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For since the fabric of the universe is most perfect, and is the work of a most wise Creator,

nothing whatsoever takes place in the universe in which some relation of

maximum and minimum does not appear.

— Leonhard Euler, 1744, introducing his seminal work on elastic curves

EMOTION, MOTION

There is the excitement of knowing a number of knots,

followed by the satisfaction of choosing the right one for a specific task,

and finally the joy of tying and tightening, which is the result of setting the rope in motion,

arranging, conducting, orchestrating its parts.

— Philippe Petit, 2013

To my family
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Abstract
In this thesis, we study the mechanics of tight physical knots. Knots are omnipresent in surgery,

climbing, and sailing, with disastrous consequences when the filament or the rope fails to

perform its function. Even if the importance of mechanical analysis of knots has long been

recognized, established guidelines for best practices typically rely primarily on empirical data

gained from historical experience, not structural analysis.

Existing models in knot theory or Kirchhoff’s theory for elastic rods are often insufficient to

describe the functional behavior of tight physical knots due to the intricate three-dimensional

nonlinear geometries, large elastic (and sometimes plastic) deformations, and frictional

interactions. A few past studies reported stability and knot quality measurements, which,

however, are specific and difficult to generalize.

We tackle the study of the mechanics of physical knots by combining topological and geometric

arguments, precision-model experiments, and high-fidelity numerical simulations using the

finite element method. An elaborate toolbox is developed for volumetric imaging of X-ray

micro-computed tomography data. Our investigation is centered on the shape of physical

trefoil knots, the performance of stopper knots, and the strength of surgical knots.

First, we perform a compare-and-contrast investigation between the equilibrium shapes of

physical and ideal trefoil knots, in closed and open configurations. We construct physical

realizations of tight trefoil knots tied in an elastomeric rod. X-ray tomography and 3D finite

element simulation allow for evaluating the role of elasticity in dictating the physical knot’s

overall shape, self-contact regions, curvature profile, and cross-section deformation. The

results suggest that regions of localized elastic deformation, not captured by the geometric

models, act as precursors for the weak spots that could compromise the strength of knotted

filaments.

Second, we investigate the performance of stopper knots, which prevent the rod end from

retracing through a narrow passage. We develop a physical model involving an inextensible

elastomeric rod, onto which a figure-eight knot is tied and pulled against a rigid stopper plate.

A complex interplay of frictional interactions and friction-induced twist leads to capsizing,

a mechanism that rearranges the knot configuration while keeping its topology. In contrast

to isotropic rods, we find that the decoupling of bending and twisting rigidities in rope-like
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Abstract

structures penalizes rod twisting, which impedes the knot from capsizing.

Third, we study the operational and safety limits of surgical sliding knots, highlighting the

previously overlooked but crucial effect of plastic deformation. The relevant range of ap-

plied tensions, geometric features, and the resulting knot strengths are characterized using

experimental and numerical model systems. Finally, we find that all the experimental and

numerical data, involving all the knot configurations we investigated and a wide range of

friction coefficients, collapse onto a master curve.

The acquisition and study of unprecedented experimental data, combined with FEM sim-

ulations, has enabled us to systematically explore the different ingredients dictating the

mechanical performance of knotted structures with highly nonlinear geometrical features and

material properties.

Key words: Mechanics of knots, knots, physical knots, contact mechanics, friction, plasticity,

surgical suturing, mechanical testing, X-ray tomography, Finite Element Modeling.
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Résumé
Dans cette thèse, nous étudions la mécanique des nœuds physiques serrés. Les nœuds sont om-

niprésents en chirurgie, en escalade et en voile, avec des conséquences désastreuses lorsque le

filament ou la corde ne remplit pas sa fonction. Même si l’importance de l’analyse mécanique

des nœuds est reconnue depuis longtemps, les directives établies pour les meilleures pratiques

s’appuient généralement sur des données empiriques issues de l’expérience historique, et

non sur une analyse structurelle.

Les modèles existants de la théorie des nœuds ou de la théorie de Kirchhoff pour les tiges

élastiques sont souvent insuffisants pour décrire le comportement fonctionnel des nœuds

physiques serrés en raison des géométries tridimensionnelles non linéaires complexes, des

grandes déformations élastiques (et parfois plastiques) et des interactions de frottement.

Quelques études antérieures ont rapporté des mesures de stabilité et de qualité des nœuds,

qui sont toutefois spécifiques et difficiles à généraliser.

Nous abordons l’étude de la mécanique des nœuds physiques en combinant des arguments

topologiques et géométriques, des expériences sur des modèles de précision et des simula-

tions numériques à haute-fidélité utilisant la méthode des éléments finis. Une boîte à outil

méthodologique élaborée est développée pour l’imagerie volumétrique des données de la

tomographie à rayons X. Notre étude est centrée sur la forme des nœuds de trèfle physiques,

la performance des nœuds d’arrêt et la résistance des nœuds chirurgicaux.

Tout d’abord, nous effectuons une étude comparative entre les formes d’équilibre des nœuds

de trèfle physiques et idéaux, dans des configurations fermées et ouvertes. Nous construisons

des réalisations physiques de nœuds trilobés serrés dans une tige élastomère. La tomographie

à rayons X et la simulation par éléments finis en 3D permettent d’évaluer le rôle de l’élasticité

dans la détermination de la forme globale du nœud physique, des régions d’auto-contact, du

profil de courbure et de la déformation de la section transversale. Les résultats suggèrent que

les régions de déformation élastique localisée, non prises en compte par les modèles géomé-

triques, sont les précurseurs des points faibles qui pourraient compromettre la résistance des

filaments noués.

Deuxièmement, nous étudions la performance des nœuds d’arrêt, qui empêchent l’extrémité

de la tige de retraverser un passage étroit. Nous développons un modèle physique impliquant
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Résumé

une tige élastomère inextensible, sur laquelle un nœud en huit est noué et tiré contre une

plaque d’arrêt rigide. Une interaction complexe entre les interactions de frottement et la

torsion induite par le frottement conduit au ‘chavirement’, un mécanisme qui réarrange la

configuration du nœud tout en conservant sa topologie. Contrairement aux tiges isotropes,

nous constatons que le découplage des rigidités de flexion et de torsion dans les structures de

type corde pénalise la torsion de la tige, ce qui empêche le nœud de chavirer.

Troisièmement, nous étudions les limites opérationnelles et de sécurité des nœuds coulissants

chirurgicaux, en mettant en évidence l’effet crucial, mais jusqu’ici négligé, de la déformation

plastique. La gamme pertinente des tensions appliquées, les caractéristiques géométriques et

les résistances des nœuds qui en résultent sont caractérisées à l’aide de systèmes de modèles

expérimentaux et numériques. Enfin, nous proposons une loi d’échelle générale qui permet de

regrouper les données expérimentales et numériques sur une unique courbe maîtresse. Cette

description capture la force des nœuds chirurgicaux serrés, couvrant toutes les conformations

de nœuds coulissants considérées sur une large gamme de coefficients de frottement.

L’acquisition et l’étude de données expérimentales sans précédent, combinées à des simula-

tions FEM, nous ont permis d’explorer systématiquement les différents ingrédients dictant la

performance mécanique de structures nouées présentant des caractéristiques géométriques

et des propriétés matérielles hautement non linéaires.
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Zusammenfassung
In dieser Arbeit untersuchen wir die Mechanik von festen physikalischen Knoten. Knoten

sind in der Chirurgie, beim Klettern und Segeln allgegenwärtig und haben katastrophale

Folgen, wenn der Faden oder das Seil seine Funktion nicht erfüllt. Obwohl die Bedeutung

der mechanischen Analyse von Knoten seit langem anerkannt ist, stützen sich die etablierten

Richtlinien für bewährte Verfahren in der Regel in erster Linie auf empirische Daten, die aus

historischen Erfahrungen gewonnen wurden, und nicht auf strukturelle Analysen.

Bestehende Modelle aus der Knotentheorie oder der Kirchhoff’schen Theorie für elastische

Filamente reichen oft nicht aus, um das funktionelle Verhalten fester physikalischer Knoten

zu beschreiben, da es sich um komplizierte dreidimensionale nichtlineare Geometrien, große

elastische (und manchmal plastische) Verformungen und Reibungswechselwirkungen han-

delt. Einige frühere Studien berichteten über Stabilitäts- und Knotenqualitätsmessungen, die

jedoch spezifisch und schwer zu verallgemeinern sind.

Wir befassen uns mit der Untersuchung der Mechanik physikalischer Knoten, indem wir

topologische und geometrische Argumente, Präzisionsmodellexperimente und numerische

Simulationen mit hoher Genauigkeit unter Verwendung der Finite-Elemente-Methode kombi-

nieren. Für die volumetrische Darstellung von Röntgen-Mikro-Computertomographie-Daten

wird ein umfangreicher Methodik-Werkzeugkasten entwickelt. Unsere Untersuchung konzen-

triert sich auf die Form von physikalischen Kleeblattknoten, die Leistung von Stopfenknoten

und die Festigkeit von chirurgischen Knoten.

Zunächst vergleichen wir die Gleichgewichtsformen von physikalischen und idealen Klee-

blattknoten in geschlossenen und offenen Konfigurationen. Wir konstruieren physikalische

Realisierungen von engen Kleeblattknoten, die in ein Elastomerfilament eingebunden sind.

Mit Hilfe von Röntgentomografie und 3D-Finite-Elemente-Simulationen lässt sich die Rolle

der Elastizität bei der Bestimmung der Gesamtform des Knotens, der Selbstkontaktbereiche,

des Krümmungsprofils und der Querschnittsverformung bewerten. Die Ergebnisse deuten

darauf hin, dass Regionen mit lokaler elastischer Verformung, die von den geometrischen Mo-

dellen nicht erfasst werden, als Vorläufer für die Schwachstellen fungieren, die die Festigkeit

der Knotenfilamente beeinträchtigen könnten.

Zweitens untersuchen wir die Leistung von Stopperknoten, die verhindern, dass das Filamen-
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Zusammenfassung

tende durch einen engen Kanal zurückläuft. Wir entwickeln ein physikalisches Modell mit

einem nicht dehnbaren Elastomerfilament, an den ein Achterknoten gebunden und gegen

eine starre Stopperplatte gezogen wird. Ein komplexes Zusammenspiel von Reibungswechsel-

wirkungen und reibungsinduzierter Verdrehung führt zum ‘Kentern’, einem Mechanismus, der

die Konfiguration des Knotens unter Beibehaltung seiner Topologie umgestaltet. Im Gegensatz

zu isotropen Stäben stellen wir fest, dass die Entkopplung von Biege- und Torsionssteifigkeit

in seilähnlichen Strukturen die Verdrehung der Stäbe hemmt, was ein Kentern des Knotens

verhindert.

Drittens untersuchen wir die Operations- und Sicherheitsgrenzen von chirurgischen Gleit-

knoten, wobei wir den bisher übersehenen, aber entscheidenden Effekt der plastischen

Verformung hervorheben. Der relevante Bereich angewandter Spannungen, geometrischer

Merkmale und der daraus resultierenden Knotenfestigkeit wird anhand experimenteller und

numerischer Modellsysteme charakterisiert. Abschließend schlagen wir ein allgemeines Ska-

lierungsgesetz vor, das es ermöglicht, experimentelle und numerische Daten auf einer Ma-

sterkurve zusammenzufassen. Diese Beschreibung erfasst die Knotenfestigkeit chirurgischer

Knoten und deckt alle betrachteten Gleitknotenkonformationen über einen weiten Bereich

von Reibungskoeffizienten ab.

Die Erfassung und Untersuchung noch nie dagewesener experimenteller Daten in Kombinati-

on mit FEM-Simulationen hat es uns ermöglicht, die verschiedenen Faktoren systematisch

zu untersuchen, die die mechanische Leistung von Knotenstrukturen mit stark nichtlinearen

geometrischen Merkmalen und Materialeigenschaften bestimmen.
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1 Introduction

From polymer chains to the shipping industry, knots are omnipresent across length scales.

Overall, functional knots can be described as mechanical links used to establish kinematic

constraints between filaments. For centuries, extensive practical knowledge of knotted fila-

mentary structures has been acquired in applications including sailing, climbing and surgery.

Still, the predictive understanding of the underlying physical mechanisms in knots remains

crude. Knot theory, an important branch of topology, has primarily been limited to the realm

of pure mathematics and idealized knots are too abstract for practical settings. Beyond their

topology, physical knots also involve elasticity (bending, torsion, and stretching) of the rod, a

finite diameter of the rod with deformable cross section, and frictional interactions at points of

self-contact. Furthermore, knotted rods can also exhibit more complex inelastic constitutive

behavior (e.g., elasto-plastic filaments in surgery), or, in the case of braided filaments or ropes,

could be structured, with intricate internal frictional interactions.

This introductory chapter is structured as follows. In Section 1.1, we first describe how knots

have been used through historical times before focusing on knots that spontaneously form or

that are voluntarily tied to fulfill a function. In Section 1.2, we introduce several fundamental

concepts (both classic and recent) pertaining to the mechanical description of rods that we

will require in our investigations of physical knots. More specifically, we focus on the classic

capstan problem and its limitations and on the kinematics describing framed curves in 3D

space. In Section 1.3, we describe concepts in topological knot theory, required for the work

in thesis. In Section 1.4, we then focus on geometric rod models, a sub-field of knot theory

that is largely concerned with the computation of tightest knot configurations tied in perfectly

flexible and frictionless strings. Studies applying Kirchhoff’s theory to describe knotted elastic

rods are summarized in Section 1.5. Next, in Section 1.6, we focus on works involving reduced-

and full-3D simulations of elastic knots using the Finite Element Method. Lastly, we report
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Chapter 1. Introduction

relevant studies on evaluating knot quality and stability in Section 1.7. Finally, we summarize

the existing literature on physical knots and describe our research niche, as well as the research

questions that we have devised to address it (Section 1.8), before presenting the outline of this

thesis in Section 1.9.

1.1 Functional Applications of Knots Across Ages and Length Scales

Even if knots have been used across the ages, a detailed historical account of their development

remains vague. Attributing the oldest knot in the world to a specific civilization or purpose is

probably not possible due to the lack of records and findings. As Turner and van de Griend

[1] wrote in their comprehensive book on the ‘History and Science of Knots’, the materials

used to tie knots were inevitably organic, thus, subject to decay. It has been speculated that

knots predate the use of fire and the invention of the wheel [1, 2]. Fortunately, there are some

archaeological discoveries included well-preserved knot samples that shed some light on how

prehistoric and ancient civilizations used knotted filaments.

In 1922, during the discovery of the tomb of the Egyptian pharaoh Tutankhamun, the doors of

one of the shrines were secured by a knotted rope (see Figure 1.1a1), consisting of coiled loops

and half-hitches. Egypt’s desert conditions made the preservation of organic rope structures

possible. The Egyptian civilization was familiar with knotting and even had a hieroglyph for

the word ‘knot’ (‘tjeset’), as shown in Figure 1.1a2 [1].

Beyond binding applications, the Peruvian Inca civilization also used knots in counting op-

erations for the bookkeeping of tax obligations or to store calendrical information. These

knots are called ‘quipu’ and were mostly based on overhand knots with different numbers

of throws (see Figure 1.1b1-b2) [1]. Moreover, knots were used for decorative and religious

purposes by the Celts, as shown in Figure 1.1c1 and c2. Knot diagrams were drawn, mapping

the three-dimensional knot geometry into a plane, and visualizing over- and under-crossings.

Knot features symbolize time, life, seasonal changes, night and day, among others [1].

In a different context, unlike measuring distance on the ground with the units of kilometers

or miles, sailors at sea use the nautical mile and the corresponding speed called ‘knot’ (ISO:

kn, for nautical mile per hour). The origin of this unit dates back to the 16th century when

mariners would gauge the speed of their ships by using a chip log. This device consisted of a

piece of floatable wood (called ‘chip’) and an attached coil of rope with uniformly spaced knots

(47 feet and 3 inches) tied in it. By throwing the chip into the water, the rope line followed

freely at the back of the boat. The speed was then measured by counting the number of

knots that were pulled into the water, using time intervals of 28 seconds, measured with an

2
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a1

a2

b1

b2

c1

c2

Figure 1.1: Historical usage of knots. a1, Shrine doors of the tomb of Tutankhamun secured
by a knotted rope. Image adapted from Ref. [3]. a2, Hieroglyph of the word ‘knot’. Image
adapted from Ref. [1]. b1, Photograph of a preserved ‘quipu’-device, used by Incas for counting
operations. Image adapted from Ref. [4]. b2, Overhand knots of different numbers of throws
used as ‘quipu’. Image adapted from Ref. [1]. c1, Celtic cross with religious knot diagrams.
Image adapted from Ref. [5]. c2, Celtic pottery with decorative knot drawings. Image adapted
from Ref. [6].

hourglass. Nowadays, the speed measurement has been vastly upgraded and standardized

but the name of the unit stayed ‘knot’ [7]. One nautical mile corresponds to 1.15 miles, thus, 1

knot corresponds to 1.15 miles per hour.

Despite some of the historical functional purposes of knots described above, their involuntary

formation can also be regarded as a nuisance during knitting [8] (Figure 1.2a) and in hair

(Figure 1.2b). Raymer and Smith [9] performed tumbling experiments of rods contained in

a box. The authors measured the probability of knotting as a function of rod lengths and

found that almost all of the formed knots were prime knots (which will be explained in the

next Section). Further, knots can form spontaneously in various natural contexts across a

wide range of length scales, including, but not limited to, polymer (Figure 1.2c) and DNA

strands [10, 11, 12], and in plasma and fluid flows [13, 14, 15], as shown in Figure 1.2d. During

pregnancy in humans, fetal activity can spontaneously lead to the knotting of the umbilical

cord. Knotted umbilical cords are observed only in around 1% of pregnancies [16], but have

been shown to increase the probability of fetal death by almost a factor of four [17].

The seminal book by Ashley [22], is regarded as the first comprehensive reference manual

on knots, containing 3857 numbered knot types used in innumerable applications, such as

fishing [23], sailing, and climbing activities. For example, and as shown in Figure 1.2e, a

mooring line is knotted on a mooring bollard on the dock to attach a boat. During climbing,
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b d

e

a c

gf h i

Figure 1.2: Involuntary knot formation and applied knots. a, Microscopic image of a knitted
tissue. The inset shows a close-up view of the individual stitches of knitted fabric and is
adapted from Poincloux et al. [8]. b, Tangles and knots are considered a nuisance in hair.
Image adapted from Ref. [18]. c, Model of an overhand knot in a polymer strand. Image
adapted from Saitta et al. [10]. d, Knotted vortex of a closed trefoil topology. Image adapted
from Kleckner and Irvine [13]. e, Mooring line attached to a mooring bollard on a dock. Image
adapted from Ref. [19]. f, Figure-eight bend and termination knot during climbing. Image
curtesy of P. Reis. g, Stopper knot used tie filament off during tennis racket stringing. Image
adapted from Ref. [20]. h, Knots used in surgical applications on mono- and multi-filamentary
sutures. Image adapted from Ref. [21]. i, Shoelace knot based on the binding square knot
topology.

the rope is typically tied to the climber’s harness by a double figure-eight knot (see Figure 1.2f).

Further, a stopper knot at the end of the rope on the belayer’s side prevents the rope from

completely sliding through the rappelling device, which could have fatal consequences. Sim-

ilarly, a termination knot is used during tennis racket stringing, as shown in Figure 1.2g. In

surgery, sutures and ligatures are utilized for the closure of wounds [24, 25, 26] (Figure 1.2h).

Shoelaces are tied with binding knots (see Figure 1.2i) and are subject to failure due to cyclic

impact loading and inertial effects [27].

1.2 Frameworks to describe the mechanics and geometry of rods

Before focusing on existing models describing loose or tight knots, we will first outline classic

and more recent concepts derived for elastic rods but, in some limiting conditions, also

potentially applicable to knotted rods. From a mechanical point of view, physical knots

involve frictional interactions between the touching strands, or between a rod and a rigid

object (typically a cylindrical post), as in the case of hitch-knots. Therefore, we focus on studies

that challenge the classic capstan problem to evaluate its applicability for tight, physical knots.
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From a geometric point of view, knots comprise a single or multiple rods that are entangled

in 3D space. Next, we summarize some existing frameworks commonly used to describe the

kinematics of framed curves, also focusing on a discrete approach.

1.2.1 Frictional Contact in the Capstan System

As we will show throughout this thesis, friction is key in functional knots. The capstan problem

is a classic setting that has recently drawn attention in the context of tight filaments in contact.

The word ‘capstan’ originated from the Latin "pulley cord" designating a mechanical device

used on sailing ships to attach, raise, or lower anchors or other heavy equipment by ropes or

chains (see Figure 1.3a). If the frictional contact between a rope and a cylindrical capstan is

sufficiently large, the rope can be in equilibrium for a high loading force, T1, on one extremity,

and a vanishing loading force on the other end. A prediction, describing this tension drop was

first derived by Euler [28] and Eytelwein [29],

T1

T0
= eµ∆α, (1.1)

where ∆α is the wrapping angle of the filament or rope around the cylinder, and µ is the

dynamic friction coefficient. According to Eq. (1.1), the tension in the filament increases

exponentially along the contact region. During the derivation of this equation, it is assumed

that the filament is (1) perfectly thin and (2) perfectly flexible. Despite these non-physical

requirements of the idealized capstan equation, Eq. (1.1) accurately predicts the tension

difference for filaments with low bending rigidity, such as ropes, and when the diameter of the

filament is much smaller than the cylinder diameter.

In textiles and tight knots, the filaments wind around themselves; the underlying filament

acts as the cylindrical capstan, albeit with the same diameter as the contacting filament,

which violates the assumption (1) mentioned above, required for the derivation of Eq. (1.1).

In pulley systems involving belts, the assumption (2) of negligible bending stiffness is also

compromised. The theoretical study by Stuart [31] analyzed the effect of finite bending

stiffness of the filament on the tension ratio, while keeping the condition on the vanishing

cross section of the filament (1). They reported concentrated forces at the locations of touch-

down and lift-off of the filament (see Figure 1.3b). Further, they defined critical limits for

the minimum wrapping angle, ∆α, and minimum applied loads on the filament extremities,

above which the classic capstan equation is applicable. Later, Jung et al. [34, 32] investigated

the effect of finite thickness (and bending stiffness) of the filaments winding around rigid

cylinders of varying diameters. In addition to the local force balance, the moment balance

was included in the analytical method (see Figure 1.3c). The theoretical prediction suggested
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ca

e2d

e1

1.1

1.1

b

Figure 1.3: The capstan problem. a, Schematics of a sailor using the capstan device on a
boat to lift heavy weights. Image adapted from Ref. [30]. b, Force distribution with localized
point forces at the touch-down and lift-off locations of a stiff but thin filament in contact with
a rigid capstan. Image adapted from Ref. [31]. c, Free-body diagram on a curved filament
with finite thickness and bending rigidity. Image adapted from Ref. [32]. d, Distributed
contact force on the cylinder as a function of the wrapping angle, ∆α. Image adapted from
Ref. [33]. e, Experimental and numerical results with the theoretical prediction of the force
ratio, T1/T0, as a function of the loading force, T0. The wrapping angle is ∆α = π, and the
friction coefficient, µ= 0.35. The classic capstan prediction is shown by the horizontal dotted
line, and the predictions by the elastica model are represented by the dashed curves. The
cylinder to filament ratio of diameters is, d = 1, in e1, and d = 5, in e2. Image adapted from
Ref. [33].

.

that the force ratio, T1/T0, decreases for smaller diameters of the rigid capstan, but does not

consider local contact forces, as previously suggested by Stuart [31].

The previous studies by Stuart [31] and Jung et al. [34, 32] report the significant impact on

tension ratio given by Eq. (1.1) if one ideality condition, (1) or (2), is not met. In an effort to

better understand the underlying mechanics of the problem, Grandgeorge et al. [33] have

recently combined precision model experiments, numerical simulations, and theoretical

analyses. Specifically, the authors focused on the contact region (wrapping angle, ∆α) and

the distribution of the contact pressure in a static and a sliding model system. In the static

case, where there is no relative displacement between the filament and the capstan, it was

found that a localized contact region transitions to a double-peaked contact force distribution

(see Figure 1.3d) for increasing symmetric loading forces, T1 = T0. In the sliding case, a local

minimum was observed in the force ratio, T1/T0, as a function of the loading force, T0 (see
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Figure 1.3d), which is not captured by the classic capstan prediction. This behavior is shown

in Figure 1.3e for the cylinder-to-filament ratio of diameters, d = {1, 5}. Note that derived

solutions of the elastica equations (dashed lines in Figure 1.3e) are able to predict the results

for large d but cannot capture the tension ratio when d ≈ 1.

The contacting regions of physical knots can be seen as a modified capstan problem but where

the rigid cylindrical capstan is replaced by an underlying, non-straight, non-rigid filament, and

with d ≈ 1. Consequently, the filament crossings are in general non-orthogonal and involve

tight contacts, with non-negligible bending stiffness. Thus, the idealized capstan equation,

Eq. (1.1), as suggested by Euler [28] and Eytelwein [29], is of limited applicability in the context

of physical knots with tight filaments in contact.

1.2.2 Kinematics of Framed Curves

As reported by O'Reilly [35], the Cosserat brothers were the first to formulate a rod theory

based on director vectors, (d̂1, d̂2, d̂3), describing a three-dimensional curve, that deforms

rigidly. This framework, called Kirchhoff’s rod theory in recognition of the contribution of

Gustav Kirchhoff, is capable of modeling bending and torsion in rods, though typically keeping

the inextensibility constraint. Extensible versions of Kirchhoff’s rod theory have also been

proposed [35]. We refer to the comprehensive book by O'Reilly [35] for the derivation of the

rod model and focus next on providing a brief description of the kinematics of rods, which

will be need later in this thesis.

Assuming negligible cross-sectional and local shear deformations, slender rods can be approx-

imated as curves in 3D space. The orientation of the local orthogonal basis of a rod can be

described by the Cosserat frame (d̂1, d̂2, d̂3) along its physical centerline [36]. This orthogonal

basis is an adapted frame, moving according to the deformation of the rod, including twist

(contrary to the Frenet frame). The unit vector d̂3(s) is defined as the tangent to the physical

centerline, such that d̂3 ≡ r′(s), where r(s) corresponds to the coordinates of the physical

centerline curve parametrized along the arc length s. The [·]′ notation represents derivatives

with respect to s. The unit vectors d̂1 and d̂2 form the basis of the plane normal to the tangent

vector d̂3, and satisfy the kinematic relation:

d̂′
a =Ω× d̂a (a = 1,2,3), (1.2)

where Ω= ∑
a=1,2,3

Ωa d̂a (1.3)

is the Darboux vectorΩ(s) describing the rotation of the Cosserat frame along the arc length.

More precisely, the ath component of the Darboux vector,Ωa , corresponds to the rotation rate
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of the Cosserat frame around the axis d̂a[36, 35].

The total curvature of the centerline is then:

K (s) ≡
√
Ω2

1 +Ω2
2. (1.4)

The framework of the Cosserat frame is not limited to curly rods or tangles but can be applied

on any knot topology in its loose and tight configurations. For this reason, the concept of using

framed curves to describe properties like curvature or twist will be essential in this thesis. In

Chapter 2, we will fabricate rods including geometric features, that allow to experimentally

extract the Cosserat frame (used in Ref. [37]). In Chapter 2, we will also implement specific

node sets in fully 3D rods in order to extract the director vectors in FEM (used in Chapter 5

and Ref. [37]).

1.2.3 Discrete Differential Geometry of curves in 3D space

Experimental and numerical measurements of the geometric configurations of rod systems are

intrinsically discrete, not continuous. Typically used in the context of computer graphics [38],

Discrete Differential Geometry (DDG) is valuable tool to describe rod-like structures as discrete

curves in 3D space. Here, we briefly describe the advantages and challenges of using DDG, as

highlighted in Ref. [38].

On the one hand, geometric properties of discrete objects can easily be measured, and their

discrete nature matches computational data structures. On the other hand, mathematical

theorems are typically well-defined for continuous objects. Transferring the geometric infor-

mation from the discrete to the continuous domain is less trivial than it might appear. To

illustrate, the curvature computation is a geometric key property in knots and is well-defined

in the case of a smooth, continuous curve. In a planar setting, it was shown that convergence

of geometric properties of discrete curves with the analog smooth curves could be achieved

by refining the discrete curves using inscribed polygonal geometry [38]. In Figure 1.4a, the

procedure of mapping the various vertices and edges of an open polygon onto a unit circle by

using a Gaussian map is visualized. Each edge maps to a single point on the unit circle, while

the vertices are described by an arc to smooth the change in direction.

It was recognized that the DDG framework could be applied to rods because the centerline

describes a curve in 3D space. Bergou et al. [39] extended the DDG approach of curves to thin

elastic rods. Using the Kirchhoff equations to describe the elastic energy of rods, a discrete

form of these equations is derived to describe the centerline of a rod parametrized by an arc
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a b

c

Figure 1.4: Underlying principals of Discrete Elastic Rod theory. a, Polygone constituting of
edges and vertices. The edges and vertices can be mapped onto the unit circle (a single point for
edges, an arc for vertices). Image adapted from Grinspun and Secord [38]. b, Representation
of a discrete framed curve consisting of a centerline, described by vertices and edges, and a
material frame per edge. Image adapted from Bergou et al. [39]. c, Simulation of hair using
Discrete Elastic Rod theory. Image adapted from Bergou et al. [40].

length and a material frame (Cosserat frame), as represented in Figure 1.4b.

Bergou et al. [39] introduced the discrete curvature defined as:

κi = 2tan
φi

2
= 2

sinφi /2

cosφi /2
, (1.5)

where φi is the angle between two consecutive edges along a discrete curve. Note that the

curvature at i uses the combined information from two consecutive (i −1) and i edges. To

avoid the use of turning angles φi , Eq. (1.5) can be converted such that it only includes vector

edges ei = r(si+1)− r(si ), where r(si ) are the discrete vertices of the curve. To this end, we

consider that the angle φi /2 is spanned as follows:

Span{φi /2} =
{

(ei /|ei |+ei−1/|ei−1|)
|(ei /|ei |+ei−1/|ei−1|)|

,
ei

|ei |
}

(1.6)

After some algebra steps, the explicit expression from Bergou et al. [39] for the definition of

the discrete curvature is derived, only making use of the vector edges ei :

κi = 2
ei−1 × ei

|ei−1||ei |+ei−1 · ei
. (1.7)

While the curvature computation based on the Darboux vectors needs the information of the
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whole Cosserat frame (used in Chapter 5), Bergou et al. [39] provides a method to compute

the discrete curvatures of knotted rods only relying on the tangent vectors of the centerline

(applied in Chapter 4). The described kinematics of Discrete Elastic Rods (DER) is explained

in detail in the comprehensive book by Jawed et al. [41], and is at the basis of simulations

that closely reproduce physical phenomena of rod-like structures, e.g. hair, as shown in

Figure 1.4c [40].

1.3 A (Very Brief ) Primer on Topology and Knot Theory

Compared to the long history of the practical usage of knots in ropes and threads, the origins of

the mathematical theory of knots in the 1860s are quite recent [42]. Even though the emphasis

of this thesis is on physical knots, the knowledge gathered in the field of topology and its

sub-field of knot theory in the last century is extensive. In this Section, we will comment on the

origins of mathematical knot descriptions before focusing on terminology and basic concepts

in topological knot theory.

1.3.1 The Beginnings of Knot Theory

In the comprehensive "Knot Book" [42], Adams describes the historical origins of the mathe-

matical field of knot theory. In 1867, the theory proposed by Lord Kelvin (William Thomson),

where atoms were regarded knotted vortices, raised significant interest in the study of knots.

Kelvin hypothesized that atoms were knots, which make up a substance, called ‘ether’ (see

Figure 1.5a). Shortly after the presentation of this model for atoms, the field of knot theory was

kicked off by the Scottish physicist Peter Guthrie Tait, who was able to tabulate and classify

knots up to 10 crossings (as detailed in the next paragraph). The corresponding publication

in the year 1885 is known as the ‘Tait conjectures’ [42]. In 1887, the Michelson-Morley ex-

periments demonstrated that Kelvin’s model for atoms was wrong [42]. Nevertheless, the

mathematical community had already caught interest in knot theory and continued their stud-

ies. Over the decades that followed, knot theory became a sub-field of the mathematical field

of topology. Interestingly, a century after the field of knot theory originated from a misguided

theory, it became useful in chemistry and biology. In the 1980s, biochemists discovered that

DNA molecules form knots [43, 44], and that the topology of knotted molecules determines

their properties [45, 46].
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a b

c1 c2

e1 e2 e3

d

31 41 61 62 6351 52

31 unkot 31

41 41 41

41 31

Figure 1.5: Concepts of mathematical knot theory. a, According to a misguided theory, atoms
were described as knotted vortices. b, Three projections of the figure-eight knot. c1, Joining
the figure-eight with the trefoil knot leads to a composed knot. c2, The trefoil knot is a prime
knot and cannot be decomposed further. d, Projections of all the prime knots with less or
equal to six crossings. The knots are described using the Alexander-Briggs notation. Image
adapted from Ref. [47]. e, The three types of Reidemeister moves (type I in e1, type II in e2 and
type III in e3). The images in a, b, c and e are adapted from Ref. [42].

1.3.2 Basic Concepts in Topological Knot Theory

Mathematical knots are typically closed knots (with joined ends), as opposed to applied

physical knots tied in ropes. In two dimensions, knots can be pictured by projections. Each of

the three depicted projections, shown in Figure 1.5b, represents the figure-eight knot, which

has a minimum of four crossings. Any knot can be drawn with an infinite amount of crossings,

but there is a minimum number of crossings for each knot. The simplest knot is the unknotted

circle, called the unknot, or the trivial knot.

Knot theory is largely concerned with classifying knots, and showing if knots are different or

not, i.e. if it is possible to find the same projection just by rearranging the string segments of a

closed knot without undoing its crossings. In this context, a composite knot can be decom-

posed in multiple non-trivial knots, called factor knots. In Figure 1.5c1, the decomposition of

a composite knot is shown, resulting in a figure-eight and a trefoil knot. Eventually, if a knot

cannot be written as the sum of two non-trivial knots, it is called a prime knot. For instance,

in Figure 1.5c2, the closed trefoil knot cannot be decomposed further into non-trivial factor
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knots. Consequently, the trefoil knot is a prime knot. In Figure 1.5d, the first prime knots up to

six crossings are listed. For a positive integer of crossings, n, a finite number of prime knots

exist.

The most traditional notation to describe the knot topology dates back to the year 1926 and is

called the Alexander-Briggs notation [47]. The knots are organized according to their crossing

number, n, with an arbitrary subscript that underlies the condition that torus knots (see below)

are listed first. In Figure 1.5d, we used the Alexander-Briggs notation for the labeling of each of

the knots shown. The Dowker and the Conway notations as well as the Gauss code, are more

sophisticated since they include knot properties. However, in this thesis, the Alexander-Briggs

notation is sufficient to denote the different knot topologies considered.

To check whether two projections are equivalent (corresponding to the same knot), the math-

ematician Kurt Reidemeister provided the so-called Reidemeister moves, which do not change

the knot topology. The first Reidemeister move introduces or takes out a simple twist in the

string, as shown in Figure 1.5e1. If two crossings are added or removed (see Figure 1.5e2), it is

called type II Reidemeister move. The third and last move allows to slide a string completely

from one side of the crossing to the other side, see Figure 1.5e3.

Each knot can be classified into one of the following three knot types: torus knots, satellite

knots, and hyperbolic knots. The torus knots (ex. the trefoil knot) lie on an unknotted (from

the trivial unknot) torus, as depicted in Figure 1.6a. A satellite knot constitutes a first knot

inside an unknotted torus. The latter is then tied itself into a second knot, resulting in the

satellite knot (see Figure 1.6b). Finally, in 1974, Thurston [48] defined the hyperbolic knot type

as a knot that has a complement that can be given a metric of constant negative curvature. In

Figure 1.6c, the hyperbolic figure-eight knot is shown together with the space-filling surface

that spans the figure-eight knot. We refer to Ref. [48] for further explanations since this is out

of the scope of this thesis.

a b c

Figure 1.6: Classification in three knot types. a, Torus knots depicted with the unknotted
torus surface. b, Non-trivial knot (left) and its satellite (right). c, The figure-eight knot (left)
and the same knot spanned by a surface in three-dimensional space. The images in a, b and c
are adapted from Ref. [48].
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1.4 Tightest Tangles and Knots Tied in Geometric Rods

While knot theory is largely concerned with the tabulation and classification of knots, inde-

pendent of their tightness, a smaller sub-field has developed in the mathematical knot theory

community, studying knots tied in idealized ropes [49, 50]. An idealized rope of finite diameter

assumes an inextensible centerline, undeformable cross section, and no bending energy of the

centerline. Also, the self-contact of the rods is modeled as perfectly slippery. In this context

of a purely geometric rope model, complex algorithms have been developed to compute the

tightest knot configurations. Cantarella et al. [51] developed a geometric model based on

the minimization of the rope length and allowing for the modeling and visualization of the

tightening of knots.

Pierański [52] performed computations of ideal knot shapes and developed the SONO (Shrink

On No Overlap) algorithm for knot tightening. This algorithm operates on a piece-wise linear

(polygonal) curve with a hard sphere inscribed at each vertex. If two spheres are found to

overlap, they are shifted apart, and if the average overlap value is small enough, the knot is

shrunk by scaling it (while keeping the radius of the spheres fixed). However, piecewise linear

curves are not continuously differentiable and have zero thickness because they have sharp

corners, so the normal injectivity radius of SONO configurations is zero. The normal injectivity

radius of a curve is the radius of the largest tube such that the surface of the tube is smooth

and the tube does not intersect itself [53].

An important milestone was achieved when Rawdon [54] showed that a non-continuously

differentiable curve could be constructed with a finite thickness from a piece-wise linear curve.

The authors proved that by inscribing arcs in polygonal curves, and as the number of edges

tends to infinity, the polygonal thickness converges to the true thickness of the inscribed curve.

Thus, the use of piece-wise linear discretization in searching for ideal knots is justified and

gives a notion for the thickness of a polygonal curve. This additional construction made SONO

configurations very useful as it is a fast algorithm when initialized with a far-from-ideal shape.

Based on non-zero polygonal thickness, another code for tightening knots, called RidgeRunner,

was developed by Ashton et al. [55]. The authors combine the polygonal thickness with a

Constrained Gradient Descent (CGD). The constrained gradient of the polygonal rope length

is calculated in addition to a penalty term that encourages the polygon to remain close to

equilateral, which is not implemented in the previously-described SONO algorithm.

All these computations of ideal knot shapes have produced configurations that are very

accurate for smooth topological curves, but none are particularly good at resolving derivatives.

In the following, we illustrate the difficulty of evaluating properties involving first and second
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derivatives, such as curvature. Baranska et al. [56] studied torsional features and details

of the curvature profile of tight, closed trefoil knots using the SONO algorithm. Since the

simulated rope consists of discrete spheres, the rope is corrugated, as visualized for a small

number of spheres in Figure 1.7a1. Consequently, the zoom into the curvature profile (see

Figure 1.7a2) reveals numerous sharp deeps. On the one hand, these peaks reduce for a large

number of spheres, while, on the other hand, the sensitivity of corrugation increases when the

knot approaches its tightest configuration. Note that the characteristic double-peaks in the

curvature profile are visible as singularities in the rope surface (see Figure 1.7a3, and described

further by Smutny, Jana [57]. In Chapter 4 of this thesis, we comment on the existence of the

double-peaks in a physical, closed trefoil knot.

a1 a3a2

b1 b2

κ=1

, κ
D

/2

Figure 1.7: Ideal knot shapes based on purely geometric rod models. a1, Visualization of the
SONO algorithm applied on a closed trefoil knot. Hard spheres are inscribed on the vertices of
the centerline, which corrugate the tube. a2, Detailed view on one of the double-peaks in the
curvature profile of the closed trefoil knot, displaying numerous sharp deeps. a3, Close-up
view on the 3D closed trefoil knot, showing a loop and the piece of rope passing through
it. Singularities can be observed at the arc length locations of the double-peaks in a2. a1-
a3, Images are adapted from Baranska et al. [56]. b1, Two linked pieces of ideal rope attached
to parallel planes. b2, The central section of the two clasped ropes showing the double contact.
b1-b2, Images are adapted from Starostin [58].

