
Diss. ETH No. 15134

Point Primitives for Interactive
Modeling and Processing of 3D
Geometry

A dissertation submitted to the

Federal Institute of Technology (ETH) of Zurich

for the Degree of

Doctor of Sciences

presented by

Mark Pauly
Diplom Informatiker University of Kaiserslautern
born 18. Februar 1974
citizen of Germany

accepted on the recommendation of

Prof. Dr. Markus Gross, examiner

Prof. Dr. Leif Kobbelt, co-examiner

Prof. Dr. Peter Schröder, co-examiner

2003

I

ABSTRACT

3D geometry has become increasingly popular as a new form of digital media. Similar
to other types of media data, i.e., sound, images, and video, this requires tools to
acquire, store, process, edit, and transmit 3D geometry. With increasing complexity of
3D geometric models and growing demand for advanced modeling functionality,
significant effort is being devoted to the design of efficient, reliable, and scalable
algorithms for digital geometry processing.

This thesis investigates the use of point primitives for 3D geometry processing and
interactive modeling. Representing surfaces by point clouds allows direct processing
of 3D scanner data, which avoids the need for surface reconstruction methods. The
structural simplicity of point-based representations supports efficient re-sampling for
extreme geometric deformations and topology changes. It also leads to concise algo-
rithms that are well suited for hardware implementation.

The main focus of this thesis is on algorithms for shape and appearance modeling
of surfaces represented by point clouds. This requires methods for local surface analy-
sis and reconstruction, filtering, re-sampling, and estimation of the signed distance
function.

Local surface analysis is based on a statistical operator applied to local neighbor-
hoods of point samples. This enables efficient estimation of the tangent space of the
underlying surface, as well as providing different approximations for surface curva-
ture. To compute local approximations of a surface represented by point samples, an
extension of the moving least squares surface model is presented that adapts to the
local sampling density.

An important geometric processing tool is surface simplification. To reduce the
complexity of point-sampled surfaces, various simplification methods are presented,
including clustering, iterative point-pair contraction, and particle simulation. These
methods are used to build hierarchies of surface approximations for efficient multi-
level computations.

A multi-scale surface representation is introduced that enables sophisticated editing
functionality at different approximation levels. Representing a point-sampled surface
at different levels of geometric detail supports advanced filtering methods such as
enhancement filters. Multi-scale methods are also applied to implement a feature
extraction pipeline for point-sampled surfaces with particular emphasis on robustness
and efficiency.

The above methods are integrated into a unified framework for point-based shape
and appearance modeling. Shape modeling functionality includes boolean operations
and free-form deformation, appearance editing comprises painting, texturing, sculpt-
ing, and filtering methods. Based on a dynamic sampling paradigm, this system defines
a complete and versatile modeling environment for 3D content creation.

III

ZUSAMMENFASSUNG

3D Geometrie hat in den letzten Jahren eine vermehrte Verbreitung als neues, digitales
Medium erfahren. Dies erfordert, ähnlich zu anderen Typen digitaler Medien wie
Audio-, Bild-, oder Video-daten, Werkzeuge zur Akquisition, Speicherung,
Verarbeitung, Editierung und Übertragung von 3D Geometrie. Mit wachsender
Komplexität geometrischer Modelle und steigender Nachfrage nach fortgeschrittener
Modellierungs-Funktionalität wird vermehrte Aufmerksamkeit der Entwicklung
effizienter, zuverlässiger, und skalierbarer Algorithmen für die Verarbeitung
geometrischer Modelle gewidmet.

Diese Dissertation untersucht die Verwendung von Punkt-Primitiven für die Verar-
beitung geometrischer Daten. Die Darstellung von Flächen mittels Punktwolken
erlaubt die direkte Verarbeitung von 3D Scanner-Daten, was den Einsatz von Oberflä-
chenrekonstruktions-Verfahren erspart. Die strukturelle Einfachheit punkt-basierter
Repräsentationen unterstützt effizientes Abtasten bei extremen geometrischen Defor-
mationen oder Änderungen der Topologie, und führt zu Algorithmen, die sich gut für
eine Implementierung in Hardware eignen.

Der Schwerpunkt dieser Dissertation liegt auf Algorithmen zur Modellierung von
Flächen, die durch Punktwolken repräsentiert sind. Dazu werden Methoden zur
lokalen Flächen-Analyse und -Rekonstruktion, Filterung, Abtastung, und Schätzung
der Flächen-Distanzfunktion entwickelt.

Die lokale Flächen-Analyse basiert auf einem statistischen Operator, der auf lokale
Punkt-Nachbarschaften angewendet wird. Dies erlaubt die effiziente Schätzung des
Tangential-Raumes der unterliegenden Fläche und liefert unterschiedliche Näherun-
gen der Krümmung. Eine Erweiterung der moving least squares Methode wird präsen-
tiert, die eine lokale Approximationen einer Fläche, die durch eine Punktwolke
beschrieben ist, ermöglicht.

Ein wichtiges Werkzeug zur Verarbeitung geometrischer Daten ist Oberflächen-
Vereinfachung. Verschiedene Verfahren zur Reduzierung der Komplexität punkt-basi-
erter Flächen werden präsentiert. Diese Methoden werden eingesetzt um Flächen-Hier-
archien für effiziente multi-level Berechnungen zu erzeugen.

Eine multi-skalen Flächen-Repräsentation wird eingeführt, die komplexe Editierun-
gen auf verschiedenen Näherungsstufen unterstützt. Dies erlaubt die Implementierung
komplexer Filter-Methoden wie Band-pass filter. Multi-Skalen Analyse wird auch ein-
gesetzt zur Konstruktion eines robusten und effizienten Verfahrens zur Merkmals-
Extraktion für punkt-basierte Modelle.

Die obengenannten Verfahren werden in ein einheitliches System zur punkt-basier-
ten Modellierung der Gestalt und Erscheinung geometrischer Modelle integriert.
Modellierungs-Operationen beinhalten Boolesche Operationen und Frei-Form Defor-
mation, sowie Verfahren zum Bemalen, Texturieren und Filtern von diskreten Ober-
flächen. Basierend auf einer Methode zur dynamischen Abtastung bietet dieses System
eine vollständig und vielseitige Modellierungs-Umgebung zur Bearbeitung von 3D
Geometrie.

V

ACKNOWLEDGEMENTS

My sincere thanks to my advisor Markus Gross. His advice and guidance have been
invaluable, his enthusiasm and scientific knowledge both motivating and inspiring. I
had a great time at the Computer Graphics Laboratory and I hope that our cooperation
will continue in the future.

Many thanks also to my co-advisors Leif Kobbelt and Peter Schröder. It has been a
great experience to work with them and share their knowledge in many interesting
discussions.

I am very grateful to the people at ETH Zurich for providing such an enjoyable and
stimulating working environment. My thanks to Dirk Bauer, Daniel Bielser, Milena
Brendle, Manuela Cavegn, Joachim Giesen, Bruno Heidelberger, Andreas Hubeli,
Matthias John, Richard Keiser, Nicky Kern, Oliver Knoll, Rolf Koch, Sathya
Krishnarmurthy, Edouard Lamboray, Reto Lütolf, Matthias Müller, Martin Näf,
Christoph Niederberger, Ronald Peikert, Martin Roth, Bernt Schiele, Christian Sigg,
Thomas Sprenger, Oliver Staadt, Matthias Teschner, Julia Vogel, Emo Welzl, Tim
Weyrich, Stephan Wuermlin.

A very special thanks to Matthias Zwicker for enduring endless discussions on
sampling theory, women, and the meaning of life.

This work has been supported by the joint Berlin/Zurich graduate program
Combinatorics, Geometry, and Computation, financed by ETH Zurich and the German
Science Foundation (DFG).

CONTENTS

1 Introduction . 1

1.1 3D Content Creation . 2
1.1.1 Acquisition . 2
1.1.2 Surface Reconstruction . 3
1.1.3 Processing and Modeling . 3
1.1.4 Rendering . 4

1.2 Motivation . 4
1.3 Related Work . 6
1.4 Contributions . 7
1.5 Outline . 7

2 Point-Sampled Surfaces . 9
2.1 Local Surface Analysis . 10

2.1.1 Local Neighborhoods . 10
2.1.2 Local Sampling Density . 11
2.1.3 Covariance Analysis . 13

2.2 Sampling Requirements . 15
2.3 Moving Least Squares Surfaces . 17

2.3.1 Functional MLS Approximation . 18
2.3.2 MLS Surface Model . 18
2.3.3 Signed Distance Function . 20
2.3.4 Computing the MLS Projection . 21
2.3.5 Approximation Error and Reconstruction . 22
2.3.6 Adaptive MLS Surfaces . 22

3 Surface Simplification . 27

3.1 Related Work . 28
3.2 Clustering . 29

3.2.1 Incremental Clustering . 29
3.2.2 Hierarchical Clustering . 29

3.3 Iterative Simplification . 32
3.4 Particle Simulation . 32

3.4.1 Spreading Particles . 32
3.4.2 Repulsion . 33
3.4.3 Projection . 33
3.4.4 Adaptive Simulation . 34

3.5 Comparison . 34
3.5.1 Surface Error . 35
3.5.2 Sampling Distribution . 37
3.5.3 Computational Effort . 38
3.5.4 Memory Requirements and Data Structures . 40
3.5.5 Comparison to Mesh Simplification . 40

Contents

4 Multi-Scale Surface Representation . 43

4.1 Scale-Space for Functions . 44
4.1.1 Discrete Scale-Space Representation for Height Fields 45

4.2 Scale-Space for Point-Sampled Surfaces . 46
4.2.1 Discrete Fairing . 47

4.3 Discrete Multi-Scale Surface Representation . 48
4.3.1 Encoding . 50
4.3.2 Continuous Representation . 53
4.3.3 MLS Filtering . 53

4.4 Spectral Filtering . 55
4.4.1 Discrete Fourier Transform . 55
4.4.2 Multi-Scale Surface Filtering . 57

4.5 Multi-Scale Deformation . 60

5 Feature Extraction . 63

5.1 Previous Work . 64
5.2 Overview . 65
5.3 Feature Classification . 65

5.3.1 Multi-scale Variation Estimation . 65
5.3.2 Determining Feature Weights . 68

5.4 Feature Reconstruction . 70
5.4.1 Selecting Feature Nodes . 70
5.4.2 Minimum Spanning Graph . 71
5.4.3 Active Contour Models . 72

