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Abstract

Attribute-based representations help machine learning models perform tasks based on hu-
man understandable concepts, allowing a closer human-machine collaboration. However,
learning attributes that accurately reflect the content of an image is not always straightfor-
ward, as per-image ground truth attributes are often not available. We propose applying
the Multiple Instance Learning (MIL) paradigm to attribute learning (AMIL) while only
using class-level labels. We allow the model to under-predict the positive attributes, which
may be missing in a particular image due to occlusions or unfavorable pose, but not to
over-predict the negative ones, which are almost certainly not present. We evaluate it in
the zero-shot learning (ZSL) setting, where training and test classes are disjoint, and show
that this also allows to profit from knowledge about the semantic relatedness of attributes.
In addition, we apply the MIL assumption to ZSL classification and propose MIL-DAP,
an attribute-based zero-shot classification method, based on Direct Attribute Prediction
(DAP), to evaluate attribute prediction methods when no image-level data is available for
evaluation. Experiments on CUB-200-2011, SUN Attributes and AwA2 show improvements
on attribute detection, attribute-based zero-shot classification and weakly supervised part
localization.

1 Introduction

Semantic attributes provide a rich, human understandable representation that allows to connect the visual
world with other sources of knowledge, such as text corpora and knowledge graphs (Rohrbach et al., 2010).
This enables automatic reasoning that uses a set of pre-defined semantic elements (Hudson &Manning, 2019),
allowing a much closer collaboration between these systems and humans (Branson et al., 2010). Attribute-
based representations have proven useful for domain adaptation (Han et al., 2014; Chen et al., 2015; Gebru
et al., 2017), natural scene perception (Marcos et al., 2020), image-to-image translation (Wu et al., 2019),
image retrieval (Siddiquie et al., 2011; Felix et al., 2012), and zero-shot learning (ZSL) (Lampert et al.,
2013). Attribute annotations are often obtained by asking human annotators to either provide image-level
attributes (Patterson & Hays, 2012; Wah et al., 2011), which is labour intensive and requires all attributes,
or at least a few (Sun et al., 2015), to be annotated in every image, or class-level attribute labels (Lampert
et al., 2013), requiring as many annotations as there are classes. An alternative approach that requires
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no manual annotations is to use class ontologies such as WordNet (Al-Halah & Stiefelhagen, 2015) or text
corpora (Al-Halah & Stiefelhagen, 2017) in order to mine class-level attributes.
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Figure 1: We formulate the task of attribute prediction as a dataset-wide MIL framework, where some
classes may contain a given attribute (positive bag) and some must not contain it (negative bag). We
suggest treating the positives differently during training by allowing false negatives using a noise robust loss.

These class-level attributes inform us about the attributes that are potentially present in an image of a
given class, but do not help us in knowing whether the attribute is actually visible on a specific image. For
instance, if we know that an image contains an Arctic tern or a Red-legged kittiwake (seen in Figure 1),
we can conclude that it is possible, although not certain, that the image contains red legs, since they may
be occluded, for instance. On the other hand, knowing the class also provides us with information about
attributes that will surely not be present: if the image is labeled as Red-legged kittiwake, we can almost
certainly conclude that there will be no yellow legs visible. We propose to use this asymmetry between
positive and negative class-level attributes to improve image-level attribute prediction.

Our solution is based on the Multiple Instance Learning (MIL) (Dietterich et al., 1997; Maron & Lozano-
Pérez, 1998) paradigm, i.e. weakly supervised learning in which samples are distributed in bags and labels
are provided only at the bag level. A bag labeled as negative means that all the samples it contains are
negative; a bag labeled as positive means that at least one sample in the bag is positive. We build our
bags using: 1) images with single class labels, e.g. animal species, and 2) class-level attribute annotations
in the form of a binary matrix representing which attribute is possibly present in each class. Using these
two elements, we cast attribute learning as a multi-label MIL problem, or MIML (Zhou et al., 2012). In
contrast with previous approaches, in which the size of the bags is limited by their memory footprint, ours
can handle bags of unlimited size by applying a noise robust loss to the positive bags and a standard binary
cross entropy loss to the negatives (Figure 1). We show that this approach is also particularly suitable for
injecting additional external knowledge in the form of attribute relatedness.

Under the assumption that only class-level attribute annotations are available, we run into the problem of
evaluating the quality of the attribute predictions without resorting to image-level attributes. To solve this
issue, we propose MIL-DAP, an attribute-based ZSL method that allows to evaluate attribute prediction
quality without image-level labels. We test the proposed Attribute MIL (AMIL) approach on three attribute
datasets (CUB-200-2011, SUN Attributes and AwA2) and consistently show that we are able to improve
the performance on attribute detection, attribute-based zero-shot classification and weakly supervised part
localization.

