
Mechanisms underlying reinforcement learning of 
motor skills  

Thèse n° 11 380 
(EPFL)

2023

Présentée le 7 février 2023

Acceptée sur proposition du jury

Thèse présentée en vue de l’obtention du grade de doctorat en Sciences médicales

par

Pierre Theopistos VASSILIADIS

Prof. D. N. A. Van De Ville, président du jury
Prof. F. C. Hummel, Prof. J. Duqué, directeurs de thèse 
Dr. G. Derosiere, co-directeur
Prof. R. Hardwick, rapporteur
Prof. H. Schambra, rapporteuse
Prof. O. Blanke, rapporteur

À l’école polytechnique fédérale de Lausanne
à la Faculté des sciences de la vie
Unité du Prof. Hummel
Programme doctoral en neurosciences

et À l’Université catholique de Louvain
Institute of Neuroscience (IoNS)



Members of the UCLouvain accompanying committee: 

2 

 

Members of the UCLouvain accompanying committee: 

Prof. Yves Vandermeeren (President of the committee)  

Prof. André Mouraux 

Prof. Michael Andres 



Acknowledgements 

2 

 

Acknowledgements 

This joint PhD performed between Belgium and Switzerland has come with a series of chal-

lenges that have transformed me scientifically and humanly. This work could not have been 

achieved without the help of many people that I would like to thank. 

 

First, I would like to express my gratitude to my three supervisors for their constant support 

and trust during this amazing journey.  

 

Julie, I would like to thank you for providing me with so many opportunities since the begin-

ning of my work in your lab, back in 2014. Working by your side has been, and is, a constant 

source of scientific and human inspiration which has shaped the scientist I am today and 

the PI I hope to become.  

 

Friedhelm, I would like to thank you for your constant trust in my ideas and abilities since 

my arrival in the lab. You have taught me how important it is to be versatile, ambitious in the 

questions we aim for, but also strategic in the way we think about science. I am looking 

forward to continuing this exciting journey with you.  

 

Finally, to you Gerard, I would like to thank you for being there, "on the field" with me since 

the beginning and helping me so much throughout this PhD. Our endless discussions about 

neuroscience and life in every corner of the world are the beating heart of this work which 

has always motivated me to continue whatever the difficulties. You started this PhD as my 

colleague and co-supervisor and you finish it as one of my best friends. For all these great 

past and future moments, I would like to thank you my friend.  

 

Then, I would like to thank the CoActions lab and in particular Cecile and Aegryan, great 

master students who largely contributed to this PhD. Thank you for your fantastic work and 

dedication. I also give special thanks to Vincent for the shared breaks and sports performed 

together in Belgium, which always cheered me up, I had a great time with you! 

 

I am also grateful for the wonderful UPHummel team at EPFL, for welcoming me so warmly 

despite Covid and integrating me in the team. I have learned and continue to learn so much 

every day with you guys. In particular, I would like to thank you, Elena, for your constant 



Acknowledgements 

3 

 

help in the last year and for always being available to answer my multiple (and annoying) 

questions on MRI, I am really looking forward for our future common projects! 

 

Last but not least, this work would not have been possible without the unconditional support 

of my family and best friends during this period.  

 

To “Les blaireaux” and “Team LFB”, I would like to thank you for always making me laugh 

and for sharing all these great memories. I am so happy to have you guys. 

 

To you Olivia, I would like to thank you for all the great moments spent together in Brussels 

and Geneva and for supporting me in the recent challenging times I had to face. To cite 

Lorie, you are truly “Ma meilleure amie”. 

 

To my best friend Mouss, I would just like to thank you for always being here and for sharing 

this great relationship that means so much. You are like a brother to me.  

 

Finally, to my sisters and parents, I would like to tell you how grateful I am for your uncondi-

tional love during the good as well as the difficult times that I faced during these 4 years. 

This PhD is yours.  

 



 

4 

 

Abstract  
 

Motor learning allows animals, including human beings, to acquire skills that are es-

sential for efficient interactions with the environment. This ability to learn new motor skills is 

of great practical relevance for daily-life activities (such as when learning to drive), but also 

for motor rehabilitation after a lesion of the nervous system (such as a stroke). For a long 

time, motor learning has been mainly conceptualized as a process allowing to iteratively 

correct movements based on sensory information (e.g., visual, somatosensory). Importantly 

though, in the last years, there has been an increased appreciation that motor learning also 

results from other mechanisms including reinforcement learning, a process through which 

appropriate actions are selected through outcome-based feedback (e.g., success or failure). 

As such, recent evidence shows that reinforcement feedback and motivation can be bene-

ficial for motor learning both in healthy individuals and neurological populations. Despite the 

potential importance of these findings to improve current rehabilitation protocols, the mech-

anisms underlying reinforcement-related improvements in motor learning remain largely un-

explored. This PhD aimed at providing deeper mechanistic understanding of reinforcement 

learning of motor skills through behavioral analyses, neuroimaging and non-invasive brain 

stimulation. In Study 1, I found that enhancing motivation (by providing monetary reward for 

good performance) during a motor training can lead to persistent improvements in perfor-

mance that are not obtained with reinforcement feedback only, and are related to an in-

creased regulation of motor variability based on previous outcomes. In Study 2, I investi-

gated the effect of reward timing (i.e., the delay between the end of movement execution 

and reward receipt) on motor learning and found that delaying reward by only a few seconds 

could strongly influence motor learning dynamics and consolidation. Finally, in Study 3, I 

investigated the causal role of the striatum in reinforcement motor learning. Here, I show, 

by combining an innovative non-invasive deep brain stimulation approach called transcranial 

electric temporal interference stimulation and neuroimaging, that a specific mechanism re-

lying on striatal high gamma oscillations is causally involved in reinforcement learning of 

motor skills. Overall, this work characterizes key mechanisms underlying the effect of rein-

forcement on motor learning, paving the way towards the incorporation of optimized rein-

forcements in motor rehabilitation protocols. 
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Résumé 
 

L'apprentissage moteur permet aux animaux, y compris aux êtres humains, d'acqué-

rir des compétences essentielles pour interagir efficacement avec l'environnement. Cette 

capacité à apprendre de nouvelles habiletés motrices est d'une grande importance pratique 

pour les activités de la vie quotidienne (comme lors de l’apprentissage de la conduite), mais 

aussi pour la rééducation motrice après une lésion du système nerveux (comme suite à un 

accident vasculaire cérébral). Pendant longtemps, l'apprentissage moteur a été principale-

ment conceptualisé comme un processus permettant de corriger itérativement des mouve-

ments sur la base d'informations sensorielles (par exemple, visuelles ou somatosenso-

rielles). Cependant, au cours des dernières années, il a été reconnu que l'apprentissage 

moteur est aussi le fruit d'autres mécanismes, dont l'apprentissage par renforcement, un 

processus par lequel les actions appropriées sont sélectionnées grâce à des informations 

sur le résultat des mouvements passés (par exemple succès ou échec). À ce titre, des don-

nées récentes montrent que le renforcement et la motivation peuvent être bénéfiques pour 

l'apprentissage moteur, tant chez les personnes en bonne santé que chez les populations 

neurologiques. Malgré l'importance potentielle de ces résultats pour améliorer les protocoles 

de revalidation actuels, les mécanismes qui sous-tendent les améliorations liées au renfor-

cement dans l'apprentissage moteur restent largement inexplorés. Ce doctorat visait à four-

nir une compréhension mécanistique plus approfondie de l'apprentissage moteur par ren-

forcement par le biais d'analyses comportementales, de neuro-imagerie et de stimulation 

cérébrale non-invasive. Dans une première étude, j'ai découvert que le fait d’augmenter la 

motivation (en offrant une récompense monétaire pour une bonne performance) pendant un 

entraînement moteur peut conduire à des améliorations persistantes de la performance qui 

ne sont pas obtenues avec le feedback de renforcement uniquement, et qui sont liées à une 

régulation accrue de la variabilité motrice basée sur les résultats des mouvements précé-

dents. Dans une seconde étude, j'ai étudié l'effet du timing de la récompense (c'est-à-dire 

le délai entre la fin de l'exécution du mouvement et la récompense) sur l'apprentissage mo-

teur et j'ai découvert que le fait de retarder le renforcement de quelques secondes seule-

ment pouvait fortement influencer la dynamique et la consolidation de l'apprentissage mo-
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teur. Enfin, dans une troisième étude, j'ai étudié le rôle causal du striatum dans l'appren-

tissage moteur par renforcement. Ici, je montre, en combinant une nouvelle approche de 

stimulation cérébrale non-invasive profonde appelée stimulation électrique transcrânienne 

par interférence temporelle et la neuro-imagerie, qu'un mécanisme spécifique s'appuyant 

sur les oscillations haut gamma dans le striatum est impliqué de manière causale dans l'ap-

prentissage moteur par renforcement. Dans l'ensemble, ce travail caractérise des méca-

nismes clés qui sous-tendent l'effet du renforcement sur l'apprentissage moteur, ouvrant la 

voie à l'incorporation de renforcements optimisés dans les protocoles de rééducation mo-

trice. 

Mots-clés 

Apprentissage moteur, apprentissage par renforcement, récompense, motivation, timing, 

stimulation cérébrale non-invasive, stimulation transcrânienne par interférence temporelle.  
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Preamble 
 

[I]t is the object of appetite which originates movement, this object may be either the 

real or the apparent good...To the thinking soul images serve as if they were contents of 

perception...just as if it were seeing, it calculates and deliberates what is to come by refer-

ence to what is present; and when it makes a pronouncement, as in the case of sensation it 

pronounces the object to be pleasant or painful, in this case it avoids or pursues.  

 Aristotle, On the Soul, Book III, Part 10; 350 BC. 

 

My PhD journey led me to investigate the influence of performance-based feedback 

– also called reinforcement feedback – on human motor learning from behavioral and neu-

rophysiological points of view. Inspired by recent research showing that motor learning is 

not purely a sensorimotor process but rather also relies on cognitive functions, I have con-

ducted three studies investigating the mechanisms at play during reinforcement learning of 

motor skills. 

 In Study 1, I explored the effect of motivation on reinforcement motor learning. Em-

ploying a new motor skill learning task allowing to dissociate reinforcement feedback (provid-

ing knowledge of performance) and monetary rewards (providing motivation), I found that 

enhancing motivation during a motor training can lead to persistent improvements in perfor-

mance that are not obtained with reinforcement feedback only, and are related to an in-

creased regulation of motor variability based on previous outcomes.  

In Study 2, I investigated the effect of reward timing (i.e., the delay between the end 

of movement execution and delivery of reward) on motor learning and found that delaying 

reward by only a few seconds could strongly influence motor learning dynamics and consol-

idation. 

In Study 3, I studied the causal role of the striatum in reinforcement motor learning. 

Here, I show, by combining an innovative non-invasive deep brain stimulation approach 

called transcranial electric temporal interference stimulation and neuroimaging, that the stri-

atum is causally involved in reinforcement motor learning.  
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Altogether, the present work characterizes key mechanisms at play during reinforce-

ment learning of motor skills that could pave the way towards the incorporation of optimized 

reinforcements in motor rehabilitation therapies. 

 

 

Figure 1. Schematic plan of the PhD 
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1. Introduction 
 

 This chapter describes the main concepts at the basis of my PhD work on reinforce-

ment learning of motor skills. I first describe historical examples showing that displays of 

motor skills and the process of motor learning have always constituted an object of intense 

fascination for humans. After this initial part, I define the scope of motor learning and de-

scribe experimental tasks commonly used to study this phenomenon. Then, I summarize 

what we currently know about the two main phases of motor learning, namely acquisition 

and consolidation and present their putative neural correlates. Next, I focus on two key 

mechanisms of motor learning that are central to the present work; sensory-based error 

correction and reinforcement learning, and show how they both contribute to improvement 

of motor performance. Finally, I present in more details the specific rationale for the three 

studies presented in this thesis and how they allowed us to uncover key mechanisms at play 

during reinforcement learning of motor skills.  

 

1.1. The popular fascination for motor skills. 

Motor skills are an object of fascination for humans. Since antiquity, across different 

cultures and civilizations, watching people perform motor skills has constituted a substantial 

source of entertainment. There is plethora of examples of such popular interest in motor 

skills across history. Think about the excitement generated by Sumo wrestling in Japan 

since the 8th century, the effervescence preceding a performance of Wolfgang Amadeus 

Mozart in the 18th-century Vienna or, more recently, the enthusiasm created each year by 

the final of the Super Bowl in the United States. This fascination also extends to the per-

formers of such skills, often considered as heroes in their respective societies, with roles 

and responsibilities spreading far beyond the entertainment domain. The universality of such 

interest in motor skills is also well represented by the ancient Olympic Games, created in 

776 BC in Ancient Greece, and for which people of different (and often opponent) cities 
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gathered peacefully for several weeks every 4 years, sharing their passion for motor perfor-

mance and admiration for athletes. More than 2500 years later, the Olympic Games continue 

to be a major event attracting billions of people from all around the globe1.  

 

But why are humans of different origins, cultures and epochs so fascinated by dis-

plays of motor skills? One possible reason for this may reside in the extensive amount of 

practice required to acquire motor skills and perform at such high level (Krakauer et al., 

2019). Yet, despite such popular captivation for motor skills, the mechanisms underlying 

motor skill learning have remained unknown for a long time. In the last decades, scientists 

from different fields of research have become interested in this topic and have started to 

delineate the behavioral and neurophysiological processes occurring when people learn mo-

tor skills.  

 

 
1.2.  Principles of motor learning  

1.2.1. Scope and definitions  

 
Motor learning can be defined as any experience-dependent improvement in motor 

performance (Krakauer et al., 2019). As highlighted in the previous section, motor learning 

is a crucial and fascinating process to reach the expertise needed to perform sports or play 

music at a professional level. However, motor learning is also of great practical relevance in 

more common daily-life situations across the life span, from the baby learning to walk, the 

kid learning to tie shoelaces, the young adult learning to drive, to the elderly learning to use 

a tablet. Importantly, motor learning is also relevant for patients suffering from motor disa-

bility (e.g., such as after a stroke) and who have to re-learn skills through rehabilitation 

(Muratori et al., 2013). Finally, from an evolutionary perspective, the ability of individuals to 

learn and retain practiced motor skills in nature is likely to have favored survival, shaping 

evolution of the human brain (Boraud et al., 2018). Again, there are plenty of examples 

highlighting the importance of motor learning in nature, from the ability to hunt successfully, 

climb trees to escape predators or find fruits, to more advanced skills, such as using tools 

 

1 https://olympics.com/ioc/news/olympic-games-tokyo-2020-watched-by-more-than-3-billion-people 
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or building shelters. Hence, the scope of motor learning research appears to be extremely 

large, from understanding one of the most basic brain functions to promoting learning in 

health and disease.  

The definition of motor learning provided above – an experience-dependent improve-

ment in movements - is very broad and encompasses a variety of phenomena and situations 

(Wolpert et al., 2011; Krakauer et al., 2019). As such, daily-life motor tasks are extremely 

diverse (e.g., playing tennis versus using pedals when driving) and therefore probably en-

gage a variety of learning mechanisms. A point of general agreement in the field is that 

motor learning is the process by which the speed and/or accuracy of movements is improved 

through practice, leading to an overall enhancement of the so-called speed-accuracy 

tradeoff (Chen et al., 2017). In other words, motor learning relies on improvements occurring 

at several levels of motor control that can be modulated according to task demands 

(Vassiliadis and Derosiere, 2020). For instance, a tennis player can improve her perfor-

mance by increasing the speed of movement initiation (e.g., allowing faster displacement 

towards the ball and more vigorous strokes) and the accuracy of the movement in terms of 

selection (e.g., allowing to choose whether to hit a cross court or down the line backhand 

given the position of the opponent) or execution (e.g., allowing to reliably execute the se-

lected backhand). Moreover, motor learning can also result in other modifications of behav-

ior such as a reduced susceptibility to external perturbations (which can be measured as 

the relative modification of the movement when an external force is applied, Crevecoeur et 

al., 2019), or as an ability to perform movements with reduced cognitive load (which can be 

measured with dual-task paradigms; Wu et al., 2004). Overall, these examples indicate that 

motor learning involves a variety of phenomena that are likely to be engaged differently 

depending on the task that has to be performed.  

 

1.2.2. Tasks commonly used to study motor learning 

 

The variety of processes underlying motor learning is also well represented by the 

multiplicity of laboratory tasks that have been used to study it (Ranganathan et al., 2019). 

Notably, the field has been dominated by two main paradigms namely motor sequence 
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learning and motor adaptation (Krakauer et al., 2019). Briefly, motor sequence learning re-

quires participants to type a sequence of key presses on a button box (or keyboard) as 

quickly and accurately as possible, whereas motor adaptation tasks require people to adapt 

a well-learned movement (often an upper-limb reaching movement) to a perturbation (often 

mechanical or visual). These paradigms therefore put emphasis on different aspects of mo-

tor learning: sequence tasks probe learning of successive motor elements while adaptation 

tasks focus on movement correction in response to experimental perturbations. Whereas 

these tasks have led to extremely important discoveries on the mechanisms and neural 

substrates of motor learning (Doyon et al., 2018; Morehead and Orban De Xivry, 2021), 

there is currently a debate in the literature on whether they constitute good models of skill 

learning (Krakauer et al., 2019). As such, a common feature of both tasks is that they require 

to improve movement selection (to press a key in a correct order or to counteract a pertur-

bation), but put little emphasis on the correct execution of the movement, after selection. In 

contrast, real-world skills often also put strong emphasis on the execution process: in the 

tennis example considered above, selecting the correct stroke without being able to execute 

it correctly would have little benefit for the player (Du et al., 2022). Other motor learning 

paradigms can help partially address this issue by putting more emphasis on movement 

execution.  

In this thesis, isometric force production tasks have been used as model of motor skill 

learning. In this type of tasks, participants are asked to modulate the level of force applied 

on a force sensor positioned in the hand in order to reach targets as quickly and accurately 

as possible on a computer screen (Reis et al., 2009; Spampinato and Celnik, 2018). This 

task therefore contains an execution component, because once a target has been selected, 

participants have to dose the applied force very carefully in order to reach it and stay within 

its boundaries. Notably, this type of tasks parallel skills that are relevant for daily-life activi-

ties, such as when pushing the brake pedal during driving, or when manipulating fragile 

objects. Moreover, such tasks were chosen because they previously showed sensitivity to 

reinforcements (Abe et al., 2011; Mawase et al., 2017), they allow to modulate sensory 

feedback (Mawase et al., 2017) and they can be performed by patients suffering from motor 

deficits (Raspopovic et al., 2014; Hardwick et al., 2017), therefore enabling future clinical 

translational studies. Importantly, although isometric force production tasks were used in the 

present work, in this Introduction, I describe what we currently know about motor learning in 



Introduction 

19 

 

general by covering studies that exploited different types of tasks. Despite this variety of 

paradigms, a point of similarity is that learning usually develops in different phases, an as-

pect that I present in the next section.  

 
1.2.3. Different phases of motor learning 

 
Motor learning results from improvements occurring during repeated bouts of practice 

interspersed by resting periods. Performance improvement occurring during practice is often 

referred to as skill acquisition or “online” learning. Conversely, improvement occurring during 

rest periods, in the absence of practice is called skill consolidation or “offline” learning 

(Dayan and Cohen, 2011). Beyond acquisition and consolidation, it is also important to be 

able to apply the learned skills in other contexts that are different from the ones experienced 

during acquisition (Krakauer et al., 2006). For instance, we often learn to drive a car in very 

particular conditions (e.g., in our hometown, in a particular car). The ability to extend this 

knowledge to different traffic conditions and vehicles is crucial in order to avoid having to re-

learn the skill each time we drive in a different context. This capacity is often referred to as 

generalization of the skill, and was not specifically investigated in the present work. Here, 

we will focus on the acquisition and consolidation phases of motor learning. 

 

Motor skill acquisition  

 

On the one hand, a great deal of research has shown that motor skill acquisition relies 

on various learning mechanisms including error-based movement corrections, reinforce-

ment learning, use-dependent plasticity or the use of explicit strategies (Wolpert et al., 2011; 

Spampinato and Celnik, 2021; Therrien and Wong, 2022). These learning mechanisms and 

their putative neural correlates will be discussed in further details in section 1.3 of this Intro-

duction. It is also important to note that these processes may have distinct temporal dynam-

ics. As such, motor skill acquisition can be decomposed in a fast (i.e., developing over a few 

trials) and a slow (i.e., developing over tens/hundreds of trials) process with different char-

acteristics (Smith et al., 2006). The slow process is characterized by both a low learning rate 

and a sluggish forgetting of the acquired behavior while the fast process entails both a high 

learning rate and a quick forgetting of the new behavior (Trewartha et al., 2014; McDougle 
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et al., 2015). As it will be discussed in the context of Study 2 (Vassiliadis et al., 2022), a 

current line of research in the field aims at characterizing which learning mechanisms sup-

port the fast and slow processes of motor learning (Trewartha et al., 2014; McDougle et al., 

2015). Put together, these studies show that motor skill acquisition results from the operation 

of multiple interacting learning processes that are thought to develop with either fast or slow 

temporal dynamics (Spampinato and Celnik, 2021). 

 

Motor skill consolidation  

 

On the other hand, consolidation processes allow the strengthening of motor memo-

ries in the absence of training and are evidenced at the behavioral level by two phenomena. 

One is the improvement in performance between practice sessions (often referred to as 

“offline” gains in performance), the other is the stabilization of motor memories evidenced 

by a reduction in their susceptibility to interference (Robertson et al., 2004). Consolidation 

is crucial to ensure that what is learned (e.g., during a rehabilitation session) can be retained 

in future situations (e.g., when coming back at home). Classically, consolidation has been 

studied hours or days after the end of training (Doyon et al., 2009), with the implicit assump-

tion that long periods of rest are required for the consolidation process to develop. Contrary 

to this view, recent work investigating motor sequence learning has demonstrated that con-

solidation can already occur over very short time spans, in the order of seconds (Bönstrup 

et al., 2019, 2020). Importantly, this rapid type of consolidation is thought to rely on partially 

different neural mechanisms from overnight consolidation, which requires sleep (Bönstrup 

et al., 2019; Jacobacci et al., 2020). Overall, these works start to unveil the multiplicity of 

mechanisms taking place during both practice and resting periods, which all contribute to 

the learning of new motor skills.  

 

1.2.4. Neural correlates of motor learning 

 

Multiple lines of research have investigated the neural correlates of motor skill acqui-

sition and consolidation. It is important to note that the brain regions involved in the learning 

of a particular skill can greatly depend on multiple factors including the type of task (Steel et 

al., 2019), the learning mechanisms at play (Uehara et al., 2018) and the phase of learning 
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(Shadmehr and Holcomb, 1997; Doyon et al., 2018). In this section, I will present an over-

view of what we know about the neural substrates of motor skill acquisition and consolida-

tion, and will finish by describing the plasticity mechanisms associated to motor learning.  

 

Motor skill acquisition 

 

Given the multiplicity of motor learning protocols, delineating a core motor learning 

network from individual studies can be challenging. To address this issue, a meta-analysis 

has described the brain regions activated during motor learning by compiling the results of 

70 neuroimaging studies (Hardwick et al., 2013). This work has shown consistent activation 

in the primary motor cortex (M1), supplementary motor area (SMA), dorsal premotor cortex, 

primary somatosensory cortex, superior parietal lobule, thalamus, putamen (i.e., a part of 

the striatum), and cerebellum (Figure 2, Hardwick et al., 2013). Notably though, the study 

also found that the specific motor learning task performed influenced the volume of activa-

tion of these regions and the potential recruitment of other brain structures. These areas 

include the hippocampus (particularly in sequence learning tasks: Albouy et al., 2013, but 

see also McDougle et al., 2022), prefrontal regions (Floyer-Lea and Matthews, 2005; Sidarta 

et al., 2016; Draaisma et al., 2022) and dopaminergic nuclei of the midbrain such as the 

ventral tegmental area (VTA) and substantia nigra (Hosp et al., 2011; Hosp and Luft, 2013; 

Leemburg et al., 2018). Overall, these studies suggest that motor learning engages a core 

set of regions that are activated irrespective of the particular task performed and other task-

specific areas depending on the skill that has to be learned. 

 

 
Figure 2. The motor learning network. Functional magnetic resonance imaging pre data from the 
meta-analysis of 70 experiments. Significant converging activity between studies was found in the 
left dPMC, pre-SMA, SMA proper, bilateral M1, left S1, left SPL, left thalamus, bilateral putamen, 
and bilateral/anterior medial cerebellum. Adapted from Hardwick et al., 2013, NeuroImage. 
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Finally, advanced neuroimaging and brain stimulation techniques have also allowed 

to study how functional interactions between these brain regions could be modulated during 

motor learning (Doyon et al., 2018). This body of work has revealed that motor skill acquisi-

tion is associated to connectivity changes in cortico-cerebellar (Schlerf et al., 2012; 

Mehrkanoon et al., 2016; Spampinato et al., 2017; Spampinato and Celnik, 2018; Uehara et 

al., 2018; Schubert et al., 2021), cortico-striatal (Hamzei et al., 2012; Gabitov et al., 2015; 

Kupferschmidt et al., 2017; Wolff et al., 2022), and cortico-cortical circuits (Waters et al., 

2017; Gabitov et al., 2019; Mirdamadi and Block, 2020). Notably, interactions between sub-

cortical regions are also likely to contribute to motor learning (e.g., striatum-hippocampus 

interactions during sequence learning; Albouy et al., 2013; Freedberg et al., 2020). Hence, 

motor training induces changes in functional interactions between brain regions that are 

again likely to depend on the particular demands of the motor task that is being performed 

(Doyon and Benali, 2005).  

 

Motor skill consolidation  

 

Motor consolidation is the process by which motor memories are stabilized or en-

hanced during resting periods (Johnson et al., 2021). As mentioned above, consolidation 

has been extensively studied in the context of sleep but there is accumulating evidence that 

offline learning can already occur over much shorter timescales (in the order of seconds; 

Bönstrup et al., 2019, 2020). Seminal as well as more recent studies have repetitively impli-

cated M1 as a crucial region for consolidation (Muellbacher et al., 2002; Robertson et al., 

2005; Reis et al., 2009; Hussain et al., 2021). Notably, there is also evidence for an involve-

ment of the striatum and hippocampus (Fischer et al., 2005; Albouy et al., 2008, 2013b, 

2015; Debas et al., 2010), and the fronto-parietal network (Albert et al., 2009; Taubert et al., 

2011; Bönstrup et al., 2019) in different aspects of motor consolidation. A plausible mecha-

nism for the consolidation of motor memories is the replay of practice-related neural activity 

during rest that would allow the strengthening of previously acquired memories. As such, 

neural replay is a central mechanism for multiple memory systems (Foster and Wilson, 2006; 

Singer and Frank, 2009; Carr et al., 2011; Ambrose et al., 2016; Liu et al., 2019, 2021; 

Sterpenich et al., 2021) and has been recently shown to also be at play during consolidation 

of motor memories in a network encompassing the hippocampus and sensorimotor cortex 

(Buch et al., 2021; Rubin et al., 2022). Hence, consolidation of motor memories appears to 
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be a crucial mechanism for motor learning, supporting offline improvement and stabilization 

of the skill during rest and is likely to rely, at least in part, on neural replay in a distributed 

brain network.  
 
 
 

Brain plasticity induced by motor skill learning 
 

   

A key property of the brain is its ability to undergo plastic changes. Plasticity is de-

fined as a modification of the brain’s structure and/or function in response to internal or 

external events (Pascual-Leone et al., 2005; Sampaio-Baptista et al., 2018). It has been 

shown to be a crucial mechanism for motor skill learning (Doyon and Benali, 2005; Dayan 

and Cohen, 2011) and motor recovery after a lesion of the nervous system, such as a stroke 

(Raffin and Hummel, 2018; Sampaio-Baptista et al., 2018). Notably, it seems difficult to iden-

tify which plastic mechanisms are specifically associated to skill acquisition given that con-

solidation mechanisms can already take place over very short periods of rest (Bönstrup et 

al., 2019) and induce micro-structural plasticity (Jacobacci et al., 2020). Hence, in this sec-

tion, I describe the plasticity processes associated to motor learning in general, without dis-

sociating the mechanisms putatively associated to motor skill acquisition and consolidation. 

 

At the cellular level, motor learning is thought to rely, at least in part, on synaptic 

plasticity. In this regard, long-term potentiation (LTP) and long-term depression (LTD), cel-

lular mechanisms initially described in the hippocampus (Dudek and Bear, 1992; Bliss, 

T.V.P. & Collingridge, 1993), modulate synaptic efficacy and contribute to various types of 

learning (Whitlock et al., 2006; Nabavi et al., 2014). More specifically, LTP and LTD are 

evoked by simultaneous firing of neurons sharing synapses and lead to a durable increase 

or decrease of post-synaptic potentials, respectively (Malenka and Bear, 2004). LTP and 

LTD in areas including M1 (Rioult-Pedotti et al., 1998, 2000), the striatum (Mahon et al., 

2004; Dang et al., 2006; Giordano et al., 2018) and the cerebellum (Schonewille et al., 2010, 

2021) constitute crucial mechanisms for motor learning which are thought to contribute to 

learning-related reorganization (Rioult-Pedotti et al., 1998; Butefisch et al., 2000). Hence, 

one important neuronal mechanism for motor learning-related plasticity is the regulation of 

synaptic efficacy. It is important to note that other cellular mechanisms such as remodeling 

of dendritic spines (which can occur during non-rapid eye movement sleep, Yang et al., 
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2014) and axonal terminals (Boele et al., 2013), glial hypertrophy (Anderson et al., 1994) 

and synaptogenesis (Kleim et al., 2004), are also thought to contribute to motor learning. 

  

An important line of research has focused on the cortical reorganization resulting from 

motor learning. Such cortical plasticity can occur already after very short durations of prac-

tice (Pascual-Leone et al., 1995) but such rapid changes often do not persist over time 

(Classen et al., 1998). In contrast, years of training like that undergone by professional mu-

sicians or athletes can lead to persistent changes in cortical representations (Elbert et al., 

1995; Pantev et al., 2001; Jäncke et al., 2009). At the level of the motor cortex, training 

causes changes in the size and excitability of motor cortical maps (Kami et al., 1995; 

Pascual-Leone et al., 1995; Rosenkranz et al., 2007; Vassiliadis et al., 2020a), in the activity 

of intracortical circuits (Hummel et al., 2005; Dupont-Hadwen et al., 2018) and in the direc-

tion of involuntary movements evoked by transcranial magnetic stimulation (TMS) of M1 (a 

process often referred to as use-dependent plasticity (UDP); Classen et al., 1998; Duque et 

al., 2008; Mawase et al., 2017). In a study performed in the beginning of my thesis (Annex 

1, Vassiliadis et al., 2020a), we have shown that motor training also involves a modulation 

of preparatory activity in the motor system (i.e., activity recorded during the preparation of 

simple finger movements, before initiation) that was related to improvements in the speed 

of action initiation. Hence, plastic reorganization of the motor cortex appears as a key neu-

rophysiological mechanism supporting improvements of movements with practice. As men-

tioned above, motor learning also involves modulations of connectivity in cortico-cerebellar, 

cortico-striatal and cortico-cortical circuits over the course of training. Interestingly, some of 

these changes persist at rest, after training, suggesting that motor learning leads to a plastic 

reorganization of these circuits (Doyon and Benali, 2005). Put together, this body of work 

indicates that multiple structural and functional neuronal changes support the acquisition 

and consolidation of new motor skills. Interestingly, such neuronal changes are likely to be 

modulated by the particular learning signals available during training. 
 

 
1.3. Sensory and reinforcement signals during motor learning 

 
Recent evidence indicates that motor learning is not a unitary process, but rather 

results from the operation of parallel and interacting learning processes including sensory-
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based learning (often also referred to as “error-based learning”) and reinforcement learning, 

(Vassiliadis et al., 2019; Therrien and Wong, 2022). During my thesis, I mainly focused on 

these two learning mechanisms, which I therefore present in detail below. It is important to 

note, however, that other learning processes including use-dependent learning (resulting 

from the repetition of similar movements; Diedrichsen et al., 2010) and the use of explicit 

strategies (allowing strategical corrections of movements based on task instructions; Taylor 

et al., 2014) also contribute to motor learning (Spampinato and Celnik, 2021), and are likely 

to have operated in the experimental tasks presented in this thesis.  

 

 
1.3.1. Sensory-based motor learning 

 

Previous work on motor learning has largely focused on how motor commands can 

be adjusted based on sensory feedback (Shadmehr et al., 2010b). This line of work has 

mainly employed adaptation paradigms where sensory feedback (e.g., visual, somatosen-

sory) can be manipulated experimentally. As such, in motor adaptation tasks, a perturbation 

(e.g., visual, mechanical) is imposed while participants are performing movements (e.g., 

reaching, pointing, eye movements) towards visual targets (Krakauer et al., 2019). The per-

turbation leads participants to adapt by generating a motor command in the opposite direc-

tion, a phenomenon that results from both implicit and explicit processes (Taylor et al., 

2014). The implicit process is thought to rely on the adjustments of movements based on 

sensory prediction errors (SPE), which correspond to the difference between predicted and 

actual sensory outcome (Tseng et al., 2007; Schlerf and Ivry, 2012; Shadmehr, 2017, 2018). 

The predicted sensory consequences of movements may be computed through a forward 

model that exploits an efference copy of the motor command to predict its future sensory 

consequences (Wolpert et al., 1995; Flanagan and Wing, 1997; Morton and Bastian, 2006; 

Shadmehr et al., 2010b; but see also Hadjiosif et al., 2021 for a recent challenge of this 

theory). Notably, this predictive mechanism is crucial to counteract sensorimotor delays in-

herent to the architecture of our nervous system (Wolpert et al., 2011). As mentioned above, 

the role of sensory feedback has been mostly examined through adaptation paradigms, yet, 

it is also a fundamental process in other motor learning tasks including motor sequence 

learning (Popp et al., 2022) and force modulation tasks (Miall et al., 1985, 2021; Flanagan 
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and Wing, 1997; Raspopovic et al., 2014). A common aspect in these different types of tasks 

is that sensory feedback provides directional information on how movements should be ad-

justed after an error (Spampinato and Celnik, 2021). 

 

At the neural level, sensory-based error correction has been consistently shown to 

rely on the cerebellum (Tseng et al., 2007; Schlerf and Ivry, 2012; Schlerf et al., 2012; Taylor 

and Ivry, 2014; Herzfeld et al., 2018; Uehara et al., 2018). At the cellular level, sensory errors 

cause climbing fibers (a class of afferent fibers arising from the inferior olive, a complex of 

nuclei located in the brainstem) to generate “complex spikes” (a large depolarizing event) in 

Purkinje cells of the cerebellum (Ito, 2001). These cells, which are the only efferent neurons 

of the cerebellar cortex, suppress deep cerebellar nuclei, reducing their excitatory influence 

on M1 through the thalamus. Hence, sensory errors may generate error corrections through 

a cerebello-thalamo-cortical pathway (Allen and Tsukahara, 1974). Moreover, there is also 

evidence that Purkinje cells can undergo synaptic plasticity (including through LTD) that may 

subserve motor learning (Ito, 2001). Such mechanism has been suggested to play a role in 

the aforementioned change of cortico-cerebellar connectivity that is observed following mo-

tor learning (Jayaram et al., 2011; Spampinato et al., 2017, 2020). Overall, sensory-based 

motor learning results from the iterative correction of movements based on SPEs, a process 

that is at play in multiple motor learning tasks and strongly relies on the cerebellum. 

 

 

1.3.2. Reinforcement-based motor learning 

 

In the last years, there has been an increased appreciation in the literature that motor 

learning is not only the result of sensory-based error corrections, but rather also relies on 

other learning processes (Huang et al., 2011; Wolpert et al., 2011; Morehead and Orban De 

Xivry, 2021; Spampinato and Celnik, 2021). One of these learning mechanisms is reinforce-

ment learning (Schultz, 2015; Sutton and Barto, 2018). Reinforcement learning refers to the 

process through which appropriate actions are selected through outcome-based feedback 

(e.g., success or failure). The use of such reinforcement feedback to guide movements is 

an extremely ancient ability, which has thus been well-conserved throughout evolution 
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(Cisek, 2019). For instance, foraging in extremely various forms of life (e.g., insects, mol-

lusks, reptiles, birds or human hunter-gatherer) is thought to rely on a basic reinforcement 

learning system allowing to select patches of food in the environment based on the out-

comes of previous searches (Cisek, 2019). It is interesting to note that reinforcement learn-

ing appears as a very fundamental function for animals, but is also increasingly used by 

artificial systems to learn to solve a variety of contemporary problems (Littman, 2015; Neftci 

and Averbeck, 2019).  

In this section, I will introduce basic concepts of reinforcement learning derived from 

the decision-making field, and then will present how these concepts have inspired recent 

research on reinforcement learning of motor skills. 

 

1.3.2.1. Reinforcement during decision-making 

 

Reinforcement learning has been initially described and largely investigated in the 

context of decision-making where participants have to choose between a discrete number 

of possible choices (Lee et al., 2012; O’Doherty et al., 2017). These works have led to the 

assumption that reinforcement learning occurs through the computation of reward prediction 

errors (RPE), which reflect the difference between the expected and obtained outcome fol-

lowing a decision. According to this framework, the values of potential choices are learned 

based on previous experience, allowing the learner to progressively choose actions yielding 

positive outcomes (Schultz et al., 1997; Rangel et al., 2008). At the neural level, a large 

body of literature has shown that RPEs cause phasic firing in dopaminergic neurons in the 

midbrain (mainly in the ventral tegmental area (VTA); Schultz et al., 1997; Matsumoto and 

Hikosaka, 2009; Cohen et al., 2012; Schultz, 2015) inducing dopamine release in the stria-

tum (Mohebi et al., 2019; Lee et al., 2020). Interestingly, there is now ample evidence that 

such dopaminergic responses are not only sensitive to the mismatch between expected and 

predicted rewards but also to other factors such as the timing at which reward is provided 

(Fiorillo et al., 2008; Kobayashi and Schultz, 2008; Klein-Flügge et al., 2011; and see also 

Study 2), availability of rewards (Matsumoto et al., 2016) or uncertainty about the environ-

ment (Starkweather et al., 2017). Hence, dopaminergic responses to reinforcements inte-

grate multiple factors to drive learning.  
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There is also evidence that frontal regions such as the ventro-medial prefrontal cortex 

(vmPFC), the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC) contribute 

to reinforcement learning (Rangel et al., 2008; Lee et al., 2012; Husain and Roiser, 2018; 

Bongioanni et al., 2021), partially through the modulation of striatal activity (Haber et al., 

2006; Neftci and Averbeck, 2019; Voloh et al., 2020; Averbeck and O’Doherty, 2022). Ulti-

mately, the striatum is thought to integrate these different inputs to drive motor cortex activity 

through the basal ganglia (Lee et al., 2020). Accordingly, there is accumulating evidence 

that the motor cortex, a region initially thought to subserve merely motor functions, also 

encodes information related to reinforcements (Ramkumar et al., 2016; Derosiere et al., 

2017c, 2017a; Ramakrishnan et al., 2017; Levy et al., 2020; Lee et al., 2021). Especially, in 

a previous study to which I contributed, we found that M1 is involved in reinforcement learn-

ing and that this involvement depends on the stage of learning (Derosiere et al., 2017a). 

Overall, this body of work shows that reinforcement learning strongly relies on activity in a 

distributed brain network centered on midbrain dopaminergic nuclei and fronto-striatal loops. 

 

1.3.2.2. Reinforcement during motor learning 

 

Reinforcement vs. reward in human studies 

Before diving into the literature which has investigated reinforcement motor learning, 

it seems important to explain the conceptual difference between performance-based feed-

back (called “reinforcement feedback” in the present work) and extrinsic incentives (referred 

to as “reward”). As we have seen above, reinforcement provides information about the per-

formance at a particular task and therefore can guide a learning process that evaluates 

outcomes to adjust future actions. Reinforcements can also provide motivation because 

knowledge of performance can be intrinsically rewarding (Leow et al., 2018). In contrast, 

additional extrinsic reward, which can be delivered for instance in the form of money (e.g., 

Wachter et al., 2009) or social praise (e.g., Sugawara et al., 2012), does not provide any 

additional direct learning signal, but rather only gives motivation to perform well (Berke, 

2018). Despite such differences, most previous studies have coupled reinforcement and 

reward or provided only reinforcement, which did not allow considering the specific effect of 

motivation on motor learning, an issue that we addressed in Study 1. It is also important to 
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note that this distinction between the “learning” and “motivation” properties of incentives is 

less straightforward in the context of animal research, since training animals to perform a 

laboratory task requires extrinsic rewards. Still, this dissociation can be achieved experi-

mentally, for instance through dynamic manipulations of reward rate (Mohebi et al., 2019). 

 

Distinction between knowledge of performance and knowledge of results 

In addition to this distinction between reinforcement and reward, some authors in the 

literature also distinguish “knowledge of results”, which provides information about the final 

outcome of a movement and “knowledge of performance”, which gives information about 

the movements characteristics that led to that outcome (Sharma et al., 2016). According to 

this terminology, both “knowledge of performance” and “knowledge of results” can be used 

as reinforcements but the difference is that “knowledge of performance” reinforces the spe-

cific kinematics leading to success whereas “knowledge of results” puts emphasis on the 

final outcome of the movement (Kitago and Krakauer, 2013). Importantly though, in both 

cases, the learner has to exploit information about task success (either after the completion 

of the movement for “knowledge of results” or online, during motor control for “knowledge of 

performance”) to adjust future motor commands. Hence, in the following sections, I do not 

distinguish between these two ways of providing feedback and consider that reinforcement 

feedback provides knowledge of performance in general (to refer to the informational prop-

erties of reinforcements), regardless of if it is provided after the completion of movements 

(as in Study 1 and 2) or online, during motor control (as in Study 3).  

 

Evidence for reinforcement effects during motor learning 

Research conducted in the last 15 years has shown that providing performance-

based reinforcement feedback (often coupled to monetary rewards, see below) during motor 

training can improve motor learning abilities in various tasks including skill learning (Abe et 

al., 2011; Dayan et al., 2014a; Mawase et al., 2017), motor adaptation (Huang et al., 2011; 

Izawa and Shadmehr, 2011; Shmuelof et al., 2012; Wu et al., 2014; Galea et al., 2015a; 

Cashaback et al., 2017; Codol et al., 2018; Uehara et al., 2018) and sequence learning 

(Wachter et al., 2009; Sugawara et al., 2012; Sporn et al., 2022). In particular, such training 
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boosts motor skill acquisition (e.g., Mawase et al., 2017; Sporn et al., 2022) and consolida-

tion (e.g., Abe et al., 2011b; Sugawara et al., 2012; Widmer et al., 2016), suggesting that 

reinforcements can act on multiple phases of motor learning.  

The effect of reinforcement on the acquisition of a skill seems to be particularly prom-

inent in situations where sensory feedback is uncertain (Izawa and Shadmehr, 2011; 

Bernardi et al., 2015; Nikooyan and Ahmed, 2015; Cashaback et al., 2017), implying that 

this approach could be promising for rehabilitation, as patients with motor impairments often 

also exhibit sensory deficits (Connell, 2008; Hepworth et al., 2016). Consistently, reinforce-

ment has been shown to improve motor learning in different populations of patients including 

cerebellar (Therrien et al., 2016, 2018 but see also Vassiliadis et al., 2019) and stroke pa-

tients (Goodman et al., 2014; Quattrocchi et al., 2017; Widmer et al., 2021). Because of its 

crucial impact on motor learning and promising perspectives regarding rehabilitation, it is 

important to better characterize the mechanisms through which reinforcement feedback can 

improve motor learning (Chen et al., 2017; Johnson and Cohen, 2022). 

 

Behavioral mechanisms of reinforcement motor learning 

As explained above, reinforcement feedback provides information about previous 

performance and thereby can guide learning by pushing the agent to repeat actions leading 

to success and avoid those generating failure. Importantly, reinforcement feedback can also 

enhance motivation during training as performance feedback can be intrinsically rewarding. 

As I describe in this section, the informative and motivational properties of reinforcement 

feedback may influence motor learning through different mechanisms. 

 

First, reinforcement feedback provides information about previous performance that 

can support motor learning by pushing the agent to repeat actions leading to success and 

avoid those generating failure. It is important to note that the learning signals used to drive 

learning are very different in sensory-based and reinforcement learning. Whereas sensory 

inputs provide directional information on how to correct movements (e.g., through vision), 

reinforcement feedback only gives information about the outcome of a movement, without 

informing the learner on how the movement should be corrected. Interestingly, these two 

types of learning rely on different behavioral (Izawa and Shadmehr, 2011; Nikooyan and 
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Ahmed, 2015) and neural (Sidarta et al., 2016; Therrien et al., 2016; Mathis et al., 2017; 

Uehara et al., 2018) mechanisms. Multiple lines of evidence show that reinforcement feed-

back can be used to explore different movement solutions following failure or to exploit motor 

commands that previously led to success (Wu et al., 2014; Therrien et al., 2016; Dhawale 

et al., 2017, 2019; Uehara et al., 2019; van Mastrigt et al., 2021). In motor learning tasks, 

this exploration/exploitation process can be measured by comparing the extent to which 

motor commands are modified from one trial to the next depending on the type of feedback 

obtained (Uehara et al., 2019; van Mastrigt et al., 2021, see also Study 1). By doing so, it is 

possible to dissociate the between-trial changes in movement parameters that are related 

to exploration to the one reflecting motor noise (defined as an unwanted source of motor 

variability; Therrien et al., 2016). Regulation of motor variability is thought to be a fundamen-

tal process in motor learning as it allows guiding the motor system toward new patterns of 

movements and motor activity that improve performance and may reduce costs (Wu et al., 

2014; Shadmehr et al., 2016; Dhawale et al., 2017). This idea is also well supported by 

research investigating vocalization in song birds, which have shown that regulation of motor 

variability is crucial for learning (Ölveczky et al., 2005; Tumer and Brainard, 2007) but also 

for adaptation of the song to new contexts (e.g., birds sing with less vocal variability when 

they are close to potential partners compared to when they are “practicing” alone; Kao et 

al., 2005). Interestingly, the regulation of motor exploration is thought to play a particularly 

important role in situations with high uncertainty about the sensory consequences of actions 

(Izawa and Shadmehr, 2011) or about the environment and task (Bernardi et al., 2015; 

Sidarta et al., 2016; Dhawale et al., 2019). When there is uncertainty, exploration may be 

particularly useful to discover the reward landscape of the task, allowing one progressively 

to favor control policies yielding the best outcomes (Cashaback et al., 2017; Dhawale et al., 

2019). Overall, regulation of motor variability appears to be a crucial mechanism underlying 

the beneficial effects of reinforcements on motor learning.  