5.5 Non-Photorealistic Rendering . 73
5.6 Examples . 74

6 Shape Modeling . 77

6.1 Boolean Operations . 78
6.1.1 Classification . 79
6.1.2 Intersection Curves . 80
6.1.3 Rendering Sharp Creases . 82
6.1.4 Particle-Based Blending . 82

6.2 Free-Form Deformation . 86
6.2.1 Topology Control . 88
6.2.2 Dynamic Sampling . 89
6.2.3 Filter Operations . 91
6.2.4 Down-Sampling . 92

7 Appearance Modeling . 93

7.1 Overview . 93
7.1.1 2D Photo Editing . 94
7.1.2 Interaction Modes . 96
7.1.3 Brush Interface . 96

7.2 Parameterization . 97
7.2.1 Orthogonal Projection . 97

7.2.2 Constrained Minimum Distortion Parameterization . 99
7.3 Re-sampling . 105

7.3.1 Re-sampling the Brush . 105
7.3.2 Re-sampling the Surface . 105

7.4 Surface Editing . 106
7.4.1 Painting . 106
7.4.2 Sculpting . 107
7.4.3 Filtering . 108

8 Pointshop3D . 111

8.1 System Overview . 111
8.1.1 Tools and Plug-ins . 112
8.1.2 Rendering . 113

8.2 Data Structures . 114
8.2.1 Kd-Trees . 115
8.2.2 Dynamic Grids . 115
8.2.3 Neighborhood Caching . 116
8.2.4 Spatial Queries in Pointshop3D . 116

8.3 Examples . 118

9 Conclusions . 125

9.1 Principal Contributions . 125
9.2 Discussion . 126
9.3 Future Work . 127

A References . 129

B Glossary of Notations . 137

C Sampling Requirements . 141

D Data Sources . 147

E Curriculum Vitae . 149

Contents

XI

FIGURES

Fig. 1.1: 3D content creation pipeline . 2
Fig. 2.1: Local neighborhoods . 11
Fig. 2.2: Normal estimation . 14
Fig. 2.3: Comparison of surface variation and normal variation . 16
Fig. 2.4: Undersampling leads to wrong local surface analysis using k-nearest neighbors. . . 17
Fig. 2.5: Functional MLS approximation on 2D image data . 18
Fig. 2.6: 2D illustration of the MLS projection . 19
Fig. 2.7: Smoothing effect of the MLS projection. 20
Fig. 2.8: Wrong MLS surface reconstruction due to undersampling. 23
Fig. 2.9: A surface that cannot be reconstructed using a fixed kernel width 24
Fig. 2.10: Regular re-sampling of a non-uniformly sampled surface 25
Fig. 2.11: Adaptive MLS reconstruction of Figure 2.10 . 25
Fig. 2.12: Adaptive MLS reconstruction of the Max Planck bust . 26
Fig. 3.1: Fragmentation of incremental clustering. 30
Fig. 3.2: Uniform incremental clustering. 30
Fig. 3.3: Three intermediate steps of the hierarchical clustering algorithm 31
Fig. 3.4: Adaptive hierarchical clustering. 31
Fig. 3.5: Iterative simplification of the Max Planck model . 33
Fig. 3.6: Simplification by adaptive particle simulation . 34
Fig. 3.7: Uniform and user-controlled particle simulation. 35
Fig. 3.8: Measuring the distance between two point-sampled surfaces. 36
Fig. 3.9: Measuring surface error. 37
Fig. 3.10: Surface Error for Michelangelo’s David . 38
Fig. 3.11: Execution times for simplification . 39
Fig. 3.12: Comparison of point-based and mesh-based surface simplification 41
Fig. 4.1: Discrete scale-space representation of 2D image data and height field data. 46
Fig. 4.2: Iterative Laplacian smoothing. . 48
Fig. 4.3: Discrete multi-scale representation . 50
Fig. 4.4: Multi-scale encoding . 52
Fig. 4.5: Building a discrete multi-scale representation. 53
Fig. 4.6: Linear blend between two subsequent levels of a multi-scale representation. 54
Fig. 4.7: Building a multi-scale representation by MLS filtering and decimation 55
Fig. 4.8: Illustration of spectral decomposition . 56
Fig. 4.9: Spectral filtering . 58
Fig. 4.10: Encoding the Max Planck model onto a sphere . 59
Fig. 4.11: Morphing between the Igea and Max Planck models . 60
Fig. 4.12: Multi-scale vs. single-scale modeling . 61
Fig. 4.13: Multi-scale vs. single-scale modeling . 62
Fig. 5.1: Feature extraction pipeline. 66
Fig. 5.2: Multi-scale surface variation on height field data . 67
Fig. 5.3: Exploiting coherence when computing surface variation . 68
Fig. 5.4: Automatic scale selection for a 1D signal . 69
Fig. 5.6: Illustration of an invalid neighborhood. . 71
Fig. 5.7: Feature reconstruction on the dinosaur head. . 72
Fig. 5.8: Feature reconstruction on the igea model.. 75
Fig. 5.9: Feature extraction on the cat model. 75

XII Figures

Fig. 5.10: Multi-scale feature extraction on a noisy range scan . 76
Fig. 5.11: Feature extraction on the dinosaur model. . 76
Fig. 5.12: Feature extraction on the dragon model.. 76
Fig. 6.1: Boolean operations of a sphere and a cylinder . 78
Fig. 6.2: Inside/outside test for boolean classification . 79
Fig. 6.3: Boolean operations of a blue dragon (A) and a white dragon (B). 80
Fig. 6.4: Sampling the intersection curve . 81
Fig. 6.5: Adaptive refinement of the intersection curve . 81
Fig. 6.6: Rendering the intersection curve. 82
Fig. 6.7: A difficult boolean difference operation that creates two singularities. 83
Fig. 6.8: Particle simulation to blend two intersecting planes. 84
Fig. 6.9: Boolean union of three tori . 85
Fig. 6.10: Hole filling using particle simulation . 85
Fig. 6.11: Deformations of a plane for three different blending functions 87
Fig. 6.12: Rotational deformations of a cylinder. 87
Fig. 6.13: Embossing effect. 88
Fig. 6.14: Temporal coherence for collision detection during deformation 88
Fig. 6.15: Interactive modeling session with collision detection . 89
Fig. 6.16: Dynamic sampling . 90
Fig. 6.17: A very large deformation using translatory and rotational motion 92
Fig. 7.1: Overview of the operator framework for point-based surface editing 95
Fig. 7.2: Brush interaction . 96
Fig. 7.3: Selection interaction . 97
Fig. 7.4: Brush interface . 98
Fig. 7.5: The Max Planck model parameterized by orthogonal projection 98
Fig. 7.6: Hierarchy used for nested iteration . 101
Fig. 7.7: Influence of the weighting parameter of Equation 7.8 . 102
Fig. 7.8: Constrained minimum distortion parameterization. 102
Fig. 7.9: Texture mapping using the minimum distortion parameterization 103
Fig. 7.10: Illustration of local stretching . 104
Fig. 7.11: Re-sampling the brush . 105
Fig. 7.12: Re-sampling the surface . 106
Fig. 7.13: Editing operations on the Chameleon . 107
Fig. 7.14: Normal displacements vs. carving . 108
Fig. 7.15: Editing operations . 108
Fig. 7.16: Editing operations on the Igea model . 109
Fig. 8.1: The main Pointshop3D interface. 112
Fig. 8.2: Renderers used in Pointshop3D . 114
Fig. 8.3: Spatial data structures for closest point queries . 116
Fig. 8.4: Statistics of the example models of Figures 8.5 to 8.11. . 118
Fig. 8.5: Multi-scale modeling on a human body . 120
Fig. 8.6: Creating a coffee mug . 120
Fig. 8.7: Multi-scale modeling on the Igea model. 121
Fig. 8.8: Boolean operations of the Max Planck bust, a plane and the skull model.. 121
Fig. 8.9: Creating an Octopus from a sphere using the deformation tool 122
Fig. 8.10: Combination of boolean operations and subsequent deformation. 122
Fig. 8.11: Boolean operations and deformations on scanned data . 123
Fig. C.1: Non-uniform sampling patterns . 144
Fig. C.2: Illustration of the proof of Lemma C.4 . 147

1

1

1INTRODUCTION

Lately, 3D geometric models have appeared as a new form of digital media. While
sound, images and video have been the dominant digital media so far, 3D geometry
more and more frequently plays an important role in many application fields, such as
e-commerce, entertainment, industrial design, physical simulation, medicine, and
education. This creates the need to acquire, store, transmit, process and modify
geometric models in an efficient and scalable way. Digital geometry processing is a
new research area that is concerned with these issues [106]. Its goal is to define a
mathematical foundation for geometric processing applications and to develop tools
and algorithms for efficient manipulation of geometric data.

A fundamental question in digital geometry processing is the choice of surface
representation: What mathematical description should be chosen to represent the
surface of a 3D object on a digital computer? The diversity of the application fields of
3D geometry is reflected in a wide variety of surface representations that have been
proposed in the past. For example, industrial design applications for car and airplane
construction are mostly based on non-uniform rational B-Splines (NURBS) [32].
Medical applications make frequent use of implicit representations such as level sets
or radial basis functions [113], while the game and movie industry has focused on
polygonal representations such as triangle meshes [22].

This thesis investigates the fairly recent idea to use point primitives for geometric
modeling applications. Initially proposed in [76] as a display primitive, points have
been studied mainly in the context of rendering [44, 98, 92, 119, 59], while their use in
digital geometry processing is largely unexplored. The goal of this thesis is to close this
gap and define algorithms for point-based surface analysis, re-sampling, filtering, and
shape and appearance modeling.

The remainder of this chapter is organized as follows: Section 1.1 sets the context
of this work by describing the 3D content creation process. Section 1.2 provides some
motivation for the approach taken in this thesis, while Section 1.3 briefly discusses
related work. The major contributions will be listed in Section 1.4, before Section 1.5
concludes the chapter with an outline of the dissertation.

