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Abstract

The advent of comprehensive synaptic wiring diagrams of large neural circuits has created

the field of connectomics and given rise to a number of open research questions. One such

question is whether it is possible to reconstruct the information stored in a recurrent network

of neurons, given its synaptic connectivity matrix. Here, we address this question by deter-

mining when solving such an inference problem is theoretically possible in specific attractor

network models and by providing a practical algorithm to do so. The algorithm builds on

ideas from statistical physics to perform approximate Bayesian inference and is amenable

to exact analysis. We study its performance on three different models, compare the algo-

rithm to standard algorithms such as PCA, and explore the limitations of reconstructing

stored patterns from synaptic connectivity.

Author summary

One of the central hypothesis of neuroscience is that memories are stored in synaptic con-

nectivity. Theoretical models show how large numbers of memories can be stored in

recurrent neural circuits thanks to synaptic plasticity mechanisms. Recent advances in

serial block-face electron microscopy, and machine learning methods, are making it possi-

ble to fully reconstruct the synaptic connectivity of neuronal circuits of increasingly large

volumes. Here, we ask the question to what extent it is possible to reconstruct memories

stored in a neural circuit from the knowledge of its synaptic connectivity. We present an

approximate Bayesian inference algorithm, and study its properties on specific attractor

network models.

Introduction

Comprehensive synaptic wiring diagrams or “connectomes” provide a detailed map of all the

neurons and their interconnections in a brain region or even an entire organism. Since the

connectome of the nematode C. elegans was obtained using electron microscopy methods in
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1986 [1], methods for data acquisition and analysis have both been scaled up and improved

significantly. Today, it has become possible to provide connectomes of much more complex

systems such as various Drosophila melanogaster circuits [2, 3], or even a large part of its brain

[4, 5]; the olfactory bulb of zebrafish [6]; and various pieces of the rodent retina [7–9], hippo-

campus [10], and cortex [11–16]. While there still remain a number of formidable challenges

on the way to the complete connectome of a mammal or even human brain [17], the data sets

available today already give rise to a number of intriguing questions. At the same time, it is

becoming increasingly clear that new quantitative methods must be developed to fully exploit

the new troves of data that connectomics provides [18].

Here, we focus on local neural networks that store information in their synaptic connectiv-

ity. It has been hypothesised that cortical networks are optimised for this task, thanks to their

extensive recurrent synaptic connectivity [19]. A popular model for these networks are

attractor neural networks such as the Hopfield model [20] and various generalisations [21–

24], in which memories are stored as attractor states of the dynamics. These attractor states

represent learned internal representations of external stimuli that have been presented repeat-

edly to the network during training, inducing changes in synaptic weights of the network. One

natural question to ask is then: given the knowledge of the synaptic connections between neu-

rons in a recurrent neural network, can we reconstruct the patterns of activity that were stored

in this network in the first place?

In this paper, we first give a mathematical formulation of this problem in terms of a Bayes-

ian inference problem. The Bayesian approach has the advantage of providing a natural way to

handle the uncertainty associated with estimating a large number of parameters from a large

number of noisy observations, i.e. the reconstruction of the original stimuli from the strength

of the synapses in the networks in the present case. Modelling the noise is crucial in this prob-

lem, as we cannot expect the synaptic strengths reported in connectomes to be more than

rough estimates. We use tools from statistical physics to both determine when solving this

inference problem is theoretically possible in a model setting, and to provide a practical algo-

rithm to do so. We analyse the performance of the algorithm in detail on a variety of different

problems, and we invite the reader to download our reference implementation of the algo-

rithm on GitHub and to use and extend it.

The task: Reconstructing memories from network connectivity

The network model. We analyse a variant of the celebrated Hopfield model [20] for a

recurrent neural network composed of N interacting neurons with state si, i = 1, . . ., N. The

network is fully-connected with symmetric, bidirectional connections that have a scalar weight

Jij ¼ Jji 2 R. The neurons update their state at iteration k + 1 sequentially according to

skþ1
i ¼ gðak

i Þ; ð1Þ

where g(�) is some non-linear activation function and ak
i ¼

P
j6¼i Jijs

k
j is the total synaptic input

of the ith neuron.

The network stores P fixed patterns or memories, which are N-dimensional vectors that we

collect in the matrix X� 2 XP�N . We write X�
m;:

for the μth pattern stored in the network, and X
denotes the set of values that pattern entries can take, e.g. X ¼ f�1g for binary patterns. Note

that these patterns correspond to deviations of neuronal activity from its mean, and not neuro-

nal activity itself, which is constrained to be non-negative. This subtraction of mean activity is

expected to be performed by the plasticity rule operating at the synapse (using a ‘covariance

rule’, see e.g. [25]). In the case of binary patterns, Xμ,i = 1 means a neuron is active in a given

pattern, while Xμ,i = −1 means a neuron is inactive. We also assume that Xμ,i are i.i.d. random

PLOS COMPUTATIONAL BIOLOGY Bayesian reconstruction of memories stored in neural networks from their connectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010813 January 30, 2023 2 / 27

http://GitHub
https://doi.org/10.1371/journal.pcbi.1010813


variables, i.e. that stored patterns are uncorrelated. Patterns are stored in the network by

choosing its weights Jij such that the patterns X�
m;:

become fixed points of its dynamics.

We study this model in the thermodynamic limit N!1, while keeping the number of pat-

terns P of order 1. This scaling makes the resulting weight matrix of the Hopfield model a low-

rank matrix. Low rank matrices have played an important role in neuroscience in recent years,

in particular for the modelling of recurrent networks [26–29]. Hence, methods to estimate

them from data in a principled way can help connect these theories with experimental data.

The learning rule. A classic idea for choosing the weights, or the connectivity structure of

the network J ¼ ½Jij� 2 R
N�N

, is to choose the weights proportional to the empirical correlation

of the patterns, Wij �
P

m
X�
m;iX

�
m;j. This prescription is also known as the Hebb rule [30] and

can be written more compactly as

J ¼W ¼
1
ffiffiffiffi
N
p X�ðX�Þ>; ð2Þ

where (X�)> is the transpose of X� and W is thus the empirical correlation matrix of the pat-

terns, assuming that the means of the patterns are zero, as we will do throughout this work,

and the choice of the 1=
ffiffiffiffi
N
p

scaling is explained below. With binary neurons si(t) = ±1, this

model corresponds to the celebrated Hopfield model [20]. In this model, the network exhibits

fixed point attractors close to the stored memories, provided the number of stored patterns P
is smaller than αcN where αc* 0.14 [31].

The connectivity matrix Eq (2) has a number of unrealistic features that makes it inade-

quate for the problem we are interested in here: (i) The network is fully connected, at odds

with neuronal networks in the brain; (ii) Synapses are not sign-constrained, while synapses in

the brain are either excitatory (i.e. non-negative) or inhibitory (i.e. non-positive). A minimal

model that satisfies both requirements is the rectified Hopfield model

Jij ¼ FðWij � tþ zijÞ � 0 ð3Þ

where τ> 0, zij is a noise term (see below), and we choose F(x) = max(0, x). This choice

ensures that weights are non-negative, effectively yielding a model of a network of excitatory

neurons. This is consistent with the hypothesis that information storage occurs primarily in

excitatory-to-excitatory synapses, while the job of inhibitory neurons is primarily to control

the level of activity in the excitatory network. This view is consistent with a number of studies

[32, 33] but has been challenged by others [34].

The noise term zij is taken to be a symmetric random Gaussian matrix, i.e. for i< j, zijs are

i.i.d. random Gaussian variables with mean zero and standard deviation ν, and zji = zij. The

scalar parameter τ controls the connection probability in the network,

pC ¼ pðJij > 0Þ ¼
1

2
erfc

t
ffiffiffi
2
p

n

� �

ð4Þ

to leading order as N!1. In particular, the network becomes sparse in the large τ limit.

Since P* O(1), the weights obtained from Eq (2) will have variance 1/N, while the noise has

variance ν of order 1. The model we study is related to a family of connectivity matrices studied

by Sompolinsky [35], and bears similarities with a model recently proposed by Mongillo et al.
[34].