 

Regulation of motor variability makes use of the informative properties of reinforce-

ment. Yet, as mentioned above, reinforcement feedback, even in the absence of extrinsic 

reward may also boost motivation to perform well and thereby influence motor learning 

(Leow et al., 2018). As such, recent studies investigating the effect of motivation on motor 

control have shown that when offered monetary rewards, participants are more prone to 

engage in costly control strategies such as regulation of feedback control gains (Carroll et 
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al., 2019; Comite et al., 2021), stiffness of the limbs (Codol et al., 2020; Vassiliadis and 

Derosiere, 2020) and internal motor noise (Manohar et al., 2015, 2019). These control poli-

cies allow movements to be simultaneously quicker and more accurate, apparently exceed-

ing the limits of the speed-accuracy trade-off (Manohar et al., 2015, see Annex 2 for a sci-

entific commentary written during my PhD on this topic). Such improvement of performance 

during training may translate into future non-rewarded contexts, potentially by boosting train-

ing-related plasticity (Mawase et al., 2017; Uehara et al., 2018). Another mechanism through 

which motivation could improve motor learning is by modulating the offline processing of 

motor memories (Abe et al., 2011). Further arguments for this hypothesis come from the 

decision-making literature, which has shown that the reward context in which a decision-

making task is learned influences post-practice consolidation of the memory both during 

wakeful rest (Singer and Frank, 2009; Ambrose et al., 2016; Liu et al., 2021) and sleep (Igloi 

et al., 2015; Sterpenich et al., 2021). More specifically, the presence of reward increases 

the probability of neural replay of a memory (Igloi et al., 2015; Ambrose et al., 2016; Igata 

et al., 2021; Liu et al., 2021; Sterpenich et al., 2021) and the directionality of the replay (i.e., 

whether the replay occurs in the trained “forward” order or in the opposite “reverse” order; 

Ambrose et al., 2016; Liu et al., 2019; Igata et al., 2021), suggesting a brain mechanism for 

the prioritization of reward-related memories. Hence, performance of a motor task with rein-

forcement feedback could upregulate motivation (compared to a situation with only sensory 

feedback) and thereby boost offline consolidation of the skill. Put together, these elements 

support the view that the motivational properties of reinforcements may contribute to rein-

forcement-related benefits in motor learning, independently from the regulation of motor var-

iability. 

 

 

Neural correlates of reinforcement motor learning 

 

In this part, I present what we currently know about the neural correlates of reinforce-

ment motor learning. As explained above, previous studies have not systematically dissoci-

ated the “learning” and “motivational” properties of reinforcement feedback. For this reason, 

I present here insights into the neural mechanisms of reinforcement motor learning in gen-

eral, without being able to systematically dissociate the neural correlates of these two as-

pects.   
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At the neural level, a key area involved in motor (Hardwick et al., 2013) and reinforce-

ment learning (Schultz, 2015) and which could therefore be well-suited to mediate reinforce-

ment-related benefits in motor learning is the striatum. Anatomically, the striatum can be 

decomposed into a ventral (nucleus accumbens and olfactory tubercle) and dorsal part (ne-

ostriatum: caudate nucleus and putamen). Thanks to its dense connexions with dopaminer-

gic as well as with pre-frontal and motor cortical regions, the striatum is thought to play a 

key role in translating information about reinforcements into motor behaviors (Nakamura 

and Hikosaka, 2006; Williams and Eskandar, 2006; Piray et al., 2017; Hori et al., 2019). This 

idea is in line with previous neuroimaging studies showing reward-related activations of the 

striatum during motor learning (Wachter et al., 2009; Widmer et al., 20162). Consistently, 

reinforcement-dependent motor exploration is disrupted by Parkinson’s disease (a model of 

striatal dysfunction; Pekny et al., 2015), and by dopaminergic antagonists in humans (Galea 

et al., 2013; but see also Quattrocchi et al., 2018 and Palidis et al., 2021 for null effects of 

dopaminergic manipulations on reinforcement motor learning). Moreover, studies conducted 

on songbirds indicate that motor exploration causally relies on a basal ganglia-related circuit 

that injects variability into motor cortex, and thereby drives behavioral variability necessary 

for learning (Kao et al., 2005; Ölveczky et al., 2005). Finally, micro-stimulation of the striatum 

during reinforcement presentation can modulate associative learning in non-human pri-

mates (Nakamura and Hikosaka, 2006; Williams and Eskandar, 2006). Put together, these 

studies suggest that the striatum is causally involved in the generation of motor adjustments 

based on previous outcomes. 

As mentioned earlier, the striatum is densely connected to multiple cortical areas that 

are likely to play an important role in reinforcement learning of motor skills (Averbeck and 

O’Doherty, 2022). As such, resting-state functional connectivity of the striatum with second-

ary motor cortical areas (Sidarta et al., 2016; Steel et al., 2019) and with the vmPFC (Sidarta 

et al., 2016) is modulated following reinforcement motor learning, but not sensory-based 

learning, suggesting that reinforcement learning of motor skills leads to plastic modifications 

in fronto-striatal pathways. Consistent with an involvement of pre-frontal regions in reinforce-

ment motor learning, a previous study found that the propensity to benefit from reinforce-

ment in a motor learning task co-varies with inter-individual variability in grey-matter volume 
 

2 Note the interesting increase of striatal activity in the presence of reinforcement feedback paired with reward in this study, compared to 
the reinforcement only condition, suggesting that increasing motivation during motor training (through extrinsic reward) leads to a boost-
ing of striatal activity. 
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of the lateral prefrontal cortex (Dayan et al., 2014a). In the same line, non-invasive brain 

stimulation of the fronto-polar cortex modulates reinforcement motor learning through a 

change in motor exploration (Herrojo Ruiz et al., 2021). Notably, there is also evidence that 

providing reinforcements during motor learning can influence M1 activity (Levy et al., 2020; 

Lee et al., 2021) and plasticity in response to practice (Mawase et al., 2017; Uehara et al., 

2018; Spampinato et al., 2019). More specifically, Uehara et al., (2018) found that while 

sensory-based motor learning led to cerebellar plasticity, reinforcement motor learning gen-

erated LTP-like plasticity within M1. This points towards the idea that the presence of rein-

forcement during a motor training leads to specific forms of plasticity that involve the motor 

cortex. Such boosting of M1 plasticity, may rely on the activation of dopaminergic neurons 

in the VTA that project to M1 and are known to be crucial for motor skill acquisition (Hosp et 

al., 2011, 2015; Leemburg et al., 2018). Interestingly, a very recent study suggested that 

reinforcement-related M1 plasticity following motor learning also relies on cholinergic neu-

rotransmission (Bowles et al., 2022). Hence, pre-frontal as well as motor cortical regions are 

specifically involved in reinforcement learning of motor skills, potentially through their inter-

actions with the striatum as well as with dopaminergic and cholinergic populations of neu-

rons.  

Finally, another structure that has been largely considered in the context of sensory-

based motor learning (Shadmehr et al., 2010b), but less in the framework of reinforcement 

learning is the cerebellum. Yet, as I have argued in a scientific commentary published in the 

beginning of my thesis (Vassiliadis et al., 2019; Annex 3), there is accumulating evidence 

that the cerebellum is involved in multiple cognitive domains including reinforcement learn-

ing (Swain et al., 2011). Anatomically, this idea is supported by the presence of bidirectional 

connexions between the cerebellum and dopaminergic basal ganglia structures including 

the striatum (Bostan and Strick, 2018). Functionally, recent works provide evidence that 

rewards and reward predictions influences the firing rate of cerebellar cells in rodents 

(Ohmae and Medina, 2015; Wagner et al., 2017; Heffley et al., 2018; Kostadinov et al., 2019; 

Kostadinov and Häusser, 2022) and cerebellar activity in humans (O’Doherty, 2004; 

Ramnani et al., 2004; Seymour et al., 2004; Tanaka et al., 2004; Tobler and O’Doherty, 

2006; Garrison et al., 2013), suggesting that this structure is involved in processing rein-

forcement feedback. Consistently, cerebellar patients exhibit altered reinforcement learning 
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in a decision-making task requiring very simple movements (Thoma et al., 2008). Interest-

ingly, it appears that these patients can use reinforcement feedback to adapt to a visuomotor 

perturbation, but to a lesser degree than age-matched controls (Therrien et al., 2016). The 

results of a follow-up study then suggested that this impairment could not be completely 

accounted for by an increase in motor noise in patients (defined as an unwanted source of 

motor variability, Therrien et al., 2018), but may rather result from a true deficit in reinforce-

ment motor learning following cerebellar damage (Vassiliadis et al., 2019). Hence, the cer-

ebellum, known to be involved in error corrections based on sensory feedback may partici-

pate in the integration of sensory and reinforcement information to guide motor learning. 

Overall, these studies indicate that learning motor skills through reinforcements en-

gages partially different patterns of neural activity than pure sensory-based motor learning. 

More specifically, this type of learning is thought to strongly rely on fronto-striatal interactions 

and may also involve communication between the cerebellum and dopaminergic circuits 

(Carta et al., 2019). 

 

1.4. Plan of the PhD 

Study 1: Reward boosts reinforcement-based motor learning 

As mentioned above, multiple studies have shown that reinforcement feedback (often 

coupled to monetary rewards) could improve several aspects of motor learning. In this be-

havioral study, we aimed at dissociating the contributions of reinforcement feedback (provid-

ing knowledge of performance) and reward (providing motivation) during motor skill learning 

in a large sample of healthy participants. Our experimental paradigm also allowed us to 

evaluate the effect of reinforcement and reward on regulation of motor variability on a trial-

by-trial basis. Overall, our results show that motivation by reward can have persistent effects 

on motor learning and that these effects are related to an enhanced regulation of motor 

variability based on previous outcomes that lasts after reward removal. 
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Study 2: Reward timing matters in motor learning 

In this work, we asked if reward timing (i.e., the delay between the end of a movement 

and the ensuing feedback), which is known to strongly influence dopaminergic responses 

and learning in classical conditioning paradigms (Fiorillo et al., 2008; Kobayashi and Schultz, 

2008) could also impact motor skill learning. Importantly, based on the results of Study 1, in 

this work, we have coupled reinforcement feedback to a monetary reward, allowing us to 

specifically test the effect of reward delay in a situation where participants would learn the 

task. Hence, in this study, we refer to “reward” to designate the combination of reinforcement 

feedback coupled to a monetary reward. As described in Chapter 3, we found that delaying 

reward delivery by only a few seconds strongly impacts the dynamics of learning and con-

solidation 24h later. 

 

Study 3: Non-invasive stimulation of the human striatum disrupts rein-

forcement learning of motor skills 

Here, we investigated the causal contribution of the striatum in reinforcement motor 

learning. Indeed, previous evidence implicating the striatum in reinforcement motor learning 

was based on correlational approaches showing a relationship between striatal activity and 

the presence of reinforcement (Wachter et al., 2009; Widmer et al., 2016), but causal evi-

dence for a role of the striatum in this process was lacking. In this combined brain stimulation 

and neuroimaging study we leverage a new type of non-invasive brain stimulation, called 

transcranial temporal electric interference stimulation (tTIS), that allows to target deep brain 

structures without stimulation of the overlying cortex (Grossman et al., 2017). Conventional 

brain stimulation techniques, such as transcranial electrical current stimulation (tES) or TMS 

(used in some of my previous work, e.g., see Annex 1) mostly activate the cortex, because 

the strength of the electric/magnetic field strongly decays as a function of the distance to 

stimulation (Figure 3A, B). Notably, some TMS protocols have been shown to engage deep 

brain structures (Strafella et al., 2003), but in these cases stimulation also causes significant 

concomitant engagement of the cortex (Mas-Herrero et al., 2021). During my PhD, I have 

been involved in the validation of tTIS stimulation in humans (Wessel et al., 2021) and used 

it to test my own research questions in the context of Study 3. Below, I describe the basic 
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principles of tTIS stimulation to provide some background on this new brain stimulation ap-

proach. 

 

Note on transcranial electric temporal interference stimulation 

 During tTIS stimulation, two high frequency electrical currents oscillating at f1 and f1 

+ Δf are applied via two pairs of electrodes connected to independent stimulators. These 

high-frequency currents are thought to be too high to directly modulate neuronal activity 

(Grossman et al., 2017; Grossman, 2018). The two currents result in a modulated electric 

field deep in the brain with the envelope oscillating at Δf (Figure 3C). By adjusting electrode 

positioning, the modulated electric field can be steered towards a target location. Thanks to 

an ongoing collaboration with the team of Prof. Esra Neufeld, we determined via simulations 

on realistic head models the optimal electrode montage to target the striatum in humans 

(F3-F4, TP7-TP8; Figure 3D). We applied tTIS in healthy participants via surface electrodes 

applying a low-intensity protocol respecting the currently accepted cut-offs and safety guide-

lines for transcranial electric stimulation in humans (Antal et al., 2017; Figure 3E). 

 

 

Figure 3. Stimulation of deep brain structures with conventional non-invasive brain stimula-
tion vs. tTIS. Electric field simulations for an exemplary tDCS (A) and TMS (B) protocol implemented 
in the open source software package SimNIBS (analysis provided by Dr. Maximilian Wessel). TMS 
coil were centered over the left sensorimotor region. Common stimulation intensities were used as 



Introduction 

38 

 

input for the models: 1 mA (A) and 1x10e6 A/s (B). The electric field maxima are located in proximity 
to the brain cortex. The induced electric field does not reach a magnitude required for modulation of 
neuronal activity deeper in the brain. (C) tTIS strategy (illustration provided by Prof. Grossman, Im-
perial College London). Two sinusoidal electric fields in the kHz-range (I1 and I2) are generated via 
isolated current sources and are applied transcranially through scalp electrodes. When the fields are 
applied with a slight difference in frequencies (Δf), the superposition of the fields can lead to a slowly 
“beating” envelope oscillating at Δf. The peak amplitude of this envelope modulation can be focused 
towards deeper brain targets and drive their neuronal activity. (D) Electrode montage optimization 
for striatal tTIS (Prof. Neufeld, ETZ). The selected montage was the one displaying the best trade-
off between stimulation strength in the striatal target and focality of stimulation. Notably, simulations 
were run for 1 mA stimulation whereas stimulation intensities used in the current work were 2 mA. 
The expected electrical field in the striatal target with our stimulation protocol are therefore in the 
range of 0.5-0.6 V/m. (E) tTIS hardware and electrode montage for striatal stimulation in humans 
used in Study 3.  

 

In Study 3, we tested the causal contribution of the striatum to reinforcement motor 

learning by comparing learning abilities in a force-tracking task depending on the presence 

of reinforcement and the type of tTIS applied during training tTISSham, tTIS20Hz or tTIS80Hz). 

Overall, we find that high gamma, not beta, tTIS of the striatum disrupts the benefits of 

reinforcement on motor learning. This effect was associated to changes of activity in the 

striatum, as recorded with functional magnetic resonance imaging. Moreover, we also show 

that tTIS80Hz, but not tTIS20Hz, increases effective connectivity between the striatum and the 

frontal cortex. Overall, these results show for the first time that tTIS is able to target the 

striatum with relevant behavioral and neural effects on reinforcement learning. 
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2.1. Abstract 

 

Besides relying heavily on sensory and reinforcement feedback, motor skill learning 

may also depend on the level of motivation experienced during training. Yet, how motivation 

by reward modulates motor learning remains unclear. In 90 healthy subjects, we investi-

gated the net effect of motivation by reward on motor learning while controlling for the sen-

sory and reinforcement feedback received by the participants. Reward improved motor skill 

learning beyond performance-based reinforcement feedback. Importantly, the beneficial ef-

fect of reward involved a specific potentiation of reinforcement-related adjustments in motor 

commands, which concerned primarily the most relevant motor component for task success 

and persisted on the following day in the absence of reward. We propose that the long-

lasting effects of motivation on motor learning may entail a form of associative learning re-

sulting from the repetitive pairing of the reinforcement feedback and reward during training, 

a mechanism that may be exploited in future rehabilitation protocols. 
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2.2. Introduction 

 

Motor skill learning is the process by which the speed and accuracy of movements 

improve with practice (Krakauer et al., 2019). A significant amount of research has since 

long demonstrated that motor learning relies on sensory feedback, which allows reducing 

movement errors (e.g., (Tseng et al., 2007; Shadmehr et al., 2010b)). More recently, some 

studies have shown that reinforcement feedback, allowing the adjustment of movements 

based on knowledge of performance, also plays a role in motor learning (Wachter et al., 

2009; Palminteri et al., 2011; Bernardi et al., 2015; Galea et al., 2015b; Therrien et al., 2016; 

Mawase et al., 2017). The contribution of reinforcement feedback to motor learning seems 

to be particularly important when the quality of the available sensory feedback is low (Izawa 

and Shadmehr, 2011; Cashaback et al., 2017). These observations suggest that reinforce-

ment feedback may be critical for motor rehabilitation (Quattrocchi et al., 2017; Roemmich 

and Bastian, 2018), where patients often exhibit sensory impairments in addition to their 

motor disability (Connell, 2008; Hepworth et al., 2016). However, before clinical translation 

can occur, significant research is required to characterize the optimal conditions in which 

sensory and reinforcement feedback can improve motor learning.   

 

One key factor that may influence sensory- and reinforcement-based motor learning 

is motivation (Lewthwaite and Wulf, 2017). This idea is in line with an ethological perspec-

tive: in nature, animals are motivated to learn efficiently motor behaviors that have been 

repetitively associated with rewarding outcomes, in order to increase the likelihood of reach-

ing these outcomes again in the future (Barron et al., 2010; Yamazaki et al., 2016). Whereas 

past research on motivation has traditionally focused on the impact of reward on decision-

making (Shima and Tanji, 1998; Bush et al., 2002; O’Doherty, 2004; Dayan and Niv, 2008; 

Balleine and O’Doherty, 2010; Hare et al., 2011; Padoa-Schioppa, 2011; Schultz, 2015; 

Derosiere et al., 2017c, 2017a; Gershman and Daw, 2017), there has been a recent rise in 

interest regarding its influence on motor learning (Therrien et al., 2016, Mawase et al., 2017, 

Uehara et al., 2019; Vassiliadis et al., 2019; Chen et al., 2017; Sporn et al., 2020, Vassiliadis 

and Derosiere, 2020, Holland et al., 2019).  
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To tackle this issue, previous studies have investigated motor skill learning with dif-

ferent types of reinforcement and reward. This research showed that the combination of 

reinforcement (providing knowledge of performance) and reward (providing motivation) can 

influence motor skill learning (e.g., (Wachter et al., 2009; Abe et al., 2011; Wilkinson et al., 

2015; Steel et al., 2016, 2019)). A key aspect of the aforementioned studies is that they 

considered reinforcement and reward in a bonded way, with the rewarded participants being 

also the ones receiving performance-based reinforcement feedback. The assumption un-

derlying this approach is that receiving knowledge of performance (e.g., points or binary 

feedback) provides a form of intrinsic reward that by itself increases motivation to perform 

well (Leow et al., 2018). However, in addition to the intrinsically rewarding properties of re-

inforcement, knowledge of performance also provides a learning signal to the motor system, 

that can influence motor learning (Huang et al., 2011; Shmuelof et al., 2012; Bernardi et al., 

2015; Galea et al., 2015b; Nikooyan et al., 2015; Therrien et al., 2016; Mawase et al., 2017; 

Leow et al., 2018; Uehara et al., 2018; Kim et al., 2019). In contrast, extrinsic reward in-

creases motivation to perform well, without conveying any additional learning signal (Berke, 

2018). In accordance with a dissociable role of reinforcement and reward in motor learning, 

past research has shown that certain subpopulations of neurons in the motor cortex (i.e., a 

key region of the motor learning network; (Krakauer et al., 2019)) are responsive to the 

outcome of previous movements irrespective of reward (Levy et al., 2020), while others re-

spond to reward regardless of the previous outcome (Ramkumar et al., 2016). Put together, 

these elements indicate that estimating the net impact of reward on motor learning requires 

controlling for the effect of the reinforcement feedback on the learning process. Based on 

these elements, we experimentally uncoupled knowledge of performance from reward to 

test the hypothesis that reward induces a specific improvement in motor learning and 

maintenance. 

 

Another important question relates to how, at the single-trial level, motivation by re-

ward may affect motor skill learning and maintenance. As such, computational models of 

motor learning posit that movement errors can be corrected based on sensory and rein-

forcement feedbacks on a trial-by-trial basis (Cashaback et al., 2017), with possible interac-

tions between these two processes (Izawa and Shadmehr, 2011). Sensory-based motor 

learning relies on the ability to produce motor commands that match predicted sensory con-

sequences (e.g., visual, somatosensory consequences; (Sidarta et al., 2016, Bernardi et al., 
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2015). Conversely, reinforcement-based motor learning is thought to depend on the ability 

to efficiently regulate between-trial motor variability based on previous outcomes (Wu et al., 

2014; Pekny et al., 2015; Sidarta et al., 2016; Therrien et al., 2016; Dhawale and Smith, 

2017; Uehara et al., 2019). Importantly, in this framework, reward may have a global influ-

ence, enhancing both sensory- and reinforcement-based adjustments from one trial to an-

other, or could have a more specific effect, boosting only one of the two learning systems 

(Galea et al., 2015b; Kim et al., 2019). Here, we investigated the impact of reward on sen-

sory- and reinforcement-based motor adjustments during motor skill learning at the single-

trial level, in a situation where they can both contribute to the learning process. 

 

Healthy participants (n = 90) trained on a pinch-grip force reproduction task with lim-

ited sensory feedback over two consecutive days, while we manipulated the reinforcement 

feedback and reward on Day 1. By removing visual feedback on most trials, we ensured that 

the learning process would largely depend on the integration of somatosensory and rein-

forcement feedbacks (Izawa and Shadmehr, 2011; Bernardi et al., 2015; Sidarta et al., 

2018). Moreover, subjects were distributed in three groups where training involved sensory 

(S) feedback only (Group-S; n = 30), sensory and reinforcement (SR) feedback (Group-SR; 

n=30), or both feedbacks and a reward (SRR, Group-SRR; n=30). Monetary gains were used 

as they are known to strongly modulate the motivation to engage in various tasks (Grogan 

et al., 2020; Manohar et al., 2015; Schultz, 2015; Shadmehr et al., 2019). We investigated 

how participants learned and maintained the skill depending on the type of feedback expe-

rienced during training. We found that while sensory and reinforcement feedbacks were not 

sufficient for the participants to learn the task in the present study, adding reward during 

training markedly improved motor performance. Reward-related gains in motor learning 

were maintained on Day 2, even if subjects were no longer receiving a reward on that day. 

Importantly, single-trial analyses showed that reward specifically increased reinforcement-

related adjustments in motor commands, with this effect being maintained on Day 2, in the 

absence of reward. The pinch-grip force task used here also allowed considering adjust-

ments separately for the speed of force initiation, and the accuracy of the performed force, 

both in terms of variability and amplitude. Importantly, we found that reward did not affect 

the control of all motor components in the same way, with the amplitude component turning 

out to be the more strongly influenced by the presence of reward.  
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Altogether, the present results provide evidence that motivation by reward can im-

prove motor skill learning and maintenance even when the task is performed with the same 

knowledge of performance. More importantly, this effect seems to entail a specific potentia-

tion of reinforcement-related adjustments in the motor command at the single-trial level. 

These behavioral results are important to characterize the mechanisms by which reward 

can improve motor learning and may guide future motivational interventions for rehabilitation 

(McGrane et al., 2015). 
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2.3. Results 

 

Ninety healthy participants practiced a pinch-grip force task over two consecutive 

days. The task required participants to hold a pinch grip sensor in their right hand and to 

squeeze it as quickly as possible in order to move a cursor displayed on a computer screen 

in front of them, from an initial position to a fixed target (Figure 1A). The force required to 

reach the target (TargetForce) corresponded to 10 % of the individual maximum voluntary 

contraction (MVC). In most of the trials (90 %), participants practiced the task with very 

limited sensory feedback: the cursor disappeared when the generated force reached half of 

the TargetForce. In the remaining trials (10 %; not considered in the analyses), full vision of 

the cursor allowed participants to be visually guided towards the TargetForce and therefore to 

be reminded of the somatosensory sensation corresponding to the TargetForce. Hence, in 

this task, learning relied mostly on the successful reproduction of the TargetForce based on 

somatosensory feedback (Raspopovic et al., 2014), with the target somatosensory sensa-

tion being regularly reminded to the participants through the full vision trials.  To learn the 

task, subjects were provided with six training blocks (40 trials each; i.e., total of 240 training 

trials; Figure 1B), during which Group-S subjects trained with sensory feedback only (Block-

S), Group-SR subjects trained with sensory and reinforcement feedback (Block-SR), and 

Group-SRR subjects trained with both feedbacks and a monetary reward (Block-SRR ). Notably, 

the groups were not significantly different for a variety of features including age, gender, 

TargetForce, difficulty of the task, muscular fatigue and final monetary gains (see Materials 

and Methods, Table 1). Beside the training blocks, all participants performed the task in a 

Block-SR  setting so that the familiarization, the pre- and post-training assessments on Day 

1, as well as Re-test on Day 2, occurred in the same conditions in the three experimental 

groups. This design allowed us to investigate the effect of reinforcement and reward, both 

on learning and on maintenance of the learned motor skill. Importantly, in Block-SR and Block-

SRR, the binary reinforcement feedback depended on the Error, estimated as the absolute 

difference between the TargetForce and the exerted force over the whole trial (excluding the 

first 150 ms, Figure 1C; (Abe et al., 2011; Steel et al., 2016). Hence, to be successful, 

participants had to reduce the Error by approximating the TargetForce as quickly and accu-

rately as possible.  
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Figure 1. Experimental protocol. A) Time course of a trial in the motor skill learning 
task. Each trial started with the appearance of a sidebar and a target. After a variable preparatory 
phase (800-1000ms), a cursor appeared in the sidebar, playing the role of a “Go” signal. At this 
moment, participants were required to pinch the force transducer to bring the cursor into the target 
as quickly as possible and maintain it there until the end of the task (2000ms). Notably, on most 
trials, the cursor disappeared halfway towards the target (as displayed here). Then, a reinforcement 
feedback was provided in the form of a colored circle for 1000ms and provided binary knowledge of 
performance (Success or Failure in Block-SR and Block-SRR) or was non-informative (Block-S). The 
reinforcement feedback was determined based on the comparison between the Error on the trial and 
the individual success threshold (computed in the Calibration block, see Materials and Methods). 
Finally, each trial ended with a reminder of the color/feedback association and potential reward as-
sociated to good performance (1500ms). B) Experimental procedure. On Day 1, all participants 
performed two familiarization blocks in a Block-SR condition. The first one involved full vision of the 
cursor while the second one provided only partial vision and served to calibrate the difficulty of the 
task on an individual basis (See Materials and Methods). Then, Pre- and Post-training Block-SR as-
sessments were separated by 6 blocks of training in the condition corresponding to each individual 
group (Block-S for Group-S, Block-SR for Group-SR and Block-SRR for Group-SRR). Day 2 involved a Fa-
miliarization block (with partial vision) followed by a Re-test assessment (4 Block-SR pooled together). 
There was no recalibration on Day 2. C) Example of a force profile. Force applied (in % of MVC) 
during the task. Participants were asked to approximate the TargetForce as quickly and accurately as 
possible to minimize the Error (grey shaded area). As shown on the Fig, this Error depended on the 
speed of force initiation (ForceInitiation) and on the accuracy of the maintained force, as reflected by its 
amplitude with respect to the TargetForce (ForceAmplError) and its variability (ForceVariability). Note that the 
first 150ms of each trial were not considered for the computation of the Error.  
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Reward improves motor skill learning  

Participants’ initial performance was not significantly different in the different groups: 

the Error in the Pre-training block equaled 3.14 ± 0.18 % MVC in Group-S, 3.33 ± 0.17 % 

MVC in Group-SR and 3.30 ± 0.15 % MVC in Group-SRR (one-way ANOVA: F(2,87) = 0.37,  p = 

0.69, partial η2 = 0.0084; Figure 2A). In contrast, skill learning, estimated as the training-

related reduction in Error on Day 1 (Normalized Error = Post-training Error expressed in % 

of Pre-training Error) varied as a function of the group (Figure 2B). As such, learning was 

stronger in the Group-SRR compared to the two other groups (ANOVA: F(2,87) = 4.41,  p = 

0.015, partial η2 = 0.092; post-hocs: Group-SRR vs. Group-SR: p = 0.014, Cohen’s d = 0.60; 

Group-SRR vs. Group-S: p=0.010, d = 0.98), with no significant difference between Group-S 

and Group-SR (p = 0.91, d = 0.025). This was confirmed by a subsequent analysis showing 

that learning was significant in the Group-SRR (Post-training = 80.7 ± 3.5 % of Pre-training; 

single-sample t-test against 100 %: t(29) = -5.49, p < 0.00001, d = -1.42), but not in Group-S 

(Post-training = 103.9 ± 5.15 % of Pre-training; t(29) = 0.75, p = 0.46, d = 0.19) or in Group-

SR (Post-training = 102.9 ± 8.80 % of Pre-training; t(29) = 0.33, p = 0.745, d = 0.085). Skill 

maintenance on Day 2, estimated as the Error at Re-test in percentage of Pre-training, was 

not significantly different between the groups (F(2,87) = 1.96,  p = 0.15, partial η2 = 0.043; 

Figure 2C). However, in Group-SRR, we found that the Error at Re-test remained lower than 

at Pre-training (Re-test = 85.6 ± 5.01 % of Pre-training; single-sample t-test against 100 %: 

t(29) = -2.88, p < 0.0073, d = -0.74) demonstrating that the skill was maintained, while this 

effect was not significant in the two other groups (Group-S: Re-test = 100.5 ± 4.63 % of Pre-

training; t(29) = 0.11, p = 0.92, d = -0.12, Group-SR: Re-test = 97.0± 6.82 % of Pre-training; 

t(29) = -0.45, p = 0.66, d = -0.028). Hence, while reinforcement alone did not contribute to 

reduce the Error in this task, its combination with reward successfully helped participants to 

learn and maintain the skill, as also evident when considering the averaged success rates 

(Figure 2D) and individual force profiles (Figure 2E).  
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Figure 2. Learning curves. A) Error. Average Error is represented across practice for the three 
experimental groups (grey: Group-S, light green: Group-SR, dark green: Group-SRR). The grey shaded 
area highlights the blocks concerned by the reinforcement manipulation. The remaining blocks were 
performed with knowledge of performance only (i.e., in a Block-SR setting). B) Skill learning. Bar plot 
(left) and violin plot (right, each dot = one subject) representing skill learning (quantified as the Error 
in Post-training blocks expressed in percentage of Pre-training blocks) in the three experimental 
groups. Skill learning was significantly enhanced in Group-SRR compared to the two other groups. 
This result remained significant when removing the subject showing an extreme value in the Group-

SR (ANOVA: F(2,86) = 6.44,  p = 0.0025, partial η2 = 0.13; post-hocs; Group-SRR vs. Group-SR: p = 
0.027; Group-SRR vs. Group-S: p = 0.00064; Group-SR vs. Group-S: p = 0.21).   C) Skill mainte-
nance. Bar plot (left) and violin plot (right) representing skill maintenance quantified as the Error in 
Re-test blocks expressed in percentage of Pre-training blocks) in the three experimental groups. D) 
Success. Proportion of successful trials for each block. E) Force profiles. Individual force profiles 
of one representative subject of Group-S (left), Group-SR (middle) and Group-SRR (right) in the Pre- 
(grey) and Post-training blocks (blue). Note the better approximation of the TargetForce and the re-
duced inter-trial variability at Post-training in the exemplar subject of Group-SRR. *: significant differ-
ence between groups (p<0.05). #: significant difference within a group between normalized Post-
training Error and a constant value of 100% (p<0.017 to account for multiple comparisons). 

 

Reward boosts reinforcement-related adjustments during motor skill learning 

To identify the mechanisms at the basis of the effect of reward on motor learning, we 

quantified how much participants adjusted motor commands based on reinforcement or sen-

sory feedback at the single-trial level. This allowed us to estimate how subjects relied on 
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each type of feedback on a trial-by-trial basis and how this behaviour was affected by re-

ward. In order to investigate reinforcement-related adjustments in motor commands, we 

computed the absolute between-trial change (BTC) in Error (ErrorBTC = |Errorn+1-Errorn|) fol-

lowing successful or failed trialn of similar Error in the three groups (Materials and Methods, 

see also (Pekny et al., 2015; Uehara et al., 2019) for similar approaches in reaching tasks). 

Comparing ErrorBTC depending on the Outcome of the previous trial (Success or Failure) 

allowed us to estimate how much participants modified their force profile based on the rein-

forcement feedback. Notably, considering changes in the Error in absolute terms allowed us 

to explore the effect of reward on the magnitude of the adjustments in the different groups, 

regardless of their directionality (increase or decrease in the Error). We found that ErrorBTC 

was generally higher after failed than successful trials (two-way ANOVA; main effect of Out-

come: F(1,84) = 8.66,  p = 0.0042, partial η2 = 0.093; Figure 3A), consistent with an exploration 

process following failed trials (Uehara et al., 2019, Pekny et al., 2015). Interestingly, this 

difference between failed and successful trials was modulated by GroupTYPE (Outcome x 

GroupTYPE: F(2,84) = 11.47,  p < 0.001, partial η2 = 0.21): while it was significant in Group-SR 

and Group-SRR (post-Success vs. post-Failure: p = 0.028, d = -0.54  and p < 0.001, d = -0.92 

respectively), this effect was only at the trend level for Group-S (p = 0.060, d = 0.29). Relat-

edly, post-hoc tests revealed that post-Success ErrorBTC was significantly lower in Group-

SRR than in Group-S (p = 0.026, d = -0.54), but not different between Group-SR and Group-S 

(p = 0.24, d = -0.23) and between Group-SR and Group-SRR (p = 0.30, d = 0.29). Besides, 

post-Failure ErrorBTC was significantly higher in Group-SRR than in Group-S (p = 0.040, d = 

0.65). Yet, it was not different between Group-SR and Group-S (p = 0.14, d = 0.48) and be-

tween Group-SR and Group-SRR (p = 0.58, d = -0.16). Hence, providing a reward on top of 

reinforcement feedback led to a particularly low ErrorBTC following successful trials and a 

particularly high ErrorBTC following failed trials. This analysis suggests that reward modulated 

between-trial changes in behavior in response to the reinforcement feedback, regardless of 

whether reinforcement was positive or negative. To further confirm this, we directly com-

pared the magnitude of reinforcement-based adjustments between the three groups, by ex-

pressing the ErrorBTC following failed trials relative to the ErrorBTC following successful trials. 

Doing so, we found a significant effect of the GroupTYPE during Day 1 training (F(2,84) = 10.27,  
p < 0.001, partial η2 = 0.20; Figure 3A). As expected, participants of the Group-SR adjusted 

their force profile depending on the reinforcement feedback, while participants of the Group-

S were unable to do so (post-hocs; Group-S vs. Group-SR: p = 0.022, d = -0.68). Interestingly, 
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this ability to adjust motor commands based on the reinforcement was amplified by reward 

(Group-SR vs. Group-SRR: p = 0.036, d = -0.57). This result suggests that one mechanism 

through which reward improves motor learning is the potentiation of reinforcement-related 

adjustments in motor commands. To further test this idea, we evaluated the relationship 

between the magnitude of reinforcement-based changes in motor commands and the aver-

age success rate in the following trial across all subjects. Consistently, we found that the 

magnitude of reinforcement-related adjustments was strongly associated to the probability 

of success (R2 = 0.62; p = 1.5 x 10-19; Figure 3B): the more participants adjusted their be-

havior based on the reinforcement feedback in a given trial ,(e.g., by reducing ErrorBTC fol-

lowing Success and/or by increasing it following a Failure),  the more they were likely to be 

successful in the following trial, supporting the view that these adjustments were relevant in 

the present task. Hence, these data suggest that the effect of reward on motor skill learning 

relies on the ability to adjust movements based on the reinforcement feedback. 

In a second step, we asked whether such single-trial effects were maintained on Day 

2, while all participants performed the task with sensory and reinforcement feedback, but in 

the absence of reward (i.e., in a Block-SR setting). Interestingly, there was also an Outcome 

x GroupTYPE interaction: F(2,78) = 3.75,  p = 0.027, partial η2 = 0.088) demonstrating differ-

ences in the way participants relied on the reinforcement feedback on Day 2 based on the 

type of training experienced on Day 1 (Figure 3C). All groups displayed a larger ErrorBTC 

following a failed compared to a successful trial (Group-S: p< 0.018, d = 0.46; Group-SR: p < 

0.001, d = 0.75; Group-SRR: p < 0.001, d = 1.13). Notably though, post-hoc tests did not 

identify any group difference in post-Success ErrorBTC (Group-SR vs. Group-SRR: p = 0.13, d 

= 0.72; Group-SR vs. Group-S: p = 0.96, d = -0.019; Group-SRR vs. Group-S: p = 0.12, d = -

0.56) nor did it in post-Failure ErrorBTC (Group-SR vs. Group-SRR: p = 0.33, d = -0.20; Group-

SR vs. Group-S: p = 0.35, d = 0.25; Group-SRR vs. Group-S: p = 0.058, d = 0.39). Yet, when 

expressing ErrorBTC in Post-Failure relative to Post-Success trials, we found that participants 

who had previously received reward on Day 1 in Group-SRR adjusted more their movements 

according to the reinforcement feedback compared to Group-S and Group-SR (F(2,78) = 3.53,  
p = 0.034, partial η2 = 0.083; post-hocs; Group-S vs. Group-SRR: p = 0.017, d = -0.66, Group-

SR vs. Group-SRR: p = 0.039, d = -0.56, Figure 3C). There was no difference between Group-

S and Group-SR (p = 0.72, d = -0.10). Here again, the magnitude of reinforcement-based 

adjustments correlated with the success in the next trial (R2 = 0.51; p=5.5 x 10-14; Figure 
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3D). Hence, the effect of reward on reinforcement-based adjustments can persist on a sub-

sequent session of training, even after reward removal.  

As explained above, we evaluated reinforcement-based adjustments by comparing 

ErrorBTC following successful or failed trials. However, by definition, successful and failed 

trials did not only differ with respect to the reinforcement feedback obtained at trialn, but also 

regarding the experienced sensory feedback. Hence, the reward effect reported above could 

be specific to reinforcement-based adjustments, or may reflect a different reliance on the 

sensory feedback (or a combination of both). To disentangle these possibilities, we rea-

soned that the extent to which participants relied on the somatosensory feedback to adjust 

their movements could be estimated by computing ErrorBTC following failed trials of different 

Error magnitudes (i.e., small or large Failure). In other words, we contrasted ErrorBTC follow-

ing trials with the same reinforcement feedback (i.e., Failure) but with different somatosen-

sory experiences (i.e., resulting from Small or Large Failures). Here too, we found a signifi-

cant Outcome x GroupTYPE interaction on the ErrorBTC (F(2,76) = 5.15,  p = 0.0080, partial η2 = 

0.12; Figure 3E). As such, adjustments were greater after Large than after Small Failures 

in Group-SR and Group-SRR (p < 0.001, d = 0.65 and p < 0.001, d = 1.20, respectively), but 

not in Group-S (p = 0.50, d = 0.19). Post-hoc tests also indicated that adjustments after a 

Large Failure were greater in Group-SR and Group-SRR than in Group-S (p < 0.001, d = 1.15 

and p < 0.001, d = 1.31, respectively), but not different between Group-SR and Group-SRR (p 

= 0.26 p < 0.001, d = 0.25). After Small Failures, ErrorBTC was also larger in Group-SR than 

in Group-S (p = 0.042, d = 0.56), but not different between Group-SR and Group-SRR (p = 0.31, 

d = 0.30) and between Group-SRR and Group-S (p = 0.34, d = 0.44). This indicates that while 

subjects of the Group-SR and Group-SRR adjusted the Error depending on the sensory feed-

back, participants of the Group-S were not able to do so, suggesting that training with rein-

forcement feedback allowed participants to be more sensitive to the sensory feedback (Ga-

lea et al., 2015; Bernardi et al., 2015), regardless of whether they received reward or not. 

Consistently, we found a GroupTYPE effect (F(2,76) = 5.05,  p = 0.0087, partial η2 = 0.12; Figure 
3E) on the magnitude of sensory-based adjustments (ErrorBTC following Large Failures ex-

pressed relative to ErrorBTC following Small Failures), which was driven by differences be-

tween Group-S and the two other groups (post-hocs; Group-S vs. Group-SR: p = 0.0056, d = -

0.73, Group-S vs. Group-SRR: p = 0.011, d = -0.85). Importantly, we did not find any difference 
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between Group-SR and Group-SRR (p = 0.90, d = -0.033). Then, similarly as for the reinforce-

ment-based changes, we found that the magnitude of sensory-based adjustments corre-

lated with the subsequent probability of success (R2 = 0.34, p = 1.8 x 108; Figure 3F), 

demonstrating that these adjustments were also relevant in the learning process.  

On Day 2, the effect of Outcome persisted (F(1,68) = 15.20,  p < 0.001, partial η2 = 0.18) 

with a trend for a GroupTYPE effect (F(2,68) = 3.12,  p = 0.051, partial η2 = 0.084) but no Out-

come x GroupTYPE interaction (F(2,68) = 3.12,  p = 0.46, partial η2 = 0.013, ). Consistently, the 

magnitude of sensory-based adjustments was not different between the GroupTYPES (F(2,68) 

= 0.41,  p = 0.67, partial η2 = 0.012, Figure 3G). Note though that similarly to Day 1, sensory-

based adjustments significantly correlated with the probability of success on Day 2 (R2 = 

0.13, p = 0.0022; Figure 3H). Hence, the absence of reward effects on sensory-based ad-

justments on Day 1 and 2 cannot be explained by the fact that participants did not rely on 

this type of feedback.  
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Figure 3. Between-trial adjustments in the Error. (A) Reinforcement-based adjustments 
in the Error during Day 1 training. Absolute between-trial adjustments in the Error (ErrorBTC = |Er-
rorn+1-Errorn|) according to the reinforcement feedback (i.e., Success or Failure) encountered at trialn 
in the three GroupTYPES (grey: Group-S, light green: Group-SR, dark green: Group-SRR). Notably, these 
bins of trials where constituted based on the success threshold-normalized Error at trialn in order to 
compare adjustments in motor commands following trials of similar Error in the three groups. Stars 
denote significant group differences in ErrorBTC  for a given outcome (left panel, see Materials and 
Methods). Reinforcement-based adjustments (ErrorBTC after Failure in percentage of ErrorBTC after 
Success) were compared in the three GroupTYPES (right panel). (B) Correlations between the magni-
tude of reinforcement-based adjustments in the Error and the average success rate on the next trial, 
showing the relevance of these adjustments in the present task. Each dot represents a subject. (C, 
D) Same for Day 2 training. Note that reinforcement-based adjustments in motor commands re-
mained amplified in GroupSRR, despite the absence of reward on Day 2. (E) Sensory-based adjust-
ments in the Error during Day 1 training. ErrorBTC following trialsn with Failures of different Error mag-
nitudes (left panel). Sensory-based adjustments (ErrorBTC after Large Failure in percentage of Er-
rorBTC after Small Failure) were compared in the three GroupTYPES (right panel). (F) Correlations be-
tween the magnitude of sensory-based adjustments in the Error and the probability of success on 
the next trial, showing the relevance of these adjustments for task success. (G, H) Same for Day 2 
training. *: p < 0.05. 

 

The single-trial analyses on ErrorBTC revealed significant differences in the way par-

ticipants of each group adjusted their motor commands based on the reinforcement and the 

sensory feedback. However, the distribution of the Error data could have contributed to 

these single-trial effects. Indeed, even for random adjustments in motor commands (e.g., 

based on a Gaussian process), adjustments following small or large Errorn (i.e., in the tails 

of the Error distribution) would be larger than adjustments following Errorn close to the mean 

of the distribution. Hence, to ensure that group differences in Error distribution did not con-

tribute to our single-trial results, we ran a control analysis in which we shuffled the Error data 

for each subject (with 10000 permutations), and then re-computed reinforcement and sen-

sory-based adjustments exactly as in the main analysis. Importantly, we did not find any 

GroupTYPE effect on these shuffled data neither for reinforcement- (Day 1: F(2,84) = 1.6,  p = 

0.21, partial η2 = 0.04; Day 2: F(2,78) = 0.89,  p = 0.41, partial η2 = 0.02) nor for sensory-based 

adjustments (Day 1: F(2,76) = 0.02,  p = 0.98, partial η2 = 0.0006; Day 2: F(2,78) = 0.20,  p = 

0.82, partial η2 = 0.006). This analysis indicates that the differences in single-trial adjust-

ments reported here were not related to a sampling bias.   

  

Reward boosts reinforcement-based adjustments at a specific level of motor control 
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As a last step, we asked whether the effect of reward on between-trial adjustments in 

motor commands concerned all aspects of force control, or only some specific motor com-

ponents. To do so, we investigated how reinforcement and sensory feedback shaped ad-

justments in the speed and accuracy of force production in the three GroupTYPES by dissect-

ing each force profile into three separate components (Figure 1B). To evaluate the speed 

at which the force was generated, we computed the time required for force initiation (i.e., 

the time required to reach half of the TargetForce: ForceInitiation). To assess the accuracy of the 

force, we computed the force difference between the average amplitude of the generated 

force and the TargetForce (ForceAmplError), and the variability (standard deviation/mean) of the 

maintained force (ForceVariability). Notably, both indicators of force accuracy were computed 

in the second half of the trial (i.e., the last 1000 ms), well after force initiation, when partici-

pants maintained a stable level of force. Importantly, in a first analysis we found that the 

presence of reward during training allowed improvements at all levels of force control (Fig-
ure S1), in line with previous studies (Manohar et al., 2015; Codol et al., 2020). 