2 Related works

MIL in computer vision. MIL approaches often build each bag using all the patches or region proposals
stemming from an individual image: the label is provided at image-level but the desired solution is at patch-
level. This has been applied to weakly supervised object detection (Wang & Forsyth, 2009; Wan et al., 2019),
semantic segmentation (Pathak et al., 2015), attention-based classification (Ilse et al., 2018) and Zero-Shot
Learning (ZSL) (Rahman & Khan, 2018). When accounting for multiple attributes, MIL not only results
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in multiple overlapping bags, a setting called Multiple Instance Multi-Label setting, MIML (Zhou et al.,
2012), but, in addition, each bag spans almost the entire dataset, since for each attribute the positive and
negative bags jointly contain all classes and thus the whole dataset. This setting is not appropriate for
traditional MIL approaches, since these tend to require performing computations over all instances within
a bag, thus practically limiting the bag size. A possible solution is to approximate the MIL function by
building bags at the batch level (Huang et al., 2014; Feng & Zhou, 2017), alleviating the memory issue, or
to use dynamic programming to make the problem more tractable (Pham et al., 2017). Our proposed AMIL
implicitly keeps track of dataset-wide statistics by applying a noise robust loss to the positive attributes
that penalizes false negatives less strictly than false positives, thus deciding on whether or not the positive
labels should be enforced by comparing them to the current decision boundary while allowing the use of
batch-based methods.

Learning with noisy labels. Some approaches use auxiliary information, such as a small set of clean
labels, to model the relation between noisy and clean labels for class correction (Vahdat, 2017) or to learn
a re-weighting of the noisy samples minimizing a loss on the clean samples (Ren et al., 2018; Zhang et al.,
2020). Other works use the current predictions of the model to find wrongly labeled samples. They aim at
reducing the high loss imposed to instances confidently misclassified by the model, either by weighing the
loss with the confidence of the model (Mnih & Hinton, 2012), linearly combining the label with the current
prediction (Reed et al., 2015) or by making the penalization of large errors tunable to adapt to different
noise levels (Zhang & Sabuncu, 2018). In AMIL, we adapt the latter family of methods to the MIL setting
by only applying them to the positive bags (i.e. in the positive bag the attribute can either be present or
not, in the negative we know for sure that the attribute is absent).

Attribute-based ZSL. Zero-shot learning (ZSL) aims at classifying images into classes that are not seen
during training (Lampert et al., 2009). Attributes often act as class embeddings that capture visual sim-
ilarities between classes for transferring knowledge learned from the seen classes to unseen classes. Many
approaches map the visual feature into attribute space, then learn a compatibility function between the
ground truth and predicted attributes (Romera-Paredes et al., 2015; Changpinyo et al., 2016; Akata et al.,
2015; Zhang et al., 2017; Xu et al., 2022). However, these methods are optimized for classification and tend
to perform poorly on attribute prediction (Akata et al., 2015). Most recent state-of-the-art ZSL methods
are based on generative approaches that bridge the gap between seen and unseen classes by synthesizing
visual samples of the unseen classes (Xian et al., 2018b; Narayan et al., 2020). These methods do not output
attribute scores and thus are unsuitable for attribute prediction. In order to overcome the issues stemming
from the use of class-level attribute descriptions, such as the disregard for intra-class attribute variability
and attribute co-occurrence, some methods propose to make the ZSL classification more robust (Jayaraman
& Grauman, 2014; Zhu et al., 2018) while others propose to directly improve attribute prediction by decor-
relating attribute representations (Jayaraman et al., 2014; Chen et al., 2017). In this work, we show that
AMIL can further benefit from an auxiliary loss that correlates related attributes and decorrelates those that
are unrelated.

Direct Attribute Prediction (DAP) (Lampert et al., 2013) and its variants (Suzuki et al., 2014) distinguish
themselves from the rest of ZSL methods for only training the attribute prediction model, while the classifier
is a fixed function of the class-attribute matrix. This makes it, in principle, suitable for assessing the quality
of the predicted attributes, unlike more recent ZSL methods that do not include attribute prediction within
their pipeline. However, (Lampert et al., 2013) shows that DAP performs less well on higher quality image-
level trained attributes than on those trained with class-level labels, suggesting that DAP is not a good
proxy for attribute prediction quality. To solve this, we propose MIL-DAP, a modified version of DAP that
takes the MIL assumption into account, in order to tackle the asymmetric noise induced by using class-level
labels. We show that the ZSL results of MIL-DAP are strongly correlated with the quality of the predicted
attributes, making it an alternative for evaluating attribute prediction when no image-level attributes are
available at test time.
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Figure 2: For a given attribute, such as “red legs", we divide the whole dataset in two bags: instances
that never display the attribute (negative bag) and those of classes that may (positive bag). A CNN (left)
is trained to predict the presence of the attribute. The images from the negative bag are all enforced by
a strict binary cross-entropy loss (BCE), but those from the positive bag are learned with a noise robust
(NR) loss that is more lenient towards mistakes. In addition, we exploit the information about the semantic
relatedness of the attributes by regularizing the attribute prototypes V such that their Gram matrix closely
resembles the matrix of semantic relatedness, R.