In brain networks, connectivity matrices are not symmetric. However, if we assume that

the weights depend on the stimuli only via the symmetric matrix X�(X�)>, these asymmetries

will be due to the different sources of noise in the learning process, and the fact that connec-

tomic reconstructions will give us at best an approximation of true synaptic weights (see
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Discussion). For the purpose of analysing quantities derived from the symmetric matrix X�

(X�)>, as we will do here, we can hence symmetrise the matrix J, or equivalently focus on the

case where the noise matrix zij is symmetric.

A note on the 1= ffiffiffiN
p scaling. Our choice of scaling in Eq (2) is made with reconstructing

the patterns in mind and follows from random matrix theory. Our model for the connectivity

matrix is related to the spiked Wigner model [36, 37], where a random matrix M is constructed

as Mij = βuiuj + zij, with zij as above. The matrix M is hence a rank-one perturbation of a ran-

dom matrix with elements drawn i.i.d. from the normal distribution. The task is to reconstruct

the vector u, whose elements are of order 1, from the matrix M. Intuitively, we want to put our-

selves in the “interesting” regime, where reconstruction of the N entries of u from the OðN2Þ

elements of M is neither trivially easy nor impossible. A classic analysis of this model using

random matrix theory [36, 38] reveals that this “interesting” regime is characterised by a phase

transition in the overlap between the leading eigenvector of M and the vector u, which occurs

precisely for a signal-to-noise ratio β that scales as 1= ffiffiffiN
p . We thus choose the same scaling for

our non-linear matrix model (3).

Reconstructing vs retrieving the memories. We emphasise that our focus in this paper is

the reconstruction of stimuli from an observed connectivity matrix J, which is different from

the retrieval problem [20, 39–41], where we ask whether the patterns X are stable fixed points

of the dynamics of the network, Eq (1). We will discuss the feasibility of reconstructing pat-

terns from the network’s dynamics at the end of the paper.

Solving the inference problem using statistical physics

Our aim is to reconstruct the patterns X� that were used to create the connectivity matrix J of a

Hopfield network using the connectivity structure (3). We will call the patterns X� the ground

truth of the problem. Since the connectivity structure is stochastic, we formulate the pattern

reconstruction as a probabilistic inference problem. We interpret the connectivity matrix of

the network J as a noisy observation of the symmetric low-rank matrix W* X�(X�)>, which

was distorted by the transformation given by the rule (3). We can characterise the conditional

probability distribution of a weight Jij given Wij as

PoutðJij ¼ 0jWijÞ ¼
1

2
erfc

Wij � t
ffiffiffi
2
p

n

� �

; ð5aÞ

PoutðJijjWijÞ ¼
expð� ðJij � Wij þ tÞ

2
=2n2Þ

ffiffiffiffiffiffi
2p
p

n
for Jij > 0: ð5bÞ

Reconstructing low-rank matrices from such noisy, distorted observations is a generic infer-

ence problem that appears in a lot of different applications, such as robust [42] and sparse [43–

45] PCA, Gaussian mixture clustering [46], and community detection in dense networks [47,

48], to name but a few. Low-rank matrices have also been used extensively in neuroscience to

model recurrent connectivity [26–29]. The advantage of a Bayesian approach in all these prob-

lems is that they allow for a principled and transparent integration of knowledge about the

problem into the inference process, for example through the choice of prior distribution and

output channel. In the following, we will assume that we know the hyper-parameters ν and τ
that were used to generate the connectivity matrix J. Expectation maximisation and related

techniques seem natural candidates to extend our approach to cases where we would need to

learn these hyper-parameters (see Discussion).

Here, we adopt a Bayesian approach [49] to the inference of the patterns given the connec-

tivity J. This means that we will consider our reconstruction of the patterns as a random
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variable X, whose posterior distribution p(X|J) given the connectivity matrix is given by Bayes’

theorem:

PðXjJÞ ¼
1

ZðJÞ

YN

i

PXðxiÞ
YN

j>i

PoutðJijjWijÞ: ð6Þ

where we introduced the shorthand xi ¼ X:;i 2 R
P

for the ith column of X. We assume that

patterns are uncorrelated from each other and that we know the a priori distribution PX(X)

over patterns that were stored in the network. This distribution could for example reflect the

fact that we know that the memories stored in the network are binary, encoding whether a

given neuron is firing or not, or that we have an idea of the probability that any given neuron

is firing in a given memory.

Note that we are phrasing the problem of reconstructing the memories here as the problem

of reconstructing the columns of the matrix X, or equivalently, the tuning curves of each neu-

ron. Eventually, we are interested the whole matrix X, so it doesn’t matter whether we recon-

struct all its columns or all its rows. However, it is more convenient from an algorithmic point

of view to work with the columns, which is the approach we will adopt here. The marginals of

the rows of this distribution, which are N-dimensional, provide the best estimate of the pat-

terns that can be performed [49].

Evaluating the high-dimensional integral to obtain the marginals exactly is an intractable

problem. Instead, here we exploit the formal analogy between the posterior distribution (6)

and certain probability distributions that arise in statistical physics to derive an algorithm

called “approximate message passing” [50], which performs approximate Bayesian inference

of the memories stored in the network. Furthermore, we will demonstrate that techniques

from statistical physics, in particular a tool called “state evolution” (SE), can be used to analyse

the behaviour and the performance of this algorithm in quite some detail. Approximate mes-

sage passing algorithms can be understood as a variant of belief propagation, a general algo-

rithm for inference in graphical models that is usually credited to Pearl [51].

Results

A Bayesian algorithm for pattern reconstruction

The inference problem considered here, where we aim to recover a symmetric low-rank matrix

from noisy observations, can be solved using a class of approximate message passing (AMP)

algorithms for low-rank matrix factorisation called Low-RAMP. It was derived by Lesieur

et al. [52], building on previous works [44, 53, 54] that provided AMP algorithms for particular

instances of low-rank matrix factorisation problems. Low-RAMP is an iterative algorithm that

produces estimates for the mean x̂ i of the marginal distribution of p(xi) and their covariance

matrix σi, where xi is in general the ith column of the low-rank matrix X that we are estimating

by evaluating the posterior distribution (6). In the present case, x̂ i is the mean of the estimated

‘tuning curve’ of the ith neuron (see above). Using this framework, we will derive variants of

the algorithm for the pattern reconstruction problem outlined in the previous section. We

present the algorithm in detail in the Methods section.

We also provide a reference implementation of Low-RAMP for symmetric and bipartite

matrix factorisation problems applicable to a number of different problems. It is designed to

be easily extendable to other problems and also provides a number of further utility functions.

All the results in this paper can be reproduced using this code.
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State evolution

The AMP algorithm has the distinctive advantage over other algorithms, such as Monte Carlo

methods, that its behaviour in the limit N!1 for separable prior on the X�, random i.i.d.

noise zij, and number of patterns P = O(1), can be tracked exactly and at all times using the

“state evolution” technique [50, 55]. The roots of this method go back to ideas originally intro-

duced in physics to deal with a class of disordered systems called glasses [56, 57]. For the low-

rank matrix factorisation problems we consider here, state evolution was derived and analysed

in detail by Lesieur et al. [52], building on previous works that derived and analysed state evo-

lution for other specific problems [44, 45, 53]. The last few years in particular have seen a surge

of interest in using state evolution to understand the properties of approximate Bayesian infer-

ence algorithms for a number of problems [58].

Since we are adopting a probabilistic approach to estimating the patterns, we will call the

reconstruction of the patterns the mean of the posterior distribution, which we denote by a

hat: x̂ i. Our goal is to track the mean-squared error mseX of the reconstruction x̂ t
i of the true

signal x�i after t steps of the algorithm,

mseðtÞ �
1

N

XN

i

jjx̂ t
i � x�i jj

2

2
; ð7Þ

where jj � jj
2

2
denotes the Euclidean norm of a vector. The mse can be expressed in terms of a

single matrix-valued parameter defined as

Mt �
1

N

XN

i

x̂ t
ix
�;>

i 2 R
P�P; ð8Þ

such that mseðtÞ ¼ Tr½hx0x>0 i � Mt�. Here and throughout this paper we write averages with

respect to the prior distribution pX(x) of the corresponding model as h�i. We write x0 with the

subscript to underline that the random variable x0 is not a column of the matrix X that we’re

trying to evaluate; instead, it is a variable that is drawn from the prior and averaged over.

Now the goal is to find an update equation for the order parameter Mt that mirrors the

progress of the algorithm. This update equation is the state evolution equation [50, 55].