We compared between-trial changes in ForceInitiation (ForceInitiation-BTC), ForceAmplError 

(ForceAmplError-BTC), and ForceVariability (ForceVariability-BTC) following Success or Failure trials of 

similar Error magnitude in the three groups. The ANOVA run on the ForceInitiation-BTC data 

revealed a significant Outcome x GroupTYPE interaction (F(2,84) = 7.62,  p < 0.001, partial η2 

= 0.15) that was driven by the fact that post-Success and post-Failure ForceInitiation-BTC were 

different in Group-SR and Group-SRR (p < 0.001, d = -1.04 and p < 0.001, d = -1.59, respec-

tively) but not in Group-S (p = 0.10, d = -0.27). Moreover, post-Success changes in ForceIniti-

ation were smaller in Group-SRR than in Group-S (p = 0.023, d = -0.56); it also tended to be 

smaller in Group-SR than in Group-S (p = 0.071, d = -0.49), while it was comparable in Group-

SR and Group-SRR (p = 0.65, d = 0.14).  Corroborating these results, we found that reinforce-

ment feedback impacted the modulation of initiation speed (expressed as ForceInitiation-BTC 

following a Failure in percentage of ForceInitiation-BTC following a Success; F(2,84) = 8.50,  p < 

0.001, partial η2 = 0.17; post-hocs: Group-S vs. Group-SR: p = 0.0011, d = -0.84, Group-S vs. 
Group-SRR: p < 0.001, d = -1.09;  Figure 4A). Interestingly though, we did not find any effect 

of reward on the reinforcement-based adjustment of speed (Group-SR vs. Group-SRR: p = 

0.78, d = -0.072). At the level of ForceAmplError, we found again a Outcome x GroupTYPE inter-

action (F(2,84) = 14.07,  p < 0.001, partial η2 = 0.25; Figure  4B) that was driven by the fact 

that post-Success and post-Failure ForceAmplError-BTC were different in Group-SR and Group-
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SRR (p < 0.001, d = -0.97 and p = 0.0034, d = -1.44, respectively) but not in Group-S (p = 0.99, 

d = -0.0002). Group comparisons at post-Success and post-Failure did not evidence any 

significant difference in ForceAmplError-BTC. Notably though, there was a trend for the post-

Success ForceAmplError-BTC to be smaller in Group-SRR than in Group-S (p = 0.066, d = -0.42). 

Interestingly, direct comparison of reinforcement-related changes in ForceAmplError-BTC (post-

Failure vs. post-Success) revealed a significant effect of reward (F(2,84) = 9.54,  p < 0.001, 

partial η2 = 0.19; Figure 4B). As such, participants of the Group-SRR modulated more the 

ForceAmplError according to the reinforcement feedback than subjects of the two other groups 

(Group-S vs. Group-SRR: p < 0.001, d = -1.04, Group-SR  vs. Group-SRR: p = 0.018, d = -0.70). 

Notably, there was also a trend for Group-SR to be different from Group-S (p = 0.064, d = -

0.50). Finally, analysis of ForceVar-BTC did not reveal any Outcome x GroupTYPE interaction 

(F(2,84) = 0.79,  p = 0.46, partial η2 = 0.018; Figure 4C), neither did it show a GroupTYPE effect 

(F(2,84) = 0.81, p = 0.45, partial η2 = 0.020; Figure 4C) on reinforcement-based adjustments 

(ForceVar-BTC post-Failure vs. post-Success). Hence, while reward strongly influenced rein-

forcement-based adjustments of force amplitude, it did not modulate the between-trial reg-

ulation of the speed at which the force was initiated or the variability of the maintained force. 

This suggests that the effect of reward on reinforcement-related adjustments was not global 

(i.e., affecting all aspects of the movement) but rather specific to force amplitude. 

We also considered the effect of the sensory feedback on between-trial adjustments 

by comparing ForceInitiation-BTC, ForceAmplError-BTC, and ForceVariability-BTC following failed trials of 

different Error magnitudes (i.e., small or large Failure). Contrary to the global ErrorBTC index, 

we did not find any Outcome x GroupTYPE interaction neither for ForceInitiation-BTC (F(2,76) = 0.54,  
p = 0.59, partial η2 = 0.014), nor for ForceAmplError-BTC (F(2,76) = 2.80,  p = 0.067, partial η2 = 

0.069) or ForceVariability-BTC (F(2,76) = 1.25,  p = 0.29, partial η2 = 0.032). Consistently, we did 

not find any significant difference in the way participants from the different groups adjusted 

individual motor components depending on the size of the preceding Failure (Large vs. 

Small Failure on Figure 4D, 4E, 4F; ForceInitiation-BTC: F(2,76) = 0.10,  p = 0.90, partial η2 = 

0.0026; ForceAmplError-BTC: F(2,76) = 2.57,  p = 0.083, partial η2 = 0.063; ForceVariability-BTC: F(2,76) 

= 2.46,  p = 0.092, partial η2 = 0.061). This analysis supports the idea that reward did not 

increase the sensitivity to the sensory feedback, but rather boosted specific adjustments in 

motor commands in response to the reinforcement feedback. 
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Finally, as a control analysis, we characterized the respective influence of each motor 

component in the Error, which determined task success. As such, in addition to representing 

different levels of force control (i.e., initiation, amplitude and variability), the motor compo-

nents evaluated here may also bear different relevance for task success (van der Kooij et 

al., 2021). For each participant, we ran separate partial linear regressions on the Error data 

with ForceInitiation, ForceAmplError or ForceVariability as predictors. Notably, we used partial regres-

sions here to assess the relationship between the Error and each motor component, while 

controlling for the effect of the other motor components in the correlation. Interestingly, we 

found that ForceAmplError explained the largest part of variance in the Error (r = 0.96 ± 0.003; 

p<0.05 in 90/90 subjects). ForceInitiation also explained a large part of variance in the Error (r 

= 0.81 ± 0.01; p<0.05 in 90/90 subjects), while ForceVariability explained a smaller, yet signifi-

cant in most subjects, part of variance (r = 0.22 ± 0.03; p<0.05 in 68/90 subjects). Hence, 

although all motor parameters were relevant for task success, the ForceAmplError was the most 

influential factor.  

Altogether, our results demonstrate that reward potentiates reinforcement-based ad-

justments in motor commands and that this effect persists even after reward removal, on the 

subsequent day. The data also show that this effect does not concern all components of the 

movement but specifically the amplitude of the force which was the most relevant factor for 

task success. 
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Figure 4. Between-trial adjustments in initiation time, amplitude error and variability. 
Reinforcement-based adjustments in the ForceInitiation (A), ForceAmplError (B) and ForceVariability 
(C). Absolute between-trial changes (BTC) for each motor component (ForceBTC = |Forcen+1-Forcen|) 
according to the reinforcement feedback (i.e., Success or Failure) encountered at trialn in the three 
GroupTYPES (grey: Group-S, light green: Group-SR, dark green: Group-SRR). Notably, these bins of trials 
where constituted based on the success threshold-normalized Error at trialn. Stars denote significant 
group differences in ErrorBTC for a given outcome (left panel). Reinforcement-based adjustments 
(ForceBTC after Failure in percentage of ForceBTC after Success) in the three GroupTYPES (right panel). 
Sensory-based adjustments in the ForceInitiation (D), ForceAmplError (E) and ForceVariability (F). 
ForceBTC following trialsn with Failures of different Error magnitudes (left panel). Sensory-based ad-
justments (ForceBTC after Large Failure in percentage of ForceBTC after Small Failure) in the three 
GroupTYPES (right panel). *: p < 0.05. 
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2.4. Discussion 

In this study, we investigated the net effect of reward on motor learning while control-

ling for the reinforcement feedback received by the participants. Our results provide evi-

dence that reward can improve motor skill learning and that this effect is related to a specific 

potentiation of reinforcement-related adjustments in motor commands. Strikingly, the poten-

tiation of such adjustments persisted on a subsequent day in the absence of reward. More-

over, such boosting of reinforcement-based adjustments did not concern all components of 

force production but only the amplitude, which was the most relevant one for task success. 

These findings shed light on the mechanisms through which reward can durably enhance 

motor performance. They also lay the groundwork for future rehabilitation strategies involv-

ing optimized sensory and reinforcement feedbacks. 

A main goal of the present study was to explore the net effect of reward on motor skill 

learning by experimentally dissociating it from the reinforcement feedback. As such, previ-

ous motor learning studies have often coupled reinforcement and reward (e.g.,(Wachter et 

al., 2009; Abe et al., 2011; Wilkinson et al., 2015; Steel et al., 2016, 2019)), based on the 

underlying assumption that receiving knowledge of performance (e.g., points or binary feed-

back) provides a form of intrinsic reward that can by itself increase motivation to perform 

well (Leow et al., 2018). However, in addition to providing some form of intrinsic reward, 

reinforcement feedback also provides a learning signal to the motor system, that can influ-

ence motor learning (Huang et al., 2011; Shmuelof et al., 2012; Bernardi et al., 2015; Galea 

et al., 2015b; Nikooyan et al., 2015; Therrien et al., 2016; Mawase et al., 2017; Leow et al., 

2018; Uehara et al., 2018; Kim et al., 2019). In order to assess the net effect of motivation 

on motor learning, we therefore compared groups of participants trained with different mon-

etary rewards but with the exact same reinforcement feedback. We found that motivation by 

reward allowed marked improvements in motor performance that were maintained after re-

ward removal and even 24 hours later (Figure 2). Notably, this was the case despite the 

fact that reinforcement alone was not sufficient to influence motor learning in our task. This 

demonstrates that the motivational context experienced during training can by itself strongly 

influence motor skill learning, beyond performance-based reinforcement feedback. 

The prospect of obtaining rewards for good performance enhances motivation but 

does not provide any additional learning signal to the motor system (Berke, 2018). Yet, it 

may boost the reliance on sensory and/or reinforcement feedbacks (Kim et al., 2019). To 
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explore this possibility, we developed an analysis allowing us to investigate how participants 

adjusted their motor commands based on sensory or reinforcement feedbacks while con-

trolling for differences in performance between the groups (see Materials and Methods for 

more details). Interestingly, we found that reward specifically boosted reinforcement-based 

adjustments, following both positive and negative feedbacks, while sensory-based adjust-

ments remained unaffected by reward (Figure 3). This suggests that reward boosted both 

the reproduction of successful behaviour (exploitation) and correction of motor commands 

after failure (exploration; (Dhawale et al., 2017)). This was the case despite the fact that 

both types of feedback were relevant to improve motor performance at the single-trial level 

(Figure 3B, D, F, H). This result suggests that reward increases the reliance on reinforce-

ment information during the learning process, with less effect on sensory-based adjust-

ments. Interestingly, this finding may explain why tasks that strongly emphasize sensory-

based learning (over reinforcement-based learning; (Izawa and Shadmehr, 2011; 

Cashaback et al., 2017)), often show less sensitivity to motivation. Accordingly, monetary 

reward shows little impact on sensorimotor adaptation (Galea et al., 2015b; Hill et al., 2020) 

and on motor skill acquisition in tasks that strongly rely on sensory feedback (e.g., (Abe et 

al., 2011; Steel et al., 2016; Widmer et al., 2016)). The differential effect of reward on sen-

sory and reinforcement-based adjustments may be due to the qualitatively different learning 

processes that are driven by these two types of feedbacks (Cashaback et al., 2017; Uehara 

et al., 2018). As such, while sensory feedback promotes error correction by providing direc-

tional feedback (Shadmehr et al., 2010b), reinforcement can guide motor exploration based 

on binary feedback about task success (Therrien et al., 2016). Our results, along with the 

observation that monetary rewards are less effective in tasks where learning is dominated 

by sensory feedback, suggest that the potential of reward to improve motor learning relies 

on the boosting of a reinforcement learning mechanism. Based on this, we propose that the 

susceptibility of a given motor learning task to reward may depend on the relative contribu-

tion of sensory and reinforcement feedbacks in the learning process. Characterizing what 

type of motor tasks can benefit from motivational interventions is an important line of future 

work to translate fundamental motor control research into innovative rehabilitation proce-

dures. 
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The finding of a reward-dependent boosting of reinforcement-based adjustments is 

in line with previous neuroimaging results showing that reward increases reinforcement-re-

lated activity in the striatum in the context of motor learning (Widmer et al., 2016). This 

reward-driven increase in striatal activity is reduced after a stroke (even when the striatum 

is unlesioned), a process that may contribute to the motor learning deficits observed in these 

patients (Widmer et al., 2019). Moreover, such reward-dependent modulation of motor ad-

justments has been shown to rely on dopamine (Galea et al., 2013; Pekny et al., 2015), a 

key neurotransmitter of the striatal circuitry. Based on these elements and on the causal role 

of the striatum in reinforcement-based adjustments in motor commands (Nakamura and 

Hikosaka, 2006; Williams and Eskandar, 2006), we suspect that this region may be crucial 

for the beneficial effect of reward observed in the present study. Notably, the cerebellum 

(Wagner et al., 2017; Heffley et al., 2018; Carta et al., 2019; Vassiliadis et al., 2019; 

Sendhilnathan et al., 2020) and frontal areas (Dayan et al., 2014b, 2018; Sidarta et al., 2016; 

Ramakrishnan et al., 2017; Hamel et al., 2018; Palidis et al., 2019) are also likely to contrib-

ute to reward-based motor learning. Further investigations are required to better delineate 

the neurophysiological bases of reward-related improvements in motor learning. 

The beneficial effect of reward on single-trial adjustments was maintained on day 2, 

even after reward removal. As in day 1 training, reinforcement-based adjustments were 

boosted while sensory-based adjustments remained unchanged by reward. This persistent 

change in the specific reaction to the reinforcement feedback after reward removal is sug-

gestive of an associative learning process. In associative learning, presentation of a neutral 

stimulus (i.e., a conditioned stimulus) that has been consistently paired with a rewarding 

stimulus (i.e., an unconditioned stimulus) during a training period elicits a behaviour that was 

initially only generated in reaction to the reward (Pavlov, 1927; Rescorla and Wagner, 1972). 

Following this framework, it is possible that the repetitive pairing of the reinforcement feed-

back with the reward during training induced an implicit association between the two events 

that remained evident when the reward was removed. This could explain why strong rein-

forcement-specific adjustments were maintained on day 2 in the reward group, even though 

no rewards were at stake anymore. Such associative learning processes are known to 

strongly influence autonomic responses (Pool et al., 2019), inhibitory control (Verbruggen et 

al., 2014; Lindström et al., 2019; Avraham et al., 2020), decision making (Lindström et al., 

2019) and even sensorimotor adaptation (Avraham et al., 2020) in humans. We propose 
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that associative learning may also contribute to the durable influence of motivation on motor 

skill learning (Abe et al., 2011; Sporn et al., 2020). 

In order to better characterize the effect of reward on motor learning, we considered 

separately the different components of the movement and found that force amplitude was 

the most strongly affected, while the speed of initiation and force variability remained largely 

insensitive to reward. This suggests that reward can have a selective influence on the reg-

ulation of a specific component of motor control. Importantly, an estimation of the respective 

influence of each motor component on task success also showed that force amplitude was 

the most relevant component for the task. Notably, the specificity of the effect of reward on 

the regulation of one motor component is in accordance with the idea that multidimensional 

motor tasks (i.e., requiring the control of multiple motor components) can be decomposed 

in subtasks that are learned separately in the motor system (Ghahramani and Wolpert, 

1997) In this framework, learning of the different motor components may depend on their 

respective relevance for task success (Ghahramani and Wolpert, 1997; van der Kooij et al., 

2021). Such task relevance may be estimated based on a priori knowledge of the task (e.g., 

following instructions; (Popp et al., 2020)) and through the reliance on a credit assignment 

system allowing to estimate the particular influence of each motor component on task suc-

cess through trial and error (McDougle et al., 2016; Parvin et al., 2018). Based on this idea, 

we believe that the strong relationship between the amplitude of the force and task success 

in the present task pushed participants of the reward group to largely modulate this compo-

nent based on the reinforcement feedback. If this is the case, this would suggest that it is 

possible to affect the training of specific motor abilities by modulating the weight of individual 

motor components in the computation of the reinforcement feedback, an aspect that could 

be exploited in future rehabilitation protocols. Alternatively, reward might have specifically 

modulated the amplitude of the force, independently of the relevance of this parameter. Alt-

hough the present study cannot rule out this hypothesis, we believe that such interpretation 

is unlikely given previous demonstration that reward can improve several aspects of motor 

control concomitantly (Manohar et al., 2015; Codol et al., 2020). Another possibility is that 

reinforcement feedback alone was sufficient to maximally modulate initiation time and vari-

ability in this task, precluding us from observing a difference with the reward-based training 

because of some form of ceiling effect. Further studies are required to disentangle these 
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potentially co-existing interpretations to guide the development of component-specific reha-

bilitation therapies (Norman et al., 2017). 

 

Limitations of the study 

Our findings suggest that extrinsic reward can improve the acquisition and mainte-

nance of a motor skill by boosting reinforcement-based adjustments in motor commands. 

However, it should be noted that here we focused on a very simple unimanual task in which 

performance relied on the ability to modulate a 1-degree of freedom force. While our analysis 

of the different motor components suggests that reward may also improve the learning of 

more complex tasks (by selectively boosting the adjustment of the most relevant dimensions 

for task success), future studies should address the generalizability of our results by using 

tasks engaging more complex skills.  

Besides, our single-trial analysis suggests that reward affects differently sensory and 

reinforcement-based adjustments in motor commands. Yet, sensory and reinforcement 

feedbacks were always coupled in the present task. We did so on purpose, to avoid inducing 

conflict in the learning process (e.g., resulting from rewarding “bad performance”). Notably 

though, the reward effect we report here could be influenced by the relationship between 

these feedbacks. Hence, follow-up investigations should assess the effect of reward on sen-

sory and reinforcement-based adjustments in situations where both feedback types are dis-

sociated (Cashaback et al., 2017).  
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2.5. Materials and Methods 

2.5.1. Resources table 

RESOURCE SOURCE IDENTIFIER 
Deposited data   
Motor learning data This paper https://osf.io/5pjem/ 
Subjects characteristics This paper https://osf.io/5pjem/ 
Software and algorithms   
Matlab vR2007 7.5 and 

R2008a 

Mathworks MATLAB - MathWorks - MATLAB & 

Simulink 
Statistica 10 StatSoft Inc. https://www.statsoft.de/en/soft-

ware/tibco-statisticatm 

Psychophysics Toolbox Psychtoolox.org http://psychtoolbox.org/ 

 

2.5.2. Participants 

A total of ninety right-handed healthy volunteers participated in the present study (58 

women, 23.7 ± 0.3 years old; mean ± SE). Handedness was determined via a shortened 

version of the Edinburgh Handedness inventory Oldfield (Oldfield, 1971). None of the par-

ticipants suffered from any neurological or psychiatric disorder, nor were they taking any 

centrally-acting medication. All participants gave their written informed consent in accord-

ance with the Ethics Committee of the Université Catholique de Louvain (approval number: 

2018/22MAI/219) and the principles of the Declaration of Helsinki. Subjects were financially 

compensated for their participation. Finally, all participants were asked to fill out a French 

adaptation of the Sensitivity to Punishment and Sensitivity to Reward Questionnaire 

(SPSRQ; (Torrubia et al., 2001; Lardi et al., 2008)). 

 

2.5.3. Methods details 

2.5.3.1. General aspects 

Participants were seated approximately 60 cm in front of a computer screen (refresh 

rate = 100 Hz) with their right forearm positioned at a right angle of the table. The task was 

developed on Matlab 7.5 (the Mathworks, Natick, Massachusetts, USA) exploiting the Psy-

chophysics Toolbox extensions (Brainard, 1997; Pelli, 1997) and consisted in an adaptation 

of previously used motor learning tasks (Abe et al., 2011; Steel et al., 2016; Mawase et al., 

https://osf.io/5pjem/
https://osf.io/5pjem/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.statsoft.de/en/software/tibco-statisticatm
https://www.statsoft.de/en/software/tibco-statisticatm
http://psychtoolbox.org/


Study 1: Reward boosts reinforcement-based motor learning 

65 

 

2017). The task required participants to squeeze a force transducer (Arsalis, Belgium) be-

tween the index and the thumb to control the one-dimension motion of a cursor displayed 

on the screen. Increasing force resulted in the cursor moving vertically and upward. Each 

trial started with a preparatory phase in which a sidebar appeared at the bottom of the screen 

and a target at the top (Figure 1A). After a variable time interval, a cursor popped up in the 

sidebar and participants had to pinch the transducer to move the cursor as quickly as pos-

sible from the sidebar to the target and maintain it there for the rest of the task. The level of 

force required to reach the target (TargetForce) was individualized for each participant and 

set at 10% of maximum voluntary contraction (MVC). Notably, squeezing the transducer 

before the appearance of the cursor was considered as an anticipation and therefore led to 

an interruption of the trial. Such trials were discarded from further analyses. At the end of 

each trial, a binary reinforcement feedback represented by a colored circle was provided to 

the subject followed by a reminder of the color/feedback association and potential monetary 

reward associated to good performance (see Reinforcement feedback section below). 

 

2.5.3.2. Sensory feedback 

We provided only limited visual feedback to the participants (Mawase et al., 2017). 

As such, on most trials (90%), the cursor disappeared shortly after the subject started to 

squeeze the force transducer (partial vision trials): it became invisible as soon as the gen-

erated force became larger than half of the TargetForce (i.e., 5% of MVC). Conversely, the 

remaining trials (10%) provided a continuous vision of the cursor (full vision trials). There-

fore, on most trials, participants had limited visual information and had to rely exclusively on 

somatosensory feedback to generate the TargetForce. Importantly, full vision trials were not 

considered in the analyses. 

 

2.5.3.3. Reinforcement feedback 

At the end of each trial, subjects were presented with a binary reinforcement feedback 

indicating performance. Success on the task was determined based on the Error; that is, the 

absolute force difference between the TargetForce and the exerted force (Figure 1B; (Abe et 

al., 2011; Steel et al., 2016)). The Error was computed for each frame refresh (i.e., at 100Hz) 

from 150 ms to the end of the trial and then averaged for each trial (Steel et al., 2016) and 
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expressed in percentage of MVC. This indicator of performance allowed us to classify a trial 

as successful or not based on an individualized success threshold (see below). When the 

Error on a given trial was below the threshold (negative normalized Error), the trial was 

considered as successful, and when it was above the threshold (positive normalized Error), 

the trial was considered as failed. Hence, task success depended on the ability to reduce 

the Error by approximating the TargetForce as quickly and accurately as possible. Importantly, 

participants were told explicitly that both speed and accuracy were taken into account to 

determine task success. In summary, to be successful, participants knew that they had to 

quickly initiate the force and be as accurate as possible in reproducing the TargetForce.  

In different blocks of trials, we manipulated the reinforcement feedback and reward 

provided during training. In Block-S, the reinforcement feedback was non-informative (ma-

genta circle regardless of performance), and participants could only rely on somatosensory 

feedback to perform the task. In Block-SR, the reinforcement feedback consisted in a yellow 

(representing a successful trial) or blue circle (representing a failed trial), providing 

knowledge of performance (Figure 1A). In Block-SRR, this knowledge of performance was 

associated to a monetary reward (+8 cents or 0 cent for Success or Failure, respectively). 

Therefore, contrarily to Block-S, Block-SR and Block-SRR provided knowledge of performance 

and this feedback was associated to a monetary reward in Block-SRR. 

 

2.5.3.4. Experimental procedure  

Subjects’ performance was tested for two consecutive days (Day 1 and Day 2; Figure 
1C). On Day 1, we first measured the individual MVC to calculate the TargetForce. Notably, 

MVC was measured before and after both sessions to assess potential muscle fatigue re-

lated to the training (see 4.4.3). Participants then performed 2 blocks of Familiarization. In a 

first block, participants performed 20 full vision trials; it served to familiarize the subjects with 

the task in a Block-SR setting (Full vision block). Subsequently, all blocks were composed of 

a mixture of full vision trials (10 % of total trials) and partial vision trials (90 % of total trials). 

The second Familiarization block consisted in 20 trials and allowed us to determine baseline 

performance to individualize the difficulty of the task for the rest of the experiment (Calibra-

tion block). For every subject, each partial vision trial of the Calibration block was classified 

in terms of Error from the lowest to the greatest in percentage of MVC. We took the 35th 

percentile of the Error to determine the individual success threshold. Success thresholds 
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were constrained between 2 and 3.5 % of MVC by asking participants to repeat the Calibra-

tion block when the computed threshold was outside these boundaries. Those parameters 

were determined based on pilot data to obtain coherent learning curves among individuals. 

After the Familiarization and Calibration blocks, the first experimental session con-

sisted in 280 trials divided in 8 blocks. All subjects started with a Block-SR of 20 trials to 

evaluate the performance at Pre-training and similarly ended the session with a Post-training 

assessment of 20 trials. In between, 6 Training blocks of 40 trials were performed by the 

participants (Figure 1B). During this Training period, individuals were split into 3 separate 

groups (GroupTYPE: Group-S, Group-SR or Group-SRR) depending on the type of blocks they 

performed during training. As such, Group-S completed Block-S, Group-SR performed Block-

SR and Group-SRR trained under Block-SRR condition. Contrasting performance in the Pre- and 

Post-training blocks allowed us to evaluate learning of the skill under the three training con-

ditions. 24 hours later, subjects performed the task again with the same TargetForce and suc-

cess threshold. After a 20 trials Familiarization used to remind the task to participants, they 

performed 140 trials split in 4 blocks; all were performed in a Block-SR setting. This Re-test 

session allowed us to assess skill maintenance 24h after training. 

 

2.5.4. Data and statistical analyses 

Statistical analyses were carried out with Matlab 2018a (the Mathworks, Natick, Mas-

sachusetts, USA) and Statistica 10 (StatSoft Inc., Tulsa, Oklahoma, USA). Post-hoc com-

parisons were always conducted using the Fisher’s LSD procedure. The significance level 

was set at p ≤ 0.05, except in the case of correction for multiple comparisons (see below). 

 

2.5.4.1. Motor skill learning and maintenance  

  The main aim of the present study was to evaluate the effect of reward on motor skill 

learning and maintenance. To assess skill learning, we expressed the median Error at Post-

training in percentage of the value obtained at Pre-training. To evaluate skill maintenance, 

we expressed the median Error during the Re-test session in percentage of Pre-training. 

First, compared skill learning and maintenance between the groups through one-way ANO-

VAs with the factor GroupTYPE. Then, we also explored the significance of skill learning and 

maintenance within each group by conducting Bonferroni-corrected single sample t-tests on 
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these percentage data against a constant value of 100% (i.e., corresponding to the Pre-

training level).  

 As explained above, task performance depended on both the speed and the accuracy 

of the produced force (Figure 1B). We characterized the effect of reward on these different 

levels of force control, by evaluating separately the speed of force initiation and the accuracy 

of the maintained force. To evaluate the speed of force initiation, we measured the force 

initiation time (ForceInitiation) which was defined as the delay between the appearance of the 

cursor and the moment where the applied force reached 5% of MVC (i.e., corresponding to 

half of the TargetForce). Force accuracy was evaluated in the second half of the trial (i.e., the 

last 1000 ms), through two different parameters. First, we computed the Amplitude Error of 

the force (ForceAmplError), defined as the absolute difference between the mean force exerted 

in the last 1000 ms of the trial and the TargetForce. It reflected how much the amplitude of the 

maintained force differed from the TargetForce. Second, force accuracy was also character-

ized by considering the variability of the maintained force, with high levels of variability caus-

ing increases in the Error. To assess force variability (ForceVariability), we computed the coef-

ficient of variation of the force in the second half of the trial (i.e., standard deviation of 

force/mean force). In summary, to be successful, participants had to quickly initiate the force 

(i.e., low ForceInitiation) and be as accurate as possible (i.e., low ForceAmplError and ForceVaria-

bility).  

 As a control, we verified that the three motor components described above (i.e., For-

ceInitiation, ForceAmplError and ForceVariability) were closely related to the Error, and therefore were 

relevant for task success. To do so, we ran partial linear regressions on the Error data with 

ForceInitiation, ForceAmplError and ForceVariability as predictors to estimate the respective influence 

of each motor component on the Error, while controlling for the effect of the other compo-

nents. Interestingly, we found that ForceAmplError explained the largest part of variance in the 

Error (r = 0.96 ± 0.003; p<0.05 in 90/90 subjects). ForceInitiation also explained a large part of 

variance in the Error (r = 0.81 ± 0.01; p<0.05 in 90/90 subjects), while ForceVariability explained 

a smaller, yet significant in most subjects, part of variance (r = 0.22 ± 0.03; p<0.05 in 68/90 

subjects). Hence, although all motor parameters were relevant for task success, the 

ForceAmplError was the most influential factor. 
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2.5.4.2. Between-trial adjustments in motor commands  

A second goal of the present study was to assess the effect of reward on between-

trial adjustments in motor commands. Specifically, we aimed at evaluating how motor com-

mands were adjusted based on reinforcement and sensory feedback in our three experi-

mental groups.  

To do so, for each trialn we computed the absolute between-trial change (BTC) in 

Error (ErrorBTC; see (Pekny et al., 2015; Uehara et al., 2019) for similar approaches in reach-

ing tasks).  

𝐵𝐵𝐵𝐵𝐵𝐵 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  |𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛 + 1)  −  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑛𝑛) |  

In order to study how much motor commands were adjusted based on previous ex-

perience, we compared adjustments in motor commands following trials of different Error 

magnitudes. To do so, we first subtracted each subject’s individual success threshold to the 

Error data. Hence, normalized Errors below 0 corresponded to successful trials and normal-

ized Errors above 0 corresponded to failed trials. Then, we split the Error data in consecutive 

bins of 1 % of MVC and averaged the corresponding ErrorBTC. This allowed us to compare 

ErrorBTC following trials of similar Errorn across the groups.  

As a first step, to better understand how motor commands were adjusted based on 

the reinforcement feedback, we compared ErrorBTC following bins of Success or Failure trials 

of neighboring Error magnitudes (BinSuccess:  -1% < Errorn < 0% MVC; BinFailure:  0% < Errorn 

< 1% MVC). Fixing the boundaries of BinSuccess and BinFailure allowed us to compare rein-

forcement-related adjustments between the groups while controlling for the magnitude of 

Errorn; an aspect that might directly influence between-trial adjustments. First, we performed 

a two-way ANOVA with the factors Outcome (Success or Failure) and GroupTYPE. We then 

computed reinforcement-based adjustments as the percentage change in ErrorBTC in BinFail-

ure compared to BinSuccess. This index allowed us to determine in a single measure how par-

ticipants from the different groups adjusted their behavior based on the reinforcement ob-

tained in the previous trial.  

Reinforcement-based adjustments in ErrorBTC = 100 x   

These analyses were conducted separately on the Day 1 and Day 2 data. We had to 

exclude 3 and 9 participants for Day 1 and Day 2 analyses, respectively, because they had 

less than 7 trials in at least one of the two bins (remaining subjects on Day 1: Group-S = 29; 
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Group-SR = 28; Group-SRR = 30; Day 2: Group-S = 26; Group-SR = 27; Group-SRR = 28). For the 

remaining participants, an average of 56 ± 3 and 39 ± 2 trials were included for each bin for 

Day 1 and Day 2 analyses, respectively. Reinforcement-based changes in ErrorBTC were 

compared between the groups through one-way ANOVAs with the factor GroupTYPE.  

As a second step, we evaluated how participants adjusted movements when they 

could only rely on the sensory feedback. We compared ErrorBTC following bins of Failure 

trials of different Error magnitudes (BinSmall-Failure:  0% < Errorn < 1% MVC; BinLarge-Failure:  1% 

< Errorn < 2% MVC). In this case, the reinforcement feedback was the same in the two bins 

and the only difference between the trials consisted in the magnitude of the Error experi-

enced at trialn. Again, we first performed a two-way ANOVA with the factors Outcome (Small 

or Large Failure) and GroupTYPE. We then computed sensory-based adjustments as the per-

centage change in ErrorBTC in BinLarge-Failure compared to BinSmall-Failure. This index allowed us 

to determine how participants adjusted their behavior based on the previous somatosensory 

experience, in the absence of any difference in the reinforcement feedback obtained.  

Sensory-based adjustments in ErrorBTC = 100 x ErrorBTC (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹) 
 ErrorBTC (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵−𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

  

This analysis was first run on the Day 1 data. We had to exclude 12 participants 

because they had less than 7 trials in at least one of the two bins (remaining subjects: Group-

S = 27; Group-SR = 28; Group-SRR = 24). For Day 2, applying the same procedure led to the 

exclusion of 29 subjects with a lower number of participants in the Group-SRR (15 subjects). 

For this reason, we ran another analysis where we exceptionally excluded participants only 

if they had less than 5 trials in one bin. This allowed us to keep a reasonable number of 

participants in each group (19 subjects excluded; remaining subjects: Group-S = 24; Group-

SR = 26; Group-SRR = 21). Notably, both analyses (i.e., with 7-trials or 5-trials cutoff) gave 

similar results and we only present the latter in the Results section. For the remaining par-

ticipants, an average of 47 ± 3 and 29 ± 2 trials were included for each bin for Day 1 and 

Day 2 analyses, respectively. Sensory-based changes in ErrorBTC were compared between 

the groups through a one-way ANOVA with the factor GroupTYPE.  

As a last step, we asked whether the effect of reward on between-trial adjustments in 

motor commands concerned all aspects of force control, or only specific motor components. 

To do so, we investigated reinforcement-based and sensory-based adjustments in ForceIniti-

ation, ForceAmplError and ForceVariability, using the same method described above for the average 
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Error. We first performed two-way ANOVAs with the factors Outcome (reinforcement-based 

analysis: Success or Failure sensory-based analysis: Small or Large Failure) and 

GroupTYPE. Then, to assess reinforcement-based adjustments, we contrasted between-trial 

changes in ForceInitiation (ForceInitiation-BTC), ForceAmplError (ForceAmplError-BTC) and in ForceVariability 

(ForceVariability-BTC) following BinSuccess and BinFailure. Sensory-based adjustments were com-

puted by contrasting ForceInitiation-BTC, ForceAmplError-BTC and ForceVariability-BTC following BinSmall-

Failure and BinLarge-Failure. These data were compared between the groups through one-way 

ANOVAs with the factor GroupTYPE. 

 

2.5.4.3. Group features, muscle fatigue and monetary gains 

As a control, we verified that our 3 groups were comparable in terms of age, success 

threshold, TargetForce and Sensitivity to Reward and to Punishment (i.e., as assessed by the 

SPSRQ questionnaire). As displayed in Table 1, one-way ANOVAs on these data did not 

reveal any significant differences between the groups.  

We also assessed muscle fatigue on Day 1 and Day 2 (Derosiere and Perrey, 2012; 

Derosière et al., 2014) by expressing the MVC obtained after each session (MVCPOST) in 

percentage of the MVC measured initially (MVCPRE). The relative change of MVC was not 

different according to the GroupTYPE (Day 1, F(2,87) = 0.51, p = 0.60; Day 2, F(2,87) = 0.60, p = 

0.55; Table 1). As an additional safety check, we wanted to make sure that the decrements 

in MVC caused by the training period of Day 1 could not impair performance. To test this, 

we compared MVCPOST (expressed in % of MVCPRE) with a fixed value of 10% of MVCPRE 

(i.e., corresponding to the TargetForce) through Bonferroni-corrected single sample t-tests. 

This analysis revealed that MVCPOST levels were always significantly above the TargetForce 

(Group-S: t(29) = 35.84, p < 0.001; Group-SR: t(29) = 34.14, p < 0.001 and Group-SRR: t(29) = 

34.44, p < 0.001). Hence, force decrements caused by the training were comparable be-

tween groups and are unlikely to have limited task performance. 

In a final step, we checked that the monetary gains obtained at the end of the exper-

iment were similar between groups. Subjects received a fixed show-up fee corresponding 

to 10 euros/hour of experiment. In addition, participants also gained a monetary bonus. This 

bonus was set at 10 euros for subjects in Group-SR and Group-S while it was variable from 0 

to 20 euros according to the Group-SRR performance (gain of 8 cents per successful trial in 
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Block-SRR). Importantly, this bonus procedure in Block-SRR was determined to match that ob-

tained in the other groups; it corresponded to 10.4 ± 0.67 euros. A t-test revealed that the 

total ending remuneration was similar across the different GroupTYPES (t(29) = 0.57; p = 0.57). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Group features and muscle fatigue in the three experimental groups (mean ± SE). The 2 last columns 

provide the results of one-way ANOVAs’ ran with the factor GroupTYPE.  

 

 
Group-S 
(n=30) 

Group-SR 
(n=30) 

Group-SRR 
(n=30) 

F(2,87) p 

Age (years) 23.9 ± 0.67 23.3 ± 0.50 23.9 ± 0.43 0.34 0.71 

Gender (number of females) 19 19 20 / / 

Success Threshold (% MVC) 2.8 ± 0.01 2.8 ± 0.01 2.9 ± 0.01 0.13 0.88 

TargetForce (Newtons) 5.3 ± 0.30 4.7 ± 0.25 5.1 ± 0.21 1.16 0.31 

Sensitivity to reward (score) 37.1 ± 1.18 35.6 ± 1.11 37.5 ± 1.14 0.79 0.46 

Sensitivity to punishment 

(score) 
42.3 ± 1.59 42.0± 1.59 40.9 ± 1.46 0.22 0.81 

Muscle fatigue – Day 1 

(MVCPOST in % of MVCPRE) 
95.7 ± 2.39 99.0 ± 2.61 98.6 ± 2.57 0.51 0.60 

 Muscle fatigue – Day 2 

(MVCPOST in % of MVCPRE) 
94.6 ± 2.74 93.9 ± 1.52 97.0 ± 1.89 0.60 0.55 
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2.6.  Supplementary materials 

Effect of reinforcement and reward on different levels of force control 

 As a control, we examined performance at the different levels of force control exam-
ined in Figure 4. This analysis revealed that in contrast to the controls, on average, subjects 
of the Group-SRR improved their performance at all three levels of force control (normalized 
Post-training performance below 100%). This result suggests that the beneficial effect of 
reward on motor learning results from a true improvement in the speed-accuracy trade-off 
of movements with motor commands being faster but also more accurate, in line with previ-
ous studies on motor control (Manohar et al., 2015; Codol et al., 2020). 
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Figure S1. Motor components. A) Initiation time. Average initiation time (in ms) is represented 

across practice for the three experimental groups (grey: Group-S, light green: Group-SR, dark green: Group-SRR). 

The grey shaded area highlights the blocks concerned by the reinforcement manipulation. The remaining 

blocks were performed with knowledge of performance only (i.e., in a Block-SR setting). Changes in Initiation 
time associated with Skill learning (B) and maintenance (C) in the three experimental groups. Horizontal 

black lines represent group average. Each dot represents a single subject. D) Amplitude Error. Average 

amplitude error (in % MVC) across training. Changes in Amplitude error associated with Skill learning (E) 
and maintenance (F) in the three experimental groups. Note that one extreme value is not represented in E) 

for clarity purposes (ForceAmplError=778.1%).  G) Variability. Average amplitude error (in % MVC) across train-

ing. Changes in Variability associated with Skill learning (H) and maintenance (I) in the three experimental 

groups. Note that one extreme value is not represented in I) for clarity purposes (ForceVariability=595.6%).   
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3.1. Abstract 

 

Reward can improve motor learning and the consolidation of motor memories. Iden-

tifying the features of reward feedback that are critical for motor learning is a necessary step 

for successful integration into rehabilitation programs. One central feature of reward feed-

back that may affect motor learning is its timing – that is, the delay after which reward is 

delivered following movement execution. In fact, research on associative learning has 

shown that short and long reward delays (e.g., 1 and 6 s following action execution) activate 

preferentially the striatum and the hippocampus, respectively, which both contribute with 

varying degrees to motor learning. Given the distinct functional role of these two areas, we 

hypothesized that reward timing could modulate how people learn and consolidate a new 

motor skill. In sixty healthy participants, we found that delaying reward delivery by a few 

seconds influenced motor learning. Indeed, training with a short reward delay (i.e., 1 s) in-

duced continuous improvement in performance across training, while a long reward delay 

(i.e., 6 s) led to initially high learning rates that were followed by an early plateau in the 

learning curve and a lower performance at the end of training. Moreover, participants who 

successfully learned the skill with a short reward delay displayed overnight consolidation, 

while those who trained with a long reward delay exhibited an impairment in the consolida-

tion of the motor memory. Overall, our data show that reward timing affects motor learning, 

potentially by modulating the engagement of different learning processes, a finding that 

could be exploited in future rehabilitation programs. 
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3.2. Introduction 

 

When delivered following well-executed movements, reward can boost motor learn-

ing (Galea et al., 2015a; Chen et al., 2017; Dhawale et al., 2017; Vassiliadis et al., 2021) 

and the consolidation of motor memories (Abe et al., 2011). This observation has raised 

hope for rehabilitation, where reward is regarded as a promising means to magnify the pos-

itive effects of practice on motor control (Therrien et al., 2016, 2020; Quattrocchi et al., 2017; 

Vassiliadis et al., 2019; Vassiliadis and Derosiere, 2020). Yet, this branch of research is only 

burgeoning, and a current challenge in the field is to identify the features of reward feedback 

that may be critical for motor learning. 

  

Recent studies have started to tackle this issue, showing that the magnitude 

(Vassiliadis et al., 2021), the valence (Galea et al., 2015a) and the stochasticity (Dayan et 

al., 2014a) of reward feedback bear all a decisive impact on motor learning. Another key 

feature of reward feedback that may directly affect motor learning is its timing – that is, the 

delay after which reward is delivered following movement execution. As such, previous stud-

ies have shown that reward prediction error signals, which are key for reward-based learn-

ing, are not only modulated by the value of the reward but also depend on the timing at 

which it is delivered (Fiorillo et al., 2008; Kobayashi and Schultz, 2008; Klein-Flügge et al., 

2011). Moreover, converging lines of evidence from neuroimaging and electroencephalo-

graphic studies indicate that different brain structures exhibit activity changes in response 

to reward feedback depending on its timing. Indeed, in associative learning tasks, short re-

ward delays (e.g., provided 1 s following action execution) activate a fronto-striatal network, 

while long reward delays (e.g., 6 s following execution) evoke changes in the activity of the 

hippocampus primarily (Foerde and Shohamy, 2011; Peterburs et al., 2016). Further, Par-

kinson’s disease and ADHD patients, both known to exhibit striatal dysfunction (Mehler-Wex 

et al., 2006), are impaired in learning action-outcome associations based on short reward 

delays (Foerde and Shohamy, 2011; Foerde et al., 2012; Gabay et al., 2018; Weismüller et 

al., 2018), while amnesic patients with damage to the hippocampus are unable to learn as-

sociations with long reward delays (Foerde et al., 2013). Altogether, these findings indicate 

that the processing of reward preferentially engages striatum- or hippocampus-centred net-

works depending on the timing at which it is delivered. 
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The striatum and the hippocampus show varying contributions during motor learning 

and consolidation (Schendan et al., 2003; Doyon and Benali, 2005; Fernández-Seara et al., 

2009; Krakauer et al., 2019), which are thought to underlie the operation of distinct learning 

processes (Albouy et al., 2008, 2013a). Hence, it is sensible to assume that reward may 

boost different motor learning processes – potentially relying on the striatum or the hippo-

campus – depending on the timing at which it is delivered. Notably, previous studies on 

reward-based motor learning have only exploited short reward delays, impeding one to test 

this hypothesis directly. Here, we tested this idea by evaluating the performance of sixty 

healthy participants in a skill learning task (Vassiliadis et al., 2021), where reward was de-

livered either at a short or at a long delay following movement execution. We found that 

delaying reward delivery by a few seconds influenced the dynamics of learning. Indeed, 

training with a short reward delay induced continuous improvement in performance across 

training, while a long reward delay led to initially high learning rates that were followed by 

an early plateau in the learning curve and a lower endpoint performance. Moreover, partici-

pants who successfully learned the skill with a short reward delay displayed overnight con-

solidation, while those who trained with a long reward delay exhibited an impairment in the 

consolidation of the motor memory. Altogether, the present results provide evidence that 

reward timing can strongly influence motor learning, a finding that could be exploited in fu-

ture rehabilitation protocols. 
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3.3. Results 

 

Sixty healthy participants practiced a pinch-grip force task over two consecutive days. 

Participants were required to hold a pinch grip transducer in their right hand and to squeeze 

it as quickly as possible in order to move a cursor displayed on a computer screen in front 

of them, from an initial position to a fixed target (Figure 1A; (Vassiliadis et al., 2021)). The 

force required to reach the target (TargetForce) corresponded to 10 % of the individual maxi-

mum voluntary contraction (MVC). In most of the trials (90 %), participants practiced the 

task with very limited sensory feedback: the cursor disappeared when the generated force 

reached half of the TargetForce (see STAR Methods for more details on the task). To learn 

the task, subjects were provided with six Training blocks (T1 to T6; 40 trials each; i.e., total 

of 240 training trials; Figure 1B) in which they received reinforcement feedback (i.e., indi-

cating Success or Failure) associated to a monetary reward. Success on the task was de-

termined based on the Error, defined as the absolute force difference between the Target-

Force and the exerted force (Abe et al., 2011; Steel et al., 2016). 

In different groups of participants, we varied the delay between the end of the movement 

period and the delivery of the reward during the Training blocks. As such, GroupShort subjects 

trained with a short reward delay (i.e., 1 s) while participants of the GroupLong performed the 

task with a long reward delay (i.e., 6 s). The total duration of the trials was kept constant by 

modulating the inter-trial interval (ITI; 6 s in GroupShort and 1 s in GroupLong). Before, imme-

diately and 24 hours after training, all participants performed Test blocks with no reward, a 

short reward delay (1 s) and a short ITI (1 s). Notably, the groups were comparable for a 

variety of features including Pre-training success rates, difficulty of the task, force required, 

sensitivity to reward and punishment, fatigue and final monetary gains (Figure 1C, Table 
1). Altogether, this design allowed us to investigate the specific effect of reward timing on 

motor learning and consolidation. 
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Figure 1. Motor skill learning task. A. Time course of a trial in the motor skill learning task. 
Each trial started with the appearance of a sidebar and a target. After a variable preparatory period 
(0.8-1s), a cursor appeared in the sidebar, playing the role of a “Go” signal. At this moment, partici-
pants were required to pinch the force transducer to bring the cursor into the target as quickly as 
possible and maintain it there until the end of the task (2 s). Notably, on most trials, the cursor dis-
appeared halfway towards the target (as displayed here). Then, after a delay, a reward (R) appeared 
consisting in a reinforcement feedback and a monetary reward (a successful trial is shown here). 
Trials ended with an inter-trial interval (ITI). B. Durations in the different block types. Reward 
delays (RD) and ITIs were manipulated. Test blocks included a short reward delay (1 s), a short ITI 
(1 s) and no monetary reward (i.e., only reinforcement). RewardShort and RewardLong blocks included 
monetary rewards and were performed with a short (1 s) and long (6 s) reward delay, respectively. 
The total duration of the trials was kept constant between RewardShort and RewardLong by varying the 
ITI. C. Training procedure. On Day 1, all participants performed two familiarization blocks in a Test 
blocks condition. The first one involved full vision of the cursor while the second one provided only 
partial vision and served to calibrate the difficulty of the task on an individual basis (See STAR Meth-
ods). Then, Pre- and Post-training Test blocks assessments were separated by 6 blocks of training 
in the condition corresponding to each individual group (RewardShort for GroupShort, RewardLong for 
GroupLong). Day 2 consisted in a short re-familiarization (5 trials with full vision, not represented) 
followed by a Re-test assessment (1 Test block). D. Control analyses. GroupShort and GroupLong 
were comparable for a variety of factors including initial performance, task difficulty, required force 
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to reach the target, sensitivity to reward and punishment (as assessed by the SPSRQ questionnaire), 
muscular and cognitive fatigue and final monetary gains (see also Table 1). 