It has been observed by various authors, for example by Oscar Gonzalez and Smutny [59], that

two diametrically opposed infinite helices can have single or double contact. Therefore, the
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question was raised whether there exist finite length configurations of two curves in double

contact everywhere. One such configuration is the orthogonal clasp, computed, for example,

by [58], and shown in Figure 1.4b1-b2. Comparison with contact maps from ideal knots

and links, such as the collection presented in Ref. [60], suggests that physical knots may be

composed of non-symmetric versions of such interwound configurations.

1.5 Loose Knots Described by Kirchhoff’s Theory for Elastic Rods

In the previous Section, the ideal knot model assumes a perfectly flexible string, which does not

necessarily describe physical knots. The purely geometric rods do not include a constitutive

material model, meaning that they offer no resistance to bending or torsion, nor can they

include cross-sectional or shear deformations. All of these ingredients are, however, crucial in

physical and functional knots, e.g. stopper knots (Chapter 5) and surgical knots (Chapter 6).

Audoly et al. [61] took on the problem of relating the topology of a physical knot to its mechan-

ical behavior, developing a framework for the mechanical response of loose elastic overhand

knots based on the theory of Kirchhoff rods (see Figure 1.8a). The kinematics of a Kirch-

hoff rods were summarized previously, in Section 1.2.2. Kirchhoff’s theory for elastic rods

makes the assumption that the three characteristic lengths of the knot, the radius of the rod,

DRod/2, the braided length l and the characteristic radius of curvature DLoop/2, are all of

different orders of magnitude. In other words, the separation of length scales assumes that

DRod/2 ≪ l ≪ DLoop/2, as shown in Figure 1.8b.

In general, by minimizing the sum of bending and potential energies in the tensioned overhand

knot, as well as accounting for Coulomb friction, Audoly et al. [61] reported that the tensile

force, T , can be expressed as:
T D2

4B
= π2

2ē2 ± 0.492µπ1.5

ē1.5 , (1.8)

where B =πED4/64 is the bending stiffness (with Young’s modulus, E , the undeformed diam-

eter D), ē = e/D = (L0 −L)/D is the normalized end-to-end shortening (with the undeformed

length L0, and the end-to-end distance between the extremities, L), and µ denotes the dy-

namic Coulomb friction coefficient for self-contact. The first term in Eq. (1.8) represents the

elastic bending contribution, and the second term arises due to dynamic friction in the regions

of self-contact. The positive (or negative) sign of the second term corresponds to the tying (or

untying) of the knot when ˙̄e < 0 (or when ˙̄e > 0). Note that Eq. (1.8) was reported in Ref. [62],

where it was rewritten from the original one, presented in Ref. [61].

Interestingly, the model developed by Audoly et al. [61] also accounts for weak friction in the
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braid, such that the effect of friction remains small compared to the other traction and pulling

forces in the knot system. The simple dynamic Coulomb friction law describes friction and

alters the relation between the applied tension and the end-to-end distance. Moreover, for

loose overhand knots, the predicted contact topology was validated by close-up photographs

of the braided region. The same theory was also verified for cinquefoil knots (two throws:

unknotting number, n = 2), a variation of the overhand knot (one throw: unknotting number,

n = 1) in Ref. [61, 63].

Subsequent experiments by Jawed et al. [64] with loose knots of higher unknotting numbers

(number of times the knot must be passed through itself to untie it) highlighted limitations

of the previous theory by Audoly et al. [61]. The longer frictional contact region in the braid

in long elastic overhand knots (n ≤ 2) leads to large traction forces during the tightening

process. Consequently, Jawed et al. [64] derived an analytic model, incorporating a strong

effect of friction, to describe the topology and mechanics of long elastic overhand knots (see

Figure 1.8b), up to unknotting number n = 10. Excellent agreement was found between theory

and experiments for overhand knots in their loose configurations, collapsing the experimental

traction curves on the master curve (dashed line) predicted by the theory [64].

The previously presented frameworks describing simple and long overhand knots were based

on Kirchhoff’s theory for elastic rods, assuming a separation of length scales, as mentioned

earlier. Indeed, Audoly et al. [61] reported that Eq. (1.8) is valid for loose overhand knots, in

the ē ≳ 100 regime. In the limit of ē → 0, Eq. (1.8) predicts the divergence of T , which is a

manifestation of the inextensibility constraint of the underlying Kirchhoff rod theory.

Despite these limitations, Audoly et al. [61] attempted to compare their results of the analytic

model, considering a tighter configuration of the overhand knot (ē = 9.58), with the geometri-

cal prediction of the curvature by Pierański et al. [65] in Figure 1.8a. Although similar levels of

tightness were considered, the simulations based on the elastic model were in contradiction

with the geometric model. Whereas the geometric model in Ref. [65] gives the maximal curva-

ture at the entrance of the knot, the analytical model [61], developed for loose configurations,

yields that the curvature reaches a maximal value in the outer segment of the knot, denoted

by a and c in Figure 1.8a. Recently, Baek et al. [62] showed that the Kirchhoff rod model in

Ref. [61] predicts well the qualitative centerline curvature obtained through experiments and

Finite Element simulations on purely elastic rods tied in an overhand knot with end-to-end

shortening, ē = 9.58 (see Figure 1.8c). Quantitative differences were expected, given the tight

knot configuration.
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e=9.58
Pierański et al., New J. Phys. (2001)

b c

DRod

DLoop/2
Audoly et al., Phys. Rev. Lett. (2007)

a

Figure 1.8: Knots described by the Kirchhoff rod model for elastic rods. a, Comparison of
curvature profiles of tight open trefoil knots between a model based on Kirchhoff rods and
purely geometric rope model according to Ref. [65]. Image is adapted from Audoly et al. [61].
b, Photographs of overhand knots with different unknotting numbers n. Images adapted from
Jawed et al. [64]. c, Centerline curvature profiles for an overhand knot obtained from FEM
simulations, experiments, and the theoretical prediction from Eq. (1.8). Image is adapted from
Baek et al. [62].

1.6 Numerical Simulations on Elastic Knots

The capability of using the kinmeatics of Discrete Elastic Rod (DER) theory, introduced in

Section 1.2.3, on knots has been recognized in the mechanics community. In the context of

rods with contact interactions, the physical ingredient of friction needs to be accounted for.

Typically, the friction is considered as constraints for the equations of motions. Using the

constraint-based method to describe the frictional effects together with DER theory, Tong

et al. [66] successfully simulated snap buckling in overhand knots. The authors reported an

excellent match between the numerics and experiments, even for the dynamic event of snap

buckling (called ‘inversion’). Their framework enabled the extraction and interpretation of the

physical properties of long overhand knots.

Since the implementation of the constraint-based contact handling method slows down
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simulations significantly, Choi et al. [67] developed a fully implicit penalty-based frictional

contact method (IMC), which decreased the computational cost of DER-based simulations by

converging faster. The authors validated the IMC contact model by incorporating it in the DER

algorithm and comparing it to the results of existing contact models, using the long overhand

knot as a test case. Recently, Tong et al. [68] applied the combination of DER theory with the

IMC contact model on flagella bundling. In addition, the authors showed that their model is

capable of predicting the experimental force-displacement behavior of long overhand knots

by Ref. [64].

Since we are dealing with elasto-plastic deformation in Chapter 6, the study by Li et al. [69]

should not miss in this literature review. Based on discrete differential geometry, the authors

developed a framework that is able to simulate elasto-plastic rods by meshing the cross section

of the rod with fiber-like elements. A nonlinear constitutive model is applied to the discrete

elements which are associated with a flow rule. The simple test cases of uniaxial stretching

and a simply supported beam yielded good agreement between the numerical simulations

and the analytical solutions.

Durville [70] developed a finite element approach to simulate the mechanical behavior of

beam assemblies by point-wise beam-to-beam contact elements. Contrary to the assumption

of rigid cross sections in typical beam models, this customized beam model includes additional

degrees of freedom, enabling the description of the kinematics of cross sections. The tying

process of an overhand knot is displayed sequentially in Figure 1.9a1-a8, involving two rigid

bars to prevent a rotation of the loop. Emphasis was put on the contact-friction interactions

at self-contact or between different beams (as shown in Figure 1.9b). To this end, the closest

points between two curves were locally predicted, assuming point-wise contact. An adaptive

adjustment of the penalty coefficient was implemented allowing the treatment not only of

monofilaments but also of several contact elements, e.g. fibrous materials (see Figure 1.9c).

Still, acute angles between the contacting beams and parallel beam assemblies were not

treated, as reported by Litewka [71]. This includes configurations of curves that have double

contact (introduced in Section 1.4) and would not be represented correctly by this model.

Finite element (FE) simulations that include the full 3D-elasticity model have been performed

by Alden et al. [72]. A simple overhand knot was tightened in an FE simulation using a

homogeneous isotropic elastic material. While one rod extremity was fixed (displacement

and rotation), the other one was subjected to an imposed displacement. Even though the

numerical results match the overall experimental force-displacement curve, it is questionable

if it represents well the local geometric and mechanical features in the knot itself since the

elasto-plastically-deforming nylon fishing line can hardly be described by an isotropic elastic
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a1

b

a2

a5 a6

a3 a4

a7 a8

c

Figure 1.9: Finite Element simulations of knots. a1-a8, Tying process of the overhand knot
tied in a beam including kinematics of cross sections. Two rigid bars (grey) avoid a rotation of
the loop. b, Normal contact reactions of the point-wise contact. c, Tight overhand knot tied in
27 filaments with point-wise beam-to-beam contact elements. The images are adapted from
Ref. [70].

constitutive model (see Chapter 6).

Recently, Baek et al. [62], together with the author of this thesis, reported a detailed validation

of a Finite Element framework to model purely elastic knots, e.g. the overhand knots and the

figure-eight knot. Parts of this publication are described in Chapter 3, 3.2.1

1.7 Knot Quality and Stability

Since general descriptions and formulations for the mechanical performance of tight physical

knots are challenging, the studies described next have involved the development of testing

and counting schemes to evaluate the quality and stability of knots. Knots can fail by fracture

of the filament but also through unraveling, sliding, or capsizing (without fracture), as we will
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demonstrate in the Chapters 5 and 6.

Hanna et al. [73] defined the Knot Quality Score (KQS) in the context of measuring the me-

chanical performance of the surgeon’s knot as:

KQS = (Knot breaking or slipping force)× (Integrated force for the knot)

(Thread breaking force)× (Integrated force for the thread)
(1.9)

Using a universal testing machine, the breaking force of a simple thread and that of a thread

containing a knot were related to their displacement. Consequently, a value of KQS ≈ 1

corresponds to a strong knot since the strength of the knotted thread is close to the strength

thread alone (without a knot). In contrast, the knot is weak if KQS ≪ 1. The KQS system

has been used in other studies (Lee et al. [74], Goldenberg and Chatterjee [75]), although it is

based on integrated magnitudes of forces and does not consider internal stress concentration.

In addition, this characterization approach is purely empirical and unique to a particular

thread diameter and material. So, the KQS system is a way of characterizing the mechanical

performance of knots; however, the previously mentioned deficiencies are very restrictive to

formulating generalizations.

Daily-Diamond et al. [27] investigated the accidental untying of shoelace knots through

dynamic events; a common event in our daily life. Through controlled testing on cyclic

impacts, the authors observed that knot loosening results from the repeated shoe impact,

with a subsequent slipping of the laces due to the whipping motion of the swinging leg. A

systematic change of parameters allowed to rationalize the effect of various ingredients in the

untying process. Specifically, side impacts were found to accelerate knot failure compared to

rear-impacted knots. It was also found that an inertial imbalance between the loops and the

free ends during the leg-swinging phase favors the slippage of the rod ends, leading to a rapid

failure. Finally, the authors observed that the granny knot fails quicker and more often than

the square knot. However, the underlying mechanism that leads to the difference in stability,

was not addressed. Moreover, the effect of the shoelace material and their frictional behavior

on the untying mechanism was not addressed.

In one of few prior theoretical analyses of physical knots, Maddocks and Keller [76], beyond

pure geometry, introduced more physical ingredients into their knot model. These authors

analyzed the mechanical equilibrium of ropes in contact, taking into account tension and

friction using the classical capstan equation (Eq. (1.1)), described in Section 1.2.1. The tension

was assumed to jump from zero at the loose end to some non-zero value at a point where the

rope is squeezed by another part of the knot, called the nip region. Each crossing in a knot

results in a jump in tension. The authors showed a critical value of friction above which such a

knot will hold. Moreover, a theory for ropes lying on surfaces was developed and extended to
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interwound ropes. In all cases, the shape was assumed to be given. This model, however, was

developed under the assumption that each point on one rope is in contact with just one point

on the other rope. It was only later that the double-contact feature between two contacting

curves was observed, as discussed in Section 1.4.

Maddocks and Keller [76] predicted that the clove hitch knot should slip when subjected to a

tension at one rod extremity, independent of the cylinder or rod diameters. Sano et al. [37],

together with the author of this thesis, challenged this theoretical prediction by experimentally

and numerically studying the kinematics and the mechanical stability of the common clove

hitch knot. FEM simulations of this knot were validated using Darboux vector components

(introduced in Section 2.4.1) obtained from X-ray micro-computed tomography. The numeri-

cal results gave access to the internal tension profile along the arc length of the rod centerline.

In the knotted rod segments that are in frictional contact with a cylinder, an exponential

decay of the internal tension was observed, according to [34] (see Section 1.2.1). The other

frictional contact interaction in the clove hitch knot is the pinching of the self-contacting rod,

which leads to discontinuous drops in the internal tension profile (see Figure 1.10a1). Still

in the work by Sano et al. [37], an experimental stability analysis was carried out by applying

a traction force, Thigh, on one rod end while the other one was free, Tlow = 0, for varying

rod-to-cylinder diameter ratios. The resulting phase diagram, shown in Figure 1.10a2 has a

phase boundary between a region of stable behavior (no slippage) and failure (knot becomes

undone) that depends on the diameters of the rod and the cylinder. Thus, the theoretical

prediction suggested by Maddocks and Keller [76] could not be confirmed.

In the study by Patil et al. [2], topological counting rules were applied to 2-tangles to predict

their relative mechanical stability. In Figure 1.10b1, the topological diagram of the granny and

the square knot (reef knot) are shown with the fibers oriented by a pulling direction. The twist

direction of the fiber depends on the handedness of the crossing, as shown in Figure 1.10b2.

Thus, the authors assigned a discrete twist charge at each fiber crossing. The self-torque data,

together with other topological parameters, allowed to rationalize the stability of numerous

2-tangles. Remarkably, the numerical simulations and experiments agree with the stability

analysis regarding the untying force. Still, the latter could not be generalized further since the

model is limited to 2-tangles and does not include a constitutive model nor contact geometry

or frictional interactions.

Lastly, Moestopo et al. [77] developed architected materials using interwoven fibers. By using

arrays of unit cells, woven lattices were achieved, which could be subjected to large tensile and

compressive strains (> 50%). The high mechanical performance was made possible by a new

design of the beam junctions. Instead of using classic monolithic junctions between fibers, the
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Theory

Theory

a1 a2

b1 b2

Figure 1.10: Stability analysis on a hitch knot and 2-tangles. a1, Internal tension as a function
of the rod arc length in a clove hitch knot. The theoretical prediction of the tension decay
is based on Ref. [34]. The image is adapted from Ref. [37]. a2, Stability diagram for clove
hitch knots tied on cylinders of varying diameters, d , and as a function of applied traction
forces, Thigh, on one rod end. The theoretical prediction is given by Ref. [76]. The image is
adapted from Ref. [37]. b1, Topological diagram of the granny and the reef knots, with applied
topological counting rules. The image is adapted from Ref. [2]. b2, Schematics of the rule to
determine the handedness of each crossing. The image is adapted from Ref. [2].

authors reported interwoven fibers at the effective junction location. The new design allows

for the reduction of stress concentration in the junctions of woven microfibers.

1.8 Summary and Research Niche

In all the examples of knots used throughout history (excluding decorative knots) and appli-

cations, the characteristic length-scales in physical knots are of the same order. According

to the definition of tightness given in Section 1.5, these knots, therefore, qualify as tight.

The importance of tightness and the three-dimensional nature of tight contacts will be high-

lighted throughout this thesis. In the following paragraphs, we will summarize the previously

presented theories, models, and tools to describe knotted filaments and evaluate their appli-

cability on tight, physical knots.

The field of knot theory is largely concerned with the tabulation of (closed) knots and their
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unique topological properties. In this context, the rod is idealized as a curve or a perfectly

flexible string without self-contacts. Despite its topological importance, knot theory does

not describe tight, physical knot properties. The knot theory sub-branch of geometric rods,

however, deals with the tightest knot configurations, tied in rods with finite thickness. Perfectly

flexible and slippery rods are assumed, thus, they cannot resist to bending or torsion, nor do

they take into account cross-sectional or shear deformation. In Chapter 4, we challenge these

geometric frameworks by comparing characteristic features between ideal knots to knotted

elastic rods.

Next, analytic models based on the Kirchhoff theory of rods incorporate important physical

ingredients to describe the mechanics of real-life knots (in contrast to ideal knots). However,

these models assume a separation of the characteristic length scales and are therefore limited

to loose knot configurations. We conclude that these descriptions are still too academic for

practical relevance, as functioning knots are typically tight.

Further, the discrete elastic rod theory allows for the description of elastic (so physical) and

also tight knots. However, it does not take into account the cross-sectional deformation of

the rod, nor does it provide a detailed contact model, including friction. Still, the discrete

descriptions presented in Ref. [39] provide a useful framework to describe the centerline of

framed curves (e.g. discrete curvature), applicable as well to tight knots.

Moreover, full 3D Finite Element Modeling of knotted rods seems very promising to simulate

the full mechanics of physical and tight knots. While full 3D simulations were computationally

very expensive until recently, optimized numerical solvers and high-performance computing

nowadays reduce the simulation time significantly. Inspired by the tying procedure by Durville

[70], we will use a similar tying procedure but different contact mechanics in Chapter 3.

Finally, the literature addressing the quality and stability of knots does not provide analytic

models predicting knot performance. Instead, they characterize knot behaviors, which are

then rationalized. Since these tools could be applied to both physical and tight knots, these

studies are of great interest to this thesis.

Research niche: To date, successful models that can accurately predict the mechanical re-

sponse of knots based on the theory of elasticity are restricted to the simple overhand knot

and only in loose configurations. The most critical factor precluding progress in this field is

the difficulty in capturing the nonlinear geometry of physical knots tied on filaments with

frictional interactions at self-contacts. Moreover, there is a striking lack of precision experi-

ments to enable systematic exploration of knotted structures, provide physical insight into the
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nontrivial behavior of these systems and yield high-quality data that can be used to motivate

and validate different theoretical and computational models.

Given that the geometry of tightly knotted structures cannot be accessed through 2D imaging,

3D volumetric imaging will be performed. We combine state-of-the-art X-ray micro-computed

tomographic imaging, mechanical testing, and Finite Element simulations to understand

the intricate three-dimensional geometries, large deformations, and frictional interactions of

tight, physical knots.

In the context of characterizing the global and local geometry and mechanics, we will inves-

tigate three physical knot problems: the shapes of physical (closed and open) trefoil knots

(Chapter 4); capsizing due to friction-induced twist in the failure of stopper knots (Chapter 5);

and the interplay between plasticity and friction dictating the strength of surgical knots. We

will tackle the following research questions:

• Could the ideal geometric model act as a scaffold to (fully or partially) describe the

shape of physical knots, including elasticity? (Chapter 4)

• Which key features in simple knots are not captured by the purely geometric rods?

And vice versa, which purely geometric characteristics are potentially smoothed by the

presence of elasticity? (Chapter 4)

• What causes knots to break at their entrance and exit points? Is this structural weakening

purely geometric, as reported by Pierański et al. [65]? (Chapter 4)

• How do common stopper knots resist applied loads? Besides filament fracture, do

common stopper knots demonstrate another failure mechanism? (Chapter 5)

• What is the effect of frictional interactions (self-contacting rod and rod versus stopper

plate) on the capsizing mechanism in stopper knots? (Chapter 5)

• Which mechanism is at the source of capsizing, and how can the rearrangement of rod

segments be impeded (tightness, friction, rod stiffness)? (Chapter 5)

• How does the topology of half-hitches influence the resistance to sliding (called knot

strength) in surgical sliding knots? (Chapter 6)

• How do friction, plasticity, and the number of throws affect the mechanical knot

strength? Can we rationalize the underlying mechanism to guarantee secure surgi-

cal knots? (Chapter 6)

• Can we establish physics-based operational and safety guidelines on the mechanical

strength of surgical sliding knots? (Chapter 6)
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1.9 Outline of the Thesis

This thesis is divided into two parts. The first part is dedicated to experimental and numerical

methodology (Chapters 2 and 3, respectively). Then, in the second part, we focus on three

knot problems: physical trefoil knots (Chapter 4), stopper knots (Chapter 5), and surgical

knots (Chapter 6).

In Chapter 2, we will develop and validate the experimental toolbox involving the fabrication of

composite rods for X-ray tomographic imaging and the required image processing techniques,

including the framework we devised to quantify geometric rod deformation. In Chapter 3, the

computational toolbox is described. It involves Finite Element Modeling of extensible and

inextensible elastic rods and tubes, the tying procedure of various knot topologies, and the

validation with experiments.

In Section 1.4, we described the geometric rod model based on idealized ropes. In Chapter 4,

We use this well-defined tightest geometric configuration to investigate its applicability to

physical knots in the absence of friction. In a compare-and-contrast study on the basic trefoil

knot in an open and closed configuration, we analyze the similarities and differences between

the physical knots and their geometric counterpart.

In Chapter 5, we then turn to more functional knots, including frictional interactions, by

studying the performance of stopper knots. In a model system, we study the resistance of

figure-eight knots against the capsizing mechanism, as well as the differences between our

homogeneous elastomeric rod system and structured systems like ropes. We realize that

purely elastic systems are physical but rarely applied in practice for a reason.

Lastly, in Chapter 6, we investigate the performance of surgical knots tied, as in real-life,

into elasto-plastic monofilaments by combining data gathered from surgeon-tied knots with

precision experiments and numerical simulations based on a plasticity model. The results

enable us to understand the underlying mechanism based on frictional interactions and

plastic filament deformation and to formulate a practice guide on the operation for tying safe

surgical knots.

Finally, in Chapter 7, we summarize the main findings in this thesis and comment on possible

avenues for future research opened by this thesis.
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In general, realistic physical knots are tight, with no separation of length scales; the overall size

of the knot, the diameter of the rod, and its characteristic radii of curvature are all of the same

order. Analytical models based on Kirchhoff’s theory exist for elastic rods [61, 63, 64]. However,

these descriptions are however limited to simple knots in loose configurations, and conse-

quently, too abstract for practical settings. The goal of this Thesis is to study functional and

tight tangles and knot systems that typically involve the following characteristics: highly non-

linear elastic and/or plastic rod deformations (stretching, bending and twist, cross-sectional

deformation), intricate contact geometry, and nontrivial frictional interactions. These systems,

studied in the follow-up chapters, are two filaments in tight orthogonal contact (clasp configu-

ration) [78], the open and closed trefoil knots (Chapter 4), the clove hitch knot [37], stopper

knots (Chapter 5), and surgical knots (Chapter 6). To get insight and a deeper understanding

of the geometry and mechanics of these tangles and knots, we decided to use a combination

of experiments (3D imaging and mechanical testing) and finite element modeling. A lack

of these tools allowed us to set up our research niche by developing and applying them on

knotted systems.

This chapter describes the experimental toolbox that we developed to study simple and

complex physical knots tied in silicone-based elastomeric rods. The reader may want to skip

this chapter in a first read and come back to it as needed in the later chapters. In Section 2.1,

we give an overview of the experimental tools that needed to be developed and what they

will be used for. First, in Section 2.2, we detail the fabrication protocol we developed to

produce composite (coaxial) elastomeric rods. These rods were made compatible with X-

ray micro-computed tomographic (µCT) imaging for the geometrical characterization of

tangles and knots. Secondly, in Section 2.3, we describe the procedure to capture the µCT

images of the clasp configuration and of knotted structures with the subsequent image-
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processing algorithm developed in-house. Then, in Section 2.4, we present the most useful

post-processing strategies that are applied in the follow-up chapters. Finally, in Section 2.5, we

determine material properties and evaluate the frictional contact behavior between powder-

treated VPS surfaces.

2.1 Motivation

To generalize our results across length scales using scaling laws, we decided to conduct model

experiments, at the desktop scale, using homogeneous elastomeric rods. On the one hand, the

length of cylindrical rods scales with its diameter only, due to the slender nature of the rods. On

the other hand, the Neo-Hookean material model of incompressible elastomers only depends

on the Young’s modulus, scaling the traction force on the rod with the modulus of elasticity

and the cross-sectional area. In tangled and knotted systems, we seek to access the following

two sets of information: geometry (centerline coordinates, curvature, contact shape, etc.) and

forces (reaction forces at rod ends, contact pressure profiles). Next, we briefly describe which

toolboxes need to be developed to extract the desired information in experiments.

In Section 1.5, we introduced an existing model developed by Audoly et al. [61], predicting

the mechanical response of loose elastic overhand knots based on the theory of Kirchhoff

rods. The author used digital photography to capture most of the geometry in loose overhand

knots. The 2D imaging was sufficient and allowed the authors to include frictional interactions

in the analytical predictive model. However, this imaging technique could not capture the

third dimension of the depth in tight overhand or more complex knots. Inspired by this

study, the goal was to use non-destructive 3D imaging (µCT) to extract information on out-of-

plane deformation and contact regions. Firstly, we had to determine the method to fabricate

the bulk core rod (Section 2.2.1). Secondly, due to the working principles of µCT scanners

(Section 2.3.1), we needed to turn the elastomeric rods into composite rods including various

features: a thin and uniform coating (Section 2.2.3) and physical insets incorporated inside the

bulk core rod (Section 2.2.2). After imaging the tangled and knotted systems, the reconstructed

volumetric data needed to be treated. To this end, we developed a powerful image post-

processing toolbox (described in Section 2.3.2) that is fully-automatized to extract accurate

centerline coordinates, 3D contact regions, and the subsequent curvature profiles and contact

maps (Section 2.4).

Finally, experimental tests were necessary to determine the parameters of the material model

(Section 2.5.1) and to find the static and kinematic friction coefficients (Section 2.5.2).
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2.2 Fabrication of Composite Rods for µCT Imaging

This section describes the protocol we developed to fabricate the composite elastomeric

rods in a way that made them compatible with µCT volumetric imaging of tangles and knots

(described in Section 2.3). The main goals of this fabrication technique were twofold. First, we

seek to extract the physical centerline coordinates of the rods. Second, we want to quantify

the contact geometry at self-contact or between two touching rods.

To achieve the above goals, our composite rods comprised three different regions: (i) a bulk

core rod embedded within (ii) a physical centerline fiber, and (iii) an outer coating layer. The

physical centerline fiber and the outer coating layer were required to be made of a material

with a sufficiently lower density than the density of the bulk core rod to differentiate two

touching volumes using tomographic imaging (further details can be found in Section 2.3.1).

In the schematics of Figure 2.1), we depict the various steps of the composite rod fabrication

protocol. First, the bulk core rod was cast inside a stainless steel cylindrical tube by injecting

the liquid polymer through the lower inlet of the mold. A weight of mass M = 200g, together

with machined aligners, ensured coaxiality of the nylon filament (see Figure 2.1a). The demold-

ing step of the bulk core rod from the mold is shown in Figure 2.1b, involving the extraction of

the nylon fiber yielding a monolithic polymeric rod with a void along its centerline. A different

liquid polymer is then injected inside the void generating the material centerline (Figure 2.1c).

Lastly, and depicted in Figure 2.1d, the application of a dip-coating technique [79] allowed for

an outer polymeric coating layer to be deposited uniformly on the bulk core rod; the latter is

pulled out vertically from a circular bath containing uncured liquid polymer, at a constant

velocity U .

In the following subsections, we describe the steps necessary to fabricate parts (i), (ii) and

(iii), in more detail. Parts of the text and figures in this section are adapted from the supple-

mentary information in Ref. [78], which resulted from a collaboration with Paul Grandgeorge,

Changyeob Baek, Harmeet Singh, Tomohiko G. Sano, Alastair Flynn, John H. Maddocks and

Pedro M. Reis.

2.2.1 Bulk Core Rod Produced by Injection Molding

The bulk core rod was cast with Vinylpolysiloxane (VPS-16, Zhermack) using a stainless-steel

cylindrical mold (stainless-steel pipes, part number PSTS12A-400, Misumi). This casting tube

had length Lm = 400mm and inner diameter Dm = 8.3mm, which set the outer diameter

of the bulk core rod upon demolding (Figure 2.1a). The drawing in Figure 2.2a-b shows

the dimensions of the cylindrical mold. To guarantee a high precision of the location of
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a

(i) Bulk core
rod (VPS-16)

Thin hollow
cylinder

Acrylic bath

Liquid coating
polymer

U

(ii) centerline
fiber (Solaris)

Stainless steel
cylindrical mold

Coaxial nylon
filament

Steel aligners

Polymer inlet

Mass

Injection of the 
bulk core rod 

b Demolding Injection of the
centerline fiber

Coatingc d

(iii) outer
coating (Solaris)

Figure 2.1: Schematics of the fabrication protocol of the coaxial composite VPS rods used for
µCT imaging. a, The bulk core rod was cast inside a stainless steel cylindrical tube by injecting
the liquid polymer (VPS-16) through the lower inlet of the mold. A weight of mass M = 200g,
together with machined aligners, ensured coaxiality of the nylon filament. b, Demolding of the
bulk core rod from the mold and extraction of the nylon fiber yielded a monolithic polymeric
rod with a void along its centerline. c, Injection of liquid polymer (Solaris) inside the void
generated the material centerline. d, A dip-coating technique [79] was used to uniformly
deposit an outer polymeric coating layer on the bulk core rod; the bulk core rod is pulled out
vertically from a circular bath containing uncured Solaris at a constant velocity U .

the physical fiber and the eccentric inset (described in Section 2.2.2, and as analyzed in

Section 2.2.4), it is essential that the mold is perfectly straight and not intrinsically bent, which

would have been the case had we used simple acrylic tubes.

The stainless steel cylinder was mounted vertically to allow the remaining air bubbles to escape

to the free surface thanks to gravity. The commercially available cylinder was customized by

adding a tapped hole in its wall, acting as the inlet for the liquid polymeric mixture. Further,

on both sides of the tube, a notch dedicated to an O-ring was lathed. The rubber O-rings

allow a tight fit between the cylinder and aligners that close the open ends of the mold. These

aligners, shown in Figure 2.2c-d, were machined to high precision (±0.05mm) as they include

boreholes that guide slender fibers through the cylinder (see Section 2.2.2).

The photo in Figure 2.3 shows the fabrication setup of the core rod, including the vertically

aligned stainless steel cylinders, the aligners, and an in-house fabricated compressed air
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Figure 2.2: Drawing of the cylindrical mold and the aligners. a, Overall view on stainless steel
cylinder, two aligner pieces, and the slender fibers. b, Geometric measures of the cylindrical
mold, including a tap machined hole on one side and a notch for an adapted O-ring lathed on
both ends. c, Top view on the so-called aligners that close the open ends of the cylinder while
allowing slender nylon fibers to pass by. d, Side view on the aligner with geometric measures,
showing the 4mm gap between the end of the cylinder and the aligners wall that facilitates
the demolding procedure.

pump (on the right side in Figure 2.3). By injecting compressed air in the cup filled with liquid

silicone-based polymer, a positive pressure is created in the pump. Consequently, the polymer

is pushed up the tube towards the inlet of the mold. This design avoided the generation of air

bubbles in the elastomer because the liquid polymer did not need to be transferred to another

container (e.g. a syringe) after mixing.

The polymer for the bulk core rod, VPS-16, is prepared using base and catalyst components.

The density of cured VPS-16 was measured to be ρVPS16 = 1160 kg/m3 using a pycnome-

ter (25 mL Gay-Lussac Pycnometer, Milian) and its Young’s modulus was E = 520kPa (see

Section 2.5.1 for details on the mechanical characterization). During the injection molding

process, particular care was taken to avoid air bubbles by defoaming the mixed solution using
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(1)

(2)

(4)

(5)

(2)

(3)

Figure 2.3: The rod fabrication setup consists of vertically aligned stainless steel cylinders
(1), machined stainless steel aligners (2) for fiber (3) guidance, weights (4), and an in-house
fabricated compressed air pump (5). The length of the scale bar is 5cm.

a centrifugal mixer including degassing functionality (ARE-250, Thinky), and subsequently

applying vacuum for 30 seconds to the mixed solution using a vacuum chamber. Including

the same cup in the compressed air pump minimizes the injection of air into the polymer. The

flow of compressed air starts the injection molding process, which should happen between

the following speed limits: the introduction of the liquid polymer mixture should happen at

a low rate to give the potential air bubbles time to move up to the surface and to escape the

vertically placed mold, while not exceeding the working time of the polymer (working time:

5 minutes; setting time: 10 minutes). For a tube length of Lm = 400mm, we chose a (vertical)

speed of 1mm/s, resulting in a total casting time of 40 seconds.

2.2.2 Physical Fiber and Eccentric Inset

A physical fiber needed to be embedded into the bulk of the rod, acting as a thin material

centerline, to enable the extraction of the material centerline coordinates from volumetric

CT-imaging (see Section 2.3). Access to the twist along the arc length of the rod will be useful

to construct closed knots avoiding excess-twist (see Chapter 4) or to compute curvatures using

the Darboux vectors from the Cosserat frame [37]. To this end, we use an eccentric inset fiber,

which is offset of the centerline by half of the rod’s radius: 2mm (see the geometry of the

aligners in Figure 2.2c). Since the fabrication of the eccentric inset fiber is equivalent to the

one of the physical fiber, we focus only on the fabrication method of the centerline fiber in the
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following paragraphs.

First, custom-machined steel aligners, shown in Figure 2.2c-d, were placed at both ends of the

casting tube to align a straight nylon filament (diameter Dn = 0.5mm) concentrically. During

casting, we kept the nylon filament under tension by hanging a weight of mass M = 200g at its

lower extremity (see Figure 2.1a). Liquid-phase VPS-16 was injected into the assembly to cast

the bulk core rod (as described in Section 2.2.1). After curing of the core rod, the nylon thread

was pulled out, leaving a thin hollow cylindrical void (of diameter Dn = 0.5mm) along its

central axis of the rod (Figure 2.1b). The core rod could simply be pulled out of the cylindrical

mold as it is standing out of the latter one thanks to the design of a 4mm gap between the end

of the cylinder and the aligners wall (see Figure 2.2d). The axial stretch of the rod while pulling,

together with the Poisson effect leads to shrinkage in the radial direction and consequently to

delamination between the core rod and the tube.

Next, we filled up the void inside the core rod by injecting still-liquid platinum cure silicone

rubber (Solaris, Smooth-On), (Figure 2.1c). The Solaris polymer cured in approximately 24

hours after injection, with a final Young’s modulus of Esolaris = 320kPa and density ρsolaris =
1001kg/m3 (see Section 2.5.1 for mechanical characterization). It is important to highlight that

the density difference of 13% between the cured Solaris and VPS-16 polymers was sufficiently

large to enable the differentiation and segmentation of the material centerline fiber from the

bulk core rod during µCT imaging (see Section 2.3). This alignment procedure ensured a

satisfactory concentricity of the material centerline and the rod (see case study on material

centerline accuracy in Section 2.2.4).

2.2.3 Outer Coating Using Dip-Coating Technique

We aim to easily fabricate straight elastomeric rods with a thin, uniform, and constant coating

to enable the quantification of the contact regions during the µCT imaging (see Section 2.3.1).

Since larger samples need to be placed in larger µCT sample holders, leading to a reduction of

the effective scanning resolution (see Section 2.3.1), we seek to use a method and develop a

model that allows tuning parameters to easily adapt the coating thickness. A homogeneous

thin film of uniform thickness along the rods was achieved with the dip-coating technique [80],

also called free coating or unobstructed coating, which is based on Landau and Levich [79].

The photograph of our experimental coating setup is shown in Figure 2.4a. The VPS-16

core rod, including the centerline fiber, was pulled vertically out of a bath of liquid Solaris,

at a constant velocity U , yielding a coating of thickness e = 150µm (see Figure 2.1d) and

Figure 2.4b). To avoid using a large liquid bath, the bulk core rod was passed through a
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concentric hole at the bottom of a shallow cylindrical acrylic bath of liquid Solaris (depth

of the bath ≈ 5mm). The hole at the bottom of the bath had the same diameter as the bulk

core rod (8.3mm), thus avoiding leakage. The bath container was cylindrical (inner diameter

40mm) to ensure an axisymmetric flow and, hence, a homogeneous deposition during coating.
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Figure 2.4: Coating thickness profile analysis. a, Experimental apparatus for dip-coating the
VPS-16 rods with the liquid coating polymer Solaris. b, Micrograph of a cross-sectional cut of
the coated rod embedded with the physical centerline fiber (image obtained using a VHX 5000
digital microscope, Keyence). c1-c2, Cutting procedure bisecting each rod piece in several
iterations using a sharp cutting blade.

In an effort to achieve reproducible and predictable coating layers, we systematically investi-

gated the dependence of the withdrawal speed, U , on the coating thickness, e. To this end, we

coated multiple identical bulk core rods of diameter D = 4mm at different withdrawal veloci-

ties, U = {20, 50, 100, 200, 400, 1000}µm/s. After curing, the resulting coating thickness was

measured by analyzing digital microscope images (Keyence VHX 5000) of cross-sectional cuts

(see Figure 2.4b). Achieving planar cuts turned out to be more challenging than anticipated.

Opting for a bisecting procedure by keeping symmetry on the left and the right side of the

cutting blade yielded satisfactory planar cuts: the first cutting step is shown in Figure 2.4c1,

and the subsequent cut is depicted in Figure 2.4c2. The rod was cut in 10mm pieces to analyze

the average coating thickness, e, and the standard deviation of every cross section along the

axial direction, z, of the rod.

Existing models describing the dip-coating technique [81, 82, 83, 79, 84, 85] predict that after

an initial square root distribution of the coating thickness, e, the latter one reaches a plateau

where the coating thickness is constant. The schematics in Figure 2.5a and b show the different

coating zones (wetting zone, constant film thickness zone, dynamic and static meniscus) in

the case of plate and fiber coating, respectively. In Figure 2.5c, we present experimental results

for the thickness profile, e, (as a function of its axial length z) of the outer film of Solaris on a

VPS16 rod (R = 2mm radius) pulled from the polymer bath at a speed U = 100µm/s. After an
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initial nonlinear evolution, the coating thickness, e, reaches a nearly constant value (slight

thickness increase for rod length larger than 300mm due to a viscosity increase, see below).
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Figure 2.5: Empirical fits based on coating thickness descriptions. a-b, Schematics adapted
from Rio and Boulogne [85] depicting characteristic zones during the dip-coating process of
plates (a) and fibers (b). c, Coating thickness of a rod of diameter D = 4mm and a withdrawal
speed of U = 100µm/s. d, Coating thickness measurements for multiple cross sections and on
four rods, coated using different withdrawal speeds, U . The experimental data is overlapped
with models describing the relation between the dimensionless coating thickness, e/lc as a
function of the Capillary number, Ca (see text for the definitions of lc and Ca). The purple
datapoint refers to the selected coating conditions (velocity U = 300µm/s) to achieve a coating
thickness of e = 150µm. The legend in d is the same as for c.