Remarkably, from [59] we see that the two constants defining our problem, τ and ν, do not

appear explicitly in the state evolution equations. Instead, the behaviour of the algorithm—and

hence its performance—only depends on an effective signal-to-noise ratio (SNR) of the prob-

lem, which is a function of the threshold τ and noise variance ν utilised in the connectivity

structure (3). Formally, it can be expressed as the inverse of the Fisher score matrix [60] of the

generative model we use to describe how the network is connected (5a) and (5b), evaluated at

Wij ¼ xix>j =
ffiffiffiffi
N
p
¼ 0:

1

D
� EPoutðJjw¼0Þ

@ ln PoutðJjwÞ
@w

� �2

J;w¼0

ð9Þ

¼
te� t2=2n2

ffiffiffiffiffiffi
2p
p

n3
þ

e� t2=n2

pn2erfcð� t=
ffiffiffi
2
p

nÞ
þ

1

2n2
erfc

t
ffiffiffi
2
p

n

� �

: ð10Þ

Here and throughout, E denotes the expectation over the random variables. In fact, on the

level of the algorithm, everything about the output channel (5) can be summarised in this sin-

gle, scalar quantity Δ. This remarkable universality of the state evolution and hence the AMP
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algorithm with respect to the output channel was first observed in [59] and dubbed “channel

universality”.

State evolution provides an update equation for the order parameter Mt that mirrors the

progress of the algorithm. We first define an auxiliary function

f ðA; bÞ ¼
1

ZðA; bÞ

X

x2XP

x pXðxÞexp bx �
1

2
x>Ax

� �

: ð11Þ

where A 2 RP�P and b 2 RP. If A = 0 and b = 0, this function would compute the average over

the prior distribution pX(x). Instead, b and A are estimated from the data (see the algorithm

for details) so f computes an average over a distribution that contains the prior and a data-

dependent part. This structure reflects the Gaussian approximation of the posterior density

that we apply here, or more broadly speaking the interplay between prior information and

data-dependent likelihood that is typical of Bayesian inference. Consequently, ZðA; bÞ ¼
P

x2XPpXðxÞexp bx � 1=2
x>Axð Þ is a normalisation factor. The update equation for the order

parameter Mt can be written using this auxiliary function for all the cases considered in this

paper; it reads [52]

Mtþ1 ¼ E
x0 ;z

f
Mt

D
;
Mt

D
x0 þ

ffiffiffiffiffiffi
Mt

D

r

z

 !

x>
0

" #

ð12Þ

where z is a P-dimensional vector of Gaussian random variables with mean zero and variance

1. The average over x0 is taken with respect to the prior distribution pX(x), as discussed above.

So to summarise, statistical physics gives us an algorithm to perform approximate inference

of the patterns and the state evolution Eq (12) allows us to track the behaviour of the algorithm

over time. We can thus analyse the performance of the algorithm in high-dimensional infer-

ence by studying the fixed points of the low-dimensional state-evolution (12). This is the key

idea behind this approach, and we will now demonstrate the usefulness of this machinery by

applying it to several specific cases.

Reconstructing binary patterns

As a first application of the algorithm and the analysis tools outlined so far, we consider the

reconstruction of a set of binary patterns, X ¼ f�1g. We will assume that both positive and

negative values are equiprobable and that the components of a pattern vector are independent

of each other, so the prior on a column of the matrix of stored patterns, xi, is simply

pXðxiÞ ¼
YP

j

pxðXijÞ ¼
1

2P : ð13Þ

A single pattern (P = 1). It is instructive and helpful for the following discussions to first

consider the case where P = 1, i.e. there is only a single pattern stored in the network that we

are trying to recover from J. The threshold function for the model then becomes f(A, B) = tanh

(B), with B 2 R, and the state evolution for the now scalar parameter mt simplifies to

mtþ1 ¼ E
z
tanh

mt

D
þ

ffiffiffiffiffi
mt

D

r

z

 !

ð14Þ

where w is a scalar Gaussian random variable with zero mean and unit variance.
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We can now iterate the state evolution Eq (14) with a given noise level Δ(ν, τ) until conver-

gence and then compute the mse corresponding to that fixed point. The fixed point we con-

verge to reveals information about the performance of the AMP algorithm. We plot the results

on the left-hand side of Fig 1 for the two different initialisations of the algorithm: in blue, we

plot the mse obtained by iterating SE starting with an random initialisation

mt¼0 ¼ 0þ d; ð15Þ

where δ> 0 is a very small random number. The error obtained in this way is the one that is

obtained by the AMP algorithm when initialised with a random draw from the prior distribu-

tion—in other words, a random guess for the patterns. This is confirmed by the blue crosses,

which show the mean and standard deviation of the mse obtained from five independent runs

of the algorithm on actual instances of the problem. The dashed orange line in Fig 1 shows the

final mse obtained from an informed initialisation

mt¼0 ¼ 1 � d; ð16Þ

which would correspond to initialising the algorithm with the solution, i.e. x̂i ¼ x�i .
In this model, we find that the AMP algorithm starting from a random guess performs just

as well as the algorithm starting from the informed initialisation. This need not always be the

case, and we will indeed find a different behaviour in the next sparse and skewed models we

consider.

When is recovery possible?. We can see from the middle plot of Fig 1 that recovery of the

memories from the connectivity J is not always possible; there exists a critical value for the

effective noise Δc above which the mean-squared error of the solution obtained by the algo-

rithm is the same as we would have obtained by making a random guess for the solution based

on the prior distribution (13) alone, without looking at the data. We can calculate this critical

noise level Δc using the state evolution (12). We can see from that equation that mt = 0 is a triv-

ial fixed point, in the sense that the mse corresponding to that fixed point is equal to the mse
obtained by making a random guess. Expanding Eq (14) around this fixed point yields mt+ 1 =

mt/Δ. There are hence two regimes for recovery, separated by a critical value

Dc ¼ 1 ð17Þ

of the effective noise (9). If Δ> Δc, the uniform fixed point is stable and recovery is impossible.

On the other hand, for Δ< Δc, the uniform fixed point is unstable and hence AMP returns an

estimate for the patterns that has an mse that is lower than random guessing. The phase dia-

gram in the middle of Fig 1 delineates the easy and the impossible phase for the rectified Hop-

field channel with symmetric prior (13). While there could be in principle other fixed points of

the state evolution equations for other priors and channels [52], it is always one of the fixed

points that is reached from either the informed or the uninformed initialisation that describes

the behaviour of the algorithm.

At first sight, the impact of the additive Gaussian noise zij on the phase diagram in Fig 1

appears counter-intuitive. If we fix the threshold to, say, τ = 0.5, reconstruction is impossible

for small variances ν of zij. As we increase ν, i.e. as we add more noise to the system, recovery

becomes possible. The key to understanding this behaviour is that for a single stimulus P = 1, a

weight in the network will have one of two possible values which are symmetric around the

origin, Wij ¼ �
1=

ffiffiffiffi
N
p

. By applying the rectification, for any cut-off τ>Wij the resulting

weight matrix J without additive noise is trivially zero and no recovery is possible. We can only

hope to detect something when an added noise zij pushes the value of the weight before rectifi-

cation above the cut-off. Recovery then becomes possible if the added noise is large enough
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that the weight without noise is larger than the cut-off a + zij> τ, while remaining small

enough that it’s significantly more likely that the noise-less weight is positive than negative. As

the noise variance increases even further, its detrimental effects dominate, and recovery

becomes impossible again. This mechanism is reminiscent of stochastic resonance (SR), a

mechanism where a weak signal is amplified by the presence of noise. Indeed, our problem

contains the three ingredients for SR (e.g. [61]): A threshold mechanism, given by the rectifica-

tion in the connectivity structure: A weak signal (the stored patterns); and a noise term, z.

As already mentioned, when noise is too large recovery becomes impossible. We show on

the right of Fig 1 the critical variance of zij above which reconstruction becomes impossible,

ν�, as a function of the connection probability pC, given by Eq (4). This plot can be obtained by

solving, for a given value pC = c, the two-dimensional system

D ¼ 1 ð18Þ

pC ¼ c ð19Þ

for (τ, ν). As expected, the critical variance increases with the connection probability, and it

goes to zero as the connection probability goes to zero.