3 Attribute Multiple Instance Learning

Following (Zhao et al., 2019) and as shown in Figure 2 (left), given the input image x and the CNN encoder
g(·), we can get the feature tensor f(x) ∈ RH×W×C , where H, W , and C refer to the height, width and
channel number. Then the attribute localization module takes image representation f(x) and attribute
classifiers V ∈ RA×C as input, and output the dot-product maps D = f(x) · V T ∈ RH×W×A, where each
map Da ∈ RH×W encodes the location of the ath attribute. Then we normalize D with spatial softmax,
M = softmax(D), to derive the attention map Ma ∈ RH×W for attribute a. For instance, the attention
map M1 for attribute “red leg” focuses on the leg area, and M2 for attribute “white breast” focuses on the
breast.

To predict the presence value for an attribute, we multiply the attention map Ma back to the dot-product
maps Da, resulting in an attention weighted feature map, and apply global average pooling as follows:

q̂a = 1
HW

H∑
i=1

W∑
j=1

Ma
i,j ·Da

i,j . (1)

We evaluate the attribute prediction results in the ZSL setting, since it ensures that class prediction is not
being internally used as a proxy for attribute detection.

3.1 The MIL assumption and AMIL

In the weakly-supervised, binary classification-based MIL setting, the dataset is divided in bags, such that
one bag X = ({x1, . . . , xn}, t) contains n instances xj ∈ X . Each instance xj has an implicit and unknown
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target label tj ∈ {0, 1}, such that the target label of the bag is

t =
{

0 ⇔ tj = 0 ∀j ∈ {1, 2, . . . , n},
1 otherwise,

(2)

meaning that a positive bag must contain at least one positive instance. If the instance labels were known,
the bag label could be inferred as t = maxn

j=1 tj .

In our AMIL setting, we want to learn the presence of specific attributes in images using only class-level
labels, along with prior knowledge about relations between attributes. To accommodate this, we extend
the MIML (Zhou et al., 2012) framework to attribute bags with high overlap between attributes, such that
bags can be arbitrarily large. We construct as many pairs of data bags (one positive and one negative)
as there are attributes, and each pair of bags will cover the entire dataset. These bags are built using a
binary attribute-class matrix indicating which attribute is present in which class. Each positive bag Xa is
composed by all images of all classes where an attribute can be observed (e.g. for a = red leg, by all images
of red-legged kittiwakes and arctic terns etc., irrespective of whether the red legs can be seen in a particular
image or not, since we do not have this information). Negative bags contain all images of all species where
the attribute is known not to be present.

Attribute MIL (AMIL). MIL generally builds bags consisting of individual images, where instances
are either patches or pixels within the image (Carbonneau et al., 2018). Since the instance-level ground
truth tj is not available and we have only access to the bag-level label, instance-wise predictions need to
be pooled into a bag-level prediction. Handcrafted MIL pooling functions, such as the maximum or mean
prediction (Wang et al., 2018) have been used, but learnable pooling functions have been shown to perform
better (Ilse et al., 2018).

For a bag to accommodate many more instances than a single batch of data, we propose to frame the MIL
problem as one of asymmetric noise, as depicted in Figure 2. Instead of having a MIL pooling function that
assigns a weight to each instance by directly comparing it to other instances in the bag, as done in previous
works, we allow the model to be more flexible when predicting positive attributes while making sure that
all negative attributes are predicted as negative. This can be achieved by applying losses designed for noise
robustness (NR) to the positive bags while applying a stricter loss, such as binary cross entropy (BCE), to
the negative bags. This allows for batch-based optimization without limiting the size of the bags.

Given a CNN f , q = f(x) is the vector of scores of the predicted attributes for input x belonging to class y,
such that qm can be interpreted as p(am|x). Given the class-attribute target t ∈ {0, 1}M corresponding to
class y, we propose to use a loss function

LAMIL(q, t) =
M∑

1=m

LMIL(qm, tm) (3)

such that each element of the loss is

LMIL(qm, tm) =
{
LNR(qm, tm), if y has attribute am

LBCE(qm, tm), otherwise,
(4)

where LBCE is the binary cross entropy loss and LNR is some noise robust loss.

3.2 MIL-DAP Model

Direct Attribute Prediction (Lampert et al., 2013) (DAP). Given an image x and an unseen class
y, we want to estimate p(y|x) by making use of an intermediate attribute representation a ∈ A = {0, 1}M

in a two step manner by computing p(y|x) = p(y|a)p(a|x). By applying Bayes’ rule we obtain:

p(y|a) = p(a|y)p(y)
p(a) . (5)
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Note that p(a|x) can respectively be factorized as:

p(a|x) =
M∏

m=1
p(am = ay

m|x), (6)

where

p(am = ay
m|x) =

{
p(am|x), if y has attribute am

1− p(am|x), otherwise,
(7)

and that the same can be done for p(a|y) and p(a). By combining these elements into the first expression
we obtain:

p(y|x) = p(y)
M∏

m=1

p(am = ay
m|y)p(am = ay

m|x)
p(am = ay

m) . (8)

Since the class-attribute matrix is binary, we have that p(am = ay
m|y) = 1 for all m. If we also assume

uniform class priors p(y), we obtain the DAP MAP prediction in (Lampert et al., 2013):

fDAP(x) = arg max
l=1,...,L

M∏
m=1

p(am = ayl
m|x)

p(am = ay
m) . (9)

We propose a modified version of DAP that is consistent with the MIL assumption and that provides a better
proxy for evaluating attribute prediction through ZSL, thus removing the need for image-level attributes for
the evaluation.