The average values of the coating thickness in the constant film thickness zone, as well as the

corresponding standard deviations, were computed from the angular component of each cross

section. First, the coating thickness was averaged over the cross sections, and second, another

averaging step was executed for four rod samples. In Figure 2.5d, we present the experimental

results (datapoints) for the coating thickness normalized by the capillary length, lc , as a

function of the non-dimensional capillary number, Ca. Next, we introduce the parameters

and their measured quantities, that were required to define the capillary length and number:

the density of the coating polymer (as mentioned in Section 2.2.2) is ρsolaris = 1001kg/m3, the

liquid-air surface tension of Solaris is γ= 23mN/m [86] and g = 9.81m/s2 is the gravitational

acceleration. Rheological measurements were carried out (rheometer Discovery HR-2, TA-
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Instruments) to determine the viscosity of Solaris, η= 2.19Pa·s, the time dependence of which

was found to be negligible during the entire coating process (the viscosity increases by 5.6 %

during the coating process of 25 min). This slow time evolution of η ensured a nearly constant

thickness of the coating layer along the rod. From the experimental results in Figure 2.5d, we

find that the coating thickness increases monotonically with the extraction velocity, U . Having

measured the necessary quantities allowed to determine the capillary length, lc =
√
γ/ρg , and

the non-dimensional capillary number, Ca = ηU /γ.

Next, we briefly review existing descriptions of the film thickness obtained from dip-coating

technique and test them against our experimental results. After an initial transient, the coating

thickness, e, reaches a plateau value, which scales with the capillary length, lc , and the capillary

number, Ca [82, 79, 84, 85]. According to the classic Landau-Levich theory [79], the predicted

thickness of the film coating is,
e

lc
=∆Ca2/3, (2.1)

with the prefactor∆Plates = 0.944 for plates, and∆Fibers = 1.34 for fibers [85]. The relationship in

Eq. (2.1) has been found to accurately predict the constant coating thickness for the withdrawal

of plates and fibers from a viscous bath with pure Newtonian liquids [85].

In Figure 2.5c and d, we observe a significant mismatch between this model (plates and fibers)

and our experimental data. Since our rods have diameter Dm = 4−8mm, the theoretical pre-

diction reaches its limitations, as pointed out by Rio and Boulogne [85]. Firstly, the Goucher

number, Go = (Dm/2)/lc , physically quantifies the relative importance between the two cur-

vatures, vertical and azimuthal, set by the capillary length and the fiber radius, respectively.

The plate limit (zero azimuthal curvature) gives Go →∞, whereas Go ≪ 1 corresponds to the

fiber limit. In the conditions of our experiments, Go ≈ 2.7, so the coating experiment is close

to the crossover between the plate and the fiber regimes [85]. Secondly, the Landau-Levich

theory neglects gravity and, therefore, is only valid for Ca < 10−3 (the visco-capillary regime

or Landau-Levich regime). In our case, gravity cannot be neglected since our velocity range,

U ∈ [100;1000]µm/s, corresponds to capillary numbers Ca ∈ [0.01;0.95]. Also, more sophis-

ticated models like the gravity-corrected theory (GCT) by White and Tallmadge [82], that is

applicable for higher capillary numbers in the Derjaguin regime (hydrodynamics limit in

presence of gravity, as opposed to the visco-capillary regime), still predict a coating thickness

that is larger than the experimentally measured one, especially in the first coating segment

(z < 300mm, see the green curve in Figure 2.5c).

Nevertheless, we observed that the scaling law from Eq. (2.1) based on the Landau-Levich

model was still appropriate to describe the experimental coating thickness profiles, albeit

with a prefactor, ∆Rod = 0.651±0.004, that we had to determine through the fitting of the
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experimental results. In Figure 2.5c and d, we juxtapose Eq. (2.1) with ∆Rod (black dashed line)

onto the experimental data, finding excellent agreement.

Further, we also applied a semi-empirical scaling based on Aussillous et al. [84] which in-

cludes a saturating mechanism that is important for large capillary numbers and results in a

convergence of the coating thickness.

e

lc
= αCa2/3

1+αβCa2/3
(2.2)

Eq. (2.2) involves a 2-parametric fitting (with α= 0.749±0.009 and β= 2.428±0.009), and is

represented by the blue curve in Figure 2.5c and d.

We conclude that we are most interested in the range of coating thicknesses of 40−200µm,

corresponding to capillary numbers Ca ≈ 10−2. Thus, it is appropriate to use the simpler,

adapted Landau-Levich model rather than considering the saturating mechanism in Eq. (2.2)

for larger capillary numbers. The coating thickness of e = 150µm is selected for bulk core rods

of diameter Dm = 8.3mm such that the coating layer was sufficiently thick to be captured in

the µCT images (see Section 2.3), while sufficiently small not to affect the overall mechanical

behavior of the VPS rods. The small cross-sectional areas of both the Solaris centerline

fiber and the outer coating, with respect to the VPS-16 bulk core, allowed us to assume

a homogeneous mechanical behavior of the composite rod (see Section 2.2.5). This semi-

empirical scaling allowed us to achieve the desired coating thickness of e = 150µm by imposing

a withdrawal velocity U = 300µm/s (purple point in Figure 2.5d).

2.2.4 Quality Control of the Rod Fabrication

Determining the accuracy of the centerline location will be crucial to get reliable results;

the centerline coordinates themselves, curvature, and contact maps (see Section 2.3.2 and

Section 2.4) depend on the exact location. In addition, these quantities will be used to validate

numerical simulations in ABAQUS CAE. In Chapter 3, we will describe the procedure of

modeling knotted rods using the finite element method (FEM) in more detail. The FEM

involves 3D solid elements defined on the initially straight rod and giving access to its full

3D deformation. In the same manner, the nodes constituting the material centerline are

defined in the reference configuration of the straight, undeformed rod, and their location can

be extracted easily in the deformed (e.g. tangled or knotted) configurations (see Chapter 3).

To do comparisons with confidence between results from FEM and experimental data, the

concentricity of the physical fiber incorporated in the core rod is analyzed in the subsequent
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paragraphs. We chose to fabricate the rods with a central void, which allowed us to improve

the contrast during microscopic imaging. More specifically, we used the configuration prior to

injecting Solaris that forms the physical fiber, as described in Section 2.2.2. Four rods were

cast using a setup including precision-manufactured stainless steel parts as introduced in

Section 2.2 (rod diameter Dm = 8.3mm, central void diameter Dn = 0.5mm), and one rod was

fabricated with the previous setup constituting of an acrylic cylindrical mold and 3D-printed

aligners (Dm = 8.0mm, Dn = 0.5mm). Second, using a VHX 5000 digital microscope (Keyence)

after cutting the rods into pieces following the bisecting procedure described in Section 2.2.3,

we measured the distance, ∆, between the centroid of the circle fitting the rod edge and the

one fitting the edge of the void. A characteristic rod cross section can be seen in Figure 2.6a1

and a close-up view on the measurement of ∆ is shown in Figure 2.6a2.
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Figure 2.6: Concentricity of the central void in the core rod. a1-a2, High-resolution micro-
scopic image of the cross section with three measurements: outer rod edge and inner void
edge with corresponding centroids, as well as the relative distance, ∆, between the centroids.
b, Relative distance, ∆, between the centroids as a function of normalize rod length, l/Dm.
The shaded region depicts the average error with the standard deviation at all rod locations, z,
of all rod samples combined that were cast in stainless steel cylindrical molds using machined
stainless steel aligners. The red data points show the relative error, ∆/Dm, of a rod sample cast
in an acrylic cylindrical mold using 3D-printed aligners. c, Schematics of the rod casting setup
using an acrylic cylindrical mold. The intrinsically-curved tube leads to the offset, ∆, between
the physical fiber and the concentric material centerline.

In Figure 2.6b, the concentricity of the central void in the core rod, ∆/Dm, is plotted as

a function of the axial rod length, z. We observe that the use of precision-manufactured

stainless steel parts allows for achieving a very low average relative error of ∆/Dm ≈ 1.3 ± 0.4%

for the concentricity of the experimental material centerline of the rod. In contrast, the red

data points are based on in-house fabricated casting parts and show that the use of 3D printed

aligners and acrylic cylindrical molds do not yield the precision of the stainless steel parts.
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2.2 Fabrication of Composite Rods for µCT Imaging

Especially, the central region of the rod (0.5 < z/Dm < 3.5) shows a pronounced offset distance,

∆, despite small deviations at both rod ends. We identified that the acrylic cylinders are slightly

intrinsically curved. As a consequence, and as shown schematically in Figure 2.6c, the central

rod region is facing low concentricity of the nylon fiber location relative to the centerline of

the curved cylindrical mold. In contrast, the precision-manufactured stainless steel parts with

quasi-straight cylindrical molds (as shown in Figure 2.1) allow preventing this effect.

The material centerline is used in all the studies presented in this thesis involving model

systems based on purely elastic rods that are fabricated according to the protocols described

in Section 2.2. In Chapter 6, however, we will make use of purchased surgical suturing monofil-

aments and have to sidestep to a geometric centerline. There is no unique definition of a

geometric centerline of a deformed (bent, twisted, sheared, cross-sectional deformation)

rod, i.e. both the following definitions are plausible: taking the centroids of planes that are

oriented in a way that the cross-sectional area at each iteration is minimized or in a way

that circularity of the sections is maximized. Therefore, in Chapter 3, Section 3.3, we will

do a compare-and-contrast investigation between a geometric centerline definition and the

material centerline.

2.2.5 Mechanical Properties of the Rod

Adding a physical fiber, an eccentric inset, and an outer coating layer of a different material

to the rod could alter the material behavior of the core rod compared to a monolithic rod

made of a single material. In this subsection, we compute the relative stiffness change, δβ,

(with β= {axial, bending, torsional}) and discuss if a homogeneous mechanical behavior of

the composite rod can be assumed.

In Figure 2.7a, we depict the cross-sectional cut as if the rod only consisted of a monolithic

core rod (without coating nor insets) with stiffness K β

Mono, and in Figure 2.7b, of the actual

composite rod with stiffness K β

Comp, including insets and a thin coating layer. The quantitative

geometric and material parameters as mentioned earlier in Section 2.2 are the core rod

diameter, Dm = 8.3mm, the outer rod diameter Dout = 8.5mm, the inset (physical fiber and

eccentric inset) diameters, Dn = 0.5mm, the offset between the physical fiber and the eccentric

inset, d = 2mm, the Young’s modulus of the core rod material, EVPS = 0.52MPa, and of the

coating and inset material, ESolaris = 0.32MPa. Similarly, Iα and Jα denote the second moment

of area and the polar moment of inertia, respectively, with α= {Mono, coating}. Further, we

define the orthonormal coordinate system, (e1, e2), that will be used below.

Next, we compute the resistance to (i) axial, (ii) bending and (iii) torsional deformation of both
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Figure 2.7: Schematics of monolithic versus composite rod cross sections. a, Cross-sectional

cut of monolithic rod out of VPS material with stiffness, K β

Mono, cross-sectional area, AMono,

and diameter, Dout. b, View of the cross section of the composite rod with stiffness K β

Comp,
including the VPS core rod of diameter, Dm, the physical fiber and the eccentric insets out of
Solaris polymer of diameters, Dn, and cross-sectional areas, An, and a thin Solaris coating layer
of area, Acoating, and thickness: 1/2(Dout −Dm). For both schematics, we use the orthonormal
coordinate system, (e1, e2).

the monolithic and the composite rod (as shown in Figure 2.7a and b, respectively). Then,

we determine the relative stiffness change, δβ, between the actual composite rod and the

monolithic counterpart.

(i) Axial stiffness:

K axial
Mono = EVPS AMono (2.3)

K axial
Comp = EVPS(AMono − Acoating −2An)+ESolaris(Acoating +2An) (2.4)

Combining Eq. (2.3) and Eq. (2.4) yields:

K axial
Comp = K axial

Mono −EVPS(Acoating +2An)+ESolaris(Acoating +2An) (2.5)
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2.2 Fabrication of Composite Rods for µCT Imaging

Then, the relative axial stiffness change can be expressed as:

δaxial =
∣∣∣∣∣K axial

Comp −K axial
Mono

K axial
Mono

∣∣∣∣∣ (2.6)

= Acoating +2An

AMono

∣∣∣∣1− ESolaris

EVPS

∣∣∣∣ (2.7)

= (D2
out −D2

m)+2D2
n

D2
out

∣∣∣∣1− ESolaris

EVPS

∣∣∣∣= 3.0% (2.8)

(ii) Bending rigidity or bending stiffness: We can skip a couple of steps by taking Eq. (2.7),

in which we replace the cross-sectional area with the second moment of area. Using the

theorem of parallel axis, I∗n = In + And 2, gives the relative bending rigidity change w.r.t.

the e1-axis:

δbending 1 =
∣∣∣∣∣∣

K bending
Comp −K bending

Mono

K bending
Mono

∣∣∣∣∣∣= Icoating + I∗n + In

IMono

∣∣∣∣1− ESolaris

EVPS

∣∣∣∣= 5.4% (2.9)

and the relative bending rigidity change w.r.t. the e2-axis:

δbending 2 =
∣∣∣∣∣∣

K bending
Comp −K bending

Mono

K bending
Mono

∣∣∣∣∣∣= Icoating +2In

IMono
|1− ESolaris

EVPS
| = 5.3% (2.10)

(iii) Torsional rigidity: Again, we make use of Eq. (2.7) and replace the cross-sectional area

by the polar second moment of area. Uisng the perpendicular axis theorem, J∗n = I∗n + In,

yields the relative torsional rigidity change:

δtorsional =
∣∣∣∣∣K torsional

Comp −K torsional
Mono

K torsional
Mono

∣∣∣∣∣= Jcoating + J∗n + Jn

JMono
|1− GSolaris

GVPS
| = 5.3% (2.11)

We conclude that the relative stiffness changes, δβ, between the composite rod and the

monolithic counterpart are around ≈ 5% for axial, bending, and torsional deformations. Given

the limit of sufficiently large features (coating layer and insets) in the composite rod for

volumetric imaging purposes (see Section 2.3), the predicted stiffness change is regarded as

adequate. We take the 5%-stiffness change as an upper threshold below which we consider

the rod as homogeneous.
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2.3 X-Ray Tomographic Imaging and Image Analysis

To extract geometric information from physical samples (tangles and knots), we used X-

ray micro-computed tomography (µCT). Applying this non-destructive volumetric imaging

technique on knotted rod samples, and harvesting useful information by post-processing the

reconstructed data, was to the best of our knowledge not reported in the literature before.

In this section, we give a detailed description of the imaging technique followed by post-

processing steps of the volumetric reconstructed data. In Section 2.3.1, we describe the

procedure to capture the µCT images of tangles and knots. The subsequent image-processing

algorithm that we developed to track the coordinates of the centerlines of the touching rods,

as well as their contacting region is presented in Section 2.3.2. Making use of the image-

processing algorithm, in Section 2.4, we describe the geometric quantities that we are able

to extract and compute from the experimental data. The development of these toolboxes

was a substantial part of the present thesis and was published in Grandgeorge et al. [78].

Thus, portions of the text and figures in this section are adapted from the supplementary

information in the latter publications.

2.3.1 X-Ray µCT Principles and Scanning Settings

To study the geometrical properties of knots, we make use of µCT, which is a non-destructive

imaging technique based on volumetric differential X-ray absorption. An X-ray generator

irradiates the sample of interest, which partially absorbs the incoming X-ray beam [87]. The X-

ray fraction passing through the sample is projected onto a detector, producing a 2D snapshot.

Then, a collection of 2D images is obtained from multiple viewpoints (we performed scans

with 1,000 projections), from which the 3D volumetric (tomographic) image of the sample

is reconstructed. The intensity I of an X-ray beam as it passes through a bulk material is

expected to decrease exponentially with the following attenuation behavior [88]:

I = I0e−Ax = I0e−µρx , (2.12)

where I0 is the initial X-ray beam intensity, A is the material-specific absorption coefficient,

and x is the depth of penetration. The mass absorption coefficient µ and the absorption

coefficient A are related by the material density ρ as µ = A/ρ. µCTs typically have a high

spatial resolution, with voxel sizes down to 1µm or smaller. The voxel size is the size of a 3D

pixel in the rendered image.

We used the tomograph with an automatic sample changer, µCT 100 (Scanco Medical, Brü-
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tisellen, Switzerland), on tangled and knotted rod configurations, aspiring to differentiate

between regions inside and outside of the knot sample thanks to contrast differences in the

images. Further, we followed the ambitious goal to be able to segment the features introduced

in the composite rod (as described in Section 2.2) to give us even further insights into the ex-

perimental samples. Determining the optimal µCT scanning settings was crucial to obtaining

high-quality volumetric images of our scans. For all the configurations involving VPS material,

we consistently performed the µCT scans at an X-ray source energy of 70 kV and intensity

200µA. Each projection was produced with an acquisition time of 300ms. Furthermore, we

made use of the built-in 0.5 mm-thick aluminum filter to correct beam hardening effects [87].

The total scanning time of each configuration highly depends on the desired resolution and

scanning height and typically ranged from 1 hour to 4 hours. The spatial resolution of knotted

and tangled configurations typically ranged from 25 to 35µm (size of the voxels).

After the scanning process, the data was reconstructed (GPU accelerated) using the built-in

commercial software package. Subsequently, the raw tomographic images were further post-

processed following the scheme presented in Section 2.3.2. To illustrate the different steps of

volumetric scanning, we make use of two examples, a knot, and a tangle. A simple figure-eight

knot tied in a homogeneous elastomeric rod (see image in Figure 2.8a), and two elastomeric

rods in orthogonal contact (also called: the elastic clasp, see optical photograph in Figure 2.9a).

These two configurations allow demonstrating that the methodology works for both cases,

one single rod with self-contact, and two different rods in contact.

Figure 2.8: VolumetricµCT imaging of the figure-eight knot. a, Optical image of a figure-eight
knot tied in a homogeneous elastomeric rod; b, 3D reconstructed µCT data; c, Cross-sectional
cut image of the stack of images generated by the µCT; the contact regions are not visible; d,
Cross-sectional cut image by the µCT with information on contact interface between different
parts of the rod (dark grey region).

The µCT generates a stack of images, specifically, cross-sectional cuts (see raw µCT image
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in Figure 2.8c and Figure 2.9c), that can be reconstructed into a 3D image of the knot (see

Figure 2.8b and Figure 2.9b). In the cross-sectional cut in Figure 2.8c and Figure 2.9c, it is

observed that the different parts of the rod cannot be told apart. In other words, scanning

the perfectly homogeneous knot leads to a loss of contact information because there is no

differential absorption across the contact interface of a homogeneous material.

Distinguishing the two touching rods and their contact regions will be central to the subse-

quent image analysis presented in Section 2.3.2. Empirically, we found that a density difference

of at least 10−15% was sufficient to differentiate the two touching volumes. That is why we

use the composite rods, introduced in Section 2.2, to visualize the contact regions and the

material centerlines. Also, a minimum size of 3−5pixels of one material volume is required

to be accurately captured in the subsequent image analysis. Combined with the finite res-

olution of the volumetric images (typically ∼ 30µm/voxel), the above requirements set the

limit thickness of both the outer coating and the physical centerline fiber. These constraints

justify our choices of e = 150µm for the coating thickness and Dn = 500µm for the diameter

of the centerline fiber. With these parameters, as demonstrated in the cross-sectional cut of

the knot in Figure 2.8d and of the clasp shown in Figure 2.9d, we were able to achieve a clear

visualization of both the contact region and the material centerline.

44



2.3 X-Ray Tomographic Imaging and Image Analysis

Rod A

Rod B 

Rod A

Rod B 

Concentric
inset

Bulk core rod+physical centerline and coatingBulk core rod onlyc d

Micro-CT reconstruction
Rod A

Rod B

b ex
ey

ez

exey

ez

exey

ez

C
ut

tin
g 

pl
an

e 
ψ

C
ut

tin
g 

pl
an

e 
ψ

ex
ey

ez

a

Figure 2.9: Volumetric µCT imaging of the static elastic clasp. a, Optical photograph of an
elastic clasp. b, X-ray tomographic reconstruction of the configuration in a. c-d, Images of a
cut (along the plane ψ defined in b) of a 3D volumetric image for a c monolithic elastomeric
VPS-16 rod (the contact regions are not visible) and d for a VPS-16 bulk core rod coated with
Solaris polymer and including the material centerline (also made out of Solaris). In (d), the
contact interface at the crossing of the two rods (dark gray region) is clearly visible, whereas not
so in c. The rest diameter of the rods composing the elastic clasps in a, b and c is D = 8.3 mm
and in d, it is D = 8.5 mm (the extra thickness is due to the presence of the outer coating).

2.3.2 Centerline Coordinates and the Contact Regions From µCT Data

Once the tomographic data of the sample was acquired using the µCT and reconstructed

into 3D volumetric images (Section 2.3.1), it was necessary to process them further to digitize

the material centerline coordinates and locate the contact region. We did not use existing

commercial segmentation software to fully control all the parameters and to avoid switching

between multiple software during image-processing. For example, the extraction of the

Darboux vectors of the Cosserat frame is not defined in commercial segmentation software.

In this section, we describe the image post-processing algorithm we developed in-house to

extract relevant geometric quantities. Specifically, this algorithm will enable us to relate the

location of the contact regions to the corresponding arc length coordinates of the centerlines

of the respective rods.

The reconstructed 3D images obtained from theµCT data comprise a stack of grayscale images.

We convert the original DICOM file into a compact TIFF format that is readable by Matlab

(Matlab 2019b, MathWorks), in which the main post-processing will be done. First, the DICOM

images were treated using the open-source image analysis platform ImageJ 1.52b (National
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Institutes of Health [89]) for contrast enhancement; voxels corresponding to the surrounding

air down were shifted down to black (0) and the brightest regions to white (255). The 16-bit data

was then downscaled to 8-bit to reduce the file sizes and further alleviate the computational

load of the subsequent image post-processing routine (detailed below). Secondly, Matlab’s

Imaging Processing Toolbox was used to convert the 8-bit stack of images into a dense 3D

matrix, whose voxels had values ranging from 0 to 1, representing the local material density.

The voxel values were ≈ 0.9 and ≈ 0.8 for the VPS and Solaris regions, respectively. As a

reminder, VPS-16 was used for the bulk core rod and Solaris for the centerline fiber and the

outer coating layer.

Next, to extract the centerline coordinates of the rod, we need to apply one of the following

two approaches: if we are dealing with purely elastic rods that are fabricated according to

the protocols described in Section 2.2, we make use of the incorporated material centerline.

Since this approach is based on the material centerline, we call it matCL. However, we have to

sidestep to a geometric centerline in the case of purchased surgical suturing monofilaments

due to the absence of a physical centerline inset. The geometric centerline is extracted by

determining the centroid of a plane that is oriented in such a way that the cross-sectional

area at each iteration is minimized and referred to as minCS. In Section 3.3, we evaluate this

technique by doing a compare-and-contrast investigation between this geometric centerline

definition and the material centerline.

The subsequent post-processing algorithm aims to digitize the centerlines and the contact

surface between two rods. The code is based on the presence of a material centerline (matCL)

and involves the following two stages. In Stage (I), we extract a set of coordinates that follows

the knotted rod and coarsely describes the centerline coordinates. Taking the coarse set of

centerline locations found in Stage (I), as a scaffold, and iterating between them, the centerline

is refined, and the contact surfaces are digitized in Stage (II). Next, we present Stage (I) and

Stage (II) in more detail.

Stage (I) – Coarse discretization of the rod centerline: The goal of this first step is to build a

coarse (approximate) discrete centerline, p = {pk }, where k = 1, 2, · · · represents the index of a

point along the discrete centerline. Each point pk is obtained from cross-sectional cuts of the

3D volumetric image. To better illustrate the methodology, we make use of the elastic clasp

configuration (see Figure 2.10). We iterate through the centerline by following these steps:

(I).1 Initial ansatzes for both the starting point of the centerline (pguess
1 ) and the tangent

of the centerline at that point (t̂guess
1 ) are input by the user. A square cross-sectional

view of size 1.5D ×1.5D (D is the rest diameter of the rod), normal to t̂guess
1 at pguess

1 is
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investigated (see Figure 2.10a). A Gaussian filter was applied to this frame using Matlab’s

imgaussfilt function, with the standard deviation SIGMA=3. This smoothing allowed

us to decrease the noise of the grayscale material frame without the loss of fine details.

(I).2 From the cross-sectional view at pguess
1 , and along t̂guess

1 , the user is prompted to in-

put the refined position of p1 by locating the darker area (see inset of Figure 2.10a)

corresponding to the physical material centerline.

(I).3 The second point of the material centerline (p2) is now to be determined. The cross-

sectional view at the projected second point, pproj
2 = p1 +ξ t̂guess

1 , with a normal t̂guess
1 , is

investigated (see Figure 2.10b). We typically took the incremental distance between two

successive coarsely distributed centerline locations ξ= D/10.

(I).4 The user is prompted to input the position of p2 by locating the dark area of the cross-

sectional view. From p1 and p2, the first tangent vector is updated by t̂1 = (p2−p1)/∥p2−
p1∥.

(I).5 The iterative loop runs automatically without further user input from this step onward.

For point indices k ≥ 3, the kth point is projected from the (k − 1)th point such that

pproj
k = pk−1+ξ t̂k−1 and t̂k−1 = (pk −pk−1)/∥pk −pk−1∥. Since the 2D cross-sectional cuts

are in close proximity (ξ= 0.1D), the image generated at pproj
k , at each step, is sufficiently

similar to the previous one, such that the dark region of the physical centerline can be

tracked automatically by locating the small darker region of the physical centerline in

the close vicinity of the center of the generated 2D image (as shown in Figure 2.10c). To

track this darker region, we first binarize the image of the cross-sectional cut and then

use the Matlab 2019 function regionprops to locate the centroid of the dark centerline

region.

(I).6 Iteration on k, step (I).5., is repeated until the other rod extremity is reached. In Fig-

ure 2.10 d, we show the iteration process at k = 14.

The final output of Stage I of the algorithm is a discrete set of 3D points p = {pk } and a

corresponding set of unit tangent vectors t̂ = {t̂k }, representing the material centerline of the

rod. We define the unit normal n̂ and binormal vectors b̂ such that

b̂ = (ez × t̂)

∥ez × t̂∥ , (2.13)

and

n̂ = b̂× t̂, (2.14)

where ez is the unit vector along the z-axis. We used the plane spanned by n̂ and b̂ to construct
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Figure 2.10: Procedures for digitizing the coarse centerline (Stage (I)). a. Initialization. The
user inputs guesses for a point in the 3D laboratory frame and the tangent (k = 1). The resulting
2D material frame showing the rod cross section is presented in the inset. b. Identification
of the second point on the centerline (k = 2) by projection to construct the second cross-
sectional view. c. Beyond the third point on the centerline (k ≥ 3), the centerline tracking is
fully automated; the centerline fiber is tracked by isolating the darker (less dense) regions in
the material frame. The tangent vector is constructed at each step using the two previous
centerline points. d. The 14 first coarse centerline coordinates are represented by the black dots
in the image. In all four panels, the unit binormal (b̂) and normal (n̂) vectors are respectively
represented as red and blue arrows.

a material frame using only a central point p and a tangent vector t̂ (allowing us to construct

the unit normal and binormal vectors) at each step.

Stage (II) – Refinement of the centerline coordinates and tracking of the rod surface: During this

second stage of the algorithm, we refine the density of the discrete arc lengths at which we

locate the centerline fiber coordinates. This second stage also allows us to compute a discrete

set of 3D coordinates of the rod’s surface boundaries at each discrete arc length. This Stage (II)

is fully automated; the discrete centerline pk and tangents t̂k determined previously in Stage (I)

are now used to construct intermediary material frames in between the coarse data.

48



2.3 X-Ray Tomographic Imaging and Image Analysis

(II).1 The mth intermediary frame is constructed between the coarse centerline locations pk

and pk+1 determined in Stage (I), such that 1 ≤ m ≤ M where M is the number of inter-

mediate centerline locations in between each coarse centerline location. To construct

this mth material frame, we linearly interpolate pk to provide a guess for the location of

the current centerline such that pguess
k,m = (M −m+1)/M ·pk + (m−1)/M ·pk+1. We make

use of the same linear interpolation scheme to generate the mth intermediary guessed

tangent vector t̂guess
k,m .

(II).2 The refinement of the centerline coordinates is implemented by automatically tracking

the darker region of the centerline fiber in the intermediary frames (using the Mat-

lab 2019 function regionprops). We obtain all the refined centerline coordinates pn ,

where n is the overall index of the finely distributed centerline coordinates such that

n = M (k −1)+m, with 1 ≤ n ≤ N (where N is the total number of finely distributed

locations of the centerline coordinates, typically we have N ≃ 250).

(II).3 At the end of this refinement step, we smoothed to the centerline coordinates by making

use of the Matlab 2019 command smoothdata with a window size of ≃ round(N /7).

These smoothed centerline locations allow us to generate the discrete N −1 final tangent

vectors t̂n of the discrete centerline such that t̂n = (pn+1 −pn)/∥pn+1 −pn∥. Without this

smoothing step, the resulting tangent vectors would be too noisy to allow subsequent

processing steps.

(II).4 In addition to the centerline refinement, we also developed an edge-detection algorithm

to track the surface boundaries of the deformed rod, yielding the full 3D envelope

(discrete) of the rod of interest. Note that locating the rod boundaries is straightforward

in the absence of rod-rod contact. In this case, the material frame is binarized, and

then the boundaries of the rod cross section are located using the Matlab function

regionprops. By contrast, when there is rod-rod contact along some locations of its

arc length (see example Figure 2.10d), the boundary of the rod must be determined in

an alternative way. This edge-detection strategy is detailed next.

In Figure 2.11, we present the procedure for digitizing the rod surface in the case of

contact and no contact. After constructing the intermediary 2D material frame of

interest (shown in Figure 2.11a) that is centered at the centerline location pn), we analyze

the gray values of this material frame along a probing line that emanates radially from

the material centerline, with a specified angle ϕ. This angle was varied discretely within

the range 0 ≤ϕ≤ 360◦, in 100 steps. In Figure 2.11a, we represent two representative

probing lines at angles with the horizontal axis ϕ1 and ϕ2 (red and green solid lines,

respectively). We also present the result of the rod-surface tracking procedure. The red

points correspond to free rod surfaces (contact with surrounding air), and the green
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points correspond to contact location with another rod.

Finally, in Figure 2.11b, the gray-scale values along the probing lines (1) and (2) and

represented as a function of the radial distance to the centerline location (black point in

Figure 2.11a). When the rod is in contact with air (probing line (1)), the gray values along

this line will jump from a finite value (inside the rod) to zero (surrounding air). Therefore,

we determine the location of the rod surface where the gray-scale profile measured

along this probing line drops below a threshold value (determined dynamically using

the average of the gray value of the bulk rod at each frame). On the other hand, when the

rod is in contact with another rod (probing line (2)), the gray values along the probing

line will not drop to zero, but they will be affected by the darker surface coating of the

rod. Consequently, the gray values will exhibit a local minimum along the probing line,

the location of which is attributed to the rod surface.
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Figure 2.11: Procedure for digitizing the rod surface from a cross-sectional cut. a, We repre-
sent two representative probing lines on a cross-sectional cut at angles with the horizontal
axis ϕ1 and ϕ2 (red and green solid lines, respectively). The red points correspond to free rod
surfaces (contact with surrounding air), and the green points correspond to contact location
with another rod. b, The gray-scale profiles along the probing lines (1) and (2) are represented
as a function of the radial distance to the centerline location (black point in a). The rod surface
is determined by a threshold value in case the rod is in contact with air (probing line (1)) or by
the minimum of the grayscale profile when the rod is in contact with another rod (probing
line (2)).

2.3.3 Adaptations to Use the Geometric Centerline Definition minCS

We do not always have the possibility to incorporate a physical fiber that acts as a material

centerline. For instance, when studying the role of plasticity in surgical knots in Chapter 6,

we use purchased suturing monofilaments and have to sidestep to a geometric centerline.

However, there is no unique geometric centerline definition of a rod with varying cross section
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and shear deformation. We hypothesize that the centroids of planes that are oriented such

that the cross-sectional area at each arc length location is minimized are a valid definition

of a geometric centerline. In the following paragraphs, we will abbreviate this procedure as

minCS. In this section, we first describe the process of extracting this geometric centerline

and subsequently do a compare-and-contrast investigation between this geometric centerline

definition and the material centerline.

Following the procedure for the material centerline extraction (described in Section 2.3.2), we

split the post-processing in two steps: Stage I and Stage II. Similar to matCL, the goal of the first

step is to coarsely extract centerline coordinates that act as a scaffold for the next step, Stage

II, in which the centerline is refined. The schematics in Figure 2.12 show a two-dimensional

curved rod and help to describe the various steps of the post-processing technique. Given the

similarities between the techniques matCL and minCS, we will only focus on the differences

and ask the reader to use the process steps (I).1-(I).6 and (II).1-(II).4 described in Section 2.3.2

as the basis.

Stage I – Coarse approximate geometric centerline discretization:

Step (I).1 remains unchanged to the one presented in Section 2.3.2. As shown in Figure 2.12a,

{pI
n , tI

n} denote the initial guess for the centerline point and the tangent vector, respectively.

Here, n = 1, 2, · · · represents the index of a point along the discrete centerline. Omitting Step

(I).2 leads to Step (I).3 which is the same than in matCL, and yields {pproj
n+1, tproj

n+1}. Then, in

step (I).4, we draw the plane (blue line in Figure 2.12a) that passes through pproj
n+1 and that

is orthogonal to tproj
n+1 = tI

n . Instead of locating the darker area of a physical fiber, the edge

locations of the rod’s cross section are used to determine the centroid location of the quasi-

circular shape. This centroid is considered as an approximate centerline location, and denoted

as pI
n+1. The orientation of the tangent vector tI

n+1 is set by connecting the two approximate

centerline points, pI
n and pI

n+1 (see drawing in Figure 2.12a). In Step (I).5, the algorithm

repeats the Steps (I).3 and (I).4 until the end of the rod is reached, yielding the complete coarse

approximate geometric centerline as shown in Figure 2.12b.

Stage II – Fine accurate geometric centerline:

Next, we start again at the initial point from Stage I, and as described in Step (II).1, m inter-

mediary frames between pI
n and pI

n+1 are constructed by linear interpolations. To simplify

the description, we only focus on the frames n, but the same procedure is applied to the

intermediary frames of the refined centerline.

Then, in Step (II).2, we apply the minimization of the cross-sectional area procedure described

next. A plane is constructed that passes through the approximate centerline location from

Stage I, pI
n , and whose orientation depends on two variable angles, αn and βn describing the
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b

a

STAGE I:

STAGE I:

Figure 2.12: Stage I of procedure for digitizing the rod surface from a cross-sectional cut
using the minCS technique. a, Iterative approach to determine a coarse approximate geo-
metric centerline using projections and the centroid method. b, The coarse and approximate
centerline coordinates and tangent vectors constitute the final output of Stage I and will serve
as an input to Stage II.

orientation of the tangent vector tII
n (αn ,βn). By applying the derivative-free minimization

function in Matlab 2019 fminsearch, αn and βn are determined such that the cross-sectional

area – determined from the rod edge-points of the current cross-sectional cut – reaches its
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b

a

STAGE I:

STAGE II:

STAGE II:

Figure 2.13: Stage II of procedure for digitizing the rod surface from a cross-sectional cut
using the minCS technique. a, Determination of the fine and accurate geometric centerline
information by applying the strategy of minimizing the cross-sectional area at each iterative
step. b, Final fine-discretized geometric centerline from the procedure minCS (green dashed
curve) in comparison to the output from Stage I.

minimum. Once the cutting plane is found, the centroid of the polygon forming the edge of the

rod cross section is defined as a point on the geometric centerline, pII
n . The final tangent vector

is determined from the minimization procedure of αn and βn . This procedure is repeated for
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the other approximate centerline locations, and shown in a 2D setting in Figure 2.13b. Steps

(II).3 and (II).4 are identical to the ones described in the context of the material centerline.

Finally, in Figure 2.13b, we show the resulting geometric centerline for a fine-discretized

centerline (green dashed curve).

2.3.4 Parameter-Tuning to Handle Extreme Geometries and Their Limitations

Even rods with severe cross-sectional deformation can be processed by tuning the key pa-

rameters right. By increasing the search area for rod surface detection, also regions closer to

the centerline are included. The condition for this solution to work is that the rod does not

include any defects like voids of air incorporated during rod fabrication.

The algorithm also manages to follow the centerline of rods with moderate-high curvatures

(normalized curvature κD ∼ 1.25). By decreasing the incremental distance between two

successive coarsely distributed centerline locations ξ, the material frame can still capture the

entire rod cross section without exiting the rod. Decreasing the incremental distance leads to

larger angles of the tangent vectors. Since these vectors are not final and only serve as rough

guesses in the refinement step (Stage (II)), a simple smoothing of the data is sufficient to move

on to Stage (II).

However, if the curvatures reach extreme local values (normalized curvature κD > 1.5), usually

combined with large cross-sectional deformation, the post-processing toolbox might fail. To

avoid the material frame from shooting out of the rod, the incremental distance between two

successive coarsely distributed centerline locations ξwould need to be decreased significantly,

leading to unstable variations of the tangent vectors. Thus, the material frame does not capture

the whole rod cross section and cannot capture the correct information.

The previously described procedure allows us to experimentally extract rod features with high

precision. This toolbox is a novelty in the experimental analysis of physical rod-like structures.

With the experimental centerline coordinates and rod surface locations at hand, we will be

able to make use of the Cosserat frame to compute curvature, twist, cross-sectional flattening,

and other useful properties that lead to more understanding of knotted configurations in the

Chapters 4, 5 and 6 (as well as in [62, 78, 37]). This second post-processing step quantifying

the rod deformation will be described next, in Section 2.4.
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2.4 Geometric Quantification of the Rod Deformation

Once the locations of the material centerline and the contact surface have been extracted, we

can quantify the deformation of the rods in tangles and knots. The data gathered during the

previously described post-processing steps (Section 2.3.2) is saved such that every arc length

location is related to a centerline coordinate, a tangent vector, the corresponding rod surface

points (with and without contact), and if an eccentric inset exists, a vector connecting the

latter one to the centerline position.

This section describes the framework we employed to quantify the kinematics and centerline

curvature profiles of tangled and knotted elastomeric rods for CT scans. First, we will focus

on the case of a rod, including an eccentric inset. Second, we describe another framework

to compute discretized curvature of the rod centerline even in the absence of information

on the material frame orientation. Finally, we will explain the procedures applied on CT and

numerical data to extract the cross-sectional area and flattening of the rod and the contact

region parametrized by the arc length coordinate of the rod.

2.4.1 Discrete Curvature Based on Cosserat Framework

Based on the volumetric µCT data, our procedure consists in computing the rotation of the

rod local orthogonal basis, the Cosserat frame (d̂1, d̂2, d̂3) along its physical centerline [36, 35].