2 Introduction

1.1 3D CONTENT CREATION

There are two common ways to create digital 3D geometry: Either 3D models are
designed from scratch, e.g., using some interactive modeling software, or an
algorithmic construction process [86]. Alternatively, models can be digitized from a
physical object using a 3D scanning device. This latter approach has gained increasing
attention in recent years, where significant technological progress has led to the
development of 3d scanners that meet the quality and efficiency requirements of
advanced 3D content creation applications. Also, with growing complexity of 3D
models, ab-initio design becomes more and more time-consuming and thus expensive.

Figure 1.1 illustrates the process of 3D content creation based on 3D acquisition.
First some physical object is digitized using a 3D scanning device. The raw data from
the scanner is then converted into a surface representation suitable for subsequent
processing and modeling. Finally, the model needs to be displayed using some
rendering method. The following sections discuss the individual stages of the 3D
content creation pipeline in more detail, focusing on aspects relevant for this thesis.

1.1.1 Acquisition

3D photography is a widely used technique to obtain a digital representation of some
physical model. This area has matured significantly in recent years with a great variety
of commercial hard- and software solutions available for 3D geometry and appearance
acquisition. Popular scanning techniques include laser-range scanners [75], structured
light scanners [45], shape from shading [54], and shape from stereo [100]. While the
accuracy and spatial resolution of these devices steadily increases, their cost has been
reduced substantially. This makes 3D acquisition attractive for high-end applications
in industrial design, arts, or archeology, as well as for low cost 3D content creation for
entertainment or e-commerce products.

In the most general setting, 3D acquisition devices produce a discrete sample of a
physical object, i.e., a collection of point samples. Depending on the acquisition
technique, each point sample also carries a number of attributes, such as color, material
properties, or measurement confidence.

Figure 1.1 3D content creation pipeline.

physical

model

raw

point cloud

modified

model

model

representation

Surface

Reconstruction

Processing &

 Modeling
3D Acquisition Rendering

final

model

1.1 3D Content Creation 3

Since most objects cannot be observed completely from a single viewpoint, several
scans can be combined using some registration method [12]. Still, for highly
convoluted or concave surfaces, occlusion can cause holes in the reconstruction,
leading to an incomplete surface model. Also, scanned data is always corrupted by
noise, due to inherent limitations in the physical measurement process. Noise either
occurs as outliers, or in the form of small deviations of the sample points from the true
surface. Some preprocessing is thus required to obtain a valid surface model from a set
of physical measurements. For example, low-pass filtering has been used for noise
removal [23], while volumetric diffusion methods have been applied for hole-filling
[21].

1.1.2 Surface Reconstruction

In the next stage of the content creation pipeline, the pre-processed set of point samples
is converted into a certain surface representation, e.g., a polygonal mesh or a collection
of spline patches. This process of surface reconstruction has been a major focus in
geometric modeling and computational geometry in recent years [53, 7, 20, 29]. The
goal of surface reconstruction is to build a continuous surface model from the cloud of
point samples, typically assuming that the underlying surface is a smooth 2-manifold.
A surface model allows to describe a manifold surface, which is an infinite subset of

, with a finite number of parameters. These parameters define the surface
representation and are computed during the surface reconstruction process. For
example, parametric surface representations, such as NURBS or triangle meshes, are
defined by a set of control points with an appropriate interpolation or approximation
scheme. The control points can either be a subset of the input point cloud or computed
using some fitting technique [67].

1.1.3 Processing and Modeling

Given a 3D model in a specific surface representation, the processing and modeling
stage is concerned with analyzing and modifying the model surface. Processing
operations include surface analysis, filtering, re-sampling, compression, segmentation,
shape matching, feature extraction, and others. Modeling comprises shape and
appearance editing functionality including boolean operations, free-form deformation,
painting and texturing, sculpting, and others.

As compared to traditional multimedia data such as sound, images or video,
geometric models require fundamentally different techniques for processing and
modeling. The former can be described as a discrete, regular sample of a continuous
function defined in 1D (sound), 2D (images), or 3D (video). Digital signal processing
provides powerful tools for such data sets, including an extensive sampling theory and
sophisticated filtering techniques. These methods are generally not applicable for 3D
geometric models, however. The reason for this is two-fold:

• A geometric model is commonly described as a 2-manifold surface embedded in 3-
space. In general, there is no canonical functional representation (global
parameterization) of such a surface.

• Geometric models are typically sampled irregularly, i.e., samples can be arbitrarily
distributed on the surface. Many signal processing methods, including the discrete
Fourier transform, rely on a regular grid structure of the underlying data, however.

IR3

4 Introduction

Non-functional setting and irregular sampling distribution pose great challenges for the
design of geometric processing algorithms. Additionally, even though the definition of
a manifold surface is based on a set of local parameterizations that observe some
continuity constraints [25], global properties of the surface, e.g., surface topology, need
to be considered.

Recent efforts have tried to generalize signal processing concepts to discrete
surfaces [108, 23, 47, 91]. In particular, significant progress has been made for semi-
regular meshes, i.e., piecewise linear surfaces with subdivision connectivity [106].
However, many questions in digital geometry processing are still unanswered. For
example, a rigorous mathematical sampling theory, analogous to Fourier theory, has
not been defined yet for discrete surfaces.

1.1.4 Rendering

To display a geometric model on a screen or printing device, numerous 3D rendering
algorithms have been proposed in the past (see [35] for an overview). While high-
quality rendering methods, such as ray-tracing and radiosity, are mainly used for off-
line production of animated sequences, forward warping rendering algorithms based
on the z-buffer are dominant in interactive applications. The performance of such
rendering methods is crucial for achieving sufficiently high frame-rates required for
interactive modeling.

Since modern graphics hardware is highly optimized for polygon rendering, many
rendering methods first convert a model given in a certain surface representation into
a set of triangles. For example, implicit surfaces are often rendered as a triangle mesh
that is extracted using the marching cubes algorithm [83]. Similarly, higher-order
spline surfaces are often approximated by a polygonal mesh for rendering.

A recent trend in computer graphics is point-based rendering. Pioneered by Levoy
and Whitted in [76], various researchers have presented new rendering methods using
point primitives [44, 98, 92, 119, 59]. These methods proved particularly successful for
rendering densely sampled shapes stemming from 3D acquisition (see also [75]).

1.2 MOTIVATION

This thesis is concerned with the processing and modeling stage of the 3D content
creation pipeline. In particular, it focuses on interactive methods for shape and
appearance modeling of 3D geometry. A fundamental question in the design of such
algorithms is the choice of the underlying surface representation.

On the most abstract level, these representations fall into two major categories:
Implicit and parametric representations. Both categories have their specific advantages
and drawbacks. Implicit representations [113] such as level sets [84] and radial basis
functions [16] have a particularly simple algebraic structure. Surfaces are defined as
zero-sets of 3D scalar fields, which are generated by a weighted superposition of basis
functions. In this setting, surfaces with highly complex topology can be represented
easily and the global consistency of the surface is guaranteed by construction. Extreme
geometric deformations and even topology changes can be achieved by simply
modifying the weight coefficients of the respective basis functions. However, efficient
rendering and the precise modeling of sharp features is usually a difficult task, since

1.2 Motivation 5

individual points on implicitly represented surfaces can only be accessed by some ray-
casting technique.

Parametric representations like splines [32], subdivision surfaces [115], or triangle
meshes are based on a mapping from a (piecewise) planar domain into 3-dimensional
space. Here the algebraic structure is usually more complicated and tightly correlated
with the complexity of the surface. Since point samples on the surface can be obtained
by evaluating the parametric surface function, parametric surfaces can be rendered
quite efficiently. Moreover, sharp creases along a curve on the surface can be modeled
by adjusting the surface function in parameter space. On the other hand, extreme
deformations and topology changes usually require changes to the domain in order to
avoid strong distortions and inconsistencies. The shape of a triangle mesh, for
example, can be modified to a certain extend by only changing the vertex positions,
while keeping the connectivity fixed. However, if the local distortion becomes too
strong or if the surface topology is to be changed, mesh connectivity has to be updated
while maintaining strict consistency conditions to preserve a manifold surface
structure. In practice, the necessity to re-establish the global consistency of the surface
function makes this kind of operations on parametric representations rather inefficient.

In this thesis the use of a hybrid geometry representation based on point primitives
is proposed that is designed to combine the advantages of implicit and parametric
surface models. The geometric shape of a 3D model is represented by an unstructured
point cloud. Since point clouds have minimal consistency constraints, re-structuring
the surface under deformation is simple and efficient. The point cloud is not treated as
a fixed, static representation of the underlying manifold surface, but rather as a
dynamic set of temporary samples that evolves over time as the surface deforms. As a
second component, an implicit surface model is added that provides access to
important surface attributes such as the signed distance function. This supports
advanced modeling functionality such as boolean operations or collision detection.

The choice of surface representation is also guided by a trade-off between the
number of individual primitives and their descriptive power or approximation order.
For example, NURBS can represent complex shapes with relatively few primitives,
since each individual spline patch has a high approximation order. On the other hand,
combining different patches to a consistent surface model can be difficult, since strict
global continuity constraints need to be observed. Polygonal meshes are easier to
handle as they are defined by a set of vertices with a consistent adjacency graph, but
require a higher number of primitives to achieve the same geometric accuracy. Even
more primitives are necessary for point-based representations, not only to provide a
certain geometric accuracy, but also to ensure topologically exact reconstruction [8].
On the other hand, point-based surface representations do not require a global
combinatorial structure. Even though more primitives need to considered, the hope is
that the performance of geometric processing algorithms can be improved, since less
computational effort has to be spent per primitive. Ideally, this should also lead to
concise algorithms and less complex implementations.

As discussed above, 3D acquisition has become increasingly popular for creating
3D surface models. With increasing resolution of the scanning devices, geometric data
sets are becoming more and more complex, lately reaching billions of sample points
for a single model [75]. Since scanners typically produce a collection of point samples,
3D reconstruction methods are used to convert the point cloud into a certain surface
representation (see Section 1.1.2). Unfortunately, most of these methods do not scale

6 Introduction

well with model size, e.g., many techniques based on the Delaunay triangulation have
a worst-case complexity of , where is the number of sample points. Being able
to directly process point cloud representations would avoid the need for surface
reconstruction entirely. Also, point-based rendering methods have proven very
successful for displaying complex surfaces. Thus the entire 3D content creation
pipeline shown in Figure 1.1 can be implemented with points as a unified acquisition,
processing and rendering primitive.