 

Training with long reward delays modifies the dynamics of motor learning 

 

As a first step, we evaluated performance on the task by computing the average suc-

cess rate per TrainingBlock (T1 to T6, Figure S1). To compare the learning process between 

the groups, we performed a Linear Mixed Model (LMM), with TRAININGBLOCK and 

GROUPTYPE (and their interaction) modeled as categorical fixed factors. Overall, participants 

of both groups significantly improved their success rates over training (main effect of TRAIN-

INGBLOCK: F(5, 290) = 4.30; p < 0.001; Figure 2A). Most importantly, the improvement in suc-

cess rate over the blocks depended on the GroupType, as revealed by a significant TRAIN-

INGBLOCK x GROUPTYPE interaction (F(5, 290) = 2.69; p = 0.021; Figure 2A). Interestingly, be-

tween-groups post-hoc comparisons further revealed that endpoint performance (i.e., suc-

cess rate at T6) was significantly lower in GroupLong than in GroupShort (p = 0.045; Figure 
2B). Note though that this significant result would not survive multiple comparisons correc-

tions, and therefore needs to be taken with caution. Conversely, success rates at all other 

TrainingBlocks were comparable between the two groups (all p > 0.22; Figure 2A). This result 

suggests that reward timing influenced the dynamics of learning leading to a poorer endpoint 

performance in GroupLong. 

In order to confirm these results, we ran another LMM on the single-trial Error data 

(Figure 3C, Supplementary Table 1) with the predictors TRAININGTRIAL (continuous) and 

GROUPTYPE (categorical). Focusing on the Error allowed us to evaluate the effect of reward 

timing on motor learning without having to bin the data in any way. This analysis confirmed 

that learning was influenced by the timing at which rewards were provided (Figure 2D; 
TRAININGTRIAL x GROUPTYPE interaction: F(1, 12114) = 9.00; p = 0.0027). This interaction re-

flected the fact that the slope of learning (i.e., a proxy of the learning rate) was steeper in 

GroupShort than in GroupLong (Figure 2D). Importantly, comparison of the intercepts in both 

groups did not show any significant difference (p = 0.60), suggesting that the learning effect 

could not be explained by differences in initial performance. Put together, these two anal-

yses show that training with long reward delays impairs the acquisition of a new motor skill. 
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Figure 2. Effect of reward timing on motor skill learning. A. Learning curves. Proportion of 
successful trials (expressed as a difference with the individual Pre-training success rate) is repre-
sented across practice for the two experimental groups (blue: GroupShort, n=30, orange: GroupLong, n 
= 30). The grey shaded area highlights the blocks concerned by the reward timing manipulation. The 
remaining blocks were Test blocks. B. Endpoint performance. Violin plot showing success rates at 
the end of the training period (i.e., at T6) for each participant (left panel) and the corresponding 
cumulative distributions of the data (right panel). C. Single-trial Error data. Normalized Error data 
obtained during training are averaged across groups and plotted for each single trial. Note that lower 
Errors were associated to better performance. D. Output of LMM on the Error data. Output of LMM 
run on the log-transformed Error data is plotted for each group (left panel). The Error data was log-
transformed prior to respect key assumptions of LMMs (see STAR Methods section). The significant 
TRAININGTRIAL x GROUPTYPE interaction shows that the slope of learning was steeper in GroupShort 
than in GroupLong (right panel). Estimated intercepts were not different between groups (p = 0.60). 
Notably, more negative slopes reflect larger learning rates. *: significant difference (p < 0.05). Data 
are represented as mean ± SE. 

 

An important aspect of our experimental design is that we increased the duration of 

the ITI in GroupShort relative to GroupLong (6 s and 1 s, respectively; Figure 1B), in order to 
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match the total duration of the trials in both groups despite differences in reward timing. To 

evaluate how such manipulation may have impacted learning in our task, we added in the 

analysis another group of participants, who trained with a short reward delay (0.5 s) and an 

intermediate ITI (3 s; GroupShort-PastStudy, n = 30; from (Vassiliadis et al., 2021)). We reasoned 

that, if differences in learning dynamics were truly driven by differences in reward timing but 

not by differences in ITI duration, learning in GroupShort-PastStudy should be similar than in 

GroupShort, and therefore different than in GroupLong. As above, we ran a first LMM on the 

Success data with the factors TRAININGBLOCK and GROUPTYPE. Consistent with our hypoth-

esis, we found a significant TRAININGBLOCK x GROUPTYPE interaction (F(10, 435) = 2.84; p = 

0.0020,) and post-hoc tests showed (1) no significant difference between GroupShort-PastStudy 

and GroupShort, at any TrainingBlock (all p > 0.22) and (2) a marginally significant difference 

in endpoint performance when comparing GroupShort-PastStudy and GroupLong (i.e., p = 0.048 

and 0.052 at T5 and T6, respectively; Figure S2A, B). In order to confirm these effects on 

non-binned, single-trial data, we ran the same LMM on the Error variable (i.e., same analysis 

as in Figure 2D), but with the addition of the data from GroupShort-PastStudy (Figure S2C). 

Again, there was a TRAININGTRIAL x GROUPTYPE interaction (F(2, 18213) = 14.99; p < 0.001), 

that was driven by differences in the slopes of the learning curves between the groups (Fig-
ure S2D). As expected, post-hoc tests showed that the slopes were steeper in GroupShort-

PastStudy than in GroupLong (p < 0.001). However, slopes were also steeper in GroupShort-PastStudy 

than in GroupShort (p = 0.018), suggesting that longer ITIs may also have some detrimental 

effect on the learning rates. Notably, no differences were found when comparing the inter-

cepts (all p > 0.59). The apparent discrepancy between the LMM results obtained for Suc-

cess vs. for Error data possibly arises from the fact that the former analysis was based on 

block-averaged performance, while the latter focused on the learning rates estimated based 

on single-trial data (reflected by the coefficient associated to TRAININGTRIAL in the LMM). 

Notably, the difference in learning rate between GroupShort and GroupShort-PastStudy must be 

taken with caution as in addition to presenting a longer ITI duration, GroupShort also pre-

sented a slightly longer reward delay relative to GroupShort-PastStudy (1 s vs. 0.5 s, respec-

tively), which might also have been detrimental for learning rates. Still, if anything, this anal-

ysis suggests that long ITIs had rather a negative impact on learning. Yet, participants of 

GroupShort exhibited better learning rates than participants of GroupLong, indicating that the 

positive effect of the shorter reward delays overcame the negative impact of the longer ITI 
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in this group. Overall, this analysis suggests that both reward delay and ITI duration influ-

ence motor skill learning but that reward delay plays a more prominent role in shaping learn-

ing. A direct corollary to this is that we may have underestimated the negative impact of long 

reward delays on learning when comparing GroupLong with GroupShort, given that this nega-

tive effect was partially counteracted by the longer ITI duration in the latter group.  

 

To evaluate total learning, we computed success rates at Post-training, which was 

performed in a Test block setting in both groups. Importantly, whereas comparing perfor-

mance at T6 informed us about the effect of our particular training features on learning within 

each training condition, Post-training performance provides information about total learning 

in the task, in identical Test block conditions. Overall, success rates at Post-training in-

creased by 22.8 ± 4.69 % in GroupShort, and 14.5 ± 6.42 % in GroupLong with respect to Pre-

training. Interestingly, success rates at Post-training were significantly different from 0 in 

GroupShort despite Bonferroni correction of the significance threshold (cutoff for significance: 

p = 0.025; t(29) = 4.87, p < 0.001), indicative of a significant improvement in performance with 

respect to Pre-training. In contrast, success rates at Post-training were not significantly dif-

ferent from 0 in GroupLong after Bonferroni correction of the significance threshold (t(29) = 

2.26, p = 0.031). However, a t-test on these data did not show any significant difference 

between the GroupTYPES (t(58) = 1.05; p = 0.30). Hence, reward timing only induced a subtle 

change in total learning that did not reach significance when comparing directly the groups.  

Results of the first analysis showed that training with long reward delays was gener-

ally associated with lower learning rates (Figure 2D), leading to a reduced endpoint perfor-

mance  (Figure 2B). Inspection of the raw data (Figure 2A, 2C) also suggested that the 

learning dynamics could be different between the groups. To evaluate this, we ran three 

additional analyses. First, we asked for each group of participants whether the learning 

curves were best modeled as a linear or non-linear logarithmic function. Interestingly, we 

found that the data from GroupShort were better approximated by a linear function (linear fit: 

Adjusted R2 = 0.25; logarithmic fit: Adjusted R2 = 0.21; Figure 3A), whereas the GroupLong 

learning curve was better modeled with a logarithmic fit (linear fit: Adjusted R2 = 0.063; log-

arithmic fit: Adjusted R2 = 0.18; Figure 3B). This suggests that training with short reward 

delays was associated with generally stable learning rates while training with long reward 

delays was related to fast learning rates early on during practice that was quickly followed 
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by a plateau in performance. Indeed, simple linear regressions on the Success data showed 

that 76.7 % (23/30) of participants of GroupLong exhibited higher learning rates in the early 

than in the late phase of training, while this percentage was 46.7% (14/30) in GroupShort 

(Fisher’s exact test on the proportions: p = 0.033;  Figure S3). To further evaluate how 

learning rates varied across early and late phases of practice, we ran the same LMM on the 

Error data as described above (Figure 2D) with the addition of the factor TRAININGPHASE 

which was modeled as a categorical fixed effect with two modalities (TrainingEarly vs. Train-

ingLate for the first and last 120 trials of training, respectively; Supplementary Table 2). In-

terestingly, we found a triple TRAININGTRIAL x GROUPTYPE x TRAININGPHASE interaction 

(F(1,12110) = 40.62; p < 0.001), demonstrating that learning rates (reflected by the coefficients 

associated with the factor TRAININGTRIAL) varied not only depending on the group but also 

based on the phase of practice. As illustrated on Figure 3C, this interaction was due to the 

fact that at TrainingEarly, the estimated learning rate was significantly higher in GroupLong than 

in GroupShort, whereas it was the opposite at TrainingLate (both p < 0.001). Moreover, learning 

rates were significantly higher at TrainingEarly than at TrainingLate in GroupLong (p < 0.001). In 

GroupShort, there was a trend for the opposite effect (i.e., higher learning rates at TrainingLate 

than at TrainingEarly; p = 0.056). Again, intercepts at TrainingEarly were not significantly differ-

ent (p = 0.36), indicating comparable initial levels of performance in the two groups. Hence, 

this analysis confirms that reward timing impacts learning dynamics. More specifically, train-

ing with short reward delay appears to induce continuous gains in performance during train-

ing, while long reward timings favor non-linear dynamics with larger initial learning rates that 

then drop significantly, indicative of a plateau in learning.  
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Figure 3. Effect of reward timing on the dynamics of learning. A and B. Linear and Non-linear 
fits on Success learning data. The group-averaged single-trial Success data in GroupShort (A, n = 
30) and GroupLong (B, n = 30) were fitted with either a linear or a non-linear logarithmic function. 
Importantly, the best fit (i.e., represented by the solid trace) was linear for GroupShort and logarithmic 
for GroupLong, suggesting that the dynamics of learning were different in both groups. C. Output of 
the LMM on the Error data including the factor TRAININGPHASE. Output of LMM run on the log-
transformed Error data is plotted for each group (left panel). The significant TRAININGTRIAL x 
GROUPTYPE x TRAININGPHASE interaction shows that, in the early phase of practice, the learning 
rates – reflected by the slope of learning – were steeper in GroupLong than in GroupShort (p < 0.001). 
This was the opposite in the late phase of practice (p < 0.001). Notably, there was also a significant 
reduction of the learning rates from TrainingEarly to TrainingLate in GroupLong (p < 0.001; orange star), 
while there was a tendency for an increase in learning rates in GroupShort (p = 0.056). Note that lower 
Errors were associated to better performance and that more negative slopes reflect larger learning 
rates. *: significant difference (p < 0.05). Data are represented as mean ± SE. 

 

Training with long reward delay impairs overnight skill consolidation in learners 

As a last step, we investigated the impact of the reward timing experienced during 

training on Day 1 on overnight consolidation of the skill (i.e., on Day 2). To evaluate consol-

idation, we ran a LMM on the normalized success rates obtained at Post-training of Day 1 

and at Re-test of Day 2 (i.e., both performed in a Test block setting) with TESTBLOCK and 

GROUPTYPE as fixed effects. This analysis did not reveal any main effect of TESTBLOCK (F(1, 

58) = 0.75; p = 0.39) and GROUPTYPE (F(1, 86.14) = 1.18; p = 0.28) nor any TESTBLOCK x 

GROUPTYPE interaction (F(1, 58) = 0.48; p = 0.49). The same results were obtained when 

running the LMM on the single-trial Error data. However, a potential caveat of theses anal-

yses is that they included participants who did not learn the task on Day 1 and even exhibited 

a deterioration of performance with practice. In these participants, a Re-test performance 
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similar to the Pre-training level would be considered as evidence for an offline gain in per-

formance, when it would actually only reflect a return to the baseline level of performance. 

In a second step, we therefore focused on the learners – that is, participants who exhibited 

an improvement of performance with practice on Day 1 (n = 22 and 18 in GroupShort and 

GroupLong, respectively). This allowed us to compare offline consolidation in participants who 

actually responded to the training and who also happened to be very close in terms of Post-

training success rates (Figure 4A), a crucial aspect in order to interpret any overnight 

change in performance. Interestingly, this analysis revealed a TESTPHASE x GROUPTYPE in-

teraction (F(1, 38) = 5.77; p = 0.021). In fact, as mentioned above, performance was strongly 

similar between learners of the two groups at Post-training on Day 1 (p = 0.65), but diverged 

between the groups on Day 2. Indeed, success rates were significantly reduced on Day 2 

relative to Day 1 in GroupLong (p = 0.0021), but remained stable from one day to another in 

GroupShort (p = 0.96, Figure 4B). The difference in performance on Day 2 between the 

groups was only at the trend level (p = 0.096). Notably, this interaction was replicated when 

running the LMM on the single-trial Error data (F(1,2615.9) = 7.25; p = 0.0071). This indicates 

that delaying rewards on Day 1 impaired consolidation of the motor skill on Day 2 in learners. 

Overall, our results support the view that short or long reward delays support qualitatively 

different motor learning processes during training, leading to different consolidation of the 

skill. 

 

 

Figure 4. Effect of reward timing on overnight consolidation of the motor skill. A. Offline con-
solidation of the motor skill. Proportion of successful trials (expressed as a difference with the 
individual Pre-training success rate) at Post-training (Day 1) and Re-test (Day 2). Both assessments 
were Test blocks. This analysis only considered participants who demonstrated skill learning on Day 
1 (n = 22 and 18 in GroupShort and GroupLong, respectively). Notably, a significant TESTPHASE x 
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GROUPTYPE interaction showed that while GroupShort participants performed comparably well in Post-
training and Re-test, demonstrating offline consolidation of the skill, this process was altered in 
GroupLong. B. Offline effect distribution. Violin plot showing the offline effect (Success rate in Day 
2 – Success rate in Post-training) for each participant (left panel) and the corresponding cumulative 
distributions of the data (right panel).  
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3.4. Discussion  

 

Previous studies have shown that reward timing can influence the response of brain 

structures involved in reward processing during associative learning (Fiorillo et al., 2008; 

Kobayashi and Schultz, 2008; Foerde and Shohamy, 2011; Klein-Flügge et al., 2011; 

Foerde et al., 2013). Inspired by these neurophysiological findings, we asked whether re-

ward timing can also influence how people learn and consolidate a new motor skill. We 

found that delaying reward delivery by a few seconds influences motor learning dynamics: 

training with a short reward delay induced continuous gains in performance, while a long 

reward delay allowed high initial learning rates that were followed by an early plateau in the 

learning curve and a lower endpoint performance. Moreover, among participants who suc-

cessfully learned the skill, those who trained with a short reward delay displayed overnight 

consolidation, while those who learned the task with a long reward delay exhibited an im-

pairment in the consolidation of the motor memory. Overall, our findings show that reward 

timing can influence how the brain learns and consolidates new motor skills. 

 

 An important finding of our study is the overall impairment of learning when training 

with long compared to short reward delays, which was reflected by a reduction of global 

learning rates as well as endpoint performance during training. As such, efficient reward-

based motor learning relies on the mapping between somatosensory sensations (e.g., elic-

ited by the generated force in the present task) and the associated reward (Bernardi et al., 

2015; Sidarta et al., 2016; Vassiliadis et al., 2021), and somatosensory working memory is 

known to decay quickly following movement execution, after only a few seconds (Harris et 

al., 2001; Sidarta et al., 2018). Hence, it is possible that delaying reward delivery blunted 

the reinforcement of somatosensory working memory (Sidarta et al., 2018), explaining the 

limited learning observed in the subjects of GroupLong. Another complementary interpretation 

is that reward delays affected the precision of dopaminergic reward prediction errors in the 

striatum (Fiorillo et al., 2008; Kobayashi and Schultz, 2008). In this case, the temporal un-

certainty caused by increased reward delays would alter the association between the move-

ment and the corresponding outcome due to imprecise learning signals in the reward system 

(Fiorillo et al., 2008). Overall, the present data indicate that the temporal contingency be-

tween movements and rewards is a decisive aspect of reward-based motor learning. 



Study 2: Reward timing matters in motor learning 

90 

 

 

 Despite clear effects of reward delay during the training phase, we did not find any 

between-group difference at Post-training (i.e., performed in a Test block setting, with short 

reward delay and ITI). There are several ways to interpret this finding. First, it is possible 

that reward timing has dissociable effects on motor performance and learning (Schmidt and 

Bjork, 1992; Soderstrom and Bjork, 2015). As such, the introduction of reward delays during 

training may generally alter motor performance, but not the learning of the skill, as evaluated 

in the Post-training Test block. A second interpretation is that the reward timing manipulation 

affected the learning process but was not sufficient to evoke lasting behavioral differences. 

This would be in line with previous work on associative learning showing that reward delays 

modulate brain signatures of reward processing in healthy subjects but not behavioral learn-

ing in the Test phase (Foerde and Shohamy, 2011). Yet, the same researchers also found 

robust learning effects when testing populations of patients that presented specific dysfunc-

tions of the striatum or the hippocampus (Foerde and Shohamy, 2011; Foerde et al., 2012, 

2013). A possibility is therefore that our reward delay manipulation was not sufficient to 

modulate behavioral learning in young healthy individuals (potentially due to other compen-

satory learning mechanisms), but may still prove efficient when testing populations of pa-

tients exhibiting specific lesions of the networks involved in reward processing. 

 

The differences in learning dynamics observed in subjects trained with short and long 

reward delays may indicate that reward boosted processes presenting different temporal 

dynamics. As such, a prevalent view in the field is that motor learning entails the operation 

of distinct processes, with either slow (i.e., developing over a few trials) or fast (i.e., devel-

oping over tens/hundreds of trials) temporal dynamics (Smith et al., 2006). The slow process 

is characterized by both a low learning rate and a sluggish forgetting of the acquired behav-

iour and is thought to reflect implicit learning (Trewartha et al., 2014; McDougle et al., 2015). 

In contrast, the fast process entails both a high learning rate and a quick forgetting of the 

new behavior and supports the explicit learning of new motor behaviors (Trewartha et al., 

2014; McDougle et al., 2015). The nature of our task did not allow us to evaluate the rela-

tionship between reward timing and the relative contribution of implicit and explicit learning. 

Still, people who trained with a short reward delay exhibited learning dynamics that pre-

sented a low initial learning rate and a clear overnight consolidation – reminiscent of the 
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slow process, while those who trained with a long reward delay exhibited a high initial learn-

ing rate and an overnight forgetting of the motor memory – evocative of the fast process. 

Based on these results, one may suggest that short reward delays preferentially facilitate 

the slow (putatively more implicit) process, while long reward delays may favour the fast 

(potentially more explicit) learning process, accentuating their respective contribution to sub-

jects’ improvements. Interestingly, the striatum and hippocampus, which are involved in pro-

cessing rewards offered after short and long delays, respectively (Foerde and Shohamy, 

2011; Foerde et al., 2012, 2013), exhibit a pattern of activation during motor learning that is 

consistent with this interpretation. As such, the striatum displays slow, continuous changes 

in activity over the course of motor learning whereas the hippocampus usually exhibits a fast 

increase in activity in the early phase of learning that wanes later on (Schendan et al., 2003; 

Albouy et al., 2008, 2012, 2013a; Rieckmann et al., 2010; Doyon et al., 2018). Notably 

though, this parallel between our behavioral results and previous neurophysiological find-

ings in motor learning needs to be taken with caution as the aforementioned studies mainly 

used motor sequence learning tasks that may engage partially different brain mechanisms 

than our motor skill learning task (Krakauer et al., 2019). Altogether, these elements suggest 

that the different learning dynamics observed in individuals training with short and long re-

ward delays could result from the preferential engagement of distinct brain networks that 

exhibit different activation patterns during motor learning. 

 

The impairment of motor consolidation observed in subjects who trained with a long 

reward delay also suggests that reward timing does not only affect the acquisition of the 

skill, but also the offline processing of the acquired motor memory. The reduction of over-

night consolidation in learners of GroupLong may appear discordant with previous work show-

ing improved episodic memory consolidation after training with long reward delays (Foerde 

and Shohamy, 2011). Notably though, the beneficial effect of long reward delays on episodic 

memory previously reported was not observed in Parkinson’s disease patients nor in their 

age-matched controls (Foerde et al., 2012). Our results may also seem to differ from those 

of former motor learning studies showing consolidation improvements in hippocampal-re-

lated skills (Albouy et al., 2008, 2015). However, an important difference with respect to 

these studies is the nature of our task. As such, the hippocampus is known to be involved 

to various degrees in motor learning depending on the type of skill that is practiced 
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(McDougle et al., 2022), contributing more to learning in settings requiring to build a spatial 

representation of the task (Albouy et al., 2015) or to learn a perceptual component (Rose et 

al., 2011). Hence, while the hippocampus is potentially involved in skill learning tasks involv-

ing the flexible selection of force parameters (i.e., as in the current study; (McDougle et al., 

2022)), its engagement may have been limited as learning did not involve a strong spatial 

or perceptual component. Another complementary interpretation is that rewards delivered 

after a long delay are temporally discounted and perceived as subjectively less valuable 

relative to when the delay is short (Shadmehr et al., 2010a, 2019), reducing their beneficial 

effect on offline consolidation mechanisms (Ambrose et al., 2016; Sterpenich et al., 2021). 

 

Beyond reward timing, another feature that could have altered both the learning dy-

namics and consolidation in the present study is the post-reward delay – i.e., the delay be-

tween reward delivery and the execution of the subsequent movement (referred to as ITI in 

the Results section, above). First, the comparison of GroupShort and GroupShort-Replication sug-

gests that lengthening the post-reward delay had a rather negative impact on the learning 

dynamics, inducing a reduction in learning rates (Figure S2). Despite this detrimental im-

pact, participants of GroupShort (ITI = 6 s) still exhibited better learning rates than participants 

of GroupLong (ITI = 1 s), suggesting that the positive effect of the shorter reward delays over-

came the negative impact of the longer ITI in GroupShort. Overall, this analysis suggests that 

both reward delay and ITI duration influence motor learning but that reward delay plays a 

more prominent role in shaping learning. Second, the presence of resting periods of a few 

seconds during learning was recently shown to induce a rapid form of consolidation during 

motor sequence learning (Bönstrup et al., 2019, 2020; Jacobacci et al., 2020; Buch et al., 

2021). We cannot rule out that the longer ITI experienced by GroupShort could have facilitated 

this form of consolidation. Notably though, this rapid form of consolidation was not correlated 

to overnight consolidation, suggesting different mechanisms for between-trials and be-

tween-days consolidation  (Bönstrup et al., 2019). Hence, we believe it is unlikely that the 

longer ITIs in GroupShort drove the effect of reward timing on overnight consolidation.  

 

In conclusion, our data indicate that the timing at which reward is delivered during 

motor training alters the dynamics of learning and the consolidation of the new motor 
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memory. Research is now required to gain further knowledge as to the brain networks in-

volved in these time-dependent effects of reward on motor learning. Such knowledge would 

prove useful for the design of future reward-based rehabilitation programs, in which reward 

timing may be individualized depending on the brain networks and learning processes af-

fected in specific populations of patients. For instance, short reward delays may be preferred 

during rehabilitation when brain lesions affect the medial temporal lobe (Foerde et al., 2013), 

whereas long reward delays may prove more efficient when patients suffer from dysfunction 

of the striatal network (Foerde and Shohamy, 2011; Foerde et al., 2012; Gabay et al., 2018; 

Weismüller et al., 2018). In addition, our study suggests that short reward delays and short 

ITIs should be generally preferred in motor rehabilitation when the motor deficit is not asso-

ciated to any lesion of the reward circuitry, as occurs after spinal cord injury or lesions of the 

peripheral nervous system.  

 

Methodological considerations and limitations of the study 

Even if initial performance was not significantly different between the groups in any 

analysis, the fact that it was slightly lower in GroupLong may have caused an overestimation 

of early learning rates in this group. In this case, higher early learning rates in GroupLong 

(relative to GroupShort) would reflect a quick recovery from an initial perturbation caused by 

the introduction of long reward delays at T1. The present data do not allow us to rule out 

this interpretation completely. Notably though, while a decrement in initial performance in 

GroupLong may have contributed to bias our estimation of early learning rates, it cannot ex-

plain the between-group differences observed when considering the late phase of training, 

strongly suggestive of an effect of reward timing on learning dynamics. 

 

Relatedly, the nature of our research question required us to employ different timings 

in the Training and in the Test blocks. As such, in RewardShort blocks, reward delay (1 s) was 

identical to the Test blocks but the ITI (6 s) was different. Conversely, in RewardLong blocks, 

ITI duration was identical to the Test blocks (1 s) but the reward delay was different (6 s). 

Therefore, strictly speaking, the overall similarity between the training and the Test blocks 

was identical in both groups. However, our results suggest that changes in reward delay has 

a stronger impact on motor performance than changes in ITIs, implying that performance in 

the Test blocks may be more affected in GroupLong due to the difference in the reward delay 
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experienced during training versus during the Test block. One may hypothesize that this 

could have subsequently altered performance on Day 2, which was reduced in learners of 

GroupLong. Even if we cannot definitely refute or confirm this hypothesis, we believe that it is 

unlikely. First, if this was true, GroupLong should be more disturbed than GroupShort when 

transitioning from the end of the training phase to the Post-training Test block. Importantly 

though, we observed the opposite pattern of results, with a tendency to improve perfor-

mance from training to Post-training. Second, analysis of consolidation showed a reduction 

of performance on Re-test (on Day 2) compared to Post-training in learners of GroupLong, 

with both assessments being Test blocks. Any disturbance of GroupLong subjects due to the 

difference between the reward delay experienced during training and Test blocks should 

have affected similarly both Post-training and Re-test blocks. Overall, characterizing the im-

pact of dynamic changes in reward delay on motor performance represents an interesting 

avenue for future research. 
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3.5. Materials and Methods 

3.5.1. Resources table 

RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Motor learning data ('All_Var_table.mat') This paper https://osf.io/4kqpe/  

Subjects characteristics ('Subjects_characteris-

tics_Timing.xlsx') 

This paper https://osf.io/4kqpe/  

Software and Algorithms 

Matlab vR2007 7.5 and R2018a Mathworks www.mathworks.com/prod-

ucts/matlab.html 

Statistica 10 StatSoft Inc. https://www.statistica.com/en/  

Psychophysics Toolbox Psych-

toolox.org 

http://psychtoolbox.org/ 

 

3.5.2. Participants 

A total of sixty right-handed healthy volunteers participated in the present study (46 

women, 23.7 ± 0.3 years old; mean ± SE). Data from a previous group of thirty participants 

was also re-analyzed (20 women, 23.9 ± 0.43 years old; (Vassiliadis et al., 2021)). Handed-

ness was determined via a shortened version of the Edinburgh Handedness inventory 

(Oldfield, 1971). None of the participants suffered from any neurological or psychiatric dis-

order, nor were they taking any centrally-acting medication. All participants gave their written 

informed consent in accordance with the Ethics Committee of the Université Catholique de 

Louvain (approval number: 2018/22MAI/219) and the principles of the Declaration of Hel-

sinki. Subjects were financially compensated for their participation. Finally, all participants 

were asked to fill out a French adaptation of the Sensitivity to Punishment and Sensitivity to 

Reward Questionnaire (SPSRQ; (Torrubia et al., 2001; Lardi et al., 2008)) and a NASA Task 

Load Index questionnaire (NASA-TLX, (Hart and Staveland, 1988)).  

 

https://osf.io/4kqpe/
https://osf.io/4kqpe/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.statistica.com/en/
http://psychtoolbox.org/
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3.5.3. Methods details 

3.5.3.1. Motor skill learning task 

Participants were seated approximately 60 cm in front of a cathode-ray tube screen 

(refresh rate: 100 Hz) with their right forearm positioned at a right angle on the table. The 

task was developed on Matlab 7.5 (the Mathworks, Natick, Massachusetts, USA) exploiting 

the Psychophysics Toolbox extensions (Brainard, 1997; Pelli, 1997) and consisted in a pre-

viously described force modulation task (Vassiliadis et al., 2021). Briefly, the task required 

participants to squeeze a force transducer (Arsalis, Belgium) between the index and the 

thumb to control a cursor displayed on the screen. Increasing the force exerted resulted in 

the cursor moving vertically and upward. Each trial started with a preparatory period in which 

a sidebar appeared at the bottom of the screen and a target at the top (Figure 1A). After a 

variable time interval (0.8 to 1 s), a cursor popped up in the sidebar, indicating the start of 

the movement period. Participants had to pinch the transducer to move the cursor as quickly 

as possible from the sidebar to the target and maintain it there for the rest of the movement 

period, which lasted 2 s. The level of force required to reach the target (TargetForce) was 

individualized for each participant and set at 10 % of maximum voluntary contraction (MVC). 

Notably, squeezing the transducer before the appearance of the cursor was considered as 

an anticipation and therefore led to the interruption of the trial. Anticipation trials were dis-

carded from further analyses. At the end of each trial, a binary reinforcement feedback was 

presented to the subject (yellow or blue circle for success or failure, respectively).  

 

3.5.3.2. Sensory and reinforcement feedbacks 

We provided only limited visual feedback to the participants in order to increase the 

impact of the reinforcement feedback on learning (Mawase et al., 2017). As such, on 90 % 

of the trials, the cursor disappeared shortly after the start of the movement period: it became 

invisible as soon as the generated force became larger than half of the TargetForce (i.e., 5 % 

of MVC). Conversely, the remaining trials (10 % of the trials) provided a continuous vision 

of the cursor (full vision trials). Full vision trials were not considered in the analyses. 

As mentioned above, each trial ended with the presentation of a binary reinforcement 

feedback, indicating success or failure. Success on the task was determined based on the 

Error, defined as the absolute force difference between the TargetForce and the exerted force 
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(Abe et al., 2011; Steel et al., 2016). The Error was first computed for each frame refresh 

from 0.15 s to the end of the trial (i.e., providing 185 data points at 100 Hz), then averaged 

across the data points for each trial (Steel et al., 2016), and expressed in percentage of 

MVC. This indicator of performance allowed us to classify a trial as successful or not based 

on an individualized success threshold (see below). When the Error on a given trial was 

below the threshold, the trial was classified as successful, and when it was above the thresh-

old, the trial was considered as failed. Hence, task success depended on the ability to ap-

proximate the TargetForce as quickly and as accurately as possible.  

 

3.5.3.3. Reward timing manipulation 

The protocol involved Training and Test blocks (see Experimental protocol, below). 

During Training blocks, reinforcement feedbacks were associated with a reward of 8 cents 

on successful trials, and failed trials led to 0 cent. Importantly, in two block types, we manip-

ulated the timing at which the reinforcement feedback, and therefore the associated reward, 

was delivered after the movement period (Figure 1A). Indeed, the reward was displayed 

after either a short or a long delay – that is, 1 or 6 s following the movement period in Re-

wardShort and RewardLong blocks, respectively (see (Foerde and Shohamy, 2011; Foerde et 

al., 2013) for the use of similar delays in decision-making tasks). In order to keep the total 

duration of the trial constant in these two block types, inter-trial intervals (ITI, which followed 

reward occurrence) were set to 6 and 1 s in the RewardShort and the RewardLong blocks, 

respectively. Finally, we re-analyzed data from a previous study (Vassiliadis et al., 2021), in 

which the training blocks involved a short reward delay timing (0.5 s) and an intermediate 

ITI (3 s; RewardShort-PastStudy blocks). The latter analysis allowed us to test for the reproduci-

bility of the effects of training obtained in the RewardShort block. 

In the Test blocks, reinforcement feedback occurred 1 s after the movement period, 

involved an ITI of 1 s, and was not associated with any reward. 

 

3.5.3.4. Motor skill learning protocol  

Subjects were tested on two consecutive days (Day 1 and Day 2; Figure 1C). On 

Day 1, we first measured the individual MVC to calculate the TargetForce. Notably, MVCs and 

simple reaction times (SRT) were measured before and after the training blocks to assess 
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potential fatigue related to the training (see Data and statistical analyses). Participants then 

performed 2 blocks of Familiarization, in a Test block setting. The first Familiarization block 

comprised 20 full vision trials. Subsequently, all blocks were composed of a mixture of partial 

vision trials (90 % of total trials) and full vision trials (10 % of total trials), as described above. 

The second Familiarization block involved 40 trials and allowed us to determine baseline 

performance to calibrate the difficulty of the task for the rest of the experiment (Calibration 

block; please see (Vassiliadis et al., 2021) for details on the Calibration procedure).  

Following Familiarization, participants performed 320 trials divided in 8 blocks. All 

subjects started and ended the session with the realization of a Test block of 40 trials, allow-

ing us to evaluate initial performance and total learning (i.e., Pre- and Post-training blocks, 

respectively). In between, 6 Training blocks (T1 to T6) of 40 trials were performed by the 

participants (see Figure 1B). During the Training blocks, individuals were split into 2 sepa-

rate groups depending on the type of training blocks they performed. As such, GroupShort 

and GroupLong trained with RewardShort and RewardLong blocks, respectively. The group 

trained with RewardShort-PastStudy blocks was referred to as GroupShort-PastStudy. Comparing per-

formance between the groups during the training period allowed us to test the effect of re-

ward timing on the learning dynamics. 

Day 2 was realized 24 hours later. Subjects performed the task again with the same 

TargetForce and success threshold. This assessment was composed of 5 full vision trials 

followed by a Test block of 40 trials (Re-test) and allowed us to assess the effect of reward 

timing on skill consolidation. 

 

3.5.4. Data and statistical analyses 

Statistical analyses were carried out with Matlab 2018a (the Mathworks, Natick, Mas-

sachusetts, USA) and Statistica 10 (StatSoft Inc., Tulsa, Oklahoma, USA). In the case of 

independent samples t-tests we verified the homogeneity of the variances systematically 

and non-parametric tests were used when variances were non-homogeneous. Linear mixed 

models (LMM) were fitted using the fitlme function in Matlab, with the restricted maximum 

likelihood fitting method. As random effects, we added intercepts for participants. Normality 

of residuals, skewness and homoscedasticity of the data were systematically tested and 

logarithmic transformations were applied when necessary. Significance of fixed effects was 
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tested by conducting ANOVAs on the models’ coefficients (with Satterthwaite approximation 

of the degrees of freedom) with the function anova and post-hoc comparisons were con-

ducted using the coefTest function. The significance level was set at p ≤ 0.05, except in the 

case of correction for multiple comparisons (see below). 

 

3.5.4.1. Motor skill learning  

As a first step, we tested the impact of reward timing on motor performance during 

each block of Test and Training block. We quantified for each subject the percentage of 

successful trials (i.e., the success rate) for each block and then normalized the data accord-

ing to individuals’ initial performance by subtracting the success rate values measured at 

Pre-training from the values obtained in every block. To evaluate the impact of reward timing 

on success rates across training, we performed a LMM with the categorical fixed effects 

GROUPTYPE (GroupShort and GroupLong, n=30 each) and TRAININGBLOCK (T1 to T6). In order 

to confirm these results using single-trial data, we used the Error allowing us to obtain a 

continuous variable at each trial. Notably, for each participant, Errors measured during train-

ing were expressed in percentage of the average Pre-training level. In this case, we ran a 

LMM with the categorical fixed effect GROUPTYPE (GroupShort and GroupLong) and the contin-

uous fixed effect TRAININGTRIAL (trial 1 to 240). When the analysis revealed a significant 

interaction, we then compared the coefficient associated to TRAININGTRIAL to evaluate po-

tential between-group differences in learning rates. Then, to characterize the effect of the 

ITI’s duration on motor learning, we replicated these analyses with the inclusion of the 

GroupShort-PastStudy. 

As a second step, we aimed at evaluating the effect of reward timing on the dynamics 

of the learning process. To do so, we ran the same LMM as described above with the addi-

tion of the fixed effect TRAININGPHASE which was modeled as a categorical fixed effect with 

two modalities (TrainingEarly or TrainingLate for the first and last 120 trials or training, respec-

tively). We were especially interested in a potential triple TRAININGTRIAL x GROUPTYPE x 

TRAININGPHASE interaction which would indicate that learning rates varied not only depend-

ing on the group but also depending on the phase of practice.  
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As a supplementary analysis to support our differences of learning dynamics between 

the groups, we also ran regression analysis for each subject on binned Success rates (pre-

sented in Figure S3). Specifically, we split the data into 24 non-overlapping bins of 10 trials, 

computed the success rate for each bin and normalized the data according to individuals’ 

initial performance, as done in the first analysis. The bins were then separated into two equal 

parts (i.e., of 12 bins each) depending on whether they belonged to the early or to the late 

phase of training (TrainingEarly and TrainingLate phases, corresponding to T1-T3 and T4-T6, 

respectively). Finally, we performed linear regressions on these data and extracted the slope 

of the fits for the TrainingEarly and the TrainingLate phases of the GroupShort and the GroupLong 

(n=30 each). The slope values – exploited here as a proxy of the learning rate – were com-

pared using a two-way ANOVA with GROUPTYPE (GroupShort and GroupLong) and TRAIN-

INGPHASE (TrainingEarly and TrainingLate) as between- and within-subjects factors, respec-

tively. 

Finally, we tested for any effect of reward timing on total learning, by comparing the 

success rates of GroupShort and GroupLong at Post-training, using an independent sample t-

test. Further, in order to test the statistical significance of total learning within each group, 

we conducted two single sample t-tests on Post-training success rate, against a constant 

value of 0 (threshold for significance Bonferroni-corrected at p ≤ 0.025). 

 

3.5.4.2. Motor skill consolidation 
 

 A secondary goal of the study was to evaluate the effect of reward timing on skill 

consolidation. We first performed this analysis on the whole cohort (n = 30 per group). How-

ever, a potential caveat of theses analyses is that they included participants who did not 

learn the task on Day 1 and even exhibited a deterioration of performance with practice on 

Day 1. In these participants, a Re-test performance (i.e., on Day 2) similar to the Pre-training 

level would be considered as evidence for an offline stabilization or even gain in perfor-

mance, when it would actually only reflect a return to the baseline level of performance. In 

a second step, we therefore focused only on participants who demonstrated skill learning 

on Day 1 (SuccessPost-training – SuccessPre-training > 0). This allowed us to compare offline con-

solidation in participants who responded to the training on Day 1 and who also happened to 



Study 2: Reward timing matters in motor learning 

101 

 

have very close Post-training success rates (Figure 4A), a crucial aspect in order to interpret 

any overnight change in performance. 40 participants were considered in this analysis (22 

and 18 in GroupShort and GroupLong, respectively). Pre-training normalized Success rates 

(averaged per block) and Error (single-trial) data were analyzed by means of LMMs with 

GROUPTYPE (GroupShort and GroupLong) and TESTBLOCK (Post-training and Day 2) as cate-

gorical fixed effects. 

3.5.4.3. Group features, initial performance and fatigue  

As a control, we verified that the GroupShort and the GroupLong were comparable in 

terms of age, success threshold, TargetForce, sensitivity to reward and to punishment (i.e., 

as assessed by the SPSRQ questionnaire), initial performance (i.e., at Pre-training) and 

received monetary gains. As displayed in Table 1, independent sample two-tailed t-tests 

performed on these data did not reveal any significant differences between the groups (see 

also Figure 1C).  

We also assessed if potential motor and cognitive fatigue generated by Day 1 training 

was different between the groups (Derosiere and Perrey, 2012; Derosière et al., 2014). To 

do so, we expressed MVCs, and SRTs obtained after training (MVCPOST and SRTPOST) in 

percentage of the values measured initially (MVCPRE and SRTPRE). We also assessed the 

perceived workload after training through the NASA-TLX questionnaire. Notably, these data 

did not differ between the groups (Table 1), suggesting that motor and cognitive fatigue 

were not responsible for the effect of reward timing on motor learning. 

 

                

GroupShort  

(n = 30) 

         

GroupLong 

(n = 30) 

 

t-value 

     

p-value 

Age (in years)  22.8 ± 0.58 23.0 ± 0.52 -0.26 0.80 

Gender (number of females)  22 24 / / 

Success Threshold (% MVC) 2.7  ± 0.01 2.7 ± 0.01 0.18 0.86 

TargetForce (Newtons)  4.74 ± 0.21 4.39 ± 0.17 1.32 0.19 
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Table 1. Group features, initial performance and fatigue in the three experimental groups (mean ± SE). The 2 

last columns provide the results of independent samples t-tests.  

Sensitivity to reward and punishment (score) 82.0 ± 2.32 83.3 ± 2.04 -0.43 0.67 

Pre-training success rate 31.0 ± 2.61 34.9 ± 3.62 -0.86 0.39 

Monetary Gains (euros) 39.0 ± 0.64 38.5 ± 0.73 0.45 0.66 

Muscle fatigue  (MVCPOST in % of MVCPRE)  91.3 ± 2.83 93.7 ± 2.67 -0.62 0.54 

Simple Reaction Time change  

(SRTPOST in % of SRTPRE) 
104.35 ± 2.51 103.21 ± 2.32 0.33 0.74 

Perceived workload (NASA-TLX score) 49.4 ± 2.74 50.89 ± 2.79 -0.39 0.70 



Study 2: Reward timing matters in motor learning 

103 

 

3.6. Supplementary materials 
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Figure S1. Individual learning curves. Success rates are displayed for each block of practice and 

each participant of GroupShort (n = 30; upper panel, blue traces) and GroupLong (n = 30; lower panel, 

orange traces). 
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Figure S2. Effect of reward timing on motor skill learning with the inclusion of GroupPastStudy 

(n = 30). A. Learning curves. Proportion of successful trials (expressed as a difference with the 

individual Pre-training success rate) is represented across practice for the three experimental groups 

(blue: GroupShort; n = 30, orange: GroupLong; n = 30, turquoise: GroupShort-PastStudy; n = 30). The grey 

shaded area highlights the blocks concerned by the reward timing manipulation. The remaining 

blocks were Test blocks. Note the similarity in the learning curves of GroupShort and GroupShort-PastStudy 

despite the difference in ITI. B. Endpoint performance. Average success rates in the end of the 

training period (i.e., measured at T6) in the three groups (left panel) and the corresponding cumula-

tive distributions of the data (right panel). C. Single-trial Error data. Normalized Error data obtained 

during training are averaged for GroupShort-PastStudy and plotted for each single trial. Note that lower 

Errors were associated with better performance. D. Output of LMM on the Error data. Output of 

LMM run on the log-transformed Error data is plotted for each group (left panel). The Error data was 

log-transformed prior to respect key assumptions of LMMs (see STAR Methods section). The signif-

icant TRAININGTRIAL x GROUPTYPE interaction shows that the slope of learning was steeper in 
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GroupShort-PastStudy than in GroupLong (p < 0.001) and also than in GroupShort (p = 0.018; right panel). As 

in the main analysis, estimated intercepts were not different between groups (p = 0.59). Notably, 

more negative slopes reflect larger learning rates. *: significant difference (p < 0.05). Data are rep-

resented as mean ± SE. 
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Figure S3. Additional analysis showing the effect of reward timing on learning rates for early 
and late phases of practice. A. Average fits. Average fits for GroupShort (blue) and GroupLong (or-

ange) obtained through linear regression on each subject’s binned success data (expressed as a 

difference from Pre-Training) at early (corresponding to T1, T2 and T3) and late phases of training 

(corresponding to T4, T5 and T6). Each bin was the average of 10 trials and there were 12 bins per 

TrainingPhase B. Example of individual fits. Binned success rates and the corresponding linear fits 

are represented for an exemplar subject of GroupShort (left) and GroupLong (right). C. Learning rates. 
The slope of the individual fits – expressed as a delta of success rate per bin on the y-axis – was 

exploited as a proxy of the learning rate for early and late phases of training. A two-way ANOVA run 

on these data revealed a strong TRAININGPHASE x GROUPTYPE interaction (F(1, 58) = 9.13; p = 0.0037). 