Note that, in Section 2.3.2, we used the Frenet-Serret framework (t̂, n̂, b̂) to describe the post-

processing technique, not tracking the local rotation of the material frame. Here, we apply

the Cosserat framework and notation introduced in Chapter 1, Section 1.2.2 to describe the

framed curve. describe the steps we follow to compute the discretized curvature of the rod

centerline. The composite nature of our custom-fabricated elastomeric rods (Section 2.2),

coupled with X-ray tomography (Section 2.3), allows us to extract a discrete set of the locations

of the centerline coordinates, r(si ) and the corresponding discrete set of locations of the

eccentric fiber inset, ξ(si ). The integer i corresponds to the index of the centerline locations

with 1 ≤ i ≤ N (where N is the total number of centerline points). We first construct the

discrete set of tangent vectors d̂3 at s = si such that

d̂3(si ) ≃ r(si +δs)− r(si )

∥r(si +δs)− r(si )∥ , (2.15)

with the increment δs ≡ ∥r(si+1)−r(si )∥. Next, we compute the unit director vector d̂1(s). To

obtain this unit vector, we first construct the plane normal to d̂3(si ) and determine the location

ξ(si ) at which the eccentric fiber crosses this plane. The vector d̂1(s) is then constructed from
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the coordinates ξ(si ) using the relation

d̂1(si ) ≡ ξ(si )− r(si )

∥ξ(si )− r(si )∥ . (2.16)

Having d̂1, the binormal vector d̂2 is readily computed as d̂2 = d̂3 × d̂1, thus completing the

discrete set of the Cosserat basis (d̂1(si ), d̂2(si ), d̂3(si )). We further computeΩi ; by taking the

inner product between Eq. (1.2) and d̂b (b = 1,2,3), we findΩ1 = d̂′
2 ·d̂3 =−d̂′

3 ·d̂2,Ω2 = d̂′
3 ·d̂1 =

−d̂′
1 · d̂3, andΩ3 = d̂′

1 · d̂2 =−d̂′
2 · d̂1, which we discretize using the discrete derivatives

Ω1(si ) ≃ d̂2(si +δs)− d̂2(si )

δs
· d̂3(si ), (2.17)

Ω2(si ) ≃ d̂3(si +δs)− d̂3(si )

δs
· d̂1(si ), (2.18)

Ω3(si ) ≃ d̂1(si +δs)− d̂1(si )

δs
· d̂2(si ). (2.19)

Based on this discretized version of the Darboux vector, we finally compute the total curvature

of the centerline as

K (si ) ≡
√
Ω2

1(si )+Ω2
2(si ). (2.20)

2.4.2 Discrete Curvature Associated With Vertices

In case we do not have access to the eccentric inset, e.g. if we are using the geometric centerline

definition minCS (described in Section 2.3.3) on surgical monofilaments (in Chapter 6), we

cannot make use of the Cosserat frame. As introduced in the context of Discrete Differential

Geometry in Chapter 1, Section 1.2.3, the curvature of a discrete curve can be computed by

Eq. (1.7), which only relies on the tangent vectors of the centerline curve [39].

2.4.3 Smoothing of The Raw Data to Reduce ‘Noise’ in The Curvature Computation

Prior to computing the curvature profiles of the rod centerline by the method presented in

Section 2.4.1 or Section 2.4.2, we applied a Gaussian-weighted moving average filter (command

smoothdata in Matlab 2019) to r (s), with a window size defined by σ= round(Nb/Ngauss). To

test the fidelity of the computed curvature data, given the discrete nature of the raw data, we

performed a parametric test of the filter on the closed trefoil knot (studied in Chapter 4). In this

test, we fixed the total number of discrete centerline points Nb = 984 for the closed trefoil knot,

and systematically varied Ngauss = {15, 25, 50}. Without the filter (i.e., σ= 1, corresponding

Ngauss = 984), the data would be far too noisy for analysis. In Fig. 2.14, we present profiles for

normalized curvatures, κ(s), for decreasing values of Ngauss (the data is increasingly smoothed
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as Ngauss decreases). We selected the window size ofσ= 39 (i.e., Ngauss = 25), which reasonably

suppresses noise while not over-smoothing the curvature features.
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Figure 2.14: Test for the smoothing of the curvature computed from the centerline data
for the experimental closed trefoil knot. A Gaussian-weighted moving average filter with
changing size of the smoothing window allowed to find the trade-off value between noisy and
over-smoothed curves. The selected value for the window size used for the data presented in
the main text is Ngauss = 25 (i.e., σ= 39).

2.4.4 Cross-Sectional Area and Flattening

The protocol described above allows us to extract the shape of the rod cross section at each

constructed material frame, from which we quantify the cross-sectional area and flattening of

the rod along its physical centerline. The extraction of the cross-sectional area is straightfor-

ward using the regionprops Matlab function. We define the flattening using the geometric

quantity 1−b/a, where a and b are the major and minor axes of the rod cross section, respec-

tively. The length of the minor axis, b, is determined in the 2D material frame by the shortest

distance between the centerline coordinate to the closest rod-surface location. Similarly, the

major axis, a, is the radial length between the centerline location to the furthest rod-edge

coordinate. The quantification of the cross-sectional area and the flattening of the rod is

applied in various studies (see Chapter 4 and Chapter 6) including Grandgeorge et al. [78] and

Johanns et al. [90].

2.4.5 Shape of the Contact Region Between the Two Rods

Having access to the rod-surface coordinates and their state of contact or no contact, we can

perform comparisons of the contact region between different tangle or knot configurations.

To this end, we project the experimental contact surface onto a plane by assigning each

discrete contact point detected in step (II).4 of Section 2.3.2 to the closest discrete centerline

locations along the arc length s1 and s2 of the rod (or of the two rods in case of a 2-tangle).
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This mapping of the contact shape is used in Chapters 4 and 6, as well as in Refs. Grandgeorge

et al. [78], Johanns et al. [90].

2.5 Protocols for Characterization of Rods

In this section, we present the experimental procedure for the mechanical testing of knots.

To rationalize and model the behavior of the elastomeric rods, we need to determine the

underlying material model and the corresponding material parameters. In Section 2.5.1, we

report the material characterization of the polymers used to fabricate the rods. Since knotted

rods involve contact regions, we characterize the frictional behavior of the polymeric rods in

Section 2.5.2.

2.5.1 Characterization of the Material Properties of VPS

We characterize the mechanical properties of VPS-16 and VPS-32, which form the bulk core

of our elastic rods (see Section 2.2). We observed a non-negligible time-dependence of these

polymers, and first, try to determine the time interval after which the material properties sta-

bilize. A quick and reliable experiment to determine the evolution of the elastic modulus over

a period of time is the resonance test, which consists on measuring the natural frequencies,

ωn , (with the natural mode shapes n) of a beam to determine the Young’s modulus, E . In

Figure 2.15a1, we show the schematic diagram of a vertically clamped VPS-16 beam. The beam

of length L0 = 31.5mm has a rectangular cross section of area A = wd and a second moment

of area I = d w3/12, of width w = 3mm and depth d = 5mm. The material density of VPS-16 is

ρVPS16 = 1160 kg/m3. The photograph in Figure 2.15a2 shows the procedure of imposing a

deflection, ∆≈ 15mm, of the beam centerline using a screwdriver. Releasing the beam leads

to an oscillatory motion that is recorded and processed in MatLab to determine the natural

frequency. The dynamic Young’s modulus can be extracted from the relation between this

frequency and the bending stiffness, E I . The first natural frequency, ωn=1 can be written as:

ωn=1 =
β2

n=1

2πL2
0

√
E I

ρA
, (2.21)

with βn=1 = 0.597π. Applying the Fast Fourier Transform (FFT) of the time series of the tip

position allows to extract the fundamental frequency, and compute E of the material with

Eq. (2.21). In Figure 2.15a3, we plot the evolution of the Young’s modulus over time, observing

a significant increase in the first week before reaching a plateau level at EVPS-16 = 0.52MPa.

Similar behavior was observed for the other polymers, i.e. VPS-32. Consequently, we leave the
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bulk rod samples to rest for one week after curing to ensure their mechanical properties reach

a steady state before performing any additional experimental tests.
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Figure 2.15: Mechanical testing of the VPS-16 and VPS-32 rods. a1-a2, Schematic diagram
and a photograph of the resonance test on a vertically clamped VPS beam with a rectangular
cross section; a2 is at the initial moment of maximal deflection of the VPS-16 beam. a3, Evo-
lution of the Young’s modulus of a VPS-16 strip over 16 days. b1, Schematic diagram of the
tensile test of the experimental VPS rods with a circular cross section in their rest state and
their axially stretched state. b2, Engineering stress-strain curves (solid lines) of the cylindrical
rods of different lengths and diameters (see legend). The dashed lines corresponds to the one-
dimensional engineering stress-strain predicted for incompressible Neo-Hookean material;
Eq. (2.22). The Figures in b1-b2 were adapted from Ref. [78].

After a rest period of 7 days, we characterize the mechanical properties of VPS-16 and VPS-

32 using a Universal Mechanical Testing Machine (Instron 5943) with cylindrical rods to

determine the accurate material model for these elastomers. We performed the tests on

rods of diameters D = 5and 8mm, with a length chosen to preserve a constant aspect ratio

L0/Dm = 20; i.e. L0 = 100 and 160 mm, respectively. We measure the force Fz necessary to

impose a distance L > L0 between the rod extremities (see Figure 2.15b1) and relate the axial
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engineering stress σeng,zz = Fz /A (where A = πD2/4 is the cross-sectional area of the rod at

rest) and the engineering strain ϵzz = L/L0 −1. The corresponding experimental curves are re-

ported in Figure 2.15b2 (solid lines). As expected, no significant difference is observed between

the two rod diameters. We then fitted each experimental curve with the one-dimensional engi-

neering stress-strain prediction from the Neo-Hookean model for incompressible hyperelastic

materials [91]:

σeng,zz = Fz

A
= E

3

(
1+ϵzz − 1

(1+ϵzz )2

)
. (2.22)

Fitting the above expression to the experimental data yields the ground-state Young’s mod-

ulus: E = 520±0.02 kPa for VPS-16 and E = 1.25±0.05 MPa for VPS-32. The dashed lines

in Figure 2.15b correspond to Eq. (2.22) using the mean value of E across five experiments

for VPS-16 and three experiments for VPS-32. The uncertainty corresponds to the standard

deviation of the fitted parameter E across the different samples. The excellent match between

the fitted material model and the tensile tests lets us conclude that the Neo-Hookean model

is adapted to describe the VPS material. This information is important for rod modeling in

Finite Element simulations described in Chapter 3.

2.5.2 Frictional Behavior of Powder-Treated VPS Surfaces

We observed that the Amontons-Coulomb friction could not describe the VPS-to-VPS contact;

the tangential force Ft applied between the samples is not linearly proportional to the normal

force, Fn, between them. However, in many real-life applications of filaments in frictional

contact, the Amontons-Coulomb friction law is a reasonable description [92]. To ensure

the Amontons-Coulomb friction throughout, we surface-treated our VPS rods by applying

different types of powder, as described next.

The frictional behavior of the powder-treated VPS-16 and VPS-32 elastomers is characterized

using an adapted version of the standard ASTM D1894-14 protocol [93], designed to measure

the dynamic friction coefficient, µ, from the normal force Fn and tangential force Ft by the

relation Ft =µFn.

The original protocol involves a 60×60 mm2 steel sleigh (self-weight: 213g) covered by a 1mm

thick VPS sheet which is dragged at a velocity of 3 mm/s on a second VPS layer of the same

thickness (Figure 2.16a and c1). A calibrated weight imposes the normal force Fn between

the two flat sheets of VPS on the sliding sleigh. The corresponding tangential force Ft is

measured using a Universal Mechanical Testing Machine (Instron 5943). First, we explore two
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surface treatments applied on the VPS layers: talcum powder (Milette baby powder, Migros,

Switzerland) and chalk powder (Sigma-Aldrich, Merck). The surfaces are conditioned with

powder that was adsorbed by the VPS surface during 24 hours. Before each experimental run,

the excess talcum powder was gently wiped off the surface with a fine cloth.
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Figure 2.16: Frictional behavior of powder-treated VPS surfaces. a, Photograph of the
adapted version of the ASTM D1894-14 protocol [93] to measure the friction coefficient be-
tween two surfaces. b, Characteristic curves for the measured tangential force, Ft , as a function
of displacement, for talcum and chalk powder-treated substrates.

Figure 2.16a shows the setup with the sledge sliding on a chalk-treated path, next to a region

on which talcum powder was applied. The typical curves for the measured tangential force,

Ft , as a function of displacement for each type of surface treatment are plotted in Figure 2.16b.

Since the talcum powder yields a ‘less noisy’ response than the surfaces treated with chalk

powder, we choose to perform the experiments in Chapter 5 with talcum powder. We leave

the quantitative characterization of the specific friction coefficient for the corresponding

Chapter 5, Section 5.2.2.

We deactivate rod-rod friction by applying a few drops of liquid soap (Palmolive Original from

Migros, Switzerland) in the contacting region (used in Grandgeorge et al. [78] and Chapter 4).

The liquid soap generates a thin lubrication layer between the two rods, sufficient to reduce

local tangential forces significantly. Care must be taken so that the soap layer does not dry and

become sticky. An alternative solution is to apply a few drops of silicone oil (Bluesil 47V1000,

Slitech, dynamic viscosity 1Pa·s) to the contact regions. The disadvantage here is the swelling

phenomenon of VPS in contact with silicon oil if the rod sample should be reused days after

the application of the silicone oil [94].
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2.6 Summary and Outlook

Due to the lack of an experimental toolbox to study tight physical knots (Section 2.1), the de-

velopment of techniques and protocols described in this Section was extensive. An extra effort

was put into the rod fabrication (Section 2.2); though the geometry of a straight elastomeric

cylindrical rod seems trivial, their specialization to composite rods for compatibility with

µCT-scanning involved a protracted process. We showed the high potential of X-ray micro-

computed tomography combined with image-processing to study tight knot configurations in

Section 2.3. We were able to extract the discrete centerline and contact information such that

we could apply existing frameworks, e.g., computing the Darboux vectors of the Cosserat frame

or mapping the contact shape (as detailed in Section 2.4). Besides the geometric properties of

the rods and the knot topology, the material properties were determined and a robust protocol

to measure frictional contact properties was described in Section 2.5. The full toolbox will we

applied in Chapter 4 and in Refs. [78, 62, 90, 37].

While developing the experimental toolbox, we learned of its capabilities, however, it also

has its limitations. On the one hand, we are able to extract unprecedented experimental data

from tight knots. On the other hand, we do not have access to local contact pressure or local

strains in the rod. In addition, we understood the intricacy of the frictional contact behavior

between VPS rods (Section 2.5.2); we found a surface treatment allowing a repeatable friction

behavior between VPS surfaces. Unfortunately, the frictional case can only be achieved with

one single friction coefficient. Understanding the impact of the friction coefficient will be

crucial in the studies described in Chapters 5 and 6 as well as in Ref. [78, 37]. Consequently,

we will introduce a computational toolbox in Chapter 3, which allows to accurately model

tight knots, to gradually adapt the frictional behavior, and to give access to local stresses.
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Knowing the capabilities and the limitations of the experimental toolbox described in Chap-

ter 2, we aim to complement the mechanical and imaging experiments with numerical simu-

lations. To this end, we develop a methodology to simulate knotted structures in filaments by

employing the framework of fully three-dimensional (3D) Finite Element Modeling (FEM). The

simulation allow us to access local stresses and strains, and study the influence of frictional

rod contact in tangles and knots by systematically varying the friction coefficient. Since all

the knot simulations start with straight rods, we first introduce the overall properties of the

purely elastic rods as well as their specific features in Section 3.1. To show the potential of

the numerical framework, we also describe the procedure to convert the solid rods to elastic

tubes. Second, in Section 3.2, we focus on the numerical FEM procedure to tie knots. More

specifically, we implement our simulation framework for the cases of open and closed trefoil,

figure-eight and clove hitch knots. Moreover, the numerical results are validated against

experiments using precise rod fabrication, mechanical testing, and tomographic imaging

(introduced in Chapter 2, Section 2.3). In Section 3.2.2, we compare the numerical and experi-

mental results to the theoretical prediction for open trefoil knots provided in [61]. Some of

the following content is adapted from Refs. [62, 90, 37]. Throughout, we place more emphasis

on the method that we have employed, rather than on the presentation and interpretation

of results. Specific results will be discussed in subsequent chapters. Finally, in Section 3.3,

the validated computational framework is used to test if the geometric centerline definition

minCS, introduced in Chapter 2, Section 2.3.2, could be considered as equivalent to the well-

defined material centerline. With this toolbox, we will be able to tackle the problems in the

next Chapters by accessing local geometric and mechanical properties and tuning the friction

coefficients.
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3.1 Modelling of Elastic Rods and Tubes

Our simulation approach is based on the finite element method using nonlinear dynamic-

implicit analysis in the commercially available software package ABAQUS/STANDARD [95]. The

nonlinear dynamic-implicit option allows for obtaining the response by direct time integration,

solving nonlinear equilibrium equations at time point 0 ≤ t +∆t ≤ T , with the total step time,

T . Importantly, we adapted the total time T of each step such that the nodes of the model

were displaced with unit-speed, guaranteeing quasi-static behavior. By using the default

automatic time stepping, the accuracy of the equilibrium solution is evaluated using the

intermediate half-step residual error at time point t +∆t/2 [96]. Consequently, the time

increment is increased or reduced by a factor of two in case of small or large error magnitudes,

respectively [95]. We typically defined a small initial increment size (e.g. 10−3), a maximum

increment size of ∆t/T = 1/10, and the smallest increment size as 10−15.

To capture the geometrically nonlinear deformation of tight knots, the elastic rod is meshed

with 3D solid elements of the type C3D8RH. The choice of the 8-node linear, hexahedral hybrid

elements with reduced integration is motivated by the combination of the cylindrical geometry

of the rods and the computational cost. As such, hexahedral elements are better suited to

mesh cylindrical rod geometries than tetrahedral elements, allowing lower mesh density.

Linear elements (instead of quadratic elements) were qualified as sufficient for more than 20

elements on the rod circumference. The hybrid nature of the elements is necessary to model

the incompressible behavior of the elastomeric material.

The number of elements per cross section of the rod is typically between 50 and 100 (see

meshed cross section in Figure 3.1a1). Along the axial direction, the discretization level varies

depending on the aspect ratio of the rod to ensure that the elements maintain a regular cubic

shape. Figure 3.1a1 shows a part of the meshed rod with a node set (highlighted in red)

defined along the axial direction at the outer rod surface. This node set acts like the eccentric

fiber described in Chapter 2, Section 2.2.2. As described in Chapter 2, Section 2.4.1, these

discrete coordinates, ξ(si ), along the axial nodes i together with the material centerline nodes,

r (si ) (Figure 3.1a2), allow us to define the director vector d̂1(s) using Eq. (2.16). Then, the

curvature of the deformed rods can be computed using the Darboux vectors (see Chapter 1,

Section 1.2.2).

Here, we focus exclusively on elastic rods, as applied in Chapters 4 and 5. The elasto-plastic

material model, used in Chapter 6, will be detailed in that corresponding Chapter. The ratio-

nale for this choice is twofold. First, the experimental results used to validate the simulations

(presented in Section 3.2.2) were obtained using rods made out of vinylpolysiloxane (VPS-32,
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a1 a2

b1 b2

si

ξ(si)

d1(si)
^

r(si)

Figure 3.1: Reference configurations of elastic rods and tubes in FEM. a1, Elastic rod with a
defined node set along the axial direction at the outer rod surface used for curvature calcula-
tions in Chapter 5 and in Ref. [37]. a2, Material centerline nodes, r (si ). For better visualization,
we show a longitudinal cut of the rod model. b1, View of the cross section of an elastic tube
with radial meshing (used in Chapter 7). We highlight the nodes that form the outer rod
surface. b2, Longitudinal cut along the tube with a visualization (red nodes) of the inner
contact surface.

Zhermack), as described in Chapter 2, Section 2.2. Thus, modeling the elastomeric VPS mate-

rial as a neo-Hookean incompressible solid (as detailed in Chapter 2, Section 2.5.1) permits

us to have a direct map between the simulations and experiments for quantitative validation.

Secondly, the focus on the elastic case allows us to emphasize the high-fidelity of the simula-

tions in terms of the topological preparation protocol and the appropriateness of the frictional

contact interactions without further complexifying the problem with additional constitutive

ingredients.

Self-contact frictional interactions in the rod were taken into account by enforcing a normal

penalty force combined with a tangential frictional force, with a prescribed dynamic Coulomb

friction coefficient, µ= µ̄±∆µ. µ̄ denotes the average friction coefficient, and∆µ, the standard

deviation. Specifically, the default basic Coulomb friction model in ABAQUS/STANDARD [95]

was applied, which are based on the concept that two contacting rod surfaces can carry shear

stresses (through sticking) up to a certain magnitude before sliding occurs. The critical shear

stress at the onset of sliding is defined as τcrit = µp, with the contact pressure p. Note that
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Chapter 3. Methodology: Computational Toolbox

the simple implementation of the dynamic friction coefficient, measured experimentally (see

Chapter 2, Section 2.5.2), was sufficient to achieve good agreement between the numerical

simulations and experiments (as reported by Baek et al. [62]). Further, and as mentioned

in Chapter 2, Section 2.5.2, we typically deal with either the frictionless case (µ = 0) or the

frictional case (µ= 0.30±0.02, or µ= 0.35±0.02, depending on the study) in experiments.

An adaptation of the full elastic rods is the introduction of a coaxial, cylindrical void. The

resulting tube with a given wall thickness could be used to model a knotted tube system

that transports a fluid through the internal channel, e.g. the biological system of a knotted

umbilical cord (see Chapter 7, Section 7.2.2). In Figure 3.1b1, we show the cross-sectional

view of the elastic tube model, on which we imposed a radial mesh. Various node sets can

be defined, such that the outer tube surface (highlighted in Figure 3.1b1) and the inner tube

surface which is visualized on the longitudinally-cut tube in Figure 3.1b2.

3.2 Procedure for Tying Elastic Knots

In this Section, we describe the strategy developed to tie the knot topology into the three-

dimensional rods defined in their straight and undeformed reference state. Throughout

the simulations, the extremities of the rod are kinematically tied to a pair of control nodes

located at each end. The topology of the knotted rod is established by applying a sequence

of prescribed displacements and rotations to these control nodes. We adopted a loading

sequence from previous work on reduced FE modeling of knots [70].

In the subsequent Sections, we will describe the specific tying protocols for the knot topologies

used in this Thesis. Specifically, we focus on the open and closed trefoil knots (studied in

Chapter 4), the figure-eight knot (used in Chapter 5), and the sliding granny knot topology

(investigated in Chapter 6).

3.2.1 Tying Process of the Open Trefoil Knot

The sequence of simulation snapshots presented in Figure 3.2 illustrates the tying process of

an open trefoil knot, involving the following four steps (as reported in Ref. [62]):

(a) Firstly, we bend the rod into the configuration depicted in Figure 3.2a, while fixing the

position of a pair of auxiliary nodes (denoted as x-shaped symbols in the figure) on

the material centerline of the rod. At this stage, the extremities of the rod point to the

negative x-direction.
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3.2 Procedure for Tying Elastic Knots

(b) Secondly, the extremities of the rod were displaced inside the loop (see Figure 3.2b), now

facing the ±z-direction, thereby establishing the knotted configuration. During this

second step, the positional constraints applied to the auxiliary nodes were still enforced

so that those points lay on the x y-plane.

(c) Thirdly, we removed the imposed constraints on the auxiliary points to allow for the

equilibrium configuration of the knot to be achieved (see Figure 3.2c).

(d) Finally, we tightened the knot (see Figure 3.2d1-d3) by continuously decreasing the

normalized end-to-end shortening (introduced in Chapter 1, Section 1.5), ē, at the

constant speed, ė =−0.5mm/s, and measured the quantities of interest, including the

tensile force, T (ē), and the configuration of the knot, r(s, ē).

a b c

d1 d2 d3

Figure 3.2: Numerical protocol and pathing procedure to tie an open trefoil knot. a, An
originally straight rod is first bent to fix a pair of intermediary points (x-shaped symbols). Then,
its extremities are pulled (red arrows) along the ±z directions. b, As a result, the topology of the
knotted configuration is established. c, We then remove the positional constraints, formerly
the x-shaped symbols in a and b, to obtain an equilibrium configuration. d1-d3, Having
established the topology of the knot, we then tighten it by controlling the positions of the
extremities to set a given value of the end-to-end shortening, e. Figure adapted from Ref. [62])

The typical computational cost for a full knot-tying simulations of an open trefoil knot, in

which the normalized end-to-end shortening decreased gradually from ē = 20 to ē =−10 (in

steps of ∆ē = 0.15), is approximately 60 hours on a desktop workstation with an octa-core

processor (Intel Xeon processor 6136 3.20 GHz) and 32 GB of RAM.
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3.2.2 Validation of Numerical Model

We will validate the numerical protocol introduced above against precision experiments on the

open trefoil knot, the details of which are provided next. To obtain the precision experimental

data used for this validation, we measured the macroscopic mechanical response through the

relation between the tensile force, T , and end-to-end shortening, e, and thoroughly quantified

the coordinates of the centerline of the knotted polymeric rod.

Having introduced the computational framework for tying elastic open trefoil knots, we

now quantify the applied tension required to tie this knot in the tight-knot regime. Here,

we consider a rod with initial length, L0 = 350mm. For comparison reasons with the data

reported by Audoly et al. [61], we consider the dimensionless tensile force in the form, T D2

4B .

Note that the range of the values of end-to-end shortening considered in this tight regime is

−10 ≤ ē ≤ 30, far below the threshold of validity of Eq. (1.8) (ē ∼ 500), introduced in Chapter 1,

1.5.

In Figure 3.3a, we plot the dimensionless tensile force as a function of ē, from the experiments

(dashed lines) and the FEM simulations (solid lines). The frictionless (µ= 0; black lines) and

frictional cases (µ = 0.3; blue lines) of open trefoil knots are addressed and contrasted in

both the experiments and simulations. The excellent agreement between the FEM results

and the experimental data validates our numerical knot-tying procedure. By contrast, we

observe a significant deviation between the numerical/experimental data and the prediction

from Eq. (1.8), which assumes loose knots, regardless of whether friction is present or not.

This discrepancy does not come as a surprise, given the significantly lower range of ē that we

have considered for our tight configurations compared to the regime of validity of the theory

underlying Eq. (1.8). In Figure 3.3b, we present snapshots of three different configurations,

b1, b2 and b3, of the frictionless elastic knot (µ= 0) from both experiments and FEM simula-

tions, with ē = {−5, 5, 15}; the corresponding data points are presented by B1, B2 and B3 in

Figure 3.3a.

Inspired by the success reported above in quantifying the tensile forces during knot-tying, we

further quantify the shape of tight elastic open trefoil knots by contrasting the FEM simulations

to precision X-ray micro-computed tomography. As detailed in Chapter 2, Section 2.3.2, the

material centerline of the elastic knot, r(s), is digitized from the volumetric image acquired

from the µCT, as well as from the FEM simulations. Again, we considered both the frictionless

(µ= 0.0) and frictional (µ= 0.3) cases. The initial length of the rod was L0 = 130mm, the initial

diameter was Dm = 8.3mm, and the end-to-end shortening was ē = 9.58. The magnitude of the

dimensionless curvature of the material centerline, κ= K D , is computed according to Eq. (1.7)

(see Chapter 1, Section 1.2.3 and Chapter 2, Section 2.4.2), and plotted in Figure 3.3c and d as
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Figure 3.3: Validation of the numerical model using the open trefoil knot configuration.
a, Normalized tensile force versus normalized end-to-end shortening for both frictionless (µ=
0) and frictional (µ= 0.30) elastic knots. The theoretical predictions (dotted lines) correspond
to Eq. (1.8) from Ref. [61]. b1-b3, Snapshots obtained from the experiments (left) and FEM
simulations (right) for open trefoil knots at different levels of tightness. The same points B1,
B2 and B3 are marked in the plot in a. c, Profiles of the centerline curvature for an open trefoil
knot with normalized end-to-end shortening, ē = 9.58, obtained from the FEM simulations
(solid lines), the experiments (dotted lines), and the theoretical prediction from Eq. (1.8)
(dashed line). The elastic rod onto which an open trefoil knot is tied has an initial length of
L0 = 130mm and a self-contact friction coefficient of µ = 0. d, The same as in c but with a
self-contact friction coefficient of µ= 0.3.

a function of the dimensionless arc length coordinate, s = S/D . Again, an excellent agreement

is found between the experiments (dotted lines) and FEM (solid lines), in both the frictionless

(Figure 3.3c) and frictional cases (Figure 3.3d).

In Figure 3.3c, we also overlay the profile of the centerline curvature for the frictionless

case (dashed line) predicted theoretically by the Kirchhoff rod model described by Eq. (1.8)

in Chapter 1, Section 1.5 [61]. Surprisingly, the theoretical prediction yields a result that

describes the experimental and simulation data remarkably well, albeit with small quantitative
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differences (the averaged difference in the curvature between the simulation data and the

prediction is ≃ 10%). Again, these deviations are expected, given the full 3D nature of our

problem coupled to the fact that the theory in Ref. [61] was developed for loose knots, whereas

we are considering tight configurations.

3.2.3 Tying Process of the Closed Trefoil Knot

The closed trefoil knot shares the same topology as its open counterpart, the previously de-

scribed overhand knot. As described in more detail in Chapter 4, the numerical approximation

to the ideal closed trefoil requires a length, L0, to diameter, D0, ratio of L0/D0 = 16.37 [97]. In

FEM, multiple steps involving displacements and rotations are needed to tie an elastomeric

rod into a tight closed trefoil knot. Given the application of this knot in Chapter 4 [90], we only

focus on the frictionless case. The sequence of steps is shown in Figure 3.4, and described

next:

(a) Firstly, we take the open trefoil configuration as the starting topology (see Figure 3.4a).

The corresponding tying procedure is described in Section 3.2.1. The centerline mid-

point node, located in the loop of the open trefoil knot, is fixed (denoted as x-shaped

symbols in Figure 3.4). At this stage, the extremities of the rod face the ±x-direction.

(b) Secondly, the extremities of the rod are displaced towards the −y-direction while being

rotated by π/4 rad (see Figure 3.4a). The configuration shown in Figure 3.4b is achieved.

(c) The direction of the displacements of the extremities is changed to the ±x-direction

while the central centerline node is kept in place and the rotations at the extremities are

continued (by π/8 rad). The resulting configuration is presented in Figure 3.4c. Note

that the rod ends are not in contact. Since the 3D solid elements at the extremities

are highly distorted at this stage, the knot cannot be closed with planar rod ends. A

remedial approach is to add an intermediate step, in which we keep the extremities at

their current position but remove the imposed constraint on the centerline mid-point

node of the centerline.

(d) Figure 3.4d shows the relaxed state of the knot. To establish the closed knot configura-

tion, we gradually bring the extremities of the rods in contact by applying a final rotation

(π/8 rad) and displacement towards the ±x-direction (see Figure 3.4d).

(e) The final equilibrium configuration of the closed trefoil knot is presented in Figure 3.4e.

To prevent the extremities to have the rod diameter of the rest shape while the stretched

rod is of a smaller diameter, the two extremities were constrained using the ABAQUS
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command *COUPLING. This enables the extremities to be displaced while allowing their

cross-section to deform, thus allowing a constant rod cross section in the stitching

region.

a b

c d e

Figure 3.4: Numerical protocol and pathing procedure to tie a closed trefoil knot. a, The
open trefoil knot forms the starting topology, on which we fix the centerline mid-point node.
b, Aiming to bring the two extremities together, they are rotated and displaced. c, Then, the
extremities are rotated and displaced to bring the rod ends close together, while preventing
the rod ends from touching. d, Intermediate step releasing the fixed node in the loop. Then, a
final rotation and displacement step allows bringing the extremities together. e, The closed
knot topology is achieved in its equilibrium shape. The frictionless case is shown.

Since we are dealing with a closed knot, the mechanical response of the extremities is inaccessi-

ble experimentally. Consequently, the FEM model is validated by quantifying the shape of the

tight elastic closed trefoil knot. Since this is part of the study on the shapes of physical trefoil

knots in Ref. [90], we ask the reader to refer to Chapter 4 which contrasts the FEM simulations

to precision X-ray micro-computed tomography on the closed trefoil configuration.

3.2.4 Tying Process of the Figure-Eight Knot

Another knot topology needed in Chapter 5 is the figure-eight knot. In Figure 3.5a-d, we

present the sequence of four steps followed to tie this knot in FEM:

(a) Firstly, we bend a straight rod into the configuration depicted in Figure 3.5a while fixing

the position of the centerline mid-point node (denoted as x-shaped symbols in the

figure). At this stage, the extremities of the rod face the ±y-direction.
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Figure 3.5: Numerical protocol and pathing procedure to tie the figure-eight knot. a, An
originally straight rod is first bent while the centerline mid-point node is held in place. b, Prepa-
ration for the subsequent step by displacing extremities and fixing z-direction of the central
centerline part (red line). c, By passing the extremities through the two loops, the figure-eight
knot topology is established. d, Final alignment of extremities and all the fixed nodes are re-
leased to achieve the depicted equilibrium configuration. e, Validation of the numerical model
by comparing the tensile force versus end-to-end shortening between FEM and experimental
data (frictionless and frictional case). f, Snapshots of the configurations for consecutive values
of the normalized end-to-end shortening, ē = {20,10,0,−10}. The corresponding data points,
labeled as F1, F2, F3 and F4, are indicated in e.

(b) Secondly, the extremities are displaced further in the ±y-direction to be positioned well

for the next step. In addition, the z-direction is fixed of the central part of the centerline

−L0/4 < s < L0/4, shown as a red line in Figure 3.5b.

(c) Thirdly, to establish the knotted configuration, the extremities are displaced inside the

respective loops (see Figure 3.5b-c) in the ±z-direction, still facing the ±y-direction.

(d) Finally, we align the two extremities by displacing them in ±z-direction (see Figure 3.5d-

e). At this stage, the fixed position of the central centerline node and the fixed z-direction
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of the central part of the centerline are released. Consequently, the equilibrium configu-

ration of the loose figure-eight knot is achieved, as shown in Figure 3.5d. Having tied

the figure-eight topology, the knot can be tightened by pulling on the extremities in the

±y-direction.

In Figure 3.5e, we provide the mechanical response of the figure-eight knot with friction coeffi-

cients µ= {0,0.3}, plotting the dimensionless tensile force as a function of the dimensionless

end-to-end shortening. The range of the end-to-end shortening explored in the FEM simu-

lations is −10 ≤ ē ≤ 29.5. The corresponding experimental results for the same parameters

are also included. The rod in the rest configuration has length L0 = 350mm and diameter

D = 8.3mm. In Figure 3.5f, we present four representative configurations of the FEM knot

for µ = 0.3 and ē = {20,10,0,−10}. The data points corresponding to each configuration in

Figure 3.5f are located on the loading curve in Figure 3.5e and denoted as F1, F2, F3 and

F4. Again, the agreement between the FEM and the experiment is remarkable for both the

frictionless and the frictional cases, further confirming the validity and high-fidelity of our

FEM knot-tying approach.

3.2.5 Tying Process of the Sliding Granny Knot

In Chapter 6, we will study sliding knot topologies and, more specifically, the sliding granny

knot, which forms the basis during suturing. A similar tying protocol has been introduced

in Sano et al. [37] in the context of the clove hitch knot. Both knots share the same topology but

differentiate by their application: a clove hitch knot attaches a rod to a rigid cylinder (typically

multiple times larger than the rod diameter), whereas the sliding granny knot is a binding

knot, connecting two rods (of equal diameters). Here, we will make use of the tying algorithm

used in Ref. [37], which only needed minor adaptations to tie the sliding granny knots in

Chapter 6. To distinguish between the two rods in the subsequent description of the tying

process, we denote the straight underlying rod as cylinder (in accordance with Ref. [37]) and

the rod winding around the cylinder as rod. Next, and in Figure 3.6, we present the sequence

of 6 steps followed to tie the sliding granny knot in FEM:

(a) Firstly, we place the center of mass of the rod above the rigid cylinder (Figure 3.6a).

(b) Secondly, the centerline mid-point is fixed and the two extremities are displaced to form

an arch (Figure 3.6b).

(c) Thirdly, three points of the centerline are fixed, and the two extremities are moved

horizontally to wrap the rod around the cylinder (Figure 3.6c).
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(d) Next, the rod extremities are displaced upwards while fixing three node positions, one

in the middle and the other two underneath the cylinder (Figure 3.6d).

(e) While fixing the three nodes of the previous step, the middle point is displaced upwards,

and the two rod extremities are threaded underneath the opened gap to attain the clove

hitch/sliding granny knot topology (Figure 3.6e).

(f) Finally, all nodes are released, except for the two rod extremities, which are loaded by

two forces of the same magnitude but in opposite directions to yield a symmetric knot

(Figure 3.6f).

a

ed

cb

f

Figure 3.6: Numerical protocol and pathing procedure to tie the clove hitch / sliding granny
knot topology. Nodes marked with x are fixed, whereas black and red arrows correspond to
displaced and loaded nodes, respectively. a, Initial configuration involving a cylinder (gray)
and a rod (green). b, Fixed centerline mid-point with displaced extremities such that the rod
forms an arch. c, Three nodes of the rod centerline are fixed, and the extremities are displaced
to wrap the cylinder. d, The extremities are displaced upwards while two fixed nodes hold the
configuration in place. e, The centerline mid-point of the rod is pulled upwards, giving space
to thread the extremities underneath the opened gap. This step establishes the topology of the
clove hitch / sliding granny knot. f, All the fixed nodes are released, and a symmetric load is
applied to the two rod extremities. Figure adapted from Ref. [37]

We refer the reader to Ref. [37], which contains a detailed validation of the numerical model

based on the mechanical response and the curvature profiles.

3.3 Comparison Between minCS and matCL

In Chapter 2, Section 2.3.3, we describe the experimental protocoldeveloped for the extraction

of the geometric centerline from CT data of a 2D rod (Figure 2.12). Since we did not consider

cross-sectional deformation, the described algorithm minCS yielded identical centerline
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coordinates to the material centerline. Here, we consider a tight open trefoil knot tied in an

elastic rod to test how the minCS algorithm handles more complex cases (e.g. normalized

curvatures, κD > 1, and cross-sectional deformation of the rod) by comparing the geometric

centerline coordinates to the material centerline.

We choose to use the Finite Element data of a deformed rod since the nodal centerline defini-

tion (described in Section 3.1) gives access to the accurate material centerline. We aim to apply

the minCS algorithm on a data set describing the outer rod edge. To this end, we developed

the following procedure. First, a tight open trefoil knot is tied in FEM with normalized end-to-

end shortening of ē = e/Dm =−20.3mm/8mm ≈−2.5. Second, a point-cloud (80′000 spatial

points) describing the outer rod nodes is extracted from FEM. Given the symmetry of the

knot, it is sufficient to only consider one-half of the rod. In Figure 3.7a1, we show the cut-off

location on the full rod, resulting in the configuration depicted in Figure 3.7a2. Moreover, this

change simplifies the case study by avoiding contact interactions.

A triangulated mesh is generated in Matlab, connecting the various vertices forming polygons.

The Matlab function Polygon2Voxel is applied on these polygons, yielding a voxelized vol-

ume, as shown in Figure 3.7a3. This volume is created by choosing 1000 pixels in each of the

three spatial directions. The largest direction (vertical distance in Figure 3.7a2 is 43mm) sets

the spatial resolution which is d0 = 43mm/1000px = 43µm (size of the voxels). This value is

close to the typical range of resolutions encountered in CT scans of knotted and tangled con-

figurations (25 to 35µm, see Section 2.3.1). This choice allows us to keep the post-processing

parameters unchanged from the ones used in analyzing experimental knots and tangles.

