines). Such tactics are quite game-specific, but
much of the path-planning functionality is generic and will in the future be migrated to
aplib’s standard library.

While the amount of integration code is relatively substantial compared to the size
of Lab Recruits itself, it does not mean that if we extend Lab Recruits with new game
objects and new logic the integration code will grow as much. Moreover, the same
integration can be used to test as many new levels as we have, no matter how large or
complex they are.

Testing with aplib We used aplib agents to test Lab Recruits’ general logic and a num-
ber of sample levels —an overview is given in Fig. 8. To test the general logic it is
sufficient to make a minimalistic level exposing the aspects of the logic that we want to
test. E.g. a button in Lab Recruits should open/close doors bound to it (and only those
doors). This proves that if they are bound correctly, they will also interact correctly. This
can be tested with a mini level with one button and several doors. The corresponding
testing task takes 74 lines of code, though only a third of them describes the task itself.

A typical testing tasks when testing a level is to verify that every entity (or at least,
the key entities) has the right behavior, e.g. that a button would open the right door (in
other words, whether the level binds the correct doors to the button). In our experiment,
testing three such buttons takes about 120 lines of code, but only about half of them
actually describe the task.

Another typical testing task is to check if key entities in a level are actually reach-
able. In the simple case, an entity is reachable through an unobstructed path in the level.
However, note that the entity might not be visible from the agent’s initial position. So,
solving such a task also involves searching the level. On the other hand, this contributes
to the robustness of the test: if the developers change the level’s layout or move the

Aplib: Tactical Agents for Testing Computer Games 37

entity elsewhere, the test code will not break as long as the entity remains reachable. In
our example, such a test takes about 70 lines. The code is reusable, irrespective the size
and complexity of the level, as long as the target entity is reachable in the above sense.

In a more complex situation, reaching an entity requires opening a series of doors
that block the path to it. To verify the entity’s reachability, we simply translate the
needed sequence of essential buttons (that should be toggled to open the guarding doors)
into subgoals. For a setup that involves three buttons and three doors it takes about 100
lines of test code; only about half of them actually describe the task. The approach can
be smarter (e.g. if we can eliminate the need to add subgoals), but this is not the goal of
the current pilot, and left as future work.

6 Related Work

Software agents have been employed in various domains, e.g. computer games, health
care, and control systems [26,27,30]. With aplibwe have another usecase, namely auto-
mated testing. Using agents for software testing has actually been attempted before
[5,33,35,36]. However, these works use agents to test services or web applications,
which are software types that can already be handled by non-agent techniques such as
model based [43] or search based [1,20] testing, whereas we argued that high interac-
tivity of computer games poses a different level of challenge for automated testing.

To program agents, without having to do everything from scratch, we can either use
an agent ‘framework’, which essentially provides a library, or we use a dedicated agent
programming language. Examples of agent frameworks are JADE [6] and aplib for Java,
HLogo [7] for Haskell, and PROFETA [18] for Python. Examples of dedicated agent
languages are JASON [8], 2APL [9], GOAL [24], JADEL [25], and SARL [39]. HLogo
is an agent framework that is specialized for developing an agent-based simulation. On
the other hand, JADE and aplib are generic agent frameworks that can be connected to
any environment. Aplib is light weight compared to JADE. E.g. the latter supports dis-
tributed agents and FIPA compliance which aplib does not have. JADE does not natively
offers BDI agency, though BDI agency, e.g. as offered by JADEL, can be implemented
on top of JADE. In contrast, aplib and PROFETA are natively BDI agent frameworks.

Among the dedicated agent programming languages, some are dedicated for pro-
gramming BDI agents. The good thing is that they offer Prolog-style declarative pro-
gramming. On the down side e.g. available data types are restricted (e.g. no support for
collection and polymorphism), which is a serious hinderance if we are to use them for
large projects. One with a very rich set of language features (collection, polymorphism,
OO, lambda expression) is SARL, though it is non-BDI. PROFETA and aplib are some-
where in between. Both are BDI DSLs, but they are embedded DSLs rather than a native
language as SARL. To improve its fluency as a DSL, aplib makes heavy use of design
patterns such as Fluent Interface [19] and Strategy Pattern [21]. PROFETA and aplib’s
host languages are full of features (Python and Java, respectively), that would give the
strength of SARL that agent languages like JASON and GOAL cannot offer.

Aplib’s distinguishing feature compared to other implementations of BDI agency
(e.g. JACK, JASON, 2APL, GOAL, JADEL, PROFETA) is its tactical programming of
plans (through tactics) and goals (through goal structures). An agent is essentially set

38 I. S. W. B. Prasetya et al.

of actions. The BDI architecture does not traditionally impose a rigid control structure
on these actions, hence allowing agents to react adaptively to changing environment.
However, there are also goals that require certain actions to be carried out in a certain
order over multiple deliberation cycles. Or, when given a hard goal to achieve, the agent
might need to try different strategies, each would need to be given enough commitment
by the agent, and conversely it should be possible to abort it so that another strategy can
be tried. All these imply that tactics and strategies require some form of control struc-
tures, although not as rigid as in e.g. procedures. All the aforementioned BDI imple-
mentations do not provide control structures beyond intra-action control structures. This
shortcoming was already observed by [17], stating domains like autonomous vehicles
need agents with tactical ability. They went even further, stating that Agent Oriented
Software Engineering (AOSE) methodologies in general do not provide a sufficiently
rich representation of goal control structures. While inter-actions and inter-goals con-
trol structures can be encoded through pushing and popping of beliefs or goals into
the agent’s state, such an approach would clutter the programs and error prone. An
existing solution for tactical programming for agents is to use the Tactics Development
extension [17] of the Prometheus agent development methodology [34]. This exten-
sion allows tactics to be graphically modelled, and template implementations in JACK
can be generated from the models. In contrast, Aplib provides the features directly at
the programming level. It provides the additional control structures suitable for tactical
programming over the usual rule-based style programming of BDI agents. When pro-
gramming test agents, having an option to exert control helps the tester to narrow the
agents’ search space which may benefit their performance, which is important when we
start to accumulate a large number of tests.

Let us also mention the agent language IndiGolog [11] from the Golog-family [28].
The original Golog [28] allows a model of an environment to be expressed in a mix
of imperative statements and ’situation calculus’ axioms (comparable to Hoare triples).
A Golog agent solves goals off-line, using the model. The obtained plan (sequence
of actions) are then executed on the environment. Such an approach is less suitable
for testing a game due to the latter’s non-determinism. In contrast, IndiGolog offers
a mix of reactive programming and model-based off-line planning. If a test-goal can
be broken into subgoals where some are robust against the game’s non-determinism,
off-line planning can be employed to handle the latter. Although testing is not a main
use-case of IndiGolog nor Golog, their idea actually resembles a well known testing
approach called Model Based Testing (MBT) [15] where Labelled Transition Systems
(LTS) or Extended Finite State Machines (EFSMs) are often used as models. In MBT,
a model also defines correctness (e.g. when the model specifies b to happen after a,
the implementation is expected to behave in the same way), in addition to providing
guidance on how to reach a given goal state as in Golog. Aplib currently has no MBT
capability; this is future work. Extending aplib with MBT would benefit from aplib’s
tactical layer, which as pointed out in Sect. 4.3 improves agents’ robustness against
non-determinism, which in terms of MBT would allow more goals to be solved off line.
Since requiring developers to provide detailed models is unlikely to scale up, future
research should be focused on model learning [43], e.g. to learn the parts of the model

Aplib: Tactical Agents for Testing Computer Games 39

that only serve to provide goal solving guidance, so that developers only need to focus
on the parts that capture the game’s correctness.

7 Conclusion and Future Work

We have presented aplib, a BDI agent programming framework featuring multi agency
and novel tactical programming and strategic goal-level programming. We choose to
offer aplib as a Domain Specific Language (DSL) embedded in Java, hence making the
framework very expressive. Despite the decreased fluency, we believe this embedded
DSL approach to be better suited for large scale programming of agents, while avoiding
the high expense and long term risk of maintaining a dedicated agent programming
language.

With the above features aplib would be a good choice to be used as a framework
to program test agents for testing highly interactive software such as computer games.
Our experience so far with the Lab Recruits case study (Fig. 1) shows that even a simple
test agent that can navigate within a closed terrain already introduces automation that
is previously not possible. Larger and more thorough case studies are still future work.
We would also like to explore the use of emotion modelling framework such as FAtiMA
[14] alongside aplib agents to allow us to test user experience (e.g. whether the game
becomes too boring too quickly), which is an aspect of a great concern in the game
industry.

While in many cases relying on reasoning-based intelligence is enough, there are
also cases where this is not. Recently we have seen rapid advances in learning-based
AI. As future work we seek to extend aplib to let programmers hook learning algorithms
to their agents to teach the agents to make the right choices, at least in some situation,
as an alternative when rule-based reasoning becomes too complicated (e.g. when it
involves recognizing visual or audio patterns).

References

1. Alshahwan, N., Harman, M.: Automated web application testing using search based software
engineering. In: 26th International Conference on Automated Software Engineering. IEEE
(2011)

2. Alégroth, E., Feldt, R., Kolström, P.: Maintenance of automated test suites in industry: an
empirical study on visual GUI testing. Inf. Softw. Technol. 73, 66–80 (2016)

3. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, New
York (2016)

4. Anand, S., et al.: An orchestrated survey of methodologies for automated software test case
generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

5. Bai, X., Chen, B., Ma, B., Gong, Y.: Design of intelligent agents for collaborative testing
of service-based systems. In: 6th International Workshop on Automation of Software Test.
ACM (2011)

6. Bellifemine, F., Poggi, A., Rimassa, G.: JADE-a FIPA-compliant agent framework. In: Pro-
ceedings of PAAM (1999)

7. Bezirgiannis, N., Prasetya, I., Sakellariou, I.: Hlogo: A parallel Haskell variant of NetLogo.
In: 6th International Conference on Simulation and Modeling Methodologies, Technologies
and Applications (SIMULTECH). IEEE (2016)

40 I. S. W. B. Prasetya et al.

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentS-
peak Using Jason, vol. 8. John Wiley & Sons, Hoboken (2007)

9. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent Multi-Agent
Syst. 16(3), 214–248 (2008). https://doi.org/10.1007/s10458-008-9036-y

10. Dastani, M., Testerink, B.: Design patterns for multi-agent programming. Int. J. Agent-
Oriented Softw. Eng. 5(2/3), 167–202 (2016)

11. De Giacomo, G., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: a high-level pro-
gramming language for embedded reasoning agents. In: El Fallah Seghrouchni, A., Dix, J.,
Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 31–72. Springer, Boston,
MA (2009). https://doi.org/10.1007/978-0-387-89299-3 2

12. Delahaye, D.: A tactic language for the system coq. In: Parigot, M., Voronkov, A. (eds.)
LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44404-1 7

13. Denti, E., Omicini, A., Calegari, R.: tuProlog: Making Prolog ubiquitous. ALP Newsletter,
October 2013

14. Dias, J., Mascarenhas, S., Paiva, A.: FAtiMA modular: towards an agent architecture with a
generic appraisal framework. In: Bosse, T., Broekens, J., Dias, J., van der Zwaan, J. (eds.)
Emotion Modeling. LNCS (LNAI), vol. 8750, pp. 44–56. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-12973-0 3

15. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-based
testing approaches: a systematic review. In: Proceedings of the 1st ACM International Work-
shop on Empirical Assessment of Software Engineering Languages and Technologies (2007)

16. Ernst, M.D., et al.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1–3), 35–45 (2007)

17. Evertsz, R., Thangarajah, J., Yadav, N., Ly, T.: A framework for modelling tactical decision-
making in autonomous systems. J. Syst. Softw. 110, 222–238 (2015)

18. Fichera, L., Messina, F., Pappalardo, G., Santoro, C.: A Python framework for programming
autonomous robots using a declarative approach. Sci. Comput. Program. 139, 36–55 (2017)

19. Fowler, M., Evans, E.: Fluent interface. martinfowler.com (2005). https://martinfowler.com/
bliki/FluentInterface.html

20. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented software.
In: 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering. ACM (2011)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, Boston (1994)

22. Gordon, M.J., Melham, T.F.: Introduction to HOL A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press, New York (1993)

23. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old problems,
new perspectives. KI-Künstliche Intelligenz 31(1), 73–83 (2017). https://doi.org/10.1007/
s13218-016-0457-5

24. Hindriks, K.V.: Programming Cognitive Agents in GOAL (2018). https://goalapl.atlassian.
net/wiki/spaces/GOAL/overview

25. Iotti, E.: An agent-oriented programming language for JADE multi-agent systems. Ph.D.
thesis, Università di Parma. Dipartimento di Ingegneria e Architettura (2018)

26. Jennings, N., Jennings, N.R., Wooldridge, M.J.: Agent Technology: Foundations, Applica-
tions, and Markets. Springer Science & Business Media, Berlin (1998). https://doi.org/10.
1007/978-3-662-03678-5

27. Leitão, P.: Agent-based distributed manufacturing control: a state-of-the-art survey. Eng.
Appl. Artifi. Intell. 22(7), 979–991 (2009)

28. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.: GOLOG: a logic program-
ming language for dynamic domains. J. Log. Program. 31(1–3), 59–83 (1997)

https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/978-0-387-89299-3_2
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/3-540-44404-1_7
https://doi.org/10.1007/978-3-319-12973-0_3
https://doi.org/10.1007/978-3-319-12973-0_3
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://doi.org/10.1007/s13218-016-0457-5
https://doi.org/10.1007/s13218-016-0457-5
https://goalapl.atlassian.net/wiki/spaces/GOAL/overview
https://goalapl.atlassian.net/wiki/spaces/GOAL/overview
https://doi.org/10.1007/978-3-662-03678-5
https://doi.org/10.1007/978-3-662-03678-5

Aplib: Tactical Agents for Testing Computer Games 41

29. McMinn, P.: Search-based software test data generation: a survey. Softw. Test. Verif. Reliabi.
14(2), 105–156 (2004)

30. Merabet, G.H., et al.: Applications of multi-agent systems in smart grids: a survey. In: Inter-
national conference on multimedia computing and systems (ICMCS), pp. 1088–1094. IEEE
(2014)

31. Meyer, J.J., Broersen, J., Herzig, A.: Handbook of Logics for Knowledge and Belief, chap.
BDI Logics, pp. 453–498. College Publications (2015)

32. Meyer, J. J. C.: Agent technology. In: Wah, B.W. (ed.) Encyclopedia of Computer Science
and Engineering. John Wiley & Sons (2008)

33. Miao, H., Chen, S., Qian, Z.: A formal open framework based on agent for testing web
applications. In: International Conference on Computational Intelligence and Security (CIS).
IEEE (2007)

34. Padgham, L., Winikoff, M.: Prometheus: a practical agent-oriented methodology. In: Agent-
Oriented Methodologies. IGI Global (2005)

35. Paydar, S., Kahani, M.: An agent-based framework for automated testing of web-based sys-
tems. J. Softw. Eng. Appl. 4(02), 86 (2011)

36. Qi, Y., Kung, D., Wong, E.: An agent-based testing approach for web applications. In: 29th
International Computer Software and Applications Conference (COMPSAC), vol. 2. IEEE
(2005)

37. Rafael, H., Mehdi, D., Jürgen, D., Amal, E.: Multi-Agent Programming-Languages. Plat-
forms and Applications. Springer, Boston (2005). https://doi.org/10.1007/b137449

38. Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. 3rd International Con-
ference on Principles of Knowledge Representation and Reasoning (1992)

39. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented Programming
language. In: International Conference on Intelligent Agent Technology. IEEE (2014)

40. Schmidt, D.A.: A programming notation for tactical reasoning. In: Shostak, R.E. (ed.) CADE
1984. LNCS, vol. 170, pp. 445–459. Springer, New York (1984). https://doi.org/10.1007/
978-0-387-34768-4 26

41. Seghrouchni, A.E.F., Dix, J., Dastani, M., Bordini, R.H.: Multi-Agent Programming: Lan-
guages Tools and Applications. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-
89299-3

42. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path model-checking
tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 419–423. Springer,
Heidelberg (2006). https://doi.org/10.1007/11817963 38

43. Vos, T., et al.: FITTEST: a new continuous and automated testing process for future internet
applications. In: CSMR-WCRE. IEEE (2014)

https://doi.org/10.1007/b137449
https://doi.org/10.1007/978-0-387-34768-4_26
https://doi.org/10.1007/978-0-387-34768-4_26
https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/978-0-387-89299-3
https://doi.org/10.1007/11817963_38

Exploiting Simulation for MAS Development
and Execution—The JaCaMo-Sim Approach

Alessandro Ricci1(B), Angelo Croatti1, Rafael H. Bordini2, Jomi F. Hübner3,
and Olivier Boissier4

1 DISI, University of Bologna, Cesena, FC, Italy
{a.ricci,a.croatti}@unibo.it
2 POLI-PUCRS, Porto Alegre, Brazil

rafael.bordini@pucrs.br
3 Federal University of Santa Catarina, Florianópolis, Brazil

jomi.hubner@ufsc.br
4 Univ. Lyon, MINES Saint-Etienne, CNRS Lab., Saint-Étienne, France

olivier.boissier@emse.fr

Abstract. Simulation can be an important conceptual and practical tool to sup-
port the engineering of multi-agent systems (MAS), in different ways. In this
paper we consider the case in which simulation is applied and exploited directly
upon a MAS developed using an existing agent/MAS programming platform.
That is: without requiring to model and simulate agents and their environment
using a different platform, e.g. an agent-based simulation one. In particular, we
describe the design of JaCaMo-sim, an extension of the JaCaMo platform that
makes it possible to both run and simulate the execution of MAS programs based
on BDI agents written in Jason, situated in artifact-based environments devel-
oped in CArtAgO. The tool can be useful for different aspects that concern MAS
engineering, from MAS testing/debugging at development time to agent decision
making support at runtime.

1 Introduction

As observed by Wooldridge and Jennings about two decades ago, “The development of
any agent system - however trivial - is essentially a process of experimentation” [14].
Testing and simulation are two main classes of conceptual/practical tools developed
through the years to support experimentation in engineering MAS. Testing accounts for
running the system – or a part of it – either in real environments or test beds [11], so as
to analyze its behaviour, evaluate its quality and improve it by identifying defects and
problems [19]. Testing of agents and multi-agent systems is typically harder than con-
ventional software systems, due to aspects such as autonomy, interaction, concurrency,
distribution [18], and different kinds of testing levels and techniques have been devel-
oped in literature [19]. Simulation is – generally speaking – the process of designing
a model of a real system and conducting experiments with this model for the purpose
of either understanding the behaviour of the system or evaluating various strategies for
the operation of the system [25,32]. It is pervasively applied in science and engineer-
ing, including software engineering [4] where it can be used for different purposes, e.g.
c© Springer Nature Switzerland AG 2020

C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 42–60, 2020.
https://doi.org/10.1007/978-3-030-66534-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-66534-0_3

JaCaMo-Sim 43

to improve system reliability, or to cut costs, providing insight into the design of pro-
cesses, architecture, or product line before significant time and cost are invested. In the
context of agents and MAS, the intersection between MAS and simulation has been
widely explored in literature [29], both using MAS as a paradigm for modeling and
simulating complex system, and using simulation as a tool for testing as well as for
designing MAS. In particular, it is considered a more effective approach compared to
classic testing when dealing with agent systems that display a situation-triggered or a
time-triggered behaviour [23,28,30], making it possible to abstract from physical time
and to create controlled experiments to analyse the behaviour of the system in scenarios
that would be difficult (or expensive) to be reproduced in the real world.

Typically, compared to testing, simulation implies the extra burden of creating a
model of the agent system/MAS, to be executed by corresponding simulators. In this
paper we introduce and develop the idea of exploiting a simulation-based approach to
support MAS development, without the need of creating a model of the system and
using directly the agent/MAS program it self. This idea goes back to the grand chal-
lenge launched by Adelinde Uhrmacher in [30], where she pointed out that an important
direction and challenge for simulation in AOSE is about having hybrid development/ex-
ecution/simulation environments that would allow to execute agents as they are1 and to
switch arbitrarily between the execution in the real environment and test environment.
This hybrid development/execution/simulation environments should allow agents to be
an integral part of the experimental setting and as such perceivable and controllable.
That is: having tools supporting a graceful transformation from simulation to emula-
tion [30]. We argue that this challenge – even if suggested in literature almost two
decades ago – is still an open issue, and more and more relevant, as soon as we consider
the engineering of complex agent-based systems.

More in detail, in our research we aim at exploring and tacking this challenge
in the context of agent-oriented programming and multi-agent oriented programming,
in particular using the JaCaMo platform [3]. This platform allows for programming
MAS integrating different and independent programming dimensions: agents are pro-
grammed using the Jason BDI agent programming language; the environment can be
programmed using the CArtAgO framework, based on the A&A (agents and artifacts)
conceptual model; and organisation can be specified and programmed using the Moise
framework. In this paper we present and discuss the model, the design, and a first pro-
totype of a platform that makes it possible to run a JaCaMo program both in real mode
and simulation mode. When executing in simulation mode, the program is executed like
a simulation by simulators, using a simulated time and environment. MAS execution in
this case becomes a time-controlled simulation, based on the DES (Discrete Event Sim-
ulation) model [7]. Differently from existing simulation tools in MAS, in our case the
model to be simulated is the MAS program itself.

We believe that the idea and the tool could be useful for three main aspects that
concern MAS engineering. The first one already mentioned is testing. The tool would
allow to test/observe a MAS behaviour in any conditions without being bound to the
availability of specific execution/deployment environments. For instance, with this tool,
a complex distributed MAS may be run in a simulated mode on a single computer,

1 “As they are” here means, roughly speaking, considering their actual code and implementation.

44 A. Ricci et al.

where all aspects about user interaction, external environment, etc. are simulated. Like
for every simulation/simulator, when running in simulated-time, the result of the sim-
ulation is independent from the computer or system used to run the simulation. Just,
when using faster computers, the simulation is going to take less time. The second one
– still related to the development time – is about supporting the development of spe-
cific application contexts where running agents in simulated environments is part of the
design/engineering process. For instance, when agents need to be trained before being
deployed, like in the case of reinforcement learning. The third case is about runtime,
where the tool could be used by agents to help their decision making, in particular to
predict the effect of their actions by running a simulation from the current state of the
MAS.

The paper is organised as follows. After an account of related works (Sect. 2), we
describe the idea behind the JaCaMo-sim platform, modeling MAS execution as a Dis-
crete Event Simulation (Sect. 3), Then, we describe how the model has been imple-
mented, i.e. the architecture of JaCaMo-sim platform (Sect. 4) and an example showing
the tool at work (Sect. 5). We conclude the paper by sketching the road ahead that we
see for this research line (Sect. 6).

2 Related Works

As remarked in the introduction, a main reference for our paper is the seminal work
of Adelinde Uhrmacher and colleagues, in exploring the use of simulation for testing
agents [23,28,30] and pointing out the grand challenge mentioned in the introduction.
A main result of their research is the JAMES (JAva-based Multipurpose Environment
for Simulation) platform, a Java framework for modeling and simulation [12]. This
platform2 is mostly used for agent-based and multi-agent based simulations; however,
it has been applied also for testing agent systems, as in the case of the AUTOMINDER
software [28]. As far as authors’ knowledge, the platform does not provide specific
features for integrating simulation and emulation of agents/MAS.

Besides JAMES, our work is related to existing approaches in the literature that
explored the value and use of simulation for AOSE [29,30]. These include propos-
als that use simulation to support the process of MAS development, such as PAS-
SIM [5]; to support agent-based system development in general [24]; to define inte-
grated approaches for the development and validation of MAS [8]; or, to engineer self-
organising MAS [10]. Platforms such as Multi-Agent System Simulator (MASS) [31]
and Sensible Agents [1] have been designed to investigate the performance of agents
and multi-agent systems in complex environments.

Our contribution is especially related to those applying simulation to testing of
agents and MAS – which is a main challenge in MAS engineering [18,19] – and, in par-
ticular, with those that explore the integration of BDI agents and agent programming lan-
guages/purpose with simulation environments. In the literature, research works explor-
ing such an integration have been proposed more in the context of agent-based simu-
lation (ABS) and multi-agent based systems (MABS). A main example is [27], which

2 At the time of writing, JAMES II is the reference version, available at http://jamesii.informatik.
uni-rostock.de/jamesii.org/.

http://jamesii.informatik.uni-rostock.de/jamesii.org/
http://jamesii.informatik.uni-rostock.de/jamesii.org/

JaCaMo-Sim 45

describes a three-tiered BDI-ABM architecture, to integrate existing simulation plat-
forms (e.g., MATSim) and the BDI frameworks (e.g., JACK) as independent and uncou-
pled parts that interact by means of an action/perception interface, and using a time-
step based approach to advance the execution. More recent examples include [6,16].
Our approach has a different scope, being not targeted to ABS/MABS but AOSE. In
spite of the different perspective, from a technical point of view in our case a Discrete
Event Simulation model is adopted and the BDI platform itself (JaCaMo in our case) is
extended so as to support a simulation execution modality.

The specific DES-based approach used in JaCaMo-sim recalls the classic approach
used in the context of PDES (Parallel Descrete Event Simulation) [9] and in distributed
simulation of multi-agent systems [17]. In that context, JaCaMo-sim can be classified as
a conservative approach, adopting agents, artifacts and workspaces as logical processes
involved by a simulation, not sharing memory. Differently from PDES, in our case
the objective is not to parallelise the simulation execution, by exploiting a network of
processors, but to take into the account distribution at the model level, which – in our
case – corresponds to the distributed MAS program itself.

Finally, a research work which is conceptually strongly related to our proposal is the
Brahms framework [26]. Brahms has been primarily developed as modelling and simu-
lation environment for work practices, but finally it has been used also as an agent-based
platform to develop real systems. The same platform can be used for both simulating
and running a MAS system. The path taken in our paper has been somewhat in the oppo-
site direction: we started from a platform used for developing and running MAS and we
extended it in order to support the simulation of the MAS – keeping the “agents as they
are” [30], without the need of implementing the model using a different language.

3 The Approach

In this section we describe how the idea works at a model level, abstracting from imple-
mentation details. The idea is based on two main points. The first one is that, at the
model level, the execution of a (JaCaMo) MAS, at the bottom level, is event-driven.
The agent part (Jason) is based on a BDI reasoning cycle [20], which can be modelled
as a well-defined sequence of events concerning the sense, deliberate and act stages.
The communication part is managed by the Jason side – exploiting different ACL plat-
forms, like Jade [2] – and can be modelled in terms of events as well. The environment
part (CArtAgO) can be described too in terms of events [22], in which computations
proceed as soon as a new operation is requested on artifacts (corresponding to action on
the agent side). In order to have observable effects, the execution of operations updates
artifact’s observable state, generating events. The implementation of the organisation
part (Moise) is based on agents and artifacts [13].

Being event-driven, it is straightforward to model the execution of a MAS program
as a Discrete Event Simulation (DES) [7]. In particular, a MAS program execution can
be modelled as a system in which state changes can be represented by a collection of
discrete events, occurring at a certain time. In DES, a state change implies that an event
occurs and the states of entities remain constant between events. In MAS program exe-
cution we can assume this, by choosing a proper level of abstraction about states and

46 A. Ricci et al.

events, so as to abstract from changes that are not considered relevant. When executing
a MAS program, events are scheduled and executed by the control flows used by the
execution platform. On the agent side, there are control flows used to move on agents
reasoning cycle, and, on environment side, there are control flows used to execute oper-
ations on artifacts. To execute a MAS in a simulated mode, event scheduling and execu-
tion are intercepted, so as to be governed by a DES-like simulation loop [7], deciding
which events should be scheduled next, according to the time planned for them. A next-
event approach for advancing time is used: after all state changes have been made at
the time corresponding to a particular event, simulated time is advanced to the time
of the next event and the event is executed. Differently from simple DES, in our case,
being MAS generally a distributed system, we do not want to assume a single simulated
timeline. Every agent, artifact and workspace have their own independent timeline.

The second main point on which the approach is based is about the external environ-
ment, how it is modelled and how the MAS interacts with it. In JaCaMo, any aspects
that concern the external environment of a MAS are meant to be modelled/encapsu-
lated into artifacts. These artifacts are also called boundary artifacts, since they are
the boundary inside the MAS that enables/mediates the interaction with the external
environment. Examples range from artifacts representing the GUI (enabling the interac-
tion with human users) to external devices (e.g., a printer, a sensor) and services (e.g.,
Internet-based API for maps). In a simulated execution, boundary artifacts are replaced
with a version that implements the simulated behaviour, however preserving the inter-
face in terms of operations (actions) and observable state (percepts).

3.1 Execution Contexts, Events and Activities

In the following, we provide an overview of the set of main abstract concepts used to
shape the idea, in spite of the specific agent platform/model adopted. We introduce the
concept of execution context (EC) to model any locus of activity of the MAS, equipped
with its own timeline. In our case, we have an EC for each agent, referred as agent
EC, and for all basic abstractions of the MAS which have an independent existence and
timeline with respect to agents. These elements include the environment and the com-
munication medium used to enable agent communications. In the case of JaCaMo, the
environment is modelled in terms of artifacts and workspaces, so an EC is introduced
for each artifact (artifact EC) and workspace (workspace EC). An EC is introduced also
for the communication medium (referred as comm EC), enabling speech-act based mes-
sage passing among agents. Each EC is characterised by its own clock Ts to keep track
of the (simulated) time.

The dynamics/behaviour of each EC is described in terms of events occurring there.
Events have no duration, they occur in a precise time of the EC timeline. Each event
is characterised by a timestamp ts, assigned using the clock Ts of the EC, representing
when the event happened (or is scheduled to happen) inside the EC. It is worth remark-
ing here the difference between event generation and even execution. Event generation
concerns when the event is created and scheduled. Event execution concerns when the
scheduled event actually happens, occurs. In normal MAS execution, event generation
and execution almost coincide. When executing in simulated mode instead, events are

JaCaMo-Sim 47

scheduled to happen in the future, at a time which is defined by a time assignment
function, used to shape the temporal evolution of the simulation.

Events occurring in the same EC are totally ordered. Instead, events of different
EC can only be partially ordered, exploiting a causal relationship between them. For
instance, the action request done by an agent – that appears in the agent EC – is the root
of a chain of causally-related events, whose effect is the execution of the corresponding
operation by the artifact – that appears in the artifact EC. The same holds for agent
communication, involving the sending of a message and the receipt of the same mes-
sage, two events that are part of the same causal chain across two different ECs. Events
belonging to the same causal chain can be ordered by an happened-before relation [15].

The concept of activity is introduced to represent something relevant occurring
between two causally-related events—that correspond to the beginning of the activity
and the end of the activity. For instance: the beginning of a reasoning cycle and the
end of the same reasoning cycle. For activities, a notion of duration can be defined, as
the difference between the timestamps of the two events, being them part of the same
EC. Activities can overlap or can be wrapped by other activities. For instance: a sense
activity, marking the sense stage inside the reasoning cycle, is wrapped/included in the
reasoning cycle activity.

Some activities may span over multiple ECs. A main example concerns agent com-
munication, in which the beginning event is the send action executed in the act stage of
the sender agent and the end event is the message receipt occurring in the sense stage
by the receiver agent. Another main example concerns the execution of an external
action, as an activity whose beginning event (the action request) and the end event (the
perception about action completion or failure) occurs in the same EC (the agent EC),
however involving a chain of events that occurs both in the EC of the artifact hosting
the operation and the workspace hosting the artifact.

The duration of activities in these cases cannot be computed simply as the difference
of the timestamps of the beginning and end events, because these two events or events
in the causal chain belong to different ECs, possibly with independent clocks. To tackle
this problem, we introduce a notion of synchronisation events that bind together two
different ECs in chains of causally-related events. For instance, the event representing
an action request on an agent EC and the notification of the same action to be dispatched
on the workspace EC that hosts the artifact. In this case, the execution of the first event in
one EC causes the synchronous execution of the second event in the other EC, where the
concrete semantics of synchronous is defined by the model of time defined for specific
simulation by the developer/modeller.

A Core Set of Events and Activities. We identified a first core set of events modelling
the event-driven execution of a MAS program. These events can be split in three main
categories:

– events concerning agent reasoning cycle execution, involving only the EC of a single
agent;

– events concerning agent communication, involving the EC of two agents and of the
communication medium; and

48 A. Ricci et al.

Agent EC

C
om

m
 EC

IntActSendM
sg

R
eceiveM

sgD
ispatch

SendM
sgD

ispatch

Ts
Ag

Ts
M

sgD
ispatch

R
C

Begin
R

C
End

R
C

Agent EC

Ts
Ag

N
ew

PerctN
otified

R
C

Begin
R

C
End

R
C

Betw
eenR

C

R
C

End
SenseEnd

C
heckM

ail

Sense

SenseBegin
M

sgR
eceived

M
sgD

elivery

ActBegin

Act

ActEnd

Agent EC

Ts
Ag

R
C

Begin
R

C
End

R
C

Begin

R
C

R
C

Betw
eenR

C

SenseBegin
SenseEnd

Sense

D
elBegin

D
elEnd

ActBegin
ActEnd

D
el

Act

Fig. 1. Diagrams representing events and activities related to communication between agents,
involving also the communication media EC. The name of events and activities have been short-
ened compared to the ones reported in Table 1.