DAP under the MIL assumption (MIL-DAP). We propose three modifications to DAP to make it
suitable for estimating attribute quality. First, we observe that under the MIL assumption only the negative
values in the class-attribute matrix are considered to be trustworthy, since the positives are interpreted as
allowed and not as required. If M̃y is the set of negative attributes associated to class y, the MIL-DAP class
probability estimation using Eq. (8) becomes:

p(y|x) = p(y)
∏

m∈M̃y

[1− p(am|y)][1− p(am|x)]
[1− p(am)] . (10)

In addition, we propose to modify the way of estimating both [1 − p(am)] and [1 − p(am|y)]. In DAP
[1 − p(am)] is computed using the class-attribute matrix. However, we observed substantially improved
ZSL results, particularly with attributes learned with image-level labels, by computing [1− p(am)] over the
training images. In DAP p(am = ay

m|y) = 1 for all the attributes. Even if we are assuming the negative
attribute labels to be cleaner than the positive ones, we do not expect them to be perfectly clean. In our
experiments, we allow for up to ∼ 10% of noise within the negatives due to the threshold used in creating
the class-attribute matrix. If we are testing whether x belongs to class y, we can start by assuming that it
is indeed the case and then use the observed score as prior:

[1− p(amy|y)] = [1− p(am|x)]. (11)

If it turns out that indeed x belongs to class y, or to any class in which attribute m is not allowed, then we
would be using a more informed class dependent prior. If the assumption does not hold and x belongs to a
class in which m is allowed, 1 − p(am|x) will tend to be smaller and thus the wrong class y will be further
penalized. This brings us to the final MAP formulation of MIL-DAP:

fMIL-DAP(x) = arg max
l=1,...,L

∏
m∈Myl

(1− p(am|x))2

1− p(am) . (12)
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Exploiting attribute relatedness. Another source of information that can be used to solve some of
the ambiguities brought by the weakly supervised setting is the semantic relatedness of the attributes. For
instance, if two attributes relate to the same body part or if they describe the same property of different
parts (e.g. colors), we may want our model to know that the vector prototype representing these attributes,
i.e. the learned weights in the classifier corresponding to those attributes, should be similar. We use this
information to build the matrix of semantic relatedness between all pairs of attributes, R ∈ [0, 1]A×A. We
propose to encourage the Gram matrix of the set of the normalized attribute prototypes to approach R:

LGram =
∑

i

∑
j

(V i>V j −Ri,j)2, (13)

where V i is the prototype, or linear classifier weights, of the ith attribute. This loss will make sure that
semantically related attributes will have similar prototype vectors while semantically unrelated ones will
tend to become orthogonal.

3.3 Attribute quality evaluation

To assess the performance of AMIL on attribute prediction, we evaluate it on image-level attribute prediction,
attribute-based zero-shot learning with MIL-DAP and weakly supervised part localization.

Zero-shot learning. Zero-shot learning aims at recognizing previously unseen classes by transfering knowl-
edge from seen classes. Attributes are widely used as the class embedding for zero-shot classification. How-
ever, existing ZSL methods (Romera-Paredes et al., 2015; Xian et al., 2018a; Akata et al., 2015) make use of
continuous annotations and thus treat equally the positive and negative class-level attributes for the novel
classes. In order to adapt ZSL to the AMIL assumptions, we match the predicted attributes with the ground
truth binary attribute of the unseen classes. To ensure that the ZSL results reflect the quality of the at-
tributes, we do not use a compatibility function to train the network as in previous works (Akata et al.,
2015; Xu et al., 2020), but simply train the above explained attribute prediction network. At test time, we
use the predicted attribute scores and the binary class-level attribute annotation to obtain the class scores
with the proposed MIL-DAP, Eq. (12). We also evaluate the attribute quality under a more realistic setting,
i.e. generalized ZSL, which aims at recognizing both the seen and unseen classes during inference.

Part localization. Our attribute localization module outputs the attention map Ma ∈ RH×W for each
attribute a, where the high-activated area indicates the location of that attribute. We turn this into a weakly
supervised attribute localization task by comparing the predicted attribute location with the ground truth.
We evaluate part localization in the ZSL setting where the train and test classes are disjoint.

4 Experiments and discussion

We evaluate AMIL using the image-level attribute annotations where available. Then, we evaluate the
learned attributes on attribute-based downstream tasks: zero-shot classification and part localization.