Next, we apply the previously described minCS algorithm to the FEM-based open trefoil con-

figuration and extract the geometric centerline coordinates. Regarding the material centerline

coordinates, this information is readily available through the nodal information in FEM. In

Figure 3.7b1 and b2, we plot the 3D centerline coordinates for two different perspectives. We

observe that in the region of high curvatures, the geometric centerline (purple line) tends

to point radially toward the inside of the loop, compared to the material centerline (black

dots). We quantify this difference in Figure 3.7c and d. First, we compute the normalized

shortest distance d̄ = d/Dm , with the dimensional shortest distance, d , between the two sets

of centerline coordinates (see Figure 3.7c). Indeed, the geometric centerline nearly coincides

with the material one in the initial straight rod part and deviates by less than 6% in the curved

part. The sub-resolution (below the voxel size defined by the spatial resolution) is represented

by the shaded region and is bounded by the dashed horizontal line of d̄ = d0/Dm = 0.54%,

with d0 being the spatial resolution of the voxelized volume. Second, in Figure 3.7d, we show

the curvature profiles along the arc length for both centerline sets. The curvature is computed
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Figure 3.7: Comparison between material and geometric centerline coordinates using FEM
on a tight knot. a1-a3, Procedure to convert a FEM-based point-cloud of the outer surface
of the rod of an open trefoil knot into a voxelized volume (only considering half of the rod).
b1-b2, 3D visualization of the rod centerline coordinates (material centerline vs. geometric
centerline) in a side and a top view. c, Shortest distance δ between the two centerline curves as
a function of the arc length s. The sub-resolution is shown by the shaded region and delimited
by the horizontal dashed line. d, Curvature profiles of half of the tight open trefoil knot for
both centerline definitions. The discrete curvature is computed following the method based
on vertices by Bergou et al. [39], as discussed in Chapter 1, Section 1.2.3. and Chapter 2,
Section 2.4.2

for the material as well as the geometric centerline with the same method based on vertices,

as derived by Bergou et al. [39] (see Chapter 1, Section 1.2.3 and Chapter 2, Section 2.4.2).

Both profiles are qualitatively similar, however, the geometric centerline tends to yield slightly

higher curvatures (≈ 5%) in the bent region of the rod.

The case study investigated in this Section allows us to conclude that the geometric centerline

definition minCS and the material centerline yield similar centerline coordinates and curva-

ture profiles for small and moderate rod deformations. In the case of tight knots involving

regions of normalized curvatures above unity, we expect a ≈ 5% deviation. This discrepancy
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should be considered when comparing centerline properties between FEM (based on the

material centerline nodes) and processed CT data if we have to sidestep to the geometric

centerline minCS.

3.4 Summary and Outlook

In this Chapter, we have presented a 3D FEM procedure to investigate tight elastic knots,

with variable frictional contact interaction between the rods. The rods are modeled to give

access to important geometric and mechanical properties, e.g., centerline coordinates, director

vectors, surface and contact information, as well as reaction forces (Section 3.1). We also

described an adaptation of the rod to model knotted tubes. As illustrative examples, we

focused on the tight configurations of the open and closed trefoil knots (Chapter 4), the figure-

eight knot (Chapter 5), and the sliding granny knot (Chapter 6). In Section 3.2, we showed

that an elaborated sequence of prescribed displacements and rotations to control nodes

could set numerous knot topologies. Our numerical results were found to be in excellent

agreement with precision model experiments while showing deviations from an existing 1D

theory for loose elastic knots [61] (Section 3.2.2). Finally, in Section 3.3, our experimentally

validated computational framework was used to quantify the difference between a geometric

centerline definition and the material centerline, applying experimental image-processing

tools previously developed in Chapter 2, Section 2.3.2.

For the subsequent Chapters, the versatility of the numerics will be of great importance to

exploring large parameter spaces and to rationalize underlying mechanisms in physical knots.

More specifically, we will make use of the methodology described above in the following

settings:

• FEM allows for achieving perfectly slippery contact interactions. In Chapter 4, we

will study frictionless knots to compare them to ideal geometric rod models, which

do not include friction. In this context, the FEM also constitutes a way to verify if

the equilibrium shape of the experimentally-tied knots is achieved using the soap

lubrication technique (described in Chapter 2, Section 2.5.2).

• To evaluate the effect of the friction coefficients on the capsizing mechanism in Chap-

ter 5 and the surgical knot strength in Chapter 6. A friction sweep in the experiments is

challenging [98] and can be obviated by leveraging FEM.

• The contact pressure between rods in contact is an important mechanical property in

physical, and especially in tight contact (see Grandgeorge et al. [78]). In knots, Finite
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Element Modeling allows the extraction of contact pressure maps for various tightness.

In Chapter 4, the contact pressure will be used to understand local elastic constrictions in

the cross sections at the entrance and exit points of trefoil knots. Moreover, in Chapter 6,

the importance of plastically deforming suture filaments will be rationalized thanks

to the access to local contact forces between two rods in tight contact. We leave the

description of the modeling of plastically-deforming filaments for Chapter 6.

• Extraction of contact forces enables the computation of internal tensions. This quantity

was crucial to explain the functionality of the clove hitch knot, transforming high tension

in a rod down to zero (see Sano et al. [37]).

Even though the Kirchhoff rod model is not applicable for tight elastic knots, we were able to

numerically model tightly knotted rods in 3D. The convincing validations of the Finite Element

Model with experimental data allow us to emphasize the high-fidelity of the simulations in

terms of the topological preparation protocol, the material model, and the appropriateness

of the frictional contact interactions. The experimental capabilities (Chapter 2) combined

with this computational framework form a sophisticated and powerful toolbox to study tight,

complex knots with different physical ingredients and practical relevance in the subsequent

chapters.
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4 From Ideal to Elastic Knots: The

Shapes of Physical Trefoil Knots

In this Chapter, we perform a compare-and-contrast investigation between the equilibrium

shapes of physical and ideal trefoil knots, both in closed and open configurations. Ideal knots

are purely geometric abstractions for the tightest configuration tied in a perfectly flexible, self-

avoiding tube with an inextensible centerline and undeformable cross-sections [99, 100]. Here,

we construct physical realizations of tight trefoil knots tied in an elastomeric rod, and use X-ray

tomography and 3D finite element simulation for detailed characterization. Representative

examples are provided in the experimental photographs and FEM-snapshots of Figure 4.2.

Specifically, we evaluate the role of elasticity in dictating the physical knot’s overall shape,

self-contact regions, curvature profile, and cross-section deformation.

The text and figures in this Chapter are adapted from the published manuscript in Ref. [90],

which resulted from a collaboration with Paul Grandgeorge, Changyeob Baek, Tomohiko G.

Sano, John H. Maddocks and Pedro M. Reis.

Firstly, we will focus on the closed trefoil knot, given its advantage of having a closed centerline

with periodic boundary conditions; in particular, no external forces are required to attain

equilibria. In its tight equilibrium configuration, we will show that the 2D mapping of the

contact surface in the physical knot can be rationalized using the double-contact lines first

computed by Carlen et al. [100] within the purely geometric model, forming an accurate

outer skeleton for the contact surface patch observed in the elastic case. Secondly, we will

study tight configurations of the open trefoil knot, where different levels of tightness can be

systematically investigated by the application of a range of external forces, thereby elucidating

the effects of elasticity. Our measured curvature profiles for knotted elastic filaments, both

in the closed and open trefoils, are qualitatively different from those predicted by the ideal

geometric models. Specifically, physical open knots exhibit curvature peaks inside the knot,

instead of at their entrance/exit, contrary to previous predictions for the tightest ideal knot [99].
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The excellent FEM-experimental agreement confirms the observed curvature profiles and

enables us to extract and map the contact pressure distribution, thereby revealing significant

rod constrictions at the entrance and exit of the tight open knot. Finally, we will characterize

these regions of localized elastic deformation, which we speculate could act as precursors for

the weak spots that compromise the strength of knotted filaments.

The structure of this Chapter is as follows. The motivation of this study is presented in

Section 4.1, along with a literature review on the ideal shapes of closed and open trefoil knots

in Section 4.1. In Section 4.2.2, we detail the fabrication procedure of our elastomeric rods, and

the experimental protocol followed to knot them into open and closed trefoil configurations.

In this Section, we also detail the procedure for image processing of the tomographic data

to extract the relevant geometric data. Then, in Section 4.2.2, we present the corresponding

numerical knot tying framework, where we compute the equilibrium shape of elastic open

and closed trefoil knots using fully 3D finite element simulations. We ask the reader to refer

to the detailed protocol descriptions in the Chapters 2 and 3 for further information on the

methodologies of rod fabrication, volumetric imaging, and finite element simulations. In

Section 4.3, we perform a detailed comparison between the ideal and the equivalent elastic

closed trefoil knot. We then focus on the open trefoil configuration by contrasting ideal knot

results to tight physical knot configurations in Section 4.4. We also discusses the potential role

that localized deformation regions may have in acting as precursors for structural weakness

spots. Furthermore, in Section 4.5, we detail on the topological feature, called homotopy,

which is observed in the physical closed trefoil knot. Finally, in Section 4.6, we summarize our

findings and provide a perspective for future work.

4.1 Literature Review and Motivation

The open trefoil knot, commonly known as the overhand knot, is the most elemental open knot,

forming the basis of many, more complex, and functional knots. It is ubiquitous in practical

applications, including fishing, climbing, sailing, and tying of shoelaces. The trefoil knot can

be regarded as a building block in bend knots (e.g., the fisherman’s/English knot) [101], in

binding knots (e.g., square or reef, and granny knots) [76, 27], and in noose knots (lasso noose,

honda knot, lariat loop) [22]. The classic overhand knot is also key in suturing procedures;

e.g., the surgeon’s knot) [102, 24, 25, 103, 104, 72]. Overhand knots can form spontaneously

in various natural contexts, across a wide range of length scales, from polymers and DNA

strands [10, 11, 12] to the umbilical cord of human fetuses [16], and even in vortex loops in

plasma and fluid flows [13, 14, 15].

The classic mathematical theory of knots is largely concerned with all possible topologies of
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knots tied in a closed loop, with no particular concern for any particular geometric config-

uration. For example, an unknot is any configuration of a closed loop that can be smoothly

deformed to a circle without passing through itself. But any shape of a closed trefoil knot

cannot be smoothly deformed to the circle, so it has a different topology; trefoil knots are in

fact the simplest nontrivial knot type. Configurations of closed trefoil, or trinity, knots are also

a common theme in Celtic art.

Ideal shapes: Recently, a mathematical literature of the geometry of so-called ideal knot shapes

has developed, see e.g. Carlen et al. [100]. In this context, a knot is modeled as being tied in

a closed loop of idealised rope approximated as a filament with an undeformable circular

cross-section, and inextensible centerline (and vanishing bending stiffness so the problem

has no mechanics only geometry). Within this geometric context, the ideal, or tightest, shape

is the centerline configuration of the given knot type with shortest length L0 (for prescribed

cross-section diameter D0, otherwise the problem is invariant under dilations). Ideal shapes

are known to exist for all standard knot types [49] with centerlines that are C 1,1 curves, which

means that the centerline has a continuously varying unit tangent at every point, and a

curvature that is defined almost everywhere, but not everywhere. In particular, the curvature

can be discontinuous.

For example a straight line segment joined to an arc of a circle with matching tangents, but a

discontinuous curvature, can form part of an ideal shape, and numerics strongly suggest that

straight line segments and discontinuities in curvature do arise in ideal shapes, for example

on composite knots [105] (Knowing the fine detail of the precise smoothness or regularity

of ideal knot shapes is important in designing good numerical algorithms to approximate

them.). Unsurprisingly, the ideal shape of the unknot is a circle of circumference L0 = πD0.

Surprisingly, the unknot is the only knot for which the ideal shape is known explicitly; all

other ideal knot shapes have only been approximated numerically. (Other, comparatively

simple, piece-wise planar, ideal shapes are known in the case of knotted links, i.e. knots with

multi-component centerlines [51, 78], but we will not consider links here.

The ideal closed trefoil knot: Numerical approximations to the ideal closed trefoil are available,

computed with a variety of algorithms, with the most accurate shape currently available

probably being that provided by Przybyl et al. [97], with L0/D0 = 16.3722. . . . The computed

value of L0/D0 is a rigorous (to machine arithmetic precision) upper bound to the actual ideal

value, and very probably the upper bound is rather close to the actual, unknown ideal value.

However, rather than comparing many digits of accuracy in the ideal value of L0/D0 we seek to

compare features of computed ideal trefoil shapes with both experiment and FEM simulation,
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which include a combination of elastic effects of bending and deformation of cross sections.

The first conditions for ideality of knot shapes were derived in Gonzalez and Maddocks [105]

in terms of the global radius of curvature. Technically, these results depended on the slightly

too strong assumption of a C 2 centerline. Extensions to the weaker and sharp hypothesis of a

C 1,1 centerline were obtained in [106]. The necessary conditions that must be satisfied on an

ideal shape include the three-way alternative that every point along an ideal centerline must

be either part of a straight segment, or local curvature must achieve its maximal value 2/D0

(as is the case everywhere for the circular ideal shape for the unknot), or be at one end of a

locally minimal distance, or contact, cord of length D0 between two points on the centerline.

The computations described in Carlen et al. [100] strongly suggested that for the ideal closed

trefoil each point along the centerline was in fact at the end of two distinct contact cords, so

that double contact arises at each point, and, moreover, that at some points the maximum

local curvature of 2/D0 was additionally attained. However, no straight segments arise for the

ideal trefoil knot case. These observations were confirmed and better visualized on improved

simulation data, as fully described in Ref. [107, 108], from where we reproduced images in

Figure 4.1, which we describe next in more detail.

a cb

Figure 4.1: 3D Visualizations of the ideal closed trefoil knot. (Adapted with permission
from [107, 108].) a, a solid tube visualization, which obscures the inner structure of the one-
parameter family of contact chords shown as a translucent yellow surface in panel b, at a
slightly larger scale. The sharp edge of the surface is the centerline of the knot. The red curve
traced out by the center points of the contact chords is the contact set where the tube of
panel a touches itself. The contact curve can be seen to itself be a trefoil knot by the smooth
homotopy from the contact curve (red) to knot center line (green) illustrated in panel c, where
each of the non-intersecting multi-coloured closed curves lies on the yellow contact surface.

For the ideal closed trefoil, visualized as a solid tube in Figure 4.1a, each point along the tube

centerline is in fact at the end of two distinct contact chords. The double-contact feature is

present along the full arc length of the trefoil knot, which means that there is a one-parameter

family of double contact chords which trace out a surface in 3D, as shown in Figure 4.1b,

where the sharp edge of the translucent yellow surface is the centerline curve of the ideal

trefoil shape. The 3D contact set for the ideal trefoil is a closed curve lying on the surface of
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the tubes visualized in Figure 4.1a, but is obscured. This contact line is also traced out by the

mid-points of the contact chords (red curve in Figure 4.1b). The contact curve can be seen

to itself be a trefoil knot by the homotopy illustrated in Figure 4.1c, where there is a family of

non-intersecting multi-coloured closed curves that deform along the contact surface from the

contact curve (red) to the knot center line (green).

Analogous double-contact phenomena had previously been reported for infinite double

helices, depending on the pitch angle [109, 59], and in an ideal orthogonal clasp problem [58,

78]. Maritan et al. [110] and Ref. [109, 59] also showed that in an optimal packing problem,

single helices frequently arise with both double contact cords and maximal curvature, and that

the associated critical aspect ratio of this special helix arises for the Cα carbons in α helical

segments of protein crystal structures. Thus the observed phenomena of double contact cords

with additionally maximal curvature, is perhaps not as exceptional as it might first appear.

The ideal open trefoil knot: Ideal shapes of open knots can also be defined. Here, both the

diameter and a (long) arc length of the filament are prescribed, and the ideal shape for a given

knot type arises for the configuration with the maximal distance (in space, not arc length)

between the two ends of the filament. This is a mathematically well-posed notion of open

ideal configurations, which also closely corresponds to the physical process of tying a knot

in a rope; one ties the knot and then pull the two ends apart until the knot is tight. For the

unknot, the ideal configuration has a straight centerline, and the distance between the two

ends is the arc length of the filament. However, for any nontrivial knot there must be an end

shortening, i.e. a reduction in the maximal possible distance between the ends, with it to be

expected that the more complicated the knot, the larger the end-shortening.

This sense of ideal shape for the open trefoil was first simulated by Pieranski et al. [99, 65].

These authors also sought to relate the equilibrium shape of a knotted filament to the decrease

in its mechanical strength, induced by the knot itself. They reported peaks in the curvature

profile, as a function of arc length, at both the entrance and exit points of the knot. Conse-

quently, it was hypothesized that the weakening of knotted filaments was rooted in these

geometric features. This observation has also been corroborated at the atomic scale by Saitta

et al. [10], who performed molecular dynamic simulations on knotted polymer strands. These

computations pointed to a strain-energy localization at the entrance and exit to the open tre-

foil knot. However, more recent studies by Uehara et al. [111] and Przybył and Pierański [112]

have indicated that the ideal rope model may not be appropriate to describe the mechanical

properties of tight physical knots. Whereas recent studies have addressed the mechanics of

loose overhand knots [61, 63, 64], the mechanics of the corresponding tight configurations

remains largely unexplored.
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Research questions: Overall, we aim to answer the question if the ideal geometric model could

act as a scaffold to (fully or partially) describe the shape of physical knots, including elasticity.

In this context, we will answer the following questions:

• Which key features in simple knots are not captured by the purely geometric rods? And

vice versa, which purely geometric characteristics are smoothed by the presence of

elasticity?

• Are curvature peaks observed at the knot entrance (as reported by Pierański et al. [65])

of elastic knots? if not, in which rod segments does the curvature profile reach its

maximum value in physical knots?

• How is the double-contact line feature from ideal knots translated in a purely elastic

knot system?

• Beyond curvature, what could be the source of structural weakening at the entrance and

exit points of the knot?

4.2 Physical Realization of Trefoil Knots

We have devised an experimental framework and performed FEM simulations to realize tight

physical knots tied on homogeneous, intrinsically straight, elastic rods. In this section, we

describe the methodology that we followed on both fronts.

4.2.1 Experimental Protocols

Fabrication of customized elastic rods: We fabricated composite elastomeric rods with the

goal of making them compatible with µCT imaging and 3D image analysis to extract their

centerline coordinates and self-contacting regions. We used the fabrication protocol described

in Chapter 2, Section 2.2. The fabrication of composite elastomeric rods made out of vinyl

polysiloxane, VPS32 were decorated with an elastomeric concentric physical fiber, an eccentric

inset, and an elastomeric coating. In this Chapter, the inset fiber allowed us to match the

twist of the glued extremities when fabricating the closed trefoil knot. Finally, the elastomeric

rods of total diameter D0 = 8.5mm were then cut to different values of their total length of L0,

depending on the system of interest.

Tying of open trefoil knots: We tied open trefoil knots on the fabricated rods. Any build-up of

excess twist at the free ends was avoided by carefully aligning the eccentric fiber at the extrem-
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ities during the manual tying process. The knot was progressively tightened by increasing the

end-to-end distance while the sample was immersed in a container of soapy water (Palmolive

Original) to ensure vanishing friction conditions. The limited size of the sample holders of

the µCT apparatus required rods of different undeformed lengths: L0 = 185mm or 125mm,

respectively, for the looser or tighter open knot configurations detailed next. Pierański et

al. [99] computed the normalized knot length,ΛOC (the engaged knot length divided by the

tube diameter), corresponding to the normalized difference between the arc lengths of the

centerline associated to the first (entrance) and last (exit) contact points, s2 and s1, respectively.

Both the µCT scanning and the FEM provide access toΛOC. We chose two elastic configura-

tions, one looser (L0 = 185mm, ΛOC = 127.5/D0 = 15.0) and the other tighter (L0 = 125mm,

ΛOC = 85.9/D0 = 10.1) than the tightest ideal open trefoil knot (ΛOC = 12.4) [99]. The elastic

open trefoil knot withΛOC = 10.1 is shown in Figure 4.2b1.
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Figure 4.2: Elastic closed and open trefoil knots in experiment and FEM. a1, Experimental
photograph of a closed trefoil knot tied on an elastomeric rod with length-to-diameter ratio
L0/D0 = 16.37 (L0 = 139.1mm and D0 = 8.5mm). a2, Numerical counterpart of a1 computed
from FEM. b1, Experimental photograph of a tight, open trefoil knot tied on an elastomeric
rod. b2, Numerical counterpart of b1 computed from FEM.

Tying of the closed trefoil knot: To compare the elastic closed trefoil knot and its ideal equiva-

lent (results in Section 4.3), we trimmed the elastic rod according to the length-to-diameter

ratio computed by e.g. Carlen et al. [100]. For these experiments, our undeformed elastic rod of

diameter D0 = 8.5mm had a length of L0 = 16.37D0 ≈ 139.1mm dictated from the geometric

model. The physical closed trefoil knot was tied by first producing an open trefoil knot and

then joining the two rod extremities using a silicone adhesive (Sil-Poxy, Smooth-On). During

this closure procedure the eccentric fibers at each end were aligned at the joint location, which
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appeared to closely correspond to minimizing any additional, imposed, excess twist. Also,

note that this tying procedure does not necessarily yield the lowest energy state, however, the

determination of the relations between twist, Writhe and internal energy was outside of the

scope of this study, and therefore not evaluated further. The closed knot was placed in an

ultrasonic bath (VWR, USC1200TH) with a water-soap mixture (Palmolive Original, ≈20% in

volume) for five minutes (at frequency 45kHz and temperature 22◦C). The combination of the

ultrasonic vibrations and lubrication by the soap minimized frictional effects in the regions

of self-contact (ensuring the absence of tangential surface stresses there), in agreement with

the assumption of frictionless self-contact of idealized rods. Figure 4.2a1 shows an optical

photograph of the final physical closed trefoil knot.

Post-processing of µCT images: We quantified the 3D geometry of the knotted rods using µCT

imaging (µCT100, Scanco Medical), with spacial resolutions (voxel size) of 24.6µm or 16.4µm

for the open or closed knot configurations, respectively (see Chapter 2, Section 2.3.1). The

algorithm for subsequent post-processing of the tomographic images is described in detail in

Chapter 2, Section 2.3.2 and Section 2.4.3. The computation of the discretized curvature of

the rod centerline is according to Bergou et al. [39], and described in Chapter 1, Section 1.2.3.

Further, the regions in the µCT images corresponding to the thin uniform outer coating layer

of Solaris were segmented to reveal the regions of self-contact. The individual contact points

on the rod surface are shown in Figure 4.3a1 and a2.
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Figure 4.3: Methods to realize and analyze the elastic open and closed trefoil knots. a1, Ren-
dering of the reconstructed µCT-data of an experimental open trefoil knot with a normalized
knot lengthΛOC = 85.9/D0 = 10.1. a2, Rendering of the reconstructed µCT-data of the elastic
closed trefoil knot with a length-to-diameter ratio of L0/D0 = 16.37.
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4.2.2 Finite Element Simulations

We used the finite element method (FEM, ABAQUS STANDARD 6.14-1, Simulia, Dassault

Systems 2014) to simulate the tying of the same knots realized in the experiments. These ex-

perimentally validated simulations yield information that cannot be accessed directly through

experiment; e.g., the pressure field in the regions of self-contact. Contrariwise, the close

agreement between the two (see results in Figure 4.4, 4.5, and 4.6) serves as a verification

that the experimental configurations are, indeed, the equilibrium ones, with no additional

significant experimental artifact.

The FEM computations were performed using the procedure described in Chapter 3, involving

a dynamic-implicit analysis to capture the geometrically nonlinear deformation of the closed

trefoil knot. The number of elements per cross-sectional area was 120 and 190 for the open

and closed knots, respectively. The mesh size along the axial direction of the rod was chosen

such that the aspect ratio of the elements was close to unity.

Firstly, we established a configuration of the open trefoil knot based on the knot-tying proce-

dure described in Chapter 3, Section 3.2.1 (see Figure 3.2). Then, we gradually brought the

extremities of the rods in contact to establish the closed configuration, as detailed in Chapter 3,

Section 3.2.3 (see 3.4).

4.3 Ideal Versus Elastic Closed Trefoil Knots

We proceed by quantifying the similarities and dissimilarities between physical and ideal

closed trefoil knots, with the analogous discussion of the open case appearing in the next

section. A closed knot offers the advantage of having a closed centerline curve with matching

periodic boundary conditions; its configuration is not subject to external factors such as

applied external forces. As the experimental material is elastic, a trefoil knot can be tied

in tubes with a wide range of aspect ratios of L0/D0 of undeformed centerline length to

undeformed cross-section diameter. Cases with L0/D0 large would correspond to loose knots

as considered in [61, 63, 64]. Cases with L0/D0 small would require large extension just to be

able to close the centerline to form the knot, with associated large tensions, and presumably

associated large cross-sectional deformation. A systematic study of dependence on a range of

chosen values for L0/D0 is beyond the scope of the current work. Instead we chose the single

critical value L0/D0 = 16.37, which is a good approximation to the smallest value known to be

possible in the ideal geometric theory with an inextensible centerline and undeformable cross-

section (and no bending stiffness). We would expect the resulting experimental equilibrium

configuration to be relatively tight, and with relatively small centerline extension and cross-
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sectional deformation. After a closed trefoil is tied on the physical elastic rod (with undeformed

rod length L0 = 139.1mm and cross-section diameter D0 = 8.5mm), the observed stretch of its

centerline is 1.070 in experiment and 1.082 in FEM-simulation. The overall length-to-diameter

ratio of the stretched rod, L/D , was measured to be 18.12 and 18.53 in experiments and FEM-

simulations, respectively. To further compare our results with those of the ideal geometric

theory, we take the observed small axial strain into account by using the normalized and

rescaled arc length s = S/L×L0/D0, with the stretched rod length, L, and the ideal normalized

rod length L0/D0 = 16.37, while also assuming that the axial strain is constant along S.
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Figure 4.4: Ideal versus elastic closed trefoil knots. a, b Top and side views of the 3D re-
construction of the experimental closed trefoil knot, including the barycenter of the closed
centerline curve, G, and the radial and vertical centerline coordinates, ρ and Z respectively.
The normalized centerline curvature, κ(s) = K D0, is represented by a color-map on the center-
line curve. c, Comparison of the normalized radial centerline coordinate ρ/D0 ≡

p
X 2 +Y 2/D0.

The three arc lengths S are individually normalized and rescaled such that s = S/L×L0/D0. The
shaded areas indicate the inner segments. d, Comparison of the normalized vertical centerline
position z = Z /D0. e, Normalized curvature profile for the ideal and elastic case, including the
active curvature limit at κ= K D0 = 2. The black solid line (ideal) data are reproduced from
Ref. [100, 107]. f, Contact map showing the characteristic double contact in the ideal case, and
the filled area of the equivalent elastic case (experiment and FEM).

To perform a comparison between the centerline coordinates r(s) = (X (s), Y (s), Z (s)) of the

elastic and the ideal closed trefoil knots, we introduce (following Ref. [100]) cylindrical coordi-

nates in the Cartesian basis {ex ,ey ,ez }, as shown in Figure 4.4a and b. The knot lies flat on the

ex -ey -plane, and the origin is chosen by the condition that the center of mass, or barycenter,

of the centerline curve G = ∑N
i=1 r(si )δsi /L lies on the ez -axis. (Here, N is the number of

discretization points, L is the stretched rod arc length, and δsi is the length of the i th segment

between two successive discretized centerline points.) In Figure 4.4c, we compare the radial

distance between the centerline and the barycenter axis, quantified as ρ(s) ≡
√

X 2(s)+Y 2(s),

for the experimental, FEM and ideal knot cases (with three individually scaled arc lengths on

ordinate, but all plots with the same common length scale on abscissa). The experimental
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4.3 Ideal Versus Elastic Closed Trefoil Knots

and FEM data are in excellent agreement. Compared to the ideal knot, the experimental and

FEM closed knots exhibit a radial inflation, presumably due to elasticity effects, as evidenced

by the horizontal offset of the ρ data. For example, ρ/D0 differs by 0.20 and 0.16 in the inner

segments (minima; shaded) and the outer segments (maxima of ρ/D0 curves), respectively.

Moreover, the effect of the cross-sectional deformation is reflected in the amplitude of ρ for

the elastic knot which is 0.95D0 (D0 for the ideal case). To complete the comparison of the

cylindrical coordinates, in Figure 4.4d, we present the rescaled vertical centerline coordinate,

Z (s)/D0, for the three cases, which, interestingly, shows an excellent match between the ideal

and the elastic closed knots, unlike the ρ data presented in Figure 4.4c.

Based on the µCT and FEM data, we construct a two-dimensional contact map; the projection

of the contact surface onto the arc length s vs. arc length σ plane. To assemble this contact

map, each point in the contact surface is assigned to the two closest centerline positions of

the knotted rod, at arc lengths s and σ. In Figure 4.4f, we plot the contact map for the ideal

case [108] (black solid lines), together with the corresponding data extracted from µCT and

FEM. Note that by construction the arc length contact map is point-symmetric with respect to

s =σ= 0 [108]. Consequently, due to this symmetry, we only present one half of the µCT and

FEM contact data, respectively in the lower-right and upper-left quadrants of the s −σ plot in

Figure 4.4e. We observe that, whereas, for the ideal knot, there are precisely two contact points

σ1 σ2 for each s value, the physical knots exhibit an extended contact region with a range of σ

values for each s value. Moreover, we find that the contact set for the physical knot is a surface

that lies fully inside the double contact lines (black lines) of the ideal closed trefoil knot; the

geometric model acts as an outer outer skeleton for the elastic case. This filled (areal) contact

region for the physical case, replaces the double-line contact in the ideal knot (see Section 4.1)

due to cross-sectional deformation. The mismatch between the ideal and the elastic cases is

particularly evident in the inner segments; there, the corners of the geometric contact set are

not filled in the elastic case.

In Figure 4.4e, we plot the curvature profiles of the elastic and the ideal trefoil knots. The

curvature data are also presented in Figure 4.4a (see color-map), along the centerline of the

experimental case. The elastic knot exhibits plateaus in the three outer segments with average

normalized curvatures of κ= K D0 ≈ 0.93 (whereas κ≈ 1.00 for the ideal knot). Despite these

close values in the outer segments, the behavior in the inner segments is strikingly different

between the elastic and ideal cases; the elastic knot exhibits clear curvature minima, whereas

the ideal model predicts twin curvature peaks approaching the active curvature limit κ= 2,

separated by a local minimum [100]. We hypothesize that this difference in curvature profiles

between the two cases is rooted in the cross-section deformations allowed in 3D elasticity,

which we address further in the next section, in the context of the open trefoil knot.
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4.4 Ideal Versus Elastic Open Trefoil Knots

The open trefoil knot allows us to directly control the level of tightness by applying forces to the

rod extremities, to study the role of elasticity more systematically. This feature is not possible

in the closed case since the extremities are, naturally, ‘glued’ together. We will employ the

experimental and numerical toolbox that we developed for the closed trefoil knot to explore

the similarities and dissimilarities between the elastic open trefoil knot and the corresponding

ideal case [99, 65].

In Figure 4.5a, we present the 3D reconstruction of an experimental open trefoil knot (normal-

ized knot length ofΛOC = 10.1), with the measured normalized curvature profile, κ(s) = K D0

superposed onto the centerline. This curvature profile is qualitatively similar to what we ob-

served in Section 4.3 for the physical, closed trefoils, with minima at the inner segments (region

2⃝ in Figure 4.5a). In Figure 4.5b, we plot the experimental and FEM-computed κ(s) profiles

for the two elastic knots that we investigated, with normalized knot lengths of ΛOC = 10.1

and 15.0. By way of example, we describe the physical knot withΛOC = 10.1, referring to the

features labeled in Figure 4.5a and b while traveling along arc length (increasing s). Soon after

the knot entrance ( 1⃝ in Figure 4.5a), the vanishing curvature of the almost straight elastic

rod rises to a local maximum, in the central region of the inner segment ( 2⃝ in Figure 4.5a).

The transition of the rod from the inner to the outer segment has a curvature drop, followed

by an abrupt rise. The normalized curvature then reaches its maximum value in the outer

segment ( 3⃝ in Figure 4.5a). In this high-curvature region, we find that κ> 1 over a wide range

of s due to cross-sectional deformation of the elastic rod. Eventually, there is a local curvature

minimum at the central part of the loop ( 4⃝ in Figure 4.5a).

The curvature profile of the ideal open trefoil knot in its tightest configuration (ΛOC = 12.4)

obtained by Pieranski et al. [99] is also shown in Figure 4.5b, superposed onto the elastic

profiles for comparison. There are important qualitative differences between the ideal and

elastic results. For example the prominent curvature peaks occur at different locations and

with different shapes between the two cases, a difference that can be attributed to elastic

deformation of the cross-sections and the centerline.

In Figure 4.5c, we map the contact region for elastic knots withΛOC = 10.1 and 15.0 (blue and

green regions, respectively), extracted from the µCT and FEM data. For the experiments, the

full contact region in the s −σ space is plotted, whereas, to aid comparison, only the outer

boundaries of the contact regions are shown for the FEM data (dashed lines). Again, FEM

and experiments are in excellent agreement. Naturally, the contact map of a self-contacting

rod is symmetric with respect to the s =σ axis. Indeed, if contact occurs at the centerline arc
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Figure 4.5: Ideal versus elastic open trefoil knots. a, Reconstruction of an experimental open
trefoil knot with ΛOC = 10.1. The centerline of the knot is overlaid by the color-map of the
normalized curvature profile κ(s) = K D0. The following features are referred to in the text:
(1) knot entrance, (2) inner segment, (3) outer segment, and (4) central loop. b, Normalized
curvature profiles. Experimental (solid colored lines) and numerical data (dashed colored
lines) for two normalized knot lengthsΛOC={15; 10.1} compared to the geometric description
according to Pierański et al. [99] (thin black line). The arc length S is normalized such that
s = S/D0 c, Contact regions mapped into the s −σ space: µCT data (filled area) and FEM data
(dashed lines, only the region boundaries are shown). The normalization of the arc length S is
s = S/D0 and σ= S/D0.

length s = a with the arc length σ= b, then it also occurs at s = b with σ= a. Moreover, the

symmetric nature of the overhand knot about s = 0 introduces the axis of symmetry s =−σ on

its contact map.

From the simulations, we extracted data for the contact pressure (normal traction) at the

regions of self-contact. In Figure 4.6a, we present a snapshot of the elastic knot withΛOC = 10.1,

including the contact regions onto which we superpose the contact pressure (normalized by

the Young’s modulus E). The contact pressure map is shown in Figure 4.6b, using a similar

representation (in the s −σ space) used in Figure 4.5c for the contact map. The highest
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Chapter 4. From Ideal to Elastic Knots: The Shapes of Physical Trefoil Knots

contact pressure is found along the entire central region of the contact set, with maximum

characteristic normalized values of p/E ≈ 0.44. Note that the knot entrance/exit (shaded

regions in Figure 4.6b) correspond to regions of localized pressure, aligned perpendicularly

to the rod centerline. To further quantify the localization of deformation along the knot,

in Figure 4.6c, we present measurements of the circumferential contact set width profile

Lc (s), normalized by the total perimeter of a rod cross-section at arc length s. We observe

sharp peaks of Lc at the inner segments (−4.8 ≲ s ≲ −3.8 and 3.8 ≲ s ≲ 4.8), where up to

90% of the circumference of the cross-section is in self-contact. The regions of pronounced

contact pressure (Figure 4.6b) in combination with the sharp circumferential contact width

peaks (Figure 4.6c) lead to localization of high contact pressure in a narrow region with a

small range of arc lengths. Consequently, as shown in Figure 4.6d, where we quantify the

profile of deformed cross-sectional area as a function along the centerline of the rod, the

cross-section of the inner rod segment is elastically constricted by up to ∼ 63% compared to

its rest cross-section area; such localized constrictions in knots are typically referred to as nip

regions [22].
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Figure 4.6: Constriction at the entrance and exit of elastic tight open trefoil knots. a, Numer-
ical FEM contact pressure on the 3D knot of the tight configuration (ΛOC = 10.1). The shaded
regions indicate the inner segments at the knot entrance/exit. b, Numerical contact pressure
map for tight configuration (ΛOC = 10.1). The normalization of the arc length S is s = S/D0

and σ = S/D0. c, Circumferential (µCT- and FEM-data) contact set width Lc along the arc
length, showing clear peaks at the entrance/exit of the knot. d, Cross-sectional area (µCT- and
FEM-data) along the arc length, normalized by the cross-sectional area of the undeformed
rod. The quantities plotted both in c and d are also represented on the respective insets, using
a color-coded centerline of the 3D reconstruction of the knot.
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4.5 Homotopy in the Physical Closed Trefoil Knot

Motivated by the known homotopy between the contact line and the knot centerline for

numerically simulated, geometrically ideal, configurations of the closed trefoil knot (see

Section 4.1 and Figure 4.1) we provide sequence of a three-dimensional rendering constructed

from theµCT data for the physical closed trefoil knot in Figure 4.7. The knotted elastomeric rod

(VPS32), shown in Figure 4.7a has a rest length L0 = 139.1 mm and rest diameter D0 = 8.5 mm

(D0/L0 = 16.37). After locating the centerline of the knotted rod (black curve), as well as its

self-contacting surface (blue surface), we extract the rim of the contact surface (red curve) in

Figure 4.7b.

a b

c1 c2 c3

5 mm

Figure 4.7: Homotopy between the centerline of the physical closed trefoil knot and the
rim of its contact shape. a, 3D-visualization of the physical closed trefoil knot constructed
from µCT data. b, Image-processing of the composite rod allows to get access to the material
centerline (black curve) and the contact surface (blue region). Also, the rim (edge) of the
contact shape is determined (red curve). c1-c3, Gradual morphing of the rim of the contact
shape towards the material centerline reveals that the rim of the contact shape shares the
same topology as the closed trefoil knot.

Without undergoing self-crossings (fixed topology), the rim of the contact surface is smoothly

morphed into the rod centerline, thus revealing the homotopy between the rim of the contact

shape and the rod centerline. To perform this morphing, we first parametrized the rim of

the contact shape as R(s∗), where s∗ is the arc length along the rim (of total length LR ).

The intermediate morphing curve, w(s), ranges from the rim curve to the centerline curve

(parametrized as r(s)), following the parametrized deformation w(s) = (1− t )R (s LR /L)+ t r(s),
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Chapter 4. From Ideal to Elastic Knots: The Shapes of Physical Trefoil Knots

where L is the total length of the centerline curve, and 0 ≤ t ≤ 1 is the morphing parameter.

The morphing sequence is presented in Figure 4.7c1-c3 with the blue arrows visualizing the

spacial displacement of the red (rim) onto the black curve (centerline).

Just as for the 2D arc length contact sets (cf. Figure 4.4), where the 2D contact region of the

elastic configuration fills the outer skeleton provided by the double-contact line of the ideal

geometric model when elastic deformation of the cross-section is allowed, the 3D ideal contact

set curve acts as skeleton, which is fattened, or bridged, to arrive at a 3D physical contact

surface strip, whose topology is inherited from the ideal case.

4.6 Summary and Outlook

We have systematically quantified the shapes of physical trefoil knots, in both closed and open

configurations. Excellent agreement was found in all considered quantities between FEM

and experiment. For the latter, we made extensive use of X-ray micro-computed tomography,

gaining access to volumetric information, including centerline curvature and cross-sectional

deformation profiles. In parallel, the experimentally validated FEM enabled us to quantify

the contact pressure field, which is not available in experiment. Direct comparisons were

also established between the experimental and FEM data for elastic trefoil knots and prior

numerical computations of their (purely geometric) ideal shape counterparts.

For both open and closed physical trefoil knots the contact sets observed in both experiment

and FEM were smooth surfaces, with a positive contact set width Lc, i.e. finite strips. For the

closed trefoil, the physical contact surface is actually a closed strip, which, as an additional

topological observation, we remark is a one and a half turn Möbius band (the more common

Möbius band has only a single half turn) and so is non-orientable (it has only one face) and

only one edge. Moreover for such 1.5-turn Möbius bands the single edge itself forms a trefoil

knot. This is perhaps at first sight surprising, but the topology of the contact strip is inherited

from the topology of the contact line of the ideal closed trefoil configuration, where it is already

understood that the contact set in 3D is a closed curve that is itself a trefoil knot [100].