JaCaMo-Sim 49

Agent EC

Artifact EC

W
sp EC

ExtActR
equest

O
pEnqueued

N
ew

O
pToExec

ActD
ispatch

O
pExecEnd

O
pD

ispatch

Ts
Ag

Ts
W

sp

Ts
Art

ActO
pD

ispatch

O
pExec

O
pExecBegin

O
pR

esultD
isp

ActEventToPercD
isp

ActionEventD
ispatch

PercD
ispatch

PercToActionU
pdate

N
ew

PercN
otified

ExtActR
esult

ActionEventD
ispatch

R
C

Begin
R

C
End

R
C

Begin
R

C
End

R
C

Begin
R

C
End

R
C

R
C

R
C

ActionExec

Betw
eenR

C
Betw

eenR
C

Artifact EC

W
sp EC

Ts

W
sp

Ts
Art

O
pExecBegin

O
bsStateD

isp

O
bsStateEvent

O
bsStateD

ispatch

O
bsStateD

ispatch

O
bsStateToPerctD

isp

PercD
ispatch

Agent EC

R
C

Begin

R
C

SenseBegin
SenseEnd

FetchPercept
N

ew
PercN

otified

ActAgSenseBelU
pdatedFrom

Percept

Ts
Ag

R
C

Betw
eenR

C

R
C

Begin
R

C
End

Fig. 2. Diagrams representing events and activities related to agent EC and artifact EC. The name
of events and activities have been shortened compared to the ones reported in Table 3 and in
Table 4.

50 A. Ricci et al.

– events concerning agent environment interaction, involving the EC of an agent, an
artifact and the workspace hosting the artifact.

Table 1 (reported in the appendix) shows a partial list of events concerning the agent EC
related to the agent reasoning cycle, including relevant activities connecting the events.

Figure 1 (on the left) shows events and activities on a timeline, including only main
events concerning the beginning and end of the reasoning cycle and events marking
the beginning and end of every stage. Events and activities related to agent communi-
cation are listed in Table 2 (in appendix) and shown on a time line in Fig. 1 (on the
right). Agent communication involves three different ECs: the EC of the sender agent,
of the receiver agent and of the communication medium exploited to deliver the mes-
sage. Finally, the list of events and activities concerning agent-environment interaction
is reported in Table 3 (events) and Table 4 (activities)—both in the appendix. The time-
line is shown in Fig. 2. Agent-environment interaction involves three different ECs as
well: the EC of the agent executing an external action or observing some artifact; the
EC of the artifact providing the operation to be executed or the observable state to be
observed; and the EC of the workspace hosting the artifact and joined by the agent, func-
tioning as a glue. The agent-environment interaction concerns two scenarios, shown in
Fig. 2. The first (on the left) concerns an agent requesting an action, which triggers the
execution of an operation hosted by an artifact. When (if) the operation execution com-
pletes (or fails), an action event is generated and notified on the agent side. The second
concerns the generation of an observable event on the environment side – that could
concern either the update of observable properties of an artifact, or the generation of a
signal – notified as a percept on the agent side. It is worth remarking that in CArtAgO,
on which JaCaMo is based, even predefined actions (e.g., to create an artifact, to lookup
artifact, and so forth) are modelled as actions provided by some existing artifact [21].
In this paper we do not consider events and activities that concern interaction between
artifacts—that is, artifact executing operation over another artifact (called linked opera-
tion in CArtAgO).

3.2 The Simulation Loop

The execution of the simulation follows a classic event-scheduling approach as found
in DES, adapted so that the MAS execution platform (JaCaMo in our case) is used to
run the model (the MAS program). Each EC has its own FES (future event set), which
represents the set of events that have been scheduled to be executed (i.e. to occur) in the
future [7]. Given the event-driven behaviour, the dynamics/execution of each EC can be
modelled/tracked as a state that atomically evolves given the execution (occurrence) of
events. The execution of an event causes the generation of events that are scheduled in
the FES of the EC of the event and possibly in other ECs. Each event is decorated with
its timestamp ts computed by the time assignment function establishing when the event
is going to happen in the future.

Like in the DES case, the simulator behaviour is given by a loop, run by its own
control flow (depicted in Fig. 3). Differently from the DES case, the execution of events
is carried by the JaCaMo platform (concurrently), by means of the EC control flows
(that are part of the Jason and CArtAgO scheduler systems). This is more similar to

JaCaMo-Sim 51

Here MAS
execution
is running

1. Select and remove
first event notice
from the FES

2. Advance simulated
time to desired
execution time

3. Execute the event

1. Select and remove
first event notice
from the FES

2. Advance simulated
time to desired
execution timeexecution time

3. Execute the event

Wait for all running EC control flows
to complete EC event exec

For every EC event selected in
ECs, signal the EC control flow to
exec the scheduled the event

1. Select and remove first EC
event from the FES

2. Advance simulated time
to desired execution time

For each EC currently in the MAS

ait for all running EC control flows
to complete EC event exec

For every EC event selected in
ECs, signal the EC control flow to
exec the scheduled the event

1. Select and remove first EC
event from the FES

Advance simulated time
to desired execution time

For each EC currently in the MAS

Here MAS
execution
Is blocked

CLASSIC LOOP IN A DES

EXTENDED LOOP
IN JaCaMo-SIM

Fig. 3. The simulation loop – on the left: the classic DES version; on the right: the one adopted
in JaCaMo-sim

what happens in PDES [9], where the simulation accounts for multiple logical processes
which are executed in parallel on different processors. In JaCaMo, basically there are
two kinds of EC control flows: the ones running the agent reasoning cycles and the ones
running operation executions on artifacts in workspaces. In executing events, EC control
flows may schedule EC events in different ECs. At each iteration, the simulator loop
considers the (dynamic) set of all ECs currently in execution and, before choosing next
event to be scheduled, the loop must be sure that all running control flows completed
current event execution. This is a synchronisation point between the MAS execution
platform and the simulation loop. This is what makes sure that there are not causality
errors.

So at each iteration the simulation loop: (1) waits all control flows to be blocked
(sync point); (2) selects the next event to be scheduled for every EC; and (3) unblocks
the corresponding control flows on the platform side which is waiting to execute the
event.

52 A. Ricci et al.

3.3 The Time Assignment Function

A key aspect of the simulation is the assignment of the (simulated) time when schedul-
ing a new event, that is: specifying when it is going to happen in the future. This time
could be any value greater or equal than the current time of the EC where the event
occurs. If the event represents the end of some activity, then the event time is equal to
the current time of the EC plus the duration that the activity is supposed to have. This
time could be either random or not, could either depend on the specific state of the EC
or not.

Actually, the specific strategy adopted to assign a time to events is application spe-
cific. Therefore, the simulator is meant to provide maximum flexibility to developers/-
modellers for defining that function, to allow for recreating the specific situation to be
tested/experimented. Such a flexibility includes also the possibility to implement differ-
ent time/distribution models in defining the strategy—from a centralized case, where all
agents and the environment are supposed to run in the same node, sharing a common
clock, to fully decentralized and distributed cases, where agents and artifacts are run-
ning on different nodes, and the e.g. Internet is used as underlying network for enabling
both agent communication and agent-environment interaction.

4 First Implementation

The JaCaMo-sim platform3 provides a first implementation of the approach described
before. The platform is a lightweight extension of the basic JaCaMo platform. A new
component called JCM Execution Controller is added. This component is called by the
main platform each time a new event – which is relevant, given the model discussed
before – is going to be scheduled or executed. The calls are performed by the control
flows that are used inside the JaCaMo platform (Jason side, CArtAgO side) to execute
agents and artifacts.

The Execution Controller component could be configured to work in different
modalities: (1) normal mode; (2) tracking mode; (3) simulation mode (see Fig. 4). In
normal mode, the Execution Controller is almost an empty component, not creating
any overhead over MAS execution. In tracking mode, the Execution Controller is a
lightweight layer just tracking time of events in ECs. Some components (Viewer, Log-
ger) are used to visualize/log tracked data. The clock of the ECs in this case is directly
the clock of the machine(s) running the EC, so events are decorated with timestamps
that are directly the wall time. This modality is useful for profiling purposes, in particu-
lar to check the duration of activities.

In simulation mode the Execution Controller contains the simulator loop described
in previous section, controlling event scheduling and execution. In current API (avail-
able in Java), a Simulation class is provided to configure the parameters and temporal
behaviour of the simulation. This base class is meant to be extended to define details
of specific simulations. The interface of the Simulation class includes a method to be
overridden (called assignTime) implementing the time assignment function described
in previous section. The method is called each time an event is scheduled, so as to

3 Available here: https://github.com/jacamo-lang/jacamo-sim.

https://github.com/jacamo-lang/jacamo-sim

JaCaMo-Sim 53

Control flows

JaCaMo MAS

Event
notification

JCM Execution
Controller

Control flows

JaCaMo MAS JCM Execution
Controller

Control flows

JaCaMo MAS JCM Execution Controller

ExecContexts
ExecController
Viewer

ExecController
Logger

Control flows

JaCaMo MAS

JCM Execution Controller

ExecContexts

ExecController
Viewer

ExecController
Logger

Simulation
Loop

Simulation

TRACKING MODE

SIMULATION MODE

NORMAL MODE

JaCaMo-sim platform
architecture sketch

Fig. 4. A representation of the JaCaMo-sim Platform, with in evidence the JCM Execution Con-
troller component. In normal mode this component does not perform any function. In tracking
mode, it logs the timing of events. In simulation mode, it executes the extended simulation loop
described in Sect. 3.

54 A. Ricci et al.

Fig. 5. Source code of the tester_agent, in example 1 (available in the repository).

Fig. 6. Source code of the main, configuring and launching the simulation.

JaCaMo-Sim 55

decorate it with a specific time. Besides this method, the Simulation API includes
also methods to directly specify the duration of activities, if available. Some concrete
examples are shown in next section.

5 The Tool at Work

The JaCaMo-sim distribution includes some simple examples that can be used to
play with the tool, involving agent-environment interaction and agent communication.
Example 1 is a very simple case about agent-environment interaction, involving a
tester_agent and a Counter artifact. The artifact provides an inc operation and
a value observable property, which is update each time the operation is executed. The
agent simply creates an instance of the artifact, called counter, start observing it and
executes an inc action. When the agent perceives a change on the count observable
property, it prints a current value on the console. Figure 5 shows the source code of the
Jason agent and Fig. 6 a snippet of the Java application, configuring and launching the
example. The simulation is configured so that: the duration of the ActAgRC activity
(representing the reasoning cycle activity) is a random value between 1 and 2 ms; the
duration of the inc operation execution is a random value between 5 and 6 ms; all the
other activities (not specified) are meant to have a zero duration. A centralised model
of time is adopted (this depends on the implementation of the assignTime method
overridden from the Simulation class).

Figure 7 instead shows an excerpt of the output produced launching the example 1,
in tracking mode (on left) and in simulation mode (on the right). It shows a portion of
the events and activities concerning the tester_agent and the counter artifact, with
in evidence the timings (in microseconds) related to events and activities concerning
the reasoning cycle, the execution of actions and operations, the events related to the
count observable property changes and corresponding percepts. The timings in the sim-
ulated mode, in particular the duration of reasoning cycles and of operation execution,
correspond to the time assignment function configured in the simulation objects.

The other examples available in the distribution make it possible to test the tool in
the case of agent communication (example 2) and agent-environment with boundary
artifacts (example 3)—in particular a GUI artifact, enabling the interaction with human
user.

6 The Road Ahead

We consider this paper just a first step of a broad research direction that aims at explor-
ing the use of simulation for agent/MAS programming and execution. On the one hand,
the idea presented in this paper should be general enough to be applied to any agent/-
MAS programming platform, besides JaCaMo, for exploring any interesting scenarios
related to that integration. On the other hand, current tool – which is based the specific
JaCaMo platform – provides a very basic support to that purpose, suffering of limita-
tions that will be tackled in future work.

The main directions that we see for the road ahead for this research line include, first
of all, a deeper analysis and understanding of the specific use of simulation for MAS

56 A. Ricci et al.

Fig. 7. Output logged by the tool running the MAS of example 1 both in tracking mode (on the
left) and in simulation mode (on the right).

JaCaMo-Sim 57

programming, eventually using some reference case studies to give more concreteness
to the exploration. This includes testing and validation, but also debugging. Besides, we
aim at exploring the use of simulation at runtime, to support agent decision making, to
reason about the effect of actions. Another main direction is about defining a formalisa-
tion of the tool, capturing main concepts beyond the specific platform used, eventually
exploring the use of existing formal frameworks such as DEVS [32], and related tools.
A further interesting direction concerns the organization dimension, which has not been
considered in this paper, that is: introducing a set of events and activities that concern
the organisation level and exploiting simulations to analyse the behaviour of the system
at that level of abstraction. A generalisation of this point is about making the tool exten-
sible enough so that it would allow to define new custom layers of events and activities
– on top of the core set one – corresponding to higher levels of abstraction, closer to the
domain level.

A Events and Activities

Table 1. Agent EC events and activities concerning the reasoning cycle, and the sense stage in
particular (excluding those involving agent communication and agent-environment interaction).
The same names are used in the current JaCaMo-sim implementation (in particular, for each event
a Java class with the same name is defined).

EvAgRCBegin/EvAgRCEnd Reasoning cycle begin and end

EvAgSenseBegin/EvAgSenseEnd Sense stage begin and end

EvAgDelBegin/EvAgDelEnd Deliberate stage begin and end

EvAgActBegin/EvAgActEnd Act stage begin and end

EvAgFetchPercept Agent checking for percepts in the sense stage

EvAgCheckMail Agent checking for mails in the sense stage

ActAgRC reasoning cycle activity

ActAgBetweenRC activity between two subsequent reasoning cycles

ActAgSense Sense stage activity

ActAgDel Deliberate stage activity

ActAgAct Act stage activity

Table 2. Events and activities involved in agent communication.

EvAgIntActMsgSend A new send action has been performed (act stage)

EvCommSendMsgDispatch The dispatch of new message has been requested to the Comm medium by
a sender agent. This is the synchronous event (as defined in Sect. 3) created
in the Communication EC corresponding to EvAgIntActMsgSend event
occurring in the agent EC

EvCommReceiveMsgDispatch A message is ready to be delivered to some target agent. This event is
caused by the EvCommSendMsgDispatch event

EvAgNewMsgNotifier A new message is asynchronously notified to an agent. This is the
synchronous event on the agent side of the EvCommSendMsgDispatch
event

EvAgNewMsgReceived The agent has received the message in the sense stage. This event is caused
by the EvAgCheckMail event

ActCommMsgDispatch Activity devoted to deliver the message by the Communication medium

58 A. Ricci et al.

Table 3. Events involved in agent-environment interaction.

EvAgExtActRequest An external action request, to execute an operation on some artifact

EvWspActDispatch A new request of action be dispatched by the workspace to the target
artiact. This is the synchronous event created in the workspace EC
corresponding to EvAgExtActRequest event occurring in the agent EC

EvWspNewOpToExec Event representing a new op execution to be served inside the workspace.
This event is caused by the EvWspActDispatch event

EvArtOpEnqueued Event generated when the operation request has been enqueued in the
artifact. This is the synchronous event on the artifact side of the
EvWspNewOpToExec event on the workspace side

EvArtOpExecBegin Event representing the beginning of operation execution on the artifact
side. This event is caused by the EvArtOpEnqueued event

EvArtObsStateEvent Event representing a change to the observable state of the artifact
(including the generation of a signal)

EvWspObsStateDispatch Event representing a obs state event to be dispatched from an artifact. This
is the synchronous event on the workspace side of the EvArtObsStateEvent
event on the artifact side

EvArtOpExecEnd Event representing the end of operation execution on the artifact side

EvWspActionEventDispatch Event representing an action event to be dispatched from an artifact,
representing action/operation success or failure. This is the synchronous
event on the workspace side of the EvArtOpExecEnd event on the artifact
side

EvWspPerceptDispatch Event representing a new percept ready to be dispatched to an agent, either
representing a new observable event or an action event. This event is
caused either by the EvWspActionEventDispatch event or the
EvWspObsStateDispatch event

EvAgNewPerceptNotified A new percept notified to the agent percept queue. This is the synchronous
event of with EvWspPerceptDispatch on the workspace side

EvAgBelUpdatedFromPercept Agent updating a belief from a percept (sense stage). This event is caused
by the EvAgNewPerceptNotified event (about a new observable state
event)

EvAgExtActResult Agent perceiving the success or failure of an action previously requested
(sense stage). This event is caused by the EvAgNewPerceptNotified event
(about a new action event)

Table 4. Activities involved in agent-environment interaction.

ActWspOpDispatch Activity on the workspace side to deliver a new
operation to be executed on an artifact

ActArtOpDispatch Activity to deliver an enqueued operation to an
artifact to be executed

ActArtOpExec Activity concerning the execution of an operation

ActArtObsStateDispatch Activity to dispatch of a new observable event to
the worskpace

ActArtActionEventDispatch Activity to dispatch an operation/action result to
the workspace

ActWspActEventToPerceptDispatch Activity on the workspace side to deliver an
operation/action result as a percept to the agent
that executed the action

ActWspObsStateToPerceptDispatch Activity on the workspace side to deliver an new
observable event as a percept to an agent
observing the artifact

JaCaMo-Sim 59

References

1. Barber, K.S., et al.: Sensible agents: an implemented multi-agent system and testbed. In:
Proceedings of the Fifth International Conference on Autonomous Agents, pp. 92–99. ACM,
New York (2001)

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.
Wiley Series in Agent Technology. Wiley, Hoboken (2007)

3. Boissier, O., Bordini, R., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented program-
ming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

4. Christie, A.: Simulation: an enabling technology in software engineering. CrossTalk J. Def.
Softw. Eng. (1999)

5. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: a simulation-
based process for the development of multi-agent systems. Int. J. Agent-Oriented Soft. Eng.
2(2), 132–170 (2008)

6. Davoust, A., et al.: An architecture for integrating BDI agents with a simulation environment.
In: EMAS 2019 (2019)

7. Fishman, G.: Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer,
New York (2001). https://doi.org/10.1007/978-1-4757-3552-9

8. Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and validation
of multi-agent systems. Comput. Syst. Sci. Eng. 20 (2005)

9. Fujimoto, R.M.: Parallel discrete event simulation. Commun. ACM 33(10), 30–53 (1990)
10. Gardelli, L., Viroli, M., Omicini, A.: On the role of simulations in engineering self-

organising MAS: the case of an intrusion detection system in TuCSoN. In: Brueckner, S.A.,
Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol.
3910, pp. 153–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11734697_12

11. Hanks, S., Pollack, M.E., Cohen, P.R.: Benchmarks, test beds, controlled experimentation,
and the design of agent architectures. AI Mag. 14(4), 17–42 (1993)

12. Himmelspach, J., Uhrmacher, A.M.: Plug’n simulate. In: 40th Annual Simulation Sympo-
sium (ANSS 2007), pp. 137–143 (2007)

13. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organisations with
organisational artifacts and agents: “giving the organisational power back to the agents”. J.
Auton. Agents Multi-Agent Syst. 20(3), 369–400 (2010)

14. Jennings, N.R., Wooldridge, M.: Applications of intelligent agents. In: Jennings, N.R.,
Wooldridge, M.J. (eds.) Agent Technology: Foundations, Applications, and Markets, pp. 3–
28. Springer, Berlin Heidelberg, Berlin, Heidelberg (1998)

15. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558–565 (1978)

16. Larsen, J.B.: Going beyond BDI for agent-based simulation. J. Inf. Telecommun. 3(4), 446–
464 (2019). https://doi.org/10.1080/24751839.2019.1620024

17. Logan, B., Theodoropoulos, G.: The distributed simulation of multiagent systems. Proc.
IEEE 89(2), 174–185 (2001)

18. Miles, S., et al.: Why testing autonomous agents is hard and what can be done about it, Jan-
uary 2010. http://www.pa.icar.cnr.it/cossentino/AOSETF10/docs/miles.pdf. AOSE Technical
Forum

19. Nguyen, C.D., Perini, A., Bernon, C., Pavón, J., Thangarajah, J.: Testing in multi-agent sys-
tems. In: Gleizes, M.-P., Gomez-Sanz, J.J. (eds.) AOSE 2009. LNCS, vol. 6038, pp. 180–190.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19208-1_13

20. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van
de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0031845

https://doi.org/10.1007/978-1-4757-3552-9
https://doi.org/10.1007/11734697_12
https://doi.org/10.1080/24751839.2019.1620024
http://www.pa.icar.cnr.it/cossentino/AOSETF10/docs/miles.pdf
https://doi.org/10.1007/978-3-642-19208-1_13
https://doi.org/10.1007/BFb0031845

60 A. Ricci et al.

21. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. Auton. Agents Multi Agent Syst. 23(2), 158–192 (2011)

22. Ricci, A., Viroli, M., Piunti, M.: Formalising the environment in MAS programming: a for-
mal model for artifact-based environments. In: Braubach, L., Briot, J.-P., Thangarajah, J.
(eds.) ProMAS 2009. LNCS (LNAI), vol. 5919, pp. 133–150. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14843-9_9

23. Röhl, M., Uhrmacher, A.M.: Controlled experimentation with agents — models and imple-
mentations. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. LNCS
(LNAI), vol. 3451, pp. 292–304. Springer, Heidelberg (2005). https://doi.org/10.1007/
11423355_21

24. Sarjoughian, H., Zeigler, B., Hall, S.: A layered modeling and simulation architecture for
agent-based system development. Proc. IEEE 89, 201–213 (2001)

25. Shannon, R., Johannes, J.D.: Systems simulation: the art and science. IEEE Trans. Syst. Man
Cybern. SMC-6(10), 723–724 (1976)

26. Sierhuis, M., Hoof, R.: Brahms: a multi-agent modelling environment for simulating work
processes and practices. Int. J. Simul. Process. Model. 3 (2007)

27. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based simulation plat-
forms. Auton. Agents Multi-Agent Syst. 30(6), 1050–1071 (2016)

28. Uhrmacher, A., Röhl, M., Himmelspach, J.: Unpaced and paced simulation for testing agents.
In: Simulation in Industry, 15th European Simulation Symposium, January 2003

29. Uhrmacher, A.M., Weyns, D.: Multi-Agent Systems: Simulation and Applications, 1st edn.
CRC Press, Inc., Boca Raton (2009)

30. Uhrmacher, A.: Simulation for agent-oriented software engineering. In: Proceedings of the
1st International Conference on Grand Challenges for Modeling and Simulation, San Anto-
nio, Texas, USA, 27–31 January (2002)

31. Vincent, R., Horling, B., Lesser, V.: An agent infrastructure to build and evaluate multi-agent
systems: the Java agent framework and multi-agent system simulator. In: Wagner, T., Rana,
O.F. (eds.) AGENTS 2000. LNCS (LNAI), vol. 1887, pp. 102–127. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-47772-1_11

32. Zeigler, B.P., Kim, T.G., Praehofer, H.: Theory of Modeling and Simulation, 2nd edn. Aca-
demic Press, Inc., Cambridge (2000)

https://doi.org/10.1007/978-3-642-14843-9_9
https://doi.org/10.1007/11423355_21
https://doi.org/10.1007/11423355_21
https://doi.org/10.1007/3-540-47772-1_11

Fragility and Robustness in Multiagent
Systems

Matteo Baldoni , Cristina Baroglio(B) , and Roberto Micalizio

Dipartimento di Informatica, Università degli Studi di Torino, Turin, Italy
{matteo.baldoni,cristina.baroglio,roberto.micalizio}@unito.it

Abstract. Robustness is an important property of software systems,
and the availability of proper feedback is seen as crucial to obtain it,
especially in the case of systems of distributed and interconnected com-
ponents. Multiagent Systems (MAS) are valuable for conceptualizing and
implementing distributed systems, but the current design methodologies
for MAS fall short in addressing robustness in a systematic way at design
time. In this paper we outline our vision of how robustness in MAS can
be granted as a design property. To this end, we exploit the notion of
accountability as a mechanism to build reporting frameworks and, then,
we describe how robustness is gained. We exemplify our vision on the
JaCaMo agent platform.

Keywords: Robustness · MAS engineering · Accountability · JaCaMo

1 Introduction

Robustness is an important property of software systems. The Systems and
Software Engineering Vocabulary ISO/IEC/IEEE 24765 international standard
defines it as the degree to which a system or component can function correctly in
the presence of invalid inputs or stressful environmental conditions [1]. In many
cases, robustness refers to a system property rather than to the system as a
whole: a property of a system is robust if it is invariant with respect to a set of
perturbations [2]. This makes it possible to interpret many system properties as
types of robustness: reliability as robustness to component failures; efficiency as
robustness to lack of resources; scalability as robustness to changes to the size
and complexity of the system as a whole; modularity as robustness to structured
component rearrangements; evolvability as robustness of lineages to changes on
long time scales.

The availability of feedback is seen as crucial in gaining robustness [2], yet not
easy to obtain as is the case of multi-scale systems or of distributed systems of
interconnected components. We see feedback as a piece of information, broadly
speaking some facts that are obtained retroactively, that objectively concern an
execution of interest, and that are passed from one component to another. The
significance and the quality of feedback are crucial, as well, in making a system
robust: one would not want any kind of information to be returned but only
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 61–77, 2020.
https://doi.org/10.1007/978-3-030-66534-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_4&domain=pdf
http://orcid.org/0000-0002-9294-0408
http://orcid.org/0000-0002-2070-0616
http://orcid.org/0000-0001-9336-0651
https://doi.org/10.1007/978-3-030-66534-0_4

62 M. Baldoni et al.

information that is functional to the desired kind of robustness, and that comes
from a reliable source.

Coming to Multiagent Systems (MAS), the current architectures and
methodologies for their design and development (see e.g., [3,44,47]) fall short
in addressing robustness in a systematic way at design time. For instance, they
do not foresee mechanisms for exception handling, as instead is done for pro-
gramming languages like Java, or in the actor model (e.g., see [30]). This happens
because traditional approaches to exception handling do not accommodate some
important features of MAS, like openness, heterogeneity, agent encapsulation,
and distribution [37]. The common assumption is that software components are
“collaborative”, and that the code will be available for inspection. But intro-
spection is often impossible when dealing with agents, and collaboration cannot
be given for granted. As maintained in [37], in the case of MAS this sort of
mechanisms should leverage on the proactivity of the agents.

Nevertheless, it is already possible to see in action elements that support the
systematic introduction of robustness. For instance, agents often rely on repu-
tation and trust to estimate how reliable another agent is before using (in their
deliberative cycle) a piece of information that was produced by that agent [33].
When the MAS is enriched with an organizational infrastructure, that same
infrastructure can be exploited to state the authority of the agents on given
scopes. However, in order to support robustness something more is still needed.
Alderson and Doyle [2] suggest that a possible strategy to achieve robustness in
complex systems consists in “using feedback interconnection of sensors and actu-
ators”. That is, by exploiting the feedback coming from a (network of) system
sensor(s), a component (in our case, an agent) can properly activate its actuators
to complete its task. In this paper we aim at mapping this vision in the context
of Multiagent Organizations (MAO). In MAO, is our opinion, feedback and feed-
back networks must be encompassed at the institutional level, through mecha-
nisms that, on the one hand, are seamlessly integrated in the organizational ones
(basically, the use of norms to regulate the functioning of the organization) and,
on the other hand, capture the interconnectedness of feedback production and
its propagation.

In the next section we explain the difficulties of gaining robustness in MAS.
In Sect. 3 we introduce accountability and lay the basics for building reporting
frameworks through it; in Sect. 3.1 we introduce a possible architecture, extend-
ing that of JaCaMo [13], for robust MAO.

2 Fragility in Distributed Systems and MAS

Many systems “are complex networks of multiple algorithms, control loops, sen-
sors, and human roles that interact over different time scales and changing condi-
tions” [43]. In sociology, such a complex network becomes a set of constraints that
make a system, which comprises many parts, to act as a whole [24]. The com-
bination of individuals and relationships produces emergent powers that enable
the organization to achieve goals that otherwise would not be achievable (or not
as easily). And the same holds for MAO.

Fragility and Robustness in Multiagent Systems 63

However, the greater complexity introduces also new fragilities, that need
to be coped with. More generally, “... this complexity itself can be a source
of new fragility, leading to ‘robust yet fragile’ tradeoffs in system design” [2].
For example, consider the autonomous vehicle described in [43]. It is equipped
with eighteen sensor packages, basic sensor processing/actuator controls, soft-
ware or reasoning on temporal logic, sensor fusion, multiple path, traffic, and
mission planners, conflict management, health monitoring, fault management,
optimization, classifiers, models of the environment (maps), obstacle detection,
road finding, vehicle finding, and sensor validation checks. Here, the use of proto-
cols, of layering, and of feedback creates a complex, multi-scale modularity that
per se is exposed to many risks of failure in presence of abnormal conditions.
How to gain robustness?

It is possible to resort to MAS abstractions and methodologies to tackle the
realization of robust complex systems of the described kind. These methodolo-
gies typically assume that agents coalesce in organizations to coordinate their
interactions and tasks: system-level goals can be accomplished by taking advan-
tage of the contribution of each agent [41]. An organization, thus, encompasses
a functional decomposition of a global goal into subgoals. Subgoals are, then,
assigned to agents by means of norms, that orchestrate the execution of the
functional decomposition: as soon as a specific organizational goal is needed,
the normative system generates an obligation toward some agent to achieve that
goal. Agents’ acceptance of the organizational constraints enables them to act in
a shared environment, and achieve results unachievable if they acted in isolation.
The agents’ autonomy is an enabler of the system adaptability, which, in turn,
is crucial to achieve robustness: a robust system is one that adapts to stressful
environmental conditions, and components can adapt to changing contextual
conditions and perturbations only if they are autonomous in their decision pro-
cess. Adaptability, however, requires the system to be equipped with the ability
to produce proper feedback, propagate it, and process it, so as to enable the
selection and enactment of behavior that is appropriate to cope with the situa-
tion. The lack of such mechanisms makes the system fragile.

A functional decomposition describes what is expected of the agents for
achieving a global goal, based on their supposed capabilities, but agents may
fail the expectations. When this happens, a normative system would typically
take the involved agents as violators of some obligation, and react to the viola-
tion by issuing sanctions toward the misbehaving agent. Consequently, on one
hand, we can see the normative system as a means that enables the orchestration
of the activities of a group of autonomous agents, while on the other hand, in
some sense we can see it also as a means that tries to produce robustness. This
because the agents are pushed to do what is expected of them, and thus to tackle
the situations the system is facing. The rationale is to guide the agents toward
the interest of the organization. The problem is that sanctions are not generally
accompanied by feedback and feedback handling mechanisms, and thus they do
not provide a means that supports robustness. Indeed, to be effective, sanctions
must at least (1) be sufficiently “strong” to contrast the agents’ self-interest in

64 M. Baldoni et al.

pursuing different goals of their own, and (2) target agents that actually have
the resources and capabilities needed to face the situation of interest. In both
cases robustness would be gained only by propagating through the system infor-
mation about the reasons that caused the violation, and by revising the norms
accordingly. Otherwise, for what concerns the first condition, how to identify
a right trade-off that works for any agent without making assumptions of the
agents’ internals? For what concerns the second condition, how to propagate the
reasons that cause the failure of some agent? Suppose, for instance, the agent
is requested to deliver a parcel but the address is wrong. The parcel will not
be delivered, but it is not the agent’s fault. In such a case, sanction would be
pointless because it would not help to achieve the result, and the organization
would have no information of the reasons of the failure.

The problem is always the same: the lack of, broadly speaking, a feedback
framework. Such a lack, for instance, makes it impossible to acquire information
about possible conflicts (that remain internal to the agents), and hinders the
identification of other agents to which reassign the goal because they have the
skills that are needed to cope with a perturbation. As a consequence, the organi-
zation will generally be unable of selecting alternative strategies for pursuing its
goals in presence of unfavorable conditions. To tackle these conditions effectively
as a consequence of a good design, we need new conceptual tools. Inspired by
what is often done in human organizations [25,40,46], we claim that accountabil-
ity [10,12,22,27,28] provides such a new tool. As we will discuss in detail in the
next section, accountability allows a designer to specify how feedback, that is col-
lected by an agent, is passed to another agent, who is in position to react to the
perturbation. Thanks to the former agent’s accountability, the other agent, who
would not otherwise know of the situation, becomes aware of the perturbation,
and triggers its internal deliberative process for deciding how to tackle it (with
a straightforward benefit to the whole organization). In our view, accountability
is the key to design and develop robust MAS and organizations; we justify this
claim in the following section.

3 Robustness Through Accountability

The term accountability has its roots in Latin, where it is related to the verb
computare, to compute or calculate. Roughly speaking, an accountable person
has the capability to provide an account about a condition of interest [21], that is,
a person can be accountable for a condition, only if she has some competence, or
knowledge, about the very same condition. Accountability “emerges as a primary
characteristic of governance where there is a sense of agreement and certainty
about the legitimacy of expectations between the community members.” [22].
Accountability is, therefore, a mechanism and instrument of administrative and
political power. It can be the means through which organizations can ensure the
compliance of their processes to predefined standards as well as the force that
enables changes aimed at improving the organization [14,25].

In many cultures, accountability is associated with blame [20], either post
factum (who is to blame for an act or an error that has occurred), or pre factum

Fragility and Robustness in Multiagent Systems 65

(who is blameworthy for errors not yet occurred), but this is a very partial view
that disregards the potential involved in relationships concerning the ability and
the designation to provide response about something to someone who is legiti-
mated to ask. In sociology, and in ethnomethodology in particular, it is seen as a
basic mechanism that allows individuals to constitute societies [27,38]. Basically,
it supports sense-making and coordination in a group of interacting parties, all of
whom share an agreement on how things should be done [27], and can be reduced
to two key features that connect two parties: one of the parties (the “account
taker” or a-taker) can legitimately ask, under some agreed conditions, to the
other party an account about a process of interest; the other party (the “account
giver” or a-giver) is legitimately required to provide the account to the a-taker
[5,6,19]. We can also say that the relationship between a-giver and a-taker is a
relationship between a power-wielder and those holding them accountable, that
expresses a general recognition of the legitimacy of the authority of the parties
that are involved: one to exercise particular powers and the other to hold them
to provide an account [28]. Consequently, we see accountability as having two
main dimensions:

1. normative dimension (expectation), capturing the legitimacy of asking and
the availability to provide accounts, yielding expectations on the agents’
behavior;

2. structural dimension (control), capturing that, for being accountable about
a process, an agent must have control over that process and have awareness
of the situation it will account for.