Comparison to principal component analysis (PCA). Principal component analysis

(PCA) is another method to reconstruct the stored patterns from the network connectivity.

PCA and other spectral methods have some advantages: they are non-parametric, and their

implementation in the case of a single pattern is straightforward: the PCA prediction for the

stored pattern is simply the leading eigenvector of J. We plot the mean-squared error (7) of

this estimate with the green line on the left of Fig 1, where we see that the reconstructing error

of PCA is larger than the one of AMP, especially for large values of the noise. This is also borne

out by theory: the reconstruction mean-squared error of PCA can be shown to be strictly larger

than the AMP estimate, since the latter is the Bayes-optimal predictor [52].

An alternative PCA algorithm can be found by linearising the AMP equations around the

trivial fixed point x̂ ¼ 0 [58, 62]. This linearisation yields an equation that can be interpreted

Fig 1. (Left) Reconstruction and performance of the message-passing algorithm for binary patterns. We plot the mse (7) obtained by the AMP algorithm (32) as a

function of the effective noise Δ (9) (blue crosses). We plot the performance of the algorithm starting from random (15) and informed (16) initialisations. Solid lines

depict the prediction obtained from iterating the state evolution Eq (14). Having Δ/Δc> 1 corresponds to the white region in the phase diagram on the right. We also

plot the mse of the reconstruction obtained by applying PCA to the weight matrix J and to the Fisher matrix S (31) (green and red, resp.) Parameters: τ = 0. N = 5000

for AMP, N = 20000 for PCA. (Center) Phase diagram for the rectified Hopfield channel with P = 1. We plot whether reconstruction of the patterns better than a

random guess is easy (blue) or impossible (white) using the message-passing algorithm as a function of the constant threshold τ and the variance ν of the Gaussian

noise appearing in the connectivity structure (3). The solid lines are the contours of the connection probability pC(ν, τ) (4). (Right) Critical noise ν� as a function of

connection probability pC. We plot ν�, the largest variance of the additive Gaussian noise zij at which reconstruction remains possible, against the probability pC (4)

that any two neurons are connected.

https://doi.org/10.1371/journal.pcbi.1010813.g001
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as PCA applied to the Fisher matrix S (31) instead of J. Since the Fisher matrix depends on the

generative model for the data when deriving the message-passing equations, looking at its

leading eigenvector offers a spectral algorithm that is more adapted to the problem at hand.

Indeed, we find that its error (red line in Fig 1) is slightly lower than the error obtained from

PCA on the weights directly. In either case, the performance of PCA is worse than that of

AMP.

The large value of the PCA error compared to the AMP error at large noise levels in Fig 1

reveals a fundamental weakness of PCA: even at noise levels above the critical noise Δc, where

no reconstruction is possible for any algorithm, PCA can be applied and will return a predic-

tion—there is no concept of uncertainty in PCA. Hence the mse of PCA tends to a constant as

the noise increases and the leading eigenvector of J is just a random vector; for the Hopfield

prior and when rescaling the eigenvectors to have the same length as draws from the Hopfield

prior, this constant is 2. AMP on the other hand returns a vector full of zeros if Δ> Δc (and the

prior has an average of 0, as is the case for all the priors we consider). AMP thus expresses its

uncertainty about the planted pattern, yielding an mse = 1 for inputs with xi = ±1. The advan-

tage of the Bayesian approach is thus that it prevents over-confident predictions in the high

noise regime.

The weaker performance of PCA compared to AMP is due to the fact that spectral methods

do not not offer a natural way to incorporate the prior knowledge we have about the structure

and distribution of stimuli into the recovery algorithm. The Bayesian framework incorporates

this domain knowledge in a transparent way through the generative model of the stored pat-

terns pX(x). We will see that this creates an even larger performance gap for sparse patterns

and patterns with low coding level.

Many patterns (P> 1). For the general case of several patterns P> 1 with finite P, we can

significantly simplify the state evolution by noticing that the matrix Mt will interpolate

between a matrix full of zeros at time t = 0 and a suitably scaled identity matrix in the case of

perfect recovery, i.e.

Mt ¼ mtIP=D; ð20Þ

where IP is the identity matrix in P dimensions. In other words, for uncorrelated patterns, the

different input patterns do not interact during the reconstruction, and so the off-diagonal

matrix elements remain zero in the case where we only store a few patterns and the connectiv-

ity structure remains low-rank. Once we overload the model by storing many more patterns,

we would have non-zero off-diagonal elements, meaning that reconstructions converge to spu-

rious patterns, for example linear combinations of the patterns. However, in this regime the

state evolution derived above also breaks down. In this case, the threshold function becomes

½f ðA;BÞk� ¼ tanh
mt

D
x0;k þ

ffiffiffiffiffi
mt

D

r

zk

 !

ð21Þ

where zk is again a standard Gaussian variable. Substituting into the state evolution gives an

update equation for the parameter mt, namely

mtþ1 ¼ E
z
tanh

mt

D
þ

ffiffiffiffiffi
mt

D

r

z

 !

ð22Þ

where mt is the overlap parameter introduced above (20). This update has the same form as

the state evolution in the P = 1 case, Eq (14). So we find, remarkably, that recovering P distinct

patterns is exactly equivalent to recovering a single pattern P times in the thermodynamic
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limit where N!1 while the number of patterns is of order P � Oð1Þ. This approximation

will eventually break down in practical applications with finite network sizes, and we investi-

gate the breaking point of this behaviour below.

Recovering many patterns with PCA poses an additional challenge. While it is easy to

recover the leading rank-P subspace of the matrices J or S by simply computing the P leading

eigenvectors, it is not clear how to recover the exact patterns from these eigenvectors, which

can be any rotation of the input patterns due to the rotational symmetry of W. This can be

seen from the fact that the patterns X� could be multiplied by any rotational matrix O with

OO> ¼ I without changing the resulting weight matrix J, see Eq (2). The best way to recover

the exact stimuli from the principal components is thus not clear a priori (see [63]). Other

problems require combining PCA with other methods, such as k-means or gradient descent.

Since we have already seen that AMP outperforms PCA on binary patterns, and we will see

that this gap only increase for the other types of patterns we will study below, we do not inves-

tigate further this direction.

A first summary. Before we turn to more complicated prior distributions over the pat-

terns, let us briefly summarise our results so far. We derived an algorithm that can reconstruct

patterns from the connectivity of recurrent network whose weights are obtained from the

learning rule Eq (3). Whether or not the algorithm is successful in this reconstruction depends

on the noise level ν and the threshold τ. These parameters can be combined into an effective

noise parameter Δ (9), which determines the performance of the message-passing algorithm.

The algorithm performs well in the reconstruction task, and beats non-parametric approaches

like PCA by virtue of including prior information about the distribution of the patterns in a

principled way.

Sparse patterns

An interesting variation of the rectified Hopfield model is its sparse version, where only a frac-

tion 0� ρ� 1 of the components xij of a pattern xi are non-zero. The prior distribution then

becomes

pXðxiÞ ¼
YP

j¼1

pxðxijÞ ¼
YP

j¼1

ð1 � rÞdðxijÞ þ
r=

2
dðxij � 1Þ þ dðxij þ 1Þ
h ih i

; ð23Þ

where δ(�) is the Kronecker delta. This prior has mean hxi = 0p, where 0p is a vector of p zeros,

and covariance hxx>i = ρIp. We emphasize again that these patterns represent a deviation of

neuronal activity from its mean—in this case ±1 represents an increase/decrease activity, while

0 represents no change in activity in a given pattern. The state evolution will interpolate

between an order parameter that is all zeros for an estimator that is drawn from the prior dis-

tribution and completely uncorrelated with the ground truth, and M = ρIP for perfect recon-

struction. We delegate the mathematical details to the Methods section, and focus here on the

performance of the algorithm.

Performance of message-passing. We first note that the critical noise level above which

AMP will not be able to recover the stored pattern better than a random guess in the sparse

reconstruction problem is Δc = ρ2. In that sense, the critical noise is a property of the AMP

algorithm, and its value can again be obtained by linearising the state evolution Eq (36) around

its trivial fixed point mt = 0. However, it is generally believed that no other algorithm is able to

recover the patterns above this noise level, which would make this threshold a property of the

model rather than the algorithm; we’ll come back to this point in the next paragraph. In any

case, the decrease of Δc with ρ means that the reconstruction performance at fixed ν, τ and

hence Δ decreases with pattern sparsity. However, so too does the difficulty of the problem. If
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we normalise the noise level by the critical noise, i.e. if we plot the reconstruction error as a

function of the Δ/Δc as we do in Fig 2, we see that a large fraction ρ of non-zero components

Xij leads to better reconstruction at small noise levels.