Datasets. We use three datasets with attribute annotations: CUB-200-2011 (CUB), SUN Attribute
Dataset (SUN) and Animals With Attributes (AwA2). The continuous valued class-attribute matrices of
all datasets are binarized such that values lower than 0.1 are assigned to the negative bags, making sure
that they will generally be cleaner than the positive bags. The value of 0.1 was chosen due to being close
to the average values of the CUB and SUN matrices (0.114 for CUB, 0.098 for SUN), which are the values
typically used in the literature. We observed no effect on the results on CUB and SUN stemming from this
change. In all experiments we use the train-test splits proposed for ZSL in (Xian et al., 2018a) such that the
evaluation is always performed on unseen classes. CUB (Wah et al., 2011) is a fine-grained birds dataset,
with 11,788 images from 200 classes, and 312 attributes. An attribute consist of two parts: the name of an
attribute (“leg color” or “tail texture” etc), and its value (“red” or “striped”). We consider two attributes i
and j to be related, Ri,j = 1, if they share one of the parts, and unrelated, Ri,j = 0, if they do not. CUB
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Image-level attribute evaluation Class-level attribute evaluation
CUB SUN CUB SUN AWA

Method AMIL G AP AUC AP AUC AP AUC AP AUC AP AUC
s u s u s u s u u u u u u u

Image-level 33.79 30.09 80.72 77.98 51.07 47.31 93.42 92.82 63.90 82.50 65.47 86.22 - -

Class-level - 28.07 24.84 75.49 72.66 40.49 38.69 91.46 90.50 63.78 82.33 68.30 89.23 74.04 76.66
- X 28.35 25.31 76.22 73.10 40.79 39.00 91.62 90.73 65.30 83.76 68.98 89.45 73.94 76.81

Deep-MIML - 28.01 24.84 75.43 72.75 40.40 38.24 91.49 90.52 63.90 82.42 68.37 89.27 74.17 76.61
- X 28.39 25.17 76.44 73.03 40.72 38.95 91.59 90.71 65.31 83.77 68.86 89.29 73.94 76.81

GCE
27.49 23.99 74.96 72.19 39.25 37.45 91.22 90.25 63.64 81.81 68.06 89.05 74.04 76.84

X 28.09 24.76 74.96 72.09 39.47 38.41 91.00 90.35 63.01 81.34 67.58 88.52 73.52 75.48
X X 27.92 25.14 75.30 72.94 39.72 38.83 91.27 90.50 64.17 81.89 68.25 88.53 73.74 76.34

Bootstrap
27.98 24.79 75.34 72.65 39.95 38.31 91.39 90.46 63.88 82.28 68.18 89.21 73.92 76.37

X 28.43 25.19 76.13 72.76 41.01 38.81 91.59 90.71 64.55 83.02 68.41 89.13 74.81 76.85
X X 28.68 25.62 77.33 74.43 40.59 38.92 91.59 90.87 65.97 84.33 68.68 89.29 74.79 76.78

Table 1: Attribute prediction on CUB, SUN and AWA, evaluated with image-level labels and class-level labes.
We report average precision (AP) and area under the ROC curve (AUC). AMIL indicates using LAMIL and
G using the Gram loss. GCE (Zhang & Sabuncu, 2018) and Bootstrap (Reed et al., 2015) represent the two
LNR we used to test AMIL. Deep-MIML (Feng & Zhou, 2017) is an alternative MIL approach.

is annotated with image-level attributes and body part locations, which we use for evaluation but not for
training. SUN (Patterson & Hays, 2012) consists of 14,340 images from 717 scene classes and annotated
with 102 scene attributes. AwA2 (Xian et al., 2018a) contains 37,322 images of 50 animal classes with 85
per-class attribute labels, i.e. no per-image attributes are available. Since the attributes of SUN and AwA2
do not follow the binomial structure of CUB, we simply apply a decorrelation loss between all attributes.

Noise-robust losses and baselines. In this work we use two methods designed for dealing with noisy
labels, i.e. Generalized Cross Entropy (GCE) (Zhang & Sabuncu, 2018) and Bootstrap (Reed et al., 2015).
GCE is a generalization of of the Cross-Entropy (CE) and Mean Absolute Error (MAE) losses that aims at
finding a trade-off between the noise robustness of MAE and the implicit focus on hard samples of CE, while
Bootstrap uses the current model predictions to dilute the ground truth, thus reducing the impact on the loss
value of samples for which the model confidently diagrees with the ground truth. We found the truncated
version of the GCE loss to work best. With the bootstrapping loss, we obtained the best performance with
the soft version (Reed et al., 2015), in which the label is averaged with the current prediction score. In
addition we compare with Deep-MIML (Feng & Zhou, 2017) which operates in the traditional, batch-wise,
MIL setting. We compare each noise robust loss in the standard setting (i.e. applied to all attributes)
and the modified version of Bootstrap and GCE that is adapted to MIL by applying Eq. (4) (GCE+MIL
and Bootstrap+MIL). As a baseline, we use the standard approach of training directly on the class-level
attributes, while the image-level attributes are used to train a model that serves as an upper bound. In
order to test the effect of the Gram loss (Eq. (13)) on the different methods, we apply it both on the
proposed appraoches (GCE+MIL+G and Bootstrap+MIL+G) and in the baselines (Class-level Attr+G and
Deep-MIML+G).