This interaction was driven by the fact that learning rates were comparable across training phases 

in GroupShort (p = 0.34), while they were significantly lower at TrainingLate than at TrainingEarly in 

GroupLong (p = 0.0016; orange star). Consistently, learning rates were higher in GroupShort than in 

GroupLong at TrainingLate (p = 0.017; black star). This tended to be the opposite at TrainingEarly (p = 

0.061). Notably, intercepts of the linear fits at TrainingEarly were not significantly different between the 

groups (t(58)  = 1.07, p = 0.29). D. Individual learning rates. Scatter plot representing each subject’s 

learning rate for early (x-axis) vs late (y-axis) TrainingPhases. The group distributions of the change in 

learning rates (TrainingEarly – TrainingLate) are also represented (upper right corner of each plot). Note 

the shift in GroupLong below the identity line reflecting the higher learning rates at TrainingEarly than at 

TrainingLate. This shift was also demonstrated by the larger proportion of GroupLong participants (76.7 

% [23/30]) exhibiting higher learning rates in the early than in the late phase of training, compared 
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to GroupShort (46.7% [14/30]; Fisher’s exact test on the proportions: p = 0.033). E. Learning rates 
distributions. Cumulative distributions of the group data for early (left panel) and late (right panel) 

learning phases. *: significant difference (p<0.05). Data are represented as mean ± SE. 

 

Log(Error) ~ 1 + TRAININGTRIAL x GROUPTYPE + (1 | Subject) 
 

AIC = -11099 ; BIC = -11054 
 
Fixed effects Estimate 95% CI Lower 95% CI Upper t-value p-value 
Intercept 1.975 1.942 2.007 120.10 < 0.001 

TRAININGTRIAL -0.0003086 -0.0003653 -0.0002537 -11.01 < 0.001 

GROUPLong -0.01230 -0.05789 0.03329 -0.53 0.60 

TRAININGTRIAL x  GROUPLong 0.0001189 4.124x10-5 0.0001966 3.00 0.0027 

Supplementary Table 1. Output of LMM run on the Error data with the fixed effects TRAININGTRIAL  and GROUPTYPE (see 

also Figure 2D). 

 

Log(Error) ~ 1 + TRAININGTRIAL x GROUPTYPE x TRAININGPHASE + (1 | Subject) 
 
AIC = -11099 ; BIC = -11025 
 
Fixed effects Estimate 95% CI Lower 95% CI Upper t-value p-value 
Intercept 1.967 1.934 2.000 116.44 < 0.001 

TRAININGTRIAL -

0.0001749 

-0.0003300 -0.00001999 -2.21 0.027 

GROUPLong 0.02168 -0.02514 0.06851 0.91 0.36 

TRAININGLate 0.02160 -0.009096 0.05230 1.38 0.17 

TRAININGTRIAL x  GROUPLong -

0.0004730 

-0.0006913 -0.0002548 -4.25 < 0.001 

TRAININGTRIAL x TRAININGLate -

0.0002147 

-0.0004348 5.3346 x10-6 -1.91 0.056 

GROUPLong x TRAININGLate -0.1072 -0.15048 -0.06399 -4.86 < 0.001 

TRAININGTRIAL x  GROUPLong x TRAININGLate 0.001008 0.0006982 0.001318 6.37 < 0.001 

Supplementary Table 2. Output of LMM run on the Error data with the fixed effects TRAININGTRIAL, GROUPTYPE and 

TRAININGPHASE (see also Figure 3C). 
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4.1. Abstract 

 

Reinforcement feedback can improve motor learning, but the underlying brain mech-

anisms remain unexplored. Especially, the causal contribution of specific patterns of oscil-

latory activity within the human striatum is unknown. To address this question, we exploited 

an innovative, non-invasive deep brain stimulation technique called transcranial temporal 

interference stimulation (tTIS) during reinforcement motor learning with concurrent neuroim-

aging, in a randomised, sham-controlled, double-blind study. Striatal tTIS applied at 80Hz, 

but not at 20Hz, abolished the benefits of reinforcement on motor learning. This effect was 

related to a selective modulation of neural activity within the striatum. Moreover, 80Hz, but 

not 20Hz, tTIS increased the neuromodulatory influence of the striatum on frontal areas 

involved in reinforcement motor learning. These results show for the first time that tTIS can 

non-invasively and selectively modulate a striatal mechanism involved in reinforcement 

learning, opening new horizons for the study of causal relationships between deep brain 

structures and human behaviour.  
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4.2. Introduction 

The ability to learn from past outcomes, often referred to as reinforcement learning, 

is fundamental for biological systems (Neftci and Averbeck, 2019). Reinforcement learning 

has been classically studied in the context of decision making, when agents have to decide 

between a discrete number of potential options (Schultz, 2015). Importantly, there is an in-

creasing recognition that reinforcement learning processes are also at play in other contexts 

including when one has to learn a new motor skill (Dhawale et al., 2017; Vassiliadis et al., 

2021). For instance, the addition of reinforcement feedback during motor training can im-

prove motor learning, presumably by boosting the retention of newly acquired motor mem-

ories (Huang et al., 2011; Galea et al., 2015a). Interestingly, reinforcement feedback also 

appears to be relevant for the rehabilitation of patients suffering from motor impairments 

(Therrien et al., 2016; Vassiliadis et al., 2019; Widmer et al., 2021). Yet, despite these prom-

ising results, there is currently a lack of understanding of the brain mechanisms that are 

critical to implement this behaviour.  

A prominent hypothesis in the field is that the striatum, an area that is active both 

during reinforcement (Bartra et al., 2013) and motor learning (Hardwick et al., 2013), may 

be causally involved in the beneficial effects of reinforcement on motor learning. As such, 

the striatum shares dense connexions with dopaminergic structures of the midbrain as well 

as with pre-frontal and motor cortical regions (Haber, 2016), and is therefore well positioned 

to translate information about reinforcement into motor adjustments (Balleine et al., 2007; 

Piray et al., 2017; Hori et al., 2019). This idea is in line with neuroimaging studies showing 

reward-related activation of the striatum during motor learning (Wachter et al., 2009; Widmer 

et al., 2016). More specifically, within the striatum, oscillatory activity in specific frequency 

bands is suggested to be involved in aspects of reinforcement processing. As such, previous 
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rodent studies have shown that striatal high gamma oscillations (~ 80 Hz) are sensitive to 

reward and dopamine and are highly coherent with the frontal cortex, suggesting that they 

may be involved in reinforcement learning (Berke, 2009; van der Meer and Redish, 2009; 

van der Meer et al., 2010; Matsumoto et al., 2012; Dwiel et al., 2019). In particular, dynamic 

changes of high gamma activity in the striatum (Berke, 2009; Cohen et al., 2009; Kalenscher 

et al., 2010) and in other parts of the basal ganglia (Herrojo-Ruiz et al., 2014; Sepe-Forrest 

et al., 2021) seem to encode the outcome of previous movements (i.e., success or failure). 

Hence, this body of work suggests that the fine-tuning of striatal oscillatory activity, espe-

cially in the gamma range, may be crucial for reinforcement learning of motor skills. Con-

versely, striatal beta oscillations (~20 Hz) have been largely associated with sensorimotor 

functions (Jenkinson and Brown, 2011). For instance, beta oscillations in the striatum are 

exacerbated in Parkinson’s disease and associated to the severity of motor symptoms 

(Brown, 2007; McCarthy et al., 2011; Kondabolu et al., 2016). Taken together, these ele-

ments suggest that striatal high gamma and beta activity may have different functional roles 

preferentially associated to reinforcement learning and sensorimotor functions, respectively. 

The studies mentioned above provide associative evidence linking the presence of 

reinforcement with changes of neural activity within the striatum determined through neu-

roimaging  (Wachter et al., 2009; Widmer et al., 2016), but do not allow to draw conclusions 

regarding its causal role in reinforcement motor learning in humans. The only causal evi-

dence available to date comes from animal work showing modulation of reinforcement-

based decision-making with striatal stimulation (Nakamura and Hikosaka, 2006; Williams 

and Eskandar, 2006). A reason for the current absence of investigations of the causal role 

of the striatum in human behaviour is related to its deep localization in the brain. As such, 

current non-invasive brain stimulation techniques, such as transcranial magnetic stimulation 
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(TMS) or classical transcranial electric stimulation (tES), do not allow to selectively target 

deep brain regions, because these techniques exhibit a steep depth-focality trade-off (Deng 

et al., 2013). Studies of patients with lesions of the striatum (Schmidt et al., 2008; Nickchen 

et al., 2017) or invasive deep brain stimulation of connected nuclei (Seymour et al., 2016; 

Atkinson-Clement et al., 2019) have provided insights into the role of the basal ganglia in 

reinforcement learning. However, their conclusions are partially limited by the fact that the 

studied patients also have altered network properties resulting from neurodegeneration, le-

sions or respective compensatory mechanisms and therefore do not allow to conclude com-

prehensively regarding the role of the striatum in the physiological state. Here, we address 

these challenges by exploiting transcranial electric Temporal Interference Stimulation (tTIS), 

a new non-invasive brain stimulation approach allowing to target deep brain regions in a 

frequency-specific and focal manner (Grossman et al., 2017; Song et al., 2021). 

The concept of tTIS was initially proposed and validated on the hippocampus of ro-

dents (Grossman et al., 2017) and was then further tested through computational modelling 

(Rampersad et al., 2019; Cao et al., 2020; Mirzakhalili et al., 2020; Esmaeilpour et al., 2021; 

von Conta et al., 2021). tTIS requires two pairs of electrodes to be placed on the head, each 

pair delivering a high frequency alternating current in phase opposition. One key element is 

that this frequency has to be high enough (i.e., in the kHz range) to avoid direct neuronal 

entrainment, based on the low filtering properties of neuronal membranes (Hutcheon and 

Yarom, 2000). The second key element consists in applying a small difference of frequency 

between the two alternating currents. The superposition of the electric fields creates an en-

velope oscillating at this low-frequency difference, which in turn is in a range able to influ-

ence neuronal activity. By optimizing the electrodes’ placement and current intensity ratio 

across stimulation channels, it is possible to steer the maximal amplitude of the envelope 
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towards individual deep brain structures, whilst minimizing it in the surrounding and/or over-

lying areas (Acerbo et al., 2022). Another possibility offered by tTIS is to stimulate at a par-

ticular frequency of interest in order to preferentially interact with specific neuronal pro-

cesses (Grossman et al., 2017; Song et al., 2021). Importantly, despite these exciting op-

portunities, current evidence for tTIS-related neuromodulation of deep brain structures, such 

as the striatum, is lacking in humans.  

Here, we combine tTIS with electric field modelling for target localisation, behavioural 

data and functional magnetic resonance imaging (fMRI) to evaluate the causal role of spe-

cific striatal oscillations in reinforcement learning of motor skills. In particular, based on the 

studies mentioned above, we hypothesised that striatal tTIS at high gamma frequency 

(tTIS80Hz) would disturb the fine-tuning of high gamma oscillatory activity in the striatum and 

thereby would perturb reinforcement motor learning in contrast to beta (tTIS20Hz) or sham 

(tTISSham) stimulation. In line with our prediction, we found that tTIS80Hz disrupted motor 

learning compared to the controls, but only in the presence of reinforcement. These behav-

ioural effects were associated to a specific modulation of BOLD activity in the putamen and 

caudate, supporting the ability of tTIS to selectively modulate striatal activity without affecting 

overlying cortical areas. Moreover, we found that tTIS80Hz increased the neuromodulatory 

influence of the striatum on frontal cortical areas involved in reinforcement motor learning. 

Finally, we report that inter-individual variability in the neural effects of tTIS80Hz can partially 

be explained by impulsivity levels, suggesting that responsiveness to tTIS80Hz may depend 

on individual traits associated to reward processing. Overall, the present study shows for 

the first time that tTIS can non-invasively and selectively modulate a striatal mechanism 

involved in reinforcement learning. tTIS opens new horizons for the study of causal relation-

ships between deep brain structures and human behaviour, and offers novel opportunities 
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for the treatment of neuro-psychiatric disorders associated to pathophysiological alterations 

of deep brain structures. 

 



Study 3: Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills 

118 

 

4.3. Results 

 

24 healthy participants (15 women, 25.3 ± 0.1 years old; mean ± SE) performed a 

force tracking task in the MRI with concurrent tTIS of the striatum. The task required partic-

ipants to modulate the force applied on a hand grip force sensor in order to track a moving 

target with a cursor with the right, dominant hand (Figure 1A, Abe et al., 2011). At each 

block, participants had to learn a new pattern of motion of the target (Figure S1; see Meth-

ods). In ReinfON blocks, participants were provided with online reinforcement feedback dur-

ing training, giving them real-time information about success or failure throughout the trial, 

indicated as a green or red target, respectively. The reinforcement feedback was delivered 

according to a closed-loop schedule, considering previous performance to update the suc-

cess criterion for each sample (Therrien et al., 2016). In ReinfOFF blocks, participants prac-

ticed with a visually matched random feedback (cyan/magenta). Importantly, in both types 

of blocks, training was performed with intermittent visual feedback of the cursor, a condition 

known to maximise the effect of reinforcement on motor learning (Izawa and Shadmehr, 

2011; Mawase et al., 2017; Vassiliadis et al., 2021, 2022). Before and after training, partici-

pants performed Pre- and Post-training assessments with full visual feedback, no reinforce-

ment and no tTIS, allowing us to evaluate motor learning. To evaluate the effect of tTIS on 

reinforcement-related benefits in motor learning and the associated neural changes, partic-

ipants performed 6 blocks of trials in the MRI, with concurrent tTIS during training, delivered 

with a Δf of 20 Hz (tTIS20Hz), 80 Hz (tTIS80Hz) or as a sham (tTISSham; 3 tTISTYPE x 2 ReinfTYPE 

conditions; Figure 1B, 1C, see Methods for more details on the stimulation protocol).  

 

Computational modelling of tTIS fields using realistic head models 
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To determine the best electrode montage to stimulate the human striatum (putamen 

caudate and nucleus accumbens [NAc]), computational modelling with realistic head models 

was conducted with Sim4Life (Iacono et al., 2015, see Methods for more details). Based on 

these simulations, the montage that exhibited the best exposure performance in the bilateral 

striatum was selected (F3-F4; TP7-TP8). Consistently, this montage generated a temporal 

interference electric field that was ~30-40% stronger in the striatum than in the overlying 

cortex, reaching magnitudes of 0.5 to 0.6 V/m (Figure 1D, 1E), which are compatible with 

entrainment of neuronal activity (Krause et al., 2019, 2022; Johnson et al., 2020). 

 

Figure 1. Striatal tTIS during reinforcement learning of motor skills in the MRI. A) Motor learn-
ing task. Participants were required to squeeze a hand grip force sensor (depicted in the upper right 
corner of the figure) in order to track a moving target (larger circle with a cross in the center) with a 
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cursor (black smaller circle; (Abe et al., 2011; Steel et al., 2016)). Pre- and Post-training assess-
ments were performed with full visual feedback of the cursor and no reinforcement. In ReinfON and 
ReinfOFF trials, participants practiced the task with or without reinforcement feedback, respectively. 
As such, in ReinfON trials, the color of the target varied in real-time as a function of the subjects’ 
tracking performance. B) Experimental procedure. Participants performed the task in the MRI with 
concomitant TI stimulation. Blocks of training were composed of 36 trials (4 Pre-, 24 Training and 8 
Post-training trials) interspersed with short resting periods (represented as + on the figure). The 6 
training types resulted from the combination of 3 tTISTYPES and 2 ReinfTYPES. C) Concept of Tem-
poral Interference stimulation. On the left, two pairs of electrodes are shown on a head model and 
currents are applied with a frequency f1 and f1+Δf. On the right, the interference of the two electric 
fields within the brain is plotted for two different locations with respectively high and low envelope 
modulation. tTIS was delivered either with a Δf of 20 or 80 Hz or as a sham (ramp-up and ramp-
down of high frequency currents with flat envelope). D) Electric field modelling with the striatal 
montage. Temporal interference electric field magnitude. E) Temporal interference electric field 
magnitude averaged in the striatum and in the overlying cortex. Magnitude of the field in the 
cortex was extracted from the areas underneath the stimulation electrodes (F3-F4 and TP7-TP8).  

 

tTIS80Hz disrupts reinforcement-related benefits in motor learning. 

Performance on the task was evaluated by means of the Error, which corresponded 

to the absolute difference between the applied and target force averaged across samples 

for each trial, as done previously ((Abe et al., 2011; Vassiliadis et al., 2021, 2022); Figure 

2A). Across conditions, the Post-training Error was reduced compared to the Pre-training 

Error (single sample t-test on the normalised Post-training data: t(24) = -2.69; p = 0.013; Co-

hen’s d = -0.55), indicating significant motor learning during the task (Figure 2B). Such im-

provement was greater when participants had trained with reinforcement (ReinfTYPE effect in 

the Linear Mixed Model (LMM): F(1, 1062.2) = 5.17; p = 0.023; d = -0.14 for the contrast ReinfON 

– ReinfOFF), confirming the beneficial effect of reinforcement on motor learning (Galea et al., 

2015a; Mawase et al., 2017). Crucially though, this effect depended on the type of stimula-

tion applied during the training (ReinfTYPE x tTISTYPE interaction: F(2, 1063.5) = 2.11; p = 0.034; 

Figure 2C). While reinforcement significantly improved learning when training was per-

formed with tTISSham (p = 0.036; d = -0.22) and tTIS20Hz (p = 0.0089; d = -0.27), this was not 
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the case with tTIS80Hz (p = 0.43; d = 0.083). Consistently, direct between-condition compar-

isons showed that in the ReinfON condition learning was reduced with tTIS80Hz compared to 

tTIS20Hz (p = 0.039; d = 0.26) and tTISSham (p < 0.001; d = 0.45), but was not different between 

tTIS20Hz and tTISSham (p = 0.15; d = 0.20). This disruption of motor learning with tTIS80Hz was 

not observed in the absence of reinforcement (tTIS80Hz vs. tTIS20Hz: p = 0.59; d = -0.10, 

tTIS80Hz vs. tTISSham: p = 0.34; d = 0.15). These results strongly point to the fact that high 

gamma striatal tTIS specifically disrupts the benefits of reinforcement on motor learning and 

not motor learning in general.  

Although training with tTIS20Hz did not alter the benefits of reinforcement on motor 

learning, we found that learning without reinforcement was significantly impaired in this con-

dition (tTIS20Hz vs. tTISSham: p = 0.046; d = 0.25, Figure 2C). This suggests that tTIS20Hz may 

disrupt a qualitatively different mechanism involved in learning from sensory feedback 

(Areshenkoff et al., 2022), in line with the role of striatal beta oscillations in sensorimotor 

function (Jenkinson and Brown, 2011). 

As a next step, we evaluated the effect of tTIS on motor performance during training 

itself. As shown in Figure 2A, the Error was generally higher during Training than in Test 

trials due to the presence of visual uncertainty during this phase (see also Methods). The 

extent of this disruption was reduced in the presence of reinforcement (ReinfTYPE: F(1, 3262.4) 

= 339.89; p < 0.001; d = -0.64 for the contrast ReinfON – ReinfOFF), demonstrating the ability 

of subjects to exploit real-time reinforcement information to improve tracking (Figure 2D). 

Notably, this effect was not modulated by tTISTYPE (ReinfTYPE x tTISTYPE: F(2, 3265.8) = 0.91; p 

= 0.40), indicating that tTIS did not directly influence reinforcement gains during tracking. 

Interestingly though, striatal stimulation did impact on general tracking performance inde-

pendently of reinforcement as indicated by a significant tTISTYPE effect (tTISTYPE: F(2, 3262.4) = 
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42.85; p < 0.001). This effect was due to an increase in the Error when tTIS20Hz was applied 

(p < 0.001; d = 0.28 when compared to tTISSham), which was even stronger during tTIS80Hz 

(p < 0.001; d = 0.38 and p = 0.031; d = 0.11 when compared to tTISSham and tTIS20Hz, re-

spectively). These results suggest that striatal tTIS altered motor performance in a fre-

quency-dependent manner, but did not influence the ability to rapidly adjust motor com-

mands based on reinforcement feedback during training. Hence, tTIS80Hz may not disrupt 

real-time processing of reinforcement feedback, but may rather impair the beneficial effect 

of reinforcements on the retention of motor memories (Huang et al., 2011; Galea et al., 

2015a).  

In line with our hypothesis, the data suggest that striatal tTIS80Hz disrupts a striatal 

mechanism involved in reinforcement learning of motor skills. Notably, this effect could not 

be explained by potential differences in initial performance between conditions (ReinfTYPE x 

tTISTYPE: F(2, 519.99) = 1.08; p = 0.34), nor by changes in the flashing properties of the rein-

forcement feedback (i.e., the frequency of color change during tracking; ReinfTYPE x tTISTYPE: 

F(2, 3283) = 0.19; p = 0.82), or by differences in success rate in the ReinfON blocks (i.e., the 

proportion of success feedback during tracking; tTISTYPE: F(2, 1702) = 0.17; p = 0.84; see Sup-

plementary materials for more details on these analyses).   

Finally, these results can also not be a consequence of an inefficient blinding. As 

such, when debriefing after the experiment, only 6/24 participants were able to successfully 

identify the order of the stimulation applied (e.g., real – real – placebo; chance level: 4/24; 

Fisher exact test on proportions: p = 0.74). Consistently, the magnitude (Figure S2A) and 

type (Figure S2B) of tTIS-evoked sensations evaluated before the experiment were quali-

tatively similar across conditions and tTIS was generally well tolerated in all participants (no 
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adverse events reported). This suggests that blinding was successful and is unlikely to ex-

plain our findings. More generally, this is a first indication that tTIS evokes very limited sen-

sations (e.g., only 2/24 and 1/24 subjects rated sensations evoked at 2 mA as “strong” for 

tTIS20Hz and tTIS80Hz, respectively; Figure S2A) that are compatible with efficient blinding.  

 

 

Figure 2. Behavioural results. A) Motor performance across training. Raw Error data 
(expressed in % of Maximum Voluntary Contraction [MVC]) are presented on the left panel for the 
different experimental conditions in bins of 4 trials. The increase in Error during Training is related to 
the visual uncertainty (i.e., intermittent disappearance of the cursor) that was applied to enhance 
reinforcement effects. On the right, the three plots represent the Pre-training normalised Error in the 
tTISSham, tTIS20Hz and tTIS80Hz blocks. Reinforcement-related benefits represent the improvement in 
the Error measured in the ReinfON and ReinfOFF blocks, during Training (reflecting benefits in motor 
performance) or at Post-training (reflecting benefits in learning). B) Averaged learning across con-
ditions. Violin plot showing the Error distribution at Post-training (expressed in % of Pre-training) 
averaged across conditions, as well as individual subject data. A single-sample t-test showed that 
the Post-training Error was reduced compared to the Pre-training level, indicating significant learning 
in the task. C) Motor learning. Averaged Error at Post-training (normalised to Pre-training) and the 
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corresponding individual data points in the different experimental conditions are shown on the left 
and right panels, respectively. Reduction of Error at Post-training reflects true improvement at track-
ing the target in Test conditions (in the absence of reinforcement, visual uncertainty or tTIS). The 
LMM ran on these data revealed a specific effect of tTIS80Hz on reinforcement-related benefits in 
learning. D) Motor performance. Averaged Error during Training (normalised to Pre-training) and 
the corresponding individual data points in the different experimental conditions are shown on the 
left and right panels, respectively. Individual data points are shown on the right panel. Error change 
during Training reflect the joint contribution of the experimental manipulations (visual uncertainty, 
potential reinforcement and tTIS) on motor performance. The LMM ran on these data showed a 
frequency-dependent effect of tTIS on motor performance, irrespective of reinforcement. *: p < 0.05. 
Data are represented as mean ± SE. 

 

The effect of tTIS80Hz on reinforcement motor learning is related to modulation of 

neural activity in the striatum 

As mentioned above, task-based fMRI was acquired during Training with concomitant 

tTIS. This allowed us to evaluate the neural effects of tTIS and their potential relationship to 

the behavioural effects reported above. As a first qualitative evaluation of the data, we per-

formed a whole-brain analysis in the tTISSham condition to assess the network activated dur-

ing reinforcement motor learning (ReinfON condition). Consistent with previous neuroimaging 

studies employing similar tasks (Floyer-Lea and Matthews, 2004, 2005), we found prominent 

BOLD activations in a motor network including the putamen, thalamus, cerebellum and sen-

sorimotor cortex, particularly on the left hemisphere, contralateral to the trained hand (Fig-

ure S3, Table S2). Notably though, contrasting ReinfON and ReinfOFF conditions did not re-

veal any significant cluster at the whole-brain level.  

As a second step, we evaluated the effect of tTIS on striatal activity, as a function of 

the type of reinforcement feedback and focusing on the very same regions of interest (ROI) 

that were used to optimise tTIS exposure in the modelling (see above). Based on this, we 

extracted averaged BOLD activity within the bilateral putamen, caudate and NAc based on 

the Brainnetome atlas (BNA, (Jiang, 2013)), in the different experimental conditions and 
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considered these six striatal ROIs (ROISTR) as fixed effects in the LMM. This model revealed 

a strong enhancement of striatal activity with ReinfON with respect to ReinfOFF (F(1, 800.01) = 

13.23; p < 0.001; d = 0.25 for the contrast ReinfON – ReinfOFF) consistent with previous liter-

ature (Bartra et al., 2013), but no tTISTYPE effect (F(2, 800.01) = 0.46; p = 0.63) and no interaction 

effect (all p > 0.65; Figure 3A). Despite the absence of effects of tTIS on averaged striatal 

activity, we then asked whether the behavioural effects of tTIS80Hz on reinforcement motor 

learning (i.e., tTIS80Hz vs. tTIS20Hz and tTISSham with ReinfON) could be linked to modulation of 

activity in core brain regions. To do so, we ran a whole-brain analysis focusing on the main 

behavioural effects mentioned above. Results revealed that the effect of tTIS80Hz (with re-

spect to tTIS20Hz) on motor learning in the ReinfON condition was specifically related to mod-

ulation of activity in two clusters encompassing the left putamen and bilateral caudate (Fig-

ure 3B, Table S3; uncorrected voxel-wise FWE: p=0.001, and corrected cluster-based FDR: 

p = 0.05). No significant clusters were found for the tTIS80Hz – tTISSham contrast, neither for 

the control tTIS20Hz - tTISSham contrast. Overall, these results provide evidence that the det-

rimental effect of tTIS80Hz on reinforcement learning of motor skills is related to a specific 

modulation of oscillatory activity in the striatum, supporting the idea that high gamma striatal 

oscillations are causally involved in reinforcement learning. More generally, this analysis 

shows for the first time that tTIS stimulation can indeed modulate the activity of deep brain 

regions in humans in a frequency-dependent and behaviourally-relevant way. 
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Figure 3. Striatal activity. A) Striatal BOLD responses. A 3D-reconstruction of the striatal 
masks used in the current experiment is surrounded by plots showing averaged BOLD activity for 
each mask in the different experimental conditions. A LMM ran on these data showed higher striatal 
responses in the ReinfON with respect to the ReinfOFF condition, but no effect of tTISTYPE and no inter-
action. B) Whole-brain activity associated to the behavioural effect of tTIS80Hz on reinforce-
ment motor learning. Correlation between tTIS-related modulation of striatal activity (tTIS80Hz – 
tTIS20Hz) and learning abilities in the ReinfON condition. Significant clusters of activity were found in 
the left putamen and bilateral caudate (uncorrected voxel-wise FWE: p=0.001, and corrected cluster-
based FDR: p = 0.05). Lower panel shows individual correlations for the three significant regions 
highlighted in the whole-brain analysis. *: p < 0.05. Data are represented as mean ± SE. 

 

 



Study 3: Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills 

127 

 

tTIS80Hz enhances effective connectivity between the striatum and frontal cortex.  

Interactions between the striatum and frontal cortex are crucial for a variety of behav-

iours including motor and reinforcement learning (Haber, 2016). In particular, reinforcement 

motor learning requires to use information about task success to guide future motor com-

mands (Vassiliadis et al., 2021), a process for which the striatum may play an integrative 

role at the interface between fronto-striatal loops involved in reward processing and motor 

control (Graybiel and Grafton, 2015; Haber, 2016). In a subsequent analysis, we asked 

whether striatal tTIS modulates striatum to frontal cortex communication during reinforce-

ment motor learning. More specifically, we computed effective connectivity (using the gen-

eralized psychophysiological interactions method; (McLaren et al., 2012)) between striatal 

and frontal regions classically associated with motor and reward-related functions, and 

thought to be involved in reinforcement motor learning (Sidarta et al., 2016; Codol et al., 

2020). For the motor network, we evaluated effective connectivity between motor parts of 

the striatum (i.e., dorso-lateral putamen (dlPu) and dorsal caudate (dCa)) and two regions 

strongly implicated in motor learning: the medial part of the supplementary motor area (SMA) 

and the part of the primary motor cortex (M1) associated to upper limb functions as defined 

in the BNA atlas (Figure 4A; (Hardwick et al., 2013)). For the reward network, we assessed 

connectivity between parts of the striatum classically associated to limbic functions (i.e., the 

NAc and the ventro-medial putamen (vmPu) and two frontal areas involved in reward pro-

cessing: the anterior cingulate cortex (ACC) and the ventro-medial prefrontal cortex 

(vmPFC; Figure 4B; Bartra et al., 2013). The LMM ran with the fixed effects ReinfTYPE, tTIS-

TYPE and NetworkTYPE showed a significant effect of tTISTYPE (F(2, 2264.0) = 5.42; p = 0.0045), 

that was due to higher connectivity in the tTIS80Hz condition with respect to tTISSham (p = 
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0.0038; d = 0.16) and tTIS20Hz (at the trend level, p = 0.069; d = 0.11). There was no differ-

ence in connectivity between tTIS20Hz and tTISSham (p = 0.58; d = 0.051). Hence, tTIS80Hz, 

but not tTIS20Hz, enhanced effective connectivity between the striatum and frontal cortex dur-

ing motor training.  

The LMM did not reveal any effect of ReinfTYPE (F(1, 2264.0) = 0.010; p = 0.92), Network-

TYPE (F(1, 2264.0) = 3.16; p = 0.076) and no double interaction (note the trend for a ReinfTYPE x 

NetworkTYPE effect though: F(1, 2264.0) = 3.52; p = 0.061). Yet, we did find a significant Rein-

fTYPE x tTISTYPE x NetworkTYPE interaction (F(2, 2264.0) = 4.87; p = 0.0078). Such triple interac-

tion was related to the fact that tTIS80Hz increased connectivity in the ReinfON condition in the 

motor network (ReinfON vs. ReinfOFF: p = 0.0012; d = 0.33; Figure 4A), while it tended to have 

the opposite effect in the reward network (p = 0.063; d = -0.19; Figure 4B). This increase 

was not present in any of the two networks when either tTISSham or tTIS20Hz were applied (all 

p > 0.40). Moreover, in the motor network, connectivity in the ReinfON condition was higher 

with tTIS80Hz than with tTISSham (p < 0.001; d = 0.42) and tTIS20Hz (at the trend level; p = 

0.059; d = 0.23, Figure 4A). These data suggest that tTIS80Hz enhanced the neuromodulatory 

influence of the striatum on motor cortex during task performance, but only in the presence 

of reinforcement. In the reward network, post-hocs revealed that connectivity in the ReinfOFF 

condition was significantly higher with tTIS80Hz compared to tTIS20Hz (p = 0.045; d = 0.25; 

Figure 4B), in line with the general effect of tTISTYPE on connectivity reported above. This 

pattern of results suggests that the increase of connectivity from striatum to frontal cortex 

observed with tTIS80Hz depends on the presence of reinforcement, in particular in the motor 

network. Such reinforcement-dependent increase of connectivity may reflect the preferential 

entrainment of striatal gamma oscillations with tTIS80Hz (Krause et al., 2019) in a situation 
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where these oscillations are already boosted by the presence of reinforcement ((Berke, 

2009); see Discussion). 

Notably, contrary to the BOLD results presented above, we did not find any correla-

tions between the effects of tTIS80Hz on connectivity and motor learning, neither in the motor  

(robust linear regression: tTIS80Hz – tTISSham: R2 = 0.019; p = 0.48; tTIS80Hz – tTIS20Hz: R2 = 

0.034; p = 0.54) nor in the reward (tTIS80Hz – tTISSham: R2 = 0.037; p = 0.46; tTIS80Hz – 

tTIS20Hz: R2 < 0.001; p = 0.75) network, suggesting some degree of independence between 

the effect of tTIS80Hz on reinforcement motor learning and on effective connectivity.  

As a control, we verified that the effects of tTISTYPE on connectivity could not be ob-

served in a control network associated to language (as defined by Shirer et al. 2012), which 

was unlikely to be involved in the present task and did not include the striatum (see Meth-

ods). As expected, effective connectivity within the language network was not modulated by 

ReinfTYPE (F(1, 547) = 0.81; p = 0.37), nor by tTISTYPE (F(2, 547) = 0.58; p = 0.56), or by ReinfTYPE 

x tTISTYPE (F(2, 547) = 0.45; p = 0.64).  

Overall, these results highlight the ability of tTIS80Hz, but not tTIS20Hz, to modulate 

striatum to frontal cortex connectivity. Moreover, they suggest that a potential mechanism 

of action of tTIS80Hz is the induction of a state of hyper-connectivity between striatum and 

motor cortex that may be detrimental for reinforcement motor learning.  
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Figure 4. Striatum to frontal cortex effective connectivity. A) Motor network. On the left, 
3D reconstruction of the masks used for the motor network (i.e., dorso-lateral putamen, dorsal cau-
date, M1, SMA). On the right, plot showing effective connectivity from motor striatum to motor cortex 
in the different experimental conditions. Note the increase of connectivity with tTIS80Hz in the pres-
ence of reinforcement. B) Reward network. On the left, 3D reconstruction of the masks used for the 
reward network (i.e., ventro-medial putamen, NAc, vmPFC, ACC). On the right, plot showing effec-
tive connectivity from motor striatum to motor cortex in the different experimental conditions. *: p < 
0.05. Data are represented as mean ± SE. 

 

Neural effects of tTIS80Hz depend on impulsivity 

Hyper-connectivity in fronto-striatal circuits has been described as a pathophysiolog-

ical mechanism in multiple neuro-psychiatric disorders involving impulsivity (e.g., (Ma et al., 

2016; Wang et al., 2016; Hampton et al., 2017; Mosley et al., 2019)). Thus, in a subsequent 

exploratory analysis, we asked if increased striatum to motor cortex connectivity with 

tTIS80Hz was similarly associated to individual levels of impulsivity, as evaluated by a well-

established independent delay-discounting questionnaire performed at the beginning of the 

experiment (Kirby et al., 1999; Mitchell et al., 2005). As a first step, we asked if striatum to 

motor cortex connectivity was related to impulsivity during reinforcement motor learning in 

the absence of stimulation (i.e., in the tTISSham condition). Indeed, we found a significant 

positive relationship between impulsivity and striatum to motor cortex connectivity (robust 

linear regression: R2 = 0.10; p = 0.0038), in line with previous results (Ma et al., 2016; Wang 

et al., 2016; Hampton et al., 2017; Mosley et al., 2019). Then, we evaluated whether the 
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increase of connectivity observed with tTIS80Hz in the ReinfON condition (Figure 4A) could be 

related to impulsivity. Indeed, we found that the effect of tTIS80Hz on connectivity was nega-

tively correlated to impulsivity both when contrasting tTIS80Hz with tTISSham (R2 = 0.19; p = 

0.043, Figure 5A, left) and with tTIS20Hz (R2 = 0.28; p = 0.021, Figure 5A, middle): partici-

pants with the largest increase in connectivity with tTIS80Hz in the ReinfON condition were also 

the least impulsive ones. Such correlation was absent when contrasting tTIS20Hz and 

tTISSham (R2 = 0.0031; p = 0.31, Figure 5A, right), but also when considering the same 

contrasts in the reward instead of the motor network (p = 0.93 and p = 0.86 for the tTIS80Hz-

tTISSham and tTIS80Hz-tTIS20Hz contrasts, respectively). Hence, striatum to motor cortex ef-

fective connectivity during the task was positively correlated to impulsivity, but the change 

in connectivity induced by tTIS80Hz was rather negatively associated with impulsivity. This 

may be due to a ceiling effect in the most impulsive participants: exhibiting initially high levels 

of connectivity may leave less room for further modulation by tTIS80Hz. This result suggests 

that inter-individual variability in impulsivity might influence neural responses to striatal 

tTIS80Hz.  

To further evaluate this idea, we ran the same analysis on the BOLD data presented 

above. More specifically, we asked if inter-individual variability in the neural effects of 

tTIS80Hz during reinforcement motor learning (i.e., in the ReinfON condition) was related to 

impulsivity at the whole-brain level. Strikingly, this analysis revealed that impulsivity was 

associated to the effect of tTIS80Hz (with respect to tTIS20Hz) specifically in the left caudate 

nucleus (Figure 5B, Table S4; uncorrected voxel-wise FWE: p=0.001, and corrected clus-

ter-based FDR: p = 0.05). No other clusters were found. As such, the most impulsive partic-

ipants exhibited an increase of left caudate activity with tTIS80Hz (compared to tTIS20Hz) while 

the least impulsive ones rather presented a decrease of BOLD signal, consistent with the 
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idea that impulsivity modulates the neuronal responsiveness to tTIS (R2 = 0.47; p < 0.001; 

Figure 5C). No significant clusters of correlation were found for the tTIS80Hz – tTISSham con-

trast, neither for the control tTIS20Hz - tTISSham contrast. Hence, this analysis suggests that 

the effect of tTIS80Hz on caudate activity depends on participants’ impulsivity.  

 As a last step, we verified if impulsivity was also predictive of the behavioural effects 

of tTIS80Hz on reinforcement motor learning. We did not find any significant correlation be-

tween impulsivity and the effect of tTIS80Hz on motor learning (tTIS80Hz – tTISSham: R2 = 0.098; 

p = 0.17; tTIS80Hz – tTIS20Hz: R2 = 0.11; p = 0.21). Hence, impulsivity was associated to the 

neural, but not the behavioural effects of tTIS80Hz.  

 

 

Figure 5. Relationship between impulsivity and the neural effects of tTIS80Hz. A) Corre-
lations between impulsivity and tTIS-related modulation of effective connectivity. Impulsivity 
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was associated to the neural effects of tTIS80Hz both when contrasting to tTISSham (left) and tTIS20Hz 

(middle), but was not correlated to the effect of tTIS20Hz (right). B) Whole-brain correlation between 
the neural effects of tTIS80Hz (with respect to tTIS20Hz) and impulsivity. Correlation between tTIS-
related modulation of striatal activity (tTIS80Hz – tTIS20Hz) during reinforcement motor learning (Rein-
fON) and individual impulsivity levels. A single significant cluster of correlation was found in left cau-
date (uncorrected voxel-wise FWE: p=0.001, and corrected cluster-based FDR: p = 0.05). C) Cor-
relation between left caudate activity and impulsivity. A positive correlation was found showing 
that participants with higher levels of impulsivity exhibited stronger activation of the left caudate in 
the tTIS80Hz (with respect to tTIS20Hz). 
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4.4. Discussion  

 

In this study, we combined striatal tTIS with electric field modelling, behavioural and 

fMRI analyses to evaluate the causal role of the striatum in reinforcement learning of motor 

skills in healthy humans. tTIS80Hz, but not tTIS20Hz, disrupted the ability to learn from rein-

forcement feedback. This behavioural effect was associated to modulation of neural activity 

specifically in the striatum. As a second step, we show that tTIS80Hz, but not tTIS20Hz, in-

creased the neuromodulatory influence of the striatum on connected frontal cortical areas 

involved in reinforcement motor learning.  Finally, inter-individual variability in the neural 

effects of tTIS80Hz could be partially explained by impulsivity, suggesting that this trait may 

constitute a determinant of responsiveness to high gamma striatal tTIS. Overall, the present 

study shows for the first time that striatal tTIS can non-invasively modulate a striatal mech-

anism involved in reinforcement learning, opening new horizons for the study of causal re-

lationships between deep brain structures and human behaviour. 

 

In this work we investigated the causal role of the human striatum in reinforcement 

learning of motor skills in healthy humans; a question that cannot be addressed with con-

ventional non-invasive brain stimulation techniques. In particular, by stimulating at different 

frequencies, we aimed at dissociating striatal mechanisms involved in reinforcement and 

sensorimotor learning. In line with our main hypothesis, we found that striatal tTIS80Hz altered 

reinforcement learning of a motor skill. Such disruption was frequency- and reinforcement-

specific: learning was not altered with striatal tTIS20Hz in the presence of reinforcement, or 

when striatal tTIS80Hz was delivered in the absence of reinforcement. The rationale to stim-

ulate at high gamma frequency was based on animal work showing reinforcement-related 
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modulation of gamma oscillations in the striatum (Berke, 2009; van der Meer and Redish, 

2009; Kalenscher et al., 2010; van der Meer et al., 2010; Donnelly et al., 2014; Catanese et 

al., 2016) and in the frontal cortex (Rothé et al., 2011; Catanese et al., 2016; Del Arco et al., 

2017; Yoshimoto et al., 2022). Hence, a potential explanation of the present result is that 

striatal tTIS80Hz interfered with the natural high gamma oscillations in the striatum 

(Esmaeilpour et al., 2021) and thereby reduced the ability of participants to learn from rein-

forcement information. In contrast, we found that striatal tTIS20Hz reduced learning, but only 

in the absence of reinforcement, consistent with the literature linking striatal beta oscillations 

to sensorimotor functions (Courtemanche et al., 2003; Costa et al., 2006; Brown, 2007; 

Jenkinson and Brown, 2011; Kondabolu et al., 2016). Hence, these elements suggest that 

different oscillations within the striatum support qualitatively different motor learning mech-

anisms with beta activity contributing mostly to sensory-based learning and high gamma 

activity being particularly important for reinforcement learning. More generally, these results 

add to the growing body of evidence showing that sensory- and reinforcement-based motor 

learning rely on partially different neural mechanisms (Sidarta et al., 2016; Therrien et al., 

2016; Mathis et al., 2017; Uehara et al., 2018; Vassiliadis et al., 2019; Areshenkoff et al., 

2022).  

 

Interestingly, striatal tTIS (especially tTIS80Hz) also impaired tracking performance 

during training, irrespective of the presence of reinforcement. This frequency-dependent re-

duction of motor performance may be due to altered neuronal processing in the sensorimo-

tor striatum that may lead to less fine-tuned motor control abilities (Brücke et al., 2012). 

Importantly though, tTIS did not modulate the ability of participants to benefit from real-time 
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reinforcement feedback during motor performance. This suggests that striatal tTIS80Hz al-

tered the beneficial effects of reinforcement on learning (as evaluated in Test conditions at 

Post-training), but not on motor performance (as evaluated during Training). Such dissocia-

tion between the effects of striatal tTIS80Hz on reinforcement-related gains in motor perfor-

mance and learning may be explained by the fact that these two phases of the protocol 

probe different processes (Soderstrom and Bjork, 2015; Vassiliadis et al., 2022). While im-

provement of motor performance with reinforcement feedback relies on rapid adjustments 

of motor variability based on recent outcomes (Dhawale et al., 2019), reinforcement gains 

in learning (i.e., probed in Test conditions without reinforcement) may rather reflect the ben-

eficial effect of performance feedback on the retention of motor memories (Abe et al., 2011; 

Galea et al., 2015a). Hence, a potential explanation for the present results is that striatal 

tTIS80Hz did not disrupt real-time processing of reinforcement feedback, but may rather alter 

the strengthening of the memory trace based on reinforcements (Huang et al., 2011; Galea 

et al., 2015a). Overall, these results are consistent with the view that specific patterns of 

oscillatory activity in the striatum are causally involved in motor control and learning pro-

cesses (Kondabolu et al., 2016), and can be modulated with electrical stimulation (Krause 

et al., 2019; Johnson et al., 2020; Beliaeva et al., 2021).  

 

To better understand the neural effects and frequency-specificity of tTIS, we coupled 

striatal tTIS and task performance with simultaneous fMRI acquisition. The imaging results 

support the view that the effect of tTIS80Hz on reinforcement learning of motor skills was 

indeed related to neuromodulation of the striatum. As such, when considering averaged 

BOLD activity, we found a general increase of striatal activity when reinforcement was pro-

vided (Bartra et al., 2013), but no effect of tTIS. Crucially though, the detrimental effect of 
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tTIS80Hz on reinforcement learning was related to a specific modulation of activity in the cau-

date and putamen, providing evidence that the present behavioural effects were indeed 

driven by focal neuromodulation of the striatum (Figure 3). Interestingly, participants with 

stronger disruption of reinforcement learning at the behavioural level were also the ones 

exhibiting stronger suppression of striatal activity with tTIS80Hz (compared to tTIS20Hz), sug-

gesting that tTIS-induced reduction of striatal activity is detrimental for reinforcement motor 

learning. Further analyses showed that tTIS80Hz, but not tTIS20Hz, increased the neuromod-

ulatory influence of the striatum on frontal areas known to be important for motor learning 

and reinforcement processing (Krakauer et al., 2019; Averbeck and O’Doherty, 2022). Inter-

estingly, this effect depended on the type of network considered (reward vs. motor) and on 

the presence of reinforcement. Striatal tTIS80Hz coupled with reinforcement increased con-

nectivity between the motor striatum and the motor cortex while it tended to have the oppo-

site effect when considering the connectivity between limbic parts of the striatum and pre-

frontal areas involved in reward processing (Figure 4). This result may reflect the differential 

influence of striatal tTIS on distinct subparts of the striatum, depending on their pattern of 

activity during the task (Wessel et al., 2021). As such, a recent study in non-human primates 

showed that tACS can have opposite effects on neuronal activity based on the initial entrain-

ment of neurons to the target frequency (Krause et al., 2019). Hence, the present differential 

effects of tTIS80Hz on motor and reward striato-frontal pathways may be due to different initial 

patterns of activity in these networks in the presence of reinforcement. Electrophysiological 

recordings with higher temporal resolution than fMRI are required to confirm or refute this 

hypothesis. Overall, the present neuroimaging results support the idea that the behavioural 

effects of striatal tTIS80Hz on reinforcement learning are associated to a selective modulation 

of striatal activity that influence striato-frontal communication. 
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Interestingly, the state of increased connectivity observed with striatal tTIS80Hz, in par-

ticular in the motor network and in the presence of reinforcement, parallels previous findings 

showing hyper-connectivity in fronto-striatal networks in neuro-psychiatric disorders associ-

ated to impulsivity (Ma et al., 2016; Wang et al., 2016; Hampton et al., 2017; Mosley et al., 

2019). Consistently, in a subsequent exploratory analysis, we found that individual impul-

sivity levels of the participants were positively associated to striatum to motor cortex con-

nectivity in the absence of stimulation. Most importantly, we found that impulsivity was also 

predictive of the effect of tTIS80Hz (but not tTIS20Hz) on connectivity with the subjects with 

lower impulsivity exhibiting stronger increases of connectivity with tTIS80Hz. Strikingly, impul-

sivity was also associated to tTIS80Hz-related BOLD changes specifically in the left caudate. 