1.3 RELATED WORK

This section briefly reviews some related work that is concerned with surface modeling
using point primitives. A more detailed discussion of specific papers will be given in
the subsequent chapters.

Levoy and Whitted [76] proposed points as a universal meta-primitive for
geometric modeling and rendering applications for 3D geometry. They define a point-
based rendering pipeline and discuss the conversion process of geometric models into
a set of point samples.

Szeliski and Tonnesen introduced oriented particles for surface modeling [107,
110]. In this approach, individual point samples are coupled through inter-particle
potentials, which define their path of motion during an iterative simulation. Oriented
particles have been implemented in a blending tool described in Section 6.1.4. The
dynamic sampling strategy of Witkin and Heckbert [114] has been incorporated to
handle non-uniform sampling distributions. Experiments with this method showed
that, while suitable for surface smoothing and filling of small holes, full-scale particle
simulation is computationally too expensive for interactive modeling of complex
point-sampled surfaces.

Linsen presented a modeling and rendering framework for point-sampled surfaces
using the concept of a fan cloud [80, 81, 82]. The idea is to represent a local
neighborhood of point samples by a triangle fan that is computed using a specific
neighborhood relation. Thus the method builds a triangle soup of one-ring
neighborhoods that can be processed similarly to a triangle mesh. In particular, all
operations that are not dependent on a consistent connectivity graph, e.g., rendering or
surface fairing, can be performed with such a representation. A fan cloud does not
provide a manifold surface model, however. Re-sampling operations in a dynamic
setting are thus difficult to perform.

Central to the algorithms presented in this thesis is the moving least squares (MLS)
approximation [74]. A number of researchers have used the MLS surface model to
implement geometry processing methods for point clouds. Alexa et al. [4, 5]
introduced algorithms for up- and down-sampling of point set surfaces and presented
a high quality point rendering system. Fleishman et al. extended this work towards an
efficient scheme for progressive encoding and compression [33]. A high-quality
rendering method has been presented in [2] that implements ray-tracing on MLS
surfaces.

O n2() n

1.4 Contributions 7

1.4 CONTRIBUTIONS

The goal of this thesis is to investigate point primitives as a surface representation in
the context of digital geometry processing. The focus is on new methods for shape and
appearance modeling for surfaces represented by point samples.

The main contributions of this thesis are:

• A collection of operators for local surface analysis and classification.

• A set of point-based surface simplification algorithms.

• A multi-scale point-based surface representation.

• A feature extraction pipeline for point clouds.

• A framework and algorithms for point-based shape and appearance modeling.

1.5 OUTLINE

The thesis is organized as follows:

• Chapter 2 presents various techniques for surface analysis based on local
neighborhoods, including tangent plane and surface variation estimation. It also
describes and analyses the moving least squares (MLS) surface model used to
define a continuous surface from a set of point samples.

• Chapter 3 introduces a number of surface simplification techniques for reducing
the complexity of point-sampled surfaces. A comparative analysis of the different
methods is given that considers aspects such as approximation error, resulting
sampling distribution, and time and memory efficiency.

• Chapter 4 extends the single-scale surface representation defined in Chapter 2 to a
multi-scale representation that approximates a given model at different levels of
geometric detail. For this purpose, low-pass filtering methods for surface
smoothing and a decomposition operator for detail encoding are presented. The
chapter also defines various spectral filters based on the multi-scale
decomposition.

• Chapter 5 presents a feature extraction pipeline for point-sampled surfaces. A
multi-scale classification operator is used to determine a set of feature nodes that
are connected using a minimum spanning tree and modeled as active contour
models for subsequent smoothing. A non-photorealistic point renderer is
introduced to create artistic line-drawings using the extracted feature curves.

• Chapter 6 introduces boolean operations and free-form deformation for shape
modeling of point-sampled surfaces. The representation, sampling, and rendering
of sharp feature curves is discussed, as well as a dynamic sampling method that
supports extreme geometric deformations.

• Chapter 7 presents techniques for point-based appearance modeling. Interactive
appearance editing operations are based on a new algorithm for computing a
minimum distortion parameterization, and a sampling method using parameterized
scattered data approximation. Editing operations include painting and texturing,
sculpting, and filtering.

8 Introduction

• Chapter 8 shows some examples of point-based shape and appearance modeling
operations. It introduces the software platform Pointshop3D, which serves as an
implementation test-bed for the algorithms developed in this thesis.

• Chapter 9 summarizes the thesis and concludes with some directions for future
research.

9

2

2POINT-SAMPLED SURFACES

The main objective of this thesis is the processing of manifold surfaces that are
represented by finite sets of point samples. The goal is to perform operations directly
on the point cloud and only compute (local) surface approximations when they are
required. This provides more flexibility when designing new processing algorithms
that do not depend on a global combinatorial structure (such as a consistent
connectivity graph) of the underlying surface representation.

The input data is given as a point cloud , with . The
sample points can be produced by some 3D scanning device, e.g., a laser-range
scanner, or a sampling process that creates samples from a particular surface
representation, e.g., an implicit surface. An arbitrary number of attributes such as color
or material properties can be assigned to each sample point, but in general no additional
information regarding the definition of the surface is given, such as normal vectors or
curvature estimates.

This chapter presents the fundamental techniques that are used to define more
sophisticated processing algorithms in the subsequent parts of this thesis. In particular,
efficient methods for estimating local surface properties, such as normal vector and
curvature, are described. These computations are based on neighborhoods of point

P pi{ }i 1 n,[]∈= pi IR
3∈

10 Point-Sampled Surfaces

samples, which are defined as subsets of the point cloud that satisfy some local
neighborhood relation. Also, the moving least squares (MLS) surface model is
discussed, which defines a smooth manifold surface from the point cloud and allows
the evaluation of the signed distance function.

2.1 LOCAL SURFACE ANALYSIS

The concept of a 2-manifold surface embedded in 3-space is crucial for the algorithms
presented in this thesis. The following definition of a manifold surface is taken from
[25]:

Definition 2.1: A subset is a 2-manifold surface, if for each , there
exists a neighborhood in and a map of an open
set onto such that

• is differentiable, i.e., if
for then the functions , and have continuous
partial derivatives of all orders in ,

• is a homeomorphism, i.e., the inverse exists
and is continuous,

• for each , the differential is one-to-one.

Note that the definition of a surface is based on local (possibly infinitesimal)
neighborhoods. Intrinsic properties of the surface, such as tangent plane or Gaussian
curvature, are defined with respect to such neighborhoods (see [25] for details).

2.1.1 Local Neighborhoods

In the discrete setting a local neighborhood can be defined through spatial relations of
the sample points. Given a point , a local neighborhood is defined as an index
set such that each satisfies a certain neighborhood condition. This
condition should be set in such a way that the points of adequately represent a
small, local surface patch around the point (see also Section 2.2). For the
computations described below it is important that local neighborhoods only depend on
the geometric locations of the point samples in space, not on some additional
combinatorial structure associated with the point cloud. In particular, the neighborhood
of a point should have no dependence on the neighborhoods of its neighbors

.

K-nearest Neighbors

The definition of the -nearest neighbors is based on an ordering of all points in
according to Euclidean distance to the point . Let be a permutation such that

 and .

Then the index set of the -nearest neighbors of the sample is given as

. (2.1)

The set defines a sphere centered at with radius , such that
 is inside if and only if .

P

P

S IR3⊂ x S∈
V IR3 X:U V S∩→

U IR2⊂ V S IR3⊂∩

X X u v,() x u v,() y u v,() z u v,(),,()=
u v,() U∈ x y z

U

X X
1– :V S U→∩

u U∈ dXuIR2 IR3→

p P∈
Np pi i Np∈,

Np
p

p
pi i Np∈,

k Np
k

P
p Π

pΠ 1() p– 0> pΠ i() p– pΠ i 1+() p– i 1 n 1–,[]∈,≤
Np

k
k p

Np
k Π 1() Π 2() … Π k(), , ,{ }=

Np
k

sp
k p rp

k pΠ k() p–=
pi sp

k
i Np

k∈

2.1 Local Surface Analysis 11

The following two neighborhood relations are based on the projection of the -nearest
neighbors onto the tangent plane at (see Section 2.1.3). Given , let be the
projection of onto .

BSP Neighbors

Let be the sub-space defined by

. (2.2)

Then the BSP (binary space partition) neighbors of are defined by the index set
 such that , if and .

Voronoi Neighbors

Let be the Voronoi diagram (see [94]) of the projected points . The
Voronoi cell of is defined as

(2.3)

Let be the Voronoi cell that contains a point . The Voronoi neighbors of are
defined by the index set such that , if and is adjacent to ,
i.e., .

Figure 2.1 illustrates the three different neighborhood relations in 2D. BSP-
neighbors and Voronoi neighbors are useful to select a subset of the -nearest
neighbors that still provide an adequate sampling of a local surface patch. Processing
methods that critically depend on the number of points in a neighborhood can benefit
from this reduction, in particular if a series of computations is performed on a fixed
neighborhood. In such cases, the additional cost of evaluating the more sophisticated
neighborhood relation of BSP- and Voronoi-neighbors is quickly amortized.

2.1.2 Local Sampling Density

An important measure for analyzing point-sampled surfaces is the local density of the
point samples, i.e., the number of samples per unit area. The local sampling density
at a sample point can be estimated by computing the sphere with minimum

Figure 2.1 Local neighborhoods: (a) -nearest neighbors, (b) BSP-neighbors, (c) Voronoi neighbors.

k
Tp p Np

k qi
pi Np

k∈ Tp

Bi

x Bi∈ x qi–() p qi–() 0≥⋅{ }

p
Np

B
Np

k⊆ i Np
B∈ i Np

k∈ qi Bj
j Np

k∈
∩∈

V qi i Np
k∈,

Vi qi

Vi x Tp x qi– x qj– j Np
k

j i≠,∈∀≤∈{ }=

Vp p p
Np

V
Np

k⊆ i Np
V∈ i Np

k∈ Vi Vp
Vi Vp ∅≠∩

k

(a) (b) (c)

k

ρi
pi P∈

12 Point-Sampled Surfaces

radius centered at that contains the -nearest neighbors to . By approximating
the intersection of the underlying surface and this sphere with a disc, can be defined
as

. (2.4)

This discrete estimation of local sampling density can be extended to a continuous
function using scattered data approximation as

, (2.5)

where and the weights can be computed using radial basis functions, i.e.,
. A continuous density function is useful because it

provides for each point on the surface an estimate of the sampling density of a
small patch around . A suitable choice for the basis functions are compactly
supported piecewise polynomials. For example, if is a Hermite polynomial of degree

 satisfying

(2.6)

then Equation 2.5 can be simplified to

, (2.7)

where defines the -closest points in from and

, (2.8)

with being the radius of the enclosing sphere . By construction, the function
of Equation 2.7 will be continuous. For example, the blending function

(2.9)

yields a continuous local sampling density function. Figure 2.12 (b) illustrates such
a density map for the irregularly sampled point cloud of Figure 2.12 (a), where
in Equation 2.4.