In the comparison between the elastic and ideal cases of trefoil knots, we found that their

curvature profiles were not just quantitatively different, but also qualitatively different. In both

open and closed cases, elasticity regularizes the curvature peaks within the inner segment

that are predicted by the purely geometric model. To gain insight into the discrepancies

between the elastic and the ideal systems, we focused on the open configuration, allowing us

to systematically vary the knot tightness. The curvature peaks of the elastic system occur in the

outer segment, for both looser and tight knots, contrary to the geometric counterpart, where
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they appear at the knot’s entrance/exit regions. The contact pressure distribution extracted

from FEM exhibited localized regions at the entrance of the knot (inner segments). This

pressure localization leads to a prominent cross-sectional deformation in the inner segments,

acting as local constrictions in these nip regions.

As reported by C.W. Ashley in his comprehensive reference manual on knots [22], “a rope is

weakest just outside of the entrance of the knot”; a finding that is commonly confirmed by

practical experience in knotted filaments. The significant reduction in the cross-sectional

area reported in Figure 4.6d at the entrance/exit of tight elastic open knots could act as a

precursor for weak spots on knotted filaments. Our interpretation is different from that of

Pierański et al. [65], who attributed the onset of failure to regions of high centerline curvature,

computed using their purely geometry model, which our results demonstrate to be in strong

disagreement with the curvature profile of physical knots. Our investigation highlights that

a mechanics-based approach, going beyond pure geometry, will be necessary to rationalize

knot failure. Given the high level of tightening in functional knots tied onto elasto-plastic

material filaments, these constriction regions are prone to local plastic deformation [111].

The effect of plasticity on the equilibrium shape of physical knots remains an open question,

which we will address in Chapter 6 in the context of knot strength in surgical knots.
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5 To Stop or Not to Stop: Capsizing

Mechanism in Stopper Knots

In this Chapter, we investigate the stability of stopper knots using precision experiments and

FEM simulations. We thread an elastic rod of diameter, D, through the hole of a stopper

plate, tie a figure-eight knot at one of the rod’s extremities and pull it against this plate (see

Figure 5.1a). In this physical model system, the flat, rigid plate can represent the following

objects in more applied scenarios: the belaying device in rock climbing, the needle’s eye in

sewing, or the sailor’s feet sliding against bulky knots tied in a footrope when setting the

sails. When the figure-eight knot is pulled against the plate, it converts a high pulling force

on one extremity of the filament into a much smaller force at the other extremity before the

knot capsizes. Experimentally validated FEM simulations (see Figure 5.1b) are employed to

systematically investigate the effect of the frictional interactions on the capsizing mechanism.

We quantify twist in a critical rod segment of the knot and demonstrate that friction-induced

twist between self-contacting rods is at the source of capsizing. Increasing the friction coeffi-

cient between the rod and the stopper plate hampers the onset of capsizing. Whereas most

of our investigation focuses on elastic rods, we note that differences of this mechanism are

to be expected for braided ropes. Finally, we characterized several standard climbing and

multi-functional (braided) ropes, all exhibiting a decoupling of the torsional and bending

rigidities. Ropes are found to delay or even impede the capsizing mechanism due to their

relatively higher twist energy penalty when compared with bending.

The text and figures in this Chapter are adapted from the unpublished manuscript, which is

being finalized for submission to the journal Extreme Mechanics Letters in collaboration with

Pedro M. Reis.
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5.1 Literature Review and Motivation

Each knot has different topological and mechanical characteristics, enabling it to fulfill a

specific task better than another one would (see Chapter 1, Section 1.1). Stability is key such

that the function of applied physical knots is guaranteed, and filament breakage or knot

unraveling is avoided. If a knot fails to fulfill its function, safety might be compromised. For

instance, the consequences might be disastrous if a hitch attaching the mooring line of a boat

to the dock unravels [37], a bend joining two ropes during rock climbing unties, or a binding

knot in surgical suturing slides open [113, 114, 115, 116].

The need to evaluate knot stability has been recognized and addressed by Patil et al. [2]

for common binding knots and bends. Unlike these 2-tangles, 1-tangles do not unravel by

applying a tensile force on the extremities. Single-tangled knots, which are subjected to

external loads and prevent a rope from escaping a device or block an object from slipping

along a filament, are called stopper knots.

Stopper knots are ubiquitous across applications. In sewing, a knot prevents the filament to

escape through the needle’s eye. A figure-eight knot acts as a stopper knot in rock climbing,

blocking the rope end to escape through the climber’s belay device. In sailing, bulky knots in

the ‘footrope’ allow to safely set the sails, while in tennis racket stringing, a set of half-hitches

is tied at the string extremities against the frame, thus setting the string tension. This knot

type is part of any comprehensive reference manual on knots [22, 1, 117, 118]. However, past

studies evaluating their mechanical performance are limited to the risk of jamming and the

knot bulkiness [22, 117]. The overhand knot is prone to jamming and injuring the rope [22].

The Stevedore and Ashley’s stopper knots are bulkier [117], however, less applied due to their

intricate topologies. The common stopper knots are the figure-eight and the double overhand

knots, which are denoted in Alexander-Briggs notation as 41 and 51 [42], as introduced in

Chapter 1, Section 1.3.

A recurrent and often undesired phenomenon in physical knots is called capsizing, which

describes a mechanism involving the rearrangement of the knot configuration without altering

its topology [22, 1]. On the one hand, intentional rearrangement of the rod segments can

facilitate the untying of a jammed knot. However, on the other hand, capsizing constitutes

a danger if the knot fails to resist an external load. While the phenomenon of capsizing is

well-known amongst sailors, the underlying kinematics and mechanics has, to the best of our

knowledge, never been addressed.
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5.1 Literature Review and Motivation

Research questions: In this Chapter, we aim to rationalize the mechanism of the capsizing

failure mode in the common figure-eight knot. In this context, we will address the following

questions:

• How do the rod segments rearrange when the knot is pushed against a blockage?

Throughout the capsizing process, what is the maximal resistance the knot can provide,

thereby preventing the end of a filament from passing through an orifice?

• What is the source of capsizing? How do the frictional interactions between self-

contacting rods and between the rod and the rigid stopper plate affect the capsizing

force?
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Figure 5.1: Model system for a figure-eight stopper knot. a, b, Sequence of experimental (a)
and FEM (b) snapshots at different stages of the force-displacement curve. The sequence
described by (i)-(vi) corresponds to the same loading level for the experiments and FEM. In
panel b, the color map displays the true strains in the rod. The labels (i)-(vi), in both panels a
(experiments) and b (FEM) correspond to the same points (i)-(vi) of the force-displacement
curve in Figure 5.6a.
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• Can we rationalize the failure mechanism and, consequently, tune geometric and me-

chanical properties (e.g. initial knot tightness and friction coefficients) to delay the

capsizing event?

• How do elastic and braided systems compare in terms of capsizing? In case of dissimilar

behavior, which properties could impede the failure of knots tied in ropes?

5.2 Experimental and Numerical Methodology

5.2.1 Fabrication of the Composite Rods

In studying the failure of stopper knots, we will focus on the capsizing mechanism (more

details below) involving reconfigurations of the knot instead of other failure mechanisms such

as fracture. For that purpose, we need to decouple the axial stretching of the rod caused by

the pulling force from its bending and twisting strains. Moreover, minimizing axial stretching

also reduces the effect of cross-sectional reduction during testing. We consider composite

rods that are elastic in both bending and twisting but nearly inextensible in the axial direction.

Therefore, our rods exhibit transversely isotropic behavior, a property that is observed in

structured materials such as ropes, with an axial stiffness much larger than their bending

stiffness.

NiTinol fiber
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knot
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matrix
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Figure 5.2: Fabrication and preparation of a figure-eight stopper knot. a, Composite rod,
comprising an elastomeric matrix (VPS) and a slender fiber (Nitinol) located at the centerline.
(left) A segment of the VPS matrix was cut out to reveal the Nitinol fiber. (right) Cross section of
the composite rod. b, Photograph of the experimental setup. c, Knotted configuration used in
FEM, showing the mesh and the beam reinforcement at the centerline location r (s) to emulate
the composite rod with high axial stiffness.

100



5.2 Experimental and Numerical Methodology

The protocol described in Chapter 2, Section 2.2, served as a basis for the fabrication of elastic

rods, but needed to be adapted for this Chapter to add the axial inextensibility property. We

fabricated composite rods of diameter D = 8.3mm and length, L = 35cm made out of vinyl

polysiloxane, VPS32 with a stiffer thin fiber embedded at the centerline, as shown in Figure 5.2a.

For this fiber core, we used a slender Nitinol wire (Dynalloy, Inc.; diameter, DNitinol = 0.25mm,

Young’s modulus, ENitinol = 79.5GPa, Poisson’s ratio, νNitinol = 0.33). The fiber is constrained at

the rod extremities by a termination knot (overhand knot) against a circular, rigid Polyvinyl

chloride (PVC) shim stock plate (thickness: 0.75mm) with a central hole. Due to the significant

difference in axial stiffness between the silicone matrix and the central fiber, the composite

rods can be regarded as effectively inextensible. While the caps prevent global rod stretching,

the composite rod design does not necessarily prevent local sliding and debonding between

the VPS32 matrix and the Nitinol core, which needs to be verified with numerical results.

5.2.2 Characterization of Frictional Properties

To ensure reproducible frictional behavior, the rods were surface-treated with talcum powder

(Milette, Migros). According to the experimental protocol introduced in Chapter 2, Sec-

tion 2.5.2, the frictional relation between the tangential force, Ft , and the normal force, Fn , is

used to characterize the contact behavior. In Figure 5.3, we present the results for the static

and dynamic friction behavior over a wide range of normal loads, satisfying the Amontons-

Coulomb friction law. The linear fits, Ft = µ{s,t }Fn , of the experimental data yield a static

friction coefficient, µs = 0.41±0.04, and a dynamic friction coefficient, µd = 0.35±0.02.
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Figure 5.3: Characterization of the static and dynamic friction coefficients (µs and µd ,
respectively) between surface-treated rods over a wide range of normal contact loads, Fn . The
solid line and shaded region represent the linear fit and the corresponding confidence interval.
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5.2.3 Apparatus and Setting of the Initial Configuration

Developing a protocol to set the initial configuration of the stopper knot system is crucial

for reproducibility due to the possibility of meta-configurations caused by rod-rod frictional

self-interactions. This preparation protocol comprises two steps: (i) pre-tensioning of the

knotted configuration, and (ii) loading of the lower extremity by a dead weight. (i) First,

we tied a loose configuration of the figure-eight knot mid-way along the centerline of the

composite rod and aligned the knotted rod vertically. The upper extremity of the rod was

then passed through a horizontal acrylic plate (thickness: 10mm), hereby referred to as the

stopper plate, containing a circular clearance hole of diameter d = 10mm (slightly larger than

the rod diameter, D = 8.3mm), and clamped to the load cell of a universal testing machine

(UTM, Instron 5943). Note that the lower surface of the stopper plate was coated by a thin film

of VPS32 (≈ 0.5mm in thickness, talcum powder-treated surface) to have the same friction

properties as the self-contacting rods. The lower extremity was first clamped, and the end-

to-end distance of the knotted configuration was increased using the UTM to set the value of

pre-tension, P , in the system. (ii) Then, the extremity of the lower rod was de-clamped and

loaded by a weight (see Figure 5.2b) to induce a dead load, M g , which kept the knot in place.

The hanging mass was fixed at M = 0.2kg and g is the gravitational acceleration. The resulting

knot shape constitutes the initial configuration for the experimental tests.

5.2.4 Protocol for the Experimental Mechanical Tests

The initial configuration can be quantified by the knot size, H , the defined shortest distance

between the outer positions of the knot, as shown Figure 5.1a (i). The use of the geometric

control parameter allows to accurately compare knots with different friction coefficients

between the self-contacting rods. This comparison would not have been possible if the

pre-tension, P , had been used directly.

Before the upper loop of the knot touches the stopper plate, an optical photograph is taken

from a side-view (see Figure 5.4a). The use of a back-light enables sharp transitions for the

image binarization in Matlab. Figure 5.4b shows the complement of the binary image with

filled potential holes (Matlab function imfill).

Then, in Figure 5.4c, we plot the gradient of the intensity profile (improfile) along horizontal

line segments of the binary image, i.e. the gradient of the number of white pixel-values for

each horizontal line segment. Two distinct peaks in the gradient profile are recognized along

the knot height. They are related to the sudden transitions between the straight, vertical rod

and the bulk knot (upper and lower loop). A gradient threshold of ± 4 (vertical dashed lines)
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Figure 5.4: Image analysis to determine knot size. a, Optical photograph of the side view of
the figure-eight knot in front of a back-light. b Image-processing on the captured side view
image of the knot. c Profile gradient as a function of the captured height from b. The dashed
vertical lines define the positive and negative gradient thresholds. The shortest distance
between the intersections of the gradient thresholds with the plotted gradient profile yields
the knot size, H .

allows to determine the shortest distance between the outer surface of the upper and lower

loops (see horizontal dashed lines), which corresponds to the knot size, H .

The pre-tension was systematically varied in the range 1 ≲ P/M g ≲ 3 to obtain initial

configurations with different values of H , as shown in Figure 5.5 (inset). The data evidences

that higher values of pre-tension result in lower knot sizes. These results will be discussed

in more detail in Section 5.3. Using the UTM, the rod containing a figure-eight knot and the

dead load on the lower extremity was pulled by the upper extremity such that the knot was

pushed against the (rigid) stopper plate. The tests were done under imposed displacement,

at constant vertical velocity v = 1mm/s. During testing, we recorded the traction force, F ,

measured by the UTM as a function of the displaced rod length, δ.

5.2.5 Finite Element Simulations

In parallel to the physical experiments, we performed numerical simulations using the finite

element method (FEM, ABAQUS STANDARD 6.14-1, Simulia, Dassault Systems 2014) to probe

quantities that cannot be readily varied in the experiments. Particular emphasis is given to

systematically varying the values of the rod-rod and rod-plate friction coefficients. Moreover,

FEM enables us to quantify the local twist of the rod during the capsizing mechanism.

The FEM simulations were conducted with a nonlinear dynamic-implicit analysis, as described

in Chapter 3. An initially straight elastic rod was meshed with reduced hybrid 3D solid
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elements (C3D8RH). The number of elements was 270 along the axial rod direction and 44 on

the cross section. The material was modeled as an incompressible neo-Hookean solid, with

Young’s modulus chosen to be the same as the experiments E = 1.25MPa. Two other values

E = {0.52, 0.98} were also considered.

In addition to the method described in Chapter 3, 3.1, and to mimic the Nitinol fiber at the

core of the experimental samples, a beam reinforcement was implemented at the centerline

(see Figure 5.2c) with the experimental geometric and material properties, DNitinol and ENitinol.

The corresponding Abaqus feature, stringer element, shares its nodes with the underlying

mesh. Further, a node-set is defined along the axial direction (described by the arc length, s)

at the outer rod surface. From the discrete coordinates ξ(si ) along the axial nodes i ∈ [1, 270],

together with the material centerline nodes, r (si ), we can define the director vector d̂1(si ).

As introduced in Chapter 1, Section 1.2.2., this director vector is orthogonal to the straight,

undeformed centerline [36, 37]. The discrete form of d̂1(si ) is given by Eq. (2.16) in Chapter 2,

Section 2.4.1, and will be needed in Section 5.6 to quantify the evolution of twist in the rod

between different loading levels of the knot (see Chapter 1, Section 1.2.2).

During testing, the stopper-knot system is subject to two types of contact interactions, both

involving friction. First, there are regions of self-contact (labeled as R −R for ’Rod vs. Rod’),

where the rod is in frictional contact with itself. Second, there are regions where segments

of the knotted rod are in frictional contact with the stopper plate (labeled as R −P for ’Rod

vs. Plate’). The rod-rod and rod-plate contacts were modeled using Amontons-Coulomb

friction law. Similar to Chapter 4 and previous studies [62, 78, 90, 37], the frictional contact

was enforced through normal penalty forces combined with tangential frictional forces, imple-

mented by a single friction coefficient. Appropriately attributing the friction coefficient to the

respective contact regions will be crucial in this Chapter and will be discussed in more detail

in Section 5.5.

The computational procedure to tie a knot in a purely elastic rod, including validation of the

figure-eight knot, was reported in Chapter 3, 3.2.4 [62]. In the present study, we followed the

same knot-tying protocol for the composite, axially reinforced rod. The initial configuration is

numerically set in the same way as in the experiments by tightening the figure-eight knot up

to a pre-tension, P , which subsequently is released to the dead load, M g . Finally, similarly to

the experiments, the knot size, H , is determined as the shortest distance between the outer

positions of the knot (see Figure 5.2c).
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5.3 Initial Knotted Configuration Prior to Testing

As described in Section 5.2.3, prior to each experimental test, to ensure reproducibility, the

initial configuration of the knotted rod needs to be prepared with a protocol involving pre-

tensioning of the system, followed by the application of a dead load at the lower extremity of

the rod to set the knot size. Figure 5.2b presents a photograph of the experimental system

after the preparation steps and before testing.

In Figure 5.5 (inset), we plot the experimental results and the corresponding FEM simulations

for the knot size, H , obtained after the preparation steps, as a function of the applied pre-

tension, P , for the composite VPS32-Nitinol rod (reference system with E = 1.25MPa for

the elastomeric matrix and M = 200g for the dead load). The experimental data (crosses;

the error bars represent the standard deviation of 5 independent runs) are in satisfactory

agreement with the FEM simulations. In the plot, we also present FEM simulation data for

two other composite-rod systems with (E = 0.98MPa, M = 157g) and (E = 0.52MPa, M = 83g).

We explore these three different cases so as to test that the general scaling laws valid for a

homogeneous rod still hold for our composite rod. Specifically, the geometric properties (e.g.,

knot size, H) for a knotted homogeneous rod are expected to scale with the rod diameter,

D. In addition, the dead load, M g , and the bending stiffness, B = EπD4/64, are the primary

ingredients setting the knot shape. Physical similarity between systems, that is with the same

value of the dimensionless group K = ED2/(M g ), with different material properties (E),

requires the corresponding dead load to be adapted. The three data sets in Figure 5.5 (inset)

all have the same value of K = 44; the collapse of the three curves when plotted as H/D

versus P/M g confirms the physical similarity of the three systems. The change of the bending

stiffness through the Young’s modulus is fully compensated by the adapted dead load. Thus,

incorporating the stiff, slender fiber does not affect the scaling of the elastic system, which

deforms primarily through bending.

In Figure 5.5, even if the agreement between experiments and the collapsed simulation data

is satisfactory, especially given the complex coupling between the underlying geometrically

nonlinearities and the frictional contact, the FEM systematically under-predicts the exper-

imental data. This mismatch suggests the likelihood that an additional quantity affects the

knot shape. At this stage, we speculate that the reason for this offset can be attributed to

the detailed treatment of friction; for the FEM data presented so far, we set both the rod-rod

and rod-plate friction coefficients to µ= 0.33 (lowest dynamic friction coefficient measured

experimentally), which is over-simplistic, as we demonstrate next.

105



Chapter 5. To Stop or Not to Stop: Capsizing Mechanism in Stopper Knots

K
no

t 
siz

e,
 H

/D

H
(m

m
)

1.25
0.98
0.52

Pre-tension, P/Mg

FEMExp. E(MPa) M(g)
200
157
83

P(N)

Figure 5.5: Initial configuration of the figure-eight knot. Normalized knot size, H/D , after
preparation and before testing as a function of the applied pre-tension, P/M g . The error bars
in the experimental data (crosses) correspond to the standard deviation of 5 independent
tests. FEM data is represented by the solid symbols (see legend for values of E and M) (inset)
Corresponding dimensional version of the plot.

5.4 Mechanical Testing of the Figure-Eight Stopper Knots

The phenomenon of capsizing can be observed when a knot is subjected to an external

force [22, 1]. Using the protocol described in Section 5.2.4, the figure-eight knot was tested

by pulling it against the stopper plate containing a clearance hole. In Figure 5.1a, b, we

had displayed a sequence of snapshots (i)-(vi) of the experimental and numerical model

systems that we now describe in more detail. For clarity, we refer to the pulled end as the

upper extremity of the rope clamped to the load cell of the UTM, whereas the free end is the

extremity of the rod onto which the dead load is attached. Below the pulled end, the rod is

passed through the clearance hold of the stopper plate, under which the figure-eight knot is

located. To further simplify the discussion of the capsizing mechanism, we use the following

designations: the upper bent rod segment touching the stopper plate is called the upper loop,

and the lower one closer to the free end is referred to as the lower loop.

In the following description, the labels (i)-(vi) correspond to the panels in Figure 5.1a, b, which

are at the same loading stages for the experiments and simulations. At (i), the upper loop first

establishes contact with the stopper plate and is then compressed against it; (i)-(ii). Once

the whole upper loop contacts the plate, the lower loop acts as a hook, lifting the free end;

(ii)-(iii). Between (iii) and (iv), the lower loop opens the upper loop in a wedge-like mechanism.

Consequently, as we quantify below, a friction-induced twist is accumulated in the upper loop.

Both the wedging and the twisting mechanisms trigger the lower loop to overtake the upper
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5.4 Mechanical Testing of the Figure-Eight Stopper Knots

one, with the latter rolling and snapping down towards the free end; (iv)-(v). In the final knot

configuration (vi), the figure-eight knot reaches a new traveled position closer to the extremity

of the free end. This capsizing mechanism was observed for all studied knot sizes in both

experiments and simulations. Note that if the pulling process were to be continued, other

capsizing cycles would repeat (with increasingly tighter initial configurations). After multiple

capsizing events, the knot would eventually unravel at the extremity of the free end, which

would then fully pass through the stopper plate. For the remainder of the study, we focus on a

single (the first) capsize event.

In Figure 5.6a, we present a typical force-displacement curve for experiments and FEM for

the knot size H = 6.6±0.1 (prepared with a dimensionless pre-tension of P/M g = 1.99), the

same as the knot in Figure 5.1. The normalized traction force, F /M g , measured by the load

cell increases monotonically, albeit nonlinearly, as a function of normalized displaced rod

length, δ/D, then reaches a peak force, F0, and, finally, drops close to zero. We shall refer

to F0 as the capsizing force: the maximum load-bearing capacity at capsizing. The points

(i)-(vi) correspond to the loading sequence presented in Figure 5.1, with the capsizing event

occurring between (iv) and (v).
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Figure 5.6: Testing of a figure-eight stopper knot. a, Mechanical testing of the stopper
knot: force-displacement curve obtained when the knotted rod (including a dead weight) is
pulled against the stopper plate. The solid (red) line corresponds to the experimental data;
the shaded region represents the standard deviation of 4 runs. The blue and green curves
correspond to the FEM data; the gray-shaded region corresponds to the interval associated
with the full range of friction coefficients explored (µR−R and µR−P ); see text for details on the
parameters. The points (i)-(vi) correspond to the configurations in Figure 5.1 with the same
labels. b, Normalized capsizing (peak) force, F0/M g , versus knot size, H/D . The experimental
data is represented by the solid circles and the FEM data by the open symbols (see the legend
for the corresponding values of µR−R and µR−P explored in the simulations.)
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Note that the nonlinear behavior of the force-displacement curves in Figure 5.6a is not due to

hyperelastic stretching since the Nitinol center fiber makes the system effectively inextensible.

Previous studies [78, 62, 37, 33] showed that the dynamic friction coefficient is sufficient

to reliably capture self-contacting rod interactions. Thus, the frictional rod-rod contact is

described by the experimentally measured average and uncertainty of the average dynamic

friction coefficient , µR−R = 0.35±0.02, which yields the lower and upper bounds, µR−R ∈
[0.33, 0.37].

Since it is unclear how the rod-plate frictional properties affect the response of our system,

we systematically consider the full range of relevant friction coefficients, µR−P ∈ [0.33 0.45],

between the lowest dynamic friction coefficient and the highest static friction coefficient. The

envelope of the FEM data in Figure 5.6a spans the four numerical force-displacement for

the four limiting frictional-coefficient values: µR−R = {0.33, 0.37} and µR−P = {0.33, 0.45}. We

remark that the experimental and numerical response curves are similar, exhibiting the same

events corresponding to the labels (i)-(vi) in Figure 5.1 at nearly the same loading levels, which

partially validates the numerics within the considered range of friction coefficients.

The stopper knot system involves a nontrivial interplay between static and dynamic friction

behavior. In Figure 5.5b, we plot the experimentally measured capsizing force, F0/M g , versus

knot size, H/D, finding that F0/M g tends to decrease with increasing H , although there is

some scatter in this experimental data. In other words, the tighter the initial configuration

of the figure-eight knot, the higher the capsizing force is. Similar to the simulations data

in Figure 5.5a, in Figure 5.6b, we present four FEM-computed datasets for the four limiting

values of frictional-coefficient considering the Rod-Rod and Rod-Plate interactions: µR−R =
{0.33, 0.37} and µR−P = {0.33, 0.45}. The complex envelope of the FEM data (grey region in

Figure 5.6b) encompasses the experimental data, serving as an additional validation of the

simulations. Note that each of the FEM curves shows an overall decreasing trend of F0/M g

versus H/D , albeit non-monotonically; there is a ’bump’ in the data (at a characteristic knot

size) H/D , the location of each depends on the combination of µR−R and µR−P . We have not

been able to rationalize this feature of the FEM data, speculating that it is related to a complex

interaction between geometry, contact pressure, and friction, calling for a more detailed future

analysis.

5.5 The Role of Friction in Dictating Knot Performance

By surface-treating the composite rods in the same way as the thin-film coating of VPS on the

underside of the stopper plate (see Section 5.2.2), the experimental system was designed to

target values of rod-rod (µR−R ) and rod-plate (µR−P ) frictional properties that were as close

108



5.5 The Role of Friction in Dictating Knot Performance

as possible. Still, having validated the FEM simulations against experiments in the previous

section, we now leverage the FEM to investigate in more detail the rod-rod and rod-plate

(dynamic) frictional interactions affect the capsizing mechanism.

First, we perform FEM simulations with the following four values µR−R = {0.32, 0.33, 0.35, 0.37}

of the rod-rod friction coefficient while fixing the rod-plate friction coefficient to µR−P = 0.45.

In Figure 5.7a, we plot the normalized pulling force, F /M g as a function of the length of the

displaced rod, δ/D , for the knot size, H/D = 6.59±0.04. We find that all four curves coincide,

independently of µR−R , between the loading levels (i) and (iv) (same labels as in Figure 5.1).

However, the portion of the curve with a final steep slope between the loading step (iv) and

the triggering of capsizing at (v) is extended for lower values of µR−R , consequently, with

higher capsizing (peak) forces. In Figure 5.7b, we plot the normalized peak force, F0/M g , as

a function of knot size, H/D, for the same four values of µR−R explored in Figure 5.7a. The

same qualitative behavior (non-monotonic decrease) is observed for the four cases of µR−R ;

from high capsizing forces for tight figure-eight knots (H/D ≲ 6.5) to lower capsizing forces for

looser configurations (H/D ≳ 7). Note that the curves shift progressively to higher values of

H/D as µR−R increases. With decreased rod-rod friction, the knot needs to be tighter (smaller

H) to attain a similar level of mechanical performance, as measured by the capsizing force.

Next, we fix the rod-rod friction to µR−R = 0.3, and systematically vary the rod-plate friction

with the values µR−P = {0.20, 0.30, 0.40, 0.50}. In Figure 5.7c, we plot the corresponding force-

displacement curves for the same knot size, H/D = 6.41±0.004. Similarly to Figure 5.7a, the

curves coincide between loading levels (i) and (iv) but with a final extension, between (iv) and

(v), with capsizing (peak) forces that increase with µR−P . In in Figure 5.7c, we plot F0/M g

versus H/D for the four values of µR−P . For loose knots below H/D ≈ 6.5, the approximately

constant peak force level increases with µR−P . For H/D ≳ 6.5, after a transition region, the

peak force is reduced significantly. Throughout, the mechanical performance of the knots as

measured by its capsizing force increases substantially for higher values of µR−P . Take, for

example, the figure-eight knot of size H/D = 6.3. For µR−P = 0.2, the figure-eight knot achieves

a peak force F0 ≈ 15M g and only F0 ≈ 9M g when µR−P = 0.5.

Combining the data in Figure 5.7b and Figure 5.7d, we conclude that increasing the rod-plate

friction has a more important effect in increasing the performance of the stopper knot than

the rod-rod friction, especially for looser initial configuration. These findings could serve as

valuable guidelines for practical applications of performant stopper knots.
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Figure 5.7: Effect of the frictional interactions on the capsizing force. a, b, Performance
characterization for changes in the frictional behavior of the self-contact rods. The force-
displacement curves in a correspond to the knot size, H/D = 6.59±0.04, in b (vertical lines).
c, d, The effect of the surface roughness of the stopper plate on the capsizing force. The
force-displacement curves in c correspond to the knot size, H/D = 6.41±0.004, in d (vertical
lines).

5.6 Friction-Induced Twist Triggers Capsizing

We proceed by investigating the mechanism underlying the finding that the capsizing (peak)

force, F0, is strongly associated with the extent of the force-displacement curve, between

loading levels (iii) and (iv), prior to capsizing, as described in the previous section (cf. Fig-

ure 5.7a, d). Moreover, from the data in Figure 5.7b, c we found that F0 is directly related to the

rod-rod and rod-plate frictional interactions, increasing with both µR−R and µR−P . Next, we

use the experimentally validated FEM to quantify the extent of twisting of the upper loop. For

this purpose, we will use information on the evolution of the director vector, d̂1(s̃), as defined

in Eq. (2.16), as a function of normalized arc length, s̃ = S/D , and loading level. In Figure 5.8a,

we show representative FEM-computed configurations of the stopper knot at four represen-

tative loading levels, (i)-(iv); the labels corresponding qualitatively to the configurations in
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Figure 5.1. Note that the stopper plate is not shown for clarity of visualization. In these 3D

representations, the centerline of the rod (thin solid line) is decorated with the d̂1(s̃) director

vector, only on the upper loop, defined in the segment with arc length 21 ≤ s̃ ≤ 30, with s̃ = 0 at

the pulling end. The director vector was defined in the straight, unknotted rod configuration

(see Section 5.2.5).
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Figure 5.8: Friction-induced twist in the upper loop segment. a, 3D configurations from
FEM for the loading levels, (i-iv), according to the number introduced in Figure 5.1, with
(i), the reference configuration, and (iv), the knot shape at the onset of the capsizing event.
The configuration corresponds to H = 5.7 with µs = µd = 0.33. The director vector, d̂1, is
represented in the upper loop, which is roughly defined by the arc length range, 21 ≤ s/D ≤ 30.
b, Twist angle, α, according to Eq. (5.1), as a function of the arc length, s/D. The capsizing
mechanism is depicted in the schematic (inset) of a cross-sectional rod cut (s = s∗ in a(iv)).

To simplify the data interpretation, we define as the reference director vectors those of the

initial knotted configuration in Figure 5.8a(i), d̂1,Ref(s̃). Then, we computed the twist angle

on the upper loop, α, of subsequently deformed configurations, relative to that reference
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geometry, such that:

α(s̃) = arccos

(
d̂1(s̃) · d̂1,Ref(s̃)

||d̂1(s̃) · d̂1,Ref(s̃)||

)
. (5.1)

In Figure 5.8b, we plot α(s̃) curves at different levels of loading, as indicated by the adjacent

color bar. By definition, the reference (initial) configuration has α(s̃) = 0. At each loading level,

the twist angle profile is spatially heterogeneous and non-monotonic along s̃. Throughout the

loading process, from level (i) to (iv), there is an overall increase of twist, with particular growth

between loading levels (iii) and (iv). Near the two edges of the upper loop s̃ ≈ 21 and s̃ ≈ 30, the

twist angle does not accumulate significantly; α is at most 80◦ at s̃ = 30 for loading level (iii)

but remain typically well below that value. This observation suggests that the accumulation

of twist in the upper loop is induced primarily by rod-rod friction through the vertical rod

displacement, δ.

The inset of Figure 5.8b illustrates our interpretation of the capsizing mechanism; the schematic

shows the cross-sectional cut, highlighted in Figure 5.8a(iv), at the specific point where a nearly

horizontal segment of the rod at s = s∗ is in contact with a nearly vertical segment earlier

in s. The displacement, δ, of the pulled rod excites a vertical friction force, Fv , on the other

contacting rod segment. The increase of the resulting twist, α, is impeded by the frictional

interaction between the upper loop and the stopper plate, with a frictional force Fh , oppos-

ing the twisting direction of the rod. Moreover, the higher capsizing forces for tighter knots

reported in Figure 5.6b and Figure 5.7b, d, can be attributed to the higher torsional stiffness of

shorter upper-loop segments, L (torsional stiffness ∼ 1/L), in addition to also higher normal

contact forces. This qualitative interpretation of the capsizing mechanism is aligned with the

results reported in Figure 5.7 and Figure 5.8.

5.7 Resistance to Capsizing in Braided Ropes

Thus far, our investigation of stopper knots, with an emphasis on the capsizing mechanism,

made use of composite elastomeric rods, which were effectively inextensible along the axial

direction (making them transversely isotropic) due to the stiff fiber located at the centerline.

Still, the rod behaves elastically in bending and torsion, as supported by the scaled results

in Figure 5.5a. Following classical procedures, one can define the bending and torsional

stiffnesses of a rod as B = E I and C =G J , respectively, where E is the Young’s modulus, G the

shear modulus, I the second moment of area, and J the second polar moment of area. For an

elastic rod, C and B are coupled as

Γ= B

C
= (1+ν) > 1, (5.2)
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where ν is the Poisson’s ratio of the material. This result is expected to remain valid for an

inextensible rod, as in our composite rods.

In Figure 5.9a, we plot experimental measurements of B versus C for two elastomeric com-

posite rods (containing a Nitinol core fiber), with E = 0.52MPa and E = 1.25MPa; square and

diamond solid symbols in the plot. The data was obtained from the standard tests of three-

point bending (for B) and torsion (for C ), following Zou and Li [119] and ASTM E143-02 [120],

respectively. Unsurprisingly, these two data points for elastic rods fall on the Γ= 3/2 line, as

expected from Eq. (5.2) for the elastomeric materials we used, which are nearly incompressible

(ν≈ 0.5).

The ropes, yarns, and threads commonly used in climbing, sailing, or sewing, onto which

stopper knots are regularly tied, are structured, anisotropic, and flexible structures comprising

assemblies of braided filaments. As such, Eq. (5.2) is not valid for these braided structures,

whose bending and torsion properties decouple, and we expect Γ ̸= 3/2. For the remainder of

this section, we will consider real (braided) ropes, in comparison to the elastic case.

In addition to the elastic rods mentioned above, we also measured B and C for eight static and

dynamic climbing ropes as well as multi-functional ropes; the results are plotted in Figure 5.9a.

For all the rope samples, the bending to torsional rigidity ratio is smaller than 1 (Γ< 1). This

decoupling between B and C with C > B results in a higher torsional energy penalty in ropes

compared to bending, acting as an impediment to twisting deformation. More specifically,

the B vs. D data for all the tested ropes lies within the shaded region of the plot in Figure 5.9a,

with 0.18 ≤ Γ≤ 0.67.

The above results, especially the spread of the data in the B vs. C plot, convey the complexity

of the mechanical properties of braided ropes compared to the (much) simpler case of elastic

rods. As such, a comprehensive study of stopper knots tied onto braided ropes is beyond the

scope of the present study, even if it certainly deserves attention in future work. Still, we can

provide several qualitative observations based on the insight we have gained for elastic rods.

For braided ropes, we expect that the higher energetic cost of torsion compared to bending

will have a strong effect in delaying or even inhibiting capsizing of common stopper knots.

In Figure 5.9b, we show photograph of a the figure-eight knot (denoted 41 as introduced in

Section 5.1), tied on a static rope (D = 5.7mm) in its original configuration (left) and after it

has been pushed against the stopper plate (right). Another, more complex, stopper knot that is

commonly used in applications is the double overhand knot, 51, essentially part of the double

fisherman’s and the blood/barrel knot [22, 117, 118]. In Figure 5.9c, we present photographs

for this 51 knot tied on the composite rods described in Section 5.2.1 in the initial (left) and
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114



5.8 Summary and Outlook

loaded (right) configurations. Figure 5.9c shows the same 51 knot on the same rope used in

Figure 5.9b. Similarly to the protocol introduced in Section 5.2.4, a dead weight of M g with

M = 0.2Kg is attached to the free end of the knotted system.

In Figure 5.9e, we present force-displacement curves (F /M g vs. δ/D), analogous to Figure 5.6a

obtained by pulling the above 41 and 51 knots for both the elastic rod and the braided rope,

onto the stopper plate. For the knots tied on the braided ropes, we find sharp monotonically

increasing pulling forces, without capsizing (up to the practical limit of our apparatus; F =
30M g ). By contrast, similar to the 41 knot studied in the previous sections, the 51 knot tied

on the elastic rope capsizes (as evidenced by the undulations in the data), which we regard

as failure. Overall, we observe that the mechanical behavior of stopper knots tied in braided

ropes is qualitatively different than those on elastic rods. The absence of capsizing in the

braided rope case may be attributed to the decoupling between C and B , with torsion being

energetically more costly than bending.

5.8 Summary and Outlook

Stopper knots are typically used in applications where they should lock at a specific location

of the filament, even when pushed against a blockage, thereby preventing the end of a rope

from passing through an orifice. For instance, a stopper knot tied to the end of a climbing rope

prevents it from retracing through a narrow passage in the climber’s belay device. Numerous

other applications of stopper knots are found in the stringing of tennis rackets, sailing, and

sewing.

In this Chapter, we focused on the capsizing mechanism of stopper knots as their first mode of

failure, without considering the possibility of fracture. We investigated the source of capsizing

and how it can be delayed on the figure-eight knot by using model precision experiments and

Finite Element simulations. We found that capsizing results from friction-induced rod twisting

in the loop, as it is pressed against the stopper plate. The capsizing is therefore delayed for

lower rod-rod friction coefficients and higher rod-plate friction coefficients. Since torsional

stiffness is higher for shorter rod segments, tighter knots with a shorter total arc length of their

upper loop yield higher peak forces at capsizing. Further, we quantified the decoupling of

torsional and bending rigidities in climbing and multi-functional ropes, which typically have

a higher torsional energy penalty. Given the variety of knot topologies, it is not obvious if the

studied capsizing mechanism can be generalized to a whole subgroup of knot topologies, and

should be tested case-by-case in future studies.

We showed that stopper knots, tied in isotropic rods, capsize for loose and tight configurations
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since low torsional rigidities facilitate rod twisting. For stopper knots tied on braided ropes,

we did not observe capsizing when the knot size and the rope diameter were of the same order

of magnitude, H ∼ D. We recognize that the comparative observations between elastic and

braided systems remained mostly qualitative and that a detailed quantitative comparison

would be inappropriate since the two systems have different frictional properties. We hope

that our observations will instigate future quantitative analysis of stopper knots in braided

rope systems, taking the elastic case that we studied in detail as a starting point.
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6 Strength of Surgical Knots

In this Chapter, we seek to establish operational and safety guidelines on the mechanical

strength of surgical sliding knots. We develop a physical model system to study the knot

strength by systematically varying the tying pre-tension to set distinctive levels of knot tight-

ness. Throughout, we use commercial polypropylene suturing monofilaments that are com-

mon in surgical practice. The focus is put on tight, sliding knots, ranging from the simple

sliding granny knot, S ||S, to multiple-throw knots in their sliding conformation. We uncover

power-law behavior for the untying strength of these knots as a function of the applied pre-

tension. Next, we analyze knots from an experienced surgeon and find that they intuitively

target the middle of this power-law region, leaving a safety clearance between the regime

where the knot is too loose to be functional and the regime of filament fracture. Further, we

explore the effects of the number of throws and the knot topology (‘ || ’ vs. ‘S×S’-throws). To

further gain insight into the key role of friction on knot safety, we performed FEM simula-

tions of plastic knots with varying values of friction coefficient. The underlying elasto-plastic

constitutive model was calibrated on experimental results from uni-axial and bending ma-

terial responses. Tying, tightening and untying sliding knots with different frictional contact

interactions allow us to relate the knot strength to the underlying normal contact forces in the

knot. Finally, we propose a normalization that collapses all our experimental and numerical

data onto a master curve predicting the knot strength of tight knots, covering all sliding knot

conformations we investigated and a wide range of friction coefficients.