Implementation details. In all the experiments we use ResNet50 pretrained on ImageNet as the image
encoder. On all experiments we trained, validated hyperparameters and tested the model using the ZSL
train-val-test splits recommended in (Xian et al., 2018a). The attribute prediction results are thus evaluated
only on unseen classes. All models are trained for three epochs with a multi-label binary cross-entropy loss
or a noise robust loss using the binary class-level label with the exception of the image-level trained upper-
bound models for CUB and SUN, which use only BCE. We use the Adam optimizer with a learning rate of
0.0001 for the attribute prediction base model and 0.001 for learning the last linear layer of the attribute
prediction model, with a learning rate decay of 0.25 after each epoch.
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4.1 Attribute prediction results

We start by comparing the different approaches directly on the task of attribute prediction. We report two
metrics for multi-label classification: average precision or area under the precision-recall curve (AP) and area
under the ROC curve (AUC), both computed per attribute and macro-averaged. We first show the results of
using the image-level attributes for training and use it as an upper bound for the class-level trained models,
including baselines, the AMIL approach (+MIL) and the Gram loss (+G).

We first evaluate at test time on the image-level attribute labels for CUB and SUN. All methods are trained
on the attributes of the ZSL seen classes provided by (Xian et al., 2018a) and tested on the image-level
labels of both seen and unseen classes. We observe from Table 1 (left) that the image-level upper bound
does indeed reach a substantially better result than any of the class-level methods. We can also see that
the proposed scheme tends to improve the results in all metrics, although a large gap to the image-level
upper bound is still present. This improvement is much more consistent in CUB than in SUN, where AMIL
performs only marginally better than the class-level baseline (e.g. 38.92 AP versus 38.69 AP in the unseen
classes). We suspect this is due to the fact that CUB attributes were created with class discrimination in
mind, resulting in more distinct class-level attribute representations that lead to better attribute prediction.
This can be seen in the fact that class-level AP results are closer to the image level results in CUB (around
5 AP difference) than in SUN (around 10 AP difference). Although this observation does not apply to AUC,
this metric seems to be surprisingly saturated in the case of SUN, potentially obscuring the effect of the
class-level attributes quality. The methods for learning with noisy labels (GCE and Bootstrap) perform
similarly and close to the class-level and Deep-MIML methods. This may be due to the fact that these
methods assume similar levels of noise in the positive and negative bags, when the positive bag are likely
noisier. This is supported by the fact that, applying the noise robustness only to the positive bags, according
to the proposed AMIL, tends to improve performances across the board, showing that the MIL assumptions
are indeed met in class-level attribute prediction on these datasets.

We also test on the binarized class-level labels for all datasets, Table 1 (right). Although AMIL also provides
an improvement in CUB, results in SUN and AwA2 are more mixed. Most interestingly, the image-level
upper bound performs substantially worse than most of the class-level methods, suggesting that evaluating
on class-level attributes does not actually reflect the quality of the predicted attributes.

4.2 (Generalized) Zero-shot Learning

We evaluate the attribute prediction models using ZSL and generalized ZSL (GZSL) results as proxy metrics.
This can be useful in cases where image-level attribute annotations are not available even at test time. We use
MIL-DAP, the proposed hard-coded attribute-based classifier in Eq. (12), and show that it better reflects
the quality of the predicted attributes. We would like to emphasize that we use ZSL based on attribute
prediction as a proxy for attribute quality and this paper does not aim at improving ZSL performance over
state-of-the-art ZSL methods, with most methods mentioned in Section 2 reaching substantially higher ZSL
accuracy than what is presented here.

GZSL results are shown in Table 2 (left). The first interesting observation in CUB and SUN is that all
class-level methods perform better than the image-level upper bound on the seen classes, while the upper
bound is best on the unseen classes. This suggests that the class-level models tend to learn the attribute
signature of each class rather than the actual attributes, which indicates we should only use the unseen
class performance, or the harmonic mean, to assess the quality of the attributes. Indeed, as for attribute
prediction, AMIL obtains an improvement over the baselines on CUB and SUN, with mixed results on AwA2,
e.g. MIL+G improves the harmonic mean of GCE and Bootstrap on CUB dataset by 5.43% and 5.14%.