This link between impulsivity and neural responsiveness to tTIS is in line with the idea that 

impulsivity is associated to differences in striatal gamma oscillatory activity (Donnelly et al., 

2014), which may determine the neural effects of striatal tTIS (Esmaeilpour et al., 2021). 

Hence, impulsivity could constitute a behavioural factor allowing to determine responsive-

ness to striatal tTIS80Hz. Conversely, an interesting avenue for future research could aim at 

determining whether impulsivity can be modulated by striatal tTIS80Hz. 

 

Striatal tTIS had dissociable effects on motor learning depending on the frequency of 

stimulation and the presence of reinforcement. Such frequency- and state-dependent effects 

of non-invasive brain stimulation have been also shown at the cortical level with transcranial 

alternating current stimulation (tACS; e.g., (Ozen et al., 2010; Krause et al., 2019, 2022; 

Johnson et al., 2020; Beliaeva et al., 2021)). In particular, tACS studies on non-human pri-

mates have shown that oscillating electric fields act by entraining particular populations of 
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neurons to specific frequencies (Krause et al., 2019; Johnson et al., 2020) and that such 

neuromodulatory influence depends on the initial activity of these neurons (Ozen et al., 

2010; Polanía et al., 2018; Krause et al., 2022). Similarly, responsiveness of a particular 

region to tTIS may depend on intrinsic properties of neurons (Esmaeilpour et al., 2021) and 

their pattern of activity during the task (Wessel et al., 2021). Taken together, these elements 

suggest that focality of tTIS depends not only on the distribution of the low-frequency electric 

field in the brain due to modelling-based electrode arrangement, but also on the stimulation 

frequency and the concurrent engagement of the target region in a particular task.  

 

The present results also add experimental support to the idea that the effects of tTIS 

are related to amplitude modulation of electric fields deep in the brain and not to the high 

frequency fields themselves, in line with recent animal work (Grossman et al., 2017; Song 

et al., 2021). As such, the different behavioural and neural effects of striatal tTIS80Hz and 

tTIS20Hz despite comparable carrier frequencies (centered on 2kHz) indicate that temporal 

interference was indeed the driving force of the present effects. Moreover, disruption of re-

inforcement motor learning with tTIS80Hz (relative to tTIS20Hz) was specifically related to neu-

romodulation of the striatum, where the amplitude of the tTIS field was highest according to 

our simulations and in line with previous experiments in cadavers (Acerbo et al., 2022; 

Violante et al., 2022). Hence, we believe that the frequency- and state-dependent tTIS ef-

fects reported here cannot be explained by direct modulation of neural activity by the high 

frequency fields. Yet, disentangling the neural effects of the low-frequency envelope and the 

high frequency component appears as an important next step to better characterise the 

mechanisms underlying tTIS (Mirzakhalili et al., 2020). 
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The present findings show for the first time the ability of non-invasive striatal transcra-

nial temporal interference stimulation to interfere with reinforcement learning in humans 

through a selective modulation of striatal activity. Such deep brain stimulation was well tol-

erated and compatible with efficient blinding, suggesting that tTIS provides the exciting op-

tion to circumvent the steep depth-focality trade-off of current non-invasive brain stimulation 

approaches in a safe and effective way. Overall, tTIS opens new possibilities for the study 

of causal brain-behaviour relationships and for the treatment of neuro-psychiatric disorders 

associated to alterations of deep brain structures.   
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4.5. Methods 

4.5.1. Participants  

 

A total of 24 right-handed healthy volunteers participated in the present study (15 

women, 25.3 ± 0.1 years old; mean ± SE). Handedness was determined via a shortened 

version of the Edinburgh Handedness inventory ((Oldfield, 1971); laterality index = 89.3 ± 

2.14%). None of the participants suffered from any neurological or psychiatric disorder, nor 

taking any centrally-acting medication (see Supplementary Materials for a complete list of 

exclusion criteria). All participants gave their written informed consent in accordance with 

the Declaration of Helsinki and the Cantonal Ethics Committee Vaud, Switzerland (project 

number 2020-00127). Finally, all participants were asked to fill out a delay-discounting mon-

etary choice questionnaire (Kaplan et al., 2016), which evaluates the propensity of subjects 

to choose smaller sooner rewards over larger later rewards, a preference commonly asso-

ciated to choice impulsivity (Kirby et al., 1999; Mitchell and Potenza, 2014). 

 

4.5.2.  Experimental procedures 

 

The study employed a randomised, double-blind, sham-controlled design. Following 

screening and inclusion, participants were invited to a single experimental session including 

performance of a motor learning task with concurrent transcranial electric Temporal Inter-

ference stimulation (tTIS) of the striatum and functional magnetic resonance imaging (fMRI). 

Overall, participants practiced 6 blocks of trials, that resulted from the combination of two 

reinforcement feedback conditions (ReinfTYPE: ReinfON or ReinfOFF) with three types of striatal 

stimulation (tTISTYPE: tTISSham, tTIS20Hz or tTIS80Hz). 
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4.5.2.1. Motor learning task 

 

4.5.2.1.1.  General aspects 

 

Participants practiced an adaptation of a widely used force-tracking motor task (Abe 

et al., 2011, Steel et al., 2016) with a fMRI-compatible fiber optic grip force sensor (Current 

designs, Inc., Philadelphia, PA, USA) positioned in their right hand. The task was developed 

on Matlab 2018 (the Mathworks, Natick, Massachusetts, USA) exploiting the Psychophysics 

Toolbox extensions (Brainard, 1997; Pelli, 1997) and was displayed on a computer screen 

with a refresh rate of 60 Hz. The task required participants to squeeze the force sensor to 

control a cursor displayed on the screen. Increasing the exerted force resulted in the cursor 

moving vertically and upward in a linear way. Each trial started with a preparatory period in 

which a sidebar appeared at the bottom of the screen (Figure 1A). After a variable time 

interval (0.9 to 1.1 s), a cursor (black circle) popped up in the sidebar and simultaneously a 

target (grey larger circle with a cross in the middle) appeared, indicating the start of the 

movement period. Subjects were asked to modulate the force applied on the transducer to 

keep the cursor as close as possible to the center of the target. The target moved in a se-

quential way along a single vertical axis for 7 s. The maximum force required (i.e., the force 

required to reach the target when it was in the most upper part of the screen; MaxTargetForce) 

was set at 4% of maximum voluntary contraction (MVC) evaluated in the beginning of the 

experiment. This low force level was chosen based on pilot experiments to limit muscular 

fatigue. Finally, each trial ended with a blank screen displayed for 2 s before the beginning 

of the next trial.  



Study 3: Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills 

143 

 

 

4.5.2.1.2.  Trial types and reinforcement manipulation 

  

During the experiment, participants were exposed to different types of trials (Figure 

1A, Supplementary Video). In Test trials, the cursor remained on the screen and the target 

was consistently displayed in grey for the whole duration of the trial. These trials served to 

evaluate Pre- and Post-training performance for each block. In ReinfON and ReinfOFF trials 

(used during Training only), we provided only limited visual feedback to the participants in 

order to increase the impact of reinforcement on learning (Izawa and Shadmehr, 2011; 

Mawase et al., 2017; Vassiliadis et al., 2021, 2022). As such, the cursor was only intermit-

tently displayed during the trial: it was always displayed in the first second of the trial, and 

then disappeared for a total of 4.5 s randomly split on the remaining time by bits of 0.5 s. 

The cursor was therefore displayed 35.7% of the time during these trials (2.5 s over the 7 s 

trial). Importantly, contrary to the cursor, the target always remained on the screen for the 

whole trial and participants were instructed to continue to track the target even when the 

cursor was away.  

In addition to this visual manipulation, in ReinfON trials, participants also trained with 

reinforcement feedback indicating success or failure of the tracking in real time. As such, 

participants were informed that, during these trials, the color of the target would vary as a 

function of their performance: the target was displayed in green when tracking was consid-

ered as successful and in red when it was considered as failure. Online success on the task 

was determined based on the Error, defined as the absolute force difference between the 

force required to be in the center of the target and the exerted force (Abe et al., 2011; Steel 

et al., 2016; Vassiliadis et al., 2021, 2022). The Error, expressed in percentage of MVC, was 
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computed for each frame refresh and allowed to classify a sample as successful or not 

based on a closed-loop reinforcement schedule (Therrien et al., 2016). More specifically, for 

each training trial, a force sample was considered as successful if the Error was below the 

median Error over the 4 previous trials at this specific sample. Put differently, to be success-

ful, participants had to constantly beat their previous performance. This closed-loop rein-

forcement schedule allowed us to deliver consistent reinforcement feedback across individ-

uals and conditions, while maximizing uncertainty on the presence of reinforcement, an as-

pect that is crucial for efficient reinforcement motor learning (Dayan et al., 2014a). Notably, 

in addition to this closed-loop design, samples were also considered as successful if the 

cursor was very close to the center of the target (i.e., within one radius around the center, 

corresponding to an Error below 0.2% of MVC). This was done to prevent any conflict be-

tween visual information (provided by the position of the cursor relative to the target) and 

reinforcement feedback (provided by the color of the target), which could occur in situations 

of extremely good performance (when the closed-loop Error cut-off was below 0.2% of 

MVC).  

As a control, ReinfOFF trials were similar to ReinfON trials with the only difference that 

the displayed colors were either cyan or magenta, and were generated randomly. Partici-

pants were explicitly told that, in this condition, colors were displayed randomly and could 

be ignored. The visual properties of the target in the ReinfOFF condition were designed to 

match the ReinfON condition in terms of relative luminance (cyan: RGB = [127.5 242.1 255] 

matched to green: [127.5 255 127.5] and magenta: [211.7 127.5 255] to red: [255 127.5 

127.5]) and average frequency of change in colors (i.e., the average number of changes in 

colors divided by the total duration of a trial, see Supplementary materials).  
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4.5.2.1.3. Motor learning protocol 

 

After receiving standardised instructions about the force-tracking task, participants 

practiced 5 blocks of familiarization (total of 75 trials) without tTIS. The first block of familiar-

ization included 20 trials with the target moving in a regular fashion (0.5 Hz sinuoid). Then, 

in a second block of familiarization, participants performed 35 trials of practice with an irreg-

ular pattern, with the same properties as the training patterns (see below). Finally, we intro-

duced the reinforcement manipulation and let participants perform 2 short blocks (8 trials 

each) including ReinfON and ReinfOFF trials. These four first blocks of familiarization were 

performed outside the MRI environment. A last familiarization block (4 trials) was performed 

after installation in the scanner, to allow participants to get used to performing the task in 

the MRI. This long familiarization allowed participants to get acquainted with the use of the 

force sensor, before the beginning of the experiment. 

During the main part of the experiment, participants performed 6 blocks of trials in the 

MRI with concurrent striatal tTIS (Figure 1B). Each block was composed of 4 Pre-training 

trials followed by 24 Training and 8 Post-training trials. Pre- and Post-training trials were 

performed in Test conditions, without tTIS and were used to evaluate motor learning. Train-

ing trials were performed with or without reinforcement feedback and with concomitant stri-

atal tTIS and were used as a proxy of motor performance. During Training, trials were inter-

spersed with 25 s resting periods every 4 trials (i.e., used for fMRI contrasts, see below). 

The order of the 6 experimental conditions was pseudo-randomised across participants: the 

6 blocks were divided into 3 pairs of blocks with the same tTIS condition and each pair was 

then composed of one ReinfON and one ReinfOFF block. Within this structure, the order of the 

TITYPE and ReinfTYPE conditions were evenly balanced among the 24 participants.  
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 As mentioned above, the protocol involved multiple evaluations of motor learning 

within the same experimental session. In order to limit carry-over effects from one block to 

the following, each experimental block was associated to a different pattern of movement of 

the target (Figure S1). Put differently, in each block, participants had to generate a new 

pattern of force to successfully track the target. To balance the patterns’ difficulty, they all 

consisted in the summation of 5 sinusoids of variable frequency (range: 0.1-1.5 Hz) that 

presented the following properties: a) Average force comprised between 45 and 55% of the 

MaxTargetForce; b) Absolute average derivative of the MaxTargetForce comprised between 54 

and 66 % / s; c) Number of peaks = 14 (defined as an absolute change of force of at least 

1% of MaxTargetForce). These parameters were determined based on pilot experiments to 

obtain a relevant level of difficulty for young healthy adults and consistent learning across 

the different patterns.  

 

4.5.2.2. Transcranial Electric Temporal Interference Stimulation (tTIS) applied 

to the striatum 

 

4.5.2.2.1. General concept 

 

Transcranial temporal interference stimulation (tTIS) is an innovative non-invasive 

brain stimulation approach, in which two or more independent stimulation channels deliver 

high-frequency currents in the kHz range (oscillating at f1 and f1 + Δf; Figure 1C). These 

high-frequency currents have been proposed to be too high to modulate neuronal activity 

(Grossman et al., 2017; 2018). Still, by applying a small shift in frequency, they result in a 
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modulated electric field with the envelope oscillating at the low-frequency Δf (target fre-

quency) between the two sources. The peak of the envelope amplitude can be steered to-

wards specific areas located deep in the brain, by tuning the electrodes’ position and current 

ratio across stimulation channels (Figure 1C, 1D; (Grossman et al., 2017)). Based on these 

properties, tTIS has been shown to focally target activity of deep structures in rodents, with-

out engaging overlying tissues (Grossman et al., 2017). Here, we applied temporal interfer-

ence stimulation transcranially via surface electrodes applying a low-intensity, sub-threshold 

protocol respecting the currently accepted cut-offs and safety guidelines for low intensity 

transcranial electric stimulation in humans (Antal et al., 2017). 

 

4.5.2.2.2. Stimulators 

 

The currents for tTIS were generated by two independent DS5 isolated bipolar con-

stant current stimulators (Digitimer Ltd, Welwyn Garden City, UK). The stimulation patterns 

were created using custom-based Matlab graphical user interface and transmitted to the 

current sources using a standard digital-analog converter (DAQ USB-6216, National Instru-

ments, Austin, TX, USA). Finally, an audio transformer was added between stimulators and 

subjects, in order to avoid possible direct current accumulation.  

 

4.5.2.2.3. Stimulation protocols 

 

During the 6 Training blocks, we applied three different types of striatal tTIS (2 blocks 

each): a stimulation with a tTIS envelope modulated at 20Hz (tTIS20Hz), a stimulation with a 
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tTIS envelope modulated at 80Hz (tTIS80Hz) and a sham stimulation (tTISSham). For tTIS20Hz, 

the posterior stimulation channel (TP7-TP8, see below) delivered a 1.99 kHz stimulation 

while the anterior one delivered a 2.01 kHz (Δf = 20 Hz). For tTIS80Hz, the posterior and 

anterior channels delivered 1.96 kHz and 2.04 kHz, respectively (Δf = 80 Hz). Hence in both 

conditions, the high frequency component was comparable and the only difference was Δf. 

During each block, tTIS was applied for 5 minutes (6 x 50 s) during Training. Each stimula-

tion period started and ended with currents ramping-up and -down, respectively, for 5 s. tTIS 

was applied only while participants were performing the motor task and not during resting 

periods or Pre- and Post-training assessments. Finally, tTISSham consisted in a ramping-up 

(5 s) immediately followed by a ramping-down (5 s) of 2 kHz currents delivered without any 

shift in frequency. This condition allowed us to mimic the sensations experienced during the 

active conditions tTIS20Hz and tTIS80Hz, while delivering minimal brain stimulation (Figure S2). 

A trigger was sent 5 seconds before the beginning of each trial in order to align the beginning 

of the task and the beginning of the frequency shift after the ramp-up. Other TI stimulation 

parameters were set as follows: current intensity per stimulation channel = 2 mA, electrode 

type: round, conductive rubber with conductive cream/paste, electrode size = 3 cm2 (see 

ContES checklist in Supplementary materials for more details). 

The stimulation was applied within the MRI environment (Siemens 3T MAGNETOM 

Prisma; Siemens Healthcare, Erlangen, Germany) employing a standard RF filter module 

and MRI-compatible cables (neuroConn GmbH, Ilmenau, Germany). The technological, 

safety and noise tests, and methodological factors can be found in Supplementary materials 

(Table S1) on the basis of the ContES Checklist (Ekhtiari et al., 2022). 
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4.5.2.2.4. Modelling 

 

Electromagnetic simulations were performed to identify optimised electrode place-

ment and current steering parameters. Simulations were performed using the MIDA head 

model (Iacono et al., 2015), a detailed anatomical head model featuring 117 distinguished 

tissues and regions that was derived from multi-modal image data of a healthy female vol-

unteer. Importantly, for brain stimulation modelling, the model distinguishes different scalp 

layers, skull layers, grey and white matter, CSF, and the dura. Circular electrodes (radius = 

0.7 cm) were placed on the skin according to the 10-10 system and the electromagnetic 

exposure was determined using the ohmic-current-dominated electro-quasistatic solver 

from Sim4Life version 5.0 (ZMT Zurich MedTech AG, Switzerland), which is suitable due to 

the dominance of ohmic currents over displacement currents and the long wavelength com-

pared to the simulation domain. Dielectric properties were assigned according to the IT’IS 

Tissue Properties Database v4.0 (Hasgall et al., 2022). Rectilinear discretisation was used, 

and grid convergence as well as solver convergence analyses were performed to ensure 

negligible numerical uncertainty resulting in a grid, which contained over 54M voxels se-

lected for the simulations. Dirichlet voltage boundary conditions were applied, followed by 

current normalization, and the electrode-head interface contact was treated as ideal. tTIS 

exposure was quantified according to the maximum modulation envelope magnitude for-

mula from Grossman et al., 2017. Subsequently, a sweep over 960 permutations of the four 

electrode locations was performed, considering symmetric and asymmetric montages with 

parallel (sagittal = 729 configurations; coronal = 231 configurations) or crossing current 

paths, while quantifying bilateral striatum (putamen, caudate and nucleus accumbens) ex-

posure performance according to three metrics: 1) target exposure strength, 2) focality ratio 

(the volume ratio of target tissue above threshold and overall brain tissue above threshold; 
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a measure for stimulation selectivity), and (3) activation ratio (percentage of target volume 

above threshold; a measure for target coverage).  From the resulting Pareto-optimal front, 

two configurations stood out particularly: one that maximized focality and activation (Pair 1: 

AF3 and AF4, Pair 2: TP7 and TP8 montage; focality = 30.3%, activation = 28.2%, threshold 

= 0.19 V/m) and a second one that accepts a reduction of these two metrics by a quarter, 

while increasing the target exposure strength by more than 50% (Pair 1: F3 and F4, Pair 2: 

TP7 and TP8; focality = 23.9%, activation = 22.1%, threshold = 0.31 V/m). The latter mon-

tage was selected, while the predicted tTIS field had larger stimulation intensity and to en-

sure that the target could actually be stimulated (Figure 1C, 1D). 

 

4.5.2.2.5. Electrode positioning and evaluation of stimulation-associated 

sensations 

 

Based on the modelling approach described above, we defined the stimulation elec-

trode positions in the framework of the EEG 10-20 system (Seeck et al., 2017). The optimal 

montage leading to the best stimulation of the target structure, i.e. the bilateral striatum, was 

composed of the following electrodes: F3, F4, TP7 and TP8. Their locations were marked 

with a pen on the scalp and, after skin preparation (cleaned with alcohol), round conductive 

rubber electrodes of 3 cm2 were placed adding a conductive paste (Ten20, Weaver and 

Company, Aurora, CO,USA or Abralyt HiCl, Easycap GmbH, Woerthsee-Etterschlag, Ger-

many) as interface with the skin. Electrodes were held in position with tape and oriented 

towards the top in order to allow good positioning inside the scanner. Impedances were 

checked and optimised until they were lower than 20 kΩ. Once good contact was obtained, 
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we tested different intensities of stimulation for each stimulation protocol in order to familiar-

ise the participants with the perceived sensations and to systematically document them. tTIS 

Sham, tTIS20Hz and tTIS80Hz were applied for 20 seconds with the following increasing current 

amplitudes per channel: 0.5 mA, 1 mA, 1.5 mA and 2 mA. Participants were asked to report 

any kind of sensation and, if a sensation was felt, they were asked to grade the intensity 

from 1 to 3 (light to strong) as well as give at least one adjective to describe it (Figure S2). 

After this step, cables were removed to be then replaced by MRI-compatible cables and a 

bandage was added to apply pressure on the electrodes and keep them in place. An imped-

ance check was repeated in the MRI right before the training with concomitant stimulation 

and after the intervention. 

 

4.5.2.3. MRI data acquisition  
 

Structural and functional images were acquired using a 3T MAGNETOM PRISMA 

scanner (Siemens, Erlangen, Germany). T1-weighted images were acquired via the 3D 

MPRAGE sequence with the following parameters: TR = 2.3 s; TE = 2.96 ms; flip angle = 

9°; slices = 192; voxel size = 1 × 1 × 1 mm, FOV = 256 mm. Anatomical T2 images were 

also acquired with the following parameters: TR = 3 s; TE = 409 ms; flip angle = 120°; slices 

= 208; voxel size = 0.8 × 0.8 × 0.8 mm, FOV = 320 mm. Finally, functional images were 

recorded using Echo-Planar Imaging (EPI) sequences with the following parameters: TR = 

1.25 s; TE = 32 ms;  flip angle = 58°; slices = 75; voxel size = 2 × 2 × 2 mm; FOV = 112 mm.  

 

4.5.3. Data and statistical analyses  
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Data and statistical analyses were carried out with Matlab 2018a (the Mathworks, 

Natick, Massachusetts, USA) and the R software environment for statistical computing and 

graphics (R Core Team 2021, Vienna, Austria). Robust linear regressions were fitted with 

the Matlab function robustfit. Linear mixed models (LMM) were fitted using the lmer func-

tion of the lme4 package in R (Bates et al., 2015). As random effects, we added intercepts 

for participants and block. Normality of residuals, skewness and homoscedasticity of the 

data were systematically tested, and logarithmic transformations were applied when nec-

essary. To mitigate the impact of isolated influential data points on the outcome of the final 

model, we employed tools of the influence.ME package to detect and remove influential 

cases based on the following criterion: distance > 4 * mean distance (Nieuwenhuis et al., 

2012). Statistical significance was determined using the anova function with Satterth-

waite's approximations of the lmerTest package (Luke, 2017). For specific post-hoc com-

parisons we conducted pairwise comparisons by computing estimated marginal means 

with the emmeans package with Tukey adjustment of p-values (Searle et al., 1980). Effect 

size measures were obtained using the effectsize package (Ben-Shachar et al., 2020). 

The level of significance was set at p < 0.05.  

 

 

4.5.3.1. Behavioural data  

 

 The main goal of the present study was to evaluate the influence of striatal tTIS on 

reinforcement motor learning. To do so, we first removed trials, in which participants did not 

react within 1 s after the appearance of the cursor and target, considering that these ex-

tremely long preparation times may reflect significant fluctuations in attention (Derosière et 

al., 2015). This occurred extremely rarely (0.52 % of the whole data set). For each subject 
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and each trial, we then quantified the tracking Error as the absolute force difference between 

the applied and required force as done previously (Abe et al., 2011; Vassiliadis et al., 2021, 

2022). Tracking performance during Training and Post-training trials were then normalised 

according to subjects’ initial level by expressing the Error data in percentage of the average 

Pre-training Error for each block. In order to test our main hypothesis predicting specific 

effects of striatal tTIS on reinforcement motor learning, we performed a LMM on the Post-

training data with tTISTYPE and ReinfTYPE as fixed effects. We then also ran the same analysis 

on the Training data, to evaluate if striatal tTIS also impacted on motor performance, while 

stimulation was being delivered. 

As a control, we checked that initial performance at Pre-training was not different 

between conditions with a LMM on the Error data obtained at Pre-training. Again, tTISTYPE 

and ReinfTYPE were considered as fixed effects. Finally, another LMM was fitted with the 

fixed effect tTISTYPE to verify that the amount of positive reinforcement (as indicated by a 

green target) in the ReinfON blocks was similar across tTISTYPES. 

 

4.5.3.2. fMRI data 

 

4.5.3.2.1.  Imaging Preprocessing 

 

We analyzed functional imaging data using Statistical Parametric Mapping 12 

(SPM12; The Wellcome Department of Cognitive Neurology, London, UK) implemented in 

MATLAB R2018a (Mathworks, Sherborn, MA). All functional images underwent a common 

preprocessing including the following steps: slice time correction, spatial realignment to the 

first image, normalization to the standard MNI space and smoothing with a 6 mm full-width 
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half-maximal Gaussian kernel. T1 anatomical images were then co-registered to the mean 

functional image and segmented. This allowed to obtain bias-corrected gray and white mat-

ter images, by normalizing the functional images via the forward deformation field. To select 

subjects with acceptable level of head movement, framewise displacement was calculated 

for each run. A visual check of both non-normalised and normalised images was performed 

in order to ensure good preprocessing quality. Finally, possible tTIS-related artifacts were 

investigated based on signal to noise ratio maps (see below). 

 

4.5.3.2.2. Signal to Noise Ratio 
 

Total signal to noise ratio (tSNR) maps were computed to check the presence of 

possible artifacts induced by the electrical stimulation. The values were calculated as mean 

over standard deviation of each voxel time series. Spherical regions of interest were then 

defined both underneath the tTIS electrodes and at 4 different locations, distant from the 

electrodes as a control. The center of each spherical ROI was obtained by projecting the 

standard MNI coordinates on the scalp (Okamoto et al., 2004) toward the center of the brain. 

After visual inspection of the ROIs, average tSNR maps were extracted and a LMM was 

used to compare signal to noise ratio underneath the electrodes and in the control regions 

(Figure S4).  

 

4.5.3.2.3. Task-based BOLD activity analysis 
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A general linear model was implemented at the single-subject level in order to esti-

mate signal amplitude. Eight regressors were included in the model: 6 head motion param-

eters (displacement and rotation) and normalised time series within the white matter and the 

corticospinal fluid. Linear contrasts were then computed to estimate specific activity during 

the motor task with respect to resting periods. Functional activation was also extracted within 

specific ROIs individually defined based on structural images. More specifically, the Free-

surfer recon-all function was run based on the structural T1w and T2w images 

(https://surfer.nmr.mgh.harvard.edu/). The BNA parcellation was derived on the individual 

subject space and the selected ROIs were then co-registered to the functional images and 

normalised to the MNI space. BOLD activity within the individual striatal masks was aver-

aged and compared between different striatal nuclei namely the putamen, caudate and NAc. 

Multiple comparison correction was applied at a cluster level by controlling for the False 

Discovery Rate (FDR). 

 

4.5.3.2.4. Effective connectivity analyses  
 

As an additional investigation, we computed task-modulated effective functional con-

nectivity by means of the CONN toolbox 2021a (www.nitrc.org/projects/conn, 

RRID:SCR_009550) running in Matlab R2018a (Mathworks, Sherborn, MA). An additional 

denoising step was added by applying a band-pass filtering from 0.01 to 0.1 Hz and by 

regressing potential confounders (white matter, CSF and realignment parameters). After 

that, generalized Psycho-Physiological Interactions (gPPI) connectivity was extracted within 

specific pre-defined customised sub-networks: a reward and a motor network. The reward 

network was defined as following: two regions within the striatum, namely the NAc (BNA 

regions 223 and 224) and the ventro-medial putamen (BNA regions 225 and 226, left and 

https://surfer.nmr.mgh.harvard.edu/
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right respectively), and two frontal areas, namely the anterior cingulate (BNA regions 177, 

179, 183 and 178, 180, 184, left and right respectively) and the orbitofrontal cortex within 

the vmPFC (BNA regions 41, 45, 47, 49, 187 and 42, 46, 48, 50, 188 for left and right re-

spectively). The motor network included the following areas: the medial part of the SMA 

(BNA regions 9 and 10, left and right respectively) and the part of the M1 associated to upper 

limb function (BNA regions 57 and 58, left and right respectively). Notably, we considered 

connectivity in the left and right motor and reward networks regardless of laterality. Finally, 

gPPI was also extracted within a control language network, defined based on the functional 

atlas described by Shirer et al. (Shirer et al., 2012). 
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4.6. Supplementary material 

Exclusion criteria 

● Unable to consent 
● Severe neuropsychiatric (e.g., major depression, severe dementia) or unstable sys-

temic diseases (e.g., severe progressive and unstable cancer, life threatening infec-
tious diseases) 

● Severe sensory or cognitive impairment or musculoskeletal dysfunctions prohibiting 
to understand instructions or to perform the experimental tasks  

● Color blindness 
● Inability to follow or non-compliance with the procedures of the study 
● Contraindications for NIBS or MRI: 

○ Electronic or ferromagnetic medical implants/device, non-MRI  compatible 
metal implant 

○ History of seizures 
○ Medication that significantly interacts with NIBS being benzodiazepines, tri-

cyclic antidepressant and antipsychotics 
● Regular use of narcotic drugs 
● Left-handedness  
● Pregnancy 
● Request of not being informed in case of incidental findings 
● Concomitant participation in another trial involving probing of neuronal plasticity. 
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ContES Checklist 

 

Technological factors 

Manufacturer of MR Conditional Stimulator DS5 Isolated Bipolar Constant Current 
Stimulator (Digitimer) 

MR Conditional Electrode Details Round, 3 cm2 conductive rubber electrodes 

Electrode Positioning F3 → F4 

TP7 → TP8 

 

A bandage is warped around the head to 
apply pressure and keep the electrodes in 
place 

 

Electrodes are oriented in order to have ver-
tical cables entering parallel to the MRI coil 

 

Head was fixed with pillows to avoid move-
ments 

MR Conditional Skin-Electrode Interface 10-20 gel 

 

One or two drops of saline were added 
when impedances were too high 

Amount of Contact Medium 
(Paste/Gel/Electrolyte) 

Around 1mm of paste was manually placed 
on the electrodes  

Electrode Placement 

Visualization 

Pictures
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RF Filter NeuroConn DC-STIMULATOR MR RF filter 
module with MRI-compatible cables and 
electrodes 

Wire Routing Pattern 10 m ethernet cables between inner and 
outer box pass through a conduit along the 
wall of the MRI room until reaching the back 
of the MRI. Cables are then fixed with 
straps on the ground and on the wall of the 
MRI machine in order to avoid loops until 
reaching the interior of the coil. 

 

Cables between the head and the inner 
boxes were also fixed with straps and they 
were oriented in order to exit the magnetic 
field direction as soon as possible as indi-
cated by the red arrows of the image below. 

 

 

tES-fMRI Machine Synchronization/Com-
munication 

Stimulation was triggered by the stimulus 
delivery PC via parallel port to BNC cable. 
The parallel port of the stimulus delivery PC 
was connected to the DAQ controlling the 
stimulators. 
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Stimulus delivery PC, in turn, was also re-
ceiving the scanner trigger from the scanner 
via USB port. 

Safety and noise tests 

MR Conditionality Specifics for tES Setting 

 

Please refer to Section “Methods-Imaging 
acquisition” 

tES-fMRI Setting Test - Safety Testing Impedances were checked before and after 
the stimulation. 

 

No temperature tests were performed dur-
ing the experiment. 

 

Intensity titration was performed prior to en-
tering the MRI, testing increasing currents 
(0.5, 1, 1.5 and 2 mA) and asking the sub-
ject to report any type of sensation. 

 

A sensation questionnaire was also per-
formed at the end of the experiment. 

tES-fMRI Setting Test - Subjective Intoler-
ance Reporting 

 

No intolerances were reported by any sub-
ject 

 tES-fMRI Setting Test - Noise/Artifact Signal to Noise Ratio (SNR) analysis was 
performed on the fMRI images, please refer 
to Section “Methods-Signal to Noise Ratio” 

Impedance Testing Impedances were checked right after elec-
trodes positioning outside the scanner, be-
fore and after the stimulation inside. 

 

One or two drops of saline solution were 
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added if impedances were higher than 20kΩ 

Methodological factors 

Concurrent tES-fMRI Timing For timings, please refer to the “Methods-
Stimulation protocols” section 

To mitigate the impact of potential carry-
over effects on our experimental results we 
used the following strategy:  

1) We stimulated for short periods in each 
condition (5 minutes interspersed with rest-
ing periods without stimulation; see “Meth-
ods-Stimulation protocols”);  

2) We imposed breaks (~7-8 minutes) be-
tween each stimulation protocol;  

3) We randomised the order of the Stimula-
tion conditions  

Imaging Session Timing All sequences were performed with TI stim-
ulation electrodes placed on the subjects’ 
head. 

tES Experience Report Please refer to “Results” section and to Fig-
ure S2. 

Table S1. ContES checklist as recommended in Ekhtiari et al., 2022 for concurrent tES-fMRI studies.  
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Figure S1. Patterns of motion of the target. For each block of training, participants had to learn a 
new pattern of motion of the target. The patterns had similar mathematical properties and their rela-
tionship to a condition was randomised (see Methods for more details). 

 

Control analyses of behavioural data 

Pre-training performance 

In order to verify that our main behavioural results were not influenced by potential 

differences in initial performance between conditions despite randomization, we analysed 

the Error at Pre-training between conditions. We did not find any tTISTYPE (F(2,519.15) = 1.64; 

p = 0.20) or tTISTYPE x ReinfTYPE effect (F(2,519.99) = 1.08; p = 0.34), suggesting that the main 

behavioural results could not be accounted for by differences in initial performance between 

conditions. However, the LMM did reveal a ReinfTYPE effect (F(1,519.15) = 12.47; p < 0.001), 

that was due to the fact that Pre-training performance was generally better in ReinfOFF 

blocks. This effect, which was opposite to our learning results (generally better learning with 

ReinfON), may be related to an expectancy effect stemming from the repetitive structure of 

the reinforcement conditions (see Methods). However, the absence of interaction with tTIS-

TYPE is strongly suggestive that this effect did not drive any of the main findings. Put together, 
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these data provide confidence that the differential effects of striatal tTIS on motor learning 

depending on the presence of reinforcement were not the result of different initial perfor-

mance between conditions.  

Success rate 

Overall, the amount of positive reinforcement (i.e., when the target was green) aver-

aged 52.78 +/- 0.42% and was comparable across tTISTYPES (F(2,1702) = 0.17; p = 0.84), sug-

gesting that the closed-loop reinforcement schedule was successful at providing similar re-

inforcement feedback despite differences in performance between conditions. Hence, dif-

ferent success rates during training cannot explain the effect of the different striatal tTIS 

conditions on motor learning. 

Frequency of flashing 

Analysis of the frequency of flashing in the different conditions did not reveal any 

effect of tTISTYPE (F(2,3283) = 0.85; p = 0.43) nor any ReinfTYPE x tTISTYPE interaction (F(2,3283) 

= 0.19; p = 0.82), suggesting that the behavioural effects of tTIS could not be explained by 

a visual confound. However, this analysis did reveal a ReinfTYPE effect (F(1,3283) = 33.62; p < 

0.001) which was due to the fact that the average frequency in the ReinfOFF condition (4.28 

± 0.097 Hz) was slightly but significantly higher than with ReinfON (4.08 ± 0.098 Hz; F(1,3283) 

= 33.62; p < 0.001). Notably, in absolute terms, this difference represented only a difference 

of 1.4 change of color over the whole 7 s trial, which we think is unlikely to explain the 

improvement of performance in the ReinfON condition. 
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Blinding integrity and tTIS-evoked sensations 

 

Figure S2. tTIS-related sensations. A) Magnitude of tTIS-related sensations. Magnitude of sensations 
reported before the experiment for current amplitudes ranging from 0.5 to 2 mA for each tTISTYPE. The current 
amplitude used in the present experiment was 2 mA. B) Types of tTIS-related sensations. Type of sensations 
as described by the participants, at 2 mA. Note that subjects were allowed to describe their sensations with up 
to two different words.  
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Brain activity during reinforcement motor learning 

 

Figure S3. Whole-brain activity during reinforcement motor learning. Activation maps for the contrast 
task>rest in the tTISSham, ReinfON condition showing activation of key areas of the reinforcement motor learning 
network including the putamen, thalamus, cerebellum and sensorimotor network, especially on the left side. 
Significant clusters are shown for uncorrected voxel-wise family wise error (FWE), p=0.001, and corrected 
cluster-based false discovery rate (FDR), p = 0.05.  
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Cluster-level Peak-level x y z Region 
pFWE-

corr 
qFDR-

corr 
kE Puncorr pFWE-

corr 
qFDR-

corr 
T (ZE) Puncorr     

<0.001 <0.001 135 <0.001 <0.001 0.005 12.63 6.84 <0.001 46 -62 4 Temporal_Mid_R  
<0.001 <0.001 523 <0.001 <0.001 0.005 12.32 6.77 <0.001 -40 -8 62 Precentral_L 

    <0.001 0.021 10.62 6.33 <0.001 -34 -6 52 Postcentral_L 
    <0.001 0.021 10.43 6.28 <0.001 -36 -20 54 Precentral_L 

<0.001 <0.001 335 <0.001 <0.001 0.018 11.08 6.46 <0.001 -8 -6 64 Supp_Mo-
tor_Area_L 

    0.003 0.145 8.21 5.56 <0.001 6 6 58 Supp_Mo-
tor_Area_R  

    0.003 0.145 8.20 5.55 <0.001 -4 -2 54 Supp_Mo-
tor_Area_L 

<0.001 <0.001 44 <0.001 <0.001 0.021 10.65 6.34 <0.001 -10 -20 6 Thal_IL_L  
<0.001 <0.001 162 <0.001 <0.001 0.021 10.36 6.26 <0.001 42 -6 56 Frontal_Mid_2_R 

    <0.001 0.042 9.48 5.99 <0.001 34 -4 58 Frontal_Sup_2_R 
<0.001 <0.001 175 <0.001 <0.001 0.021 10.27 6.23 <0.001 -58 10 28 Precentral_L 

    <0.001 0.037 9.60 6.03 <0.001 -56 8 20 Frontal_Inf_Oper_
L 

    0.019 0.490 7.32 5.21 <0.001 -48 2 16 Rolandic_Oper_L 
<0.001 <0.001 601 <0.001 <0.001 0.024 10.06 6.17 <0.001 2 -74 -34 Vermis_7 

    <0.001 0.025 9.99 6.15 <0.001 -12 -70 -22 Cerebellum_6_L  
    <0.001 0.027 9.88 6.12 <0.001 12 -70 -20 Cerebellum_6_R 

<0.001 <0.001 82 <0.001 <0.001 0.070 9.14 5.88 <0.001 56 10 26 Frontal_Inf_Oper_
R 

    0.006 0.234 7.86 5.42 <0.001 56 10 38 Precentral_R 
<0.001 <0.001 141 <0.001 0.001 0.092 8.89 5.80 <0.001 -34 -52 -24 Cerebellum_6_L 

    0.002 0.117 8.47 5.65 <0.001 -28 -62 -24 Cerebellum_6_L 
<0.001 <0.001 76 <0.001 0.001 0.092 8.87 5.79 <0.001 -28 -52 56 Parietal_Sup_L 

    0.011 0.341 7.57 5.31 <0.001 -30 -44 48 Parietal_Inf_L 
<0.001 <0.001 200 <0.001 0.001 0.092 8.77 5.76 <0.001 32 -48 -28 Cerebellum_6_R 

    0.013 0.382 7.49 5.28 <0.001 34 -40 -34 Cerebellum_6_R 
<0.001 <0.001 36 <0.001 0.001 0.092 8.73 5.74 <0.001 16 -54 -18 Cerebel-

lum_4_5_R 
<0.001 <0.001 28 <0.001 0.001 0.101 8.63 5.71 <0.001 26 -58 -54 Cerebellum_8_R 
<0.001 <0.001 62 <0.001 0.001 0.113 8.51 5.67 <0.001 38 -62 -16 Fusiform_R 

    0.002 0.117 8.45 5.64 <0.001 42 -72 -12 Occipital_Inf_R 
<0.001 <0.001 21 <0.001 0.002 0.117 8.41 5.63 <0.001 -46 -68 4 Occipital_Mid_L 
<0.001 <0.001 141 <0.001 0.002 0.130 8.33 5.60 <0.001 22 -56 50 Location not in at-

las 
    0.002 0.130 8.30 5.59 <0.001 30 -48 48 Parietal_Sup_R 
    0.007 0.266 7.76 5.39 <0.001 36 -40 42 SupraMarginal_R 

<0.001 <0.001 29 <0.001 0.004 0.170 8.09 5.51 <0.001 44 -50 -34 Cerebel-
lum_Crus1_R 

<0.001 <0.001 59 <0.001 0.004 0.178 8.04 5.49 <0.001 -22 -66 -52 Cerebellum_8_L 
<0.001 0.006 12 0.003 0.004 0.190 7.99 5.47 <0.001 10 -16 8 Thal_MDl_R 
0.001 0.043 6 0.028 0.009 0.319 7.63 5.33 <0.001 -22 -2 6 Putamen_L 

<0.001 <0.001 34 <0.001 0.009 0.319 7.63 5.33 <0.001 18 -64 -54 Cerebellum_8_R 
0.001 0.300 7 0.019 0.023 0.545 7.23 5.17 <0.001 20 2 62 Frontal_Sup_2_R 
0.001 0.030 7 0.019 0.024 0.560 7.21 5.16 <0.001 52 12 8 Frontal_Inf_Oper_

R 
0.001 0.030 7 0.019 0.025 0.568 7.19 5.16 <0.001 -44 -36 40 Parietal_Inf_L 

Table S2: Significant clusters and the respective local maxima in the tTISSham, ReinfON condition. Re-
gions were identified with the Automated Anatomical Labelling atlas 3 (AAL3, Rolls et al., 2020). Significant 
clusters were selected for uncorrected voxel-wise family wise error (FWE), p=0.001, and corrected cluster-
based false discovery rate (FDR), p = 0.05.  

 

 

Correlation between effect of tTIS80Hz on reinforcement motor learning and modula-
tion of whole-brain activity 



Study 3: Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills 

167 

 

 

Cluster-level Peak-level x y z Region 
pFWE-

corr 
qFDR-

corr 
kE Puncorr pFWE-

corr 
qFDR-

corr 
T (ZE) Puncorr     

0.003 0.005 157 <0.001 0.027 0.065 7.29 5.14 <0.001 10 18 0 Caudate_R 
    0.639 0.678 5.38 4.25 <0.001 0 0 10 Location not in at-

las 
    0.921 0.757 4.89 3.98 <0.001 6 6 2 Location not in at-

las 
0.007 0.005 138 <0.001 0.693 0.678 5.30 4.21 <0.001 -16 14 6 Location not in at-

las 
    0.923 0.757 4.88 3.98 <0.001 -22 14 -2 Putamen_L 
    1.000 0.810 4.26 3.60 <0.001 -18 8 -6 Putamen_L 

Table S3. Significant clusters for the correlation between the behavioural and neural effects of tTIS80Hz 

(vs. tTIS20Hz). Two significant clusters were found with several local maxima. Notably, the left cluster also 
encompassed a portion of the left caudate (related to Figure 3). Regions were identified with the Automated 
Anatomical Labelling atlas 3 (AAL3, Rolls et al., 2020). Significant clusters were selected for uncorrected voxel-
wise family wise error (FWE), p=0.001, and corrected cluster-based false discovery rate (FDR), p = 0.05.  

 

Correlation between impulsivity and modulation of whole-brain activity with tTIS80Hz 

Cluster-level Peak-level x y z Region 
pFWE-

corr 
qFDR-

corr 
kE Puncorr pFWE-

corr 
qFDR-

corr 
T (ZE) Puncorr     

<0.001 <0.001 254 <0.001 0.707 0.524 5.29 4.20 <0.001 -8    0   18 Location not in at-
las 

    0.719 0.524 5.27 4.19 <0.001 -14   16   16 Caudate_L 
    0.971 0.620 4.72 3.88 <0.001 -16   16   0 Location not in at-

las 
Table S4. Significant clusters for the correlation between impulsivity and neural effects of tTIS80Hz (vs. 
tTIS20Hz). One significant cluster encompassing the left caudate nucleus was found (related to Figure 5). Re-
gions were identified with the Automated Anatomical Labelling atlas 3 (AAL3, Rolls et al., 2020). 

 

Imaging quality control 

A threshold of 0.5 was chosen to discard subjects showing more than 40% of voxels with 

framewise displacement FD higher than this threshold. In the current study cohort, no sub-

ject exceeded the limit value, thus the whole dataset could be used. Furthermore, successful 

cleaning of the data was ensured by visual checking the preprocessing results. In particular, 

good registration between anatomical and functional images and normalization to standard 

space were checked. 

Signal to noise ratio analysis showed significantly higher tSNR values underneath the stim-

ulating electrodes (F(1,1122) = 249.25, p < 0.001; Figure S4). This result suggests that the 
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stimulation did not introduce additional noise to the MR images. In summary, all controls 

confirmed the good quality of the imaging data. 

 

Figure S4. Total signal to noise ratio (tSNR). Total signal to noise ratio investigation. On the top 
panel, the average tSNR is shown within spheres of 10mm radius underneath the 4 stimulation elec-
trodes (F3, F4, TP7 and TP8) and underneath other 4 locations more distal from the electrodes (C3, 
C4, O1 and O2). A significant higher tSNR was found underneath the electrodes with respect to the 
distal locations (F(1,1122) = 249.25, p < 0.001). This indicates that there was no reduction of the tSNR 
due to the presence of electrical current. On the bottom panel, the location of the spheres from where 
the average tSNRs were extracted: F3 and F4 in red in the first image from the left, TP7 and TP8 in 
red on the second image from the left, C3 and C4 in blue on the third image from the left, O1 and 
O2 in blue on the forth image from the left. 
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5. Discussion  

5.1.  Main conclusions  

In this PhD, I have investigated some of the mechanisms at play during reinforcement 

learning of motor skills, with the ultimate goal to favor incorporation of reinforcement feed-

back in future neuro-rehabilitation strategies.  

In Study 1, I found that beyond reinforcement feedback, motivation by reward 

strongly impacts motor learning and leads to gains in performance that are maintained after 

training, in the absence of reward and even 24h later. Such effects were accompanied by a 

persistent up-regulation of motor variability based on previous reinforcements. Hence, when 

motivated by reward during training, participants relied more strongly on reinforcement in-

formation and this persisted 24h later in the absence of reward. This result suggests that 

associating a training with a particular motivational context is a powerful tool to durably en-

hance motor learning.  