The text and figures in this Chapter are adapted from the unpublished manuscript that we

are currently preparing for submission to a journal, in collaboration with Changyeob Baek,

Paul Grandgeorge, Shawn A. Chester, and Pedro M. Reis, as well as Dr. Samia Guerid, an

independent plastic surgeon in Lausanne, Switzerland.
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6.1 Literature Review and Motivation

Surgery, a word rooted etymologically in “handwork" [121], is a delicate craft. Similarly to

the precision of the applied incisions, high-quality suturing also requires optimal manual

skills that are only mastered by surgeons after years of practice and experience. Knots are

central to surgical procedures, where they are used as ligatures to bind and lock surgical

threads during suturing [24, 25, 26]. Importantly, knots are the weakest link in a suture [26,

122, 123], with disastrous consequences if a knotted suture fails to perform its functions. For

example, massive bleeding may occur when the suture loop surrounding a vessel becomes

untied or breaks, leading to wound dehiscence [124], or an incisional hernia may follow knot

disruption [125, 126]. Sugerman et al. [127] reported that incisional hernia can be as high

as 20% within the first year following midline laparatomy, one of the most common surgical

procedure [127]. When compared to braided filaments, monofilaments are more challenging

to ensure mechanical knot safety while having the advantage of lower infection risks [128].

Besides unraveling, another common failure mode is suture rupture, which was studied for

various filament materials and knot types [102, 123, 74, 129].

Surgeons tie sliding knots on a daily basis, consciously or unwittingly [130], and it was demon-

strated that all intended flat knots tied in monofilaments capsize into sliding conformation

in vivo [131]. Sliding knots consist of a series of half-hitches around a nearly straight seg-

ment of filament under tension. Depending on the direction of each throw, two different

topologies are distinguished, acting as building blocks for other surgical knot configurations:

(i) the sliding granny knot and (ii) the sliding square knot. A simple notation to describe

these knot configurations was first introduced by Tera and Aberg [130] and developed subse-

quently [122, 132, 116, 74]: ‘S’ stands for sliding throws, ‘ || ’ indicates identical throws, and

‘×’ refers to non-identical throws. As such, the sliding granny knot with two identical throws is

represented as (S ||S), and the sliding square knot with two non-identical as (S×S). In a more

complex example, the S ||S×S configuration describes a sliding granny knot followed by a

sliding square knot. We will use this notation throughout the present Chapter.

Although a high variability of knot tying techniques has been reported between surgeons [133],

Trimbos et al. [122], Ivy et al. [134], Silver et al. [135] showed that adding additional throws

in a knot consistently decreases untying rates. Also, the tying pre-tension (i.e., the tension

applied by the surgeon to tighten each throw) appears to rely more on individual perception

than the level of experience [136]. Further, even if the importance of mechanical analysis

of knots has long been recognized in the medical profession, existing guidelines for best

practices rely primarily on empirical observations gathered from historical experience, not

on a physics-based structural analysis [122]. Despite their broad and practical relevance, the
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predictive understanding of the underlying physical mechanisms in knots remains crude. On

the one hand, the classic mathematical theory of knots involves the study of purely geometric

models of filaments tied in their tightest knot shape [50, 97, 99, 65, 112, 100, 107, 108], as

introduced in Chapter 1, Section 1.4 and covered in Chapter 4. However, localized elastic

deformation and contact friction, which are essential in physical knots, are not captured

by the purely geometric abstractions [78, 90]. On the other hand, elasticity and frictional

interactions were considered (at least partially) in one-dimensional elastic rod models based

on the theory of elastic Kirchhoff rods [61, 63, 64]. Still, and as mentioned throughout this

Thesis, this framework is limited to loose knots, and cannot capture the mechanical behavior

of tight elastic knots with their three-dimensional deformation [62]. Besides the challenges

related to topology, tightness, 3D elasticity, contact shapes and frictional interactions between

filaments in tight contact, surgical monofilaments undergo high plastic deformation [111, 137].

The consequences and potentials of plasticity in functional knots have, to the best of our

knowledge, not been considered in knot mechanics to date.

Research questions: In this Chapter, we aim to establish operational and safety guidelines

on the mechanical strength of surgical sliding knots. We will address the following research

questions:

• How does the strength of surgical sliding knots depend on the applied tying pre-tension?

• Do additional sliding throws increase knot safety? If yes, what is the relationship between

the number of applied throws and the knot strength?

• Is the direction of the sliding throw (sliding granny versus square knot) a factor in setting

the sliding resistance of the knot?

• What is the range of tying pre-tension, and consequently the resulting range of knot

strength, that an experienced surgeon targets intuitively?

• How does the strength of surgical knots tied by an experienced surgeon compare to

those tied by a training (less experienced) surgeon?

• How does the self-contact friction coefficient of suturing filaments influence knot

strength?

• What is the role of plastic deformation of the polymer filaments, in addition to topology,

geometry, elasticity and friction, in setting normal contact forces, which in turn should

relate to the strength of tight surgical knots?
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6.2 Failure of Surgical Sliding Knots

In the photograph of Figure 6.1A, a surgeon ties a series of half-hitch throws in the common

polypropylene suturing filament (Prolene, Ethicon Inc., Johnson & Johnson). Throughout

this Chapter, we will use this monofilament of circular cross section and area, A, in the

diameters of 0.25 or 0.49mm (USP designation 3-0 and 1, respectively [138]). The yield

strength of as-received Prolene was determined from uniaxial stress-strain measurements to

be σY = 19.1MPa (from the 0.1% offset yield point [139]).

Typically, multiple suturing knots allow to bind tissues together, sealing an accident tear or a

surgical incision [102, 140, 128]. By way of example, in Figure 6.1B1-B3, we present a series of

photographs of a suture system on a custom-fabricated surgical practice pad. The practice

pad was fabricated in-house using the silicone-based vinyl polysiloxane, VPS32 (Elite Double

32, Zhermack) with two colored layers (each 2 mm in thickness) for visualization purposes.

This suturing system consists of three stitches (S ||S×S each) loaded by a gradually increasing

far-field uniaxial stress field of magnitude σ∞. To visualize a typical failure mode, the top

and bottom knots (k1 and k3, respectively), were made tighter than the middle knot (k2). At a

sufficiently large stress-level, the filament of the knot, k2, starts sliding (Figure 6.1B2), until it

completely slips through and, therefore, no longer fulfills its binding function (Figure 6.1B3).

In Figure 6.1C1-C2, we present an optical-microscope image of the two possible sliding knot

topologies: the S ||S (C1) and the S×S (C2) knots. The depicted knots were machine-tied using

a Universal Testing Machine (UTM): Instron 5943 in its horizontal position. Below, we show

the corresponding topological diagrams.

6.2.1 Procedure to Tie Surgical Knots

To achieve reproducible results on the knot strength, we developed a well-defined protocol to

systematically tie and test surgical knots. In what follows, first, we describe the procedure to

tie the various knot topologies on a rigid pin with the relevant mechanical and geometric pa-

rameters. Second, we detail the subsequent mechanical tests that enabled the measurements

of the knot strength.

In Figure 6.1C and D, we present optical-microscope images (top) of S ||S and the S×S knots,

tightened using a UTM (universal testing machine, Instron 5943), along with their correspond-

ing topological diagram (bottom). The knots (surgeon- and machine-tied) were tied around

rigid 3D-printed pins (stereolithography 3D-printer: Form 2, Formlabs; Clear V4 resin), with a

flat upper surface of width, 2L = 6mm (Figure 6.1E). This pin geometry was chosen based on

the common rule for skin closures [141], prescribing a distance between the entry point of the
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Figure 6.1: Failure of surgical sliding knots. A, Photograph of the tying of a common sliding
knot by an experienced surgeon in a Prolene polypropylene filament on a rigid support. B1-
B3, Photographs illustrating knot safety and sliding for different tightness of the S ||S×S knot
in a suture system on a practice pad, at increasing levels of the far-field stress, σ∞. The S ||S×S
knot is tied in a blue- and black-colored monofilaments (Prolene 1 and Ethilon 1, respectively).
C,D Optical-microscope image (top) and topological diagram (bottom) of the S ||S (C), and
S×S (D) sliding-knot topologies. E Schematic of the S ||S×S knot tied around a 3D-printed pin
and visualization of the cutting location in the suture loop. F FEM-computed configuration
for a S ||S knot tied with a pre-tension of T̃ = 10.9. The same configuration is implemented in
the mechanical testing experiments to measure the slipping force, F̃ , of the S ||S knot.

needle and the wound edge, L, equal to the thickness of the tissue, ranging from 1 to 4mm in

the human body. After the half-hitch (identical or non-identical throw) was set manually in its

loose configuration on the rigid pin, the two free extremities of the filament were clamped

to the UTM. The tying protocol involved a displacement-controlled knot tightening followed

by a load-controlled holding step to account for any viscous material effects. The knot was

tightened with a pulling speed of 1mm/s (constant engineering strain rate ε̇= 0.01/s) up to

the set tying pre-tension, which, subsequently, was held constant during 100s. This protocol

was repeated for any additional throw.
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6.2.2 Mechanical Testing to Measure the Knot Strength

For the remainder of this Chapter, we will focus on the untying of surgical knots to extract

information on the quality and safety of sliding surgical knots. To this end, the loop surround-

ing the pin was cut open (Figure 6.1E), and the protruding sliding strand (extremity of the

black filament at the cutting location) was threaded through the hole of a stopper plate, as

schematized in Figure 6.1F for the S ||S knot. Then, the knotted configuration was pulled

against this plate, enabling the measurement of the knot slipping force, F̃ . In this model

system, the rigid plate takes the role of the bound tissue in the suturing system, where tissue

tractions on the suture could lead to wound dehiscence (Figure 6.1B).

In Figure 6.2A1, we present our experimental setup, where the protruding (sliding) strand,

previously part of the loop, was first slid manually into a narrow clearance hole (0.30mm

diameter for 3-0 USP filament) in a flat, rigid acrylic plate (4mm thickness). Using the UTM,

the knot (S ||S) is then pulled at the constant speed of 1mm/s against the acrylic plate, which

blocks the knot against vertical translation, leading to the sliding mechanism (Figure 6.2A1-A4).

In Figure 6.2B, we plot the resulting dimensionless slipping force F̃ = F /(σY A) as a function

of normalized displacement δ̃= δ/D. Initially, the force increases as the vertical filament is

pulled upward, and the knotted filament is pressed against the stopper plate (Figure 6.2A2).

Past an initial transient, the force reaches a plateau, where the filament slides with a nearly

constant slipping force (Figure 6.2A3). This characteristic force, denoted non-dimensionally

as F̃0, corresponds to the knot strength as it is ultimately responsible for the knot’s untying

(Figure 6.2A4). Note that we express dimensionless forces in units of σY A (σY is the filament

yield strength); applied dimensionless tensions greater than 1 involve plastic deformation of

the straight filament strand.

6.3 Effect of Experience of the Surgeon on Strength of Knots

von Trotha et al. [136] conducted an extensive exploratory study to analyze whether surgical

experience affects the reproducibility of the hand suturing tension. Against the author’s

expectations, no significant differences were detected between different subgroups based on

surgical experience.

In our work work, we seek to contrast the knot strength quality between a surgeon with more

than ten years of experience (S. Guerid, M.D., independent) versus the ones tied by a medical

intern with less than one year of experience. Both were asked to tie 50 S ||S×S knots with an

adequate tying pre-tension on rigid pins. The specific goal of the study was not known by the

subjects a priori so as not to bias the results. We disqualified samples that were accidentally
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Figure 6.2: Measuring the strength of a S ||S knot. A1-A4, Sequence of photographs during
mechanical testing, visualizing the sliding process of a previously tied knot that is pulled
against a stopper plate to measure the slipping force, F̃ . B, Representative curves (experiments
and FEM) of F̃ versus displacement, δ̃ = δ/D. The plateau of the curves defines the knot
strength, F̃0. The points A1, A2, and A3 correspond to the photographs in (A1-A3). The S ||S
knot was tied to a pre-tension of T̃ = 10.9.

tied with different knot topologies, leaving 38 valid surgeon-tied and 22 valid intern-tied knots.

In Figure 6.3A, we plot the histogram of the untying knot strength, F̃0, of S ||S×S knots tied by

the surgeon. Similarly, the results by the medical intern are presented in Figure 6.3C.

Even though both the surgeon and the intern span a similar range of knot strength, 1.5 < F̃0 <
7.5, the intern tends to tie knots with lower resistance to sliding. By contrast, the experienced

surgeon achieves a quasi-uniform distribution of the knot strength (see Figure 6.3A). This

observation is confirmed by the summarizing box plots in Figure 6.3B, showing a median

knot strength of the surgeon of F̃0, surgeon = 3.2 versus F̃0, intern = 2.5 of the medical intern.

Further, the highest knot strengths achieved by the intern are evaluated as outliers (more

than 1.5 times the interquartile range away from the 75th percentile), which confirms their

hesitant application of tying pre-tensions. Finally, the notched visualization of the box plots

(Figure 6.3B) displays the variability of the medians between the surgeon and intern data

sets. Overlapping notches reveal that the median knot strengths between the surgeon and the

intern are not significantly different (at the 5% significance level).
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A, Probability histogram showing knot strength distribution, F̃0, of surgeon-tied S ||S×S knots.
B, Box plots summarizing the histogram representation of the knot strength, F̃0, in A (surgeon)
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6.4 Definition of a Tight Knot

A recurrent question when studying physical knots is the definition of their level of tightness.

In Chapter 1, Section 1.5 we discussed the required separation of length scales between

characteristic properties of a knotted rode to ensure the appropriateness of using the Kirchhoff

rod model. Next, we take an alternative point of departure by adopting a definition of tightness

that is more relevant in the context of surgical knots.

In general, the crossover between a loose and a tight physical knot is a continuous process

without an abrupt change in geometry or mechanical behavior (see Figure 6.4A). Still, in this

section, we will describe a method to define an approximate threshold for the separation

between two regimes. This method combines a volumetric analysis based on X-ray micro-

computed tomography (µCT), and a purely geometric rod model. We focus on the elementary,

sliding granny knot, S ||S, since knots with higher throw numbers are not necessary for the

procedure described.

The notion of ‘tightest knot’ is well-defined in mathematical knot theory: a prescribed diameter

and arc length of an ideal (perfectly flexible) filament allow to compute the tightest knot

shape for the maximal end-to-end shortening [99, 90]. The filament is based on the ideality

assumptions of an undeformable circular cross-section, inextensible centerline, and vanishing

bending stiffness [100]. The centerline coordinates of the two filaments of a loose S ||S knot tied

in FEM served as an input into the software package, Ridgerunner by Ashton et al. [55]. The

tightening program is based on a C-language code for tightening ideal knots [142], combining
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knot configuration. A convex hull is applied to the bulk knot, excluding the protruding strands.
C,3D reconstructed S ||S knot (7) with its four protruding strands. D, Bulk S ||S knot after the
protruding strands were removed by image processing. A convex hull is applied on the resulting
volume. E, Normalized convex hull volume, 4V /πD3, as a function of the applied tying pre-
tension, T̃ , for experimental measurements. Two distinct slopes are described by linear fittings
of seven consecutive data points; the first fit (dashed, black line) for low pre-tensions and
the second one (continuous black line) for high pre-tensions. The intersection point with
its uncertainty results from the best fits, and gives the transition region, T̃min = 2.59±0.14
(vertical line). The volume of the convex hull applied on the tightest, ideal S ||S knot is shown
by the dotted horizontal line.

a polygonal thickness version [143, 144, 54] with a Constrained Gradient Descent (CGD). In

Figure 6.4B, we present the tightest S ||S knot configuration, computed by Prof. Eric Rawdon

(University of St. Thomas, USA). The compactness of the resulting knot was measured by

applying a 3D convex hull (convhulln function in Matlab 2019, based on Qhull [145]), around
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the bulk knot, excluding the protruding filaments. The computed convex hull on the tightest

sliding granny knot on an ideal rope is shown by the semi-transparent cover in Figure 6.4B,

and has the dimensionless volume 4Videal/πD3 ≈ 32.3.

Next, we apply a similar method to physical knots and quantify their compactness as a function

of their tightness. First, the S ||S knots were machine-tied on Prolene 1 USP (0.49mm in

diameter) monofilaments within the range of tying pre-tensions, 1.5 ≤ T̃ ≤ 6.8. Second, and as

shown in the photograph in Figure 6.4A, the knot samples were mounted in an array, labeled

(1)-(7), ordered from lower to higher tying pre-tensions, T̃ . Then, the samples were slid into a

narrow cylindrical sample holder (diameter 14mm) and scanned with the maximum spatial

resolution of 4.9µm (voxel size) using µCT imaging (µCT100, Scanco Medical). In Figure 6.4C,

we show the 3D reconstruction of the µCT-scanned tightest knot (7) with four protruding

strands. To quantify only the volume of the knot, we excluded the four protruding strands

by implementing the following strategy in Matlab (Matlab 2019b, MathWorks). The 3D

image consisted of gray-scale values, representing the local material density of the voxels,

ranging from 0 (non-occupied voxels outside filament) to 1 (occupied voxels inside filament).

The data set was binarized using the voxel-value 0.5 as the threshold. The gradient profile

(gradient function in Matlab), representing the change in the number of occupied voxels,

was computed in each of the three spatial directions, {x, y, z}. The gradient profile (along each

spatial direction) exhibits peaks (gradient values larger than 25) at the transition between the

bulk knot and either surrounding air or a single protruding strand. Beyond each peak location,

the voxel values were set to 0 (non-occupied voxels), such that the long protruding strands

were cut off from the bulk knot, leaving a confined knot region. This technique was repeated

by rotating the knot in each of the three spatial directions (incremental rotation angle: π/4rad)

and smoothly removing all protruding strands. Similar to the compactness measurement of

the tightest ideal knot, we applied a 3D convex hull on the bulk physical knot, as shown by the

semi-transparent cover in Figure 6.4D.

In Figure 6.4E, the measurements of the convex hull volume obtained from the µCT, 4V /πD3,

are plotted against the tying pre-tension, T̃ . Each experimental data point is based on three

scanned knot samples. We observe two regimes with different slopes, whose transition was

determined by performing a linear fit to each of the two regions and determining the intersect,

fitting seven consecutive data points in each regime. The uncertainty of each best fit is at the

basis for the error analysis on the intersection point. The resulting onset of tight knots is given

by the tying pre-tension, T̃min = Tmin/σY A = 2.59±0.14 (vertical line). At this tightness level,

the experimental knot volume is 4V0/πD3 ≈ 28.1 and corresponds to knot (7) in Figure 6.4A.

Interestingly, the transition between the two regimes is compatible with the result of the

tightest knot volume from the purely geometric model, 4Videal/πD3 ≈ 32.3, represented by the
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dotted horizontal line in Figure 6.4E. We conclude that the transition between the distinct

behavior in volume reduction is an appropriate definition for the onset of tight knots. Note

that the smaller volume of experimental knots at the transition is presumably due to cross-

sectional deformations, which induce a decrease in volume for the same amount of confined

arc length.

Note that since the knot tightness is dictated by the volume of each individual throw, the tight

knot onset only depends on the applied tying pre-tension. In the main text, we report a change

in the knot strength behavior between lower and higher tying pre-tensions, i.e., between

loose and tight knots. Remarkably, the transition between the two regimes corresponds to the

transition tension determined using the critical knot volume described above, T̃min, further

confirming the validity of the knot volume method to describe the onset of tight knots.

6.5 Material Testing and Fracture

The operating conditions of a knot depend on the environmental conditions and on the

detailed tying procedure of the surgeon. More specifically, the tying speed varies between

individual surgeons, and the temperature of the operating room is often adapted to the type of

surgery, the preferences of the surgeon, and the well-being of the patient. Polymeric suturing

filaments typically exhibit viscoelastic and viscoplastic effects, and might behave differently

under different temperature conditions. The described uncertainties in the surgical context

call for a systematic investigation of the rate- and temperature-dependence on the mechanical

response of Prolene monofilaments. Eventually, we aim to extract the typical upper limits for

the tying force, T̃max, at which filament fracture occurs.

Previous studies on the evaluation of the mechanical performance of surgical knots reported

tying strain rates between ε̇low = 0.0167/s and ε̇rapid = 0.1667/s, respectively [146, 132]. More-

over, the temperature in the operating room is adapted to the type of surgery and the well-being

of the patient, avoiding intraoperative hypothermia (core temperature < 35◦C) [147, 148]: in

orthopedics, the room temperature is regulated to 16◦C to reduce the infection risk [149];

in obstetrics, the well-being of the newborn requires a temperature of 20−21◦C [150]; and

in burn surgery, the operating room is heated to 30−40◦C [151]. In addition to the room

temperature, the suturing filaments are often in contact with body fluids, e.g. blood, which

has the 37◦C body temperature.

All the experiments presented later in this Chapter were performed at room temperature

(21◦C) and with constant engineering strain rate ε̇ = 0.01/s for the knot tying and strength

testing. In the next few paragraphs, we will perform mechanical tests on the material response
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and fracture force to evaluate the range of applicability of our results for different tying rates

and operating room temperatures.

To achieve high strains in uniaxial tensile tests by avoiding the filament from breaking at the

clamps, we used the standard ISO 11566 [152] to test the tensile properties of single-filament

specimens. In Figure 6.5A-B, we present schematic diagrams illustrating the preparation of

samples with either straight, un-knotted (A) or knotted (B) monofilaments. Since the knotted

case is used for fracture tests, a S ||S knot is manually tied on a rigid pin (see Section 6.2.1).

For both cases, the Prolene 3-0 USP filament (straight or knotted) was glued with epoxy

on a rectangular PVC shim stock frame (thickness: 0.1mm, outer dimensions of the frame:

70x20mm) with a gauge length of L = 50mm. Besides the precise reference length, this

technique also reinforces the filament at the ends by the epoxy layer, thus avoiding fracture at

the clamping due to stress concentrations. Once the sample is clamped in a UTM, the frame

is cut along the y-direction (orthogonal to the filament). Then, the mechanical response is

measured by pulling along the axial direction of the filament (x-direction in Figure 6.5A-B)

and recording the traction forces and the displacement.

Figure 6.5C plots the cyclic, engineering stress-strain behavior (maximum strain, ε= 0.5) of

the straight Prolene 3-0 USP filament at room temperature (21◦C) as a function of the applied

strain rate, ranging from ε̇= 0.0025/s to ε̇= 0.16/s. Each curve shows the mean (solid line) and

standard deviation (shaded region) of three tests on five different Prolene 3-0 USP samples.

We notice a slight increase in the stress quantities for higher strain rates. Given the explored

range of strain rates (6300%), the relative change at εeng. = 0.5 is 6.7% and, therefore, relatively

small. The fracture strength is determined from the maximum recorded engineering tensile

force on straight filaments and plotted by the blue box plots in Figure 6.5D. Similarly, the

fracture strength remains nearly unchanged for different strain rates. Adding a S ||S knot to the

filament reduces the fracture strength by 40−50% (see gray box plots), in accordance to the

observations reported by Pierański et al. [65]. Further, we observe that the fracture strength of

a knotted filament decreases for higher strain rates.

In Figure 6.5E, we present results for the engineering stress-strain response of filaments under

cyclically-loading (constant strain rate, ε̇= 0.01/s) while controlling the temperature. Tests

were conducted at room temperature (21◦C), at the human body temperature (37◦C), and

at a high temperature of 45◦C. Three tests on three different Prolene 3-0 USP samples were

performed for each curve in Figure 6.5E. High reproducibility was achieved and is visible by

the small uncertainty interval (shaded region) around the average curve (solid curve). The

Prolene filaments are clearly temperature-dependent, exhibiting softening in their mechanical

response for higher temperatures. This trend is less visible in the fracture strength of S ||S-
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Figure 6.5: Rate- and temperature-dependence of Prolene 3-0 USP monofilaments.
A, Schematic of a straight, unknotted Prolene monofilament glued with epoxy on a frame of
PVC shim stock, setting the gauge length, L (following ISO 11566 [152]). B, The same testing
technique as in A, with the addition of a S ||S knot tied on a rigid pin. C, Rate-dependence
on the engineering stress-strain behavior of straight filaments, recorded at room tempera-
ture (21◦C). D, Rate-dependence on the fracture strength, σc, of straight and knotted (S ||S)
filaments, at room temperature (21◦C). E, Temperature-dependence on the engineering stress-
strain response of straight filaments, measured at a strain rate, ε̇ = 0.01/s. F, Temperature-
dependence on the fracture strength, σc, of knotted (S ||S) filaments, at a strain rate, ε̇= 0.01/s.

knotted filaments, plotted in Figure 6.5F as a function of the three temperature-regulated

environments. Still, the relative difference between the median values of the fracture strength

at 21◦C versus 45◦C is only 3.6%.

As expected, the Prolene monofilaments show a rate- and temperature-dependence in the

mechanical response of straight filaments. In the current case study, we are, however, largely

concerned with the uncertainty of the fracture strength in knotted samples. Relative changes
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of 12.3% and 6.1% are to be expected for the whole range of explored strain rates (ε̇ =
[0.0025−0.16]/s) and temperature values (21−45◦C), respectively. Considering the vast range

of parameters, we evaluate the rate- and temperature-dependence as small. Consequently, we

will consider the mean fracture strength with its standard deviation,σc = 300.6MPa±12.1MPa,

for the case of a strain rate, ε̇= 0.01/s, and at room temperature (21◦C). Finally, the normalized

tying tension, T̃max = σc/σY = 15.74±0.63, will be considered as the upper force limit for

knotted Prolene monofilaments.

6.6 Dependence of the Knot Strength on Pre-Tension and Topology

From the mechanical tests introduced in Figure 6.1F, we characterize the untying knot strength,

F̃0, by systematically varying the tying pre-tension, T̃ , and the number of throws in the knot,

n; i.e., its topology. First, we focus on the S ||S×S topology (n = 3), applying an equal tying

pre-tension on each throw. Different levels of tying pre-tension in the knotting process can

lead to the following three distinct regimes:

(i) Loose knots, for T̃ < T̃min;

(ii) Tight knots, for T̃min ≤ T̃ ≤ T̃max; and

(iii) Filament fracture, for T̃ > T̃max.

Photographs of knots in these three regimes are presented in Figure 6.6A for: (i) loose knots

(T̃ = 1.5), (ii) tight knots (T̃ = 8.5), and (iii) a broken filament at the last throw (T̃ = 20). In

the subsequent Sections, we will take a closer look at the relevant range of tying pre-tensions

applied by surgeons and the corresponding knot strength as a function of the number of

throws and knot topology.

6.6.1 Intermediate Tightness Regime

The volumetric study in Section 6.4 enabled us to define the minimum knot tying pre-tension,

T̃min = Tmin/σY A = 2.59±0.14, (represented in Figure 6.6B by the first vertical line), below

which the knot is considered to be loose. Remarkably, the transition between the two regimes,

(i) and (ii), corresponds to the determined critical knot volume, T̃min, which, therefore, can be

considered as an appropriate quantity to describe the onset of tight knots. We focus on the

intermediate region (ii) above the onset of tight knots, where the knot strength is consistent

with a power-law increase:

F̃0 = K̃ T̃α, (6.1)
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which provides an excellent fit to the experimental data in Figure 6.6B, within the intermediate

regime, up to filament fracture. The upper limit of the tying pre-tension is determined by the

rate- and temperature-dependent fracture tests on knotted Prolene filaments, as described

above, in Section 6.5, and represented by the vertical line at T̃max = Tmax/σY A = 15.74±0.63.

6.6.2 Mapping the Operating range of the Surgeon

We will now map the strength of knots tied by a surgeon onto the results from model experi-

ments described in the previous Section. We asked our collaborator Dr. Samia Guerid, who is

an experienced independent plastic surgeon in Lausanne, Switzerland, to hand-tie 38 knots

onto a rigid pin using the same Prolene filament and with the same (S ||S×S) topology of the

model experiments. The surgeon was instructed to tie each knot identically to what they

would do their routine suturing procedures. Naturally, since these knot were tied by manually,

the level of pre-tension was unknown. A photograph of a representative surgeon-tied knot is

shown in Figure 6.6C).

Each of these 38 surgeon-tied knots was then tested mechanically by pushing them against a

rigid stopper plate to measure the knot strength, F̃0, using the same protocol of the model ex-

periments described in the previous Section. The corresponding histogram of F̃0 is presented

in Figure 6.6D, exhibiting a nearly uniform distribution in the range, 1.7 < F̃0 < 7.7. Note that

the data in Figure 6.6D is the same as in Figure 6.3A, which is repeated for convenience. This

probability distribution of the surgeon-tied knots is summarized by the box plot with a median

strength 3.2 and lower and upper quartiles at 2.7 and 5.2, respectively. Projecting the median

knot strength as well as the interquartile ranges onto the empirically fitted knot strength of

the S ||S×S knot (represented by blue shade from Figure 6.6D to Figure 6.6B) provides an

estimation for the operating range of pre-tensions for surgeon-tied knots, T̃surgeon.

Interestingly, we find that T̃surgeon ∈ [T̃min, T̃max]. The surgeon is able to target in the middle

of the intermediate regime (ii), for tight knots, identified by our model experiments, while

leaving safety clearances between loose knot configurations, T̃min, and filament fracture, T̃max.

6.6.3 Enhancing Knot Safety with Additional Number of Throws

Thus far, we have focused on the S ||S×S knot since it represents the simplest configuration

comprising both of the sliding topologies of interest; S ||S and S×S. However, surgeons typically

tie more than three half-hitches, with additional trows, to further increase knot safety.

To explore the effect of the number of throws, n, on the knot strength, we return to the model
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Figure 6.6: Dependence of the knot strength on pre-tension and topology. A, Photographs
of representative S ||S×S knots at different level of tightness: (i) loose knot, (ii) tight knot, (iii)
fracture of the last throw. B, Normalized knot strength, F̃0, as a function of the normalized tying
pre-tension, T̃ , for knot topologies ranging from 2-throw to 6-throw sliding knots. The bounds
of the intermediate region (ii), T̃min and T̃max, are represented by vertical lines, respectively,
with their confidence interval. C, Photograph of a surgeon-tied S ||S×S knot. D, Histogram and
summarizing box-plot of knot strength measurements from surgeon-tied S ||S×S knots. Since
the tying pre-tension is unknown, the mapping on the experimental curve onto B (shaded
region) shows the region of operation. E, Photographs of sliding knots with different number
of throws, n = {2456}, tied with T̃ = 8.5. F, Multiplicative-strength factor, K̃ , of the fitted curves
in B as a function of the number of throws, n, according to Eq. (6.2). The linear fit, K̃ = nβ1,
and the corresponding confidence interval are represented by the solid line and shaded region.

experiments and systematically investigate configurations with different numbers of throws

n = {2,4,5,6}. As shown in Figure 6.6E, all these configurations are realized by first tying a
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sliding granny knot, followed by a series of sliding square knots. In Figure 6.6B, their measured

knot strength, F̃0, is plotted as a function of the tying pre-tension, T̃ . These more complex

knots with additional throws exhibit the same power-law behavior – Eq. (6.1) – of the simpler

S ||S×S topology, with α= 1.59±0.03 (with standard deviation lower than 2% of the average),

albeit with different prefactors. This consistency of the exponent α across the different tested

topologies is striking, considering the complexity of the geometries involved. With increasing

number of throws, the untying knot strength is systematically increased by prefactor, which

we denote the multiplicative-strength factor, K̃ . In Figure 6.6F, we plot the fitted value of K̃

as a function of n, finding that, remarkably, the data follows the linear relation K̃ =β1n, with

β1 = 0.044±0.006.

6.6.4 Effect of Topology on Knot Strength

In Figure 6.1C, we visualized the two topologies we considered for sliding knots, S ||S and S×S,

which are both based on two consecutive half-hitches. Although the topology differs for these

two knots, we are interested in the resulting knot performance for a given tying pre-tension.

In Figure 6.7, we plot the knot strength, F̃0, as a function of the applied tying pre-tension, T̃ , for

both the S ||S×S and the S ||S ||S knot. Note that the first two throws are identical throws (same

direction) for both knots to avoid contact effects from the underlying pin while tying. The final

throw is then tied using a different topology. Here, we use a linear axis to better compare the

response of the two knots, especially for higher tying pre-tensions. The knot strength data is

consistent with a power-law increase, as described by Eq. (6.1). We find that the knot strength

is equivalent for the two knot topologies throughout the whole range of tight knots.

We conclude that the resistance to sliding does not depend on the throw direction (identical

vs. non-identical throws) in surgical sliding knots. In other words, the two topologies, S ||S and

S×S, are equivalent in terms of the untying knot strength. These observations suggest that

our quest to understand the mechanical performance of complex surgical knots with various

topological combinations of multiple throws can be reduced to rationalizing a single sliding

knot (n = 2) with a single topology (e.g., S ||S).

Overall, combining the above observations, we have found that surgeon-tied sliding knots

are in the tight knot regime, where the knot strength follows a power-law, Eq. (6.1), with a

unique exponent, α, independently of the number of throws or the topological combination.

Moreover, with each additional throw, the knot strength is described by a multiplicative-

strength factor, K̃ , which itself depends linearly on the number of throws, n, such that:

F̃0 =β1nT̃α. (6.2)
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6.7 Characterization of the Frictional-Contact Interactions

For the FEM simulations presented in the next Section 6.8, we will require an experimental

measurement of the self-contacting friction coefficient of our Prolene filaments, which is

tackled as described next.

Measuring the friction coefficient between two filaments in contact cannot be performed

as described in Chapter 2, Section 2.5.2 since the polypropylene material with exactly the

same surface finish as the suturing Prolene monofilaments is not commercially available in a

flat sheet geometry. Therefore, we had to design a new experimental apparatus to measure

the frictional properties of two orthogonally-crossed filaments in sliding contact. To this end,

the upper end of the first filament (Prolene 1 USP) was attached to a 50-N load cell of the

UTM while hanging a dead load of 100g at the lower end straightens the intrinsically-curved

filament. A second filament (Prolene 1 USP) was tightly coiled (10 windings) around a rigid

acrylic post (20x20mm with rounded corners), as shown in the photograph inset of Figure 6.8.

Inspired by the apparatus reported in Grandgeorge et al. [33], the straight vertical filament was

pressed by an annular ball bearing (external diameter: 30mm) against the coiled filament with

a normal load, Fn , using a mass–pulley system (not shown in the Figure). Next, the vertical

filament was displaced upwards at a speed of 1 mm/s, which is the same displacement velocity

imposed in the knot untying experiments.
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In Figure 6.8, we plot the measured tangential contact force, Ft , as a function of the imposed

normal force, Fn . The relation between Ft and Fn is linear, as expected for Amontons-Coulomb

friction behavior. The linear fit, Ft =µd Fn (solid line in Figure 6.8), of the experimental data

over a wide range of normal loads, yields a dynamic friction coefficient, µd = 0.20± 0.02,

which is in agreement with values reported in the literature for Prolene monofilaments [137],

respectively. It is important to emphasize that the friction coefficient was measured in dry

conditions, which, in a surgical environment, could correspond to dry skin operations. When

surgery is executed in the presence of blood and other fluids, an even lower friction coefficient

can be expected.

In this Section, we characterized the friction coefficient for self-contacting Prolene monofila-

ments, which will be important to validate our numerical simulations with experiments.

6.8 Modeling of Surgical Filaments

We proceed by combining the experimental results presented above with computer simu-

lations performed using fully three-dimensional Finite Element Modeling (FEM). We seek

to gain further physical insight into the underlying mechanism leading to the power-law

growth of knot strength in the tight regime. Using the commercial package ABAQUS/EXPLICIT

(Simulia, Dassault Systèmes), we simulated knotted filaments to probe physical quantities not

readily available in experiments, especially the contact pressure field along the surface of the

filament.
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Along the way, to ensure accurate simulations of the physical knot using FEM, we will need to

experimentally characterize the constitutive elasto-plastic behavior the Prolene filaments to

calibrate the constitutive model, including fitting residual stresses.

6.8.1 Constitutive Elasto-Plastic Model

The 3D continuum-level constitutive model for elastic-viscoplastic mechanical behavior that

we developed for the FEM simulations is based on Refs. [153, 154]. As such, only a summary

of the relevant content is provided here. The implementation of the following framework

into the Finite Element Model using a user-material was performed primarily by Prof. Shawn

A. Chester (New Jersey Institute of Technology), who is also a co-author on the works in

Ref. [153, 154], in the context of a collaboration with the author of this thesis.

Overall, the model includes isotropic hardening since the filaments only undergo one sin-

gle loading cycle during the knot-tying and tightening process. Further, the model is rate-

dependent, a choice that is supported by the data presented in Figure 6.5. The total deforma-

tion gradient is decomposed into elastic and plastic parts:

F = Fe Fp . (6.3)

We assume that plastic flow is incompressible, meaning that detFp = J p = 1, where J = detF.

The evolution equation for Fp is
dFp

dt
= Dp Fp . (6.4)

The flow rule may be written in the form

Dp =
√

1

2
νp Np , (6.5)

where the equivalent plastic shear strain rate is

νp = ν0

(
τ̄

S

)1/m

, (6.6)

the equivalent shear stress is

τ̄=
√

1

2
(Me

0 : Me
0), (6.7)

and the direction of plastic flow is given by

Np = Me
0p

2τ̄
. (6.8)
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In the expressions above, the notation (•)0 denotes the deviator of (•). The Mandel stress in

Eq. (6.8) is given by the constitutive relation

Me = 2GEe +λ(TrEe )1 = 2GEe
0 +K (TrEe )1, (6.9)

where G , K , and λ= K − (2/3)G are the shear modulus, bulk modulus, and Lamé parameter,

respectively. It is important to note that the strain measure used is Ee = lnUe , where Ue is the

elastic stretch, Fe = Re Ue , and accounts for large deformations. The Cauchy stress is related to

the Mandel stress by

T = J−1Re Me ReT. (6.10)

The strength model is given by an evolution equation for the deformation resistance S, which

enters in Eq. (6.6), taking the form

Ṡ = h(Ssat −S)νp , S(t = 0) = S0, (6.11)

where Ssat is a saturation level for the deformation resistance, and h controls how quickly S

approaches Ssat.

In summary, the elasto-viscoplastic model with isotropic hardening presented above involves

the following material parameters, (E ,S0,Ssat,h).

6.8.2 Residual Stresses to Describe Unknown Deformation History

The Prolene filament used throughout the experiments came originally packaged in a stadium-

shaped spool (with straight sides of length 55 mm and semi-circular caps of radius 10 mm)

and exhibits natural curvature upon unpacking. As is common in plasticity problems, this

prior loading history affects any subsequent material response. To account for this (unknown)

deformation history in the FEM simulations, we consider the effective residual bending

stress, σR , as a pre-defined stress field on the initially straight reference configuration of the

filament and treat it as an additional fitting parameter. We specify σR by assuming elastic-

perfectly plastic (small) deformation of a beam with a circular cross-section of diameter, D,

with curvature κ(x) along the axial direction, x, of the beam, the axial strain in the bending

direction, y , can be expressed as εxx =−κ(x)y .