ZSL results (Table 2, right) show a similar trend to GZSL on the unseen classes, with the image-level models
for CUB and SUN obtaining the best scores and with AMIL resulting in improved results in most cases, e.g.
MIL+G improves the accuracy on CUB (by 6.4%) and SUN (by 2.7%) when coupled with GCE.
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Generalized Zero-shot learning Zero-shot learning
CUB SUN AWA CUB SUN AWA

Method AMIL G s u h s u h s u h
Image-level - - 37.73 22.78 28.41 10.06 8.54 9.24 - - - 49.68 36.04 -

Class-level - 59.02 8.70 15.16 13.34 5.63 7.91 93.25 1.00 1.99 36.77 33.61 36.82
- X 53.28 11.19 18.50 14.06 5.28 7.67 93.76 0.61 1.22 36.40 33.68 36.67

Deep-MIML - 58.46 8.43 14.73 12.78 5.83 8.01 93.28 0.69 1.36 35.79 33.89 37.63
- X 53.05 10.92 18.11 13.80 5.83 8.20 93.68 0.73 1.46 35.83 33.47 36.11

GCE
49.70 9.03 15.29 10.86 5.42 7.23 93.36 0.71 1.41 30.91 30.42 37.36

X 55.29 9.61 16.37 12.74 5.63 7.80 93.04 0.69 1.36 36.33 32.43 37.43
X X 49.33 13.11 20.72 14.02 5.35 7.74 93.09 0.56 1.12 37.31 33.13 36.33

Bootstrap 58.76 8.80 15.30 14.02 6.11 8.51 93.36 0.56 1.12 34.98 33.33 37.43
X 58.02 10.31 17.51 14.10 5.69 8.11 92.29 0.51 1.02 39.60 33.89 37.68
X X 48.59 12.94 20.44 14.78 6.39 8.92 92.80 0.32 0.63 41.52 33.89 38.27

Table 2: Generalized ZSL and ZSL results using MIL-DAP, on CUB, SUN and AWA. For GZSL we report
the accuracies on the seen (s) and unseen classes (u), as well as the harmonic mean (h) of the two. For
ZSL, we train the attribute prediction network with class-level binary attributes and test it on the unseen
classes. Accuracy reported as percentage OA. AMIL indicates using LAMIL and G using the Gram loss.
GCE (Zhang & Sabuncu, 2018) and Bootstrap (Reed et al., 2015) represent the two LNR we used to test
AMIL. Deep-MIML (Feng & Zhou, 2017) is an alternative MIL approach.

CUB Part Localization
AMIL G Head Breast Belly Back Wing Tail Leg Avg

Image-level - - 66.1 67.6 49.3 32.1 37.7 10.5 44.5 44.0

Class-level - 48.1 61.8 55.2 32.0 43.7 1.8 36.2 39.8
- X 56.1 62.7 62.1 35.5 59.0 2.0 45.5 46.1

Deep-MIML - - 48.4 64.2 53.8 33.4 43.5 1.6 35.3 40.0
- X 56.2 62.1 62.1 34.7 57.2 2.1 46.6 45.9

GCE
46.8 59.1 59.1 29.4 36.2 1.5 38.2 38.6

X 47.7 56.8 56.5 30.9 46.0 2.0 40.1 40.0
X X 51.0 59.0 62.3 33.4 60.4 2.3 49.4 45.4

Boot
49.3 63.7 54.2 32.6 42.8 1.7 34.9 39.9

X 46.9 57.9 54.7 31.5 49.5 1.5 33.7 39.4
X X 56.4 56.5 63.2 32.1 55.2 2.9 50.1 45.2

Table 3: The Percentage of Correctly Localized Parts (PCP) in CUB. We report the PCP for seven bird
body parts as well as the average accuracy. AMIL indicates using LAMIL and G using the Gram loss. GCE
(Zhang & Sabuncu, 2018) and Bootstrap (Reed et al., 2015) represent the two LNR we used to test AMIL.
Deep-MIML (Feng & Zhou, 2017) is an alternative MIL approach.

4.3 Evaluating Part Localization

A better attribute prediction may also result in an improved learning signal for part localization. Since
each attribute in CUB dataset is associated with a body part (“belly”, “wing”, etc.), we evaluate the part
localization ability with the per-image part location annotations. We use directly the attribute attention
maps Ma ∈ RH×W (Figure 2, left) for localization. We calculate the Percentage of Correctly Localized
Parts (PCP) following the approach of (Xu et al., 2020). The quantitative results on part localization
are shown in Table 3, where we observe similar trends as in the previous tasks. However, there are stark
differences between the parts. All methods seem to perform well on “Breast” and “Belly”, even reaching
image-level performance. This is because breast and belly are large parts that usually occupy the center
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of the image, making those parts attended to by default, and do not require the model to perform part
detection but merely bird detection. The class-level qualitative results in Fig. 3 illustrate the bias towards
the center of the bird. We observe that peripheral parts tend to obtain much worse results for the state of
the art methods, e.g. the failure at locating “tail”, with the highest PCP of 2.9% using Bootstrap+MIL+G.
Compared to the other settings, Bootstrap+MIL+G is able to provide usable results on “leg”, obtaining
an impressive 50.1% PCP, 14 points higher than the baseline. We hypothesize that this increase is likely
associated to the positive relations in the Gram loss due to the synergy of learning multiple “leg” prototypes
jointly that are able to guide each other towards the right direction.