Control often is interpreted as the ability to bring about events, possibly through
other agents (see e.g., [36,45]), that is, to have power over a situation of inter-
est. In the case of accountability, this means that agents can build the account
themselves, either because they were directly involved in the attempt of bringing
about some event, or because they can get the information that is necessary to
build an account through other agents (see also [12]).

We denote accountability as A(x, y, r, u), where x is the a-giver, y is the a-
taker. When condition r holds, y has the claim-right to ask x for an account
about u, and x is in position to provide substantive and authoritative accounts
about u. Condition r is not related to the state of u, but rather it represents
the circumstance in which the a-giver is held to account (see [12]). When such
a condition is not met, the a-giver is not obliged to produce the account. For
instance, a buyer may hold a seller to account for some goods, but the seller will
have to provide a feedback only if the purchase actually occurred, that is, only
if the payment took place. Here, payment is the contextual condition that gives
the buyer the right to have the account.

Notably, A(x, y, r, u) does not imply that x is the agent that brings about u;
rather, x must report about the state of u when r holds and a request from y is
received. Thus, A(x, y, r, u) entails an agreement between x and y: x accepts the
legitimacy of y to ask about u, as well as, y recognizes the power of x to account
about u (normative dimension). Such an account can be produced either because
x was involved in first person in the attempt of bringing about u, or because it

66 M. Baldoni et al.

can reach the information that is necessary to build the account because it plays
the role of a-taker in some accountability relationships that concern the parts of
u (structural dimension).

3.1 Exemplification in JaCaMo

To accommodate the two dimensions of accountability within a MAO, to the
aim of increasing robustness, one needs to operate at different levels of the orga-
nization model. First, at the conceptual level, the organization model has to be
extended to encompass concepts related to the reporting of facts, and to their
treatment. Second, at the normative level, we need to introduce the norms that
regulate these new concepts. In particular, robustness relies on delivering feed-
back about perturbations to agents in charge of handling such perturbations so
as to maintain invariant a system property [2]. In the rest of this section, we
exemplify a possible realization in the well-known JaCaMo platform [13].

An Organizational Conceptual Model. We exemplify how the accountability
dimension can be taken into account within a MAO model by exploiting the
conceptual model of JaCaMo [13]. It is worth noting that our approach is
not strictly dependent on JaCaMo, but it is applicable in any organizational
model where a Business Task is structured in terms of organizational goals,
or tasks, and where there is an explicit representation of the responsibilities
taken up by the agents. To this aim, the conceptual model in Fig. 1 general-
izes JaCaMo’s concepts Scheme, Mission, and Goal respectively into Business
Task, Responsibility, and Task (terms inspired by [26]). The mapping between
Responsibility and Mission deserves some argumentation. In a JaCaMo orga-
nization goals are grouped in missions, which are then subject to norms. Specif-
ically, the organization will issue obligations to achieve a mission goal to the
agents. The organization can exert such a power on the agents because they are
asked to commit to a mission at the beginning the execution. That is, if an agent
does not fulfill an obligation, the organization is legitimated to sanction the agent
by virtue of its commitment to the mission. The rationale is that, since it is not
possible, in general, to inspect agents, it is also impossible to know whether the
agent possesses the right capabilities to play a role, not even whether the agent
will be compliant to the norms. To fill this knowledge gap, agents in JaCaMo
are asked to commit to a mission as an implicit declaration that they possess
the right behaviors for enacting the mission role, and that they will be receptive
to the obligations the organization will issue about the goals in that mission. We
interpret such a commitment as a declaration of responsibility assumption.

Note that in JaCaMo, an agent fulfills an obligation from the organization
by mapping it into an internal goal: the satisfaction of such an internal goal
will amount to an achievement of a mission goal, and hence will gain an institu-
tional value. This approach guarantees a strong decoupling between the agents
and the organization, allowing the agents to autonomously determine how they
accomplish the organizational goals.

Fragility and Robustness in Multiagent Systems 67

Agent LevelOrganizational Level

1
0..1

1 1..n
Treatment GoalPolicy

commit/ leave

Sanction
1

0..n

Accountability
condition

1..n

1

1 0..1

1

0..n

Request

1 1

achieve/fail

create/delete

create/delete

adopt/leave

concept mapping

subgoal

Report

Mission
(Responsibility)

Requesting Goal

Reporting Goal

Goal
(Task)

Internal Goal

Agent

subgroup

Norm

Scheme
(Business Task)

RoleGroup

Organization

Fig. 1. The enhanced conceptual model. (Color figure online)

Finally, to the sake of generality, in Fig. 1 we also highlight Sanction as
related to Norm, even though in JaCaMo this concept is just implicitly modeled.

Extending the Organization Conceptual Model. The green boxes in Fig. 1 high-
lights the concepts we add for modeling accountability. We capture the a-giver’s
side of accountability by means of Report as a component of Mission. The
intuition is that an a-giver provides a report (i.e., an account) which is always
contextualized by a mission: a report cannot exist on its own, but it refers to
a specific mission to which the a-giver is committed. The association between
Report and Reporting Goal makes it clear that a report is produced by some
internal agent goal, mapping the Reporting Goal. The result of such an internal
goal is a set of facts that gain an institutional meaning as a Report.

The a-taker’s side of accountability is captured via Request, a component of
Mission. An agent is legitimated to ask for a report only when the mission it
is committed to includes at least one Request. The right of asking for a report
can become an obligation when Request is associated with Requesting Goal.
The organization can, in fact, issue obligations to achieve these goals pushing
the agent to act as a-taker.

The relationships between Report and Request is captured as an associ-
ation class Accountability, whose field condition represents the contextual
condition that must be satisfied for granting the right of asking a report. It is
important to underline that such an association class is usually defined between
Report and Request instances that belong to different missions, and hence are
under the responsibility of different agents. In this way, the association models
the channel through which a report flows from the a-giver (who produces it)
to the a-taker (who uses it). Accountability may be related to one (or more)
Policy, that abstracts a strategy the organization has for copying with a specific
report. Policy, in turn, is associated with one or more Treatment Goals that
realize it. These further goals, when defined, are related to the mission of the

68 M. Baldoni et al.

agent behaving as a-taker: indeed, they capture how the report, provided by the
a-giver, is addressed by the a-taker that asked for it.

Accountability Normative and Structural Dimensions. Accountability comes
actually into play when the new concepts introduced above are regulated by
specific norms. In particular, these norms should not only map the normative
dimension of accountability (i.e., the legitimacy –a-taker ’s side– of asking for an
account, and the obligation –a-giver ’s side– of producing such an account), but
also capture its structural dimension. That is, it must be granted that when an
agent is obliged to produce a report, that agent has the means for producing an
authoritative report, i.e., an account.

In JaCaMo, norms are represented and interpreted by the Moise layer by
using the Normative Programming Language (NPL) [32]. A norm in this lan-
guage has the following syntax: norm id : ϕ -> ψ, where id is an identifier of
the norm, ϕ is the activation condition of the norm, and ψ is the consequence of
the norm. A consequence can either be an obligation, or a failure. The former is
used to raise obligations toward agents about goals to be achieved. The latter is
used to model regimented norms; e.g., conditions that are prohibited. Intuitively,
when φ is fail, any agent action that makes ϕ true will fail, too (and no change
in the organization occurs).

We can reproduce the normative dimension of accountability by means of
norms in NPL. For instance, the following norm template induces the account-
ability A(x, y, r, u).

1 norm r e p o r tP r o du c t i o n :
2 a c c o u n t a b i l i t y (Request_u , Report_u , R) &
3 r e po r tReque s t (Y, Request_u) & R &
4 mi s s i o n (M1, Y) & r e qu e s t (M1, Request_u) &
5 r e p o r t (M2, Report_u) & m i s s i o n (M2, X)
6 −>
7 o b l i g a t i o n (X, Repor tProduct ion , r e p o r t i n gGo a l (Report_u) ,
8 Dead l i n e)

The rule specifies that, when there exists an accountability relating a report
about u and a request for the very same report in the context r (line 2), and agent
y asks for a report on u under condition r (line 3), and y is legitimated to ask such
a report because the request is part of its mission (line 4), and x is competent
for producing an authoritative report about u because this is part of its mission
(line 5), then an obligation on x is issued about goal reportingGoal(Report_u),
through which the agent will provide y with the requested report.

Another norm can be defined to grant y the permission to ask for a report
only when the request is part of its mission, and condition r holds. Indeed, in
NPL we have to express a norm for prohibiting y to ask for a report when the
context does not hold or when it has not a request for that report in its mission.

1 norm reque s tNotA l l owed :
2 a c c o u n t a b i l i t y (Request_u , Report_u , R) &
3 r e po r tReque s t (Y, Request_u) & (not R |

Fragility and Robustness in Multiagent Systems 69

4 (not (m i s s i o n (M1, Y) & r e qu e s t (M1, Request_u)))
5 −>
6 f a i l (no tLeg i t ima t eReque s t (Y, R , U))

The argument of the fail operator, notLegitimateRequest(Y, R, U), rep-
resents the reason for the failure.

Following [5], the structural dimension of accountability requires that for
each accountability A(x, y, r, u) defined in the system, either x has control over
u, and hence can generate an account by producing facts, or there exists another
accountability of the form A(z, x, r, u) supporting x. In terms of norms, thus,
the structural dimension is a property that can be verified by assessing whether
for each obligation that agent x has about reporting on u, x has the means for
generating a report either from direct control over u, or from a report that x
is legitimated (by norms) to ask to another agent. When both the structural
and normative dimensions of accountability hold, x is an accountable agent for
condition u, that is, x has the power to produce an account about u (i.e., an
authoritative and reliable collection of facts).

It is worth noting that, although accountability is conceptually a directed
relationship between agents, it is realized by means of undirected obligations.
This happens because in our discussion we talk about accountability within the
context of an organization, and rely on the organization’s normative system
to realize accountability by way of concepts like obligations and goals. Other
approaches, such as [11,18], do not take the organizational perspective, but
allow agents to establish their accountability relationships by means of proto-
cols. In these cases, the notion of accountability is usually realized by means of
social commitments, that differently from obligations, are always directed from
a debtor agent towards a creditor agent.

Adding Robustness Through Accountability. The structural dimension of an
accountability A(x, y, r, u) implies that accountability be grounded on control
requirements. However, since it is not generally possible to assume that agents
can be inspected, it is also generally impossible to know whether an agent has
control over a specific condition when it enacts a role. To fill this knowledge
gap, we assume that agents joins an organization only if they take on, explicitly,
the responsibility of some of the organizational goals. As explained, responsibil-
ity is not directly represented in JaCaMo, but we can see the commitment to a
mission as a declaration of responsibility assumption. Accountability and respon-
sibility support robustness when the account about a perturbation is reported
to the agent who is responsible for treating that perturbation. This is, in fact,
a possible mapping of “the feedback interconnection of sensors and actuators”
[2] into the organizational setting: the account of a perturbation (feedback) is
the response that an a-giver produces as a consequence of a failure of a goal g
(perturbation), that is of “interest” to an a-taker. The “interest” stems by the
fact that the a-taker is responsible for an organizational goal, G, which cannot
be accomplished due to the failure of g. By virtue of its responsibility on G, the
a-taker is also responsible for treating any perturbation affecting G. Generally

70 M. Baldoni et al.

speaking, treating a perturbation means restoring a normal execution flow dis-
rupted by that perturbation, but favorable opportunities could be handled, as
well. TreatmentGoal abstracts such a task of treating perturbations by means
of the mapping with the internal goals of a responsible agent.

4 Related Works

In this paper, we argued that accountability is instrumental for the realization of
distributed systems that show some robustness property by design. Other works
in literature have advocated the importance of accountability in the design of
complex systems. The proposal in [15,16] takes into account Sociotechnical Sys-
tems (STS), where multiple, autonomous principals interact with each other.
They show how accountability plays a fundamental role in balancing the princi-
pals’ autonomy. Their point is that accountability does not limit autonomy, since
a principal can decide to violate any expectation for which it is accountable.
However, by way of accountability, the principal would be held to account about
that violation. Accountability relationships have, in fact, a normative stance, and
hence they can be used to model the requirements of any STS. Accountability
requirements serve as high-level representation of protocols, favoring the modu-
larity of an STS development: a principal just needs to know its accountability
requirements, and then can implement its software independently from others.

The work in [17] considers the ethical dimension in the design of STS. The
authors argue that social norms provide a standard for correct behavior. Ethics
is, in fact, a system-level concern; the point is that whether an agent’s actions are
ethical depends upon whether the system as a whole is ethical. An ethical system
is capable of assessing the violation of an norm, and see it as an opportunity
for innovation. An important aspect raised by the authors is that autonomy is
not only a matter of intelligence and capabilities, but also involves the ability to
violate norms. The rationale is that innovation presupposes the deviation from
norms, that is to say, violating norms is not always bad, but sometimes it can
lead to improving the whole system. In order to do this, it is necessary to align
norms and agents, by relying on explanations that violators are expected to give.
So, if the explanation hints a lack in the normative system, the violator is not
sanctioned but rather the norms are updated. This approach is pretty different
than ours. First of all, there is no explicit distinction between responsibility and
accountability. The two concepts are merged within a single notion somehow
aligned with liability. In [17], in fact, the normative dimension associated with
accountability refers to the expectation that an a-taker has on what the a-giver
will do (i.e., be ethical by adhering to norms). When the a-giver does not comply
with the expectations, it is implicitly considered responsible for the violation,
and hence held to explain the reasons for its behavior.

In our approach, the notion of accountability is not tied to liability, but has
a wider understanding, since an accountable agent is not necessarily one to be
blamed. To achieve this result we separate the responsibility of action from the
accountability about situations [26]. The responsibility to act inside an organi-
zation is captured by the commitment to a mission: an agent accepts all the

Fragility and Robustness in Multiagent Systems 71

obligations that may be subsequently issued by the normative system of the
organization. On the other hand, accountability is characterized by two dimen-
sions: normative and structural. In our case, the normative dimension refers
to the expectation an a-taker has on what accounts (i.e., reports) the a-giver
is capable to provide. Such a dimension, however, must be supported by the
structural dimension, that assures an a-giver has the proper means for produc-
ing the accounts it is expected to. Grounding the structural dimension on the
assumption of responsibility allows agents to report legitimately about outcomes
brought about by other agents [12]. This is essential when, in a distributed sys-
tem, the perturbation detected by an agent may have to traverse many agents
before reaching the one capable of handling it.

Moreover, explanations are not reports: an explanation in [17] is a justifica-
tion of the agent’s norm-violating behavior, while a report, in our understanding,
does not have this specific interpretation. Then, a-givers in our approach are
not seen as rule-violators: they are agents that meet perturbations and provide
information about the encountered situation. The a-takers, on their hand, will
interpret the received reports at the callee’s level, possibly combining them with
further information not available to the agents which met the perturbations.
The adaptation process in [17] can, however, be seen as a type of robustness,
and hence it bears similarities with the approach presented in the paper. Our
objective, however, is not to change the norms, but to support the achievement
of the organizational goal despite the occurrence of anticipated perturbations. In
[17], instead, accountability enables the process of norms adaptation by feeding
outcomes back into the design-phase. The two approaches are not in contrast,
rather, they complement each other. They are both exemplifications of the per-
spective put forward in [2], for which a property of a system is robust if it is
invariant with respect to a set of perturbations. The difference lies in the type
of perturbations the two approaches aim at.

On the conceptual modeling side, ReMMo (Responsibility MetaModel) by
Feltus [26] is one of the few attempts, to the best of our knowledge, of con-
ceptualizing how responsibility can be structured in the frame of an enterprise
architecture. There are some interesting similarities, but also substantial differ-
ences between ReMMo and the conceptual model we propose. Both in ReMMo
and in our proposal, responsibilities originate from (professional) norms agents
are held to respect. The two approaches agree that accountability refers to the
obligation to report the achievement, maintenance, or avoidance of some given
state to an authority [39]. ReMMo relates a responsibility to an aggregate of
accountabilities. The rationale is that a responsibility is composed of duties, and
an agent assigned to that responsibility is answerable, via accountabilities, for
these duties. The same relationship emerges, indirectly, also in our conceptual
model. In fact, a Mission can be composed by several Report and Request, and
Accountability is an association class between them.

There are, however, some important differences. First of all, in ReMMo every
responsibility is always associated with one or more accountabilities. We instead
allow missions (sources of responsibility) that are not related with reports, and

72 M. Baldoni et al.

hence with accountabilities. This discrepancy stems from the different aims and
scopes of the two models. ReMMo captures the complexity of a human organi-
zation, and aims at tracing who is responsible for some task and hence is held to
account for what she does (or does not) concerning that task. The goal, thus, is
to single out the person(s) who should provide an account for a specific business
task performed within the enterprise. In our case, instead, we aim at achieving
robustness by way of accountability as a mechanism for modeling feedback flows.
But not for every mission feedback may be required, or can possibly be specified,
and hence the model lets the definition of missions that are not in relation with
reports. In addition, in our model Report, Request, and Policy are explicitly
represented not only to specify who has to provide an account to whom, but also
how such an account should be used by the a-taker for the robustness purpose.
All these concepts are missing in ReMMo, where accountability is substantially
overlapped with liability, and hence associated with a sanction. In our view, it
is restrictive to see accountability just as a way to find a culprit to be sanc-
tioned; rather, it is an important tool to get a better understanding of what is
going on in the system, and possibly take proper action. Sanctions, if necessary,
follow from normative decisions, and hence they are associated with the Norm
concept. This is also the position put forward in [17], where it is observed how
sanctions, although may serve as deterrent, remove accountability: by paying
its sanction, an agent needs no longer to provide an account about its violation.
This of course prevents one to know the causes of the violation, and hence blocks
the adaptation process at the basis of robustness.

MOCA [12] is another attempt to model accountability from a computational
point of view which deserves some discussion. MOCA is an information model
that captures what kind of data (facts) must be available to develop systems
that, in any situation of interest arising in a group of interacting agents, permit
the identification of account-givers. The model is given in Object-Role Modeling
(ORM) [31] due to the relational nature of the represented concepts, and enables
automatic verification of consistency of a specific domain description. This allows
a designer to establish whether all the relevant pieces of information for support-
ing accountability have been considered. MOCA builds the information model
for accountability around two basic concepts: just expectation and control. For
just expectation it is intended a mutual awareness and acceptance of an account-
ability relationships between the involved a-giver and a-taker agents. For control,
instead, it is intended the power, possibly exerted indirectly by means of other
agents, of achieving a condition of interest. These two features are properly cap-
tured in our proposal by, respectively, the normative and structural dimensions
of accountability. Through the normative dimension, in fact, agents are aware of
what obligations they may be subjected as a-giver, and what permissions they
have as a-taker. The structural dimension, instead, grounds accountability rela-
tionships over an explicit assumption of responsibility from the agents via the
commitment to missions. We consider such a commitment as a declaration of
direct control (i.e., expressed in MOCA as the relation can realize).

Fragility and Robustness in Multiagent Systems 73

Accountability is sometimes put in relation with other properties a system
can exhibit, such as transparency, explainability and trust. In particular, the
theme of trustful AI is rapidly gaining attention in the last few years. Although
some authors consider accountability as opposite to trust [29], others posit that
accountability may improve trust when interactions are structured around a clear
set of standards [23]. In this paper, we have not focused on this topic, and leave
the study of how trust may come into play in our accountability conceptual model
to future research. It is worth noting, however, that the two notions are quite
different. As we have discussed, accountability is a social relationships between
two agents that requires mutual acceptance of rights and duties. Trust, instead,
is not necessarily a social relationship: an agent trusts others on the basis of
its internal decisions (that usually depend on what others did in the past). For
instance, some works propose a strategy for computing trust by assessing how
frequently an agent satisfies its commitments [35]. In doing this, however, trust
emerges as a local perspective of a single agent, rather than a social relationship.

We conclude this section with a remark about robustness via reactive behav-
iors. In this paper we have shown how accountability plays a fundamental role in
the case of agents because of their autonomy. Autonomy here means that agents
are opaque: their beliefs cannot be inspected and their deliberative cycle cannot
be known. As pointed out in [17], accountability helps because it defines public
relationships that exist outside the agents, regardless of what agents may believe
or intend. Of course, there are other settings where robustness can be gained via
a purely reactive behavior and where neither accountability nor autonomy come
into play. This is, for instance, the case of robustness via control engineering
(see e.g., [34]), where a system is modeled as a set of mathematical equations
that approximate the system expected outputs for any given inputs. Robust-
ness is gained by means of a controller that, receiving constant feedback of the
system outputs, automatically update some system parameters so as to meet
its expected performance requirements. This approach is only possible, however,
when we are able to design a model of the whole system knowing the (possi-
ble approximated) behavior of each of its components. This is not the case in
software engineering, however.

5 Conclusions

In this paper, we have posited that an explicit representation of accountability
relationships and responsibility declarations form a solid ground upon which a
property of robustness can be achieved by design. We have taken into account
agent organizations as background of our discussion, and hence we presented an
organizational conceptual model apt to capture accountability and responsibil-
ity notions. The JaCaMo conceptual model served as a starting point for our
extension, but our contribution is not strictly dependent on the JaCaMo model.
An important result of this work is a normative characterization for capturing
accountability relationships: accountability is, in fact, inherently a normative
relationship [17]. We have identified two dimensions featuring accountability:

74 M. Baldoni et al.

normative and structural. With the normative dimension we model the relation-
ships between a-takers and a-givers, thus capturing the legitimacy of the former
to ask for an account, and the obligation of the latter to provide the account. The
structural dimension is instead related to the control, or competence, of a-givers.
The structural dimension assures that an agent who is a-giver has the proper
means for producing an authoritative account of the situation of interest. Only
when such a condition holds, the account represents a meaningful piece of infor-
mation. We are implementing the approach outlined in the paper by extending
the JaCaMo platform, and a first release is on the way.

A key point raised in the paper is that accountability has a positive impact on
the agents’ autonomy and, due to this, on their adaptability, consequently open-
ing the way to making an organization more robust. On the one side, account-
ability improves the awareness of the a-taker about what is happening in the
system, allowing it to deliberate its (counter)actions accordingly. On the other
side, the a-giver’s reputation is not automatically reduced when failures occur,
because the reports will highlight possible perturbations, supporting the func-
tioning of the organization. Actually, this increases both trust and autonomy
[4,42].

This work sets the ground for several future directions. First of all, it repre-
sents a general schema that can be tailored to capture specific applications. For
instance, it is possible to realize an exception handling mechanism in agent orga-
nizations, by constraining the way in which agents produce and consume reports.
Specifically, an exception is a situation of interest whose occurrence is related to
errors, and which should be urgently reported to the agent in charge of handling
these errors. Such “urgency” implies that whenever an agent detects an error it
is obliged to report it, even without an explicit request. On the other side, the
agent receiving a report will be in charge (i.e., obliged) of tackling the report,
that is, handling the exception. These behaviors can be obtained by acting at
the normative level of the organization by generating automatically obligations
on report and treatment goals. We are currently developing a system, inspired
by JaCaMo+ [8] and of [7,9].

In conclusion, we think that the presented framework can be the base for
capturing a wide range of non-functional requirements, besides robustness, such
as adaptability, fault tolerance, reusability, and transparency. Our intuition is
that these non-functional requirements are met in a distributed system when its
components (agents in our perspective), can exchange information at a different
level of that of the outcomes that are specified by functional requirements. As
shown in the paper, accountability can be a valid conceptual tool for reaching
this objective.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their feedback, that helped to improve the paper, and Olivier Boissier and Stefano
Tedeschi for the helpful discussions and support.

Fragility and Robustness in Multiagent Systems 75

References

1. ISO/IEC/IEEE International Standard - Systems and software engineering -
Vocabulary. ISO/IEC/IEEE 24765:2010(E), pp. 1–418, December 2010. https://
doi.org/10.1109/IEEESTD.2010.5733835

2. Alderson, D.L., Doyle, J.C.: Contrasting views of complexity and their implications
for network-centric infrastructures. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 40(4), 839–852 (2010)

3. Aldewereld, H., Dignum, V., Vasconcelos, W.W.: Group norms for multi-agent
organisations. ACM Trans. Auton. Adapt. Syst. 11(2), 15:1–15:31 (2016)

4. Baarslag, T., Kaisers, M., Gerding, E.H., Jonker, C.M., Gratch, J.: When will
negotiation agents be able to represent us? The challenges and opportunities for
autonomous negotiators. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25
August 2017, pp. 4684–4690 (2017)

5. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, R., Tedeschi, S.:
Accountability and responsibility in agent organizations. In: Miller, T., Oren, N.,
Sakurai, Y., Noda, I., Savarimuthu, B.T.R., Cao Son, T. (eds.) PRIMA 2018. LNCS
(LNAI), vol. 11224, pp. 261–278. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03098-8_16

6. Baldoni, M., Baroglio, C., Boissier, O., Micalizio, R., Tedeschi, S.: Accountability
and responsibility in multiagent organizations for engineering business processes.
In: Dennis, L.A., Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS (LNAI),
vol. 12058, pp. 3–24. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51417-4_1

7. Baldoni, M., Baroglio, C., Capuzzimati, F.: A commitment-based infras-
tructure for programming socio-technical systems. ACM Trans. Inter-
net Technol. 14(4), 23:1–23:23 (2014). https://doi.org/10.1145/2677206.
http://doi.acm.org/10.1145/2677206

8. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Commitment-based agent
interaction in JaCaMo+. Fundamenta Informaticae 159(1–2), 1–33 (2018)

9. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type checking for pro-
tocol role enactments via commitments. Auton. Agent. Multi-Agent Syst. 32(3),
349–386 (2018). https://doi.org/10.1007/s10458-018-9382-3

10. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability. In: Chesani, F., Mello, P., Milano, M. (eds.) Deep Understand-
ing and Reasoning: A Challenge for Next-Generation Intelligent Agents, URANIA
2016, Genoa, Italy, vol. 1802, pp. 56–62. CEUR, Workshop Proceedings, December
2016. http://ceur-ws.org/Vol-1802/

11. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational
accountability in MAS organizations with ADOPT. Appl. Sci. 8(4), 489 (2018)

12. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: MOCA: an ORM
model for computational accountability. J. Intell. Artif. 13(1), 5–20 (2019). https://
doi.org/10.3233/IA-180014

13. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with JaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013). http://
www.sciencedirect.com/science/article/pii/S016764231100181X

14. Bovens, M.: Two concepts of accountability: accountability as a virtue and as a
mechanism. West Eur. Polit. 33(5), 946–967 (2010)

https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-03098-8_16
https://doi.org/10.1007/978-3-030-51417-4_1
https://doi.org/10.1007/978-3-030-51417-4_1
https://doi.org/10.1145/2677206
http://doi.acm.org/10.1145/2677206
https://doi.org/10.1007/s10458-018-9382-3
http://ceur-ws.org/Vol-1802/
https://doi.org/10.3233/IA-180014
https://doi.org/10.3233/IA-180014
http://www.sciencedirect.com/science/article/pii/S016764231100181X
http://www.sciencedirect.com/science/article/pii/S016764231100181X

76 M. Baldoni et al.

15. Chopra, A.K., Singh, M.P.: The thing itself speaks: accountability as a foundation
for requirements in sociotechnical systems. In: IEEE 7th International Workshop
RELAW. IEEE Computer Society (2014). https://doi.org/10.1109/RELAW.2014.
6893477

16. Chopra, A.K., Singh, M.P.: From social machines to social protocols: software
engineering foundations for sociotechnical systems. In: Proceedings of the 25th
International Conference on WWW (2016)

17. Chopra, A.K., Singh, M.P.: Sociotechnical systems and ethics in the large. In:
Furman, J., Marchant, G.E., Price, H., Rossi, F. (eds.) Proceedings of the 2018
AAAI/ACM Conference on AI, Ethics, and Society, AIES 2018, New Orleans, LA,
USA, 02–03 February 2018, pp. 48–53. ACM (2018)

18. Chopra, A.K., Singh, M.P.: Clouseau: generating communication protocols from
commitments. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence (AAAI 2020), pp. 7244–7252. AAAI Press (2020)

19. Cranefield, S., Oren, N., Vasconcelos, W.W.: Accountability for practical reasoning
agents. In: Lujak, M. (ed.) AT 2018. LNCS (LNAI), vol. 11327, pp. 33–48. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17294-7_3

20. Dubnick, M.J.: Blameworthiness, trustworthiness, and the second-personal stand-
point: foundations for an ethical theory of accountability. Presented at EGPA
Annual Conference, Group VII: Quality and Integrity of Governance, Edinburgh,
Scotland, 11–13 September 2013

21. Dubnick, M.J.: Accountability as a Cultural Keyword, pp. 23–38. Oxford University
Press, Oxford (2014)

22. Dubnick, M.J., Justice, J.B.: Accounting for accountability, September 2004.
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.
pdf. Annual Meeting of the American Political Science Association

23. Ehren, M., Paterson, A., Baxter, J.: Accountability and trust: two sides of the same
coin? J. Educ. Change 21(1), 183–213 (2019). https://doi.org/10.1007/s10833-019-
09352-4

24. Elder-Vass, D.: The Causal Power of Social Structures: Emergence, Structure and
Agency. Cambridge University Press, Cambridge (2011)

25. Executive Board of the United Nations Development Programme and of the United
Nations Population Fund: The UNDP accountability system, accountability frame-
work and oversight policy. Technical report DP/2008/16/Rev.1, United Nations
(2008)

26. Feltus, C.: Aligning access rights to governance needs with the responsibility meta-
model (ReMMo) in the frame of enterprise architecture. Ph.D. thesis, University
of Namur, Belgium (2014)

27. Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall Inc., Englewood Cliffs
(1967)

28. Grant, R.W., Keohane, R.O.: Accountability and abuses of power in world politics.
Am. Polit. Sci. Rev. 99(1), 29–43 (2005)

29. Gundlach, G.T., Cannon, J.P.: “Trust but verify”? The performance implications of
verification strategies in trusting relationships. J. Acad. Mark. Sci. 38(4), 399–417
(2010). https://doi.org/10.1007/s11747-009-0180-y

30. Haller, P., Sommers, F.: Actors in Scala - Concurrent Programming for the Multi-
core Era. Artima, Walnut Creek (2011)

31. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. Morgan
Kaufmann Publishers, Burlington (2008)

https://doi.org/10.1109/RELAW.2014.6893477
https://doi.org/10.1109/RELAW.2014.6893477
https://doi.org/10.1007/978-3-030-17294-7_3
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://pdfs.semanticscholar.org/b204/36ed2c186568612f99cb8383711c554e7c70.pdf
https://doi.org/10.1007/s10833-019-09352-4
https://doi.org/10.1007/s10833-019-09352-4
https://doi.org/10.1007/s11747-009-0180-y

Fragility and Robustness in Multiagent Systems 77

32. Hübner, J.F., Boissier, O., Bordini, R.H.: A normative programming language for
multi-agent organisations. Ann. Math. Artif. Intell. 62(1), 27–53 (2011). https://
doi.org/10.1007/s10472-011-9251-0

33. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: An integrated trust and reputation
model for open multi-agent systems. Auton. Agent. Multi-Agent Syst. 13(2), 119–
154 (2006)

34. Ioannou, P.A., Sun, J.: Robust Adaptive Control. Courier Corporation, North
Chelmsford (2012)

35. Kalia, A.K., Zhang, Z., Singh, M.P.: Estimating trust from agents’ interactions via
commitments. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014 - 21st
European Conference on Artificial Intelligence, 18–22 August 2014, Prague, Czech
Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014).
Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 1043–1044. IOS
Press (2014). https://doi.org/10.3233/978-1-61499-419-0-1043

36. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., Singh, M.: Com-
mitments with regulations: reasoning about safety and control in REGULA. In:
Proceedings of the 10th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS), vol. 2, pp. 467–474 (2011)

37. Platon, E., Sabouret, N., Honiden, S.: Challenges for exception handling in multi-
agent systems. In: Choren, R., Garcia, A., Giese, H., Leung, H., Lucena, C.,
Romanovsky, A. (eds.) SELMAS 2006. LNCS, vol. 4408, pp. 41–56. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73131-3_3

38. Rawls, A.W.: Harold Garfinkel, ethnomethodology and workplace studies. Organ.
Stud. 29(5), 701–732 (2008)

39. Sommerville, I., Lock, R., Storer, T., Dobson, J.: Deriving information require-
ments from responsibility models. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.)
CAiSE 2009. LNCS, vol. 5565, pp. 515–529. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02144-2_40

40. Sustainable Energy for All Initiative: Accountability framework. https://
sustainabledevelopment.un.org/content/documents/1644se4all.pdf

41. Timm, I.J., Scholz, T., Herzog, O., Krempels, K.H., Spaniol, O.: From agents to
multiagent systems. In: Kirn, S., Herzog, O., Lockemann, P., Spaniol, O. (eds.) Mul-
tiagent Engineering. INFOSYS, pp. 35–51. Springer, Heidelberg (2006). https://
doi.org/10.1007/3-540-32062-8_3

42. Winikoff, M.: Towards trusting autonomous systems. In: El Fallah-Seghrouchni,
A., Ricci, A., Son, T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 3–20.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91899-0_1

43. Woods, D.D.: The risks of autonomy: Doyle’s catch. J. Cogn. Eng. Decis. Mak.
10(2), 131–133 (2016)

44. Wooldridge, M., Jennings, N.R., Kinny, D.: The GAIA methodology for agent-
oriented analysis and design. Auton. Agent. Multi-Agent Syst. 3(3), 285–312
(2000). https://doi.org/10.1023/A:101007191086910.1023/A:1010071910869

45. Yazdanpanah, V., Dastani, M.: Distant group responsibility in multi-agent systems.
In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA
2016. LNCS (LNAI), vol. 9862, pp. 261–278. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-44832-9_16

46. Zahran, M.: Accountability Frameworks in the United Nations System (2011).
https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/
en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf. UN Report

47. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
the Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

https://doi.org/10.1007/s10472-011-9251-0
https://doi.org/10.1007/s10472-011-9251-0
https://doi.org/10.3233/978-1-61499-419-0-1043
https://doi.org/10.1007/978-3-540-73131-3_3
https://doi.org/10.1007/978-3-642-02144-2_40
https://doi.org/10.1007/978-3-642-02144-2_40
https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf
https://sustainabledevelopment.un.org/content/documents/1644se4all.pdf
https://doi.org/10.1007/3-540-32062-8_3
https://doi.org/10.1007/3-540-32062-8_3
https://doi.org/10.1007/978-3-319-91899-0_1
https://doi.org/10.1023/A:101007191086910.1023/A:1010071910869
https://doi.org/10.1007/978-3-319-44832-9_16
https://doi.org/10.1007/978-3-319-44832-9_16
https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf
https://www.unjiu.org/sites/www.unjiu.org/files/jiu_document_files/products/en/reports-notes/JIU%20Products/JIU_REP_2011_5_English.pdf

Fault Tolerance in Multiagent Systems

Samuel H. Christie V(B) and Amit K. Chopra

Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
{samuel.christie,amit.chopra}@lancaster.ac.uk

Abstract. A decentralized multiagent systems (MAS) is comprised of
autonomous agents who interact with each other via asynchronous mes-
saging. A protocol specifies a MAS by specifying the constraints on mes-
saging between agents. Agents enact protocols by applying their own
internal decision making.