Local Sample Spacing

From the definition of the sampling density function, an estimate for the local sample
spacing can be derived as

ri pi k pi
ρi

ρi
k

πri
2

---------=

ρ:IR3 IR+→

ρ x() 1
Ω
---- ωi x()ρi,

i 1=

n

∑= Ω ωi x()
i 1=

n

∑=

x IR
3∈ ωi

ωi x() B x pi–()= ρ x()
x S

x B
b

m

b 0() 1=

b x() 0=

b′ 0() b′ 1() 0= =

…

b
m 2⁄() 0() b

m 2⁄() 1() 0= =

ρ x() 1
Ω
---- ωjρj,

j Nx∈
∑= Ω ωj

j Nx∈
∑=

Nx k P x

ωi b
x pi–

r
------------------ 
 =

r sx ρ x()
C

m 2⁄

b x() x
2 1–()

2
=

C
2

k 15=

2.1 Local Surface Analysis 13

. (2.10)

 measures the average distance of sample points within the sphere defined by the -
nearest neighbors.

2.1.3 Covariance Analysis

Based on the neighborhood relations introduced above, local surface properties at a
point can be estimated using a statistical analysis of the neighboring samples.
In particular, eigenanalysis of the covariance matrix of the point positions and normals
of a local neighborhood yields efficient algorithms for estimating normal vectors and
surface and normal variation (to be defined below).

Let be the centroid of the neighborhood of , i.e.,

. (2.11)

The covariance matrix for the sample point is then given by

, (2.12)

 describes the statistical properties of the distribution of the sample points in the
neighborhood of point by accumulating the squared distances of these points from
the centroid . Consider the eigenvector problem

. (2.13)

Since is symmetric and positive semi-definite, all eigenvalues are real-valued
and the eigenvectors form an orthogonal frame, corresponding to the principal
components of the point set defined by [58]. The measure the variation of the

, along the direction of the corresponding eigenvectors. The total variation,
i.e., the sum of squared distances of the from the centroid is given by

. (2.14)

Normal Estimation

Assuming , it follows that the plane

(2.15)

through minimizes the sum of squared distances to the neighbors of [58]. Thus
 approximates the surface normal at , or in other words, and span the

tangent plane at (see Figure 2.2 (a)).

η x() 1

ρ x()
---------------=

η k

p P∈

p p

p
1

Np
--------- pi

i Np∈
∑=

3 3× C p

C

pi1
p–

…
pik

p–

T
pi1

p–

…
pik

p–

ij Np∈,⋅=

C
p

p

C vl⋅ λl vl⋅= l 0 1 2, ,{ }∈,

C λl
vl

Np λl
pi i Np∈,

pi

pi p–
2

i Np∈
∑ λ0 λ1 λ2+ +=

λ0 λ1 λ2≤ ≤

T x(): x p–() v0⋅ 0=

p p
v0 np p v1 v2

p

14 Point-Sampled Surfaces

Normal Orientation

A consistent orientation of the normal vectors can be computed using a method based
on the Euclidean minimum spanning tree of the point cloud, as described in [53]. The
algorithm starts with an extremal point, e.g., the sample with largest -coordinate, and
orients its normal to point away from the centroid of the point cloud. The normal vector
of each adjacent point in the minimum spanning tree can then be oriented based on the
assumption that the angle of the normal vectors of adjacent points is less than (see
Figure 2.2 (b)). If the underlying surface is orientable (note that some surface are non-
orientable, e.g., the Moebius strip) and the sampling distribution is sufficiently dense,
then a consistent orientation of the normals will be obtained after all points of the point
cloud have been visited.

Surface Variation

 quantitatively describes the variation along the surface normal, i.e., estimates how
strongly the points deviate from the tangent plane. The surface variation at point in
a neighborhood of size is defined as

. (2.16)

The maximum surface variation is assumed for completely
isotropically distributed points, while the minimum value indicates that all
points lie in a plane. Note also that and describe the variation of the sampling
distribution in the tangent plane and can thus be used to estimate local anisotropy.

Normal Variation

A similar method for local surface analysis considers the covariance matrix of the
surface normals, i.e.,

. (2.17)

Figure 2.2 Normal estimation (2D for illustration). (a) Computing the tangent plane using covariance
analysis, (b) normal orientation using the minimum spanning tree, where the red normals
have been flipped, since the angle to the next adjacent oriented normal is larger then .

z

π 2⁄

p

T
covariance ellipsoid

query ball

v0

(a) (b)

π 2⁄

λ0
p

n

σn p()
λ0

λ0 λ1 λ2+ +
------------------------------=

σn p() 1 3⁄=
σn p() 0=

λ1 λ2

C' ni

i Np∈
∑

T
ni⋅=

2.2 Sampling Requirements 15

Let be the eigenvalues of with corresponding eigenvectors ,
and . As Garland discusses in [38], measure the variation of the surface normals
in the direction of the mean normal, while measures the maximum variation on the
Gauss sphere. Thus the normal variation can be defined as

. (2.18)

Garland also analyses the covariance matrix of the normal vectors in the context of
differential geometry. He shows that under mild conditions on the smoothness of the
surface, the eigenvectors , and converge to the direction of minimum
curvature, maximum curvature, and mean normal, respectively, when sampling
density goes to infinity.

Figure 2.3 compares surface variation and normal variation for the Max Planck
model consisting of 139,486 points. With increasing neighborhood size, a smoothing
of the variation estimates can be observed. This effect will be used in Chapter 5 to
define a multi-scale feature classification operator.

2.2 SAMPLING REQUIREMENTS

The methods for local surface analysis introduced above are based on the assumption
that the -nearest neighbors of a sample point adequately represent a small patch of
the underlying surface around . In particular, the intersection of the query ball
of the -nearest neighbors of with should be homeomorphic to a disc. (see
Figure 2.4 (a)). Additionally, should be relatively flat to ensure accurate normal
estimation (Figure 2.4 (b)). This means that the query ball must not be too large in
regions of high curvature or where two geodesically distant parts of come close
together. Nevertheless, the density of the samples within the query ball needs to be
high enough to enable accurate and stable estimation of local surface properties.

Appendix C presents a theoretical analysis of local surface estimation using -
nearest neighbors given a discrete sample of a smooth, twice-differentiable
manifold surface . It is shown that, if satisfies certain sampling criteria, there exists
a such that local surface properties, e.g., the tangent space, can be estimated
accurately from the set of -nearest neighbors. In particular, if the sampling density
goes to infinity, the estimated normal vector at a point (see Equation 2.15)
converges to the surface normal of at .

Lemma C.4 gives quantitative bounds on the number of nearest neighbors.
Empirical evidence shows, however, that these bounds are far from being optimal. In
fact, hardly any of the point-sampled models used in this thesis meets the sampling
requirements stated in Lemma C.4. Still, experiments demonstrate that the methods
presented in Section 2.1 give satisfactory results for these models. This suggests that
there is still significant room for improvement on the bounds of Lemma C.4. Also note
that in the proof a number of conservative bounds have already been incorporated.

Since the discrepancy between current theoretical results and practical experience
is still substantial, the result of Lemma C.4 is not immediately relevant for practical
applications. There is also a more inherent limitation. To determine if a given point
cloud meets the proposed sampling requirement, access to the medial axis of the
underlying surface is required. The medial axis is defined as the closure of the set of
points which have more than one closest point on (see also Definition C.1).

λ0' λ1' λ2'≤ ≤ C' v0' v1'
v2' λ2'

λ1'

σn' p() λ1'=

v0' v1' v2'

k p
S p Sp k,

k p S
Sp k,

S

k
P

S P
k

k
p P∈

S p

k

P
S

S

16 Point-Sampled Surfaces

Unfortunately, the medial axis is not known for most point-sampled surfaces, e.g.,
scanned models. Thus given a point cloud , it is generally not possible to decide
whether fulfills the sampling condition without additional information on the
surface . Nevertheless, the analysis given in Appendix C provides some theoretical
justification on why point-based surface modeling based on -nearest neighbors is
practical. Also, in related fields such as surface reconstruction, a similar analysis on
sampling requirements has led to the development of efficient algorithms with
provable bounds (e.g., [7, 8]).

Figure 2.3 Comparison of surface variation (top row) and normal variation (bottom row) for increas-
ing size of the local neighborhoods.

σ15 σ40 σ150

σ15' σ40' σ150'

P
P

S
k

2.3 Moving Least Squares Surfaces 17

2.3 MOVING LEAST SQUARES SURFACES

Given a point cloud the goal of a point-based surface model is to define a surface
that approximates or interpolates the sample points . In the context of this thesis,
the surface model should satisfy the following requirements:

• Smoothness: The surface should be smooth and differentiable, preferably in a
controllable manner. This means that there should be some mechanism to adjust
the smoothness depending on the intended application.

• Locality: The evaluation of the surface model should be local, i.e., only points
within a certain distance should influence the definition of the surface at a
particular location. Locality is desirable to enable local modifications without
affecting the global shape of the surface. It also increases the efficiency of the
computations.

• Stability: The evaluation of the surface model should be stable and robust, even for
non-uniform sampling distributions. This means that the surface model needs to be
adaptive, i.e dependent on the local sampling density.

Methods for interpolating or approximating functions in from a discrete set of
scattered data values have been studied extensively in the past. Examples include
reconstruction using finite elements [27], radial basis functions [26], and moving least
squares (MLS) approximation [69]. The latter two are advantageous because they are
“mesh-less”, i.e., do not require a consistent tesselation of the function domain.