For ρ = 0.1 and ρ = 0.3, the performance plots in Fig 2 resemble the results obtained for the

symmetric Hopfield model overall: Reconstruction is possible if the effective noise level is

below the critical noise level. For these two values of the sparsity, the mse of the estimate

returned by AMP (blue dashed line) matches the mse obtained from state evolution when

starting from the informed initialisation (orange). However, the reconstruction errors pre-

dicted by state evolution for informed and random initial conditions disagree at smaller spar-

sity. For ρ = 0.05 (left), there is a range of effective noise levels Δ for which the performance of

AMP does not match the performance predicted by state evolution starting from informed ini-

tial conditions. We note that this could be the signature of a so-called hard phase, where a bet-

ter-than-chance reconstruction of the pattern is information-theoretically possible – i.e. there

is some trace of the stored pattern in the connectivity—but AMP is not able to extract it. How-

ever, it is important to emphasise that AMP performs sub-optimally with respect to the

amount of information that is in the connectivity, but not with respect to the performance of

any other known algorithm. In other words, while AMP does not exploit all the information

that is in the connectivity, it is broadly believed in theoretical computer science that no algo-
rithm can reconstruct the patterns with non-trivial error at this level of noise in polynomial

time, if this is indeed a hard phase of the reconstruction problem. PCA for example is also not

able to reconstruct any trace of the pattern at this noise level (see below). We refer the inter-

ested reader to Refs. [58, 64] for recent reviews on the topic, with many other examples of

problems that exhibit such a hard phase or computational-to-statistical gap, as it is also some-

times called in the literature.

Performance of PCA. Fig 2 also shows the reconstruction error of PCA applied to either

the weights (green) or the Fisher matrix (red). Note that while the error of AMP is rescaled by

ρ, we plot the reconstruction of PCA without rescaling (which is why we have a second y-axis

in all three plots). In other words, the reconstruction error of AMP is multiplied by 20 in the

Fig 2. Reconstructing sparse, binary patterns using message passing algorithms and PCA. We plot the mse per pattern obtained by the AMP

algorithm, Eq (32), as a function of the effective noise Δ (9), for random (15) and informed (16) initialisations. Lines depict the result of the state

evolution, while crosses denote the performance of the AMP algorithm on an instance of the problem. While AMP performs the same starting from

both initialisations for ρ = 0.1 and ρ = 0.3, there is a gap in performance for ρ = 0.05, which might hint at the existence of a hard phase (see main text).

We also plot the mse of the reconstruction obtained by applying PCA to the weight matrix J and to the Fisher matrix S (31) (green and red, resp.)

Parameters: τ = 0. N = 2000 for AMP, N = 20000 for PCA.

https://doi.org/10.1371/journal.pcbi.1010813.g002
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left-most plot of Fig 2, and is still below that of PCA. We rescale the AMP error in this way to

ensure that the errors are comparable for different values of the sparsity, since AMP returns a

sparse estimate in all cases. PCA on the other hand is agnostic about the sparsity of the pat-

terns, and returns a dense reconstruction regardless of the value of ρ. The PCA error at high

noise thus scales as 1 + ρ. Again, we see that AMP outperforms PCA in terms of the recon-

struction error, with the largest difference coming at lowest sparsity. This is to be expected,

since the AMP algorithm can take information about the prior into account.

Reconstructing patterns with low coding level

As a third and final example, we consider the reconstruction of patterns with low coding level.

For this, we will draw patterns from the prior distribution

pXðxiÞ ¼
YP

j¼1

pxðxijÞ ¼
YP

j¼1

½ð1 � rÞdðxij þ rÞ þ rdðxij � ð1 � rÞÞ� ð24Þ

which is related to models proposed first by Tsodyks and Feigel’man [21, 65], that considered

the storage of binary (0,1) patterns of activity (where 0 means inactive and 1 active), with a

‘coding level’ ρ (probability that a neuron is active in a given pattern). The motivation for

studying the sparse ρ� 1 limit is that the activity in brain structures involved in memory is

typically sparse—for instance, ρ has been estimated to be on the order of 0.01 in animals rang-

ing from rodents to humans [66, 67]. As in the previous cases, the patterns correspond to devi-

ations of activity from its mean, i.e. (1 − ρ, − ρ) instead of (1,0). This model has mean zero and

a covariance matrix ρ(1 − ρ)IP. We still use the channel corresponding to the connectivity

structure of the rectified Hopfield model (3), so while the Fisher score matrix S stays the same,

we have a new threshold function and hence a new state evolution, which we derive in

Methods.
Here, we plot the performance of the algorithm together with the results of iterating the

state evolution equation (Methods) for two different values of the coding level ρ in Fig 3. Note

that we again rescale the reconstruction error of AMP by (1 − ρ)ρ to ensure comparability of

the results for different values of the coding level ρ. The error curves for PCA (green and red)

in Fig 3 on the other hand are not rescaled. We note that again, AMP outperforms PCA in

Fig 3. Performance of various algorithms when reconstructing a pattern with low coding level following Tsodyks’ prior. (Top)
Same plot as Figs 1 and 2, for a single stored pattern drawn from Tsodyks’ prior (24). For ρ< 0.211, the performance of the

algorithm with random initialisation (15) is different from the performance with informed initialisation (16), which might be the

signature of a hard phase. Parameters: τ = 0, N = 5000 for AMP, N = 20000 for PCA.

https://doi.org/10.1371/journal.pcbi.1010813.g003
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terms of the reconstruction error, which for random guessing tends to 1 + ρ(1 − ρ) in the case

of PCA.

The hardness of recovering patterns with low coding level. In this model too, we have a

uniform fixed point with mt = 0. Expanding around this fixed point yields the update equation

mtþ1 ¼
ðr � 1Þ

2
r2

D
mt ð25Þ

so we find that the critical value of the noise where the uniform or uninformative fixed point

becomes unstable in this model is Δ< Δc = (ρ − 1)2ρ2.

Recently, a closed-form sufficient criterion for the existence of a hard phase in models that

have a prior with zero mean was derived in [52]; namely, a hard phase exists if the prior is

“skewed” in the statistical sense, such that

hx3i
2
> 2hx2i

3 ð26Þ

where the average is taken with respect to the prior distribution of this model, Eq (23). For the

prior (24), this criterion predicts the existence of a first order phase transition and hence of a

hard phase for r > rc ¼ 1=2 � 1=
ffiffiffiffiffi
12
p

’ 0:2113 where we assume w.l.o.g. that ρ< 1/2. Note

that this is a sufficient condition, and not a necessary one; in fact, for the sparse Hopfield

prior, which is symmetric around zero and has hx3i = 0, we cannot calculate the critical value

of ρ using Eq (26).

Reconstructing even more patterns: How far can we go?

A natural question that arises for the algorithms we have derived is how many patterns we can

reliably reconstruct. In practice, the bottleneck for reconstructing the patterns using AMP is

computing the partition function of the Gaussian approximation of the posterior density of a

column-vector x at every step of the algorithm (see the detailed explanation of the AMP algo-

rithm in the Methods section):

Wðx;A; bÞ ¼
1

ZðA; bÞ
pXðxÞexp

XP

j

bjxj �
1

2

XP

j;k

xjAjkxk

 !

: ð27Þ

Evaluating the mean and the variance of this distribution even for the simple Hopfield prior

(13) requires summing 2P terms, so the computational cost is exponential in the number of

patterns stored. We can circumvent this bottleneck by computing the function W(x;A, b)

using a mean-field approximation [68], which was originally proposed in [69].