Various kinds of faults may occur when enacting a protocol. For exam-
ple, messages may be lost, duplicates may be delivered, and agents may
crash during the processing of a message. Our contribution in this paper
is demonstrating how information protocols support rich fault toler-
ance mechanisms, and in a manner that is unanticipated by alternative
approaches for engineering decentralized MAS.

1 Introduction

Like any software system, a multiagent system is vulnerable to a variety of faults
resulting from any number of root causes: bugs, hardware failure, environmental
conditions, etc. If handled poorly or not at all, such faults could propagate
through the system and ultimately cause an error, or deviation from the specified
behavior of the system.

This paper is concerned with decentralized multiagent systems (MAS) in
which autonomous agents communicate via asynchronous messaging and coordi-
nate their computations by following an interaction protocol. The decision mak-
ing of agents being private, the protocol is in fact the fundamental operational
specification of a MAS. Indeed, it is meaningless to talk about the computations
of a MAS except in terms of messages sent and received by its agents.

Agents enact a protocol by plugging in their private decision making, as
encoded in their policies. Although there has been significant work on protocol
specification [3,10] and engineering protocol-conformant agents [1], there is little
work that addresses protocol enactment under various kinds of faults. The faults
may correspond to communication infrastructure failures, e.g.., message loss,
corruption, duplication, and so on, or to agent failures, e.g.., crashes.

We would expect that a fault-tolerant MAS has the following two properties.
One, no fault causes an agent to send a message that would be noncompliant with
the protocol. We refer to this property as compliant-despite-faults. Two, agents, if
they choose to, can recover from faults by sending additional messages. We refer
to this property as progress-despite-faults. Naturally, any additional message
must be protocol-compliant.
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 78–86, 2020.
https://doi.org/10.1007/978-3-030-66534-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_5&domain=pdf
http://orcid.org/0000-0003-1341-0087
http://orcid.org/0000-0003-4629-7594
https://doi.org/10.1007/978-3-030-66534-0_5

Fault Tolerance in Multiagent Systems 79

Listing 1. The Ridesharing RFQ Protocol
RFQ {

r o l e R ider , S e r v i c e
paramete r out ID key , out l o c a t i o n , out d e s t i n a t i o n , out p r i c e

R id e r −> S e r v i c e : Request [out ID key , out l o c a t i o n , out d e s t i n a t i o n]
S e r v i c e −> R ide r : O f f e r [i n ID key , i n l o c a t i o n , i n d e s t i n a t i o n , out p r i c e]

}

Our contribution in this paper is illustrating how fault-tolerant MAS with the
above properties can be constructed. We illustrate our ideas in the framework of
information protocols [9]. In fact, we show that whereas information protocols are
naturally compatible with fault-tolerance mechanisms, alternative approaches
are not. In particular, although alternatives can ensure compliance, progress
despite faults would be challenging.

2 Basic Fault Handling with Information Protocols

Throughout this paper, we will be developing examples based on a hypothetical
ridesharing service.

Listing 1 gives the BSPL specification for a simple RFQ interaction, in which
a rider shares their location and desired destination, which the service can use
to estimate the cost of a journey.

In the RFQ protocol in Listing 1, there are two roles an agent may play:
Rider and Service. The Rider can send Request, which has a payload of three
parameters: ID, location, and destination. These parameters are adorned �out�,
which means that Rider produces new bindings for them upon sending Request.
Service can also send one message, Offer, with a payload of four parameters:
ID, location, destination, and price. The first three parameters are adorned �in�,
which means Service must observe a binding for them before sending Offer.
In RFQ, all of the messages have ID as the only key, which uniquely identifies
the enactments of RFQ. Each parameter may only have one binding for a given
value of ID.

2.1 Message Reordering

Message reordering is a fault in several protocol specification languages, because
they depend on ordering guaranties from the communication infrastructure [2].

For example, the RFQ protocol specified as a trace expression [3] is given as
the following:

Rider
Request
====⇒ Service · Service Offer==⇒ Rider

This specifies the simple requirement that a trace (log of messages) of the
system match the concatenation of the traces of a single Request concatenated
with the trace of a single Offer.

80 S. H. Christie V and A. K. Chopra

Although this matches exactly a single enactment of RFQ, since Service
cannot send Offer until it has received Request, there is minimal support for
repeated enactments and no support for message reordering. Under Ferrando
et al.’s [3] assumption of FIFO channels, if Rider sends multiple Requests, it
can expect to receive several Offer messages in the same order; multiple enact-
ments are indistinguishable from isolated enactments. However, if something
breaks and the messages are delivered out of order, Rider would erroneously
correlate the wrong Offer with its Request. Although message IDs could be auto-
matically added by the infrastructure to help correlate requests with responses,
such automatic IDs are only effective for two-party cases. A more detailed dis-
cussion of the limitations of such correlation IDs and FIFO queues is available
at [2].

In contrast, systems specified by information protocols correctly associate
messages with enactments without constraining the ordering, because the mes-
sages contain explicit keys that ensure correct correlation. Alternatively, infor-
mation protocols are concerned with the cumulative information observed, and
all information is explicitly communicated, so messages contain the same infor-
mation regardless of the order they are received.

2.2 Message Duplication

Another common fault in communications is message duplication, in which a
message is received multiple times, though it was sent only once.

In Sect. 2.1, the Trace specification of the RFQ protocol specifies exactly
one transmission of Request, followed by exactly one transmission of Offer. If
multiple Request are received, Service will interpret them as multiple isolated
enactments of RFQ, and presumably respond to each. Conversely, if multiple
Offer messages are received, Rider will incorrectly correlate them to its subse-
quent Request messages.

In this case, the automatic addition of message IDs can identify and elimi-
nate duplicate messages. However, relying on automatic correlation IDs imposes
constraints on the infrastructure, and implicitly couples the agents to it.

Because all information in a message is explicit, information protocols are
not affected by duplicate messages; they contain no new information regarding
the enactment, and so do not affect the state of the agent. However, duplicate
messages do potentially communicate implicit information about the environ-
ment; that something is wrong which would cause duplicates to occur. Thus,
handling duplicate messages in the agent’s policy instead of the infrastruc-
ture enables additional fault tolerance strategies and is important for ensuring
progress despite faults, as we discuss further in Sect. 4.

2.3 Message Corruption

Message corruption damages the information content of a message, so informa-
tion protocols alone do not provide a solution.

Fault Tolerance in Multiagent Systems 81

However, environmental message corruption can be easily detected and
avoided using content-level techniques such as signatures and checksums. An
unrecoverably corrupted message can be discarded and considered equivalent
to message loss. As such, we do not consider accidental message corruption in
detail.

2.4 Message Loss

A lost message contains no information, and is furthermore indistinguishable
from delay or an agent’s autonomous decision to not send the message. Therefore,
an information protocol specification alone—or any protocol specification, for
that matter—cannot correct message loss.

However, information protocols do enable the use of various strategies at
the agent policy level for detecting and resolving message loss. The following
sections discuss several causes for message loss, and strategies that can be taken
to address them.

3 Internal Faults

In this section, we address faults that directly affect an agent itself, such as a bug
in the agent’s software implementation or a hardware failure. For simplicity, we
consider that all of these faults can be abstracted to the worst case scenario of a
crash, causing the agent to halt and cease further action. Strategies for handling
lower-level faults and avoiding crashes are outside the scope of this discussion.

Figure 1 illustrates the architecture of a basic protocol-aware agent, to help
identify the consequences of a crash at various points in its operation.

History

Reception Checking

History

Emission Checking

Incoming
Messages

Agent Policy

Internal
Events

Outgoing
Messages

Reception Adapter Emission Adapter

Fig. 1. An agent’s internal architecture, showing how internal events and policy inter-
act with the world through the protocol adapters.

Figure 1 shows the important components of a protocol-aware agent, and
how it interacts with the world. Such an agent interacts with the world through
its protocol adapters, which keep a history of all messages received and emitted,
and check outgoing messages for consistency with that history. If a message is
not consistent with the agent’s history it will be dropped, ensuring compliance
despite faults.

82 S. H. Christie V and A. K. Chopra

The agent’s internal policy processes events and emits messages through the
emission adapter. Events can be external, resulting from message receptions, or
internal events such as sensory perception or timers.

The points at which a crash may occur include:

1. Before logging reception
2. After logging reception, before policy
3. During policy, before logging emission
4. After logging emission, before sending

Case 1 is indistinguishable from a network connection failure. Strategies for
dealing with environmental network loss are discussed in Section 4.

Cases 2 and 3 are only distinguishable if the agent is stateful; that is, if
processing the message produces side effects other than message emissions. As
such, we instead discuss strategies for handling crashes during policy in stateless
versus stateful agent implementations.

3.1 Crash During Stateless Policy

If the agent crashes after logging the reception but before policy, a new instance
can be started using the logged history information. Because the history contains
all messages that the agent has received or sent, it contains all of the information
necessary for a new agent to resume where it left off.

There are several ways the restarted agent can resume computation. First,
the agent could simply reprocess all of the messages in its history. This approach
is inefficient, but very simple. Because the agent is stateless it will produce the
same output for all of its inputs. As discussed in Sect. 2.2, information protocols
can handle duplicate messages, though they could be checked against the history
to avoid sending duplicates if desired.

Another option is querying the history for enabled messages. For example,
consider the Service role of the RFQ protocol in Listing 1. As Service is
stateless, it can compute a price using only the location and destination provided
by Rider. To identify prices that it needs to compute, it can search its database
using the equivalent of the following SQL statement:
SELECT ∗ FROM h i s t o r y WHERE

l o c a t i o n IS NOT NULL
AND d e s t i n a t i o n IS NOT NULL
AND p r i c e IS NULL ;

This query finds all enactments where a location and destination have been
observed, but the price has not yet been computed. Service can then compute
and send these missing prices.

3.2 Crash During Stateful Policy

Consider the following rideshare protocol in Listing 2, in which Rider hires the
offered ride, and Service replies with a description of the dispatched vehicle.

Fault Tolerance in Multiagent Systems 83

Listing 2. The Hire Protocol
Hi r e {

r o l e R ider , S e r v i c e
paramete r i n ID key , i n p r i c e , out payment ,

R i d e r −> S e r v i c e : H i r e [i n ID key , i n p r i c e , out payment]
S e r v i c e −> R ide r : R ide [i n ID key , i n payment , out r i d e ID key , out

d e s c r i p t i o n]
}

In Listing 2, Service dispatches a vehicle and then announces the rideID

and description to Rider. If the crash happens after dispatching the vehicle but
before the ride notification, Service would not be able to remember that it
had dispatched the ride from its message history alone. During restart, it may
dispatch a second vehicle, wasting the first driver.

In general, and especially in cases involving side effects in the real world,
there will be crashes that are unrecoverable. The only solutions are low-level
atomic transactions, or detailed closed-loop sensor feedback to check the state
of the system before proceeding.

For situations that are recoverable in software, we propose the following
normalization of the agent architecture:

History

Reception Checking

History

Emission Checking

Incoming
Messages

Internal
Events

Agent Policy

Outgoing
Messages

Reception Adapter Emission Adapter

Fig. 2. Normalized agent architecture, with formerly internal events being handled as
messages.

In Figure 2, the previously internal events are now treated like incoming
messages, and handled by the agent’s protocol adapter.

Normalizing an agent so that all of its events are handled as messages encour-
ages proper protocol design. For example, Service should be interacting with
drivers via protocols. If so, those messages would be in the agent’s history, and
properly handled during restart.

4 External Faults

External faults are those due to environmental conditions, and therefore not the
responsibility of any single agent.

Although the environment can cause any kind of error, information protocols
are robust against reordering and duplication as we discussed in sections 2.1

84 S. H. Christie V and A. K. Chopra

and 2.2. Furthermore, messages corrupted by the environment are easily detected
through the use of checksums and discarded, and so reduce to message loss. As
such, we consider only strategies for handling message loss.

4.1 Retry Policies

If Request is lost during RFQ, it is as if the protocol had never begun—Service
is not aware of the request, and so is unable to respond. However, since an
enactment is identified by unique key parameters (in this case the ID field),
Rider can resend the message until it gets through without confusing Service.

Conversely, if Offer is lost, Rider has no way to tell that Service has
received its message, and so this case is indistinguishable from the first. Thus
Service can expect to receive another copy of Request if the message was not
received, and simply resend it.

This approach—the retry policy—is the basic pattern for handling message
loss in information protocols, since agents may resend information without con-
straint. It is up to the agent’s decision making when to resend a message.

This approach can also scale to larger protocols. Consider the three-party
interaction in Listing 3.

Listing 3. The Rideshare Protocol
R ide sha r e {

r o l e s R ider , S e r v i c e , D r i v e r
paramete r out ID key , out loc , out dest , out payment , out r i d e ID key , out

d e s c r i p t i o n

R ide r −> S e r v i c e : H i r e [out ID key , out loc , out dest , out payment]
S e r v i c e −> Dr i v e r : D i spa tch [i n ID key , i n loc , i n dest , out r i d e ID key]
D r i v e r −> R ide r : A r r i v a l [i n ID key , i n r i d e ID key , out d e s c r i p t i o n]

}

In this simple protocol, Rider hires a ride from location to destination, Service
dispatches Driver, who arrives to pick up the passenger. If all messages are
transmitted successfully, no acknowledgements are required. However, even if
some messages are lost, Rider can resend its request until Driver arrives.

However, retry policies depend on the closed-loop nature of the protocol. If
Rider did not expect Driver to pick them up, and instead requested the ride
on behalf of someone else, then they would have no way of detecting the fault
and resending the message. If there is no way to detect a failure, there is no way
to recover from it.

4.2 Role Replacement

An agent or connection (which are possibly indistinguishable to the other par-
ticipants) may be permanently damaged, so that the only solution is to find a
replacement.

At this point we discover the need for an extension to our protocol language:
role adornments. Previously, roles were implicitly bound by the enactment of the
protocol; perhaps all participants agreed before enacting it. However, now the

Fault Tolerance in Multiagent Systems 85

selection and potential replacement of a role must be explicitly communicated
within the protocol.

Listing 4. Multiple Dispatch Protocol
Mu l t i p l e D i spa tch {

r o l e s R ider , S e r v i c e , D r i v e r
paramete r out ID key , out loc , out dest , out payment , out r i d e ID key , out

d e s c r i p t i o n

R ide r −> out S e r v i c e : H i r e [out ID key , out loc , out dest , out payment]
S e r v i c e −> out D r i v e r : D i spa tch [i n ID key , i n R ider , out r i d e ID key]
D r i v e r −> i n R i d e r : A r r i v a l [i n ID key , i n r i d e ID key , out d e s c r i p t i o n]

}

In Listing 4, the roles are adorned �in� or �out� and may be included
as parameters in a message. Specifically, Rider selects Service, who selects
Driver, and Driver announces its arrival to the explicitly specified Rider.

Treating the roles as parameters explicitly specifies which roles bind the
other roles, giving Service the opportunity to select a different shipper if the
first proves unreliable.

5 Conclusion

In this paper, we have examined various kinds of faults that are relevant to MAS,
and shown that depending on the fault information protocols either directly pro-
vide or enable strategies for both compliance-despite-faults and progress-despite-
faults.

An in-depth classification of faults affecting multiagent systems has been done
by Potiron et al. [7]. Our work focuses only on those faults relevant to a MAS
specification, and suggests strategies for dealing with them using information
protocols.

Limón et al. and Ricci et al. have discussed fault tolerance and JaCaMo [6,
8], but their suggestions have been limited to reconnecting nodes. Guessom et
al. discuss fault tolerance for massive MAS [4], but focus on the architecture
and replication of agents. Kumar et al. discuss fault tolerance for MAS [5], but
focus on architectures for handling broker failures and recovery. None of these
approaches involve specification of the MAS, let al.one protocol or information
protocol based specifications.

For future work, we will consider cases where the roles act maliciously, either
to defraud or attack the other participants in a protocol.

Acknowledgments. Thanks to the anonymous reviewers for helpful comments.
Christie and Chopra were supported by EPSRC grant EP/N027965/1.

References

1. Baldoni, M., Baroglio, C., Martelli, A., Patti, V.: A priori conformance verification
for guaranteeing interoperability in open environments. In: Proceedings of the 4th
International Conference on Service-Oriented Computing, pp. 339–351, December
2006

86 S. H. Christie V and A. K. Chopra

2. Chopra, A.K., Christie V, S.H., Singh, M.P.: An evaluation of communication
protocol languages for engineering multiagent systems. J. Artif. Intell. Res. (to
appear)

3. Ferrando, A., Winikoff, M., Cranefield, S., Dignum, F., Mascardi, V.: On enactabil-
ity of agent interaction protocols: towards a unified approach. In: Dennis, L.A.,
Bordini, R.H., Lespérance, Y. (eds.) EMAS 2019. LNCS (LNAI), vol. 12058, pp.
43–64. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51417-4 3

4. Guessoum, Z., Briot, J.-P., Faci, N.: Towards fault-tolerant massively multiagent
systems. In: Ishida, T., Gasser, L., Nakashima, H. (eds.) MMAS 2004. LNCS
(LNAI), vol. 3446, pp. 55–69. Springer, Heidelberg (2005). https://doi.org/10.
1007/11512073 5

5. Kumar, S., Cohen, P.R.: Towards a fault-tolerant multi-agent system architecture.
In: Sierra, C., Gini, M.L., Rosenschein, J.S. (eds.) Proceedings of the Fourth Inter-
national Conference on Autonomous Agents, AGENTS 2000, Barcelona, Catalonia,
Spain, June 3–7, 2000, pp. 459–466. ACM (2000). https://doi.org/10.1145/336595.
337570

6. Limón, X., Guerra-Hernández, A., Ricci, A.: Distributed transparency in endoge-
nous environments: the JaCaMo case. In: El Fallah-Seghrouchni, A., Ricci, A., Son,
T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 109–124. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91899-0 7

7. Potiron, K., Taillibert, P., El Fallah Seghrouchni, A.: A step towards fault tolerance
for multi-agent systems. In: Dastani, M., El Fallah Seghrouchni, A., Leite, J.,
Torroni, P. (eds.) LADS 2007. LNCS (LNAI), vol. 5118, pp. 156–172. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85058-8 10

8. Ricci, A., Ciortea, A., Mayer, S., Boissier, O., Bordini, R.H., Hübner, J.F.: Engi-
neering scalable distributed environments and organizations for MAS. In: Elkind,
E., Veloso, M., Agmon, N., Taylor, M.E. (eds.) Proceedings of the 18th Inter-
national Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2019, Montreal, QC, Canada, May 13–17, 2019, pp. 790–798. International Foun-
dation for Autonomous Agents and Multiagent Systems (2019). http://dl.acm.org/
citation.cfm?id=3331770

9. Singh, M.P.: Information-driven interaction-oriented programming: BSPL, the
blindingly simple protocol language. In: Proceedings of the 10th International Con-
ference on Autonomous Agents and MultiAgent Systems, pp. 491–498 (2011)

10. Winikoff, M., Yadav, N., Padgham, L.: A new hierarchical agent protocol notation.
Auton. Agents Multi-Agent Syst. 32(1), 59–133 (2017)

https://doi.org/10.1007/978-3-030-51417-4_3
https://doi.org/10.1007/11512073_5
https://doi.org/10.1007/11512073_5
https://doi.org/10.1145/336595.337570
https://doi.org/10.1145/336595.337570
https://doi.org/10.1007/978-3-319-91899-0_7
https://doi.org/10.1007/978-3-540-85058-8_10
http://dl.acm.org/citation.cfm?id=3331770
http://dl.acm.org/citation.cfm?id=3331770

Multi-agent Control of Industrial Robot
Vacuum Cleaners

Joe Collenette1(B) and Brian Logan2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
j.m.collenette@liverpool.ac.uk

2 School of Computer Science, University of Nottingham, Nottingham, UK
brian.logan@nottingham.ac.uk

Abstract. In this paper, we describe a prototype multi-agent-based sys-
tem for cleaning food production facilities developed as part of the Robo-
Clean project. The prototype system is based on domestic robot vacuum
cleaners equipped with infrared allergen sensors and Amazon echo dot
speech interfaces. T.he robots are controlled by a multi-agent system
implemented in Jason, which handles (ad hoc) task allocation and robot
coordination. We briefly describe the architecture of the RoboClean sys-
tem, how coordination is achieved using the contract net protocol, and
the implementation of the current prototype.

1 Introduction

Hygiene and the avoidance of cross contamination, e.g., by allergens, is very
important in food manufacturing. Production and/or specialist cleaning staff
typically spend a significant amount of time cleaning food production facilities,
following industry standards such as those specified by the British Retail Consor-
tium [3]. This has a significant, and increasing impact on employee productivity
and costs. The drive by manufacturers to provide more variety and alternative
formulations (e.g., gluten free foods) increases the amount of time that must be
spent cleaning, and the potential for accidents. For example, data from the UK
Food Standards Agency shows that the number of food safety events relating to
allergens approximately doubled between 2014/15 and 2017/18 [5].

One possible way of reducing the amount of time staff spend on cleaning is
to use robots to automate part of the cleaning task. Cleaning robots, e.g., vac-
uum cleaners, are becoming increasingly common in domestic environments and
are starting to appear in industrial settings. However, such robots are typically
designed to operate in isolation rather than to assist human cleaners, and pro-
vide limited support for the integration of ad hoc cleaning tasks into a cleaning
schedule. In addition, operation typically involves either physical contact with
the robot (to push a button) or a touchscreen (e.g., app-based interfaces) which
may be undesirable for reasons of hygiene. Finally, such systems are not designed
for a food production environment, where the type of material being removed
may be significant, e.g., an allergen.

In this demo paper, we describe a prototype multi-agent-based system for
cleaning food production facilities developed as part of the RoboClean project.
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 87–99, 2020.
https://doi.org/10.1007/978-3-030-66534-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-66534-0_6

88 J. Collenette and B. Logan

The aim of the RoboClean project to investigate the potential of human-robot
and multi-robot teams equipped with speech interfaces and allergen sensing capa-
bilities for the cleaning of food production facilities. The RoboClean prototype
system is based on domestic robot vacuum cleaners equipped with infrared (IR)
allergen sensors and Amazon echo dot speech interfaces. The robots are con-
trolled by a multi-agent system implemented in Jason [1], which handles (ad
hoc) task allocation and robot coordination. We briefly describe the architec-
ture of the RoboClean system, how coordination is achieved using the contract
net protocol, and the implementation of the current prototype.

The remainder of the paper is organised as follows. In Sect. 2 we present
the architecture of the RoboClean system. In Sect. 3 we briefly describe the
implementation of current prototype and illustrate the operation of the task
allocation system with an example. We conclude in Sect. 4 with some directions
for future work.

2 The RoboClean Architecture

The focus of the RoboClean project is on human-robot interaction, flexible team-
work, and allergen monitoring rather than the practical issues related to cleaning
in a food production facility, which may involve cleaning large amounts of semi-
liquid material. For simplicity, we assume the materials to be cleaned are dry
powders, e.g., flours, spice blends, tea, coffee etc., possibly containing allergens,
such as gluten or peanut flour, and the prototype system is based on domestic
robot vacuum cleaners (Neato Botvac D7 Connected1) augmented with an near-
infrared allergen sensor (NIRONE S2.0) and a basic speech interface (Amazon
Echo Dot). Similarly, for ease of implementation, the agents run on a standard
PC and communicate with the robots via an API, rather than on embedded
processors on the robot vacuum cleaners. While simple and cheap, the use of off-
the-shelf domestic vacuum cleaners introduces a number of challenges as detailed
below. The RoboClean architecture is shown in Fig. 1.

2.1 Food Production Facility

A food production facility is assumed to have a variable number of cleaning
robots, possibly of different types. Depending on the cleaning cycle and process,
different types of robots may be used at different times (in the prototype system,
all robots are of the same type, but the architecture does not rely on this), and
robots may have to be taken out of service for maintenance, e.g., emptying
the dust container. The production facility also defines a set of ‘cleaning zones’
specifying areas to be cleaned, for example, the area in front of a particular
machine or alongside a production line. This zone information is used both by
the speech interface to identify the location to be cleaned, e.g., “clean next to the

1 https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/
botvac-d7-connected/.

https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/botvac-d7-connected/
https://www.neatorobotics.com/gb/robot-vacuum/botvac-connected-series/botvac-d7-connected/

Multi-agent Control of Industrial Robot Vacuum Cleaners 89

MAS

Agent
allocator

Food production facility

Task queue
Speech

interface

Neato API

Robot
agent

Robot
agent

Neato

Neato

Neato

Task GUI

Zone
information

Robot
agent

Robot
agent

Fig. 1. The RoboClean architecture. The MAS communicates with Neato robots in the
food production facility through the Neato API. Tasks are added to the Task queue via
the Speech interface and the Task GUI. The Zone information represents the layout of
Food production facility and is used by the Agent allocator and the Speech interface.

coffee roaster”, and by the MAS during task allocation. A zone is a three-tuple
and is defined as:

ID the identifier of the zone;
X, Y the coordinates of the top left hand corner of the zone; and
X1, Y1 the coordinates of the bottom right hand corner of the zone.

Zones can overlap and be nested one inside another. (The zone definition is based
on that used by the Neato API.)

Regular cleaning of the facility is specified as a set of cleaning tasks.
A task is four-tuple defined as follows:

ID the identifier of the the task;
Zone the name of the zone to be cleaned;
Deadline the time by which the task should be completed; and
Priority the importance of the task is relative to other tasks (smaller num-
bers indicate a higher priority).

Tasks are specified using a simple GUI and added to a task queue.
The Neato Botvac D7 robots are internet connected robotic vacuum cleaners

which can be controlled using mobile devices, e.g., smartphones, and other smart
home devices such as Amazon Alexa and Google Home. The robots are battery
powered, and recharge at a base station. Each robot is approximately 30 cm ×
30 cm and weighs 3.5 kg. It has a front bumper that detects collisions and a top
mounted laser used for both mapping and navigation. In the RoboClean system,
each robot also has a speech interface which can be used to query and control

90 J. Collenette and B. Logan

the robot and the robot team, and an IR sensor. (In the interests of simplicity,
the IR sensors are not shown; they are currently not integrated with the API
and communicate indirectly with the MAS via a bluetooth connection.2) The
speech interface can be used to give the robot (or a robot team) ad hoc cleaning
tasks, which are added to the task queue.

2.2 Multi-agent System

The multi-agent system consists of an Agent allocator and a variable number
of Robot agents. The Agent allocator has two main roles: it monitors the Neato
API (described below) and, when a cleaning robot comes online, it allocates a
robot agent to control the robot (creating the robot agent if necessary); it also
monitors the task queue and dispatches new tasks to robot agents. Each Robot
agent is responsible for monitoring and controlling a cleaning robot. The agent
periodically polls its allocated cleaning robot to check its connection, battery
and cleaning status, and issues commands as necessary to perform cleaning tasks
allocated to it. Robot agents are also responsible for managing tasks dispatched
to them by the agent allocator.

Robot agents allocate tasks they receive from the agent allocator using a
version of the contract net protocol [9]. In the contract net protocol, each task
has a manager who announces the task to other agents and requests bids, and
then allocates an agent to perform the task. All agents able to perform the
task (including the task manager itself) send a bid to the manager containing
the agent’s estimate of how long it would take it to perform the task, taking
into account its current location relative to the task, charge level, dust container
capacity and the tasks to which it is already committed. When all eligible agents
have returned bids, the manager allocates the task to the agent that can perform
the task in the least time. That agent then adds the task to its task list. The
task will either be performed immediately (if the robot controlled by allocated
agent is currently idle) or scheduled for future execution (e.g., after currently
executing task(s) with earlier deadlines). When the task has been completed,
the agent allocated the task notifies the task manager, which in turn notifies the
agent allocator to update the interface. When a set of tasks is received, they are
sorted so the highest priority are allocated first, then by the closest deadline,
and finally by order received.

The Task queue is sorted first by the priority of the tasks, and secondly by
their deadline. When a new task is generated, e.g., an ad hoc task requested by
a member of the production staff via the Speech interface, it is added to the
task queue in order. The agent allocator processes the task queue in order. For
each task, it randomly selects a robot agent to act as task manager. The selected
robot agent remains responsible for the task until the task is completed.

If the robot agent allocated the task is unable to complete it, e.g., because the
cleaning robot it is controlling goes offline, it notifies the robot agents responsible
for managing each of its allocated tasks so that the tasks can be re-advertised and

2 For details of the sensor, see [8].

Multi-agent Control of Industrial Robot Vacuum Cleaners 91

allocated to other robot agents. Once the task managers have been notified, the
robot agent then notifies the agent alloctor that the robot that it is controlling
is offline, and its status is changed to ‘unallocated’.

2.3 Neato API

The Neato API forms the interface between the MAS and the cleaning robots.
The Neato robots expose only a high-level webservice/IoT API, primarily
intended for developing apps (e.g., for mobile devices). The API allows basic
information about the robot to be queried, e.g., whether it is cleaning or charg-
ing at the base station, battery level etc., and provides some high-level com-
mands, e.g., start/stop, clean zone X, etc. However, using the API, it is not
possible to obtain sensor or position information from the robot, or execute
low-level actions, e.g., moving to an arbitrary location. After cleaning a zone,
the robot will return to the base station before starting to clean the next zone.
These restrictions impact the coordination and control possible in the current
prototype but not the overall architecture which is capable of finer coordination
with more controllable robots. The architecture allows for other API’s to be
implemented with minimal changes.

3 RoboClean Prototype

To facilitate development and testing of the agent coordination, in the current
prototype implementation of the RoboClean architecture, the Neato robots and
Neato API are realised using a simulator. The simulator models the dynamics
of the Neato robot vacuum cleaners, and provides the same query and control
functionality as the Neato API. Similarly, the speech interface is modelled using
a process that randomly generates ad hoc tasks which are added to the task
queue. The architecture of the prototype is shown in Fig. 2, and each of the
components is discussed in detail below.

3.1 Simulator

The environment is represented by a grid of cells, where each cell is 33 cm (i.e.,
the size of a robot). The layout of the environment and the number of robots to
be simulated is specified in a text file. The first line of the file contains the key
simulation parameters, and the remaining lines specify the contents of each cell.
The simulation parameters are:

Dimensions the size of the environment in x and y (in cells);
Robot Count the number of robots; and
Simulation Speed the time between each simulation step in milliseconds.

The contents of each cell are specified using a simple textual encoding of size
x × y where:

92 J. Collenette and B. Logan

MAS

Agent
allocator

Robot
agent

Robot
agent

Food production facility

Neato API

Neato

Neato

Neato
Robot
agent

Robot
agent

Simulator
interface

Task queue

Speech
interface

Task GUI

Zone
information

Simulator

Fig. 2. The architecture of the RoboClean prototype. The Simulator simulates the food
production facility and the Neato robots (including the Neato API), and communicates
with MAS through the Simulator interface.

E represents an empty space;
O represents an obstacle (a space that a robot cannot occupy); and
B represents base station.

The number of base stations must be the same as the number of robots in the
simulation and each robot is initially located at a base station to which it returns
to recharge. In the simulator interface, robots are shown as blue circles, empty
cells in light grey, obstacles in dark grey and base stations in yellow. During the
simulation, the simulator randomly generates ‘dirt’ in empty cells, indicated by
green cells. For example, the environment specified below is depicted in Fig. 3.

10 10 3 100
BEEEEEEEEB
EEOOEEEEEE
EOEEEEEEEE
EEEEEOEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEOEEE
EOEEEOEEEE
EOEEEEEEEE
EEEEEEEOEB

A more realistic environment, based on a food production facility is shown
in Fig. 4: the dark grey curved lines represent the conveyor belts and processing
stations where food is prepared.

As explained in Sect. 3.3 below, the task allocation algorithm assumes that
the travel and cleaning times for a given zone are available. In the prototype,
this information is computed by the simulator. When Neato robot receives a
command from the Neato API to clean a zone, it uses its map of the environment
to compute the shortest route to the top left corner of the zone. It then turns on

Multi-agent Control of Industrial Robot Vacuum Cleaners 93

Fig. 3. An example of a simulation environment

the vacuum and begins cleaning the zone in a ‘reverse S’ pattern. That is, starting
at the top left, it cleans the top row of cells left to right before moving down a
row and cleaning the second row from the right to left and so on, continuing until
the entire zone has been cleaned. The robots move more slowly when cleaning
than when travelling between the base station and zone. The simulator mimics
the behaviour of the physical robots, allowing relative travel and cleaning times
to be calculated. The travel time is proportional to the minimum number of cells
that must be traversed by the robot to reach its base station plus the number of
cells from the base station to the first cell of the zone to be cleaned. The time
required to clean a zone is assumed to be the size of zone times 10, as the Neato
is approximately 10 times slower when the vacuum is engaged.