Recently, Levin has introduced an extension of the moving least squares
approximation to surfaces [74]. This method will be used throughout this thesis for
computing local approximations of the surface represented by a point cloud, and to
evaluate the corresponding signed distance function. The idea is to locally approximate
the surface by polynomials that minimize a weighted least squares error at the data
points. Since the method is solely based on Euclidean distance between sample points,
no additional combinatorial structure on the point cloud is required.

After an introduction to the MLS approximation in the functional setting, Section
2.3.2 discusses Levin’s generalization to surfaces. The original definition of an MLS

Figure 2.4 Undersampling leads to wrong local surface analysis using -nearest neighbors: (a) the
intersection of the query ball with the surface consists of two disjoint components, (b)
wrong tangent plane estimation due to high curvature.

(a) (b)

p p

Sp 9,

Sp 6,

k

P S
pi P∈

S

IRd

18 Point-Sampled Surfaces

surface will then be extended to an adaptive scheme that is more robust for non-
uniformly sampled surfaces.

2.3.1 Functional MLS Approximation

Let be a finite set of distinct sample points and corresponding
function values . Let be the space of polynomials of degree in . For
a given point , the MLS approximation of degree is given as the value

, where minimizes

(2.19)

among all . is a weight function that typically depends only on the
Euclidean distance between the two sample points, i.e., can be written as

, where is a smooth, positive, monotonously
decreasing function. Interpolation can be achieved by allowing a singularity at zero,
i.e.,

. (2.20)

The existence and uniqueness of the minimization problem defined by Equation 2.19
can easily be proven. It can also be shown that the smoothness of the approximation
depends on the smoothness of the weight function. More precisely, if then

 as well (see [10] for more details). Figure 2.5 shows an example of an MLS
approximation of 2D image data. The regularly sampled image on the left contains

 pixels that have been sub-sampled randomly using injection in the middle
image to 1,000 sample points. The right image shows the MLS approximation of this
random set, sampled at the resolution of the original image.

2.3.2 MLS Surface Model

The functional MLS approximation is defined for Euclidean domains and makes use
of a global parameterization, which is generally not available for manifold surfaces.
Therefore, Levin proposed an implicit MLS scheme to approximate 2D manifold
surfaces embedded in 3D using a projection method [74].

Figure 2.5 Functional MLS approximation on 2D image data.

X xi fi,{ }= xi IRd∈
fi IR∈ Πm

d
m IR

d

x IRd∈ f̃ x() m
p̃ x() p̃ Πm

d∈

p xi() fi–()2Φ xi x,()
i
∑

p Πm
d∈ Φ

Φ xi x,() φ xi x–()= φ:IR+ 0 ∞,[]→

φ r()
r 0→
lim ∞=

Φ C
k∈

f̃ C
k∈

100 100×

 original random sub-sample MLS reconstruction

2.3 Moving Least Squares Surfaces 19

Given a point set , the MLS surface is defined as the stationary set
of a projection operator , i.e.,

. (2.21)

 is defined by a two-step procedure:

• Compute a local reference plane

(2.22)

by minimizing the weighted sum of squared distances

, (2.23)

where is the orthogonal projection of onto . The reference plane defines a
local coordinate system with at the origin. Let be the coordinates of
the point in this coordinate system, i.e., are the parameter values in
and is the height of over .

• Compute a bivariate polynomial that minimizes

(2.24)

among all .

The projection of onto is then given as

. (2.25)

Figure 2.6 illustrates the MLS projection for a curve example in 2D. The left image
shows a single projection of a point onto the MLS curve depicted on the right.

In [73] Levin analyses the smoothness and convergence rate, which leads him to the
conjecture that the smoothness of directly depends on the smoothness of , i.e.,
if then (compare with Section 2.3.1). The kernel function thus
controls the shape of the surface . A suitable choice for is the Gaussian, i.e.,

Figure 2.6 2D illustration of the MLS projection.

P pi{ }= S P()
ΨP

S P() x IR3 ΨP x()∈ x={ }=

ΨP x()

H y IR3∈ y n⋅ D– 0={ }=

pi n⋅ D–()2φ pi q–()
i I∈
∑

q x H
q ui vi fi, ,()

pi ui vi,() H
fi pi H

p̃ u v,()

p ui vi,() fi–()2φ pi q–()
i I∈
∑

p Πm
2∈

x S P()

ΨP x() q p̃ 0 0,() n⋅+=

x S P()

x

H

p̃

q

ΨP x()

P

S P()

S P() φ
φ C

k∈ S P() C
k∈ φ

S P() φ

20 Point-Sampled Surfaces

, (2.26)

where is a global scale factor that determines the kernel width. The Gaussian kernel
has been used successfully in different applications (see also [4, 33, 2]) and will be
used throughout this thesis. For an analysis of different kernel functions see [10].

The scale factor can be understood as the characteristic scale of , i.e.,
features that are smaller than will be smoothed out. In this sense the MLS projection
operator implements a low-pass filter, whose filter width can be controlled by the
parameter . Figure 2.7 shows an example an MLS surface computed with different
scale factors.

Given the MLS surface representation, local surface properties such as tangent
plane or curvature, can be estimated directly from the fitting polynomials. However, in
a dynamic setting these computations are often too costly. Thus in time-critical appli-
cations, the methods presented in Section 2.1.3 are more appropriate.

2.3.3 Signed Distance Function

An important tool for local surface analysis is the signed distance function
 that measures for each point the signed distance to the surface

. Since the MLS method defines an orthogonal projection when using linear
polynomials in Equation 2.24, a distance function can be defined as

. (2.27)

If is closed and the normals on are consistently oriented, e.g., always pointing
outward of the surface (see Section 2.1.3), then the signed distance function can be
formulated as

, (2.28)

Figure 2.7 Smoothing effect of the MLS projection. The Gaussian kernel width has been doubled for
each image from left to right.

φ x() e

x2

h2
-----–

=

h

(a) h=1 (b) h=2 (c) h=4

h S P()
h

h

d+:IR3 IR→ x IR3∈
S

d x() x ΨP x()–=

S S
S

d+ x() x ΨP x()–() n⋅=

2.3 Moving Least Squares Surfaces 21

where is the surface normal at with . Thus the MLS surface can
be defined implicitly as the zero-set of this 3D scalar field, i.e.,

. (2.29)

The signed distance function induced by the MLS projection operator will be used in
subsequent parts of this thesis for error measurement (Section 3.5.1), multi-scale
decomposition (Section 4.3.1) and inside/outside classification (Section 6.1.1).

2.3.4 Computing the MLS Projection

The MLS projection method defined above consists of two steps: Computation of the
local reference plane and computation of the least-squares polynomial with
respect to that reference plane. The former requires a non-linear optimization, since the
distances used in the kernel function depend on the projection of the point of interest

 onto the unknown reference plane. Alexa et al. [4] use Powell iteration to compute
 and in Equation (2.23).

A different approach is to try and estimate directly, which determines
 and . This can be achieved using a Newton-type

iteration based on a geometric gradient estimation. First an initial estimate for is
computed by choosing the point of the point cloud that lies closest to . Finding the
best fitting plane to a local neighborhood of samples at is an easy task since it
only requires the solution of a linear system (see Section 2.1.3). The next estimate
for is obtained by orthogonal projection of onto . This procedure can be
iterated such that in each step another estimate is computed by projecting onto
the plane , which is the weighted least-squares plane fitted to a local neighborhood
of samples of around the previous estimate . This iterative procedure corresponds
to a Newton-iteration scheme to find the point that defines the reference plane with
respect to . To avoid oscillatory behavior of the iterative scheme, an additional
damping factor is introduced, i.e., instead of fully updating from to the
damped update from to is used, where typically gives
satisfactory results.

Given the reference plane , all points in are projected into a local reference
frame defined by . The computation of the polynomial is now a linear weighted
least squares approximation, which can be computed using normal equations. For
example, a cubic polynomial leads to a linear system with 10 unknowns, which can be
solved using a standard linear solver.

Both computation of the reference plane and the fitting polynomial require order
 computations, since they involve the entire point cloud (see Equations 2.23

and 2.24). However, since the value of the weight function drops quickly with distance,
efficient approximation schemes can be applied to significantly reduce the complexity
of the computations. For example, Alexa et al. [4] use a multi-pole scheme, where they
cluster groups of points that are far away from the point of interest into a single point
and use this representative in the optimization. A different approach is to only collect
points within a sphere of radius centered at , such that the weight for each point
outside this sphere is so small that the influence in the least-squares optimization is
negligible. For example, given an MLS scale factor , can be set to to yield an
MLS weight of less then in Equations 2.23 and 2.24 for all points outside of .

n ΨP x() n 1= S

S x IR3 d+ x() 0=∈{ } x IR3 d x() 0=∈{ }= =

H p̃

q
x
D n

q
n x q–() x q–⁄= D q n⋅=

q0 q
P x

H0 q0
q1

q x H0
qi 1+ x

Hi
P qi

q
x

λ qi qi 1+
qi 1 λ–()qi λqi 1++ λ 0.5=

H P
H p̃

O n() P

r

sr r x

h r 3h
0.001 sr

22 Point-Sampled Surfaces

2.3.5 Approximation Error and Reconstruction

The MLS surface approximation has the projection property, i.e.,

. (2.30)

When using Gaussian kernels, the MLS projection is not interpolating, however. This
means that, in general, for . Thus the surface defined by the
point set is different than the surface defined by . To
quantify this distance, Alexa et al. considered the approximation error of the MLS
projection [5]. Assuming that both surfaces have been approximated with the same
scale factor , they found that

, (2.31)

where polynomials of degree have been used in optimization of Equation 2.24 and
 is a constant depending on the -th derivatives of . They also

investigated the error of piecewise polynomial approximations of , see [5] for
details.