The mean-field approximation. We thus approximate the posterior distribution by a fac-

torised distribution, replacing the full covariance matrix A with a vector a that contains only

the variance of the j = 1, . . ., P elements of x,

~Wðx; ~a; ~bÞ ¼
YP

j

1

~Zð~aj;
~bjÞ

pXðxjÞexp ~bjxj �
1

2
~ajx

2

j

� �

: ð28Þ

where we use the tilde to denote mean-field quantities. We have implemented mean-field

approximations for the models discussed thus far and we show the performance of AMP with

this approximation for the three models discussed so far in Fig 4 with the state evolution pre-

diction for the reconstruction of a single stored pattern P = 1 without the mean-field approxi-

mation. The picture that emerges is similar for all three models studied here: the algorithm

with the mean-field approximation is able to reconstruct the stored patterns just as well as if it

was looking at the reconstruction of a single pattern up to a certain noise level, beyond which
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performance quickly deteriorates. Intuitively, the cross-talk between the stored patterns intro-

duces an additional source of noise for the reconstruction, which leads to failure to reconstruct

the stored patterns at lower Δ than in the case P = 1.

Scaling of the critical number of stored patterns. Throughout this paper, we have relied

on the assumption that the matrix J is approximately low-rank, in the sense that its eigenvalues

can be separated into large bulk of eigenvalues, from a which only P � Oð1Þ eigenvalues corre-

sponding to the stored patterns detach. The mean-field approximation that we just introduced

makes it now computationally feasible to run the reconstruction algorithm even with a large

number of patterns. This raises an important practical question: for which number of patterns

does the algorithm based on the low-rank approximation break down?

We investigate this question in all three models numerically as follows. We fixed the noise

level Δ in all experiments at 20% of the critical noise level beyond which it is information-theo-

retically impossible to weakly reconstruct the stored patterns. We then ran twenty reconstruc-

tion experiments with N = 1000 for each value of P; the final mse for each run is shown with a

dot on the left of Fig 5. For P = 25, all twenty runs gave an mse well below the threshold; in

fact, the reconstruction error per pattern mse/P is as low as if we had stored only a single pat-

tern in the network (blue line). As we increase the number of patterns P, the first time the algo-

rithm is not able to recover all patterns is for P = 29 patterns. For P = 36 patterns, the

algorithm did not reconstruct the patterns with an error better than chance a single time.

Given the clear separation between successful runs with low error and unsuccessful runs with

an error that is essentially random guessing, we set the threshold for the reconstruction mse
below which we consider the algorithm successful at 20% of the trivial mse obtained by ran-

dom guessing (orange line). At P = 34, the algorithm fails to achieve an mse below the thresh-

old in more than 50% of the cases. We define the critical number of stored patterns Pcrit as the

largest number of patterns that can be reconstructed with an mse below the threshold in at

least 50% of the runs, so Pcrit = 33 in this case. On the right, we show the values of Pcrit for all

three models (binary, sparse and skewed) as a function of N. In each case, we find that Pcrit *

Nγ, with the exponent γ between γ� 0.5 for sparse patterns and γ� 0.7 for patterns from Tso-

dyk’s prior. The exact values of the exponents will depend on the choices of the threshold and

especially the noise level. While the separation between successful and unsuccessful runs

allows for various error thresholds without changing the results, the exponents are more sensi-

tive to the noise level, since higher noise levels induce higher fluctuations in the reconstruction

errors closer to the critical noise (cf. Fig 4).

Fig 4. MSE from reconstructing with the mean-field prior approximation. We plot the final mse obtained by the AMP algorithm (no damping), using a mean-field

approximation to compute the threshold function. The solid line is the mse predicted by iterating the state evolution for the scalar variable, Eq (14). We choose N = 5000

and set τ = 0.

https://doi.org/10.1371/journal.pcbi.1010813.g004
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Discussion

We have derived the conditions under which it is possible to reconstruct the patterns stored in

a recurrent Hopfield-type network from knowledge of the connections alone, in a case where

those weights are obtained by a learning rule which is a noisy, non-linear version of the classic

Hebbian rule. We have implemented and provided practical algorithms to do so: a Bayesian

approach based on message passing, and classic non-parametric approaches such as PCA on

the weights and on the Fisher score matrix. The message-passing algorithm offer a principled

way to reconstruct the patterns using prior information about the prior of the inputs, while the

spectral methods are robust and easy-to-implement, but fail to take this extra information into

account.

The performance of the algorithms can be captured by an effective noise level, which takes

both the synaptic noise and the thresholding of the learning rule into account. We found that

the message-passing algorithm beats the PCA reconstruction across noise levels, which is due

to the principled way in which the message-passing algorithm can incorporated prior knowl-

edge about the distribution of patterns.

While our theoretical results were obtained in the limit where the number of patterns stored

is of order 1, while the number of neurons in the network tends to infinity, we have also

explored a mean-field approximation that allowed us to study how the maximum number of

patterns that can be reconstructed with some reliability scales with the pattern dimension. We

now discuss some directions in which our work can be extended.

The case of unknown generative model

We have assumed that the hyper-parameters of the problem, such as the number of stored sti-

muli P or the generative model of the stimuli pX(x), are known before reconstruction. How-

ever, it is possible to extend both the message-passing algorithm and its analysis to the case of

unknown hyper-parameters. Within our framework, a natural approach to learn the values of

Fig 5. Scaling of the critical number of patterns that can reliably be reconstructed with mean-field message passing. (Left) For binary patterns, we plot

the final reconstruction error of twenty instances of the mean-field message-passing algorithm as a function of the number of stimuli stored P. We define the

critical number of patterns that can be reconstructed as the largest P at which more than half the runs yield an mse better than a threshold value (here, 20%

of the trivial mse, i.e. 0.2). Parameters: N = 1000, Δ = 0.2ΔC, τ = 0. (Right) We plot the highest number of patterns Pmax that could be reconstructed with an

error below 20% of the trivial error in at least 50% of cases. For all three models considered, we show experimental results (crosses) and the exponent of a

power law fit Pmax * Nγ. In all cases, τ = 0 and the noise level Δ was 20% of the critical noise level Δc where reconstruction becomes impossible. ρ = 0.3 for

both the sparse Hopfield and Tsodyk’s prior.

https://doi.org/10.1371/journal.pcbi.1010813.g005
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these hyper-parameters is closely related to the well-known expectation maximisation algo-

rithm [70]. A detailed study of expectation maximisation to obtain various hyper-parameters

for message-passing algorithms was reported by Krzakala et al. [71] for the statistical estima-

tion problem of “compressed sensing”, where one aims to reconstruct a signal from a number

of measurements that is smaller than the number of unknowns. Another approach to deal with

an unknown noise distribution was recently proposed by Montanari et al. [72] for the related

problem of matrix denoising, where one aims to reconstruct an unknown, low-rank matrix

X 2 Rm�n from observations Y = X + W when W is a noise matrix with independent and iden-

tically distributed entries. Montanari et al. [72] propose an iterative approach to estimate the

noise distribution from the observations Y. An interesting direction for future work is to

explore both strategies for the problem of reconstructing stored patterns in connectivity

matrices.

From the point of view of the theoretical analysis, assuming the “wrong” rank in the algo-

rithm in the sense that there is a mismatch between the number of patterns one wants to infer

and the number of patterns stored makes the analysis much more involved. The message-pass-

ing algorithms can be modified to take this mismatch into account. While first steps towards a

theoretical analysis and the development of modified message-passing have recently been

made [73–75], we leave the exploration of this direction in the context of neuroscience to

future work.

Finally, there could also be no (discernible) signal in the connectivity matrix, because the

relative strength of the noise is too large, or because the connectivity is purely random. As we

discussed above, AMP shows a clear advantage over PCA in this case: while AMP will return

inputs which are close to 0, indicating that it didn’t find any structure in the data, PCA will

always return the leading eigenvector, which in this case however is completely uninformative.

Reconstructing an extensive number of patterns

Another important extension of our work would be the reconstruction of an extensive number

of patterns from the connectivity J, i.e. whether the regime P � OðNÞ is accessible. This is

essentially the problem of factorising a large matrix with extensive rank, which is also known

as dictionary learning [76–78]. While we note that there have been promising signs of progress

recently [79, 80], this remains a hard problem with implications that would go far beyond the

application discussed here.

Reconstructing the patterns from the dynamics

It may be possible to retrieve a pattern given a distorted or noisy version of it by initialising the

network with this distorted pattern and running the network dynamics (1) until convergence.

Another algorithm to reconstruct the patterns is then to run the network dynamics from dif-

ferent initial conditions until convergence, and to take the resulting fixed points as estimates

of the patterns stored in the connectivity. However, this procedure will only yield stored pat-

terns if the initial condition is correlated with one of the patterns stored in the network. It is

thus more apt to speak about “pattern completion” in this context [49]. Here, we considered

the more challenging problem where such partial observations of the patterns are not available,

which would be the case if the only information available is the connectivity matrix.