In Study 2, I asked if the timing at which rewards are provided with respect to move-

ments, which is a crucial modulator of reinforcement learning in decision-making tasks, 

could also influence motor learning. I found that reward timing impacted on the dynamics 

and consolidation of learning. Training with short reward delays led to continuous, linear 

gains in performance while long reward delays led to fast initial learning followed by an early 

plateau in performance and to an overall reduced performance in the end of training. More-

over, skill consolidation was altered following training with long reward delay in learners. 

Overall, this study shows that reward timing matters in motor learning, potentially by modu-

lating the engagement of different neural systems involved in learning (Foerde and 

Shohamy, 2011).  

Finally, in Study 3, I used transcranial temporal interference stimulation, an innova-

tive brain stimulation approach allowing to target deep brain structures non-invasively in 

humans. I exploited this technique to question the causal role of the striatum in reinforce-

ment-related improvements in motor learning and found a specific disruption of reinforce-

ment motor learning when stimulating in the high gamma range, a frequency band previously 

associated to reward processing in the striatum (Berke, 2009). These behavioral effects 
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were related to a specific modulation of activity in the caudate nucleus and putamen, point-

ing towards the idea that the disruption of reinforcement motor learning was indeed caused 

by neuromodulation of the striatum. In that study, I also show that high gamma tTIS en-

hances effective connectivity between striatum and frontal cortex, a pathway known to be 

crucial for reward processing. Such hyper-connectivity was particularly pronounced between 

the striatum and motor cortex and in the presence of reinforcement. Finally, the neural ef-

fects of the stimulation were consistently correlated to impulsivity levels of participants, sug-

gesting that impulsivity could constitute a biomarker of the neural sensitivity to high gamma 

tTIS.  

 

 

Figure 1. Main conclusions of the studies presented in this PhD. 
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5.2. General discussion  

 

In this section, I discuss the main conclusions of the present work in light of the cur-

rent literature and how they improve our mechanistic understanding of reinforcement learn-

ing of motor skills and may guide the development of future rehabilitation protocols.   

 

5.2.1. Motivational interventions during motor learning  

A central question of this work was to better understand whether motivation could 

impact on motor learning in addition to reinforcement feedback and the respective underly-

ing mechanisms. In this regard, the results of Study 1 showed that there is a clear advantage 

in combining reinforcement feedback with motivational interventions (Vassiliadis et al., 

2021). We have used monetary rewards in Study 1, but other motivational interventions 

have been proposed for motor learning including social praise (Sugawara et al., 2012), 

boosting sense of agency during practice (Lewthwaite and Wulf, 2017) or gamification 

(Doumas et al., 2021). Our design allowed us to isolate the net effect of motivation on motor 

learning and identify potential mechanisms. One of those mechanisms is the specific boost-

ing of motor adjustments based on reinforcement feedback. Put differently, participants 

tended to increase more their motor variability following failure and reduce it more following 

success, indicating an improved use of exploration and exploitation, respectively, based on 

previous outcomes (Dhawale et al., 2017). Such increased reliance on reinforcement feed-

back, which was associated to improved learning at the single-trial level, even persisted 24h 

later, in the absence of training. This strongly points towards the idea that the long-term 

effect of motivational interventions (Abe et al., 2011) may be related to a durable sensitiza-

tion to reinforcement feedback. This idea seems promising for rehabilitation, because it in-

dicates that combining rehabilitation with short motivational interventions (e.g., during ses-

sions performed at the clinic) could have positive effects on future training performed in 

neutral contexts (e.g., at home). Moreover, the data also show that this regulation of motor 

variability did not concern all motor components, but rather the most important component 

for task success in the task (i.e., the amplitude of the force), potentially reflecting the oper-

ation of a credit assignment mechanism (McDougle et al., 2016, 2018), allowing to adjust 

motor components based on their estimated weight in the outcome. Hence, an interesting 



Discussion 

172 

 

next step could be to evaluate whether specific motor components can be preferentially 

improved by modulating their weight in the computation of the reinforcement feedback. Such 

finding could pave the way to interventions individualizing reinforcement feedback based on 

the specific deficit experienced by a patient. 

An important aspect of Study 1 is that we studied the effect of reward in a situation 

where it was coupled to reinforcement feedback. Hence, our results on their own do not 

allow to conclude definitively on whether reward needs to be coupled to reinforcement to be 

beneficial in motor learning, because we did not test any group with random reward (i.e., not 

related to performance). However, our single-trial results showing that reward boosted spe-

cifically the regulation of motor variability based on reinforcement information suggests that 

this coupling is indeed a crucial factor. Consistently, a recent study which compared perfor-

mance-based and random reward found that the association between correct performance 

and reward is necessary to observe reward-related gains in motor learning (Sporn et al., 

2022). Hence, providing rewards that depend on performance appears as a promising way 

to improve motor learning, and potentially recovery of motor function after injury of the motor 

system. 

 

5.2.2. Reward timing: what’s next? 

In Study 2, we found that the delay between movement and reward plays a prominent 

role in motor skill acquisition and consolidation. This implies that the rapid mapping between 

a movement (and its sensory consequences) and the ensuing reward is a crucial aspect of 

reinforcement motor learning, potentially because it facilitates the coupling between a so-

matosensory sensation and the ensuing reward (Sidarta et al., 2018). Another potential ex-

planation for the alteration of learning when training with long reward delays could be a 

reduction in the precision of striatal RPEs (Fiorillo et al., 2008; Kobayashi and Schultz, 

2008). Study 2 also showed very different learning dynamics depending on reward timing: 

while training with short reward delay led to slow, continuous improvement of performance, 

training with long reward delays allowed fast initial learning that quickly plateaued. Hence, 

short reward delays may be generally preferred for rehabilitation, except in the case of very 

short sessions in which long reward delays may provide an added value. Characterizing the 

brain regions involved in learning from short and long reward delays appears as a crucial 
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next step to be able to individualize reward delays based on the brain networks affected by 

a specific pathology. As such, previous associative learning studies have shown dissociable 

roles of the striatum and hippocampus in learning from short and long reward delays, re-

spectively (Foerde and Shohamy, 2011; Foerde et al., 2013). More specifically, this body of 

work has revealed that Parkinson’s disease patients who suffer from striatal dysfunction 

were unable to learn from short reward delays (Foerde and Shohamy, 2011; Foerde et al., 

2012) whereas amnestic patients suffering from hippocampal lesions could not learn from 

long reward delays (Foerde et al., 2013). Whether such dissociation also holds in the context 

of motor learning is not known, and could constitute an interesting future question. Overall, 

individualization of reward timing based on a patient’s lesion may be an important step to 

optimize reinforcement motor learning. 

Another exciting future direction of this work would be to evaluate the effect of the 

variability in reward timing on motor learning and the associated neural correlates. As such, 

previous research has shown that RPEs in the VTA are modulated by the predictability of 

reward timing with stronger RPEs being associated to less predictable timings (Klein-Flügge 

et al., 2011). Hence, reducing predictability of reward timing may improve motor learning by 

boosting dopaminergic RPEs, a hypothesis that could be tested in future work. 

 

5.2.3. Causal role of the striatum in reinforcement learning of motor skills 

Following Study 1 and Study 2, we have hypothesized that the striatum may be a 

crucial hub for translation of (short-delayed) reinforcement information into motor adjust-

ments (Piray et al., 2017; Hori et al., 2019). Especially, the striatum is densely connected to 

multiple frontal areas involved in reward processing and motor learning that could contribute 

to the beneficial effect of reinforcement on motor learning. To evaluate the causal role of the 

striatum in this process, I used tTIS, a new non-invasive approach allowing to stimulate deep 

brain structures. Interestingly, our results highlight that a specific striatal mechanism, likely 

relying on high gamma oscillations, is involved in the beneficial effect of reinforcement on 

motor learning. Interestingly, the data also suggest that another striatal mechanism, relying 

on beta oscillations, is preferentially involved in sensory-based motor learning. This disso-

ciation between the mechanisms involved in sensory- and reinforcement-based motor learn-



Discussion 

174 

 

ing confirms that these two types of feedback preferentially recruit different neural mecha-

nisms (Sidarta et al., 2016; Therrien et al., 2016; Mathis et al., 2017; Uehara et al., 2018) 

and further suggests that these neural mechanisms are associated to differential oscillatory 

activity within the striatum. Thanks to concurrent fMRI acquired during training and stimula-

tion, we were able to evaluate the neurophysiological effects of tTIS. We found that the 

detrimental effect of high gamma tTIS on reinforcement motor learning was related to mod-

ulation of activity in the caudate nucleus and putamen, and also to a specific increase in 

effective connectivity between motor striatum and motor cortex. To my knowledge, this con-

stitutes the first evidence that striatal activity can be modulated non-invasively by means of 

brain stimulation in humans with relevant behavioral and neurophysiological effects. More 

specifically, this study shows that reinforcement motor learning causally relies on functional 

integrity of the striatum and related fronto-striatal circuits, as previously suggested through 

associative approaches (Wachter et al., 2009; Widmer et al., 2016). As I argue below, such 

causal link between striatal integrity and reinforcement motor learning could be useful to 

stratify stroke patients based on the localization of their lesion. Overall, the present work 

shows that reinforcement motor learning is highly sensitive to motivation experienced during 

training, to the timing of the reinforcement feedback and relies on functional integrity of the 

striatum. 

 

5.3.  Perspectives  

In this section, I combine the present work with previous literature to propose a frame-

work for the integration of reinforcement feedback into clinical rehabilitation. In particular, I 

present preliminary results of three studies initiated during my PhD that support the neces-

sity to incorporate reinforcement in a personalized manner. Finally, I also discuss some 

ideas to improve our understanding of the mechanisms underlying tTIS and propose per-

spectives to move this emerging field forward.   
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5.3.1. Towards incorporation of reinforcement into motor rehabilitation: opti-

mization of training features and personalization 

Contingency, stochasticity and valence of reinforcement feedback 

Along with previous studies, this work aimed at delineating key training parameters 

that can guide the development and individualization of reinforcement-based motor rehabil-

itation procedures. As mentioned above, our results support the use of motor component-

specific motivational interventions and short-delay rewards during motor rehabilitation. Ad-

ditionally, previous studies have characterized other features of the reinforcement feedback 

that may impact the learning process. First, it was shown that it is important to provide rein-

forcement that is contingent on the learner’s performance, rather than random feedback 

(Sporn et al., 2022). This is consistent with the idea that reinforcements are useful to inform 

a learning process that uses outcomes to adjust future movements (Dhawale et al., 2017). 

Moreover, the uncertainty on the presence of reinforcement (sometimes referred to as the 

stochasticity of reinforcement) can substantially improve motor learning (Dayan et al., 

2014a). An efficient way to combine individualized performance-based feedback and sto-

chasticity is through the use of closed-loop reinforcement schedules (Therrien et al., 2016, 

2020). This method constantly adapts the motor criterion to consider a trial as successful by 

taking into account recent performance. As shown in Study 3, this procedure gave us suc-

cess rates of around 52%, ensuring almost maximum uncertainty on the outcome (in line 

with the stochasticity principle), while providing personalized veridical feedback. An addi-

tional advantage of this method, also observed in Study 3, is that it allows to match success 

rates between different experimental conditions even in the case of differences in motor 

performance, an aspect that will be crucial for future clinical trials involving reinforcement 

feedback.  

Another factor that also influences reinforcement motor learning is valence (i.e., 

whether a correct trial yields a reward or an absence of punishment and vice versa for in-

correct trials). There is evidence that even though the amount of information provided by the 

reinforcement feedback is exactly the same in the reward and punishment versions of the 

task, people learn differently (Abe et al., 2011; Galea et al., 2015; Steel et al., 2016; 

Quattrocchi et al., 2017) and the brain regions involved in learning differ (Steel et al., 2019). 

More specifically, punishment has been suggested to accelerate learning while reward 
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would mainly impact on long-term retention (Galea et al., 2015). Importantly though, such 

effects have been shown to depend on the motor learning task performed (Steel et al., 2016). 

Even if we did not test any condition involving punishment, we found that reward could en-

hance skill acquisition in our force modulation task and that such gains in performance were 

maintained 24h later, in line with the aforementioned positive effects of reward on retention. 

Moreover, a previous motor adaptation study did not show any added value of using pun-

ishment compared to reward in stroke patients (Quattrocchi et al., 2017). Hence, the benefits 

of using punishment for motor rehabilitation are not clear yet, especially given the potential 

negative consequences of punishment-based training on patients’ mood and levels of anxi-

ety.  

 

The role of sensory uncertainty in reinforcement motor learning 

The three studies presented in this PhD evaluated the effect of reinforcement feed-

back, but always in a context of high visual feedback uncertainty about the cursor being 

controlled. As explained above, this manipulation was used based on previous studies sug-

gesting that participants used more reinforcement information when sensory feedback was 

uncertain (Izawa and Shadmehr, 2011; Cashaback et al., 2017). Notably, such situation may 

be relevant in clinical contexts since patients suffering from motor impairments often also 

present sensory deficits (Connell, 2008; Hepworth et al., 2016). Moreover, many daily-life 

activities involve the precise control of force without direct visual feedback about the pres-

sure being applied (e.g., such as when adjusting the force applied on the accelerator pedal 

when driving, or controlling the force applied when carrying a fragile object, Clemente et al., 

2016). However, there is still a need to understand exactly how sensory and reinforcement 

feedback interact, and if people can learn more from reinforcement in high uncertainty con-

texts. Preliminary analyses on another dataset acquired in the context of my PhD (in collab-

oration with the group of Prof. Micera from EPFL) suggests that this might be the case (Fig-
ure 2, Vassiliadis et al., 2022 (in prep)). As such, when testing young healthy participants 

on the same task as in Study 3, with varying levels of visual uncertainty and with or without 

reinforcement (Figure 2A, B, C), we found that reinforcement feedback elicited larger ben-

efits both in tracking performance (during training, Figure 2D, E) and in learning (at Post-

training, Figure 2F) in a context of high sensory uncertainty. This provides direct evidence 

for the idea that the benefits of reinforcement feedback on motor learning directly depend 



Discussion 

177 

 

on the quality of the sensory feedback experienced during training. In subsequent experi-

ments, we aim at evaluating whether these results can generalize when uncertainty does 

not only come from vision, but also from somatosensory information, a situation experienced 

by patients suffering from somatosensory deficits such as in the context of peripheral neu-

ropathy or limb amputation (Raspopovic et al., 2014).  
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Figure 2. Effect of visual uncertainty on reinforcement motor learning. A) Representation of 
the force-tracking task. Participants (n = 24) had to follow a moving target by adjusting the force 
applied on a hand-grip force sensor. In separate blocks of training they had to practice either with 
reinforcement feedback indicating real-time performance or with random feedback. Visual uncer-
tainty was manipulated by providing full visual feedback (0% uncertainty) or by removing vision of 
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the cursor for 21.4% (1.5 / 7s; 20% condition) or 64.3% (4.5 / 7s; 60% condition) of the total duration 
of the trial. Pre- and Post evaluation were performed with full visual feedback and no reinforcement 
(grey target). B) Structure of the learning blocks. Participants performed 6 learning blocks (one 
per condition) in a randomized order. C) Sequences of motion of the target. Each experimental 
block was associated to a new pattern of movement of the target that had similar mathematical 
properties and were selected based on pilot experiment to have similar difficulty. D) Learning 
curves. Performance was evaluated based on the tracking Error (i.e., the absolute force difference 
between the target force and the applied force). On the left side, we show raw Error data in each 
condition, averaged by bins of 3 trials. The three plots on the right side show evolution of the Error 
in the three uncertainty conditions in the 0%, 20% and 60% visual uncertainty condition. Note the 
large disruption of tracking with high visual uncertainty that was partially counteracted by reinforce-
ment. D) Effect of reinforcement on motor performance. A significant Visual uncertainty x Rein-
forcement interaction in the LMM was found and related to the fact that reinforcement elicited larger 
gains in performance in the high uncertainty condition. E) Effect of reinforcement on motor learn-
ing. Again, a significant Visual uncertainty x Reinforcement was found and was due to the fact that 
reinforcement significantly improved motor learning but only in the presence of high sensory uncer-
tainty. This result also replicates the finding of reinforcement-related benefits in motor learning under 
high sensory uncertainty observed in the tTISSham condition in Study 3. 

 

Apathy as a potential predictor of reinforcement-related motor gains 

 Another important aspect of reinforcement motor learning is the large inter-individual 

variability in the response to performance feedback, suggesting that individual factors shape 

how much people can benefit from reinforcement during motor learning (Holland et al., 

2019). Such large inter-individual variability was also observed in the three studies pre-

sented here (note the reduction of inter-individual variability in the presence of reward in 

Study 1 though). Put differently, some individual factors may determine how much a given 

participant could benefit from a reinforcement-based training. Hence, an important line of 

research for future clinical translation is to characterize those factors to be able to predict 

which patients could benefit from reinforcement-based interventions.  

 A factor that could strongly influence responsiveness to a reinforcement-based train-

ing is apathy. Apathy is a syndrome of impaired motivation and consequent reduced goal-

directed behavior, which has a large impact on quality of life, and is characterized by a 

reduced willingness to invest effort to obtain rewards (Husain and Roiser, 2018). It is recog-

nized to occur not only in clinical contexts, but also, in milder forms, in the general popula-

tion, especially with ageing (Brodaty et al., 2010; Grool et al., 2014; Bonnelle et al., 2016). 

Importantly, apathy is extremely prevalent in a variety of neurological disorders including 

stroke (i.e., more than 30% of stroke patients suffer from apathy; Caeiro et al., 2013) and 

can be the result of a reduced sensitivity to rewards, increased sensitivity to efforts or a 
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combination of both. Hence, apathy could limit the effect of reinforcement on motor learning 

by reducing the willingness to engage in costly motor control strategies to obtain reinforce-

ment. If this is true, apathy could constitute a predictor of whether patients could benefit from 

reinforcement during motor rehabilitation.  

 To tackle this issue, I have recently launched a new project aiming at evaluating the 

effect of reinforcement on motor learning in stroke patients with varying levels of apathy 

(Figure 3A, B, C). Preliminary results (n = 18) suggest that stroke patients have indeed a 

reduced sensitivity to reward (assessed through the SPSRQ questionnaire) compared to 

healthy young individuals (n = 252), previously tested during my PhD (p < 0.001). As shown 

in Figure 3D, it also appears that sensitivity to reward strongly varies in our sample of stroke 

patients (between 17 [minimum of the scale] and 39 [above the median of the healthy co-

hort]). Interestingly, consistent with our hypothesis, inter-individual variability in sensitivity to 

reward was associated to reinforcement-related gains in motor learning with the most re-

ward-sensitive patients being also the ones exhibiting improvements in motor learning. As 

observed in Figure 3E, reinforcement rather tended to impair learning (Error change > 0) in 

patients with low levels of sensitivity to reward. This differential effect of reinforcement on 

motor learning depending on sensitivity to reward supports the idea that personalization 

might be crucial aspect for successful implementation of reinforcement in motor rehabilita-

tion. Moreover, the amount of variance in reinforcement-related gains explained by the 

model increased from 45% to 76% when adding the level of apathy (evaluated by the AES 

questionnaire) as a predictor. Notably, none of the tested patients exhibited significant de-

pressive symptoms (as evaluated by the HADS score), suggesting that variability in depres-

sion levels is unlikely to account for these preliminary results. This study is still ongoing but 

these results support the idea that levels of sensitivity to reward and apathy might constitute 

reliable predictors of whether a given patient could benefit from a reinforcement-based train-

ing. 
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Figure 3. Effect of sensitivity to reward on reinforcement-related gains in motor learning in 
stroke patients. A) Force tracking task. Stroke patients are asked to control a cursor on the screen 
by squeezing a hand-grip force sensor (represented in the upper left corner) positioned in their af-
fected hand with the goal to follow a moving target. More specifically, they are instructed to position 
the cursor (black ball) as close as possible to the center of the target (larger circle with a cross) for 
the whole trial (7 seconds). In basic conditions, the target remains grey for the whole trial. In Rein-
forcement condition, real-time performance feedback is provided to the participants (Success: 
Green; Failure: Red). In the No Reward condition, performance feedback is random (Cyan or Ma-
genta independent of performance). Notably, visual properties of the stimuli are matched between 
conditions (luminance and frequency of color change). Contrary to other studies presented in this 
PhD, no visual uncertainty was added. B) Structure of a block. Patients perform two blocks of the 
task. Each block is composed as follows: Pre-training (basic conditions; 3 trials), Training (Reward 
or No Reward conditions; 48 trials; interspersed with 40s resting periods) and Post-training (basic 
conditions; 6 trials). Notably, a structural and functional (resting-state) MRI is performed, which will 
allow us to relate lesion localization with reinforcement motor learning. C) Experimental protocol. 
Participants are asked to fill in a battery of questionnaires broadly related to motivation (e.g., AES, 
SPSRQ, HADS, MFI). Then, they familiarize with the task and perform two blocks of trials (one with 
each Reinforcement condition). Structural and resting-state functional MRI scans are also per-
formed. D) Sensitivity to reward in the stroke cohort. Histogram of sensitivity to reward (assessed 
with the SPSRQ-R questionnaire) in the tested stroke patients (n = 18) and in healthy participants 
previously tested during my PhD (n = 252). The solid and dashed vertical lines represents the median 
and 5th percentile in the healthy distribution. E) Relationship between sensitivity to reward and rein-
forcement-related benefits in motor learning. Preliminary data on stroke patients suggest a correla-
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tion between the individual sensitivity to reward and reinforcement-related changes in learning (Dif-
ference of Post-training Error (in % Pre) in Reinforcement vs. No Reinforcement conditions), in line 
with the hypothesis. Negative numbers indicate an improvement of motor learning with reinforce-
ment. 

 

Interestingly, the results of a separate study performed in healthy participants also 

supports the idea that sensitivity to reward may influence reinforcement motor learning. As 

highlighted in the Introduction, motor learning is accompanied by a plastic reorganization of 

multiple brain regions, including M1 (Pascual-Leone et al., 1995). Such reorganization is 

also relevant for rehabilitation of motor function following a stroke (Raffin and Hummel, 

2018). Interestingly, recent research has suggested that the presence of reinforcement dur-

ing training may boost M1 plasticity (Uehara et al., 2018; Spampinato et al., 2019), poten-

tially contributing to the beneficial effects of reinforcement on motor learning. Importantly 

though, another important question relates to the additional effect of motivation by reward 

on motor learning-induced plasticity. In this study, we evaluated the effect of reinforcement 

and motivation by reward on M1 plasticity (Lete*, Vassiliadis* et al., 2022 (in prep)) on a 

subset of the participants evaluated in Study 1. This research was largely inspired by multi-

ple lines of evidence in rodents (Leemburg et al., 2018; Levy et al., 2020; Lee et al., 2021), 

non-human primates (Ramakrishnan et al., 2017) and humans (Cohen and Ranganath, 

2007; Lam et al., 2013) showing reward-related signals in M1, that may boost motor learn-

ing-related plasticity (Hosp et al., 2011). We evaluated plastic changes in M1 by measuring 

the excitability and variability of corticospinal output, as well as by assessing GABAergic 

short intra-cortical inhibition (SICI) and use-dependent plasticity (UDP) at different time 

points across training (Figure 4A). We found that participants who trained with reward had 

an early reduction of variability in corticospinal output (Figure 4B), suggesting that motiva-

tion can indeed modulate learning-induced plasticity in M1. Interestingly, this effect was 

more pronounced in participants who were more sensitive to rewards (Figure 4C), suggest-

ing that the beneficial effect of reward on plasticity is associated to individual sensitivity to 

incentives, in line with the stroke data reported above. We did not find any effect of reward 

on the excitability of corticospinal output, neither on SICI or UDP, suggesting that the plastic 

mechanisms operating in the presence of reward are relatively specific. Overall, these pre-

liminary results suggest that the effect of motivation by reward on reinforcement-based mo-

tor learning is related to a specific plasticity mechanism that reduces neural noise in M1, 

potentially allowing to generate more efficient movements (Manohar et al., 2015, 2019). The 
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data also suggest that the induction of such plasticity depends on the individual level of 

sensitivity to reward of participants. To summarize, the stroke and healthy data presented 

above support the view that individual levels of apathy and sensitivity to reward could be 

predictors of the behavioral and neural responsiveness to reinforcement-based rehabilita-

tion programs.  

 

 

Figure 4. Effect of reward on motor cortex plasticity during motor learning. A) Experimental 
protocol. The study was conducted on a subset of the participants included in Study 1 (n = 65). 
Motor-evoked potentials (MEPs) induced by TMS applied over M1 were recorded from the Flexor 
Policis Brevis (FPB) muscle, involved in pinch grip.  Peak-to-peak amplitude of MEPs were meas-
ured at rest before Pre-training (Pre), after Training 2 (Intra) and after Post-training (Post) in the three 
experimental groups trained with sensory feedback only (Group-S), sensory and reinforcement feed-
back (Group-SR) or both types of feedback and monetary reward in the case of good performance 
(Group-SRR). B) Variability of resting-state corticospinal output during motor learning. The co-
efficient of variation of MEP amplitudes (SD/mean) was computed for each time point and each 
subject and was used as a proxy of the variability of corticospinal excitability at rest. An ANOVA ran 
on the Pre-training normalized data showed that the evolution of CVs with training was markedly 
different between groups (F(2,62) = 4.22; p = 0.019). Post-hoc tests showed that this effect was driven 
by a significant difference between CV’s in Group-SRR and Group-S (Tukey-corrected p = 0.016). No 
other effect was found. C) Correlation between training-related plasticity and individual sensi-
tivity to reward. The reduction of MEP CVs observed early in training in Group-SRR was related to 
individual sensitivity to reward as evaluated by the Reward questions of the SPSRQ questionnaire.  
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Towards stratification of patients based on lesion localisation  

As mentioned above, Study 3 provides evidence that functional integrity of the stria-

tum and the associated fronto-striatal pathways are required to benefit from reinforcement. 

This result may therefore have implications for stratification of patients depending on the 

localisation of their lesion. For instance, stroke patients suffering from striatal lesions that 

can arise from blockage of the lenticulostriate artery (arising from the middle cerebral artery) 

or the recurrent artery of Heubner (arising from the anterior cerebral artery), who are known 

to present strong motor deficits (Liu et al., 2020), may not benefit from reinforcement-based 

interventions during rehabilitation. Similarly, Parkinson’s disease patients may not be able 

to learn from reinforcement feedback because of striatal dysfunction, as previously sug-

gested (Pekny et al., 2015). In the same vein, the ability to benefit from reinforcement during 

motor learning is associated to grey-matter volume in the lateral prefrontal cortex (Dayan et 

al., 2014b). Hence, the presence of fronto-striatal lesions may prevent patients from learning 

new motor skills through reinforcement. To further explore this idea, an interesting topic for 

future research will be to relate the ability to benefit from a reinforcement-based motor train-

ing with the localisation and type of lesions in specific populations of patients.  

Overall, combined with the previous literature discussed above, this knowledge al-

lows us to have a clearer picture of the training parameters that need to be considered for 

successful integration of reinforcement feedback into future rehabilitation programs (see 

Figure 5 for a summary of these ideas). In addition, given the large heterogeneity of clinical 

profiles undergoing motor rehabilitation, we have started to determine individual factors that 

determine responsiveness to reinforcement learning of motor skills, a line of research which 

will be crucial to design patient-tailored rehabilitation strategies.  
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Figure 5. Factors to consider for the use of reinforcement feedback in motor rehabilitation. 
Summary of the factors that appear to influence reinforcement motor learning, as discussed in this 
work. These factors are separated in training features and individual characteristics of patients. The 
dashed arrows are used in the case of factors for which only indirect or preliminary evidence is 
available. 

 

5.3.2. Trancranial electric temporal interference stimulation: a new non-inva-

sive approach for deep brain stimulation 

Study 3 exploited tTIS stimulation in humans to modulate striatal activity. As ex-

plained above, tTIS was first validated through physics experiments, computational model-

ling (Rampersad et al., 2019; Cao et al., 2020; Mirzakhalili et al., 2020; Esmaeilpour et al., 

2021; von Conta et al., 2021) and rodents experiments (Grossman et al., 2017; Song et al., 

2021). First applications of tTIS in humans have been recently performed in cadavers 

(Acerbo et al., 2022) and in-vivo on superficial targets (Ma et al., 2022; Zhu et al., 2022). In 

a previous study from the lab in which I have participated during my PhD, we have applied 

striatal tTIS stimulation patterned as an intermittent theta burst stimulation (iTBS, a protocol 

known to support plasticity) while healthy participants were practicing a motor sequence 
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learning task with the left hand in the MRI (Wessel*, Beanato* et al., 2022, submitted). We 

found that tTISiTBS increased activity in the striatum during practice, in particular in a subre-

gion of the striatum that was more activated by the task (i.e., the right putamen). Moreover, 

these changes of brain activity were accompanied by an improvement of motor performance 

during training. Combined with the data reported in Study 3, this constitutes converging ev-

idence that tTIS stimulation is able to overcome the depth-focality tradeoff of current non-

invasive brain stimulation techniques in humans with sufficient current strength, by showing 

specific, focal and functionally-relevant modulation of the striatum. In addition, this body of 

work indicates that tTIS stimulation can modulate different striatal functions depending on 

the pattern of stimulation, and the state of the underlying network. In both studies, no ad-

verse events were reported and the reported sensations were generally mild and compatible 

with an efficient blinding. Overall, these elements suggest that tTIS is safe, pain-less and 

able to stimulate deep brain structures with relevant behavioral effects. 

Importantly, despite these promising first results, there is a strong need to develop a 

careful mechanistic understanding of tTIS effects. First, a core assumption of tTIS is that 

neurons are not sensitive to electrical currents delivered in the high frequency range, allow-

ing neuromodulation of deep structures without significant stimulation of the overlying cor-

tex. Consistently, the first study applying tTIS on the hippocampus of rodents did not find 

any evidence for concurrent cortical stimulation (Grossman et al., 2017). However, a previ-

ous study did report motor excitability changes in response to high frequency tACS applied 

on M1 (Chaieb et al., 2011), suggesting that high-frequency currents can indeed modulate 

cortical activity in humans. Importantly, in both tTIS studies conducted in the context of my 

PhD, we compared our experimental stimulation with an active control that also contained 

the high frequency component (i.e., tTIS20Hz for Study 3 and a pure high frequency stimula-

tion in Wessel*, Beanato* et al., 2022). Hence, the comparison between the experimental 

conditions and the active control allowed us to isolate the unique contribution of the tTIS 

field. That being said, better understanding the potential influence of high-frequency electri-

cal stimulation on neuronal activity appears as an important line of future research 

(Mirzakhalili et al., 2020).  

Another important question is how electric field magnitudes elicited by tTIS deep in 

the brain are able to modulate neuronal activity. As such, the simulations performed by our 

collaborators (team of Prof. Esra Neufeld, ETZ) indicates that electric fields in the striatum 
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are in the range of 0.5-0.6 V/m with the stimulation parameters used in the present work. 

Our results therefore support the idea that neuromodulation is possible at these weak elec-

tric field magnitudes, in line with previous tACS studies in primates showing neuronal effects 

with electric fields as low as 0.2-0.3 V/m (Krause et al., 2019, 2022). Importantly, another 

aspect that may influence the responsiveness to weak electric fields is the concurrent en-

gagement of the stimulated structures in a task. As such, we have found a preferential in-

crease of activity in subparts of the striatum that were already engaged in the task, support-

ing the view that co-activation is important for tTIS-related neuromodulation (Wessel*, 

Beanato* et al., 2022). Such co-activation may bring the neurons closer to a critical threshold 

for depolarization, ultimately increasing their sensitivity to weak electrical fields. Overall, our 

work indicates that the putatively weak electric fields generated by tTIS are sufficient for 

deep brain neuromodulation and further suggests that concurrent co-activation may be a 

key element in this process.  

In summary, tTIS is a promising new technology allowing to neuromodulate deep 

brain regions non-invasively. Beyond its clear relevance in research to establish causal links 

between deep brain regions and particular behaviors (as done in Study 3), this technique 

may also be relevant to support recovery of neuro-psychiatric disorders characterized by 

abnormal processing in deep brain regions in a non-invasive and cost-effective way. 

 

5.4. Conclusion 

The present work characterized key mechanisms underlying the effect of reinforce-

ment on motor learning using a combination of behavioral analyses, brain stimulation and 

neuroimaging. More specifically, we have shown that motivation, timing of reinforcement 

and striatal neuromodulation can all strongly influence reinforcement learning of motor skills. 

As I have argued in this discussion, personalized reinforcement feedback appears to be a 

promising tool to improve current motor rehabilitation protocols.  
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Abstract  

Training can improve motor skills and modify neural activity at rest and during move-

ment execution. Learning-related modulations may also concern motor preparation but the 

neural correlates and the potential behavioral relevance of such adjustments remain un-

clear. In humans, preparatory processes have been largely investigated using transcranial 

magnetic stimulation (TMS) with several studies reporting decreased corticospinal excitabil-

ity (CSE) relative to a baseline measure at rest; a phenomenon called preparatory suppres-

sion. Here, we investigated the effect of motor training on such preparatory suppression, in 

relation to resting CSE, in humans. We trained participants to initiate quick movements in 

an instructed-delay reaction time (RT) task and used TMS to investigate changes in CSE 

over the practice blocks. Training on the task speeded up RTs, with no repercussion on error 

rates. Training also increased resting CSE. Most interestingly, we found that CSE during 

action preparation did not mirror the training-related increase observed at rest. Rather, com-

pared to the rising baseline, the degree of preparatory suppression strengthened with prac-

tice. This training-related change in preparatory suppression (but not the changes in base-

line CSE) predicted RT gains: the subjects showing a greater strengthening of preparatory 

suppression were also those exhibiting larger gains in RTs. Finally, such relationship be-

tween RTs and preparatory suppression was also evident at the single-trial level, though 

only in the non-selected effector: RTs were generally faster in trials where preparatory sup-

pression was deeper. These findings suggest training induces changes in motor preparatory 

processes that are linked to an enhanced ability to initiate fast movements.  

 

New and Noteworthy 

Movement preparation involves a broad suppression in the excitability of the corticospi-

nal pathway, a phenomenon called preparatory suppression. Here, we show that motor 

training strengthens preparatory suppression and that this strengthening is associated with 

faster reaction times. Our findings highlight a key role of preparatory suppression in training-

driven behavioral improvements. 
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1. Introduction 

 

Motor training improves the speed and/or accuracy at which movements are selected, 

initiated and executed. Significant research has been devoted to unveiling the functional 

changes at the basis of such improvements (Krakauer et al., 2019). At the neural level, 

neuroimaging (e.g., Wiestler & Diedrichsen, 2013; Wenger et al., 2017; Yokoi & Diedrichsen, 

2019) and transcranial magnetic stimulation (TMS) studies (e.g., Rosenkranz et al., 2007; 

Reis et al., 2008; Mawase et al., 2017) have shown that training is accompanied by a plastic 

reorganization of the motor system, supporting the formation of new motor memories. Spe-

cifically, training amplifies resting motor activity (e.g., Pascual-Leone et al., 1995; Butefisch 

et al., 2000; Duque et al., 2008; Galea & Celnik, 2009; Christiansen et al., 2018) and induces 

learning-specific changes of motor activity during movement execution (Krakauer et al., 

2004; Steele and Penhune, 2010; Shmuelof et al., 2014). Animal studies also show learning-

related modulations of motor activity during action preparation (Paz et al., 2003; Makino et 

al., 2017; Vyas et al., 2018, 2020) that could reflect an optimization of preparatory processes 

with training (Mawase et al., 2018). Yet, the behavioral relevance of the effects of training 

on action preparation remain unclear. 

In humans, the excitability of the motor system can be assessed by applying TMS 

over primary motor cortex (M1), eliciting motor-evoked potentials (MEPs), whose amplitude 

reflects the excitability of the corticospinal pathway (Derosiere and Duque, 2020; Derosiere 

et al., 2020). When applied during reaction time (RT) tasks, TMS elicits MEPs that are used 

to assess corticospinal excitability (CSE) changes associated with action preparation and 

initiation. CSE is often suppressed during action preparation when compared to a baseline, 

measured at rest. The function of this preparatory suppression (or inhibition) remains un-

clear (e.g., Greenhouse et al., 2015; Duque et al., 2017; Derosiere, 2018; Hannah et al., 

2018). A prominent view is that it assists action selection processes, by preventing the re-

lease of premature or incorrect responses (Duque et al., 2010; Quoilin et al., 2018, 2020; 

Grandjean and Duque, 2020). Indeed, the amount of preparatory suppression seems to 

scale with the complexity of selection processes (Klein et al., 2014; Duque et al., 2016). 

Another hypothesis is that preparatory suppression eases movement initiation (Greenhouse 

et al., 2015; Hasegawa et al., 2017). In this line, a study showed a dependence of RTs on 

the amount of preparatory suppression on a single-trial basis: the stronger the suppression, 
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the faster the initiation of the ensuing movement (Hannah et al., 2018). Importantly, both 

hypotheses could be valid as they focus on different levels of control: while the “selection 

hypothesis” suggests that suppression originates from processes that help select accurate 

actions (i.e., therefore reducing the error rate), the “motor hypothesis” entails that prepara-

tory suppression is also generated by processes speeding up movement initiation (i.e., 

therefore reducing RTs). 

Here, we investigated the impact of motor training on preparatory suppression, while 

subjects practiced an instructed-delay RT task. The selection aspects were clear-cut, as 

evident from the low error rates, even before training. Hence, in such task, there is no room 

for improvement at the selection level and subjects can only become more skilled at the 

motor level, by initiating their response faster. Based on this, we predicted that RTs would 

shorten over the course of practice but that error rates would remain marginal. In addition, 

we expected resting CSE to increase with training, in accordance with previous work 

(Pascual-Leone et al., 1995; Butefisch et al., 2000; Duque et al., 2008; Galea and Celnik, 

2009; Christiansen et al., 2018). Based on the motor hypothesis (i.e., that preparatory sup-

pression fastens RTs), we expected that the suppression of CSE during action preparation 

would strengthen along with the RT decrease over the practice blocks.  
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2. Materials and Methods 
2.1. Participants 

Fifteen right-handed healthy subjects participated in the present study (n=15; 10 

women; 22.4±1.63 years old). Handedness was assessed via Edinburgh Handedness in-

ventory (Oldfield, 1971). Participants filled out a TMS safety questionnaire to look for any 

contra-indication and gave written informed consent in accordance with the Ethics Commit-

tee of the Université Catholique de Louvain (approval number: 2012/22MAR/119) and the 

principles of the Declaration of Helsinki. We had to exclude one subject because we en-

countered a technical problem during the experiment; hence, analyses were run on the four-

teen remaining subjects. Part of the data reported here has been exploited in a separate 

study (Vassiliadis et al., 2018). All of the data are expressed as mean±SE. 

 

2.2. Task  

Subjects were seated in front of a computer screen with the hands on response de-

vices (Figure 1A, Grandjean et al. 2019; Grandjean and Duque 2020; Quoilin et al. 2016, 

2018, 2019, 2020). They performed an instructed-delay RT task, which required them to 

choose between abduction movements of the left or right index finger according to the po-

sition of a preparatory cue (i.e., a left- or right-sided ball separated from a goal by a gap). 

Participants had to prepare their movement once the ball appeared but to withhold respond-

ing until the onset of a “Go” signal (i.e., a bridge). When the bridge appeared on the screen, 

subjects had to respond as fast as possible, allowing the ball to roll on the bridge and to 

reach the goal (Figure 1B). To reduce anticipation of the “Go” signal, the bridge did not 

appear in some of the trials (5%). Subjects were required not to respond on these trials and 

were penalized if they did so.  

Trials always ended with a feedback score reflecting performance. On correct trials, 

scores ranged from 1 to 100 points and were displayed in green. Participants were informed 

that the score was inversely proportional to the RT: the faster the response, the higher the 

score. In order to homogenize the score across subjects, scores on correct trials were indi-

vidualized according to RTs measured during a familiarization block just before the main 

experiment (Vassiliadis et al., 2018; Grandjean et al., 2019). Incorrect responses were pe-

nalized with negative scores displayed in red. They involved responses occurring too early 

(RT<100 ms), referred to as “anticipation errors” (-75 points), responses occurring too late 
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(RT>500 ms), referred to as “time-out errors” (-50 points), responses provided with the in-

correct hand (-20 points), referred to as “selection errors” and responses provided on catch 

trials (-12 points), referred as “catch errors”. When subjects succeeded not to respond on a 

catch trial, they were rewarded by +12 points. The total score was displayed at the end of 

each block. 

 

2.3 TMS Protocol 

Monophasic pulses were delivered through one or two small figure-of-eight shaped 

coils (internal diameter: 3.5 cm), each connected either to a Magstim 200² magnetic stimu-

lator (Magstim, Whitland, Dyfed, UK). The TMS machine used to stimulate each hemisphere 

was counterbalanced between subjects. Pulses could be triggered in one (i.e., single-coil 

TMS) or in the two coils (i.e., double-coil TMS, Figure 1C) because the dataset was initially 

acquired for a separate study to establish the reliability of double-coil TMS to probe CSE 

bilaterally (Grandjean et al., 2018; Vassiliadis et al., 2018). In double-coil trials, a 1-ms in-

terval separated the onset of the two pulses, eliciting MEPs in both hands at a near simul-

taneous time (Algoet et al., 2018; Grandjean et al., 2018; Vassiliadis et al., 2018; Quoilin et 

al., 2019). This interval was used to avoid direct electromagnetic interference between the 

two coils (Cincotta et al., 2005), while preventing transcallosal interactions that would occur 

between motor areas with longer delays (Ferbert et al., 1992; Hanajima et al., 2001). Nota-

bly, in double-coil trials, half of the trials involved a pulse over left M1 first whereas the other 

half involved a pulse over right M1 first (1ms delay). These data were assembled because 

a prior analysis reported elsewhere showed that the order of stimulation does not influence 

double-coil MEP amplitudes, which are equivalent to single-coil MEPs (Vassiliadis et al., 

2018).  

Each TMS coil was placed tangentially over one M1 with the handle pointing back-

ward, laterally at a 45° angle away from the midline to induce a posterior-anterior current in 

the underlying cortical tissue (Figure 1C). TMS was applied over the hotspot of the first 

dorsal interosseous muscle (FDI), which was the prime-mover in our task (Duque et al., 

2014; Derosiere et al., 2017a, 2017b). The resting Motor Threshold (rMT) was determined 

for each M1. It was defined as the minimal intensity required to evoke MEPs of 50µV at rest 

in at least 5 out of 10 stimulations (Groppa et al., 2012; Wessel et al., 2020). The rMTs 

equalled 41.7±5.05% and 40.8±6.39% of the maximum stimulator output for the left and the 
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right FDI, respectively. For each hemisphere, the intensity used throughout the experiment 

was set at 115% of the individual rMT (Derosiere et al., 2019).  

 

Figure 1. A, The response device. Index finger responses were recorded using a home-made 
device composed of two pairs of metal edges fixed on a wooden platform and positioned under the 
left (graphic representation) and right (photographic representation) hands. B, "Rolling Ball" task. 
Subjects were asked to choose between responding with the left or right index finger according to 
the position of a ball (Preparatory cue) appearing on the left or right part of the screen (left in the 
current example). They had to wait until the onset of a bridge (“Go” signal) to release their response 
as quickly as possible. The ball then rolled on the bridge (when the subjects answered correctly) to 
reach a goal located on the other side of the gap. A feedback reflecting how fast and accurate the 
subjects were concluded each trial. C, TMS protocol. Two small figure-eight-shaped coils were 
placed over the subject’s M1, eliciting MEPs in the left and/or right FDI.   
 

2.4 Experimental procedure 

The experiment started with two familiarization blocks. The first block included 20 

trials and allowed subjects to become acquainted with the task. The second block involved 

40 trials with TMS (as in the experimental blocks) and served to compute the median RT for 

each subject. The latter was used to individualize the feedback scores on correct trials ac-

cording to the initial performance. 

Then, subjects performed 400 trials of the task, divided in 10 experimental blocks. 

Each block involved an equal combination of single- and double-coil stimulations, occurring 

in a random order (i.e., subjects could not anticipate the type of stimulation they would face). 

Given that both techniques produce equivalent MEPs (Grandjean et al., 2018; Vassiliadis et 

al., 2018), these data were considered regardless of the protocol used to elicit them.  
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TMS could occur in three different settings. First, some TMS pulses were delivered 

outside the blocks (TMSbaseline-out), providing MEPs reflecting baseline CSE at complete rest. 

TMSbaseline-out pulses occurred every other block, starting before block 1 and ending after 

block 8 (5 time points; Figure 2A). Each time point involved 10 double-coil pulses (i.e. 10 

pulses on both M1) and 10 single-coil pulses (5 pulses on each M1), allowing us to collect 

15 MEPs in each hand at each of the 5 different stages of the experiment. Second, TMS 

occurred during the intertrial interval, 300 ms before the beginning of the trial (Figure 2B). 

MEPs recorded at this time provided another baseline measure of CSE, with subjects at rest 

but engaged in the task (TMSbaseline-in Labruna et al., 2011).  In each block, TMSbaseline-in 

occurred in 4 double-coil trials (i.e. 4 pulses on both M1) and 4 single-coil trials (2 pulses on 

each M1), allowing us to collect a total of 6 baseline MEPs per block in each hand (i.e., 12 

for each TrainingSTAGE). Finally, TMS occurred at 900 or 950 ms after the onset of the pre-

paratory cue (TMSpreparation). Since no difference was found between MEPs recorded at 

these two timings in our previous analysis of the same data set (Vassiliadis et al., 2018), 

these MEPs were pooled together. TMSpreparation occurred in 16 double-coil trials (i.e., 16 

pulses on both M1) and 16 single-coil trials (8 pulses on each M1), allowing us to collect a 

total of 24 preparatory MEPs per block in each hand (48 MEPs for each TrainingSTAGE). Half 

of these MEPs fell in left response trials, while the other half occurred in right response trials. 