Im
ag

e-
le

ve
l Orange leg Yellow bill Black tail Iridescent head

Cl
as

s-
le

ve
l

Bo
ot

+
M

IL
Bo

ot
+

M
IL

+
G

Im
ag

e-
le

ve
l Grey leg Dagger bill Black wing Red throat

Cl
as

s-
le

ve
l

Bo
ot

+
M

IL
Bo

ot
+

M
IL

+
G

Figure 3: Qualitative part localization on a CUB image displaying the attention maps learned by each model.
The 1st row corresponds to the image-level upper bound results, the 2nd to the class-level baseline, the 3rd

and 4th to the proposed AMIL, with and w/o the Gram loss.

4.4 Ablation Studies

Ablation results on the AMIL loss. The main assumption for our work, namely the relatively higher
reliability of the negative class-level attributes, is captured by the definition of the asymmetric LAMIL loss
in Eq. (4). If this assumption holds, we would expect the results of applying only LNR or only LBCE to
be worse than using LAMIL. The results of applying only LNR, instantiated as either GCE or Bootstrap
(Tables 1), and LBCE, the class-level baseline, show that indeed LAMIL always results in better image-level
attributes prediction than using either LNR or LBCE. This behaviour is clearer when using the Bootstrap
loss, and results are more mixed with the GCE loss. Interestingly, we see comparable results for both ablated
settings (using only LNR or LBCE) and a consistent improvement by applying them separately to the positive
and negative samples according to LAMIL (AMIL column in the tables). A similar trend can be observed in
the unseen GZSL results in Table 2. This confirms that the MIL assumption of clean negatives and noisy
positives does hold in the studied cases.

Ablation study on the interaction between AMIL and MIL-DAP components. We explore
the contributions of each component of the AMIL and MIL-DAP on CUB and SUN. In the first row of
Table 4 we can see how each component of MIL-DAP (i.e. the empirical p(a) prior, the MIL assumption by
only accounting for negative attributes and the empirical p(a|y) prior) results in an increase in generalized
ZSL performance using the attributes trained with image-level labels. The following three rows show that
this trend is absent in the models trained with class-level labels, even when using a noise robust loss (i.e.
Bootstrap (Reed et al., 2015)) and the Gram loss, although the latter does result in substantially improved
performances in all setting for CUB.

The last two rows show that AMIL, both with and without the Gram loss, results in generalized ZSL
performance trends that closely match those of the image-level upper bound. This suggests that the improved
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results in attribute prediction obtained by AMIL do indeed result in learning attributes that more closely
follow the structure of the image-level attributes. Once again, the application of the Gram loss results in
improvements on all settings.

CUB SUN
DAP +p(a) +MIL +p(a|y) DAP +p(a) +MIL +p(a|y)

Image-level 3.01 19.75 22.35 28.41 2.18 6.45 6.66 9.24

Class-level 12.94 14.19 15.85 15.16 8.82 8.90 8.73 7.91
Boot. (Reed et al., 2015) 13.33 14.15 16.32 15.30 9.48 9.55 9.38 8.51

Boot.+G 20.90 22.37 22.68 20.44 8.77 9.04 8.53 7.45

Boot.+MIL 11.26 14.37 16.92 17.51 7.21 8.11 8.21 8.11
Boot.+MIL+G 12.81 17.67 18.41 20.44 6.56 8.41 8.30 8.92

Table 4: Generalized zero-shot learning results, harmonic mean between seen and unseen classes, on CUB
and SUN. Each row presents an additional modification to DAP (Lampert et al., 2013), with the last row
corresponding to MIL-DAP: substituting the attribute prior by an empirical estimate over the training
samples (+p(a)), applying DAP only using the negative classes (+MIL) and using the attribute prediction
of the test image as a prior for the attribute given the class (+p(a|y)).

4.5 Limitations

Our results show that AMIL and the Gram loss make a substantial difference in the quality of the attributes
learned on CUB, where the attributes are all visual and their relatedness is well defined, and that MIL-DAP
is useful for detecting this improvement in the absence of image-level labels. In SUN, where some attributes
are subjective, the improvement is less marked and in AwA2, where many of the attributes are not visual,
the proposed approach seems to result only in a marginal improvement in ZSL and no improvement in GZSL.
This suggests that AMIL and MIL-DAP are only appropriate when dealing with clearly visual attributes
and that no improvement should be expected for attributes that are subjective or not visual in nature.

5 Conclusion

Despite the recent interest in attribute-based methods for applications such as zero-shot classification and
explainability, we have observed a large gap in performance between attribute detection trained with weak
class-level annotations, as is often done in the literature due to its lower cost of acquisition, and the potential
performance that could be obtained by using labour intensive image-level annotations. To close that gap,
we propose to leverage the Multiple Instance Learning assumption. We show that applying it to existing
noise robustness approaches results in better attribute detection results since it induces tolerance of positive
attributes that are not present or occluded on a particular image. Via extensive experiments on three
datasets, we show that the proposed approach helps to improve the performance on attribute prediction,
and that this improvement can be also be measured via attribute-based tasks such as zero-shot classification
and weakly supervised part localization.
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