It is still fair to wonder how well this algorithm could do when starting from random initial

conditions. In the classical Hopfield model, where the weights are given by the Hebb rule (2),

any initial condition of the dynamics that has non-zero macroscopic overlap with a stored pat-

tern is guaranteed to converge to that pattern when the number of patterns is of order one. In

a finite network, one then expects random initial conditions to converge to one of the stored
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patterns (depending on the random initial overlaps). While we study a learning rule that is dif-

ferent from Hebb’s rule, we note a classic result by Sompolinsky [35] that suggests that the

dynamics of recurrent networks whose connections are a nonlinear, noisy version of the Heb-

bian weights (2) are largely unaffected by this change.

For a single pattern, iterating the dynamics resembles the power method [81] to compute

the first principal component of a symmetric matrix, and the dynamical approach to recon-

struction thus closely resembles the PCA algorithm that we analysed in the case P = 1. For

more than one pattern, there is no guarantee however that all the patterns will be recovered.

Moreover, the performance of this algorithm is expected to be strongly model-dependent: in

more realistic models such as the Tsodyks-Feigel’man model [21, 65], the quiescent state,

where all neurons are at zero, is stable, and convergence to one of the stored patterns will

necessitate an initial overlap that is larger than some non-zero critical value. Recovering the

patterns through the dynamics is not expected to work in this case.

Similarly, this strategy is also expected to fail when reconstructing an extensive number of

patterns. In this case, we need a correlation between the initial condition and each pattern

which is bounded away from zero, and obtaining such a correlation for all the patterns would

require exponentially many trials.

What information on synaptic weights does connectomic data provide?

EM reconstructions of neuronal circuits are of sufficiently high resolution that they can enable

measurements of the volume of dendritic spines, the anatomical structures on which the vast

majority of synaptic connections between pyramidal cells are formed (see e.g. [14]). The vol-

ume of dendritic spines has in turn be shown to be strongly correlated with synaptic strength,

as measured by the amplitude of post-synaptic potentials triggered by pre-synaptic activity

[82–84]. Noise in measurement of dendritic spines, and the lack of perfect correlation between

volume and EPSP amplitudes, are two of the reasons (together with noise in the learning pro-

cess) for the introduction of the noise matrix zij in our model.

Towards more biologically realistic models

Our focus here was to analyse the simplest model where the problem of retrieving the patterns

is mathematically well-posed, and neither trivial nor impossible to achieve. We now discuss

various extensions of this model that could be addressed in future work.

Asymmetry in the learned component of the connectivity matrix. We have focused

here on a symmetric connectivity matrix, for multiple reasons. First, multiple in vitro studies

in both cortex and hippocampus have shown that local networks in these structures exhibit a

significant degree of symmetry, as evidenced by a much higher probability of bidirectional

connections in pairs of neurons, compared to a random directed Erdos-Renyi network [85–

88], with the notable exception of rodent barrel cortex where no such overrepresentation exists

[89]. In addition, synaptic plasticity in area CA3 of the hippocampus has been shown to be

temporally symmetric [90]. One thus expects such synaptic plasticity rules to lead to connec-

tivity matrices with a strong degree of symmetry in this area. In cortex, plasticity rules are tem-

porally asymmetric as a function of the timing difference between spikes of pre and post-

synaptic neurons. However, plasticity depends also strongly on firing rates of pre and post-

synaptic neurons, and if dependence on firing rate dominates over the dependence on spike

timing as has been suggested [91], then one also expects a strongly symmetric Hebbian compo-

nent in connectivity matrices. Finally, a strong degree of symmetry is also consistent with the

observation of persistent activity in multiple cortical areas in rodents [92] and primates [93–

96]. Consistent with this idea, Inagaki et al [92] showed using optogenetic perturbations that
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the dynamics in area ALM of the mouse during a short-term memory task exhibit multiple

characteristics of attractor dynamics. Of course, we do not expect connectivity matrices in all

brain structures to be well captured by noisy symmetric matrix. In particular, networks storing

temporal sequences [97–99] would need to contain a significant asymmetric learned compo-

nent. Our methods would then need to be extended to asymmetric matrices. From the practi-

cal point of view, the application of the method proposed makes only sense when the

reconstructed connectivity matrices exhibit a significant degree of symmetry.

Inhibition. Here, we have assumed inhibition is not involved in learning and simply pro-

vides a uniform inhibition to excitatory neurons, equivalent to setting a threshold for active

neurons. This traditional view is consistent with the observation of high connection probabili-

ties between a specific type of inhibitory neuron (PV positive interneurons) and pyramidal

cells [100]. It is also consistent with the observation in hippocampus that inhibition is only

weakly modulated by spatial location [32] (see however [101]). However, it has also been

shown that synaptic connections involving inhibitory interneurons also exhibit plasticity

[102], and it has been argued that plasticity of such connections could greatly expand storage

capacity [34]. Our methods could be extended to the addition of inhibitory neurons, with a

few caveats: estimate of the strength of such synapses might be more challenging, since synap-

ses involving interneurons are formed directly on dendritic shafts and not on spines; Also, the

connectivity matrix will then necessarily be asymmetric.

Memories stored with different strengths. In our model, as in most associative memory

models, memories are stored with identical strengths. A straightforward extension of the

model would be a model where memories have different embedding strengths. This class of

models include ‘palimpsest’ models in which recently stored patterns gradually erase older pat-

terns that are progressively forgotten [103–106]. Note that in this class of models, our method

would be likely to infer only the most strongly embedded patterns, and memories that are on

their way to becoming forgotten would not be likely to be inferred. From the point of view of

message-passing algorithms, the gradual erasure would have to be modelled through the learn-

ing rule of the model, Eq (3), together with a prior over embedding strengths.

Distributions of synaptic weights. Our model leads to a truncated Gaussian distribution

of non-negative synaptic weights. Distributions of experimentally recorded EPSP amplitudes

[86] as well as spine volumes [107] have been fitted using log-normal distributions. Our

method can easily be generalized to networks with arbitrary distributions of non-negative

weights, by using a suitable non-linearity F in Eq (3) [34].

Binary Hebbian matrices. It has been proposed by some authors that synapses store

information in a digital, not analogue fashion [35, 108, 109]. In this scenario, synapses have

only a few stable states, and plasticity events correspond to transition between these states. The

resulting model would then bear similarities with stochastic block models (SBMs) [110], where

groups of neurons representing a particular stored memory would correspond to communities

in SBMs. An important difference is that in the case of random patterns, there would be over-

laps between these groups [111]. One could use similar methods as the ones proposed here to

deal with such a scenario, since recovering communities in stochastic block models can be

reformulated as a low-rank matrix factorisation problem, and is hence amenable to the same

analysis techniques that we used here, see refs. [52, 64, 112] for examples of this rich literature.

Distributions of patterns. We have assumed that stored memories are random i.i.d.

binary vectors. Responses of neurons to external inputs rarely follow a bimodal distributions,

and can sometimes be better described by a unimodal lognormal distribution [113]. However,

non-linearities associated with the synaptic plasticity rule could potentially binarize stored

memories [24], which would then result in a model that is very similar to the model investi-

gated here.
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Validation

An important question is how to validate the results of such an analysis. One possibility would

be simulate the dynamics of a network whose connectivity matrix is set to be the reconstructed

matrix, using the inferred patterns as initial conditions, to check that the dynamics converges

to fixed point attractors that are close to the inferred patterns.

Methods

A formal analogy between inference problems and statistical physics

It may come as a surprise that statistical physics can be helpful in solving and analysing infer-

ence problems like the one considered here. The connection between the two becomes more

transparent if we introduce the interaction g(�)� ln Pout(�) to rewrite the posterior as

PðXjJÞ ¼
1

ZðJÞ

YN

i

PXðxiÞ
YN

j>i

exp g Jij;Wij

� �h i
: ð29Þ

This distribution describes the posterior density over estimates X. However, it can also be

interpreted as the Gibbs or Boltzmann distribution that describes the properties of complex,

disordered systems such as glasses. This analogy can be leveraged by exploiting tools from the

statistical physics of disordered systems to tackle the—hard—inference problem that is infer-

ring the patterns from the connectivity J. The key ideas behind the AMP algorithm that we dis-

cuss throughout this work and AMP algorithms in general first appeared in a paper by

Thouless, Anderson and Palmer [114] that dealt with physical systems described by an equilib-

rium distribution of the type (29). State evolution techniques where first introduced for com-

pressed sensing problems by Donoho, Maleki and Montanari [50] based on ideas from [55],

but it too is based on ideas from statistical physics often referred to as the cavity method [56].