94 J. Collenette and B. Logan

Fig. 4. An example of a food production facility; robots are shown at their base sta-
tions. (Color figure online)

3.2 Simulator Interface

The simulator interface manages the connection between the agents and the
simulated environment. It also provides a simple interface to the task queue
and the zone information defining the areas of the simulated environment that
may be cleaned. The initial list of scheduled tasks can be updated at run time,
simulating the effect of ad hoc tasks from the speech interface.

The simulator interface GUI is shown in Fig. 5. The panel on the left contains
the zone definitions, and the panel on the right the current task queue. As
explained above, each task is specified by a zone to be cleaned, a deadline and
a priority.

3.3 Multi-agent System Implementation Prototype

The agent allocator and robot agents are implemented in Jason [1]. The contract
net implementation makes use of the Jason contract net library. When an agent
i receives an announcement of a task j, they compute a bid, i.e., the time it will
take to complete the task, using a simple heuristic given by the the equation
below:

Bidji =

{
∞ if busy
(MoveT imeji + CleanT imeji) ∗ AllocatedTasksi otherwise

Multi-agent Control of Industrial Robot Vacuum Cleaners 95

Fig. 5. The Task GUI of the Simulator interface showing the zones and tasks used in
the examples.

where MoveT ime is the amount of time it would take to move to the zone to
be cleaned and CleanT ime is the amount of time it would take to clean the
zone. The total time required for zone j is weighted by the number of tasks
already allocated to agent i; this approximates the time required to return to
the base station after cleaning the zone, recharging time etc. While simplistic,
this approach maximises the number of robots actively working on tasks (which
users studies suggested was preferred by production staff, even if the resulting
allocation is not optimal). To ensure that the agents are portable between dif-
ferent robots, environments, and tasks we assume that that times are available
from the robot or the robot API (in the prototype, the simulator interface).

3.4 Example

As an example, we will show how the tasks are allocated when the task list is
sent in two different scenarios. The first scenario is when the system is in the
initial phase when no tasks have been allocated. The second scenario is when
some, but not all, tasks that have been allocated have been completed. Before
we can allocate the tasks we need to know what order they will be processed in.
One possible ordering, where the first to be processed is at the top, is:

Task 4 Clean Zone 3, by 01:00 with a priority 1
Task 5 Clean Zone 2, by 06:00 with a priority 1
Task 1 Clean Zone 1, by 12:00 with a priority 1
Task 2 Clean Zone 2, by 12:00 with a priority 1
Task 3 Clean Zone 4, by 12:00 with a priority 4

The order in which tasks 1 and 2 are processed may be swapped, since they
both have the same deadline and the same priority. The order in which they
are processed depends on which task was received first by the agents. Below we
assume that the tasks are received in the order given by the list.

96 J. Collenette and B. Logan

Initial Allocation. We start with an example of task allocation in the initial
start-up environment, where there are no previous tasks. The first task to allocate
will be Task 4, as this task has the highest priority and the earliest deadline,
making it the most important to allocate.

The first set of bids will come in from the three agents for the first task to
be allocated (Task 4).

bidT4
A1 = 0,

bidT4
A2 = 0,

bidT4
A3 = 0,

(1)

All the bids are 0, as no task as been allocated to any of the agents. The
bids being weighted against the number of previous tasks forces all the agents
to place the best bid. The task can then be assigned to any of the agents, for
our example we will assume that it has been assigned to Agent 1.

Task 5 is the next task to be allocated. Agent 1 will place a bid which is non
zero, as this agent has been allocated a task. Agents 2 and 3 both place the best
bids. For out example we will assume that Agent 2 has been allocated Task 5.
Similarly for the next task, Task 1, Agent 3 will place the best bid, as this agent
is the only one not allocated a task.

At this point the allocated tasks are:

Agent 1 Task 4
Agent 2 Task 5
Agent 3 Task 1

Task 2 is the next task to be allocated. The bids from the agents will now
not be 0, as they all have at least one task allocated to them. For Task 2 the
bids from the 3 agents will be shown in Eq. 2, which is Sect. 3.3 with variables
solved for our example.

bidT2
A1 = (14 + 2560) ∗ 1,

bidT2
A2 = (24 + 2560) ∗ 1,

bidT2
A3 = (58 + 2560) ∗ 1,

(2)

Agent 1 has produced the lowest bid as it is closest to the starting point of
zone 2. Task 2 will be allocated to Agent 1. The final task to be allocated is
Task 3. The bids for Task 3 will be:

bidT3
A1 = (7 + 2880) ∗ 2,

bidT3
A2 = (24 + 2880) ∗ 1,

bidT3
A3 = (63 + 2880) ∗ 1,

(3)

While normally Agent 1 would be assigned Task 3, as it is the closest, the
agent also has the most tasks allocated. The next closest is Agent 2, which has
also put in the best bid for the task. The final allocation of tasks is therefore:

Multi-agent Control of Industrial Robot Vacuum Cleaners 97

Agent 1 Task 4, Task 2
Agent 2 Task 5, Task 3
Agent 3 Task 1

Additional Task Allocation. The aim of the second example is to show how
the agents and the contract net cope when presented with an additional list of
cleaning tasks when they are currently working on a previously allocated set of
tasks.

At this point in our example the agents will have sent their robot representa-
tive off to achieve one of the cleaning tasks that they have been allocated. The
human operator in the food factory has noticed that there has been a spillage on
the factory floor and have requested that another two tasks need to be allocated:

Task 1 Clean Zone 4, by 12:00 with a priority 1
Task 2 Clean Zone 3, by 12:00 with a priority 1

Both the tasks requested have the same deadline, they also have the same
priority. Therefore the task that will be allocated first will the task that was
received by the manager first. In this example we will assume that Task 1 is the
task that will be allocated first.

Fig. 6. The example food production facility showing the simulated agents moving
around the environment working on cleaning tasks.

We will assume that the state of the environment is the same as presented
in Fig. 6. The main feature to note is that no simulated robot is currently at

98 J. Collenette and B. Logan

the base station and all the agents are either working on one of their tasks or
are moving back towards their base station. The agents are assumed to have the
current tasks that still need to be completed:

Agent 1 Task 2
Agent 2 Task 3
Agent 3 All tasks completed

Each agent has completed a single task from the tasks that were allocated
in the first example. Agents 1 and 2’s robots are currently working on the next
task, while Agent 3’s robot heads back towards the base station.

The allocation for Task 1 is simple to calculate when the manager requests
all the bids. Agent 3 will be the only agent to return the best bid of 0, since it is
the only agent that has no tasks currently assigned to it. Task 1 will be assigned
to Agent 3.

Agent 1 Task 2
Agent 2 Task 3
Agent 3 Task 1

Agent 3 now has a task to complete, but it is unable to send the robot to
start the task until the robot has returned to the base station. The manager will
move on to assigning Task 2. The bids for this task will be:

bidT2
A1 = (34 + 2560) ∗ 1,

bidT2
A2 = (48 + 2560) ∗ 1,

bidT2
A3 = (83 + 2560) ∗ 1,

(4)

At this point it is worth noting that the simulation calculates the time needed
to get back to the base station as well as the time needed to get to the zone to
clean. In simulation, Task 2 would be assigned to Agent 2 as the base station is
the closest to Zone 3.3

Therefore at this point the current tasks to complete for the agents in the
simulation are:

Agent 1 Task 4, Task 2
Agent 2 Task 5
Agent 3 Task 1

All the tasks have been allocated. Given the speed at which the tasks can be
allocated, we can assume that the state of the world has not changed between the
start of allocation and the end of allocation. When the robot Agent 3 represents
returns to the base station, the agent will be able to send the newly assigned
task to its robot.
3 When the prototype is implemented on real Neato robots, it will only be able calcu-

late the move time based on the time it would take to move from the base station,
as the Neato does not reveal its location through the API.

Multi-agent Control of Industrial Robot Vacuum Cleaners 99

4 Discussion

We have presented a prototype allergen aware factory cleaning system, which is
part of a larger RoboClean project that aims to facilitate effective and efficient
cleaning through multi-agent and human-robot interactions. Our prototype sys-
tem allows a queue of cleaning tasks to be distributed among a number of robots
using the contract net protocol [9]. The contract net protocol was chosen due
to its simplicity and the relatively small amount of information and commu-
nication required. There are a number of other task assignment protocols that
extend contract nets, such as Alliance [7] and M+ [2], and scheduling approaches
that focus on either minimising the number of late jobs [4] or taking, e.g., the
battery life of the robot into consideration [6]. However, given the limited infor-
mation available via the Neato API, we believe the contract net is a reasonable
approach.

In future work, we plan to interface the MAS to the Neato API and hence
to control the physical robots. This will provide a platform for user studies
investigating human-robot interaction to be explored, e.g., in which situations
does a human view themselves as interacting with a single robot and in which
situations do they see themselves interacting with the team of robots through
the robot being addressed. Another area of future work would be investigate
alternative robot platforms which allow finer-grained control. This would allow
a better allocation of tasks, e.g., in terms of minimising cleaning time, or ensure
all tasks are completed before the deadline.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in
AgentSpeak Using Jason, vol. 8. Wiley, New York (2007)

2. Botelho, S.C., Alami, R.: M+: a scheme for multi-robot cooperation through nego-
tiated task allocation and achievement. In: Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 2, pp. 1234–
1239. IEEE (1999)

3. British Research Consortium: Global standard food safety - issue 7 (2015)
4. Brucker, P.: Scheduling Algorithms. Springer, Heidelberg (2007). https://doi.org/

10.1007/978-3-540-69516-5
5. Food Standards Agency: Annual report of food incidents 2016/17 (2018)
6. Luo, L., Chakraborty, N., Sycara, K.: Distributed algorithms for multirobot task

assignment with task deadline constraints. IEEE Trans. Autom. Sci. Engi. 12(3),
876–888 (2015)

7. Parker, L.E.: Alliance: an architecture for fault tolerant multirobot cooperation.
IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

8. Rady, A., Fischer, J., Reeves, S., Logan, B., Watson, N.J.: The effect of light
intensity, sensor height, and spectral pre-processing methods when using NIR spec-
troscopy to identify different allergen-containing powdered foods. Sensors 20(1), 230
(2020)

9. Smith, R.G.: The contract net protocol: high-level communication and control in a
distributed problem solver. IEEE Trans. Comput. 12, 1104–1113 (1980)

https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1007/978-3-540-69516-5

Orthos: A Trustworthy AI Framework
for Data Acquisition

Moin Hussain Moti1(B) , Dimitris Chatzopoulos2 , Pan Hui2,3 ,
Boi Faltings4 , and Sujit Gujar1

1 International Institute of Information Technology Hyderabad, Hyderabad, India
moin.moti@research.iiit.ac.in

2 The Hong Kong University of Science and Technology, Hong Kong, China
3 University of Helsinki, Helsinki, Finland

4 Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland

Abstract. Information acquisition through crowdsensing with mobile
agents is a popular way to collect data, especially in the context of
smart cities where the deployment of dedicated data collectors is expen-
sive and ineffective. It requires efficient information elicitation mecha-
nisms to guarantee that the collected data are accurately acquired and
reported. Such mechanisms can be implemented via smart contracts on
blockchain to enable privacy and trust. In this work we develop Orthos, a
blockchain-based trustworthy framework for spontaneous location-based
crowdsensing queries without assuming any prior knowledge about them.
We employ game-theoretic mechanisms to incentivize agents to report
truthfully and ensure that the information is collected at the desired
location while ensuring the privacy of the agents. We identify six neces-
sary characteristics for information elicitation mechanisms to be appli-
cable in spontaneous location-based settings and implement an existing
state-of-the-art mechanism using smart contracts. Additionally, as loca-
tion information is exogenous to these mechanisms, we design the Proof-
of-Location protocol to ensure that agents gather the data at the desired
locations. We examine the performance of Orthos on Rinkeby Ethereum
testnet and conduct experiments with live audience.

Keywords: Trustworthy AI · Spatiotemporal data acquisition ·
Decentralised applications · Smart contracts

1 Introduction

Spatio-temporal data for modern applications and services can be acquired either
by centralized entities (e.g., online reviews about a restaurant) or mobile agents
(e.g., current queue length in a coffee shop). In the second case, information needs
to be collected and reported in a trustworthy manner. The need for accurate
location-based reports from mobile agents is, among others, highly motivated

In Greek, Orthos means correct and accurate.

c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 100–118, 2020.
https://doi.org/10.1007/978-3-030-66534-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_7&domain=pdf
http://orcid.org/0000-0002-4614-6940
http://orcid.org/0000-0002-4765-5085
http://orcid.org/0000-0002-0848-2599
http://orcid.org/0000-0002-7188-7230
http://orcid.org/0000-0003-4634-7862
https://doi.org/10.1007/978-3-030-66534-0_7

Orthos: A Trustworthy AI Framework for Data Acquisition 101

(a) Start. (b) Insert a query. (c) Submit a query (d) Existing queries.

Fig. 1. Main activities of Orthos. The Orthos mobile application is connected to a set
of Ethereum smart contracts.

by advances in smart cities, and more generally, smart infrastructure. Repre-
sentative examples can be found on health monitoring systems (e.g., pollution
levels in specific areas), smart farming, and others. For example, every year crop
insurance firms receive numerous claims that need to be verified. The current
solution is to send dedicated agents for on-field inspection. Trustworthy crowd-
sensing frameworks can reduce the inspection cost by employing mobile agents
in the vicinity of the crop plot to verify the claims.

Mobile agents have limited time to respond to queries in spontaneous localized
settings/citefarm, therefore, it is probable for them to not have readily available
prior knowledge. Also, depending on their location, agents may not be found
in the vicinity. The potential unavailability of agents in locations of interest
and the lack of prior knowledge motivates the need for trustworthy frameworks
that can ensure the quality of the crowdsensed information. Mobile agents are
expected to utilize their devices with multiple sensors to support services to (i)
deploy resources, (ii) produce unbiased measurements, (iii) augment sparse data
collected via static sensors, and (iv) supplement missing data caused by malfunc-
tioning static sensors. There are three main challenges in acquiring information
in spontaneous localized settings via mobile agents: (i) to ensure that they are
truthful, (ii) to validate their presence in the examined settings, and (iii) to
preserve their privacy while maintaining the transparency of the process.

To ensure agents’ truthful participation, information elicitation mechanisms
must guarantee non-negative utilities to agents and provide incentives to moti-
vate them to submit accurate reports. Rational agents are expected to maximize
their utility while not sacrificing a substantial amount of their resources. The
existing literature consists of many mechanisms that induce agents to submit

102 M. H. Moti et al.

truthful reports [10,13,16,17,25–27]. We examine state-of-the-art information
elicitation mechanisms and present the necessary conditions for them to be appli-
cable in spontaneous localized settings. After comparing these mechanisms, we
argue that the most applicable mechanism to the settings is the robust peer
truth serum for crowdsourcing (RPTSC) [26].

Unfortunately, all these mechanisms take for granted that the agents are
present at the requested area or assume that there exist parties (e.g., cellular
network providers) that can assure the mechanism about the existence of an
agent in the required location [7]. In the case where such location verification
mechanisms does not exist, agents can abuse the system by faking their location.
We design the Proof-of-Location (PoL) protocol, that does not require any fixed
infrastructure to function, to force every mobile agent to provide a proof that
their location is within a threshold.

Recent advances in blockchain-based architectures advance the design of
decentralized incentive mechanisms. Such architectures are maintained by a net-
work of peers, and motivate agents to participate in crowdsensing applications
since their reports will not be controlled by centralized entities. Architectures
like Ethereum, support the development of applications that are executed atop
blockchain [5] based on smart contracts. We use Ethereum smart contracts to
develop Orthos, a trustworthy framework for data acquisition in spontaneous
localized settings. Orthos, via a set of smart contracts, (i) processes the sub-
mitted reports, (ii) estimates the ground truth using weighted averaging tech-
niques and (iii) calculates the payments of the agents. Additionally, Orthos, via
developed cryptographic techniques, hides agents’ responses to guarantee that
agents will not deviate from their honest behavior. Figure 1 depicts some activ-
ities of the implementation of Orthos on Android. Anyone can submit queries
or load queries that request for spatio-temporal information at their location.
Every query is defined by (i) a String (e.g., How is the availability in restaurant
XYZ?), (ii) a set of possible answers, (iii) the GPS coordinates close to which
the responded agents should be when answering the query, and (iv) the amount,
in gas, the requester is willing to pay. The screenshots of the activities that allow
agents to submit their answers to queries are presented after the description of
Orthos in Sect. 5. The contributions of this work are multi-fold and are listed
below:

1) We define six necessary characteristics required by any information elicita-
tion mechanism to be used in spontaneous localized settings and investigate
existing mechanisms regarding their applicability to these settings.

2) We develop Orthos for the development of incentive mechanisms for applica-
tions and services that elicit information. It acts as a wrapper for information
elicitation mechanisms and facilitates the collection of agents’ reports and the
distribution of rewards in a decentralized and privacy-preserving fashion.

3) We design Proof-of-Location (PoL) protocol to detect and prevent malicious
agents from faking their location. PoL is executed in the mobile devices of
the agents to robustly verify that each interested agent can participate if she
is located in the correct location.

Orthos: A Trustworthy AI Framework for Data Acquisition 103

4) We examine the applicability of Orthos by testing it with 27 participants.

In summary, Orthos works in the trinity of game theory for incentives, mobile
computing for location validity, and blockchain technology.

2 Background

Orthos is a framework for information elicitation mechanisms that can be used
efficiently in location-based applications and services such as mobile crowdsens-
ing. Orthos leverages blockchain to provide transparency as well as privacy in
a decentralized environment. In this section, we briefly explain what is mobile
crowdsensing, blockchain and smart contract.

Mobile Crowdsensing. Mobile crowdsensing is a paradigm that utilizes the
ubiquitousness of mobile users who are carrying smartphones and can collect
and process data. Similar to Orthos, the authors of [22] develop Medusa, a
framework to develop crowdsensing applications. However, the authors employ
cloud resources instead of a blockchain and do not guarantee agents’ privacy. The
authors of [14], motivated by the fact that if the available mobile agents are fewer
than the required ones, incentive mechanisms will lose efficacy, propose HySense.
HySense combines mobile devices with static sensor nodes. Furthermore, the
authors of [31] propose effSense, an energy-efficient and cost-effective framework
to reduce the participation cost of mobile agents.

Blockchains. Blockchains is a distributed mechanism for storing data in the
form of transactions. Bitcoin1, Ethereum2 and Ripple3 are few notable public-
distributed ledgers based on the blockchain architecture. These ledgers are main-
tained by their global peer-to-peer network of nodes. All transactions are stacked
in a block and then the block is appended to the public-ledger. Each block con-
tains a cryptographic hash of the previous block, a timestamp and transaction
data. The data is hashed and encoded into a Merkel Tree. The cryptographic
hash that forms the link to the previous block iteratively goes all the way back
to the genesis block, this ensures the integrity of the whole blockchain. The data
once recorded on a blockchain ledger is effectively immutable as any modera-
tion would require alteration of all subsequent blocks which requires consensus
of majority of the network nodes. Because of the decentralized nature of the
blockchain, data is replicated across all nodes of the network. This protects the
network from any threats to a particular node. However, publishing a block is
a challenging process and requires a lot of resources, its termed as mining in
blockchain nomenclature. A miner must validate all the transactions stacked in
the block and solve a crytographic puzzle through bruteforce computations in

1 https://bitcoin.org/.
2 https://ethereum.org/.
3 https://ripple.com.

https://bitcoin.org/
https://ethereum.org/
https://ripple.com

104 M. H. Moti et al.

order to mine a block, the solution obtained on solving the puzzle is termed as
proof-of-work. The time taken to mine a block is variable and depends mainly on
the difficulty level of the puzzle. The block time is the average time it takes for
the network to generate one block in the blockchain. The block time for bitcoin
is around 10 mins while the block time on Ethereum is around 15 seconds.

Smart Contracts. Nick Szabo [28] first coined the term and proposed the
idea of a smart contract, “a set of promises, specified in digital form, including
protocols within which the parties perform on the other promises”. The idea
was later adopted by blockchains to offer additional functionalities on the stored
data. Each smart contract takes information as an input and processes that
information using the set of rules defined in the contract. It can also trigger
other smart contracts and access information stored on remote servers. Every
smart contract is executed in a virtualized environment maintained by every peer
in the blockchain. Whenever a smart contract is called, via a transaction, it is
executed when the nodes that maintain the blockchain process the corresponding
transaction. Every node has to execute the code of the contract and depending
on its complexity and the capabilities of the peers, it may take a lot of time
and resources. This contract execution paradigm motivates proposals for off-
chain code execution. Blockchain-based mechanisms can execute parts of their
modules on remote servers, also known as oracles, to improve their performance
and increase the privacy of the agents [11]. Given that everything stored in the
blockchain, including the code of smart contracts and the data stored on them, is
visible to everyone, private information should be stored on oracles to motivate
agents’ participation. By building on top of a blockchain, smart contracts provide
a trusted framework for many potential applications. For example, Bogner et. al.
[3] present a decentralized application for sharing resources like Uber and Airbnb
without the involvement of any trusted third party. Internet of Things (IoT)
devices form a crucial part of any smart city project, however, privacy and
security remain an issue. The authors of [36] and [38] propose smart contract
based solutions for safe and secure access control of IoT devices. Unlike other
online software applications, the code of a smart contract cannot be altered
once deployed on the network. In [1], the authors have compared five different
tools for detecting vulnerabilities in the smart contract, namely Oyente [19],
Securify [30], Remix [12], Smartcheck [29] and Mythril [9], one can use these tools
to safeguard the smart contracts against potential threats. Ethereum is one of
the most popular smart contracts platform and Solidity4 the most recommended
language to develop smart contracts. Smart contracts are written in high-level-
language code is then compiled to bytecodes. This bytecode is published to the
Etheruem blockchain where it is executed on Ethereum Virtual Machine (EVM).
The EVM consumes resources in the form of gas units to execute commands in
the smart contract.

4 https://docs.soliditylang.org/en/v0.7.5/.

https://docs.soliditylang.org/en/v0.7.5/

Orthos: A Trustworthy AI Framework for Data Acquisition 105

3 Spontaneous Localized Settings

Considering an entity in question EiQ, a set of nearby mobile agents U , and
a budget B, we want to estimate a function f (e.g., EiQ can be the Eiffel
Tower, f the current queue length in the tickets counter and B can be 1$).
A (A ⊆ U) agents choose to participate and assess EiQ. Every agent i ∈ A
observes a signal si ∈ S and reports a signal ri ∈ S which can be different
from si. After submitting ri, agent i collects a reward ui (

∑
i∈A ui ≤ B). If the

equality holds and the budget is fully utilized, the mechanism is called Strong
Budget Balanced. Orthos ensures this property while distributing rewards. The
spontaneity of the requests and zero prior knowledge about the EiQ adds to
the sophistication of the spontaneous localized settings. It, therefore, requires
very specific mechanisms that can be used in such scenarios. Below, we list
six essential characteristics a mechanism needs and discuss the applicability of
seventeen mechanisms concerning these characteristics.

3.1 Essential Characteristics for Spontaneous Localized Settings

Before introducing existing information elicitation mechanisms and presenting
Orthos’ function in detail, we introduce the characteristics, these mechanisms
should have to be applicable in spontaneous localized settings.

[C1] Bayesian Incentive Compatibility: A social choice function f :
Θi × ... × Θn → X is said to be Bayesian incentive compatible (or truthfully
implementable in Bayesian Nash equilibrium) if the direct revelation mechanism
D = ((Θi)i∈N , f(.)) has a Bayesian Nash equilibrium s∗(.) = (s∗

i (), ..., s
∗
n(.)) in

which s∗
i (θi) = θi,∀θi ∈ Θi,∀i ∈ N . As ground truth is not readily available in

many scenarios, the verification of an agent’s report depends on the reports of
other agents. Therefore, the mechanism must induce Bayesian Nash Equilibrium
where truthful reporting is the best response when agents are also truthful.

[C2] No Common Knowledge: Spontaneous localized settings refer to enti-
ties the information to which is difficult to access online. As a result, common
knowledge parameters like prior belief models and posterior expectations used
by most mechanisms are rendered futile for spontaneous localized settings.

[C3] Minimalistic Mechanism: A mechanism is minimalistic if the agents
need to submit only the information report i.e. observed private signal for the
EiQ. In addition to information report, many mechanisms require agents to
submit a prediction report, that reflects the agents’ belief about the distribution
of information reports in the population. In the spontaneous localized settings,
agents have limited time to respond to the request, therefore, we require a min-
imalistic mechanism where agents only have to submit the information report.

106 M. H. Moti et al.

[C4] Interim Individual Rationality (IIR): Aggregated information from
a few agents is less reliable and more prone to human error. Hence, to increase
participation and guarantee information robustness, the mechanism must offer
non-negative rewards to participating agents. If a mechanism ensures positive
expected utility to the agents, it is said to satisfy IIR.

[C5] Prevent Free-riders: Free-riders can benefit from an IIR mechanism
by submitting random responses and hence, the mechanism should not admit
uninformed equilibria where free-riders benefit by abusing the mechanism.

[C6] Collusion Resistant: Agents must be located nearby the EiQ in sponta-
neous localized settings. Agents operating in close proximity expose the system
to collusion. Therefore, the mechanism should be able to prevent such collusions.

Any mechanism that has the above set of attributes can be used in Orthos.
We now investigate existing mechanisms in the literature to examine their appli-
cability in spontaneous localized settings.

3.2 Information Elicitation Mechanisms

Many information elicitation mechanisms have been proposed but most of them
are not applicable in spontaneous localized settings. Miller et al. [20], rely on the
common knowledge assumption where every agent shares the same prior belief
about an event, however, it is not possible to provide a prior belief model for all
queries. Prelec et al. [21], on the other hand, proposes Bayesian Truth Serum
(BTS), which does not require knowledge of any common prior information but
is applicable only for a large number of agents. Since queries in spontaneous
localized settings are strict location specific, not many agents are expected to
participate all the time. Also, it suffers from free-riding and does not resist
collusion. Witkowski et al. [34] propose Robust Bayesian Truth Serum (RBTS),
which simplifies BTS but is only applicable for binary signals space and still
suffers from free-riding and collusion. Radanovic et al. [23,24] improve RBTS
by making it compatible with non-binary and continuous outcomes respectively
but both of these mechanisms do not address free-riding and collusion. Similarly
to BTS, Zhang et al. [37] and Lambert et al. [18] do not require common prior
information but suffer from free-riding and collusion among agents. Furthermore,
in the mechanism proposed in [18], the agents are indifferent between being
honest and misreporting in the equilibrium.

Witkowski et al. [32,33] propose mechanisms that assume neither any com-
mon prior information nor a large number of agents and are robust to private
beliefs of agents. However, they suffer from temporal separation. This requires
the agent to submit one report before and one after executing the crowdsourced
task. Temporal separation is not practical in many situations and slows down
the crowdsensing process. Also, both the mechanisms lack provisions for resisting
collusion among agents and free-riding. Riley et al. [27] propose a minimalistic
mechanism under the assumption that all the agents with the same outcome

Orthos: A Trustworthy AI Framework for Data Acquisition 107

have the same posterior expectations. Jurca et al. [16,17] propose mechanisms
that are more suitable for interactive reputation markets where agents interact
and rate each other. Both mechanisms are susceptible to collusion. Moreover,
the former is not independent of agents’ private beliefs and the latter assumes a
prior belief distribution. Faltings et al. [13] introduce Peer Truth Serum (PTS),
a minimalistic mechanism that assumes a prior belief model. The mechanism
also admits uninformed equilibria where agents do not perform measurements.
Such equilibria can result in free-riding agents that lower the quality of the col-
lected information. Orthos requires a mechanism that does not depend on any of
the aforementioned assumptions as the requests can arrive almost spontaneously
and the mechanism must be robust to incorporate the report of as many nearby
agents willing to participate as possible.

Considering the introduced essential characteristics we review four applicable
mechanisms: M1 by [10] is a strong incentive compatible mechanism that can
only be applied to binary settings. It is worth mentioning however that binary
outcomes limit the usability of Orthos in many scenarios and compromise with
the quality of aggregated information.

C1 C2 C3 C4 C5 C6
M1 � � – � � –
M2 (LPTS) � – � � � �
M3 (PTSC) � � � � � �
M4 (RPTSC) � � � � � �

Table 1. Comparison matrix of the exam-
ined mechanisms.

M2 by [25] improves PTS by intro-
ducing Logarithmic PTS and elim-
inating the dependency on a prior
belief model. M2 produces worse pay-
off than truthful reporting for unin-
formed equilibria and against mis-
behaving agents acting on collusion
strategies.
M3 & M4 by [26] are optimized ver-
sions of PTS. M3, Peer Truth Serum
for Crowdsourcing (PTSC) is more

robust than PTS in cases where the number of participating agents is small.
M4, Robust PTSC (RPTSC) is a furthermore robust version of PTSC which
excludes the possibilities of ill-defined results from PTSC. PTSC and RPTSC
enable the agents to participate in multiple tasks, however, for our purpose, we
will restrict to single tasks scenarios.

It is clear from the comparison matrix (Table 1) that M3 and M4 satisfy
all the requirements for spontaneous localized settings, however, since M4 (i.e.
RPTSC) is a more robust version of M3, we select it for our Orthos protocol.

3.3 Robust Peer Truth Serum for Crowdsourcing

Robust Peer Truth Serum for Crowdsourcing (RPTSC), proposed in [26] is a
minimalistic payment mechanism that incentivizes the honest behavior of agents.
It is a Bayesian incentive compatible mechanism and is independent of agents’
private prior beliefs. Agents only announce their observation in their reports to
participate in the process. For every report, RPTSC generates a non-negative
score. Any uninformed equilibrium, where agents do not perform measurements,
including random reporting or collusion on one value and collusion strategies

108 M. H. Moti et al.

that are based on agents’ measurements, result in worse payoff than truthful
reporting. Thus, agents are incentivized to submit honest reports. An agent i
submits a report ri ∈ S to the system. Randomly select a peer agent p and let
her report be rp. RPTSC calculates the fractional frequency of agent i’s report,
Ri, as follows:

Ri(ri, p) =
num−i(ri)∑

s∈S num−{i,p}(s)
(1)

where num is the function that counts occurrences of reported values among
all the reports. The summation in the denominator reduces to total number of
reports submitted. Given a constant α > 0, the reward of agent i is

τ(ri, rp) =
(

α

Ri(ri, p)

)

if ri = rp and Ri(ri, p) �= 0 and 0 otherwise. (2)

4 Implementing Decentralized Data Acquisition
Mechanisms

Information elicitation mechanisms can be integrated into decentralized appli-
cations (DApps) in the form of smart contracts. Ethereum smart contracts are
compiled into bytecode and executed on EVM. For each computation, the EVM
consumes some fuel, named gas. Gas is the unit of measurement for the resources
consumed in Ethereum. The monetary expenditure depends on the consumed
gas units and the gas price at that moment. The gas price is the valuation of
gas units in terms of ether and it changes according to market dynamics.

Reading information from a contract is gas-free and nearly instant, however,
writing into a smart contract requires gas proportional to the storage needs.
Similarly, computations on a smart contract require gas proportional to the
computational complexity. Transactions on Ethereum are executed in batches
and stored in blocks. Each block has a gas limit that forces the sum of all the gas
needs of the transactions stored on each block to not exceed this limit. Hence,
it is not possible to accomplish complex tasks on smart contracts via a single
transaction. Also, since storage on the blockchain is expensive, its impractical
to maintain long logs of persistent data for a complex task to be carried out
in disjoint transactions. It is also worth mentioning that Ethereum does not
support floating-point numbers (i.e., all divisions are integer divisions) making
computations that require floating-point numbers to be handled on a case by
case basis that usually imposes additional computation overhead.

The two primary tasks of any data acquisition mechanism are collecting and
storing reports from all agents and performing computations on those reports to
determine rewards for the agents. Both of these tasks are anti-complimentary to
the smart contract. In the previous sections, we discussed various information
elicitation mechanisms and presented four that apply to spontaneous localized
settings. However, among them, only M3 (PTSC) and M4 (RPTSC) are com-
putationally feasible to implement on the smart contract. M1 is a very complex
mechanism with dependency on multiple tasks while M2 uses a logarithm scoring

Orthos: A Trustworthy AI Framework for Data Acquisition 109

rule which is difficult to implement on the smart contract because of no support
for floating-point numbers. PTSC and RPTSC are very similar mechanisms but
between them, RPTSC is a more robust mechanism as it excludes the possibility
of ill-defined results from PTSC. Hence, we recommend using RPTSC for data
acquisition on decentralized mechanisms. According to our measurements, the
gas needs of RPTSC is 2495101, which corresponds to less than half USD.

5 Orthos

Orthos is a blockchain-based data acquisition mechanism applicable in spon-
taneous localized settings. RPTSC and any other mechanism that meets the
essential criteria presented in Table 1 can be applied for crowdsensing in sponta-
neous localized settings securely and anonymously using Orthos. The architec-
ture of Orthos is split into two parts: a mobile application and a DApp. We have
designed a protocol, called Orthos protocol, to dictate the interaction between
the two components during the data acquisition process. Figures 1 and 3 show a
total of six screenshots of the developed mobile application that allows mobile
agents to submit a query, load existing queries in their location and answer
existing queries by submitting a report.