For a fully plastic beam with yield strength, σY , the cross section consists of two regions:

the lower half, −D/2 ≤ y ≤ 0, with σxx = σY and area, A1; and the upper half, 0 ≤ y ≤ D/2,

with σxx =−σY and area, A2. Thus, two regions of integration (A1 and A2) are considered to

compute the bending moment:
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Mp =−
∫

A1

yσY d A1 −
∫

A2

y(−σY )d A2 = D3σY

6
. (6.12)

The residual stress is then expressed as the difference between the fully loaded and the

elastically unloaded case:

σxx (unloaded) =σxx (loaded)−∆σxx , (6.13)

with the stress difference due to elastic spring-back:

∆σxx = E∆εxx =−E(κloaded −κunloaded)y. (6.14)

Further, from the moment-curvature relation, Mloaded = E I (κloaded −κunloaded), we get:

κloaded −κunloaded = Mloaded

E I
. (6.15)

Plugging Eq. (6.15) in Eq. (6.14), yields the axial stress difference:

∆σxx =−Mp y

I
, (6.16)

where we considered loading to the fully plastic state (Mloaded ≡ Mp ). Thus, Eq. (6.13) is written

in the form:

σxx (unloaded) =σxx (loaded)+ Mp y

I
. (6.17)

Considering a fully plastic deformation (σxx (loaded) = ±σY ), and plugging Eq. (6.12) into

Eq. (6.17) gives the residual stress field as a function of the yield strength:

σR (y) =


(

1+ 32y

3πD

)
σY for y < 0,(

−1+ 32y

3πD

)
σY for y > 0.

(6.18)

6.9 Calibration of the Material Model

The 3D continuum-level constitutive model for elastic-viscoplastic mechanical behavior

presented in Section 6.8.1 needs to be calibrated against experimental measurements, which

will be tackled below, in Section 6.9.1. Further, the residual stress formulation presented in

Section 6.8.2 will require an additional calibration layer to account for unknown deformation

history of the Prolene monofilaments, which will be tackled below, in Section 6.9.2.

In Figure 6.9A, we show characterization plots for the cyclic stress-strain behavior of a straight
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(un-knotted) Prolene monofilament (1 USP; gauge length, L = 50mm; constant engineering

strain rate ε̇= 0.01/s). We followed the ISO11566 protocol, which is appropriate for large strain

measurements (see schematic inset in Figure 6.9A). The plot inset in Figure 6.9A quantifies the

dissipated energy density, W , per cycle, which decreases by ≈ 500% between the first and the

second cycle before reaching a steady-state. This seemingly large amount of dissipated energy,

which is only observed in the first cycle and not in subsequent cycles, may be attributed to

the unknown state of the material due to prior deformation history. Since the polymeric

filaments can undergo plastic (irreversible) deformation for large strains, an appropriate

plasticity (constitutive) model is required to reproduce the experimentally measured stress-

strain curves in FEM. We interpret the straightening of the intrinsically-curved filament from

the packaging and the preparation of the specimen for testing as the first loading cycle. To

account for this first loading cycle, we apply the material parameter fitting on a cyclic uni-axial

test of a pre-stretched filament (εeng. pre-stretch = 25%).

In what follows, we will calibrate the material parameters of the model using the experimental

data of uni-axial, cyclic tensile tests. Then, to account for the unknown deformation history

of the filaments, the presence of residual stresses in bending is estimated by using a simple

bending case.

6.9.1 Uniaxial tensile tests for Model Calibration

In summary, the elasto-viscoplastic model with isotropic hardening presented above involves

the following material parameters, (E ,S0,Ssat,h), which must be determined by fitting to the

experimental data presented in Figure 6.9B, for the three consecutive loading and unloading

cycles of a straight, un-knotted, and pre-stretched Prolene monofilament.

The 3D constitutive model has been specialized for uni-axial tension, and the reduced model

is implemented into Matlab for the purpose of parameter calibration. These parameters are

the Young’s modulus, E , the initial yield strength, σ0 (taken as the initial condition for S), the

saturated yield strength, Ssat, and the initial hardening modulus, h. Based on the experimental

data presented in Figure 6.9B, the built-in Matlab function lsqnonlin was used to perform

a nonlinear least-square optimization of the four parameters with a prescribed initial guess

and lower and upper bounds, as summarized in Table 6.1. The rate-sensitivity parameter

was assumed as m = 0.08 in order to improve the numerical convergence of the optimization

process, and the shear strain rate was set to ν0 = 0.001. Furthermore, we constrained the values

of E using the initial slope of the test curves in the unloading region, which was measured to be

≈ 7000MPa. Assuming material incompressibility, the shear modulus is related to the Young’s

modulus by G = E/3. The optimization process yields the calibrated quantities presented in

139



Chapter 6. Strength of Surgical Knots

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.2

0.4

0.6

0.8

1

1.2

Tr
ue

 s
tr

es
s, 
σ t

 (
M

Pa
)

True strain, εt 

Tr
ue

 s
tr

es
s, 
σ t

 (
M

Pa
)

1
2
3

Cycle #

W
 (

J/
m

3 ) 

1cm

Exp. Const. model

Experiments: 

σR(σY=28MPa)
FEM with const. model: 

σR(σY=30MPa)
σR(σY=32MPa)

σY=19.1MPa

A B

True strain, εt 
D

Te
ns

io
n 

dr
op

, Δ
T

/σ
Y

 A
 

Norm. curvature, κ = 2DFil/(DPin+DFil) 

2.0

0.1 

1.0 

x
y

z

x

y z

C T

T

L 
σt

σt

2 4 6 8 100

p

Cycle #

Cycle number

- - /2 0 /2
0

1

2

3

4

5

6

0

2

4

6

8

σR(σY=30MPa)

0MPa

10MPa

20MPa

0

0.5

1

-
-

/2
0

/2
0123456

02468

Figure 6.9: Plasticity modeling of surgical filaments. A, True stress, σt , as a function of
true strain, εt , of Prolene 1 in a cyclic uniaxial tension test, for 10 cycles. The schematic
(inset) illustrates the specimen preparation, and the inset quantifies the dissipated energy
density, W , between 10 consecutive cycles. B, Cyclic tensile response of a pre-stretched
filament with increasing maximum strain, plotted as true stress, σt , versus true strain, εt . A
constitutive model for elastic-viscoplastic mechanical behavior is fit onto the experimental
data. C, Deformed shape of the originally-straight filament in FEM before and after it has
been subjected to residual bending stresses, σR (σY ), with σY = {10, 20, 30}MPa, according to
Eq. (6.18). Bottom left: close-up photo on the plastic capstan apparatus used to quantify plastic
dissipation by measuring the tension drop, ∆T , across the two ends. Right: FEM snapshot of
the plastic capstan system, visualizing equivalent plastic shear strain, γp in a side view and in
the horizontal cutting plane (purple dashed line). D, Tension drop, ∆T /σY A, as a function of
normalized curvature, κ= 2DFil/(DPin +DFil). The plasticity material model is calibrated by
tuning the residual stresses to match the experimental data by tuning the fitting parameter to
σY = 30±2MPa.

Table 6.1, with the model fitted (dashed lines) to the experimental cyclic stress-strain curves

(solid lines), as shown in Figure 6.9B.
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E (MPa) σ0 (MPa) σSat (MPa) h (MPa)

6000

5000

7000

5

0.1

30

50

30

450

2

0.5

20

5060.9 1.25 137.5 0.5

→ G=1687.0 MPa

Initial guess

Lower bound

Upper bound

Fitted param.

Parameters:

Table 6.1: Calibration of material parameters using experimental data.

6.9.2 Plastic Capstan Configuration to Calibrate the Residual Stress

The surgical filaments used throughout this study undergo unknown deformation during

their manufacturing and packaging, leading to an intrinsic curvature. As is typical in plasticity

problems, this prior loading history affects any subsequent material response. To account for

this (unknown) deformation history in the FEM simulations, we consider the effective residual

bending stress, σR , as a pre-defined stress field on the initially straight reference configuration

of the filament and treat it as a fitting parameter. Since the true residual stress profile is

unknown, we assume the perfectly plastic case in bending since the material is spooled for

packaging and exhibits natural curvature upon unpacking. Following existing literature for

elasto-plastic materials [155] for a fully plastic deformation, the residual stress field can be

expressed as described by Eq. (6.18) in Section 6.8.2.

In Figure 6.9C, we show deformed filament configurations for different values of σR (σY ), with

σY = {10, 20, 30}MPa, applied on the initially-straight filament (σR (σY = 0MPa)). Note that

different values of σR relate to different natural curvatures of the filament.

Our knotted monofilaments undergo significant plastic deformation in bending (see bent rest-

shape of the untied knot, k2, in Figure 6.1B3). Thus, we proceed by first testing the plasticity

model for a filament in simple bending before applying it to simulate knotted configurations.

In Figure 6.9C (bottom left), we show a photograph of the apparatus we developed to perform

to calibrate the parameters of our plasticity model. We shall refer to this configuration as the

plastic capstan. In this configuration, we quantify the tension drop, ∆T , between the free

end and the pulled end of a Prolene monofilament (1 USP) passing through a grooved pin

with the diameter in the range 0.5mm ≤ DPin ≤ 9mm. Given that the pin is mounted on an

air-bearing, and the two constraining ball-bearings minimize friction, the ensemble rotates

as a frictionless gear when pulling the filament. As such, there are minimal sliding frictional

dissipation effects; the dissipation is only due to plastic bending deformation of the filament

around the pin, which causes the tension to drop between the two extremities. By contrast, in

the classic capstan problem [28, 29], the tension drop is due to the friction interaction alone.
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In FEM, we simulate this same plastic capstan configuration for filaments subjected to residual

bending stresses. The pin of diameter, DPin, and the gap walls were simulated as rigid bodies

according to the fabrication tolerances of the pins, leaving a groove of depth DFil +0.01mm

and width DFil +0.11mm. In Figure 6.9C, we present an FEM-computed configuration of the

plastic capstan (DPin = 0.5mm), color-coded by the equivalent plastic shear strain, γp , which

increases along the filament from the free end (right) to the pulled end (left) as a result of

the plastic deformation accumulated. A horizontal cut (purple dashed line) at the height of

the pin exposes the in-plane profile of γp . In Figure 6.9D, we plot experimental and FEM

data for the normalized tension difference, ∆T /(σY A), as a function of normalized curvature

imposed by the pin of diameter DPin on the filament of diameter DFil: κ= 2DFil/(DPin +DFil).

Tuning the residual stresses allows for the calibration of the numerical model by matching

its results to the experimental data, thereby determining the fitting parameter. With the

fitted value of σR (σY = 30±2MPa), we find that the FEM simulations accurately represent the

experimental data across the full range. Note that the fitted yield strength is of the same order

as the experimentally-determined 0.1% offset yield strength, σY = 19.1MPa [139].

6.10 Knot Strength Established by Normal Contact Forces

Having validated and calibrated the FEM simulations using the plastic capstan system, we

proceed to simulate S ||S knots on a Prolene monofilament. In the commercial package

ABAQUS/EXPLICIT (Simulia, Dassault Systèmes), two initially straight filaments were imple-

mented, each with unit-diameter, DFil = 1. The filament (1) forming the two half-hitches was

modeled with axial length, L1 = 35DFil. The sliding filament (2) was chosen to be half as long.

The two filaments were oriented such that their centerlines cross with a relative angle of 10◦.

Both filaments were meshed with 3D solid elements, enhanced with incompatible modes for

bending (C3D8I). The number of elements along the axial direction was 230 for filament (1)

and 115 for filament (2), with 40 elements per cross-section in both cases. Two circular plates

(5DFil in diameter, 0.1DFil in thickness) with a central clearance hole of diameter, 1.10DFil,

were modeled as rigid bodies and aligned with the centerline axis of filament (2), leaving a

relative distance 7DFil between the two plates.

In an initial step, the central region of filament (1), 0.25L1 < Lcenter < 0.75L1, was subject to

the residual stress field σR (σY = 30±2MPa) since the filament extremities are not part of the

knot. Mimicking the tying procedure of the surgeon, a dead load (M g = 50N) was applied

to one of the extremities of filament (2), keeping the other end clamped. Next, by applying

a sequence of prescribed displacements and rotations to control the nodes located at each

end and the central coordinate of filament (1), two half-hitches were formed around filament
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(2), corresponding to the sliding granny knot. A similar tying protocol has been introduced by

Sano et al. [37], and described in Chapter 3, Section 3.2.5 in the context of the clove hitch knot.

Both knots share the same topology but differentiate by their application: a clove hitch knot

attaches a rod to a rigid cylinder (typically larger than the rod diameter), whereas the sliding

granny knot is a binding knot, connecting two rods (of equal diameters). We made use of the

tying algorithm used in Ref. [37], with minor adaptations to tie the S ||S knots.

After the S ||S topology was set, both rigid plates were displaced, leaving a relative distance

of 6DFil, to help keep filament (2) in place (in addition to the applied dead load) during the

subsequent tightening step. Then, the two extremities of filament (1) were gradually loaded by

the tying pre-tension of the same magnitude, T̃ , but in opposite directions to yield a symmetric

knot. Next, the pre-tensions were released symmetrically to free the ends of filament (1), while

one of the two plates was displaced along the centerline axis of filament (2), away from the

actual system since, subsequently, it is no longer needed. Finally, the clamped boundary

condition at the extremity of filament (2) was also released, such that the filament could be

displaced with the constant unit-speed 1s−1. Finally, the S ||S knot was pulled against the rigid

stopper plate, and the slipping force, F̃ , was measured.

In Figure 6.1D, we presented a knotted configuration tied numerically by subjecting the

horizontally-aligned filament strands to a tying pre-tension of T̃ = 10.9. The corresponding

force-displacement curve computed from FEM was presented in Figure 6.2C (dashed line),

exhibiting excellent agreement against experiments, especially in the plateau region used to

define the knot strength, F̃0. Note that, at this stage, the FEM has no adjustable parameters

with all model parameters and mechanical properties having been determined independently,

including the calibration using the plastic capstan system.

As a final validation step of the numerical model, we compare the FEM-computed knot

strength against experiments, over the full tightness range of the tight knots (ii) regime,

T̃min < T̃ < T̃max. In Figure 6.10A, we replot the experimental knot strength (solid line), F̃0,

as the fitted power-law extracted from Figure 6.6B, with the shaded region representing the

experimental uncertainty. In the same plot, we plot FEM simulation results with the exper-

imentally measured kinematic friction coefficient, µ = 0.2. Excellent agreement is found

between experiments and FEM, providing extra confidence on the high-fidelity of the sim-

ulations. Furthermore, we leverage the FEM to systematically vary the friction coefficient,

µ, which cannot be readily changed experimentally; these simulation results are juxtaposed

in Figure 6.10A, where we find that knot strength increases with µ. The excellent agreement

between the FEM data (for the specific value of µ = 0.2, the same as in experiments) and

the experiments confirms that the non-dimensionalization of the forces by the diameter (in
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addition to σY ) was a valid choice.
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Figure 6.10: Analysis of surface tractions and master curve for knot strength. A, FEM-
computed knot strength, F̃0, versus tying pre-tension, T̃ , for the S ||S (n = 2) configuration, over
a range of friction coefficients, µ ∈ [0.05−0.35]. The green line corresponds to the experimental
fit to Eq. (6.1), from Figure 6.6B, and the shaded region to the 65% confidence interval of the
fit. The experimental value of the friction coefficient is µ= 0.2. B, 3D-visualization of the S ||S
knot system (T̃ = 9.5) simulated using FEM (top). Contact pressure, p/σY , visualized on the
pulled 3D rod (bottom) and mapped in 2D along the axial coordinate, z/D, and the angular
coordinate, ϕ (right). C, Knot strength, F̃0 versus the released integrated normal contact force,
F̃n2, for friction coefficients in the range, µ ∈ [0.15−0.35]; see legend in (A). Linear fit of the data
(lines) and 65% confidence interval (shaded regions). Inset: released normal contact force, F̃n2

versus the pre-released normal contact force, F̃n1, for all the simulated values of µ; see legend
in (A). Springback (dilation) of the knots is observed for the datasets with µ= 0.05, 0.10, an
example of which is shown in the adjacent FEM configuration corresponding to the red-circled
data point (µ= 0.10, T̃ = 6.8). D, Effective knot strength, F̃0/nµ, versus T̃ , combining all the
experimental and numerical results obtained in this study.

To explore the inner workings of the knot, we used the FEM to compute the normalized contact

pressure, p/σY , between the half-hitches and the quasi-straight sliding filament. For the

representative case of an S ||S knot (n = 2) with T̃ = 9.5, Figure 6.10B shows a 3D visualization
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of p/σY and its projected 2D map, the latter focusing only on the contacting regions. We

distinguish two main contact regions related to the two half-hitches, with four distinct pressure

hot spots. Integrating the local normal tractions over the entire surface of the knotted rod

yields the integrated normal contact force, F̃n = Fn/σY A. It is useful to define the pre-released

configuration as the state when the pre-tension is still applied before freeing the ends and the

released configuration when the ends have been freed for testing; renderings in Figure 6.10C,

left and right, respectively. The inset in Figure 6.10C plots the integrated normal contact forces

of the released versus the pre-released configurations; i.e., F̃ r
n vs. F̃ pr

n . For µ≥ 0.15, we find

that F̃ r
n ≈ F̃ pr

n (dashed line), meaning that the released configuration maintains the normal

contact force onto the sliding filament due to the plastic deformation accumulated during

the pre-tensioning step. For µ < 0.15, F̃ r
n < F̃ pr

n as the knot dilates after the pre-tension is

released (elastic springback) with an insufficient level of plastic deformation (rendering in

Figure 6.10C, right). In these low-friction cases, the desired constricting geometry around

the sliding filament is not provided, and consequently, the normal tractions in the released

configuration (F̃ r
n) are low. Thus, plasticity turns out to be crucial to prevent the complete

unraveling of the knot; even for vanishing friction coefficients (µ= 0.05); the plastically bent

filament guarantees the knot topology, while the same knots on a purely elastic rod would

unravel.

Focusing on the tight, non-dilated configurations (µ≥ 0.15), the data in Figure 6.10A evidence

that the global knot strength depends linearly on the integrated local normal force; F̃0 ∝ F̃ r
n.

Therefore, despite the strong underlying geometric nonlinearities, the Amontons-Coulomb

friction law is at the source of this proportionality (as implemented in the FEM model), relating

the total integrating tangential force, F̃t, and hence the knot strength, to F̃ r
n. Combining the

friction-related dependence with Eq. (6.2), the knot strength is expected to behave as

F̃0 =β2nµT̃α, (6.19)

with the prefactor β2 = K̃ /(nµ) = 0.21±0.07 measured by fitting. In Figure 6.10D, we plot

F̃0/(nµ) versus T̃ for the experimental data (n ∈ [2, 6], from Figure 6.6) together with the FEM

data (n = 2 and µ ∈ [0.15, 0.35]). The data collapse onto a master curve, consistently with

Eq. (6.19), with α= 1.56±0.23. These results confirm that the frictional interactions dictate

the knot strength with the required normal contact forces ensured by the plastic deformation

pre-tensioning. Note that the power-law in Eq. (6.19), as evidenced in Figure 6.10C, is valid

only for tight knots (above Tmin), and does not hold for loose knots (F̃ r
n < 3.3), presumably

due to the dilation of the released configurations. These findings call for future theoretical

work to rationalize the measured values of α and β2, which were found to be independent of

the filament diameter, the number of throws, and the friction coefficient (for µ≥ 0.15), in the
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whole tension range of the tight-knots regime.

6.11 Summary and Outlook

Our results from both surgeon-tied knots and model experiments, combined with FEM simula-

tions, enabled us to identify the primary ingredients dictating the mechanical performance of

surgical sliding knots. In addition to topology, geometry, and elasticity, the interplay between

plastic deformation and frictional interactions is crucial in monofilament sutures. We propose

that our findings be translated into practical guidelines on how to tie a safe surgical knot into

a given suturing monofilament with friction coefficient, µ≥ 0.15, and yield strength, σY . The

surgeon can adapt the filament caliber (cross-sectional area) and the number of throws, as

well as control the tying pre-tension to induce an appropriate level of plastic deformation

and hence normal-contact pressures, which, through friction, establish an appropriate knot

strength. Since we only considered dry conditions, the master curve of the effective knot

strength is applicable for dry suturing environments, e.g. dry skin operations. In the presence

of blood and other fluids in surgical procedures, lower friction coefficients and, consequently,

lower knot strengths are to be expected, which can be compensated by T̃ and n.

We hope that the know-how gained from our investigation raises awareness of the physical

ingredients in surgical knots to experienced surgeons and will be valuable in the training

of entry-level surgeons. Further, our quantitative description of the mechanism underlying

sliding knots could be implemented into emerging robotic-assisted surgical devices containing

haptic feedback to target effective knot-tying at a level similar to an experienced surgeon [156].
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In this concluding chapter, we first summarize our key findings in Section 7.1. Then, in

Section 7.2, we describe a few directions of ongoing work, which was motivated by the exper-

imental and numerical techniques developed in this thesis, especially, in Chapters 2 and 3,

respectively. Finally, in Section 7.3, we identify possible avenues for future research opened by

the present results of this thesis.

7.1 Summary of Findings

In this thesis, we have studied several configurations of physical knots, in their tight and func-

tional configurations. The importance of tightness and the three-dimensional nature of tight

contacts were highlighted throughout. The use of mechanical testing and volumetric imaging,

combined with Finite Element Modeling, enabled us to study the intricate interplay between

topology, geometry, friction, and elasto-plastic constitutive behaviors of knotted structures,

ranging from model systems of filaments in tight contact to realistic knots in surgical sutures.

In general, the use of model systems enabled us to rationalize the underlying mechanisms

and physical principles, which were then contrasted against theoretical frameworks. We

also established comparisons with real-life applications, including stopper knots in ropes or

surgical knots tied by an experienced surgeon.

In Chapter 1, we performed a literature review of the existing tools and models to study knots.

We considered topological knot theory and the geometry of the tightest knot configurations

tied on ideal (perfectly flexible and slippery) ropes. Beyond topology and geometry, for phys-

ical knots tied in elastic filaments, analytic models based on the Kirchhoff theory of rods

incorporate the minimal physical ingredients, including resistance to bending and torsion, as

well as frictional contact interactions. Further, the discrete elastic rod theory was recognized
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as a powerful tool to describe knots if the deformations of the cross-section of the rod and the

contact interactions can be neglected or approximated. Also, a few studies used Finite Ele-

ment Modeling to simulate knotted rods, although with simplifying assumptions to describe

contact or the underlying constitutive models. Finally, we summarized relevant studies that

characterize the quality and stability of physical knots but are not able to provide analytical

predictions for their performance. From all of this existing body of literature, we identified the

timely and relevant research niche for our work to provide much-needed physical insight into

the nontrivial behavior of tight, physical knots.

In Chapter 2, we described the experimental toolbox and protocols that we have developed

to study physical knots. The fabrication of composite rods was required to extract useful

information from subsequent X-ray µCT imaging. A physical fiber was incorporated at the

rod centerline, together with an eccentric inset. In addition, a thin and uniform outer rod

coating was applied by dip-coating the elastomeric rods. Differences in material densities

in knotted composite rods enabled us to extract fundamental geometric information from

non-destructive X-ray tomographic imaging data. A sophisticated image analysis toolbox was

developed to access the material centerline with its curvature, compute the director vectors of

the Cosserat frame, and gain access to contact regions as well as cross-sectional deformation

of knotted rods. Lastly, we characterized the material properties of elastomeric materials

and described the protocol to determine the friction behavior of powder-treated elastomeric

surfaces, which were essential in the subsequent chapters.

In Chapter 3, we developed a computational framework to enable systematic investigations of

tight elastic knots based on a fully 3D finite element method (FEM). Depending on the specific

problem at hand (addressed in subsequent chapters), the rods were modeled as solid rods

or tubes, isotropic or transversely-isotropic. Numerical tying algorithms were presented to

tie open and closed trefoil knots, the figure-eight, and the sliding granny knot (equivalent to

the clove hitch knot). Moreover, the coupling between geometric features and the applied

tension from the numerical results was compared to the corresponding experimental data for

validation purposes. Finally, the experimentally validated computational framework was used

to quantify the accurateness between the geometric centerline definition minCS (introduced

in Chapter 2) and the well-defined material centerline.

In Chapter 4, empowered by the experimental and numerical toolbox presented in Chap-

ters 2 and 3, we performed a compare-and-contrast investigation between the equilibrium

shapes of physical and ideal trefoil knots, both in closed and open configurations. Physical

realizations of tight trefoil knots were tied in an elastomeric rod, and X-ray tomography and 3D

finite element simulation allowed a detailed characterization of the geometry of these knots.
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Specifically, we evaluated the role of elasticity in dictating the overall shape of these physical

knot, including their curvature profile, self-contact regions, and cross-section deformation.

We compared the shape of our elastic knots to prior computations of the corresponding geo-

metric configurations for the same knot tied on ideal ropes. Our results on tight physical knots

exhibited many similarities to their purely geometric counterparts but also some striking

dissimilarities that we examined in detail. These observations raised the hypothesis that

regions of localized elastic deformation, not captured by the geometric models, could act as

precursors for the weak spots that compromise the strength of knotted filaments.

In Chapter 5, we investigated the stability of stopper knots, again using a combination of

experiments and FEM simulations. In a physical model system, we threaded an elastic rod

through the clearance hole of a stopper plate and tied a figure-eight knot at one of the rod’s

extremities. When pulled against the plate, the figure-eight knot converts a high pulling

force into a much smaller force at the other extremity before the knot capsizes. Leveraging

experimentally validated simulations, we employed FEM to systematically study the effect

of the frictional interactions on the capsizing mechanism. We quantified twist in a critical

rod segment and demonstrated that friction-induced twist between self-contacting rods is at

the source of the capsizing mechanism. An increase in the friction coefficient between the

rod and the stopper plate hampered the onset of capsizing. Finally, we characterized several

standard climbing and multi-functional ropes (braided), all of which showed a decoupling

between their torsional and bending rigidities ought to their braided sub-structure. Whereas

most of our investigation focused on elastic rods, our results suggests an explanation for why

a difference in the capsizing mechanism is to be expected between elastic rods and braided

ropes. Ropes were found to delay or even impede the capsizing mechanism due to their

relatively higher twist energy penalty when compared with bending.

In Chapter 6, aimed to establish physics-based operational and safety guidelines on the

mechanical strength of surgical sliding knots. We developed a physical model system to

study the untying knot strength by systematically varying the tying pre-tension, leading

to distinctive levels of knot tightness. Throughout this chapter, we focused exclusively on

commercial polypropylene suturing monofilaments, which are common in surgical practice.

We focused on tight, sliding knots, ranging from the simple sliding granny knot (S ||S), to

multiple-throw knots in their sliding conformation (e.g., the 6-throw S ||S×S×S×S×S knot).

We uncovered power-law behavior for the untying strength of these knots as a function of

the applied pre-tension. Next, we analyzed knots from an experienced surgeon, finding that

they intuitively target the middle of this power-law region, leaving a safety clearance between

the limiting regime where the knot is too loose to be functional and the limiting regime of

filament fracture. Further, we explored the effects of the number of throws and the knot
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topology (‘ || ’ vs. ‘×’-throws, using a notation that is common in the surgical knots literature).

Our results uncovered a strikingly simple linear relation between the knot strength and the

number of throws. To further understand the key role of friction on knot safety, we simulated

plastic knots with varying filament friction coefficient using the FEM. For these simulations,

we had to develop a plasticity model, which was calibrated and validated against experimental

results from uni-axial and bending material responses. Tying, tightening, and untying sliding

knots with different frictional contact interactions allowed us to relate knot strength to the

underlying normal contact forces present in the knot. Finally, we proposed a general scaling

law that collapses all our experimental and numerical data onto a master curve, quantitatively

describing the strength of tight knots for all the sliding knot conformations we investigated and

a wide range of friction coefficients. Despite the complex constitutive behavior of filaments,

intricate contact geometry, and knot topology, we were able quantitatively rationalized the

underlying mechanism dictating knot strength. An aspect of particular novelty of the work

presented in this chapter was the recognition of the previously overlooked but critical effect of

plastic deformation in this class of knotted structures on polymeric monofilaments. These

findings could have potential applications in the training of surgeons and in the control of

robotic-assisted surgical devices.

7.2 Opportunities for Future Works

We explored the three-dimensional shapes and failure mechanisms of capsizing and sliding in

a few relevant physical knot topologies tied in circular, solid rods. However, each knot topology

has its own strength and weakness when applied in various physical contexts. In addition,

knots can be tied in tubes or hollow rods (e.g., a garden hose or the neck of a plastic bag), in

rectangular beams (e.g., flat shoelaces), or in complex-structured and braided filaments (e.g.,

surgical thread or climbing ropes). Hereafter, we summarize several ongoing research efforts

that have stemmed from the collaborative works of the author or that are based on similar

investigations of complex knots using the tools developed by the author that are currently

being investigated further at EPFL’s Flexible Structures Laboratory.

7.2.1 Mechanics of the Bowline Knot

The bowline knot provides a stationary loop, typically at the end of a rope, and is one of the

most common knots employed by sailors (see Figure 7.1a). More specifically, this knot is

commonly used to attach the ‘bow line’ of a square sail to prevent it from being filled by the

wind on the wrong side of the sail [117, 118]. The bowline knot is based on the classic sheet

bend and therefore regarded as relatively secure. Still, in some circumstances, the knot can
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slip or capsize (see inset in Figure 7.1a), as the mechanism described in Chapter 5.

a b1 b2Left-handed Right-handed

10 mm10 mm50 mm

Figure 7.1: Variations of the bowline knot. a, X-ray scan of a left-handed bowline knot tied
in a climbing rope. The inset depicts the capsizing, useful to untie the knot, and is adapted
from Bloomsbury Publishing Plc [117]. b1-b2, CT-scans of bowline knots tied in elastomeric
VPS32 rods in their left-handed (b1) and right-handed (b2) variations. Image credits for b1
and b2: Mr. Bastien Aymon, Dr. Michael Gomez, and Dr. Fani Derveni (FLEXLAB, EPFL).

By cutting the leg of the loop, the basic bowline knot essentially becomes the sheet bend

knot. Since there are numerous variations of the sheet bend knot, at least as many types of

bowline knots can be formed: the true bowline, hitched bowline, tucked bowline, bowline in

the bight, three legs bowline, Ontario bowline, Algonquin bowline, brummycham bowline,

Spanish bowline, water bowline, amongst others [22, 1, 118].

This ongoing project, which is currently being undertaken by Mr. Bastien Aymon, Dr. Michael

Gomez, and Dr. Fani Derveni, involves a detailed investigation of the stability of the simple

bowline tied in the left-handed and right-handed configurations. Preliminary µCT scans

were performed on a model system consisting of composite elastomeric rods tied in the

two configurations, as shown in Figure 7.1b1-b2. The rods were fabricated according to the

protocols described in Chapter 2, Section 2.2. Using the versatile image-processing algorithm

presented in Chapter 2, Section 2.3.2, the material centerline coordinates, curvature and

twist profiles, as well as the contact regions, can be readily extracted from the reconstructed

volumetric data (Chapter 2, Section 2.4).

Beyond the volumetric imaging of bowline knots, mechanical tests are being performed to

evaluate the resistance against untying as a function of tightness and knot configuration (left-

vs. right-handed). In addition, the experimental data will be accompanied by numerical
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simulations (similar to the described procedure, presented in Chapter 3), which will hopefully

yield further insight into the local kinematics and mechanics of the knotted rod. Finally,

the topological fact that the bowline knot includes the sheet bend could be interesting to

generalize findings on stability between these two knot types.

7.2.2 Mechanics of Knotted Umbilical Cords

In mammals, the umbilical cord plays a key role in the prenatal development of the fetus by

enabling fluid exchanges with the maternal placenta [157]. As shown in the schematics in

Figure 7.2a, the umbilical cord consists of a single vein that carries oxygen and nutrient-rich

blood from the placenta to the fetus, together with two arteries that carry deoxygenated blood

and waste back to the placenta [158]. These three blood vessels are twisted around each other,

forming a triple helix that is embedded in a gel-like structure called Wharton’s jelly [157].

During pregnancy, fetal activity can spontaneously lead to knotting of the umbilical cord (see

Figure 7.2b). Even though Wharton’s jelly provides a thick protective wall around the vein and

arteries, the formation of knots can result in constrictions of the blood vessels and, in some

cases, asphyxia of the fetus [16]. Knotted umbilical cords are observed only in around 1% of

pregnancies, but have been shown to increase the probability of fetal death by almost a factor

of four [17]. The conditions leading to such a catastrophic vessel constriction are still poorly

understood.

In this research project, in collaboration with Dr. Michael Gomez (FLEXLAB, EPFL), and

former collaborators, Mr. Nicolas Minazzo and Dr. Paul Grandgeorge, we have been studying

the elasto-hydrodynamics of a knotted tube as a reduced model of the umbilical cord under

different knotting conditions (see Figure 7.2c1). Specifically, we focus on the drop in flow

rate of a pressure-driven viscous flow along a knotted elastomeric tube containing a single

concentric vessel (lumen). By combining precision experiments and numerical computations

(Figure 7.2c2), we observed that, at low tensions, T , the knot has a negligible effect on the flow

rate (dictated by the Poiseuille flow in a straight tube). However, beyond a critical tightening

tension, T ∗, the flow rate rapidly decreases to zero. We make use of µCT imaging and FEM

simulations to rationalize the highly non-linear relationship between flow rate and knot

tension. In particular, as the knot tension increases, we observe that the lumen cross-section

adopts a quasi-elliptical shape that rapidly closes beyond the critical knot tension T ∗.

Next, to highlight the interplay between tube curvature and tension that leads to normal

contact forces during knotting, we study the hydrodynamics of a simplified system comprising

a tensioned tube wrapped around a rigid cylinder. The numerical tightening visualization of

this configuration is shown in its loose state in Figure 7.2d. A displacement, δ, of the rigid
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a c1

d e2e1

c2

x

y

b

δ

Figure 7.2: Model-system experiments and simulations on the umbilical cord. a, Schematics
of the biological umbilical cord consisting of twisted arteries and a vein, embedded in the
Wharton’s jelly. Schematics adapted from Szepesi et al. [158]. b, photograph of a knotted
umbilical cord. Image adapted from Omari [159]. c1-c2, Tight overhand knot tied in a tube
in experiments (c1) and FEM (c2). Image credits of c1: Mr. Nicolas Minazzo. d, Bent elastic
tube in FEM before the rigid cylinder moves in the positive y-direction. e1-e2, Numerical
visualization of tensioned tube in an outer view (e1), and with a cross-sectional cut (e2.)

cylinder against the elastic tube results in the configuration shown in Figure 7.2e1, with the

cross-sectional cut, displayed in Figure 7.2e2. Again, we observe similar phenomenology to

a knotted tube: the flow rate undergoes a drastic drop beyond a critical value of the applied

tension.

Finally, to gain a deeper understanding of the effect of contact forces on lumen deformation,

we further simplify the problem by analyzing the flow through a straight tube compressed

between two parallel plates. Despite the geometrical difference, we leverage the results of this

final experiment to rationalize the load-deformation behavior in more complex configurations.

By assuming that a knot is a sequence of tube portions wrapped around cylinders, our analysis

enables us to provide a prediction of the hydrodynamic response of the intricate knotted tube.

Despite the differences between our model elastomeric tube and the triple-helix structure

of an umbilical cord, we are confident that our results should enable a better understanding

of the disastrous consequences of vessel constriction. By shining light on the underlying

mechanisms leading to drops in flow rate, we hope that our findings could eventually enable

novel obstetric evaluationg procedures in cases of tight, knotted umbilical cords.
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7.3 Final Remarks

In the past few decades, advances in material science and engineering found alternatives to

knots in everyday life. For instance, Velcro strips replace the binding of shoelaces, and tissue

adhesive can be used instead of suturing a wound in low-tension surgeries. Further, zippers,

glue, adhesive tape, staplers, magnets, and rubber bands reduce the application of knots in

our everyday life [118]. Nevertheless, knots remain omnipresent, and in applications like

sailing, climbing, and surgery, they remain the most secure and reliable solution.

In closing, the work performed throughout this thesis demonstrates the importance of each

underlying geometric and mechanical property in dictating the performance of physical knots.

We hope that our systematic exploration of knotted structures, and the physical insight into the

nontrivial behavior of these systems can be used to motivate and validate accurate predictive

models and computational tools.

Ultimately, the new reality of robot-assisted surgery raises questions about the quality of the

knots produced by medical devices and how the sutures compare to those performed directly

by a human surgeon [160, 161, 162]. As such, a new level of predictive models for knot tying,

which considers all the underlying variables, will become increasingly essential to ensure

reliable, strong, and secure sutures.
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[52] Piotr Pierański. In search of ideal knots. Computational Methods in Science and Tech-

nology, 4(1):9–23, 1998. doi: 10.12921/cmst.1998.04.01.09-23.

[53] R.A. Litherland, J. Simon, O. Durumeric, and E. Rawdon. Thickness of knots. Topology

and its Applications, 91(3):233–244, feb 1999. doi: 10.1016/s0166-8641(97)00210-1.

[54] Eric J. Rawdon. Can Computers Discover Ideal Knots? Experimental Mathematics, 12

(3):287 – 302, 2003. doi: em/1087329232. URL https://doi.org/.

[55] Ted Ashton, Jason Cantarella, Michael Piatek, and Eric J. Rawdon. Knot tightening by

constrained gradient descent. Experimental Mathematics, 20(1):57–90, mar 2011. doi:

10.1080/10586458.2011.544581.

[56] J. Baranska, S. Przybyl, and P. Pieranski. Curvature and torsion of the tight closed trefoil

knot. The European Physical Journal B, 66(4):547–556, dec 2008. doi: 10.1140/epjb/

e2008-00443-y.

[57] Smutny, Jana. Global radii of curvature, and the biarc approximation of space curves:in

pursuit of ideal knot shapes. 2005. doi: 10.5075/EPFL-THESIS-2981.

[58] E. L. Starostin. A constructive approach to modelling the tight shapes of some linked

structures. PAMM, 3(1):479–480, dec 2003. doi: 10.1002/pamm.200310509.

[59] John H. Maddocks Oscar Gonzalez and Jana Smutny. Curves, circles, and spheres.

Contemporary Mathematics, pages 304:195–216, 2002.

[60] Ted Ashton, Jason Cantarella, Michael Piatek, and Eric Rawdon. Self-contact sets for 50

tightly knotted and linked tubes, 2005.

[61] B. Audoly, N. Clauvelin, and S. Neukirch. Elastic knots. Physical Review Letters, 99(16),

oct 2007. doi: 10.1103/physrevlett.99.164301.

[62] Changyeob Baek, Paul Johanns, Tomohiko G. Sano, Paul Grandgeorge, and Pedro M.

Reis. Finite element modeling of tight elastic knots. Journal of Applied Mechanics, 88(2),

2021. doi: 10.1115/1.4049023.

[63] N. Clauvelin, B. Audoly, and S. Neukirch. Matched asymptotic expansions for twisted

elastic knots: A self-contact problem with non-trivial contact topology. Journal of the

Mechanics and Physics of Solids, 57(9):1623–1656, sep 2009. doi: 10.1016/j.jmps.2009.05.

004.

159

https://doi.org/


Bibliography

[64] M. K. Jawed, P. Dieleman, B. Audoly, and P. M. Reis. Untangling the mechanics and

topology in the frictional response of long overhand elastic knots. Physical Review

Letters, 115(11), sep 2015. doi: 10.1103/physrevlett.115.118302.
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