For a much more detailed on the links between statistical physics and inference problem, see

[49, 58, 115].

Approximate message passing for low-rank matrix reconstruction

We are now in a position to state the AMP algorithm for the factorisation of symmetric low-

rank matrices that in this form was derived by Lesieur [52], building on the previous works

deriving AMP-type algorithms for particular instances of this problem class [44, 53, 54]. We

refer the interested reader to these papers for details on the derivation of this class of algo-

rithms and their relation to belief propagation and spectral methods.

To describe the algorithm, we first define the Fisher score matrix as a transformation of the

data matrix J given for the inference:

SijðJijÞ �
@ ln PoutðJijjwÞ

@w

�
�
�
�
w¼0

ð30Þ

For the channel corresponding to the rectified Hopfield model (3), we find

SijðJijÞ ¼
�

2e� t2=2n2

ffiffiffiffiffiffi
2p
p

n erfcð� t=
ffiffiffi
2
p

nÞ
; Jij ¼ 0

Jij þ t
n2

otherwise:

8
>>>><

>>>>:

ð31Þ
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Low-RAMP is an iterative algorithm: at every step t, it computes a new estimate of the

mean x̂ tþ1
i and the variance stþ1

i as

x̂ tþ1
i ¼ f ðAt

i ; b
t
iÞ ð32aÞ

stþ1
i ¼ @bf ðA

t
i ; b

t
iÞ ð32bÞ

where the threshold function was defined in Eq (11) and is repeated here for convenience:

f ðA; bÞ ¼
1

ZðA; bÞ

X

x2XP

x pXðxÞexp bx �
1

2
x>Ax

� �

: ð33Þ

There exists a set of parameters Ai 2 R
P�P and bi 2 R

P for every marginal, which in turn are

updated as

bt
i ¼

1
ffiffiffiffi
N
p

XN

k

Skix̂
t
k �

1

N

XN

k

S2

kis
t
k

 !

x̂t� 1

i ð34aÞ

At
i ¼

1

N

XN

k

S2

kix̂
t
kx̂

t;>
k ð34bÞ

To run the algorithm, we perform these steps:

1. Given the matrix J, compute the Fisher score matrix S using Eq (31).

2. For all i = 1, . . ., N, initialise the parameters bi and Ai such that all entries are zero. Initialise

all estimators x̂ t
i with a random draw from the prior distribution pX(x) and set x̂ t� 1

i to all

zeros for the first step. (There is no need to initialise σi).

3. Compute first the update to At
i and bt

i following Eqs (34b) and (34a), then compute the new

means x̂ tþ1
i and their variance stþ1

i using Eqs (32a) and (32b).

4. Repeat Step 3 until the squared difference between all x̂t
i and x̂tþ1

i is smaller then some pre-

defined threshold �.

We also provide an implementation of this algorithm in a Python package that was the base

of all the programs written for this paper.

State evolution for reconstructing sparse patterns

We discussed in the main text that the sparse prior (23) has mean hxi = 0p and covariance

hxx>i = ρIp. The state evolution will interpolate between an order parameter that is all zeros at

initialisation, and M = ρIP for perfect reconstruction. We are thus motivated to use the ansatz

Mt = mtIP. The threshold function then becomes

½f ðA;BÞk� ¼
re� Akk=2sinhðBkÞ

1þ r½e� Akk=2coshðBkÞ � 1�
ð35Þ

Substituting this form into the SE update Eq (12) yields a closed update equation for the

parameter mt,

mtþ1 ¼ E
w

r2e� mt=2Dsinh ðmt=Dþ
ffiffiffiffiffiffiffiffiffiffiffi
mt=D

p
zÞ

1þ r ½e� mt=2Dcosh ðmt=Dþ
ffiffiffiffiffiffiffiffiffiffiffi
mt=D

p
zÞ � 1�

; ð36Þ
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where z is again a scalar Gaussian random variable with zero mean and unity variance, like in

Eq (14). We can recover the state evolution for the symmetric rectified Hopfield model from

Eq (36), in the limit ρ! 1.

State evolution for reconstructing patterns with low coding level

For Tsodyk’s prior (24), we have a new threshold function (11) which reads

½f ðA;BÞk� ¼ 1 � r �
1 � r

1 � r 1 � eAkk r�
1=2

� �
þBk

� �
ð37Þ

The prior distribution (24) allows us to use the same ansatz for the magnetisation that we used

above to analyse sparse patterns. Setting Mt = mtIP, we get the following update equation for

the scalar order parameter mt> 0:

mtþ1 ¼ E
W

ðr � 1Þ
2
r2ðemt=D � 1Þew

ffiffiffiffiffiffiffi
mt=D
p

rew
ffiffiffiffiffiffiffi
mt=D
p

� ðr � 1Þemt=2D

� �
r exp

2w
ffiffiffiffiffiffiffiffiffi
Dmt
p

þmt

2D

 !

� rþ 1

 ! :
ð38Þ
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115. Mézard M, Montanari A. Information, Physics and Computation. Cambridge University Press; 2009.

PLOS COMPUTATIONAL BIOLOGY Bayesian reconstruction of memories stored in neural networks from their connectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010813 January 30, 2023 27 / 27

https://doi.org/10.1152/jn.1989.61.2.331
http://www.ncbi.nlm.nih.gov/pubmed/2918358
https://doi.org/10.1038/20939
http://www.ncbi.nlm.nih.gov/pubmed/10365959
https://doi.org/10.1016/S0006-3495(88)83041-8
https://doi.org/10.1016/S0006-3495(88)83041-8
http://www.ncbi.nlm.nih.gov/pubmed/3233265
https://doi.org/10.1016/j.neuron.2010.02.003
http://www.ncbi.nlm.nih.gov/pubmed/20188660
https://doi.org/10.1073/pnas.1918674117
https://doi.org/10.1073/pnas.1918674117
http://www.ncbi.nlm.nih.gov/pubmed/33177232
https://doi.org/10.1016/j.neuron.2011.02.025
https://doi.org/10.1016/j.neuron.2011.02.025
http://www.ncbi.nlm.nih.gov/pubmed/21435562
https://doi.org/10.1016/j.neuron.2021.12.003
https://doi.org/10.1016/j.neuron.2021.12.003
http://www.ncbi.nlm.nih.gov/pubmed/34990571
https://doi.org/10.1146/annurev-neuro-071714-034002
http://www.ncbi.nlm.nih.gov/pubmed/25897875
https://doi.org/10.1051/jphys:019860047090145700
https://doi.org/10.1088/0305-4470/19/10/011
https://doi.org/10.1088/0305-4470/19/10/011
https://doi.org/10.1162/neco.1994.6.5.957
https://doi.org/10.1523/JNEUROSCI.6130-10.2011
https://doi.org/10.1523/JNEUROSCI.6130-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21715613
https://doi.org/10.1073/pnas.95.8.4732
http://www.ncbi.nlm.nih.gov/pubmed/9539807
https://doi.org/10.1073/pnas.0502332102
https://doi.org/10.1073/pnas.0502332102
http://www.ncbi.nlm.nih.gov/pubmed/15983385
https://doi.org/10.1016/0378-8733(83)90021-7
https://proceedings.neurips.cc/paper/2008/file/8613985ec49eb8f757ae6439e879bb2a-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/8613985ec49eb8f757ae6439e879bb2a-Paper.pdf
https://doi.org/10.1103/PhysRevLett.107.065701
https://doi.org/10.1103/PhysRevLett.107.065701
http://www.ncbi.nlm.nih.gov/pubmed/21902340
https://doi.org/10.1038/nn.4158
https://doi.org/10.1038/nn.4158
http://www.ncbi.nlm.nih.gov/pubmed/26523643
https://doi.org/10.1080/14786437708235992
https://doi.org/10.1371/journal.pcbi.1010813