Another important aspect of the MLS surface model is its stability with respect to
sampling density. Figure 2.8 shows an example of a point cloud that is not sampled
densely enough for correct reconstruction by the MLS method. The bunny model on
the left has been uniformly subsampled (see Chapter 3) from 34,834 to 534 sample
points. On the right image, the MLS reconstruction of this subsampled point cloud is
shown. Due to the loss of information during the simplification process, this surface
exhibits less geometric detail, but still conveys the overall shape of the original model.
At the tip of the ears, however, the surface has been contracted to a single sheet (see
Figure 2.8 (e)). In fact, an important application of the MLS is thinning of noisy point
clouds [71], where this effect is exploited explicitly. In the example of the bunny’s
ears, the sampling rate is too low in relation to the local feature size (see Section 2.2),
so the volumetric extent of the ears is interpreted as deviations from a plane that are
considered as noise.

A very fundamental question regarding the MLS surface model is the following:
Given a surface , what is the minimum sampling rate (and how need these samples
be distributed on the surface) so that the MLS model provides a topologically correct
reconstruction of ? This problem is closely related to the definition of sampling
requirements described in Section 2.2. It is beyond the scope of this thesis to address
this question in detail. Instead, the following section will present an extension of the
MLS scheme that improves the approximation error and numerical stability of the
computations.

2.3.6 Adaptive MLS Surfaces

So far the MLS surface approximation has been defined with a fixed Gaussian kernel
width . Finding a suitable can be difficult for non-uniformly sampled point clouds,
however. A large scale factor will cause excessive smoothing in regions of high
sampling density. Even worse, if the filter kernel is too small, only very few points will
contribute significantly to Equations (2.23) and (2.24) due to the exponential fall-off
of the weight function. This can cause instabilities in the optimization because of
limited precision of the computations, which lead to wrong surface approximations.

ΨP ΨP x()() ΨP x()=

ΨP pi() pi≠ pi P∈ SΨP
ΨP P() ΨP pi(){ }= SP P

h

SΨP
SP– Mm 1+ h

m 1+<

m
Mm 1+ m 1+() SP

SP

S

S

h h

2.3 Moving Least Squares Surfaces 23

Figure 2.9 shows an example of a surface that cannot be approximated adequately
using a global scale factor. The surface is defined using a concentric sine wave whose
wavelength and amplitude gradually increases towards the rim of the surface (see
Figure 2.9 (c)). Similarly, the sampling density decreases towards the boundary as
illustrated in Figures 2.9 (b) and (d). Thus the surface detail is coupled with the
sampling density, i.e., in regions of high sampling density the surface exhibits high-
frequency detail, whereas low-frequency detail is present where the surface is sampled
less densely.

Figure 2.10 shows reconstructions of the central section of this surface using the
regular sampling grid shown in Figure 2.10 (b). The Gaussian used in Figure 2.10 (c)
causes substantial smoothing and leads to a significant loss of geometric detail in the
central area. In Figures 2.10 (d) and (e) the kernel width has been successively halved,
which improves the approximation in the central region but leads to increasing
instability towards the boundary.

To cope with this problem, the MLS approximation needs to adapt to the local
sampling density. In regions of high sampling density a small Gaussian kernel should
be applied to accurately reconstruct potential high geometric detail. If the sampling

Figure 2.8 Wrong MLS surface reconstruction due to undersampling. (a) original model, (b) sub-
sampled point cloud, (c) and (d) MLS reconstruction of (b), (e) zoom of the ear.

(a) (b) (c)

(d) (e)

24 Point-Sampled Surfaces

density is low, the kernel width needs to be bigger to improve the stability of the
approximation.

Given the continuous local sampling density estimate of Section 2.1.2, the MLS
approximation can be extended in the following way: Instead of using a fixed scale
factor for all approximation, a dynamically varying scale factor can be defined as

, (2.32)

where is the point that is to be projected onto the MLS surface. The idea of adaptive
scale factors has been introduced by Baule for MLS approximations in the functional
setting [10]. The focus here was on improving the accuracy and efficiency of the
computations, while numerical stability was not considered. Therefore, Baule used an
MLS approximation with fixed kernel to estimate the sampling density and an
subsequent adaptive MLS step with varying kernel to compute the final function
approximation. He proves that the smoothness of the functional approximation
depends on the smoothness of the two functions and . More precisely, if
and then . This result, in connection with Levin’s analysis of the
MLS projection operator leads to the following conjecture:

Let be a density estimate for a point cloud and let

(2.33)

Figure 2.9 A surface that cannot be reconstructed using a fixed kernel width. (a) surface, (b) sampling
pattern, (c) vertical cross-section of surface, (d), sample spacing

(a) (b)

(c) (d)
center centerrim rim

ρ

h

hx
h
ρ x()-----------=

x

φ1
φ2

F
φ1 φ2 φ1 C

i∈
φ2 C

j∈ F C
min i j,()∈
Ψ

ρ C
m∈ P

φ pi x,() e

x2 ρ x()2⋅
h2

-----------------------–

=

2.3 Moving Least Squares Surfaces 25

Figure 2.10 Regular re-sampling of a non-uniformly sampled surface using fixed Gaussian kernels.

Figure 2.11 Adaptive MLS reconstruction of Figure 2.10: (a) reconstructed surface using the sampling
pattern of Figure 2.10 (b), (b) sample spacing, where blue corresponds to low values,
while red indicates high values.

(a) section considered in the
approximations of (c)-(e)

(b) sampling pattern of (c)-(e)

(c) h=1

(d) h=1/2

(e) h=1/4

(a) (b)

26 Point-Sampled Surfaces

be the MLS kernel function and the MLS surface defined by . Then .

Once a proof of Levin’s conjecture [74] has been found (if it exists), it should be
straightforward to extend this proof using Baule’s approach for functional MLS
approximations [10].

Figure 2.11 shows an example of an adaptive MLS surface using the same input
point cloud and sampling pattern as in Figure 2.10. The sample spacing has been
computed using a fourth-order B-Spline blending function as shown in Figure 2.11 (b).
Observe that the high-frequency detail is faithfully recovered within the limits of the
resolution of the sampling grid and that no instabilities occur at the surface boundary.

Figure 2.12 shows an example of an MLS reconstruction of a non-uniformly
sampled point cloud that has been created by curvature adaptive simplification of a
uniformly sampled surface (see Chapter 3). Throughout the rest of this thesis, the
adaptive MLS scheme will be used for locally approximating a surface from a set of
point samples.

Figure 2.12 Adaptive MLS reconstruction of the Max Planck bust. (a) input point cloud with 5,413
points, (b) continuous sampling density map, (c) reconstructed MLS surface.

S P S C
m∈

(a) (b) (c)

27

3

3SURFACE SIMPLIFICATION

As indicated in the introduction, point-sampled surfaces often describe complex
geometric objects using millions or even billions of sample points (see for example
[75]). Reducing the complexity of such data sets is one of the key processing
techniques for the design of scalable modeling and visualization algorithms. Surface
simplification provides a means to generate the required approximations of a given
surface that use fewer sample points than the original point model. These
approximations should of course resemble the original surface as closely as possible.

Formally, the goal of point-based surface simplification can be stated as follows:
Let be a manifold surface defined by a point cloud . Given a target sampling rate

, find a point cloud with such that the distance of the
corresponding surface to the original surface is minimal. Alternatively, a target
distance can be specified and the goal is to find the point cloud such that

 and is minimal.

These objectives require the definition of a metric that measures the geometric
distance between the original and the simplified surface. As will be described in
Section 3.5.1 a discrete surface distance metric can be defined using the MLS
projection operator introduced in Section 2.3.2.

S P
n P< P′ P′ n= ε d S S′,()=

S′ S
ε P′

d S S′,() ε≤ P′

d

28 Surface Simplification

In practice, finding the global optimum to the above problems is intractable [38].
Most existing surface simplification techniques therefore use different heuristics based
on local error measures. In this thesis, three different approaches have been
implemented and analyzed [90]:

• Clustering methods split the point cloud into a number of disjoint subsets, each of
which is replaced by one representative sample (see Section 3.2).

• Iterative simplification successively contracts point pairs in a point cloud
according to a quadric error metric (Section 3.3).

• Particle simulation computes new sampling positions by moving particles on the
point-sampled surface according to inter-particle repelling forces (Section 3.4).

These methods are extensions and generalizations of mesh simplification algorithms to
point clouds, targeted towards densely-sampled organic shapes stemming from 3D
acquisition, iso-surface extraction or sampling of implicit functions. They are less
suited for surfaces that have been carefully designed in a particular surface representa-
tion, such as low-resolution polygonal CAD data.

Furthermore, the goal was to design algorithms that are general in the sense that
they do not require any knowledge of the specific source of the data. For certain
applications this additional knowledge could be exploited to design more effective
simplification algorithms, but this would also limit the applicability of these methods.

The algorithms presented in this chapter differ in a number of aspects such as
quality of the generated surfaces, computational efficiency and memory overhead.
These features are discussed in a comparative analysis in Section 3.5. The purpose of
this analysis is to give potential users of point-based surface simplification suitable
guidance for choosing the right method for their specific application. Real-time
applications, for instance, will put particular emphasis on efficiency and low memory
footprint. Methods for creating surface hierarchies favor specific sampling patterns
(e.g., [112]), while visualization applications require accurate preservation of
appearance attributes, such as color or material properties.

3.1 RELATED WORK

Earlier methods for simplification of point-sampled models have been introduced by
Alexa et al. [4] and Linsen [81]. These algorithms create a simplified point cloud that
is a true subset of the original point set by ordering iterative point removal operations
according to a surface error metric. While both papers report good results for reducing
redundancy in point sets, pure subsampling unnecessarily restricts potential sampling
positions, which can lead to aliasing artefacts and uneven sampling distributions. To
alleviate these problems, the algorithms described in this chapter re-sample the input
surface and implicitly apply a low-pass filter (e.g., clustering methods perform a local
averaging step to compute the cluster’s centroid).

In [91], Pauly and Gross introduced a re-sampling strategy based on Fourier theory.
They split the model surface into a set of patches that are re-sampled individually using
a spectral decomposition. This method directly applies signal processing theory to
point-sampled geometry, yielding a fast and versatile point cloud decimation method.
Potential problems arise due to the dependency on the specific patch layout and
difficulties in controlling the target model size by specifying spectral error bounds.