The Orthos protocol is composed of four phases: commitment phase, reveal
phase, scoring phase, and reward distribution phase. In the commitment phase,
each agent i assesses EiQ, observes signal si and commits to a report ri. Figure 3a
shows the screen of the mobile application after the submission of the commit-
ment. No more agents are accepted once this phase ends. Only the final com-
mitment of the agent is taken into consideration and is revealed in the reveal
phase where the report is processed, as depicted in Fig. 3b. Participating mobile
agents need to transact with the blockchain part of Orthos to submit their com-
mitments and reveal their reports by calling the submit() and reveal() smart
contract functions respectively.

In the scoring phase, each agent i is rewarded based on her report ri and
the payment mechanism. Information elicitation mechanisms for spatio-temporal
queries are unable to detect if an agent commits a signal after assessing EiQ
at the required location. Agents can attempt to manipulate their location by
faking their GPS reading if it is beneficial. Orthos bypasses this limitation using
Proof-of-Location (PoL), a distributed protocol that is executed by the agents.
PoLs have been used in the design of location-based cryptocurrencies, where
agents are required to be either at a specific location to be rewarded [35] or the
agents’ interconnectivity affects their rewards [8].

5.1 Location Proofs in Spontaneous Localized Settings

Agents need to include a PoL whenever they submit an answer to a query for
an EiQ. Using their mobile devices, an agent i that wants to produce a proof
of her location broadcasts her context to all nearby mobile devices. Orthos is
based on Google’s Nearby Connections API to connect with mobile phones in

110 M. H. Moti et al.

Alice

Phase 1: Scanning

Alice

Phase 2: Tag Production

= ,

Alice

Phase 3: Commitment

= f(),

Alice

Phase 4: Validation

= { }, , ,

"No"

"No"

"Yes"

"Yes"

"Yes"

Fig. 2. The four phases an agent follows to produce a proof of her location.

Bluetooth and Wi-Fi range. After collecting the broadcasted context, nearby
peers respond with their respective contexts. Similar to agent i, all nearby peers
exchange their contexts to form their own list of contexts. Then agent i shares
this list of contexts with his nearby peers who compare agent i’s list of context
with their own list of contexts to assess the validity of agent i’s location. If
valid, each peer responds with a digital signature certifying the validity of agent
i’s location. Agent i must have enough peer validations to cross the security
threshold set by Orthos smart contract. In detail, agent i proves her location is
as measured by her GPS or any localization method [4,6], by following the four
phases of the following cryptographic protocol:

Scanning Phase: Scan for neighbours and produce Li = {li,Pi}, a message
composed of the agent’s estimated location, li, and her neighbors, Pi.

Tag Production Phase: Use Li to produce a tag LT
i = f (Li(t)) of fixed size

via a pseudo-random function [15] known to every agent.
Commitment Phase: Use the secret key ki of agent i to produce a commit-

ment for every neighbor Mi:

Commt
(
Li, L

T
i

) → Mi. (3)

Verification Phase: Every neighbour receives Mi and examines whether user
i is at li:

Verify
(
Li, L

T
i ,Mi

) → LV
ji ∈ {yes, no}. (4)

LV
ji equals to “yes” if user j verifies that user i is her neighbour and “no”

otherwise. User j returns “yes” if her estimated location has a difference of
less than a threshold from the location of agent i.

Every user, after receiving Mi uses the public key of i to extract her location,
neighbours and LT

i . User i, by sending Mi instead of Li makes sure that her
neighbors can only answer to her claim. Misbehaving agents cannot change the
location agent i claims to be in. Practically, a malicious agent can only try to
produce a PoL for a location she is not currently in. By doing that, she will not
be able to verify her fake location by normal agents. Via this process, user i
constructs a PoL that a set of her neighbors are within a given distance:

πi(EiQ)

⎛

⎝Mi,
⋃

j∈Pi

LV
ji,

1
|Pi|

|Pi|∑

j=1

1{LV
ji)==“yes′′}

⎞

⎠ (5)

Orthos: A Trustworthy AI Framework for Data Acquisition 111

PoL is defined as the set of messages from the neighbouring devices of a user that
the user is at a specific location. Each message is signed by the neighbouring
users. Figure 2 depicts the four phases of the Proof-of-Location protocol. The
Orthos smart contract contains a method named verifyLocation() that is
responsible for verifying the submitted PoLs from the mobile agents.

5.2 Orthos Protocol

A requester can add her query on the network using the addQuery() method
by specifying the exact query (Q), query location (L), signal space (all possible
signals, S), and budget (B). The requester does not need to provide personal
information on the network. Once the query is added to the contract, all agents
can access it. Next, we present the protocol through which agents can submit and
receive a reward for their contributions. For ease of understanding, we consider
an arbitrary agent i to walk through the various phases of the protocol.

Commitment Phase: Agents can access all queries of the smart contract and
chose to participate in the queries related to a nearby location. Agents can
submit their reports using the submit() method of the smart contract. Since
Ethereum is a public blockchain, in order to conceal an agent’s report, we
require them to submit the hash of their report. For an agent i, submit()
takes a cipher ci, which is the commitment (ci = keccak256(ri, ki)5, where
ri is the reported signal and ki is the secret key of the agent) of the reported
signal, list of peers (identified by their Ethereum addresses) and a list of
digital signatures by the peers validating the agent i’s location. Every agent
is allowed to update her report as long as the phase continues but only the
latest report will be considered.

Reveal Phase: Agent i, reveals her commitment by submitting ri and ki using
the reveal() method. The agent report is accepted only if her commitment
matches with the reported value i.e. ci = keccak256(ri, ki) and if the sub-
mitted proof of location is accepted by the verifyLocation() method that
implements the verification phase of the PoL protocol.

Scoring Phase: Once the reveal phase is over, agent i calculates the score of her
contribution by calling calcScore(). Agent i is scored using the requester
specified mechanism. For RPTSC, Ri is calculated using Eq. 1 and the final
score is based on Ri, as described by Eq. 2. The score of agent i is stored
on the smart contract before being normalized when all agents have been
scored. Agent i gets his reward in the next phase.

Reward Distribution Phase: Once the scoring is finished, agent i adds the
corresponding reward to her balance by calling updateBalance(). To ensure
budget balancing, Orthos normalizes the scores irrespective of the payment

5 Keccak is a versatile cryptographic function. Best known as a hash function, it nev-
ertheless can also be used for authentication, encryption and pseudo-random number
generation. For more information, please refer to https://keccak.team/keccak.html.

https://keccak.team/keccak.html

112 M. H. Moti et al.

scheme and calculates the reward for each agent i by:

ui =
scorei∑

j∈A scorej
× B, (6)

where B is the total budget for the request. Agents can call getBalance() to
get their balance and withdraw() to transfer it to their Ethereum accounts.

6 Performance Evaluation

We implement Orthos as a decentralized application (DApp) that is composed
of Ethereum smart contracts that are deployed on Rinkeby Testnet Network6

and an Android mobile application that is presented in Figs. 1 and 3. We
measure the gas needs and the cost in USD of each implemented method of
Orthos. Additionally, we recruited 27 students (18 male and 9 female) with an
average age of 22 years and asked them to install Orthos and participate as
mobile agents. We generated a query to ask them about the difficulty of the

(a) Commit answer. (b) Reveal answer.

Fig. 3. After submitting an answer, by trig-
gering the submit() method, the devel-
oped application waits until the deadline
to reveal the submitted answer, by calling
the reveal() method. After that, Orthos
calculates the score of each report and dis-
tributes the rewards.

subject and provided four signals. We
used the acquired data to measure
gas costs for executing Orthos. Each
query completes in about 10 mins.

Implementation. Agents are iden-
tified via their Ethereum address. For
every new account, Ethereum gen-
erates a random pair of a public
key and the correspondent private
key. The keys are completely unre-
lated to the real-world identity of the
agent, hence, granting an anonymous
medium of participation to the agent.
The Ethereum address is the last 20
bytes of the hash of the public key.
Agents are encouraged to create a new
Ethereum address for every new query
to avoid any privacy leaks. The mobile
part of Orthos is built to target mobile
devices with Android SDK version 28
and supports devices with minimum
SDK version 23. To connect a mobile
device with the Ethereum blockchain,
the device must host an Ethereum

node. However, the hosting of an Ethereum node on a mobile device is energy
demanding and demotivating for mobile agents. As a solution to this problem,
we use the Infura API7. Infura is a hosted Ethereum node cluster that supports
6 https://rinkeby.etherscan.io/.
7 https://infura.io/docs.

https://rinkeby.etherscan.io/
https://infura.io/docs

Orthos: A Trustworthy AI Framework for Data Acquisition 113

JSON-RPC over HTTPS and WebSocket interfaces and allows mobile agents
to perform requests and set up subscription-based connections to Ethereum
blockchains. Once the connection to the Ethereum blockchain is established,
we integrate wrapper functions to the mobile part of Orthos to automate the
call of smart contract methods on the blockchains. We use Web3j 8 to generate
equivalent wrapper functions of the smart contract for Java/Kotlin which we
then use for the development of the mobile part.

Table 2. Gas consumption for deploying Orthos, and transact with it on Rinkeby
Ethereum testnet. For converting gas to USD we used the default gas price (1 GWei)
and the price of Ethereum on 13-Nov-2019. (i.e., USD = gas·188 · 10−9).

Name Gas used USD cost

ContractCreation() 2495101 0.47

addQuery() 442183 0.08

submit() 1013457 0.19

reveal() 74138 0.01

verifyLocation() 183733 0.03

calcScore() 6431116 1.20

Table 3. Helping methods. getScore() and getBalance() are gas-free while the gas
needs of withdraw() and updateBalance() are negligible.

Name Description

getScore() Returns the score for a particular query

getBalance() Returns the total balance of an agent in the protocol

withdraw() Withdraws the total balance from the protocol

updateBalance() Updates agents’ balance after the query

Experiments. Orthos enables mobile agents to both add queries and respond
to existing ones. Table 2 lists the methods that require gas to be executed while
Table 3 lists additional helping methods for secondary functionalities such as
payments between the query requester and the responding mobile agents. Table 2
shows that the required gas for deploying a smart contract that implements
RPTSC (ContractCreation) is 2495101, which corresponds to less than half
USD. Adding a new query for spatio-temporal data using addQuery() requires
only 8 cents. Every participating mobile agent spends 19 USD cents for the call
8 https://www.web3labs.com/web3j.

https://www.web3labs.com/web3j

114 M. H. Moti et al.

of submit() on the first phase of Orthos protocol, 6 USD cents during the second
phase for the calls of reveal() and verifyLocation(), and 1.2 USD for the
calculation of her score via the calcScore() on the third phase. The collection of
the reward is gas-free. Note that for the cost calculation we considered the default
gas price that leads to the completion of each call within 15 seconds. Lower gas
prices can reduce the cost for each mobile agent but delay the collection of the
data. Depending on the deadline of a query, the mobile agents are responsible
to device the gas price they are willing to use for submitting their readings.

7 Design Tradeoffs

We design Orthos as an Ethereum-based framework that functions via smart
contracts. Although the use of smart contracts on every component of Orthos
guarantees its auditability and generalisability, it increases the cost of its opera-
tion in terms of gas. In this section we discuss the design tradeoffs for the stored
data and the computational demanding components of Orthos.

Storage Requirements of Orthos. Actions performed on Orthos are recorded
as transactions and get logged to the Ethereum blockchain. Anyone can access
these logs and verify the operations of Orthos. There are two methods to store
persistent data on the smart contract, contract storage and log storage. Data
stored on the contract storage can be accessed by the corresponding smart con-
tract and other smart contracts depending on the permissions provided. How-
ever, the cost of storing data on the contract storage is very high, and therefore
only state variables and only the most crucial data required by the smart contract
should be stored there. Table 4 provides cost details for contract storage. Orthos
stores agent commitments and their reports on the contract storage as it needs
it to verify agent reports and then use it to compute their scores. The contract
also stores the agents’ PoLs which are required to validate their location.

A cheaper alternative is log storage where data is stored on transaction logs
created by triggering events9. For every log event, the gas price is:

Gas prince = 8 ∗ (nBytes) + 375 ∗ (1 + iArgs),

where nBytes denotes the number of bytes and iArgs the number of the indexed
arguments. A limitation to this form of storage is that smart contracts cannot
access directly the data stored on log storage and need additional functions for
that. Another alternative is to use external storage (e.g., IPFS [2]) and store
hashed of the externally stored data. Unfortunately, this increases the required
setup on the agents’ mobile devices.

9 https://docs.soliditylang.org/en/v0.4.24/contracts.html/events.

https://docs.soliditylang.org/en/v0.4.24/contracts.html/events

Orthos: A Trustworthy AI Framework for Data Acquisition 115

Table 4. Contract storage costs on 13/11/2019, 1 ETH=188$, 1 gas=10−9 ETH.

Storage Gas Cost (ETH) Cost(USD)

256-bit word 20000 0.00002 0.177

1 MB (31250 words) 625 × 106 18.75 5531.25

1 GB (1000 MB) 625 × 109 18750 531250

Table 5. Provable fee structure.

Data source Base price Proof type

TLSNotary Android Ledger

URL 0.01$ +0.04$ +0.04$ N/A

WolframAlpha 0.03$ N/A N/A N/A

IPFS 0.01$ N/A N/A N/A

Random 0.05$ N/A N/A +0.0$

Computation 0.50$ +0.04$ +0.04$ N/A

Reward Calculation. It is possible to store the reports on the logs and then
use third party services (oracles) to compute the agent reward using the logged
data. In this way, each agent will save more than 50% of her participation cost.
However, the requester will have to cover the fees for the oracle service provider.
Provable10 is one such popular oracle service provider designed to act as an
untrusted intermediary. Provable is referred to as a provable honest service as it
provides cryptographic proofs showing that the data they provide is really the
one that the server gave them at a specific time. It works in the following way:
first, a smart contract uses the provable API to request for a task execution
off-chain, and then Provable performs the task off-chain and makes a callback
transaction to provide the results of the task and the proof of authenticity.
With each request, the contract must pay enough fee to Provable to execute
the task and send a callback transaction. The fee consists of two parts: The gas
that corresponds, using a recent exchange rate, to the USD price for the data
source and the authenticity proof requested and the gas Provable will spend for
sending the callback transaction. Table 5 provides fee details for the data source
and authenticity proof.

Note that using an oracle service to compute the rewards off-chain defeats
the purpose of an otherwise decentralized framework as the services centrally
compute all the rewards. Hence, the rewards are computed on blockchain and
stored on public storage to maintain transparency. The rewards are only asso-
ciated with Ethereum addresses and therefore do not compromise privacy even
though stored publicly. We allow agents to accumulate their reward as a balance

10 https://provable.xyz.

https://provable.xyz

116 M. H. Moti et al.

on the smart contract and retrieve it whenever they want. It is a design trade-off
to avoid repetitive transactions that pay agents agent for every query.

8 Conclusion

Smart cities require constant and accurate data to function properly. Existing
data acquisition systems are built on centralized architectures that imply trust-
ing third parties on providing reliable and secure services. Motivated by these
challenges in robust spatio-temporal information acquisition in smart cities, we
proposed Orthos, a blockchain-based framework that enables the deployment
of information elicitation mechanisms. After introducing the necessary charac-
teristics of data acquisition mechanisms in spontaneous localized settings and
analyzing the state of the art, we concluded that RPTSC is the most suitable.
Additionally, we proposed the Proof-of-Location protocol to assist Orthos on
guaranteeing that agents participating in information elicitation mechanisms are
at the expected locations when reporting their measurements. We used Ethereum
smart contracts to develop the methods needed to support any information elic-
itation mechanism. To test Orthos and assess its applicability, we deployed its
smart contracts on a popular Ethereum testnet and developed an Android Appli-
cation to perform experiments with a live audience. In summary, Orthos assist
agents in posting their queries and answer others’ queries on their mobile devices
at extremely very low rates. It protects agents’ privacy and provides a secure
and transparent platform for exchange and acquisition of information with no
tampering or interference by any centralized entity.

References

1. Abraham, M., Jevitha, K.P.: Runtime verification and vulnerability testing of
smart contracts. In: Singh, M., Gupta, P.K., Tyagi, V., Flusser, J., Ören, T.,
Kashyap, R. (eds.) ICACDS 2019. CCIS, vol. 1046, pp. 333–342. Springer, Sin-
gapore (2019). https://doi.org/10.1007/978-981-13-9942-8 32

2. Benet, J.: Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561 (2014)

3. Bogner, A., Chanson, M., Meeuw, A.: A decentralised sharing app running a smart
contract on the ethereum blockchain. In: Proceedings of the 6th International Con-
ference on the Internet of Things, pp. 177–178. ACM (2016)

4. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for
very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)

5. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

6. Čapkun, S., Hamdi, M., Hubaux, J.P.: GPS-free positioning in mobile ad hoc net-
works. Cluster Comput. 5(2), 157–167 (2002)

7. Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Privacy preserving and cost
optimal mobile crowdsensing using smart contracts on blockchain. In: 2018 IEEE
15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.
442–450. IEEE Computer Society (2018)

https://doi.org/10.1007/978-981-13-9942-8_32
http://arxiv.org/abs/1407.3561

Orthos: A Trustworthy AI Framework for Data Acquisition 117

8. Chatzopoulos, D., Gujar, S., Faltings, B., Hui, P.: Localcoin: An ad-hoc payment
scheme for areas with high connectivity. CoRR abs/1708.08086 (2017)

9. ConsenSys: Mythril. https://github.com/ConsenSys/mythril (2017)
10. Dasgupta, A., Ghosh, A.: Crowdsourced judgement elicitation with endogenous

proficiency. In: Proceedings of the 22nd International Conference on World Wide
Web, pp. 319–330 (2013)

11. Eberhardt, J., Tai, S.: On or off the blockchain? insights on off-chaining computa-
tion and data. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.) ESOCC 2017.
LNCS, vol. 10465, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-67262-5 1

12. Ethereum: Remix. https://github.com/ethereum/remix (2016)
13. Faltings, B., Li, J.J., Jurca, R.: Incentive mechanisms for community sensing. IEEE

Trans. Comput. 63(1), 115–128 (2014)
14. Han, G., Liu, L., Chan, S., Yu, R., Yang, Y.: Hysense: a hybrid mobile crowdsens-

ing framework for sensing opportunities compensation under dynamic coverage
constraint. IEEE Commun. Mag. 55(3), 93–99 (2017)

15. Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way
functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, pp. 12–24. ACM (1989)

16. Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: IEEE
International Conference on E-Commerce, CEC 2003, pp. 285–292. IEEE Com-
puter Society (2003)

17. Jurca, R., Faltings, B.: Robust incentive-compatible feedback payments. In: Fasli,
M., Shehory, O. (eds.) AMEC/TADA -2006. LNCS (LNAI), vol. 4452, pp. 204–218.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72502-2 15

18. Lambert, N., Shoham, Y.: Truthful surveys. In: Papadimitriou, C., Zhang, S. (eds.)
WINE 2008. LNCS, vol. 5385, pp. 154–165. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92185-1 23

19. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

20. Miller, N., Resnick, P., Zeckhauser, R.: Eliciting informative feedback: the peer-
prediction method. Manag. Sci. 51(9), 1359–1373 (2005)

21. Prelec, D.: A bayesian truth serum for subjective data. Science 306(5695), 462–466
(2004)

22. Ra, M.R., Liu, B., Porta, T.L., Govindan, R.: Medusa: A programming framework
for crowd-sensing applications. In: MobiSys. ACM (2012)

23. Radanovic, G., Faltings, B.: A robust Bayesian truth serum for non-binary signals.
In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI
2013), pp. 833–839. AAAI Press (2013)

24. Radanovic, G., Faltings, B.: Incentives for truthful information elicitation of con-
tinuous signals. In: Proceedings of the 28th AAAI Conference on Artificial Intelli-
gence, pp. 770–776. AAAI Press (2014)

25. Radanovic, G., Faltings, B.: Incentive schemes for participatory sensing. In: Pro-
ceedings of the 2015 International Conference on Autonomous Agents and Multi-
agent Systems, pp. 1081–1089. ACM (2015)

26. Radanovic, G., Faltings, B., Jurca, R.: Incentives for effort in crowdsourcing using
the peer truth serum. ACM Trans. Intell. Syst. Technol. (TIST) 7(4), 48 (2016)

27. Riley, B.: Minimum truth serums with optional predictions. In: Proceedings of the
4th Workshop on Social Computing and User Generated Content (2014)

https://github.com/ConsenSys/mythril
https://doi.org/10.1007/978-3-319-67262-5_1
https://doi.org/10.1007/978-3-319-67262-5_1
https://github.com/ethereum/remix
https://doi.org/10.1007/978-3-540-72502-2_15
https://doi.org/10.1007/978-3-540-92185-1_23
https://doi.org/10.1007/978-3-540-92185-1_23

118 M. H. Moti et al.

28. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

29. Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
Alexandrov, Y.: Smartcheck: static analysis of ethereum smart contracts. In: 2018
IEEE/ACM 1st International Workshop on Emerging Trends in Software Engi-
neering for Blockchain (WETSEB), pp. 9–16. IEEE, ACM (2018)

30. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82.
ACM (2018)

31. Wang, L., Zhang, D., Yan, Z., Xiong, H., Xie, B.: effsense: a novel mobile crowd-
sensing framework for energy-efficient and cost-effective data uploading. IEEE
Trans. Syst. Man Cybern. Syst. 45(12), 1549–1563 (2015)

32. Witkowski, J., Parkes, D.C.: Peer prediction with private beliefs. In: Proceedings
of the 1st Workshop on Social Computing and User Generated Content (2011)

33. Witkowski, J., Parkes, D.C.: Peer prediction without a common prior. In: Proceed-
ings of the 13th ACM Conference on Electronic Commerce, pp. 964–981. ACM,
ACM (2012)

34. Witkowski, J., Parkes, D.C.: A robust Bayesian truth serum for small populations.
In: AAAI, vol. 12, pp. 1492–1498. AAAI Press (2012)

35. Wolberger, L., Mason, A., Capkun, S.: Platin - proof of location protocol on the
blockchain (2018). https://platin.io/

36. Xu, R., Chen, Y., Blasch, E., Chen, G.: Blendcac: a smart contract enabled decen-
tralized capability-based access control mechanism for the iot. Computers 7(3), 39
(2018)

37. Zhang, P., Chen, Y.: Elicitability and knowledge-free elicitation with peer predic-
tion. In: Proceedings of the 2014 International Conference on Autonomous Agents
and Multi-Agent Systems, pp. 245–252. IFAAMAS/ACM (2014)

38. Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., Wan, J.: Smart contract-based access
control for the internet of things. IEEE Internet Things J. 6(2), 1594–1605 (2018)

https://platin.io/

Simulating Vehicular IoT Applications
by Combining a Multi-agent System

and Big Data

Ryo Neyama1(B) , Sylvain Lefebvre1 , Masanori Itoh1, Yuji Yazawa1,2,
Akira Yoshioka1,2, Jun Koreishi3, Akihisa Yokoyama1,2, Masahiro Tanaka2,

and Hiroko Okuyama1,2

1 Toyota Motor Corporation, Toyota, Japan
{neyama,slvn-lefebvre,masanori.itoh,yazawa,yoshioka}@toyota-tokyo.tech

2 Toyota Research Institute - Advanced Development, Inc., Toyota, Japan
3 Sole proprietorship, Toyota, Japan

{akihisa.yokoyama,masahiro.tanaka,hiroko.okuyama}@tri-ad.global

Abstract. Describing an accurate simulation model of the driving
behavior of real-world vehicles is a laborious or even impossible task,
because a driver reacts to a dynamically changing environment. As mul-
tiple external factors determine driving behavior, it is usually difficult
to obtain an accurate model, owing to a lack of sensors or inability to
collect data. In this paper, we propose a novel technique to combine
driving behavior in vehicular Internet of Things (IoT) big data with a
multi-agent system. This enables correct and scalable simulation without
modeling the behavior of vehicular IoT devices or the environment. We
develop an extensible simulation framework, called FlowSim, that demon-
strates the application of our technique for a simulation of camera-image
data collection from connected cars.

1 Introduction

With the advocacy of the CASE (Connected, Autonomous, Shared, and Electric)
vision by Daimler [4], connectivity based services for cars have been considered
one of the key innovation enablers for automotive companies.

A developer of the next-generation services for connected cars may suffer from
an insuperable gap between the car development cycle and the agility desired
for making innovative services. For most car models, the development cycle is
typically two to four years, and as frequent and very large-scale software updates
have not been achieved yet for connected vehicles, the capacity to deploy and
test new software features at scale remains limited.

If one has a new service idea for connected cars in their mind, they would
first test it in order to determine an appropriate specification, or to verify its
business feasibility before production. For instance, considering a data collection
service from connected cars to the cloud, developers may want to verify which
data uploading algorithm is the most efficient, how long it takes, or how much it
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 119–128, 2020.
https://doi.org/10.1007/978-3-030-66534-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_8&domain=pdf
http://orcid.org/0000-0002-1983-1416
http://orcid.org/0000-0003-4045-3779
https://doi.org/10.1007/978-3-030-66534-0_8

120 R. Neyama et al.

costs to collect a particular amount of data. Therefore, the research question is
as follows: How can we verify services for millions of connected cars in an agile
manner, such as in A/B testing [15]?

Multiple traffic simulation tools [13,14,16] or models [10,12] are available in
the literature, however, it is difficult to provide parameters to make the sim-
ulation realistic. To this end, we need to have hypotheses that are difficult to
obtain for countrywide or continent-wide simulations. Namely, in the case of the
aforementioned data collection service, we need to have hypotheses on when,
where, and how many vehicles drive, to collect the data on the road under the
influence of external factors, such as drivers’ intentions, traffic signals, and traffic
congestions. One solution to this issue could be to extract the parameters from
real-world data. However, obtaining data about external factors is challenging,
due to the high cost of embedding multiple sensors and processors in cars.

To overcome the aforementioned limitations, we propose a simulation tech-
nique to combine collected data from IoT vehicular devices with a multi-agent
system. Our study makes the following contributions:
Requirements. There are some characteristic requirements in vehicular IoT
simulations for the development of new services in the real world. We touch upon
all the issues and categorize them into functional and non-functional require-
ments (Sect. 2).
Technique and Framework. We propose a technique to process highly scalable
simulations by combining vehicular IoT big data with a multi-agent system, as
well as a reusable simulation framework FlowSim to allow users to apply the
technique to various vehicular IoT simulations (Sect. 3).
Case Study. We apply the proposed technique to data collection for connected
cars, and demonstrate some preliminary performance results, thereby demon-
strating the usefulness of the technique and framework (Sect. 4).

2 Motivation

Most advanced services for connected cars rely on the collection and aggregation
of large quantities of data from moving vehicles. The design and evaluation of
efficient algorithms for collecting this data at scale is particulary challenging as
most of the infrastructure for such services is not available yet. As an example
of such challenging connected-car service, we decided to study the case of Map-
Generation Data Collection.

2.1 Use Case: Map-Generation Data Collection

Automated high-definition (HD) map generation and distribution by utilizing
vehicular camera images [3,7] consist in collecting images and road status infor-
mation from running vehicles in order to generate up-to-date and accurate maps.
As depicted in Fig. 1, a) the system collects on-board camera images of roads
(map-gen data) from cars and stores them in a cloud-based service, b) the col-
lected data are integrated using the service, thus generating an HD map, c) and

Simulating Vehicular IoT Applications 121

Map-Gen Data
Uploading Map

Generation

Connected Cars Cloud-Based Service

Map-Gen
Data

Ingestion

Map-Gen Data
Uploading

Map-Gen Data
Uploading

Map-Gen
Data

Map-Gen
State

HD Map

Map-Gen
State Query

Automated Driving & Driver Assistance

HD-Map
Delivery

HD-Map
Utilization

HD-Map
Utilization

a)

Map-Gen State
b)

c)

Fig. 1. Generation and Distribution of HD Maps

delivering the HD map with a road network to automated driving systems or
driver assistance systems.

Balancing between the cost and quality is a vital design decision in this
service. While the coverage, quantity, and quality of the collected data influence
the quality of the generated HD maps and the service itself, uploading high-
quality map-gen data is expensive in communication and data center operations.

We consider the use of a simulator to verify the relationship between cost
and quality (coverage, more specifically) during map-gen data collection. As
discussed in Sect. 1, it is challenging to provide suitable parameters to the sim-
ulator. Therefore, we use vehicle log data containing only position, speed, and
time stamp information, which are easily obtainable from current car models.

Here, we assume a road network denoted by an undirected graph G =
{V,E, I, F} where V is a set of vertices (intersections), E ⊆ {(x, y)|x, y ∈ V ∧x �=
y} is a set of edges (road links), I is a pair of functions that map an edge to its
unique identifier and vice versa, and F is a set of functions that map an edge to
its features, such as a road link length.

We have a set of cars O = {oi}. When a car o enters a road link with an ID
l at a time stamp t, and requires d seconds to pass through the road link, we
obtain a record pi = (o, l, t, d), thereby resulting in a set of records P = {pi},
which forms the vehicle log.

Let ct,o be the communication cost needed to collect the data from a car o at
a simulation time t, len(·), gent(·) ∈ F the functions that, for a given road link
(and time), provide the length, and determine whether an HD-map segment is
generated, respectively, and Ht = {hi|hi ∈ E ∧ gent(hi)} represents the set of
generated road links at t.

Our simulation goal is to evaluate two metrics, namely i) the total cost of
communication in collecting the map-gen data and ii) the coverage of generated
road links for the entire road network

122 R. Neyama et al.

at a simulation time tn. Formally:

Cn =
n∑

i=1

|O|∑

j=1

cti,oj Rn =
∑|Htn |

i=1 len(hi)∑|E|
i=1 len(ei)

One can consider multiple data collection strategies, e.g. always uploading,
randomly uploading, or filtering uploads by checking the status of each road link
using the on-cloud service. Cn and Rn can vary depending on the data collection
strategy Sm.

2.2 Requirements

In the case of map-gen data collection, we have the following requirements:
Correctness. We create a business plan based on the simulation results. There-
fore, the results obtained have to be sufficiently accurate. It is difficult to man-
ually build an accurate model for simulation, as discussed in Sect. 1.
Scalability. We create HD maps for a country or continent, and not solely for
a block or city, which means that the system is required to scale up on the order
of millions of cars.
Extensibility. We use various data collection strategies or simulation assump-
tions, e.g. communication method or in-vehicle storage size, as well as other
applications, in addition to the map-gen data collection.

The correctness and scalability are in a trade-off relationship. The more we
try to obtain accurate results, the greater the need to serialize task execution
in the simulation, thereby rendering the system difficult to scale. In Sect. 3, we
will discuss a method to balance the correctness and scalability.

3 Simulation by Combining a Multi-agent System with
Vehicular IoT Big Data

3.1 Proposed Simulation Technique

To achieve both correctness and scalability in simulation, we propose a simulation
technique that combines a multi-agent system and vehicle IoT big data. Figure 2
shows the simulation data pipeline, which comprises two parts:
i) Vehicular IoT big data preparation. We generate a virtual vehicle log
by filtering the (real) vehicle log (P in Sect. 2.1), thus assigning real vehicles to
the virtual ones. Virtual vehicle log records have one-to-one correspondence with
the real vehicle log records: the system only offsets the records’ time stamps and
replaces the vehicle IDs. Therefore, correctness can be maintained without the
need for modeling based on various hypotheses, as discussed in Sect. 1.
ii) Simulation by a multi-agent system. We carry out the simulation based
on the bulk-synchronous parallel (BSP) model [19]. In each superstep of BSP,
each agent thread runs concurrently for better scalability, while communicating
with each other to make a right decision. This is eventually followed by a barrier

Simulating Vehicular IoT Applications 123

Vehicle
Log

Vehicle Log
(Filtered)

Filtering
Vehicle-to-

Vehicle
Mapping

Virtual Log
Generation

Big
Data

Small
Data

Component

i) Vehicular IoT big data preparation ii) Simulation by a multi-agent system

Virtual
Vehicle

List

Real Vehicle to
Virtual Vehicle

Map

Simulation

Virtual
Vehicle Log

Virtual
Vehicle Log
(Updated)

si
m

ul
at

io
n

tim
e

barrier sync su
pe

rs
te

p

barrier sync su
pe

rs
te

p

bulk-synchronous parallel

Fig. 2. Simulation Data Pipeline

IoT Big Data (environment)

vehicle
behavior

sensors

In-vehicle Device (agent)

extensible part

actuators

1) Understand
the situation

2) Make a decision

3) Control

Virtual
Vehicle Log

sensors

actuators

1) Understand
the situation

2) Make a decision

3) Control

Cloud-based Service (agent)

Virtual
Vehicle Log
(Updated) Virtual Vehicle

vehicle behavior
+ results

Internal
State

Internal
State

Rule
Rule

Fig. 3. Simulation by a Multi-agent System

synchronization at a point of sliced simulation time for better correctness. This
balances the trade-offs mentioned in Sect. 2.2, according to the application’s
requirement.

As shown in Fig. 3, the in-vehicle device and the cloud-based service work
as agents, while IoT big data works as the environment in a multi-agent system.
The simulation regards the virtual vehicles’ behaviors extracted from the data
(pi in Sect. 2.1) as the signals from the environment, and thereby simulation
users can focus on modeling the in-vehicle device that provides the services (see
the motivation in Sect. 2).

For example, in the map-gen data collection introduced in Sect. 2.1, the in-
vehicle device 1) understands the characteristics of captured data (e.g. road type
and map-gen data size) based on the behaviors, how long it can communicate
with the cloud-based service for data uploading, and how much local storage is
available. Then, 2) it ensures that there is enough free disk space to save the
captured data, and exchanges request and response messages with the cloud-
based service to determine whether it should upload the data on the local storage.

124 R. Neyama et al.

Finally, 3) it stores the captured data to the local storage, and uploads the data
on the local storage based on the available communication time.