Hence, MEPs could either fall in a hand that was selected for the forthcoming response 

(MEPselected; e.g., left MEPs preceding a left index finger response) or in a hand that was 

non-selected (MEPnon-selected).  
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Figure 2. A, Time-course of the experiment. After two familiarization blocks, subjects executed 
ten blocks of forty trials during which MEPs were elicited at TMSbaseline-in or TMSpreparation. The effect 
of training was assessed by comparing five sets of data (Training1 to Training5), each involving MEPs 
pooled over two consecutive blocks. MEPs were also elicited outside the blocks (TMSbaseline-out) at 
five points in time, before block 1 and after blocks 2, 4, 6 and 8, categorized as Training1 to Training5, 
similar to the MEPs elicited during the blocks. Comparing these data sets allowed us to consider 
potential training-related changes in resting CSE outside the context of the task. B, Time course of 
a trial. Trials were separated by a blank screen (intertrial interval; 2050 to 2300 ms) and always 
started with a preparatory cue appearing for a variable delay period (1000 to 1200 ms). Variable 
delays were sampled from uniform distributions to induce temporal uncertainty and therefore reduce 
anticipation of the pulses that could emerge with the repetition of trials. Then, a “Go” signal was 
presented and remained on the screen until a response was detected, hence for the duration of the 
reaction time (RT). The feedback was presented at the end of each trial for 500 ms and depended 
on the RT on correct trials. TMS pulses occurred either during the intertrial interval (300 ms before 
the beginning of the trial; TMSbaseline-in), or during the delay period (900 or 950 ms after the prepara-
tory cue onset, timings pooled; TMSpreparation). In double-coil trials, motor-evoked potentials (MEPs) 
were elicited in the first dorsal interosseous (FDI) of both hands at a near simultaneous time (1 ms 
delay); in single-coil trials, MEPs were elicited in the left or right hand. The figure displays a left hand 
trial with double-coil TMS at TMSpreparation.  
 

2.5 Data processing and statistical analyses 

The purpose of the study was twofold: (1) to characterize changes in CSE at rest and 

during action preparation occurring along with training in a basic instructed-delay RT task, 

(2) to assess whether modulations in CSE were correlated to training-related improvements 

in RTs. To do so, the behavioral and MEP data were evaluated according to the block within 
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which they were elicited and data from two consecutive blocks were pooled together. Given 

the 10 blocks, we obtained five data sets reflecting five training stages (TrainingSTAGE: Train-

ing1 to Training5; Figure 2A).  

 

Statistical analyses were carried out with Matlab 2018a (the Mathworks, Natick, Mas-

sachusetts, USA) and Statistica 10 (StatSoft Inc., Tulsa, Oklahoma, USA). All data were 

systematically tested for the sphericity assumption using Maunchley's tests. The Green-

house–Geisser (GG) correction was used for sphericity when necessary. Post-hocs com-

parisons were always conducted using the Fisher’s LSD procedure. The significance level 

was set at p ≤ 0.05. 

 

2.5.1 RTs and errors 

Left and right hand RTs were computed as the difference between the onset of the 

“Go” signal and movement onset (when the finger quitted the outer metal edge of the de-

vice). Trials where subjects made an error were removed from the data set for the RT anal-

ysis. An average of 34.9 left and 33.6 right response trials remained for each subject at each 

TrainingSTAGE (Table 1). We computed the mean RT for left and right responses separately 

and then averaged these data together. We choose this two-step method to make sure that 

left and right hand RTs would have the same weight in the averaged data for each Train-

ingSTAGE, regardless of the number of errors in each hand. Besides, we also assessed re-

sponse accuracy over training, by computing, for each TrainingSTAGE, the amount of antici-

pation, time-out and catch errors as well as the total error rate. For each of these variables, 

we expressed the number of incorrect trials in percentage of the total amount of trials, re-

gardless of the responding hand. Selection errors were not analysed because they were 

rare (4 selection errors across all subjects). For the statistical analysis of RTs and errors 

(i.e., anticipation, time-out, catch and global errors), we used one-way analyses of variance 

for repeated measures (ANOVARM) with the factor TrainingSTAGE (Training1 to Training5).  

 

2.5.2 MEP amplitudes 

MEPs were obtained by recording electromyography (EMG) bilaterally from surface 

electrodes (Neuroline, Medicotest, Oelstykke, Denmark) placed over the FDI. The signals 

were amplified (x1000), bandpass filtered (10-500Hz; NeuroloLog; Digitimer), digitalized at 
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2000 Hz and collected with Signal (Signal 3.0, Cambridge, UK) for offline analysis. Trials 

with background EMG activity in the 200 ms window preceding the pulse exceeding 3 SDs 

above the mean were discarded (1.68±0.30% removal; Vassiliadis et al., 2018; Grandjean 

et al., 2018, 2019). This was done to prevent contamination of the MEP measurements by 

significant fluctuations in background EMG.  

To assess training-related changes in resting CSE based on MEPs elicited at TMS-

baseline-out and TMSbaseline-in, we averaged separately left and right hand MEPs for each Train-

ingSTAGE before computing the mean of these averages. These data were analysed using a 

two-way ANOVARM with TMSTIMING (TMSbaseline-out or TMSbaseline-in), and TrainingSTAGE (Train-

ing1 to Training5) as within-subject factors. To assess training-related changes in preparatory 

suppression based on MEPs at TMSpreparation (expressed in percentage of MEPs at TMSbase-

line-in), we first removed the trials in which subjects made a mistake (10.78±1.81% removal) 

and then grouped left and right hand MEPs according to whether they corresponded to a 

MEPselected or MEPnon-selected. Within these categories, we averaged the separate means of 

left and right hand MEPs for each TrainingSTAGE. The number of trials that remained in each 

condition after data cleaning is provided in Table 1. To analyse these data, we first focused 

on percentage MEPs at Training1, assessing with t-tests (against a constant value of 100%) 

the significance of preparatory suppression at the beginning of training. Then, we analyzed 

all training stages using a two-way ANOVARM with the factors MEPSELECTION (MEPselected or 

MEPnon-selected) and TrainingSTAGE (Training1, to Training5). This ANOVA was also run on ab-

solute MEP amplitudes (in mV).  

 

 
Selected Non-Selected 

Selected 
Non-Se-
lected 

MEP at TMSpreparation 

    
     
     
     
     
     
     
     
     

Table 1: Number of trials included per condition in the main analysis (mean [range]).  



Annex 1:  Motor training strengthens corticospinal suppression during movement preparation 

222 

 

 

 

2.5.3 Relationship between training-related changes in RTs and CSE 

As described in the Result section, training influenced RTs and CSE. We studied the 

relationship between changes at these two levels, with CSE considered separately at rest 

and during action preparation. We computed ratios reflecting training-related changes. 

Based on the RT data, we realized that the subjects’ behavior improved substantially during 

the first practice stage (Training1 to Training3) but then, RTs remained quite stable (from 

Training3 to Training5; Result section). For this reason, we considered ratios for these two 

phases of training separately, providing us with an indication of early (Trainingratio-early: Train-

ing3/Training1) and late (Trainingratio-late: Training5/Training3) training-related changes in RTs 

and CSE. For the latter, we computed separate ratios for MEPs at TMSbaseline-out, TMSbaseline-

in and TMSpreparation (expressed in percentage of MEPs at TMSbaseline-in). We then examined 

the correlation between the RT and MEP Trainingratios by using least squares linear regres-

sions.  

Finally, we compared the strength of the RT relationship to training-related changes 

in MEP amplitudes at TMSbaseline-in (reflecting resting CSE) and changes in percentage MEPs 

at TMSpreparation (reflecting preparatory suppression of CSE). To do so, in order to obtain a 

robust estimate of the absolute Pearson’s R, we ran a bootstrap analysis with 10000 

resamples and calculated a median R for each correlation (Efron, 1979). These R-values 

were then compared to each other using Pearson and Fillon’s z test (Pearson and Filon, 

1898).  

 

2.5.4 Single-trial relationship between RTs and preparatory suppression 

The correlation analyses revealed a relationship between RTs and preparatory sup-

pression: the subjects who showed the greatest training-related reduction in RTs were also 

those who displayed the strongest deepening in preparatory suppression (see Result sec-

tion). To better understand the dependency of RTs to the strength of preparatory suppres-

sion, we investigated whether this relationship was evident on a single-trial basis, as sug-

gested previously (Hannah et al., 2018). We selected the MEPs elicited at TMSpreparation and 

again, expressed them as a percentage of TMSbaseline-in. We only used the double-coil trials, 
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to consider a homogeneous set of data, with preparatory MEPs falling in both hands sys-

tematically. For each trial, we extracted the RT, as well as the MEPs recorded at TMSprepa-

ration in both selected (MEPselected) and non-selected (MEPnon-selected) hands. Hence, for each 

trial, we obtained one RT measure linked to two different MEPs. 

To examine the relationship between RTs and preparatory suppression, we pooled 

the trials from all 10 blocks together and sorted them according to the amplitude of MEPs 

within each trial. Given that there were two MEPs in each trial, we repeated this procedure 

twice, providing us with two different orderings of the trials according to the MEPselected or 

MEPnon-selected. Within each arrangement, trials were grouped into 6 consecutive percentile 

bins (MEPBIN: MEPBIN-1 = 0 to 16.7%, MEPBIN-2 = 16.7 to 33.3% … MEPBIN-6 = 83.3 to 100% 

of the data). MEPBIN-1 contained the trials with the stronger preparatory suppression whereas 

the MEPBIN-6 included the trials with the weaker preparatory suppression. We then computed 

the mean RT of trials within each MEPBIN (23.5 trials per condition on average and never 

less than 19 trials). Notably, because each MEPBIN involved a limited number of trials in this 

analysis, RTs were pooled together regardless of whether they were obtained in a left or 

right hand trial. Hence, we obtained six average RT values (i.e., one for each MEPBIN) for 

each of the trial arrangements based on the two MEP types. These two sets of RT data were 

analysed using two separate ANOVARM with the factor MEPBIN (MEPBIN-1 to MEPBIN-6). 
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3. Results 

 

3.1. RTs and errors 

Figure 3A shows the evolution of RTs with training. The ANOVARM revealed a signif-

icant influence of TrainingSTAGE on RT (F(4,52)=4.31, p=0.0043). Post-hoc tests showed that 

RTs measured from Training3 to Training5 were shorter than at Training1 (all p<0.004). In 

contrast, the total error rate remained stable over the blocks (F(4,52)=0.82, p=0.52, Figure 
3B). We did not observe any modification of the percentage of anticipation (F(4,52)=1.12, 

p=0.36), time-out (GG-corrected F(2.50,32.50)=0.90, p=0.44) or catch errors (F(4,52)=1.73, 

p=0.16). Hence, training enabled subjects to respond more quickly while maintaining the 

same accuracy level.  

 

 

Figure 3. Evolution of reaction times (RTs) and total error rate throughout training. The mean 
RTs (A, in ms) and total error rate (B, in % of all trials) are represented for each TrainingSTAGE, 
regardless of the responding hand. Stars denote a significant difference between a given Train-
ingSTAGE and Training1 (p<0.05). Individual data for Training1 and Training5. 
 

3.2. MEP amplitude  

First, we evaluated the effect of training on MEPs acquired at rest. As evident on 

Figure 4, MEPs were larger when assessed in the context of the task (TMSbaseline-in: 

1.79±0.17mV) compared to when subjects were fully at rest (TMSbaseline-out: 1.34±0.17mV), 

as supported by the significant factor TMSTIMING (F(1,13)=28.43, p<0.001) and consistent with 

previous studies (Labruna et al., 2011; Derosière et al., 2015). The ANOVARM also revealed 
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an effect of TrainingSTAGE on baseline MEPs (F(4,52)=6.34, p<0.001). MEPs recorded at Train-

ing2 to Training5 were larger than at Training1 (all p<0.03). This training effect on MEPs oc-

curred independently of the TMSTIMING: there was a parallel increase in the amplitude of 

MEPs elicited at TMSbaseline-out and TMSbaseline-in (TrainingSTAGExTMSTIMING: F(4,52)=0.18, 

p=0.95).  

 

 

Figure 4. Evolution of baseline MEPs throughout training. MEP amplitudes (in mV) elicited at 
TMSbaseline-out (black) and TMSbaseline-in (pink) at the different TrainingSTAGES. Hash signs indicate a 
TMSTIMING effect. Stars denote a significant difference between a given TrainingSTAGE and Training1 

(p<0.05). Individual data for Training1 and Training5 are also displayed. 
 

Second, we analyzed the effect of training on preparatory suppression by considering 

MEPs elicited at TMSpreparation (expressed in percentage of TMSbaseline-in). As evident on Fig-
ure 5A, percentage FDI MEPs were initially suppressed at Training1 (MEPs smaller than 

100%), consistent with the presence of preparatory suppression in the prime-mover, 

whether selected for the forthcoming response (MEPselected: 73.98±4.00%; t(13)=-6.50, 

p<0.0001) or not (MEPnon-selected: 76.26±4.36%; t(13)=-5.44, p<0.001). Interestingly, prepara-

tory suppression became more prominent with training: the ANOVARM revealed a significant 

decrease in percentage MEP amplitudes over the TrainingSTAGES (F(4,52)=2.79, p=0.036). 

This change was marginal at Training4 (i.e., Training4: p=0.058 when compared to Training1) 

and became significant at Training5 (p=0.006). It concerned MEPs obtained from the se-

lected and non-selected hands (TrainingSTAGExMEPSELECTION: F(4,52)=0.56, p=0.70). To fur-

ther our understanding of training-related changes of preparatory activity, we ran another 

set of ANOVARM on absolute MEP amplitudes (rather than percentages) at TMSpreparation 

(Figure 5B). These MEPs did not show any fluctuation over the TrainingSTAGES (F(4,52)=1.30, 
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p=0.28). Moreover, we did not find any MEPSELECTION effect (F(1,13)=1.69, p=0.22) or Train-

ingSTAGExMEPSELECTION interaction (F(4,52)=0.85, p=0.50).  

In conclusion, our results indicate that training did not produce even modulatory 

changes in motor activity at rest and during action preparation: while resting CSE increased, 

preparatory activity remained flat over the blocks, thus revealing an augmenting drop in pre-

paratory activity (i.e. a strengthening of preparatory suppression) with respect to the rising 

baseline excitability state. These changes in CSE occurred in parallel with an acceleration 

of RTs.   

 

 

Figure 5. Evolution of preparatory MEPs throughout training. Normalized MEP amplitudes rec-
orded at TMSpreparation (in percentage of MEPs elicited at TMSbaseline-in) muscles at the different Train-
ingSTAGES (A). Absolute MEP data (in mV) are also represented muscles (B). The star denotes a 
significant difference between a Training5 and Training1 (p<0.05). Note that the change in preparatory 
suppression was close to significance at Training4 (i.e., p=0.058 when compared to Training1). Indi-
vidual data for Training1 and Training5 are also displayed. 

 

Because RTs became shorter over the blocks, one may argue that MEPs at TMSprep-

aration were not recorded in a comparable preparatory state throughout training; that is, the 

delay between TMS and movement onset (DelayTMS-TO-MOVE) may have decreased over the 

blocks. Importantly, we shuffled the delay between the pulse and the “Go” signal in the pre-

sent study (see Methods), in order to prevent changes in RT to convert into equivalent 

changes in the DelayTMS-TO-MOVE. However, because TMS fell on average closer to move-

ment onset at Training5 (399.70±8.48ms) than Training1 (419.99±9.99ms, t(13)=-3.10, 

p=0.008), we performed an additional analysis to control for a potential bias of the DelayTMS-

TO-MOVE. We conducted a response-locked analysis whereby we classified MEP data at 
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TMSpreparation (regardless of the TrainingSTAGE) according to the DelayTMS-TO-MOVE in 5 consec-

utive bins of trials (DelayBIN = DelayBIN-1= 0 to 20%, DelayBIN-2= 20 to 40%, …, DelayBIN-5= 80 

to 100% of the DelayTMS-TO-MOVE data). An ANOVARM ran on these data did not reveal any 

effect of DelayBIN (F(4,52)=1.45; p=0.23), nor was there any significant MEPSELECTIONxDelayBIN 

interaction (F(4,52)=0.40; p=0.81; Figure 6). These results indicate that MEPs elicited preced-

ing a “Go” signal remain quite unaffected by the delay separating the TMSpreparation pulse and 

movement onset.   

 

Figure 6. Preparatory suppression according to time before movement onset. MEP amplitudes 
recorded at TMSpreparation (in percentage of MEPs elicited at TMSbaseline-in) are represented for each 
DelayBIN in a selected (red) or non-selected (blue) muscle.  
 

Moreover, as an additional safety check, we also considered whether potential 

changes in background EMG activity could be responsible for the training-related changes 

in CSE reported here. To do so, we ran two additional analyses on pre-TMS EMG RMS 

amplitudes. First, we analysed RMS amplitude before the TMSbaseline-in pulses by means of 

a one-way ANOVA with the factor TrainingSTAGE. This analysis revealed a stable EMG back-

ground at TMSbaseline-in over the TrainingSTAGE (GG-corrected F(1.65, 21.45)=0.89; p=0.41).  In a 

second step, in order to make sure that a change in the relationship between EMG back-

ground activity at TMSpreparation with respect to TMSbaseline-in was not responsible for the ob-

served training-related change in preparatory suppression, we expressed the RMS com-

puted at TMSpreparation in percentage of the values obtained at TMSbaseline-in for each Train-

ingSTAGE. As in the main analysis, we did so separately for the selected and non-selected 

FDIs (FDISELECTION: FDIselected and FDInon-selected). We found that RMS amplitudes at TMSprep-

aration were very similar to the ones obtained at TMSbaseline-in for all TrainingSTAGES, with the 
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RMS recorded at TMSpreparation ranging from 99.79+/-0.76 to 101.85+/-1.77 % of values ob-

tained at TMSbaseline-in. Consistently, the two-way ANOVA run on these data did not show 

any effect of TrainingSTAGE (GG-corrected F(1.88, 24.49)=0.91; p=0.41), FDISELECTION 

(F(1,13)=1.40; p=0.26) nor any TrainingSTAGExFDISELECTION interaction (GG-corrected F(1.02, 

13.20)=1.12; p=0.31). Hence, changes in EMG background activity are unlikely to be respon-

sible for the training-related changes in preparatory suppression observed in the present 

study. 

 

 

3.3 Relationship between training-related changes in RTs and CSE  

Given that training influenced RTs and CSE, we studied the relationship between 

changes at these two levels, with CSE considered separately at rest and during action prep-

aration. To assess the relationship between RTs and resting CSE, we ran correlations be-

tween training-related changes in RTs and changes in MEPs at TMSbaseline-in and TMSbaseline-

out. These analyses did not reveal any link between variations in resting measures of CSE 

and changes observed in RTs, neither at Trainingratio-early (Figure 7A, R=-0.27, p=0.36 and 

R=0.079, p=0.79 for TMSbaseline-in and TMSbaseline-out, respectively) nor at Trainingratio-late (R=-

0.28, p=0.33 and R=-0.16, p=0.59).  

In contrast, changes in RTs at Trainingratio-early were linked to variations in preparatory 

suppression observed in the selected (Figure 7B; R=0.55, p=0.043) and non-selected FDI 

(Figure 7C; R=0.74, p=0.0027): subjects showing a greater training-related strengthening 

of preparatory suppression also showed larger improvements in RTs. This correlation was 

not significant at Trainingratio-late, neither for the selected (R=0.12, p=0.67) nor for the non-

selected effectors (R=0.48, p=0.084). Our results suggest that RT improvements were re-

lated to early changes in preparatory suppression.  

This conclusion is further supported by an additional analysis showing that the 

strength of the correlation between RTs and CSE at Trainingratio-early was significantly higher 

when considering percentage MEPs at TMSpreparation (i.e., preparatory suppression) in the 

non-selected FDI (bootstrap estimate of absolute R=0.76), than when MEPs were consid-

ered at TMSbaseline-in (R=0.29; z=1.75; p=0.040, Figure 7D). This difference was not signifi-

cant when taking preparatory suppression in the selected FDI (R=0.56; z-score=0.85, 
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p=0.20). Hence, training-related changes in preparatory suppression of the non-selected 

effector turned out to be the best predictor of RT improvements. 

 

 

Figure 7. Correlation between early training-related changes in RTs and CSE. Changes in RTs 
as a function of changes in MEP amplitudes at TMSbaseline-in (reflecting resting CSE, A) and changes 
in percentage MEPs at TMSpreparation (reflecting preparatory suppression of CSE) in the selected (B) 
and non-selected FDI muscle (C) during the early Trainingstage. For this analysis, changes in RTs and 
MEPs were assessed by computing percentage ratios between the values obtained at Training3 and 
Training1. (D) Bootstrap estimates of absolute R values are also displayed (± standard deviation of 
the samples) for each condition. These R values were compared by means of a Pearson and Fillon’s 
z test. One tail p-values were used given our a priori hypothesis concerning the directionality of the 
effect (p<0.05). 
 

3.4 Single-trial relationship between RTs and preparatory suppression 

Finally, we asked whether the dependency of RTs to preparatory suppression is also 

evident on a single-trial basis. This was the case for MEPs recorded from the non-selected 

hand: the greater the preparatory suppression in that hand, the shorter the following RT 

(Figure 8, right panel), as supported by the ANOVARM revealing an effect of the factor MEP-

BIN on RTs (F(5,65)=2.57, p=0.035). Post-hoc tests revealed that RTs in MEPBIN-1 and MEPBIN-

2 (i.e., strongest preparatory suppression) were systematically shorter than those in MEPBIN-

6 (p=0.0021 and p=0.0090). We did not observe any relationship between RTs and MEPs 

obtained in the selected hand (MEPBIN: GG-corrected F(2.22,28.88)=0.85, p=0.45; Figure 8, left 

panel). Hence, the training-related effects and the single-trial relationship indicates that pre-

paratory suppression in the non-selected (non-responding) hand is a predictor of the follow-

ing RT. The lower this activity, the faster the response. 
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Figure 8. Single-trial MEP-RT relationship. Averaged RTs as a function of the preceding prepar-
atory suppression in a selected (left panel) or non-selected muscle (right panel). For this analysis, 
the MEP data were divided in 6 MEPBIN of increasing amplitude and the RTs corresponding to each 
MEPBIN were averaged. The star denotes a significant difference between RTs at MEPBIN-1 and MEP-
BIN-2 and  RTs at MEPBIN-6 in the non-selected muscle (p<0.05). Note that there was also a trend for 
RTs at MEPBIN-1 to be shorter than those in MEPBIN-4 (p=0.070) and MEPBIN-5 (p=0.066). 
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4. Discussion 

 

Training accelerated RTs while errors remained low. CSE became larger at rest and 

preparatory suppression of CSE was stronger after training. Interestingly, subjects who 

showed the strongest RT improvements at the early TrainingSTAGES were also those display-

ing the largest initial strengthening in preparatory suppression, especially when probed in 

the non-selected hand. Such a relationship between RTs and preparatory suppression was 

also evident at a single-trial level: RTs were generally faster in trials where preparatory sup-

pression was deeper. 

Subjects responded faster with training. RTs reflect the sum of the time required for 

processing the imperative cue, preparing the motor command and initiating the action (Haith 

et al., 2016; Derosiere et al., 2019) and, theoretically, training may impact any of these sen-

sory-motor components. Previous studies have shown that RT improvements can result 

from both faster sensory processing (Clark et al., 2015) and more efficient motor preparation 

(Mawase et al., 2018). Yet, in an instructed-delay task, the time required for sensory pro-

cessing and motor preparation is strongly constrained and most of the RT is assumed to 

reflect the time needed for action initiation (Haith et al., 2016). Hence, the RT gains reported 

here are likely to reflect a reduction in initiation time. Our findings thus yield an extension of 

former work, suggesting that, in addition to accelerating sensory processing and motor prep-

aration, training can also boost action initiation.  

Resting CSE was higher when assessed in the context of the task (i.e., at TMSbaseline-

in) than between the blocks (i.e., at TMSbaseline-out), consistent with previous data (Labruna et 

al., 2011; Vassiliadis et al., 2018) and with the observation that task-driven increases in 

attention amplifies cortical excitability (Kastner et al., 1998, 1999). As expected based on 

prior observations (e.g., (Pascual-Leone et al., 1995; Butefisch et al., 2000; Duque et al., 

2008; Galea and Celnik, 2009; Christiansen et al., 2018), practicing the task led to an in-

crease in resting CSE. Interestingly, this increase was not exclusive to the task and was in 

fact strongly similar at TMSbaseline-in and TMSbaseline-out, ruling out the possibility that it resulted 

from a change in task-related attention over practice (Derosière et al., 2015). Rather, our 

findings support the idea of a plastic reorganization of the motor system, measurable when 

engaged in the task as well as at rest.  
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CSE was reduced during action preparation when compared to baseline (during the 

task), reflecting the well-known preparatory suppression effect (Duque et al., 2017), which 

was evident in the selected and non-selected hands from the beginning of the training. Con-

trary to rest, the amplitude of MEPs at TMSpreparation did not increase with practice (they re-

mained unchanged), reflecting a strengthening of preparatory suppression with respect to 

the rising baseline. Notably, although at the group level this strengthening of preparatory 

suppression appeared late (Figure 5A), at the individual level, a majority of subjects already 

exhibited this effect at early training stages (Figure 6).   

Based on these findings, one could propose that changes in resting excitability are 

key to RT improvements, as suggested by the inverse relationship between baseline CSE 

and RTs described recently (Greenhouse et al., 2017). Yet, we did not find a relationship 

between training-related changes in baseline excitability and improvements in performance. 

This is in line with the idea that increased resting CSE is not crucial for immediate perfor-

mance (Bologna et al., 2015), but may be involved in the long-term retention of the motor 

behavior (Cantarero et al., 2013). Rather, what was predictive of RT gains in the present 

study was the change in relative CSE, as measured during action preparation: subjects 

showing the greater strengthening of preparatory suppression at the early TrainingSTAGES 

were those who became fastest. These results are consistent with animal studies showing 

that behavioral improvements in motor learning tasks are associated with changes in relative 

preparatory activity (Mandelblat-Cerf et al. 2009; Paz et al. 2003; Vyas et al. 2018). Similarly, 

a recent study using paired-pulse TMS showed that changes in preparatory activity of M1 

intra-cortical circuits are correlated to training-related behavioral gains, contrary to changes 

observed at rest (Dupont-Hadwen et al., 2018). More generally, our findings agree with the 

idea that efficient action preparation relies on dynamical shifts of neural activity from a base-

line state to a preparatory state (Churchland et al., 2012). From this point of view, training 

may allow tuning the dynamics of preparatory activity, bringing it closer to an optimal state 

for action initiation (Vyas et al., 2018). In this line, strengthening of preparatory suppression 

would facilitate action initiation by allowing excitatory inputs targeting the selected motor 

representation to better stand out against a quiescent background (mostly reflected in the 

excitability of non-selected effector), ultimately speeding up RTs (Hasbroucq et al., 1997; 

Greenhouse et al., 2015; Hasegawa et al., 2017).  
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This interpretation was reinforced by our single-trial analysis showing that RTs de-

pended on the foregoing amount of preparatory suppression. That is, stronger levels of sup-

pression were related to faster initiation times in the very same trials, in agreement with 

previous results (Hasegawa et al., 2017; Hannah et al., 2018). Interestingly, we found such 

relationship when considering the non-selected prime-mover but not the selected one. This 

was also the case for training-related effects, with preparatory suppression in the non-se-

lected effector appearing as the best predictor of RT changes. Hence, despite the fact that 

preparatory suppression was broad, affecting selected and non-selected muscles, suppres-

sion in the non-selected effector turned out to be a better predictor of RTs than suppression 

in the selected muscle. This difference may be due to the fact that MEP amplitudes in the 

selected effector are influenced by many overlapping inputs, potentially reflecting the oper-

ation of response preparation processes (Duque and Ivry, 2009), while MEP amplitudes in 

the non-selected effector reflect a purer form of suppression. For instance, Duque and Ivry 

(2009) found that action preparation entails a release of M1-intracortical inhibition in parallel 

of the suppression of CSE, specifically in the selected effector. The multiplicity of inputs 

targeting the selected effector during action preparation may therefore have weakened the 

link between our measure of preparatory suppression and RTs. Overall, we propose that 

motor initiation is eased by a form of preparatory suppression encompassing selected and 

non-selected effectors (Greenhouse et al., 2015) but that the link between suppression and 

initiation is best evidenced when considering the excitability of non-selected effectors. 
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5. Conclusion 

This study shows that a simple training paradigm can lead to improvements in action 

initiation that are accompanied by an increase in resting CSE and a strengthening of corti-

cospinal suppression from the rising baseline state. Moreover, contrary to changes in resting 

CSE, such strengthening of preparatory suppression was linked to RT improvements, espe-

cially in the non-selected effector. These findings could have implications for the rehabilita-

tion of patients suffering from impaired action initiation such as in cerebellar ataxia (Battaglia 

et al., 2006) or Parkinson’s disease (Mure et al., 2012). 
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Rewards shape human actions. The mere possibility of earning a reward induces sub-

stantial improvements in the way we choose and execute actions (Chen et al., 2017). This 

observation has raised hope for rehabilitation: reward is regarded as a promising means to 

magnify the positive effects of practice on motor control (Quattrocchi et al., 2017). Yet, this 

branch of research is only burgeoning, and neuroscientists have yet to identify the mecha-

nisms through which reward improves movements. 

At present, two distinct spheres of study have provided insights into how reward im-

proves motor control. First, studies on action selection show that reward can speed up re-

action times (RTs; the time elapsed between stimulus presentation and action initiation; 

Klein et al., 2012) and enhance selection accuracy (subjects select the “right action” more 

often when reward is at stake; (Derosiere et al., 2017b, 2017c). Second, studies on action 

execution reveal a beneficial effect of reward on movement times (MTs; the time elapsed 

between action initiation and completion; Reppert et al., 2015) and execution accuracy (e.g., 

subjects execute faster and more precise movements when reaching to a rewarding target; 

Manohar et al., 2019). Strikingly, most work investigating the effects of reward on action 

selection and execution have examined these effects in separate studies (Chen et al., 2017), 

impeding the genesis of an integrative understanding of how reward shapes the two pro-

cesses in more natural settings, where the effects are likely to co-exist. 

Even when considered in isolation, the precise mechanisms underlying the effects of 

reward on selection and execution processes have remained obscure. An important gap in 

our knowledge concerns how reward improves execution accuracy. One possibility is that 

the presence of reward increases limb stiffness, enhancing the resistance of the moving 

effectors to internal and external perturbations (Gribble et al., 2003) and ultimately reducing 

movement variability (so-called “motor noise”; Manohar et al., 2015). Yet, the contribution of 

stiffness to reward-driven improvements in execution accuracy has been speculative. 

In a recent article published in The Journal of Neuroscience, Codol et al. (2020) ad-

dressed the two issues mentioned above. In a series of experiments, the authors asked 

human subjects to use reaching movements to displace a manipulandum from a starting 

position to one of four target locations. Before starting each movement, subjects were in-

formed of the maximum reward they could obtain in the trial (0, 10 or 50 pence). In 10p and 

50p trials, the magnitude of the reward ultimately obtained by the subject depended on 

her/his performance in the trial (see below). 
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The first aim of the study was to test the impact of reward on the speed and accuracy of 

action selection and execution in a single setting. To do so, on 10p and 50p trials, Codol et 

al. (2020) provided rewards that were inversely proportional to the RT and the MT combined 

together (reflecting the speed of selection and execution processes, respectively). Reward 

magnitude also depended on the accuracy of both selection and execution. Importantly, 

some trials required subjects to ignore distractor cues; initiating a movement towards these 

cues was classified as a selection error and thus unrewarded. Furthermore, trials on which 

the final position of the manipulandum fell more than 4 cm away from the target center were 

classified as an execution error and thus unrewarded. Hence, to maximize reward in 10p 

and 50p trials, participants had to select and execute reaching movements as quickly as 

possible while keeping both selection and execution accuracy high. 

A second objective of the study was to test the contribution of limb stiffness to reward-

driven improvements in execution accuracy. To investigate this, the authors had subjects 

perform the same task as described above with the addition that some trials involved a dis-

placement of the manipulandum after movement completion, pushing subjects’ arm away 

from the target. Arm stiffness was evaluated by measuring the amount of force exerted by 

the subject during this perturbation. The authors were able to assess the impact of reward 

on stiffness by comparing this measure of force in 50p versus in 0p trials. In a control exper-

iment, the authors also tested the effect of reward on arm stiffness before movement initia-

tion (i.e., the displacement of the manipulandum pushed subjects’ arm away from the start-

ing position).  

The results indicated that, when considered in a single task, reward can have a disso-

ciable impact on action selection and execution. Indeed, 10p and 50p trials were not asso-

ciated with any change in selection speed (i.e., no significant effect on RTs, compared to 0p 

trials), but entailed a boost of execution speed (i.e., a reduction in MTs). Conversely, selec-

tion accuracy was enhanced in rewarded trials (i.e., a smaller proportion of movements were 

initiated towards distractor cues than on 0p trials) while execution accuracy remained un-

changed (i.e., the deviation between the manipulandum final position and the target center 

was stable). Interestingly, computational analyses revealed that the maintenance of high 

execution accuracy in rewarded trials (despite faster MTs) could be in part attributed to a 

reduction in motor noise. Most importantly, this reduction in motor noise was associated with 
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a substantial increase in arm stiffness in 50p compared to 0p trials that was observed spe-

cifically at the end of the reaching movement (and not before movement initiation), thus 

confirming the contribution of end-point stiffness to reward-driven improvements in execu-

tion accuracy. 

 The dissociable effect of reward on selection and execution speeds is striking. In fact, 

one major framework in motor neuroscience views selection and execution processes as 

part of a continuum with a shared neural basis centered on the motor system (Cisek, 2007). 

In this view, altered activity in specific neural structures (e.g., in the case of reward pro-

cessing, midbrain dopaminergic neurons; Schultz, 2015) could produce changes in both 

selection and execution processes at the behavioral level. The roots of this idea lie so deep 

within the field that researchers often consider RTs and MTs together as a single measure, 

thought to reflect action vigor (Shadmehr et al., 2019). The findings of Codol et al. (2020) 

ask us to reconsider carefully this vision, suggesting that, in some conditions, the speed of 

action selection and execution can be regulated by independent (yet likely interacting) neu-

ral structures. Consistent with this hypothesis, a recent study revealed the existence of dis-

tinct subpopulations of midbrain dopaminergic neurons, with some cells encoding behavioral 

choice and others sensitive to movement features (Engelhard et al., 2019).  

An alternative explanation for the lack of effect of reward on RTs may however arise if 

one concedes that this measure not only reflects the speed of action selection but also the 

rapidity of sensory processing (Haith et al., 2016; Vassiliadis et al., 2020b), and that reward 

could have affected these two processes in opposite ways. In fact, the task described above 

put a considerable demand on sensory processing, as it required participants to discriminate 

between four target locations and, in some trials, to avoid distractor cues. This time-con-

suming process relies on attentional mechanisms that amplify and suppress neural re-

sponses in visual neurons encoding target and distractor cues, respectively (Itthipuripat et 

al., 2019). The prospect of reward may have strengthened the emphasis on such attentional 

mechanisms, slowing them down to take more time to sharpen visual activity. Importantly, 

this interpretation offers a potential mechanistic explanation for how subjects may have im-

proved selection accuracy in rewarded trials. Notably, if such a scenario holds true, the lack 

of effect of reward on RTs may have emerged from a concomitant, antagonistic hastening 

of action selection. In this case, the increase in selection speed would be concurrent to the 
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boost of execution speed, and would be therefore in accordance with the continuum frame-

work mentioned above. This hypothesis suggests new avenues of research, aiming to dis-

entangle the effects of reward on the different processes occurring between sensation and 

action. 

Another important finding of the study is that reward reduced motor noise through in-

creased limb stiffness, limiting the potential negative consequence of high execution speed 

on accuracy. Interestingly, the movement pattern reported by Codol et al. (2020) — a parallel 

increase in movement speed and stiffness during rewarded trials — is similar to that ob-

served when participants are exposed to unpredictable perturbations of their movements 

during execution (Crevecoeur et al., 2019). This pattern is thought to reflect the implemen-

tation of a specific strategy of the motor system (so-called “robust strategy”), minimizing the 

impact of perturbations on action execution in uncertain environments (Bian et al., 2020). 

Critically, the results of Codol et al. (2020) suggest that the presence of reward also influ-

ences the reliance on such a robust strategy. More generally, the reliance of the motor sys-

tem on this strategy may depend on the expected outcome of a movement: it increases both 

when the risk of execution failure is high (i.e., in uncertain environments) and when adequate 

execution can lead to a reward. 

The finding of a reward-driven increase in stiffness has at least two major implications 

for the development of rehabilitation protocols. First, high stiffness may induce muscular 

fatigue, a process that might reduce the magnitude of rehabilitative learning (Branscheidt et 

al., 2019). Therefore, therapists should track patients’ fatigue systematically when training 

involves reward. Second, the ability to regulate limb stiffness could be a relevant marker of 

whether a patient may or may not benefit from reward-based rehabilitation. For instance, 

patients with excessive stiffness (e.g., due to post-stroke spasticity) may not display the 

reward-driven improvements in execution reported by Codol et al. (2020), at least not without 

appropriate anti-spastic treatment. 

To conclude, the study by Codol et al. (2020) builds on timely questions regarding the 

mechanisms underlying the impact of reward on motor control. In a series of experiments, 

the authors show that the presence of reward can have dissociable impacts on action se-

lection and execution, with effects on the latter process associated with increased arm stiff-

ness. As we discussed, these findings provide mechanistic insights and have implications 

for future clinical translation. 
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Significance statement:  

Motor and reinforcement learning have been classically linked to functionally independent 

brain networks centered on the cerebellum and the basal ganglia respectively. In a recent 

study published in eNeuro, Therrien et al. (2018) showed that increasing motor noise in 

healthy subjects disrupts reinforcement learning. However, this impairment remained well 

below that detected in cerebellar patients even when motor noise in healthy subjects was 

adjusted to match that observed in the patients. This suggests that impaired reinforcement 

learning following cerebellar damage cannot be solely accounted for by altered motor noise 

in these patients. Based on recent anatomical and functional evidence, we argue that the 

cerebellum may directly contribute to reinforcement learning, consistent with its tight 

connections with the basal ganglia.  

 

 



Annex 3: Beyond motor noise: considering other causes of impaired reinforcement learning in cerebellar patients 

249 

 

The ability to adapt to changes occurring in the environment is a fundamental feature 

of human behavior, which relies on both sensory and reward feedback. On the one hand, 

the role of sensory feedback has been largely considered by studying how motor commands 

adapt to visual perturbations (e.g., a visuomotor rotation), a process called error-based 

learning (Shadmehr et al., 2010; Wolpert et al., 2011; Kim et al., 2018; Roemmich and 

Bastian, 2018). This type of motor learning involves the computation of sensory prediction 

errors (SPE), namely the difference between predicted and actual sensory outcome (Tseng 

et al., 2007; Schlerf and Ivry, 2012; Shadmehr, 2017, 2018). On the other hand, the role of 

reward feedback has been mostly investigated in tasks that require learning what action to 

select or not, by updating reward predictions based on previous experience, a process 

named reinforcement learning (Lee et al., 2012; Derosiere et al., 2017b, 2017a; Gershman 

and Daw, 2017; O’Doherty et al., 2017). A central aspect here is the computation of reward 

prediction errors (RPE), namely the difference between predicted and actual rewards 

(Schultz, 2015).  

For a long time, motor learning and reinforcement learning have been studied apart 

and have been linked to functionally independent brain networks (Doya, 2000), mostly 

centered on either the cerebellum (Tseng et al., 2007; Schlerf and Ivry, 2012; Taylor and 

Ivry, 2014; Herzfeld et al., 2018) or on dopaminergic-basal ganglia circuits (Lee et al., 2012; 

O’Doherty et al., 2017), respectively. However, this view has changed in the past few years, 

with recent works indicating that rewards can strongly impact motor learning (Abe et al., 

2011; Dayan et al., 2011; Izawa and Shadmehr, 2011; Galea et al., 2015; Nikooyan et al., 

2015; Quattrocchi et al., 2017; Song and Smiley-Oyen, 2017). Hence, efforts are now made 

to understand how motor and reinforcement learning may interact at the neural level 

(Wilkinson et al., 2015; Mawase et al., 2017; Uehara et al., 2017). Consistently, Therrien et 

al. (2016) recently reported data pointing towards an implication of the cerebellum in 

reinforcement-based motor learning. As such, cerebellar patients exhibited a reduced ability 

to learn from reinforcement in a visuomotor adaptation task, compared to healthy subjects 

(Therrien et al., 2016). However, because the patients also exhibited increased motor noise 

(i.e., defined as an uncontrollable source of motor variability), this deficit could have occurred 

indirectly, due to an impaired ability to precisely relate an action to the received reward. The 

work reported by the same authors in eNeuro aimed at tackling this issue by increasing 

motor noise artificially in healthy individuals (Therrien et al., 2018).  
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Therrien et al. (2018) used the same visuomotor adaptation task as in their previous 2016 

paper. Specifically, the healthy subjects were required to make reaching movements 

towards a visual target with no visual information on the position of their hand and received 

binary reward feedback. In order to get a reward, subjects had to learn to alter their reach 

angle to counteract a visuomotor rotation between the location of the visual target and their 

hand position: the reward feedback was based on this modified reach angle. Critically, the 

authors added motor noise by deviating the subjects’ reach in a way that was proportional 

to baseline motor variability. The experimental design involved both a low and a high noise 

condition, with the latter set to approximate the level of motor noise observed in cerebellar 

patients (Therrien et al., 2016). Hence, such approach allowed comparing reinforcement 

learning abilities between patients and healthy controls with comparable motor noise. The 

authors report an impaired reinforcement learning in healthy individuals in the high-noise 

compared to the control condition (i.e., when no noise was added). Yet, one critical result is 

that this impairment remained well below that observed in cerebellar patients. This finding 

indicates that motor noise does not entirely account for the reinforcement learning deficits 

observed following cerebellar damage. 

A main line of argumentation in the paper focuses on the reduced proprioceptive 

acuity of cerebellar patients. As such, even with added motor noise, healthy subjects can 

still relate the rewards they receive to their reach angle, based on proprioception, while this 

ability is known to be altered in cerebellar patients (Miall and King, 2008; Bhanpuri et al., 

2013; Weeks et al., 2017, 2018). Hence, the reduction in proprioceptive precision might 

have indirectly altered reinforcement learning in the patients. Note though that the clinical 

tests run by Therrien et al. (2016) failed to reveal any reduction in proprioceptive precision 

in the patients. Hence, even if a discrete reduction in proprioceptive precision could have 

gone unnoticed based on clinical tests (Rinderknecht et al., 2018), we would like to propose 

that alterations in proprioceptive precision may not completely explain reinforcement 

learning deficits observed in the patients. Rather, cerebellar damage may directly alter 

reinforcement learning, as already suggested by others (Swain et al., 2011; McDougle et 

al., 2016; Miall and Galea, 2016).  

Our viewpoint is supported by recent anatomical studies showing bidirectional 

connections between the cerebellum and dopaminergic-basal ganglia routes (Bostan et al., 

2010; Chen et al., 2014; Bostan and Strick, 2018). Specifically, the dentate nucleus of the 
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cerebellum sends disynaptic projections to the striatum (Hoshi et al., 2005), and to midbrain 

dopaminergic structures (Watabe-Uchida et al., 2012). Conversely, the cerebellar cortex 

receives disynaptic projections from the subthalamic nucleus (Bostan et al., 2010). 

Functionally, recent works in rodents provide evidence that reward expectation modulates 

the firing rate of cerebellar cells (Ohmae and Medina, 2015; Wagner et al., 2017; Heffley et 

al., 2018). In the same vein, neuroimaging studies in humans have reported activity related 

to RPEs in the cerebellum (O’Doherty, 2004; Ramnani et al., 2004; Seymour et al., 2004; 

Tanaka et al., 2004; Tobler et al., 2006; Garrison et al., 2013), suggesting that this structure 

is functionally involved in processing reward feedback. These works are in agreement with 

the result of a previous study showing that cerebellar patients exhibit altered reinforcement 

learning in a decision-making task requiring very simple movements (Thoma et al., 2008). 

In line with these considerations, structural and functional alterations of the cerebellum were 

found in individuals suffering from an addiction, such as alcohol or cocaine dependence, a 

condition characterized by abnormal reward processing (Moulton et al., 2014; Miquel et al., 

2016; Moreno-Rius and Miquel, 2017). Furthermore, an important feature of reinforcement-

based compared to error-based adaptation is that the former increases trial-to-trial 

movement variability, reflecting an exploration process of the environment (Izawa and 

Shadmehr, 2011; Taylor and Ivry, 2014; Dhawale and Smith, 2017). Following this idea, 

modelling work in the present study showed that healthy subjects increased motor 

exploration following unrewarded compared to rewarded trials. This effect was absent in the 

patients reflecting an inability to modulate behavior optimally according to reward feedback. 

In this view, a recent study showed that poor performance in a visuomotor adaptation task 

in cerebellar patients is not only due to impaired error-based learning but also to a difficulty 

in using feedback information to develop and maintain an explicit aiming strategy (Butcher 

et al., 2017). Hence, it seems that cerebellar dysfunction could have impaired the ability to 

learn both from errors and reward feedbacks.  

Nevertheless, an important point that needs to be raised here is the age difference 

between the healthy subjects tested in the commented paper (Therrien et al., 2018) and the 

cerebellar patients to which they are compared but that were originally tested in (Therrien et 

al., 2016). As such, the healthy subjects (25.0 +/- 4.8 years old) were much younger than 

the patients (61.5 +/- 10.0 years old) and in fact, when the groups were matched for age in 

Therrien et al. (2016), the healthy (older) controls also exhibited impaired motor exploration, 
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to a comparable extent as the patients. This suggests that ageing could also have 

contributed to the reduced reinforcement learning abilities of the patients (Chowdhury et al., 

2013). Further studies are therefore required to examine the respective contribution of 

ageing and cerebellar dysfunction to reinforcement learning.  

In conclusion, the work by Therrien and colleagues provides new insights into the 

influence of motor noise on reinforcement learning in healthy subjects and in patients 

suffering from cerebellar impairment. Moreover, the data are also consistent with the view 

that the cerebellum may be directly involved in reinforcement learning and more precisely in 

reinforcement-based motor learning. Future studies could directly test this hypothesis by 

relating the reinforcement learning impairment of patients to their score at the International 

Cooperative Ataxia Rating Scale, reflecting the severity of the cerebellar impairment. This 

line of research opens very interesting perspectives to design innovative multi-approach 

neurorehabilitation strategies.  
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