3.2 The FlowSim Framework

We present a framework called FlowSim that is designed and implemented by
generalizing the proposed technique, and we discuss the method for achieving
extensibility. The components specified in Fig. 2 are implemented as follows:
Vehicle-to-Vehicle Mapping. We map a set of virtual vehicles U = {uj} to
real vehicles O to “copy” the behavior of a real vehicle oi to one or more virtual
vehicles {uj1 , uj2 , . . .}, thus giving 1-to-n correspondence.1 The user can change
the way virtual vehicles are generated along the simulation time and how they
are mapped from a given list of real vehicles.
Virtual Log Generation. We generate a virtual vehicle log from the real
vehicle log.2 The users can modify or aggregate the vehicle log from the original
one, according to the application’s requirement.
Simulation. The simulation repeatedly executes supersteps (see BSP in
Sect. 3.1). We implement supersteps as sequential Spark [2] jobs. The virtual
vehicle log is partitioned by (virtual) vehicle ID, and sorted by vehicle ID and
time. Within a superstep, a set of Spark executors processes each partition in
parallel. The partitioning scheme relies on the vehicle IDs. While sorting vehicles
by ID and time ensures that events are processed in order for each vehicle, this
guarantee does not hold across vehicles or partitions. This is mitigated by the
choice of a suitable superstep length, and the barrier synchronization after each
superstep execution.

As discussed in Sect. 2.1, we intend to evaluate various data collection strate-
gies, i.e. S1,S2, We can implement various algorithms to trigger events, such
as capturing map-gen data based on vehicle log records. Also, we can provide
a new strategy to decide whether the in-vehicle device uploads map-gen data,
by requesting the cloud-based service for the map-gen state. In other words, it
uploads map-gen data for that road link, if and only if no HD-map segment was
generated for the road link. In our implementation, we use a key-value store,
Hazelcast IMDG [6], for this purpose.

We can implement our own virtual data communication module, e.g. mobile
network and Wi-Fi, as well as various network bandwidth models such as a
uniform bandwidth or a bandwidth based on the Poisson distribution.

Instead of gathering results for each simulated vehicle, we rely on our data
pipeline to gather and generate statistical aggregates on data collection for each

1 It is desirable that one real vehicle is assigned to only one virtual vehicle, from
the viewpoint of correctness; otherwise, this can duplicate the behavior of the real
vehicle in the simulation, which is unrealistic. To this end, a sufficient number of
real vehicles are required, namely |U | − |O| � |O| when |U | > |O|.

2 In the system, we store the input data, intermediate data, and output data onto
the Apache Hadoop [1] Distributed File System (HDFS), with two replicas. We use
Apache Spark [2] to process data in a scalable way.

Simulating Vehicular IoT Applications 125

type of road, which helps generalizing the results. We address issues such as data
ageing in the model by frequently updating input data and running the simula-
tion again. One can connect the simulation data pipeline to external components
that can use this data to update their own processes, thus closing the feedback
loop between the control system and the simulation framework.

4 Case Study: Map-Gen Data Collection Simulation

4.1 Evaluation Environment

We used Scala (version 2.11.12) on top of Apache Spark 2.3.1 to develop the sys-
tem. Log data and intermediate states were stored in HDFS (3.0.0) and Hazelcast
IMDG (version 3.11.1), respectively. The Spark cluster spans 24 nodes (1 execu-
tor and 23 workers) over two racks and uses a single Hazelcast node. Machines
are equipped with two Intel Xeon Gold 6126 24C CPUs and 384 GB of RAM
along with 2.9 TiB of NVMe-SSD storage. The nodes are connected through a
100 Gb Ethernet network. Every machine runs Ubuntu 18.04 with kernel v4.15.0,
and we use Docker (version 18.09.0) to deploy the software stack.

4.2 Evaluation with Map-Gen Data Collection

We applied FlowSim to the simulation of map-gen data collection and confirmed
that the proposed technique and FlowSim work as expected. Table 1 summarizes
the information about the input data (the real vehicle log), settings, and results
of the simulation. We used the input data described in Sect. 2.1. By counting
the number of collected map-gen data for each road link, we could calculate the
cost Cn and the coverage Rn under each data collection strategy S1,S2, . . . (see
Sect. 2.1).

Figure 4 shows the execution time and the speedup (the right axis) of the
simulation. Despite the large input data volume, the large number of real and
virtual vehicles, and the long simulation period, the simulation can run in a rea-
sonable time (1 h 49m 19 s). The speedup indicates how much the system could
improve the latency with 23 workers vs. 1 worker, namely 23 in linear speedup.
Although the system showed poor speedup (1.56 and 9.96) for i) Vehicular IoT
big data preparation (i.e. Vehicle-to-Vehicle Mapping and Virtual Log Genera-
tion) mentioned in Sect. 3.1, these steps account for only a small percentage (5.5
%) of the total execution time. In contrast, the system showed excellent speedup
(18.14) for ii) Simulation by a multi-agent system, which accounts for most of
the execution time (94.5 %).

5 Related Work

In [9] Ahmed et al. provide a survey of existing vehicular cloud computing sim-
ulation frameworks. They highlight the need for modularity and bidirectionality
to integrate mobility simulators and network simulators. While this survey notes

126 R. Neyama et al.

Fig. 4. System Performance for Each Simulation Step

Table 1. Map-Gen Data Collection Simulation

Item Description

Input data Data acquisition area Japan
Data acquisition period 365 d
Data size (w/o replicas) 44.2 GB
Number of data records 2,608,986,929
Number of unique vehicles 414,329

Simulation settings Number of vehicles (fixed) 1,000,000
Simulation period 365 d
Micro-batch interval 5 d

Simulation results Number of captured map-gen data
On the vehicles 2,535,104,457
Number of collected map-gen data
On the cloud-based service 29,520,776

that the majority of studies rely on the SUMO [16] mobility generator, there also
exist multiple approaches for extending multi-agent mobility simulators, such as
MATSim, see [14,17].

The common strategy for integrating traffic/mobility simulators and higher
level agent simulation [17] or network simulation [18] is to build a software
bridge between the two simulators. This relies either on log files or sockets, or
the simulation software API. For example, the Veins [18] framework uses bi-
directional coupling between the network simulator Omnet++ [20] and SUMO.
This coupling enables authors to observe the influence of vehicle-to-vehicle com-
munication protocols on the simulated traffic.

The main limit of these approaches is that careful synchronization is needed
between the two simulators to maintain correctness and realistic simulation. We
believe this can hinder the scalability of these approaches. Therefore we use a trace-
based approach to generate events, which trades off flexibility for scalability.

Simulating Vehicular IoT Applications 127

For example, Ahlbrecht et al. [8] implemented the Jason multi-agent frame-
work on top of Apache Spark [2], demonstrating the efficiency of this approach
by running a simulation of up to one million agents on a single node. While this
approach yields important performance and scalability benefits by leveraging in-
memory data processing frameworks to implement multi-agent simulation, the
user has to provide an accurate simulation model.

In [11] Blythe et al. built a multi-agent simulation to predict usage on the
GitHub platform [5]. They modeled the behavior of agents with a graph link
prediction algorithm, trained using historical usage data. Although this study
highlights the need to combine large agent simulation with big data mining and
analysis tools, to provide better modeling of global services, extracting the nature
of the original data is challenging when we apply this approach to vehicular IoT
big data.

6 Conclusions and Future Work

Traffic simulation is one of the most dependable ways to verify new services for
connected cars in an agile manner. However, creating a correct behavior model
for vehicles is difficult, or even impossible, when we consider countrywide or
continent-wide simulation.

We classify the system requirements into correctness, scalability, and exten-
sibility. To this end, we propose a new simulation technique that combines a
multi-agent system, IoT big data, and a framework, FlowSim that allows us to
run simulations for various applications. We verified the usefulness of the pro-
posed technique and FlowSim through a case study with map-gen data collection.
The system had a practical impact on design choices for the development of our
connected vehicle systems.

We leave the comparison with another agent based simulation or vehicular
network simulator and the application of FlowSim to other applications, such as
a dynamic map platform evaluation, for future work. Although our technique
is scalable and can maintain correctness, we cannot simulate an anomaly or
adversarial behavior that the original data set does not contain, because we use
the original data set without modification. For the same reason, the behavior of
agents cannot diverge from the information contained in the data, which limits
the flexibility of our approach.

References

1. Apache Hadoop. https://hadoop.apache.org/
2. Apache Spark. https://spark.apache.org/
3. Automated Mapping Platform – HD Mapping that Empowers. https://www.tri-

ad.global/areas-of-focus/automated-mapping-platform
4. CASE – Intuitive Mobility. https://www.daimler.com/innovation/case-2.html
5. GitHub (a software development platform). https://github.com/
6. Hazelcast IMDG (In-memory Data Grid). https://hazelcast.org/

https://hadoop.apache.org/
https://spark.apache.org/
https://www.tri-ad.global/areas-of-focus/automated-mapping-platform
https://www.tri-ad.global/areas-of-focus/automated-mapping-platform
https://www.daimler.com/innovation/case-2.html
https://github.com/
https://hazelcast.org/

128 R. Neyama et al.

7. Toyota to Display New Map Generation System at CES 2016. https://global.
toyota/en/detail/10765074

8. Ahlbrecht, T., Dix, J., Fiekas, N.: Scalable multi-agent simulation based on MapRe-
duce. In: Criado Pacheco, N., Carrascosa, C., Osman, N., Julián Inglada, V. (eds.)
EUMAS/AT -2016. LNCS (LNAI), vol. 10207, pp. 364–371. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59294-7_31

9. Ahmed, B., Malik, A.W., Hafeez, T., Ahmed, N.: Services and simulation frame-
works for vehicular cloud computing: a contemporary survey. EURASIP J. Wirel.
Commun. Netw. 2019(1), 4 (2019)

10. Bham, G.H., Benekohal, R.F.: A high fidelity traffic simulation model based on
cellular automata and car-following concepts. Trans. Res. Part C Emerg. Technol.
12(1), 1–32 (2004)

11. Blythe, J., et al.: Massive multi-agent data-driven simulations of the github ecosys-
tem. In: Demazeau, Y., Matson, E., Corchado, J.M., De la Prieta, F. (eds.)
Advances in Practical Applications of Survivable Agents and Multi-Agent Sys-
tems: The PAAMS Collection, pp. 3–15. Springer International Publishing, Cham
(2019). https://doi.org/10.1007/978-3-030-24209-1_1

12. Burghout, W., Koutsopoulos, H.N., Andreasson, I.: A discrete-event mesoscopic
traffic simulation model for hybrid traffic simulation. In: 2006 IEEE Intelligent
Transportation Systems Conference, pp. 1102–1107. IEEE (2006)

13. Düntgen, C., Behr, T., Güting, R.H.: Berlinmod: a benchmark for moving object
databases. VLDB J. 18(6), 1335 (2009)

14. Horni, A., Nagel, K., Axhausen, K.W.: The Multi-agent Transport Simulation
MATSim. Ubiquity Press, London (2016)

15. Kohavi, R., Longbotham, R.: Online controlled experiments and a/b testing.
Encycl. Mach. Learn. Data Min. 7(8), 922–929 (2017)

16. Lopez, P.A., et al.: Microscopic traffic simulation using sumo. In: 2018 21st Inter-
national Conference on Intelligent Transportation Systems (ITSC), pp. 2575–2582.
IEEE (2018)

17. Padgham, L., Nagel, K., Singh, D., Chen, Q.: Integrating bdi agents into a matsim
simulation. In: Proceedings of the Twenty-First European Conference on Artificial
Intelligence, pp. 681–686. ECAI’14, IOS Press, NLD (2014)

18. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road
traffic simulation for improved ivc analysis. IEEE Trans. Mob. Comput. 10(1),
3–15 (2010)

19. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

20. Varga, A.: Discrete event simulation system. In: Proceedings of the European Sim-
ulation Multiconference (ESM’2001), pp. 1–7 (2001)

https://global.toyota/en/detail/10765074
https://global.toyota/en/detail/10765074
https://doi.org/10.1007/978-3-319-59294-7_31
https://doi.org/10.1007/978-3-030-24209-1_1

Accept a Challenge: The Multi-Agent
Programming Contest

Challenging Tasks and How to Deal with Them

Tobias Ahlbrecht1(B) , Jürgen Dix1 , Niklas Fiekas1 ,
and Tabajara Krausburg1,2

1 Department of Informatics, Clausthal University of Technology,
Clausthal-Zellerfeld, Germany

{tobias.ahlbrecht,dix,niklas.fiekas}@tu-clausthal.de
2 School of Technology, Pontifical Catholic University of Rio Grande do Sul,

Porto Alegre, Brazil
tabajara.rodrigues@edu.pucrs.br

Abstract. The multi-agent programming contest (MAPC), is an annual
attempt to motivate people to learn about and develop multi-agent sys-
tems to solve a complex challenge. We try to find scenarios, in which
multi-agent systems can be suitably applied. These scenarios and the
competition in general also often serve researchers as a testbed for their
systems and frameworks. We analyze the results and solutions of the
contest of 2019 and take a broader look at the agent technology that
has been used to solve the competition’s challenges since its inception in
2005, and how it has been applied.

Keywords: Multi-agent systems · Agent-oriented software
engineering · Competition

1 Introduction

The Multi-Agent Programming Contest (MAPC) is annually organized to bring
together people who are interested in building multi-agent systems, ranging from
those who want to get a first glimpse to those who are providing agent frame-
works and technology to the community. The Contest’s modus operandi is to
create scenarios, in the form of small games played by other software agents,
where using agent technology should offer benefits over conventional program-
ming approaches.

Everything started in 2005 as the CLIMA Contest and specifically focused on
the evaluation of new approaches from the field of computational logics. Then,
from 2007 up to 2012 it was organized as part of the ProMAS workshop, opening
up to Multi-Agent Systems in general.

Over the years, the scenarios became more and more complex, maturing
together with the agent technologies used to create solutions. While the MAPC,

c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 129–143, 2020.
https://doi.org/10.1007/978-3-030-66534-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_9&domain=pdf
http://orcid.org/0000-0002-4652-901X
http://orcid.org/0000-0002-8528-1440
http://orcid.org/0000-0002-8369-4890
http://orcid.org/0000-0002-8252-4099
https://doi.org/10.1007/978-3-030-66534-0_9

130 T. Ahlbrecht et al.

as the name suggests, encourages the use of multi-agent frameworks or agent-
oriented software engineering in general, conventional programming approaches,
like procedural or object-oriented programming (e.g., using plain C or Java) were
never prohibited. In its 15 years of existence, the Contest has seen a lot of varying
approaches and technologies, where some have been tried once, while others are
used over and over again.

In this paper, we report on the results of the MAPC 2019 together with a
historical analysis focusing on the participants of the MAPC and what kinds of
approaches were tried over the years (in Sect. 5, the main contribution of this
paper). In another paper [1], we take a look at the other side, i.e. how the Contest
itself, especially its various scenarios have evolved since 2005.

2 Related Work

The MAPC and its results have been regularly published. We point to a brief
Contest overview article [2] that includes all editions up to 2014 and of course,
the one that is now more up to date [1].

A number of other competitions targeting multi-agent systems exist as well,
however, each one centers around a different aspect. For example, the brand-new
Intention Progression Competition1 aims to find good solutions for intention
progression problems, i.e.g.iven an agent with specific goals in an environment,
which intention to proceed with in each step.

One big competition is surely the RoboCup Rescue Simulation League2 [25],
where participants have to create agents for disaster response management. All
agents have to be implemented using the Agent Development Framework. Thus,
the effectiveness of agents is emphasized as opposed to the suitability of agent
frameworks in the MAPC.

Then, there is the host of Trading Agent Competitions (TAC), like the still
ongoing Power TAC [16], where agents have to trade in an energy market. Here,
only single agents are implemented and the focus naturally lies on reasoning
about trading-related problems.

Finally, the International Automated Negotiating Agents Competition3

(ANAC) naturally deals with implementing and evaluating good negotiation
strategies.

Whereas all these competitions are looking for solutions to very specific prob-
lems, we are instead trying to find problems (or rather settings) where using
agent concepts is advantageous.

3 Running the Contest

In this section we give a brief overview of how we run the Contest, alternatives of
doing so along with advantages and disadvantages and our plans for the future.
1 https://www.intentionprogression.org/.
2 https://rescuesim.robocup.org/competitions/agent-simulation-competition/.
3 https://ii.tudelft.nl/nego.

https://www.intentionprogression.org/
https://rescuesim.robocup.org/competitions/agent-simulation-competition/
https://ii.tudelft.nl/nego

The MAPC 2019 131

3.1 Setup

The MAPC is conducted in an entirely remote fashion. First, the scenario is
announced and the new software package released, usually in the beginning of the
second quarter of the year. The software package contains MASSim (Multi-Agent
System Simulation), i.e. everything that is needed to run the server side of the
Contest and the same software that we run later in the year to host the matches.
The teams connect remotely to the Contest server communicating via simple
JSON messages over regular TCP sockets. After successful authentication, the
server sends the current percepts to each connected agent and expects an action
message within the next 4 s. Then, the server processes all actions (in random
order) and computes the new state of the world and the cycle repeats. This setup
has the advantage, that the participants are in charge of running their agents
and do not need to adapt their systems to any specific infrastructure. Also, if
they encounter an unexpected bug that would render their agents useless they
still have a chance to fix it. On the other hand, this means that the teams
generally have different working conditions in terms of available hardware and
their connection to the server. For example, teams with a slower connection have
less time to compute their actions.

Usually, the teams have to pass a light qualification round to ensure that
they can communicate with the server and, nowadays, to show that they can
solve some simple tasks in the current scenario.

During the Contest, each team plays three simulations with different para-
meters against each other team. A win is awarded three points and the team
that scores the most points wins the MAPC.

3.2 Alternatives

The overall structure of the Contest has proven to work out fine. However, we are
always looking for ways to improve the Contest. For example, the first version
of MASSim dictated that each game had to be played by exactly two teams.
In a later version, we kept the possibility to have many teams share the same
environment. While we think that this is an interesting option, we are still looking
for scenario features that best exploit this mechanism.

Also, we see that many competitions require that participants submit their
code before the tournament, which is then run by the organizers (or their system)
in a completely automated fashion. We also think that this is a tempting app-
roach for our MAPC, as all teams would have the same prerequisites in terms of
hardware and connection to the server. Additionally, it would allow us to intro-
duce interesting new features like restricting communication between the agents,
simulating a completely different level of situatedness. In the same direction, it
would enable us to do away with the four seconds for deliberation and network
communication and the stepwise execution of the simulation in general, going
towards a more realistic setting, where new percepts can arrive at “any time”
and actions take up some “real” amount of time.

132 T. Ahlbrecht et al.

Admittedly, this would require more effort from each team: They would have
to make sure that their agent system runs on our infrastructure and they would
have to make sure that the agents are very robust, so that they either do not
crash or are able to recover and that most bugs are squashed before the Contest.
Additionally, they may need some facilities to reason about time. As multi-agent
systems can be very robust and fault-tolerant, we see the latter requirement as
an interesting challenge, though.

4 The Multi-Agent Programming Contest 2019

The MAPC 2019 was held on 16 October 2019. Only four teams participated this
time, but each team was able to hold their ground. After an initial qualification
round, which only team TRG passed, all remaining teams were able to qualify
in a subsequent round.

4.1 Scenario

The scenario of the MAPC 2019, “Agents Assemble”, replaced the previous
“Agents in the City” scenario after having been used in three consecutive edi-
tions.

In the new scenario, agents move in a shared 2D grid environment. Other
important objects include obstacles and blocks. While the former are fixed
in position and limit where the agents can go, the latter can (and have to) be
attached to each of the four sides of an agent. During the course of the game,
tasks are randomly generated by the environment. These tasks describe shapes
that can be created by attaching different blocks to each other. The agents
have to construct these shapes and deliver them to specific locations in the
environment to score points.

All agents can only perceive what is in a certain radius around them. If they
meet another agent, they only see its team but not which agent it is, requiring
some communication effort to identify teammates.

The scenario provides actions for moving around, rotating 90 degrees, picking
up and connecting blocks to each other (with the help of an additional agent), or
leaving blocks and deconstructing shapes. A special action, clear, can be used
to remove obstacles. If an agent is hit with a clear action, it gets temporarily
disabled. However, a clear action has to be aimed at the same target cell for a
number of steps and is visible to all agents in proximity.

Similar to the clear action, clear events occur at random locations throughout
the simulation. They have a larger radius than the action and also scatter new
obstacles around their center, realizing a more dynamic environment.

4.2 Participants and Their Approaches

Four teams, as listed in Table 1, participated in the 2019 MAPC, all of them
trying an agent-based approach. We will briefly describe each team and the
agent technology that was used, leading to a bigger picture in the next section,
where we track the technology through the complete history of the MAPC.

The MAPC 2019 133

Table 1. Participants of MAPC 2019

Team Affiliation Platform Score

FIT BUT Brno University of Technology, CZ Java 15

GOAL-DTU Technical University of Denmark, DK GOAL 10

LFC University of Liverpool, GB JaCaMo 22

TRG Carleton University, CA Jason 5

Platforms By platform we mean the main technological “driver” of the agent
system. This year, all platforms were Java-based. The team FIT BUT [28]
directly used Java to implement their own BDI-inspired agent system. The other
three teams decided to use established agent platforms: GOAL-DTU [15], as the
name suggests, used the GOAL agent programming language4 [12]. Finally, LFC
[8] used JaCaMo5 [4], a platform combining the well-known Jason agent language
with CArtAgO, an environment framework, and Moise, an organizational frame-
work, while TRG [29] used pure Jason6 [5].

Tools and Development Most teams used the specific IDE for their chosen
platform. GOAL-DTU used Eclipse for GOAL and LFC used Eclipse with the
JaCaMo plugin. FIT BUT used (IntelliJ) IDEA to create their Java agents,
while TRG used IDEA to work on both Java and AgentSpeak code. No team
used any (agent-based) development methodology, like Prometheus or Tropos.

Additional Frameworks Additional AI features were, as usual, rarely imple-
mented. Only LFC made use of the Fast Downward planning system [11] for
path planning.

Notably, TRG implemented a custom tool to visualize the percepts of their
agents.

Results LFC took the first place, followed by FIT BUT , GOAL-DTU and
TRG . All teams won at least one simulation and the score intervals between two
rankings are very evenly distributed. LFC and FIT BUT were nearly uncon-
tested, however, LFC won all simulations against FIT BUT . Interestingly, FIT
BUT won all simulations against GOAL-DTU while GOAL-DTU won one sim-
ulation against LFC . FIT BUT in turn lost one simulation against TRG . We
further note that the outlier was usually the second simulation, which was con-
figured to offer more difficult tasks (i.e. requiring bigger shapes). While no team
has actually delivered one of the bigger tasks, we cannot rule out that they
attempted or at least considered to do them. Also, there were fewer smaller

4 https://goalapl.atlassian.net/wiki/.
5 http://jacamo.sourceforge.net/.
6 http://jason.sourceforge.net/wp/.

https://goalapl.atlassian.net/wiki/
http://jacamo.sourceforge.net/
http://jason.sourceforge.net/wp/

134 T. Ahlbrecht et al.

tasks, possibly benefiting teams that worked faster but less consistently. In gen-
eral, the second simulations overall yielded the lowest scores, i.e. had the fewest
tasks completed in comparison.

While most teams tried a straightforward approach of completing as many
tasks as fast as possible, TRG dedicated many agents to defending the goal
zones in hopes of preventing the opposing team from delivering their tasks.
Unfortunately, this approach seems to have bound too many resources without
having the desired effect in many cases.

5 Contestants and Their Agents

In this section, we take a deeper look at all participants of the MAPC, from 2005
up to the most recent one in 2019, what motivated them to take part, what
kinds of solutions they developed, how they did it, which problems they often
faced and generally what did and (mostly) did not change in the last one and a
half decades.

5.1 Technologies

Over the years a number of different technologies have been used by the contes-
tants. These technologies were used to develop agents, to abstract the environ-
ment, to design agents’ interactions as a team, etc. We review past editions of
the MAPC and introduce the frameworks used by the teams in those contests.

Agent Platforms Regarding the programming languages, in total, 15 different
agent platforms7 have been chosen by different teams for developing agents for
the Contest. In Fig. 1a, the number of entries that used a given platform in any
MAPC is shown.

Some well-known programming languages such as Java, Python, C#, and
C++, that are not designed specifically for agent-oriented software engineering
or logic reasoning, have been used quite frequently in the contest. This shows
there exists a trade-off between feeling comfortable with a programming lan-
guage and dealing with the complexity of the MAS-oriented problem designed
for the MAPC. Regarding the declarative paradigm, the general logic-based Pro-
log and its variations were used a few times by teams that sought to represent
the domain as logical facts and rules to exploit the robustness of such an app-
roach8. FLUX [27] uses a symbolic representation in addition to fluent calculus
as a reasoning mechanism to derive conclusions, but was only used by one team
in the early days of the Contest. Not easy to classify, but also a regular con-
tender, GOAL [12] is purely focused on declarative goals that an agent aims to

7 Note we use the term “agent platform” to describe the primary framework or lan-
guage used to implement an agent system.

8 Not counting Prolog as part of many dedicated agent platforms.

The MAPC 2019 135

(a) Absolute number of entries. (b) Usage by different organizations.

Fig. 1. Absolute number of entries for a given agent platform alongside its usage by
different organizations in all editions of the Multi-Agent Programming Contest. For
instance, Jason has been used 22 times in the MAPC by 15 involved organizations.

achieve, trying to attain a simpler deliberation cycle than most full-fledged BDI
platforms.

Then, we also had programming languages (2APL [10], Jason [5], and
Pyson9), as well as frameworks in Java (JACK [7], Agent Factory [24], and
Jadex [21]) that focus on or at least support the development of BDI agents. Of
these, Agent Factory is usually used with extensions that support the develop-
ment of agents such as AF-APL, AF-AgentSpeak, and AF-TeleoReactive [24].
The last two agent platforms to mention are JIAC [18] and MircroJIAC [20].
Whilst MicroJIAC is a lightweight Java agent framework, JIAC provides a full
set of tools to design, implement, and deploy agent systems.

Although many options are available for developing agents, one can see in
Fig. 1b that the usage of them have been confined to few different organizations
(e.g., universities). Few exceptions emerge to this, namely Jason and Java. This
pattern may tell us that most of teams look at the MAPC as a good opportunity
to try out their own agent frameworks. This clearly shows one avenue of how
the MAPC is useful to the MAS community.

It is interesting to note that (sometimes implicitly) agent platforms share
common principles with each other (e.g., the BDI paradigm tends to separate
concerns related to beliefs, desires and intentions in an agent). Based on this
observation, we partition the agent platforms into clusters. To do so, we define
the following categories:

Conventional programming: in this category, we place all approaches that
are not directly developed using a MAS perspective. For instance, all agents’
beliefs are centralized into a single entity that decides the actions to be sent
to the contest server.

Logic-based: approaches that are based on the symbolic representation of the
domain and reason about states through a formal calculus mechanism that

9 https://github.com/niklasf/pyson.

136 T. Ahlbrecht et al.

outputs an action to be performed. FLUX [27] is an example for such an
approach.

Reactive agents: agents do not keep a state of the world. Agents perceive
the environment and solely based on these observations decide the course of
actions to be carried out.

Agent-based: in this category, agents do keep a state of the world to reason
about the course of actions in addition to social skills to enable cooperation.

BDI agents: agent platforms that consider a sophisticated reasoning mechanism
in terms of beliefs, desires, and intentions [22]. Such support is explicitly pro-
vided in some of the agent development platforms, e.g., JACK [7], JIAC [18],
2APL [10], etc.

We analyzed the team description papers along with the teams’ answers to
the respective MAPC survey to assign a category for each agent platform. Note
that one programming language (e.g., Java) could fit into different categories,
depending on how a particular team used it to implement their agents. This
analysis was conducted by three researchers in which the outcomes were always
double-checked (i.e., each entry was analyzed and discussed by at least two
researchers). The results are depicted in Fig. 2.

We observe that the preferred approach is to develop a team of agents in
accordance with agent-based paradigms, in particular, agents that maintain a
state of the world being observed. This could be motivated by many reasons, for
instance, teams were learning a particular MAS framework and decided to test
it out in the contest (this discussion is further developed in Sect. 5.2). Moreover,
at some times, programming languages based on other paradigms rather than
MAS were used to provide an agent based approach. This is often due to a lack
of familiarity with MAS tools or the general desire to show the qualities of a
language.

Supporting Frameworks Apart from the focus on the development of agents
themselves, a MAS may require additional tools and frameworks to better deal
with a given domain or decrease the implementation complexity. For instance,
one may want to state explicitly an organization of agents. Through the years,
contest teams have used some frameworks for supporting their development and
it is worth introducing some of them.

To design a team of agents, well-known methodologies such as Gaia [31],
MaSE [30], Prometheus [19], and Tropos [6] are part of the contest teams’ tool-
boxes. However, conventional approaches for software development are also part
of it, for instance, the SADAAM [9] methodology provides agile techniques ori-
ented to agent development. It is important to note that some agent frameworks
already encapsulate tools for dealing with many problems related to MAS devel-
opment, as in the case of JIAC [20]. For most of the teams that aimed to design
a MAS organization, Moise [14] was chosen as it enables the specification of the
organization in terms of its structural, functional, and normative dimensions.

The usage of these methodologies over the years is depicted in Fig. 3. One
can note that frameworks for designing MAS, like GAIA, Tropos, and even

The MAPC 2019 137

Fig. 2. Team’s entries partitioned into clusters according to the chosen approach to
develop their agents.

Prometheus, have lost contest teams’ interest in recent years. This is partic-
ularly intriguing since the MAPC tries to avoid trivial winning solutions. It may
be interesting to explore what are the new demands of MAS designers and check
if current methodologies match those needs.

Apart from methodologies, we also mention some agent frameworks used
by contestants. For message exchange, JADE [3] easily enables communica-
tion between distributed agents. CArtAgO [23], mainly used by Jason teams,
abstracts away the environment from the agent dimension; it works as a first-
class abstraction for it. In terms of quickly prototyping, one interesting approach
was to use an agent-based modeling tool, NetLogo10, to experiment with strate-
gies to be performed in the MAPC.

Besides general MAS reasoning, we find that AI techniques are still severely
underused in the MAPC. This is most likely due to the considerable learning and
development effort required to get AI-related mechanisms to work well enough.
For the most part, teams have tried some approaches for planning, e.g., a Fast

10 https://ccl.northwestern.edu/netlogo.

https://ccl.northwestern.edu/netlogo

138 T. Ahlbrecht et al.

Fig. 3. Main supporting methodologies used by contest teams.

Downward planner [11], RHBP [13], a planner for ROS, or answer set program-
ming with DLV [17].

Another important aspect of the MAPC is agent coordination. In addition to
the already mentioned Moise, most attempts in this regard (aside from custom
protocols) were realized through some form of auction-based mechanism, with
the contract net protocol [26] being the most prominent representative.

5.2 Survey

Starting in 2011, we devised a (more or less) standardized survey that we let each
attending team fill out after the Contest. It contains questions about the teams
themselves, which platforms and tools they have used, how they implemented
their agents and which strategies they pursued. While the agent systems do not
necessarily allow us to draw conclusions about the quality of the agent platforms
that were used to create them, we can at least gather some (subjective) feedback
with our survey.

Motivation We always ask all participants why they participated in the Contest
at all. The most frequently given reason is to learn more about multi-agent sys-
tems or some specific agent technology or platform. Often, the Contest scenario
is used within some course or student project: The students have a concrete
goal while it is usually their first contact with agent-oriented programming.

The MAPC 2019 139

Nonetheless, they regularly achieve competitive results. On the other hand, we
see researchers who want to evaluate their own contributions to the agent com-
munity, ranging from certain aspects of agent programming and design, to entire
agent platforms. Rarely, we see people attending just because of the competition,
or to test and improve their software engineering skills.

Time Spent When we look at the time invested, we note that there is no cor-
relation to the Contest performance. Most teams within the same year spend
roughly the same amount of developer hours, with few outliers. Generally, 300 h
in total seems to be a sweet spot for developing an agent team for the MAPC.
Usually, the time investment does not depend on the number of people involved,
as we have seen various team sizes, from over 10 people to just singular devel-
opers.

Additionally, teams who are new to the Contest generally do not spend more
time on their agents than teams who have participated before, even in consecu-
tive runs of the “same” scenario.

Also, despite the scenarios getting more complex, the teams are not spending
more time on average. On the contrary, the total time spent seems to be in a
slight decline after all. Weirdly, in the new 2016 scenario, where teams had to
implement a lot of scenario-specific functionality (and even said so), appreciably
less time was spent than in the Mars scenario the year before. One reason might
be, that in the Mars scenario, a solution could have been very simple and thus,
a lot of time could be spent on optimization, while it was rather unclear when a
solution was actually performing well before running it against other approaches.
In the following scenario, the potential for optimization (of strategies for exam-
ple) may have been smaller.

Size of Solutions Comparing program sizes (i.e. lines of code), we first note
that conventional solutions in e.g., C++ often are at least as big as or consider-
ably bigger than agent technology-based entries in the same year, which makes
sense given that the reasoning method is already implemented for the latter.

Among agent languages, especially GOAL entries tend to be very small, while
Jason/JaCaMo solutions are mostly of average size. Also, contrary to expecta-
tion, there is no clear trend as to the split between agent code (i.e. AgentSpeak)
and Java code (for internal actions). Some teams keep their reasoning logic very
small and leave a lot to be calculated, maybe even planned, in Java, while others
do not even have half as much Java code but more than triple the amount of
AgentSpeak code. While this sounds like a lot, the latter solutions (with more
agent code) tend to be smaller in total.

6 Lessons Learned

Over the years, both participants and organizers contributed to building a set
of lessons learned on designing and deploying MAPC (see [1] for the impacts

140 T. Ahlbrecht et al.

on scenario design). When asked directly in the survey, participants reported
lessons learned from the following three categories.

Practical application of agent technologies: This includes how to deal
with specific technical problems. While some of the problems are unique or
relate to particular platforms, recovering from errors, portability (even where
participants manage their own environment) and debugging are recurring
challenges. Improving multi-agent platforms in these areas motivates ongo-
ing research. Looking back, despite these occasional issues, participants were
generally happy with the platforms they used. This may be explained in part
by survivorship bias or teams choosing technology that they are already (at
least somewhat) familiar with. However, it also applies to participants using
multi-agent technologies for the first time.

Project management: This category includes how to balance work on imple-
mentation and strategical considerations. Some participants admitted that
they underestimated the time required to compete successfully or that they
would have chosen a different balance with hindsight. One idea to guide par-
ticipants may be to introduce milestones with varying levels of difficulty, as
opposed to a singular qualification round. On the other hand, this would add
organizational overhead and limit possible approaches. For example, for some
methodologies or approaches it may not be possible to deliver incremental
solutions. While the usage of methodologies is in decline for some years now,
we prefer to keep the door open for their return.

Approaches to “solve” the scenarios: Even seemingly simple scenarios may
be difficult to master. Common strategies are to decompose the problems,
where multi-agent platforms and frameworks help to organize teams of agents,
and to make an initial viable solution more efficient by improving task allo-
cation, also supported by multi-agent platforms and frameworks.

7 What Is Next

In this section, we take a look at which suggestions the participating teams have
made to improve the Contest since 2011, what we could already realize and what
we can do in the future. We grouped all recommendations into organization,
setup (how the Contest generally works on a technical level), and everything
that pertains to the scenario. For a quick review of all the MAPC scenarios we
refer the reader to [1].

Organization: Many teams have suggested more friendly matches, both after
but mostly before the Contest. Of course, there is always a possibility for
teams to set this up between themselves. We have never tried to institution-
alize this before. Generally, teams usually try not to show too much of their
strategy before the actual matches, so the usefulness is unfortunately rather
limited. Also often requested is some kind of “dummy agent team”, that can
be played against for testing. We already had one in previous editions, though
its capabilities were only very limited and thus, it was also not that useful.

The MAPC 2019 141

The other points are mostly related to releasing information (e.g., about the
scenario or the final parameters) earlier. We always try to be as early as our
other responsibilities admit, but history has shown that many teams only
start working months after the scenario’s release, or just a few weeks before
the Contest anyway. As for the parameters, we have started announcing some
parameter ranges or likely parameters, or at least which parameters are fixed
and which will be kept secret, since we do not want the teams to know the
exact characteristics of the environment they will play in. On the other hand,
teams are complaining if the parameters are set too narrow and not requiring
enough flexibility.

Setup: Sometimes, a team proposed to restrict the communication between the
agents. As we already noted in Sect. 3, this would only be possible if we make
fundamental changes to how the Contest is conducted, i.e. run the agents
locally in separate containers. This would at the same time fulfill the wish
for similar prerequisites for all participants. If we actually decide to pursue
this direction, we have to make sure though that we are not restricting the
approaches that can be used in the MAPC, since the current versatility is one
of its big advantages.

Scenario: Some teams desire more freedom for agents to decide what to do in
the contest. For instance, agents could change roles during a match, or even
call new agents to the round, etc. This type of feature would not come for
free to the agents; they would have to pay a price for it (e.g., let some scores
go or achieve a particular mission). In the 2018 contest, we implemented a
feature that allowed agents to improve their skills, but it ended up underused.
Regularly, after each contest, teams also ask for an increase in the number of
agents, maps, and other parameters. Usually, this type of request is granted
as we start a new scenario setting reasonable fair parameter values. One
suggestion that has also been addressed is related to individual perceptions.
It should not be possible for an agent to get an agent mate’s perceptions;
to do so, it must interact with others to combine local views (2019 MAPC).
Another interesting feature is to provide “living” entities that are not directly
controllable by teams to interact in the environment. This was first done in
the Cow Herding Scenario, and later requested again by contestants. One
request that has been long asked for is to enable cooperation between agents
of different teams. This is a magnificent feature to develop and see being used,
but hard to impossible to implement in competitive environments in a way
that makes sense. As a last matter, two requests that seem to be conflicting
among themselves:

– provide focus on a specific problem of MAS at each contest; and
– avoid to pose too specific domain problems (e.g., optimization problems).

As a general field of AI, MAS demands many problems to be addressed and the
MAPC, as a steady supporter of research in it, aims to come up with problems
that match the needs of researchers and can be tackled by a multitude of
different approaches.
To conclude, we have seen a great number of contributors to the MAPC over
the years, be it participants, organizers, supporters or friends of the Contest

142 T. Ahlbrecht et al.

and we are thankful to each and everyone of them. It is always a challenging
endeavor to design and run – and certainly also to participate in – the Multi-
Agent Programming Contest.

References

1. Ahlbrecht, T., Dix, J., Fiekas, N., Krausburg, T.: The multi-agent program-
ming contest: A résumé. CoRR abs/2006.02739 (2020). https://arxiv.org/abs/
2006.02739

2. Ahlbrecht, T., Dix, J., Schlesinger, F.: From testing agent systems to a scalable
simulation platform. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.)
Advances in Knowledge Representation, Logic Programming, and Abstract Argu-
mentation. LNCS (LNAI), vol. 9060, pp. 47–62. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-14726-0 4

3. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE (Wiley Series in Agent Technology). John Wiley & Sons Inc., Hoboken, NJ,
USA (2007)

4. Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented
programming with jaCaMo. Sci. Comput. Program. 78(6), 747–761 (2013)

5. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons, Hoboken, NJ, USA (2007)

6. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos:
an agent-oriented software development methodology. Auton. Agent. Multi-Agent
Syst. 8(3), 203–236 (2004). https://doi.org/10.1023/B:AGNT.0000018806.20944.ef

7. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents -
components for intelligent agents in Java. AgentLink Newsl. 2, 2–5 (1999)

8. Cardoso, R.C., Ferrando, A., Papacchini, F.: Lfc: Combining autonomous agents
and automated planning in the multi-agent programming contest. arXiv preprint
arXiv:2006.02736 (2020)

9. Clynch, N., Collier, R.: SADAAM: Software agent development an agile method-
ology. In: Proceedings of the 1st International Workshop on Languages, Method-
ologies and Development Tools for Multi-Agent Systems. vol. 5118. Springer, Hei-
delberg (2007)

10. Dastani, M., Hobo, D., Meyer, J.J.C.: Practical extensions in agent program-
ming languages. In: Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2007), Association for
Computing Machinery, New York, NY, USA (2007). https://doi.org/10.1145/
1329125.1329294

11. Helmert, M.: The fast downward planning system. J. Artif. Int. Res. 26(1), 191–246
(2006)

12. Hindriks, K.V., De Boer, F.S., Van Der Hoek, W., Meyer, J.J.C.: Agent program-
ming with declarative goals. In: International Workshop on Agent Theories, Archi-
tectures, and Languages, pp. 228–243. Springer (2000)

13. Hrabia, C., Wypler, S., Albayrak, S.: Towards goal-driven behaviour control of
multi-robot systems. In: 2017 3rd International Conference on Control, Automation
and Robotics (ICCAR), pp. 166–173 (2017)

14. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the moise+ model: Programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007). https://doi.org/10.1504/
IJAOSE.2007.016266

https://arxiv.org/abs/2006.02739
https://arxiv.org/abs/2006.02739
https://doi.org/10.1007/978-3-319-14726-0_4
https://doi.org/10.1007/978-3-319-14726-0_4
https://doi.org/10.1023/B:AGNT.0000018806.20944.ef
http://arxiv.org/abs/2006.02736
https://doi.org/10.1145/1329125.1329294
https://doi.org/10.1145/1329125.1329294
https://doi.org/10.1504/IJAOSE.2007.016266
https://doi.org/10.1504/IJAOSE.2007.016266

The MAPC 2019 143

15. Jensen, A.B., Villadsen, J.: Goal-dtu: Development of distributed intelligence for
the multi-agent programming contest. arXiv preprint arXiv:2006.06844 (2020)

16. Ketter, W., Collins, J., Weerdt, M.d.: The 2020 power trading agent competition.
ERIM Report Series Reference (2020–002) (2020)

17. Leone, N., Faber, W.: The DLV project: a tour from theory and research to appli-
cations and market. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008.
LNCS, vol. 5366, pp. 53–68. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-89982-2 10

18. Lützenberger, M., et al.: A mas framework for industrial applications. In: Proceed-
ings of the 2013 International Conference on Autonomous Agents and Multi-agent
Systems, pp. 1189–1190 (2013)

19. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons Inc., Hoboken, NJ, USA (2004)

20. Patzla, M., Tuguldur, E.O.: MicroJIAC 2.0 - the agent framework for constrained
devices and beyond. Tech. rep., Technische Universität Berlin (Jul 2009). http://
www.dai-labor.de/fileadmin/files/publications/microjiac 20 2009 07 02.pdf, tUB-
DAI 07/09-01

21. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine, pp.
149–174. Springer, US, Boston, MA (2005). https://doi.org/10.1007/0-387-26350-
0 6

22. Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI-architecture. In:
Proceedings of the Second International Conference on Principles of Knowledge
Representation and Reasoning (KR 1991), 473–484 (1991)

23. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
CArtAgO. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming, pp. 259–288. Springer, Boston, MA (2009). https://
doi.org/10.1007/978-0-387-89299-3 8

24. Russell, S., Jordan, H., O’Hare, G.M.P., Collier, R.W.: Agent factory: a frame-
work for prototyping logic-based AOP languages. In: Klügl, F., Ossowski, S. (eds.)
Multiagent System Technologies, pp. 125–136. Springer, Berlin Heidelberg (2011)

25. Skinner, C., Ramchurn, S.: The RoboCup rescue simulation platform. In: Proceed-
ings of the 9th International Conference on Autonomous Agents and Multiagent
Systems: vol. 1 , pp. 1647–1648 (2010)

26. Smith, R.G.: The contract net protocol: high-level communication and control in
a distributed problem solver. IEEE Trans. Comput. 12, 1104–1113 (1980)

27. Thielscher, M.: Flux: a logic programming method for reasoning agents. The-
ory Pract. Log. Program. 5(4–5), 533–565 (2005). https://doi.org/10.1017/
S1471068405002358

28. Uhlir, V., Zboril, F., Vidensky, F.: Multi-agent programming contest 2019 fit but
team solution. arXiv preprint arXiv:2006.09718 (2020)

29. Vezina, M., Esfandiari, B.: The requirement gatherers’ approach to the 2019 multi-
agent programming contest scenario. arXiv preprint arXiv:2006.02816 (2020)

30. Wood, M., Systems, M., Science, B.: Multiagent systems engineering: A method-
ology for analysis and design of multiagent systems (02 2001)

31. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. J. Auton. Agent. Multi-Agent Syst. 3, 285–312 (2000)

http://arxiv.org/abs/2006.06844
https://doi.org/10.1007/978-3-540-89982-2_10
https://doi.org/10.1007/978-3-540-89982-2_10
http://www.dai-labor.de/fileadmin/files/publications/microjiac_20_2009_07_02.pdf
http://www.dai-labor.de/fileadmin/files/publications/microjiac_20_2009_07_02.pdf
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1017/S1471068405002358
https://doi.org/10.1017/S1471068405002358
http://arxiv.org/abs/2006.09718
http://arxiv.org/abs/2006.02816

The Intention Progression Competition

Simon Castle-Green, Alexi Dewfall, and Brian Logan(B)

University of Nottingham, Nottingham NG8 1BB, UK
{simon.castle-green,brian.logan}@nottingham.ac.uk

academia@aksan.dev

1 Introduction

In this extended abstract, we briefly recall the background, aims and format of
the Intention Progression Competition, describe the format and generation of
the test problems used to evaluate entries, and outline the architecture of the
competition software. We conclude by briefly describing the history and current
status of the 2020 Intention Progression Competition. For more details on the
background and aims of the competition, we refer the reader to [5].

A key problem for an autonomous agent with multiple, possibly conflicting,
goals is ‘what to do next’—which plan should be selected to achieve each of the
agent’s goals, and which step of these plans should the agent execute next. Poor
choice of plans and/or the order in which actions are executed can give rise to
conflicts that may result in a failure to achieve one or more goals. The problem
of ‘what to do next’ combines both means-ends reasoning and action scheduling,
and was termed the intention progression problem (IPP) in [5]. The intention
progression problem has been an active area of research since at least the 1990s,
e.g., [1] and many approaches have been proposed (see [5] for a brief survey).
However research in this area suffers from fragmentation, and a lack of common
terminology, data structures and enabling tools.

The Intention Progression Competition (IPC)1 was proposed in a Blue Skies
paper at AAMAS 2017 [5] as a means of incentivising research around the IPP.
The IPC was inspired by competitions such as the International Planning Com-
petition,2 in that submissions take the form of executable code and are evaluated
on a set of (unseen) benchmark intention progression problems. However, unlike
the planning competition, a key feature of the IPP is the dynamic nature of the
agent’s environment and the goals to be achieved, and in this respect the IPC
has similarities with the Multi-Agent Programming Contest.3

Competition entries take the form of a solver for intention progression prob-
lems. Each solver is evaluated on a set of unseen intention progression problems.
Each IPP instance specifies a set of goals to be achieved, the plans (agent pro-
gram) available to achieve them, and the initial state of the agent’s environment.

The first edition of the Intention Progression Competition is supported by the Univer-
sity of Nottingham School of Computer Science.
1 www.intentionprogression.org.
2 www.icaps-conference.org.
3 www.multiagentcontest.org.

c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 144–151, 2020.
https://doi.org/10.1007/978-3-030-66534-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_10&domain=pdf
http://orcid.org/0000-0003-0648-7107
www.intentionprogression.org
www.icaps-conference.org
www.multiagentcontest.org
https://doi.org/10.1007/978-3-030-66534-0_10

The Intention Progression Competition 145

Some goals in a problem instance are given initially, while others are only given
after a specified delay.

The solver forms a part of a simple agent that operates in a simulated envi-
ronment. The agent and simulated environment are provided as part of the
competition, and are the same for all entries. In a run of the competition, the
agent is initialised with an IPP instance. At each tick (deliberation cycle) in
the run, the agent asks the solver which intention to progress next. The solver
must return the next basic action in one of the agent’s currently active plans.
The agent then returns the selected action to the environment for execution. If
the preconditions of the action hold in the current environment state, the envi-
ronment is updated with the action’s postconditions and the updated state is
returned to the agent. The environment is dynamic: in addition to applying the
postconditions of the action, the environment may change spontaneously. This
cycle repeats until all the goals in the IPP instance have been achieved, or a
timeout is reached.

In the remainder of this abstract, we briefly motivate the framing of the IPP
in terms of goal-plan trees, describe the problem domains used for the evaluation
of entries and outline the architecture of the IPC competition software, before
giving the current status of the competition.

2 Goal-Plan Trees

In [5] the IPP is formalised in terms of Belief-Desire-Intention (BDI) agents. BDI
agents are characterised by having a library of pre-defined plans that are used
to achieve the agent’s goals. Each plan consists of steps which are either basic
actions or sub-goals. Each sub-goal is in turn achieved by some other plan. This
relationship is naturally represented as a tree structure termed a goal-plan tree
(GPT) [1,7,8]. The root of a GPT is a top-level goal (goal-node), and its children
are the plans that can be used to achieve the goal (plan-nodes). Usually there
are several alternative plans to achieve a goal: hence, the child plan-nodes are
viewed as ‘OR’ nodes. By contrast, plan execution involves performing all the
steps in the plan: hence, the children of a plan-node are viewed as ‘AND ’ nodes.
The adoption of goal-plan trees for the IPC was motivated by their wide use
in the BDI agent research community, and their similarity to Hierarchical Task
Network (HTN) planning [2], in particular recent work on ‘HTN-Acting’ [3,6]
which combines HTN planning with plan execution. It was hoped that the use of
a familiar format would foster cross-fertilisation between these two communities.

In the IPC, the program of a BDI agent is represented by a forest of goal-
plan trees. The root of each tree represents a top-level goal the agent is able to
achieve. An IPP instance consists of a forest of GPTs, a set of top-level goals,
and a specification of the initial state of the agent’s environment. For the first
edition of the IPC, IPP instances are encoded in an XML format and generated
by the tool GenGPT.4 GenGPT is capable of generating forests of goal-plan

4 GenGPT is available from www.intentionprogression.org.

www.intentionprogression.org

146 S. Castle-Green et al.

trees for both synthetic and ‘real-world’ problem domains of varying degrees of
complexity, giving intention progression problem instances of differing levels of
difficulty.

A variety of synthetic and ‘real world’ problem instances of increasing lev-
els of difficulty are provided as part of the competition resources. These test
instances are similar to the (unseen) problem instances used to evaluate com-
petition entries, and are intended to facilitate the development and testing of
competition entries. The problem instances were calibrated using scheduling
approaches commonly found in BDI agent programming languages and plat-
forms, including ‘round robin’ (RR), ‘first in first out’ (FIFO), and the MCTS-
based scheduler presented in [8].5 The low difficulty problems are easy to solve
with simple techniques such as FIFO, and are provided primarily for basic test-
ing and debugging of entries. The high difficulty problems are designed to be
challenging for state of the art approaches such as MCTS-based scheduling. We
anticipate that it will be necessary to increase the difficulty level of the most
challenging problem instances in future editions of the competition.

2.1 Synthetic Domain

The goal-plan trees for the synthetic domain are derived from abstract BDI pro-
grams that have similar structure to ‘real world’ BDI programs, however the goal,
plan and action names are arbitrary, and the literals defining the environment
are not a model of any particular environment.

Each forest of synthetic trees are defined by six parameters: the depth of
each goal-plan tree, the number of subgoals in each non-leaf plan (leaf plans
contain only action nodes), the number of plans to achieve a goal, the number
of actions in each plan, the number of environment variables that may appear
in the tree as pre- and postconditions, and the number of goal-plan trees in the
forest. The trees are generated such that: (a) each plan is well formed (the plan
can be successfully executed in some environment), and (b) taken individually,
each goal-plan tree is executable (there is at least one way to achieve the top-
level goal in all (static) environments). By varying the number of environment
variables, we can vary the likelihood of actions and plans in different goal-plan
trees having the same pre- and postconditions, and hence the probability of both
positive and negative interactions between goal-plan trees. This, together with
variations in the dynamism of the environment, allows the performance of each
IPP solver to be evaluated under different conditions.

2.2 ‘Real World’ Domains

In addition to the synthetic domain, entries will be evaluated on instances
of intention progression problems in two ‘real world’ domains: the Miconic-N
domain and the Logistics domain. The goal-plan trees for these domains are
derived from simple BDI programs loosely based on common examples from the

5 We are grateful to Yuan Yao for assistance in calibrating the test problem instances.

The Intention Progression Competition 147

BDI literature. As with the synthetic domain, each real-world domain is defined
by a set of parameters, and a variety of problem instances of increasing difficulty
are provided for each domain as part of the competition resources.

Miconic-N Domain. The Miconic-N Domain defines a set of simple ‘elevator
world’ problems, in which the goals of the agent involve moving people from one
floor of a building to another. Unlike traditional elevators, the Miconic-N elevator
allows passengers to enter their destination floor when calling the elevator using
a n-digit keypad installed in each elevator lobby (where n is the number of floors
in the building). The specification is based on the description of the Miconic-10
domain in [8], which in turn is based on the HTN formulation in [4]. In the
scenario, a single Miconic-N elevator is controlled by the agent. For simplicity,
there are no restrictions on the number of people the elevator can carry. The top-
level goals are of the form ‘move passenger i from floor j to floor k’. A subset of
the goals in a problem instance are given to the agent initially and the remaining
goals are given over the course of the run. The environment is deterministic, i.e.,
it changes only when the agent performs an action and actions are guaranteed
to succeed if their preconditions are true. The environment is parameterised by
the number of floors and the number of possible passengers. The environment
state is specified by propositions for each possible position (floor) of the elevator
and of each passenger, as well as propositions for each passenger being in the
elevator.

Logistics Domain. The Logistics Domain defines a set of simplified logis-
tics problems in which the goals of the agent involve delivering packages from
one location to another. The agent controls a vehicle which can carry a lim-
ited number of packages at any given time. Locations are arranged in a ‘ring’
with each location directly connected to two adjacent locations by ‘roads’. In
addition, there are a number of randomly generated ‘chordal roads’ connecting
non-adjacent locations. The chordal roads effectively provide a set of ‘shortcuts’
that may or may not be available at a particular point in a run. The top-level
goals are of the form ‘transport package i to location j’. A subset of the goals
in the evaluation set are given to the agent initially and the remaining goals are
given over the course of the run. The environment is non-deterministic. To reflect
traffic jams, road closures etc., the chordal roads may or may not be traversable
at any given point in a run (controlled by the environment simulator), while
the ring is always traversable (so packages can always be delivered). Actions
are guaranteed to succeed if their preconditions are true. The environment is
parameterised by the number of locations and the number of possible packages.
The environment state is specified by propositions for each possible location of
the vehicle and of each package, as well as propositions for each package being
in the vehicle and the number of packages currently carried.

148 S. Castle-Green et al.

3 Software Architecture

The IPC software stack consists of three components and is shown in Fig. 1. The
Environment Simulator represents the agent’s environment. The BDI Interface
represents a BDI agent that receives goals and percepts from the environment
and returns actions to achieve the goals. These two components are provided,
and together form the competition framework. The third component, the IPP
Solver, is the competition entry, and decides which action should be returned
by the agent at the current cycle. The components communicate via sockets,
allowing entries to be developed and tested on a single machine, and for the
Environment Simulator to be run remotely during the competition itself.

Environment
Simulator

BDI
Interface

IPP
Solver

XMLJSON

Fig. 1. The IPC software architecture.

3.1 Environment Simulator

Each run of the competition consists of three phases: an initialisation phase, an
active phase, and a completed phase. In the initialisation phase, the Environ-
ment Simulator sends to the BDI interface: the forest of goal-plan trees to be
used for the current intention progression problem instance, the initial state of
the environment, and the initial set of goals to be achieved. In the active phase,
the Environment Simulator accepts action requests from the BDI Interface. If
the preconditions of the requested action hold in the current environment, the
simulator updates the environment state to reflect the postconditions of the
action and any exogenous changes representing the actions of other agents etc.
If the preconditions of the requested action do not hold in the current envi-
ronment, the action request is discarded. The (possibly updated) environment
state is returned to the BDI Interface, together with any additional goals the
agent should achieve. The random seed used to control spontaneous environment
changes and goal generation forms part of the problem instance, ensuring that
the same updates/new goals occur at the same point in a run for all entries.
When all the top-level goals in the problem instance have been achieved or a
timeout is reached, the run enters the completed phase. In the completed phase,

The Intention Progression Competition 149

the simulator sends the interface the log of all actions performed during the run,
before closing the connection.

The simulator communicates with the BDI Interface via messages in JSON
format.

3.2 BDI Interface

The BDI Interface represents a BDI agent that receives goals and percepts from
the environment and performs actions to achieve the goals. The BDI Interface
handles communication between the Environment Simulator and IPP Solver. At
each cycle in the active phase, the IPP Solver sends the interface the action to
be performed by the agent at this cycle. The interface forwards the action to the
simulator, and returns the simulator’s response to the action to the solver. The
response contains:

– the state of the environment following execution of the action;
– the current list of goals and which of these have been achieved; and
– session information including the current session state (initialisation, active

or completed) and the time remaining

The interface communicates with the IPP Solver via XML messages.
The role of the BDI Interface is to simplify development of solvers and the

running of the competition. It translates XML commands to and responses from
the simulator into and from JSON format (with some basic syntax checking on
the input side) so the solver doesn’t have to do this. It also logs the time of each
command from the solver and response from the simulator, so that the elapsed
time taken by a solver can be computed. (Currently, this is only for information,
but future competitions may wish to include elapsed time in scoring.)

3.3 IPP Solver

The IPP Solver is a stand-alone program that decides which of the agent’s inten-
tions to progress at this cycle. Following initialisation, the solver enters a cycle
of reading the current environment state and goals to be achieved, and choosing
an action to perform. The solver must return the next basic action in a plan
for one of the current top-level goals. If execution has reached a subgoal in a
plan, this involves choosing an appropriate plan for the subgoal and returning
the first action of that plan. The solver then returns the selected action to the
BDI Interface which forwards it to the Environment Simulator for execution.
The cycle repeats until the run enters the completed phase.

Implementing the decision making of the solver is the key challenge of the
IPC.

4 The 2020 Intention Progression Competition

We conclude by briefly describing the history and current status of the 2020
Intention Progression Competition.

150 S. Castle-Green et al.

Following the formation of an international Steering Committee to advise on
the rules of the competition and how it should be run, the first edition of the
Intention Progression Competition was announced at EMAS 2019. Participants
were asked to register at the IPC website.6 Registrations opened in July/August
2019, and 22 teams registered for the competition. Following registration, partic-
ipants received access to the entrants’ portal on the IPC website containing the
competition resources. Each participant was also allocated a dedicated virtual
machine for the purposes of testing their entry against the BDI Interface and
Environment Simulator. (Entries could be developed and tested on the partic-
ipant’s own computer, but we required that the final code was submitted via
the participant’s dedicated VM for evaluation on the unseen benchmark IPP
problems.) The final version of the competition platform including the compe-
tition website, resources and software were released in September 2019. Work
continued on calibrating the test and unseen evaluation problems in late 2019,
and a revised set of test problem instances was released in January 2020. Final
entries were due in late March/April 2020, with winners to be announced at
EMAS/AAMAS 2020 in Auckland, New Zealand.

In mid March, it became clear that many teams would be unable to par-
ticipate due to the Covid-19 pandemic, and on the 21st of March we took the
difficult decision to postpone the competition. The first Intention Progression
Competition will now be held at a later date. If circumstances allow, our provi-
sional target is EMAS/AAMAS 2021.

We would like to thank all the teams who registered for IPC 2020 for their
support, and we hope that they will be able to participate when the competition
takes place in future.

References

1. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical plan-
ning agents using summary information. In: Hendler, J., Subramanian, D. (eds.)
Proceedings of the Sixteenth National Conference on Artificial Intelligence and
Eleventh Conference on Innovative Applications of Artificial Intelligence, 18–22 July
1999, Orlando, Florida, USA, pp. 495–502. AAAI Press/The MIT Press (1999)

2. Clement, B.J., Durfee, E.H., Barrett, A.C.: Abstract reasoning for planning and
coordination. J. Artif. Intell. Res. 28, 453–515 (2007). https://doi.org/10.1613/jair.
2158

3. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge
University Press, New York (2016)

4. Koehler, J., Schuster, K.: Elevator control as a planning problem. In: Chien, S.,
Kambhampati, S., Knoblock, C.A. (eds.) Proceedings of the Fifth International
Conference on Artificial Intelligence Planning Systems, Breckenridge, CO, USA,
pp. 331–338. AAAI, April 2000

6 Registrations for the first IPC are still open at www.intentionprogression.org.

https://doi.org/10.1613/jair.2158
https://doi.org/10.1613/jair.2158
www.intentionprogression.org

The Intention Progression Competition 151

5. Logan, B., Thangarajah, J., Yorke-Smith, N.: Progressing intention progresson: A
call for a goal-plan tree contest. In: Das, S., Durfee, E., Larson, K., Winikoff, M.
(eds.) Proceedings of the 16th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2017), Sao Paulo, Brazil, pp. 768–772. IFAAMAS,
May 2017)

6. de Silva, L.: HTN acting: a formalism and an algorithm. In: André, E., Koenig, S.,
Dastani, M., Sukthankar, G. (eds.) Proceedings of the 17th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm,
Sweden, Richland, SC, USA,10–15 July 2018, pp. 363–371. International Founda-
tion for Autonomous Agents and Multiagent Systems/ACM (2018). http://dl.acm.
org/citation.cfm?id=3237441

7. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of IJCAI 2003, pp. 721–726
(2003)

8. Yao, Y., Logan, B.: Action-level intention selection for BDI agents. In: Thangarajah,
J., Tuyls, K., Jonker, C., Marsella, S. (eds.) Proceedings of the 15th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2016), Sin-
gapore, pp. 1227–1235. IFAAMAS, May 2016

http://dl.acm.org/citation.cfm?id=3237441
http://dl.acm.org/citation.cfm?id=3237441

Author Index

Ahlbrecht, Tobias 129

Baldoni, Matteo 61
Baroglio, Cristina 61
Boissier, Olivier 42
Bordini, Rafael H. 42

Castle-Green, Simon 144
Chatzopoulos, Dimitris 100
Chopra, Amit K. 78
Christie V, Samuel H. 78
Collenette, Joe 87
Collier, Rem W. 1
Croatti, Angelo 42

Dastani, Mehdi 21
Dewfall, Alexi 144
Dignum, Frank 21
Dix, Jürgen 129

Faltings, Boi 100
Fiekas, Niklas 129

Gujar, Sujit 100

Hübner, Jomi F. 42
Hui, Pan 100

Itoh, Masanori 119

Kifetew, Fitsum 21
Koreishi, Jun 119
Krausburg, Tabajara 129

Lefebvre, Sylvain 119
Lillis, David 1
Logan, Brian 87, 144

Micalizio, Roberto 61
Moti, Moin Hussain 100

Neyama, Ryo 119

O’Hare, Gregory M. P. 1
O’Neill, Eoin 1
Okuyama, Hiroko 119

Prada, Rui 21
Prasetya, I. S. W. B. 21

Ricci, Alessandro 42

Tanaka, Masahiro 119

Vos, Tanja E. J. 21

Yazawa, Yuji 119
Yokoyama, Akihisa 119
Yoshioka, Akira 119

	Preface
	Organization
	Contents
	Delivering Multi-agent MicroServices Using CArtAgO
	1 Introduction
	2 Related Work
	3 Multi-agent Micro-Services
	3.1 Basic MAMS Model
	3.2 Extending MAMS with HAL

	4 An Artifact-Based Framework for Building MAMS Agents
	4.1 Implementing Virtual Resources as Artifacts
	4.2 Passive Resource Management
	4.3 Active Resource Management
	4.4 FIPA-ACL Based Interaction

	5 Integration with ASTRA
	6 Illustration
	7 Discussion
	8 Conclusions
	References

	Aplib: Tactical Agents for Testing Computer Games
	1 Introduction
	2 Testing Task
	3 Aplib Agency
	3.1 Agent, Belief, and Goal
	3.2 Action (Elementary Tactic)

	4 Structured Goals and Tactics
	4.1 Tactic
	4.2 Aplib Deliberation Cycle
	4.3 Test Robustness

	5 Proof of Concept
	6 Related Work
	7 Conclusion and Future Work
	References

	Exploiting Simulation for MAS Development and Execution—The JaCaMo-Sim Approach
	1 Introduction
	2 Related Works
	3 The Approach
	3.1 Execution Contexts, Events and Activities
	3.2 The Simulation Loop
	3.3 The Time Assignment Function

	4 First Implementation
	5 The Tool at Work
	6 The Road Ahead
	A Events and Activities
	References

	Fragility and Robustness in Multiagent Systems
	1 Introduction
	2 Fragility in Distributed Systems and MAS
	3 Robustness Through Accountability
	3.1 Exemplification in JaCaMo

	4 Related Works
	5 Conclusions
	References

	Fault Tolerance in Multiagent Systems
	1 Introduction
	2 Basic Fault Handling with Information Protocols
	2.1 Message Reordering
	2.2 Message Duplication
	2.3 Message Corruption
	2.4 Message Loss

	3 Internal Faults
	3.1 Crash During Stateless Policy
	3.2 Crash During Stateful Policy

	4 External Faults
	4.1 Retry Policies
	4.2 Role Replacement

	5 Conclusion
	References

	Multi-agent Control of Industrial Robot Vacuum Cleaners
	1 Introduction
	2 The RoboClean Architecture
	2.1 Food Production Facility
	2.2 Multi-agent System
	2.3 Neato API

	3 RoboClean Prototype
	3.1 Simulator
	3.2 Simulator Interface
	3.3 Multi-agent System Implementation Prototype
	3.4 Example

	4 Discussion
	References

	Orthos: A Trustworthy AI Framework for Data Acquisition
	1 Introduction
	2 Background
	3 Spontaneous Localized Settings
	3.1 Essential Characteristics for Spontaneous Localized Settings
	3.2 Information Elicitation Mechanisms
	3.3 Robust Peer Truth Serum for Crowdsourcing

	4 Implementing Decentralized Data Acquisition Mechanisms
	5 Orthos
	5.1 Location Proofs in Spontaneous Localized Settings
	5.2 Orthos Protocol

	6 Performance Evaluation
	7 Design Tradeoffs
	8 Conclusion
	References

	Simulating Vehicular IoT Applications by Combining a Multi-agent System and Big Data
	1 Introduction
	2 Motivation
	2.1 Use Case: Map-Generation Data Collection
	2.2 Requirements

	3 Simulation by Combining a Multi-agent System with Vehicular IoT Big Data
	3.1 Proposed Simulation Technique
	3.2 The FlowSim Framework

	4 Case Study: Map-Gen Data Collection Simulation
	4.1 Evaluation Environment
	4.2 Evaluation with Map-Gen Data Collection

	5 Related Work
	6 Conclusions and Future Work
	References

	Accept a Challenge: The Multi-Agent Programming Contest
	1 Introduction
	2 Related Work
	3 Running the Contest
	3.1 Setup
	3.2 Alternatives

	4 The Multi-Agent Programming Contest 2019
	4.1 Scenario
	4.2 Participants and Their Approaches

	5 Contestants and Their Agents
	5.1 Technologies
	5.2 Survey

	6 Lessons Learned
	7 What Is Next
	References

	The Intention Progression Competition
	1 Introduction
	2 Goal-Plan Trees
	2.1 Synthetic Domain
	2.2 `Real World' Domains

	3 Software Architecture
	3.1 Environment Simulator
	3.2 BDI Interface
	3.3 IPP Solver

	4 The 2020 Intention Progression Competition
	References

	Author Index