3.2 Clustering 29

3.2 CLUSTERING

Clustering methods have been used in many computer graphics applications to reduce
the complexity of 3D objects. Rossignac and Borrel, for example, used vertex
clustering to obtain multi-resolution approximations of complex polygonal models for
fast rendering [97]. The standard strategy is to subdivide the model’s bounding box
into grid cells and replace all sample points that fall into the same cell by a common
representative. This volumetric approach has some drawbacks, however. By using a
grid of fixed size this method cannot adapt to non-uniformities in the sampling
distribution. Furthermore, volumetric clustering easily joins unconnected parts of a
surface, if the grid cells are too large. To alleviate these shortcomings, surface-based
clustering techniques can be applied, where clusters are build by collecting
neighboring samples while regarding local sampling density. Two general approaches
for building clusters will be used in this thesis. An incremental method, where clusters
are created by region-growing, and a hierarchical approach that splits the point cloud
into smaller subsets in a top-down manner [103]. Both methods create a set of clusters

, such that for every point there exists a unique cluster with .
The simplified point cloud is then obtained by replacing each cluster by a
representative sample, typically its centroid given as

. (3.1)

3.2.1 Incremental Clustering

Starting from a random seed point , a cluster is built by successively adding
nearest neighbors. This incremental region-growing is terminated when the size of the
cluster reaches a maximum bound. Additionally, the maximum allowed variation
of each cluster can be restricted (see Section 2.1.3). This results in a curvature-adaptive
clustering method, where more and smaller clusters are created in regions of high
surface variation. The next cluster is then build by starting the incremental growth
with a new seed chosen from the neighbors of and excluding all points of from
the region-growing. This process is terminated when all sample points of have been
assigned to a cluster in .

Due to fragmentation, this method creates many clusters that did not reach the
maximum size or variation bound, but whose incremental growth was restricted by
adjacent clusters. To obtain a more even distribution of clusters, sample points of all
clusters that did not reach a minimum size and variation bound (typically half the
values of the corresponding maximum bounds) are distributed to neighboring clusters
(see Figure 3.1). Note that this potentially increases the size and variation of the
clusters beyond the user-specified maxima. Figure 3.2 illustrates incremental
clustering, where oriented circular splats are used to indicate the sampling distribution.

3.2.2 Hierarchical Clustering

An alternative method for computing the set of clusters recursively splits the point
cloud using a binary space partition. The point cloud is split, if

• the size is larger than the user specified maximum cluster size or

• the variation is above a maximum threshold .

Ci{ } pj P∈ Ci j Ci∈
P′ Ci

pi
1
Ci
-------- pj

j Ci∈
∑=

pj P∈ C0

σn

C1
C0 C0

P
Ci{ }

P

P nmax

σn P() σmax

30 Surface Simplification

The split plane is defined by the centroid of and the eigenvector of the covariance
matrix of with largest corresponding eigenvector (see also Figure 2.2). Hence the
point cloud is always split along the direction of greatest variation [103]. If the splitting
criterion is not fulfilled, the point cloud becomes a cluster . As shown in
Figure 3.3, hierarchical clustering builds a binary tree, where each leaf of the tree
corresponds to a cluster. A straightforward extension to the recursive scheme uses a
priority queue to order the splitting operations [14, 103]. While this leads to a
significant increase in computation time, it allows direct control over the number of
generated samples, which is difficult to achieve by specifying and only.
Figure 3.4 illustrates adaptive hierarchical clustering.

Figure 3.1 Fragmentation of incremental clustering. Gray dots correspond to sample points that are
assigned to clusters that reached the necessary size and variation bounds. All other points
are “stray samples” (blue dots) and will be attached to the cluster with closest centroid.

Figure 3.2 Uniform incremental clustering: The left image illustrates the corresponding clusters on
the original point set (296,850 points), while the right image shows the simplified point
set (2,413 points).

C2

C0 C1

P v2
P

P Ci

nmax σmax

3.2 Clustering 31

Figure 3.3 Three intermediate steps of the hierarchical clustering algorithm. (a) 2D sketch, (b) uni-
form hierarchical clustering for the Max Planck model.

Figure 3.4 Adaptive hierarchical clustering: The left image illustrates the clusters on the original
point set, while the right image shows the simplified point set (1,831 points). The size of
the splats on the right image is proportional to the corresponding cluster size.

v2

split plane

leaf node = cluster

centroid

(a)

(b)

covariance
ellipsoid

32 Surface Simplification

3.3 ITERATIVE SIMPLIFICATION

A different strategy for point-based surface simplification iteratively reduces the
number of points using an atomic decimation operator. This approach is very similar
to mesh-based simplification methods for creating progressive meshes [52].
Decimation operations are usually arranged in a priority queue according to an error
metric that quantifies the error caused by the decimation. The iteration is then
performed in such a way that the decimation operation causing the smallest error is
applied first. Earlier work [4, 81] uses simple point removal, i.e., points are iteratively
removed from the point cloud, resulting in a simplified point cloud that is a true subset
of the original point set. As discussed above this can lead to undesirable artefacts,
which can be avoided by using point-pair contraction instead of point removal. This
extension of the common edge collapse operator replaces two points and by a
new point implicitly applying a low-pass filter by computing a weighted average of
the contracted point pair.

To rate the cost of a contraction operation, an adaptation of the quadric error metric
is used as presented for polygonal meshes in [39]. The idea there is to approximate the
surface locally by a set of tangent planes and to estimate the geometric deviation of a
mesh vertex from the surface by the sum of the squared distances to these planes.
The error quadrics for each vertex are initialized with a set of planes defined by the
triangles around that vertex and can be represented by a symmetric matrix .
The quality of the collapse is then rated according to the minimum of the
error functional .

In order to adapt this technique to the decimation of unstructured point clouds,
manifold surface connectivity is replaced by the -nearest neighbor relation (see
Section 2.1.1). The error quadrics for every point sample are initialized by
estimating a tangent plane for every edge that connects with one of its neighbors

. This tangent plane is spanned by the vector and , where
 is the estimated normal vector at . After this initialization the point cloud

decimation works exactly like mesh decimation with the point inheriting the
neighborhoods of its ancestors and and being assigned the error functional

. Figure 3.5 shows an example of a simplified point cloud created by
iterative point-pair contraction.

3.4 PARTICLE SIMULATION

In [111], Turk introduced a method for re-sampling polygonal surfaces using particle
simulation. The desired number of particles is randomly spread across the surface and
their position is equalized using a point repulsion algorithm. Point movement is
restricted to the surface defined by the individual polygons to ensure an accurate
approximation of the original surface. Turk also included a curvature estimation
method to concentrate more samples in regions of high curvature. Finally, the new
vertices are re-triangulated yielding the re-sampled triangle mesh. This scheme can
easily be adapted to point-sampled geometry.

3.4.1 Spreading Particles

Turk initializes the particle simulation by randomly distributing points on the surface.
Since a uniform initial distribution is crucial for fast convergence, this random choice

p1 p2
p

v
v

4 4× Qv
v1 v2,() v→

Qv Qv1
Qv2

+=

k
p

Ei p
pi ei p pi–= bi ei n×=
n p

p
p1 p2

Q
p

Qp1
Qp2

+=

3.4 Particle Simulation 33

is weighted according to the area of the polygons. For point-based models, this area
measure can be replaced by a density estimate (see Section 2.1.2). Thus by placing
more samples in regions of lower sampling density (which correspond to large
triangles in the polygonal setting), uniformity of the initial sample distribution can
ensured.

3.4.2 Repulsion

For repulsion the same linear force term is used as in [111], because its radius of
influence is finite, i.e., the force vectors can be computed very efficiently as

, (3.2)

where is the force exerted on particle due to particle , is a force constant
and is the repulsion radius. The total force exerted on is then given as

, (3.3)

where is the neighborhood of with radius . Using a 3D grid data structure, this
neighborhood can be computed efficiently in constant time (see also Section 8.2.2).

3.4.3 Projection

In Turk’s method, displaced particles are projected onto the closest triangle to prevent
the particles from drifting away from the surface. Since no explicit surface
representation is available, the MLS projection operator (see Section 2.3.2) is
applied to keep the particles on the surface. However, applying this projection every
time a particle position is altered is computationally too expensive. Therefore, a
different approach has been used: A particle is kept close to the surface by simply
projecting it onto the tangent plane of the point of the original point cloud that is
closest to . The full moving least squares projection is only applied at the end of the

Figure 3.5 Iterative simplification of the Max Planck model from 296,850 (left) to 2,000 sample
points (middle). The right image shows all remaining potential point-pair contractions in-
dicated as an edge between two points. Note that these edges do not necessarily form a
consistent triangulation of the surface.

ρ

Fi p() k r p pi––() p pi–()⋅=

Fi p() p pi k
r p

F p() Fi p()
i Np∈
∑=

Np p r

Ψ

p
p′

p

34 Surface Simplification

simulation, which alters the particle positions only slightly and does not change the
sampling distribution noticeably.

3.4.4 Adaptive Simulation

Using the variation estimate of Section 2.1.3, more points can be concentrated in
regions of high curvature by scaling their repulsion radius with the inverse of the
variation . It is also important to adapt the initial spreading of particles accordingly
to ensure fast convergence. This can be done by replacing the density estimate by

. Figure 3.6 gives an example of an adaptive particle simulation.

Scaling of the repulsion radius also provides an easy means for user-controlled
surface re-sampling. For this purpose a painting tool has been developed (see also
Chapter 7) that allows the user to directly paint the desired repulsion radius onto the
surface and thus control the sampling distribution of the re-sampled surface. As
illustrated in Figure 3.7, particle simulation automatically creates smooth transitions
between areas of different sampling density.

3.5 COMPARISON

The previous sections have introduced different algorithms for point-based surface
simplification. As mentioned before, none of these methods attempts to find an optimal
point distribution with respect to a global distance metric, but rather uses some built-
in heuristics to approximate such an optimum:

• Clustering methods try to partition the point cloud into clusters of equal size and/or
surface variation, assuming that each cluster describes an equally important part of
the surface.

Figure 3.6 Simplification by adaptive particle simulation. The left image shows repulsion radius on
the original model determined from the surface variation estimate. Blue indicates a large
radius, while red indicates small radius. On the right, a simplified model consisting of
3,000 points is shown, where the size of the splats is proportional to the repelling force of
the corresponding particle.

σn
ρ

ρ σn⋅

3.5 Comparison 35

• Iterative simplification optimizes locally according to the quadric error metric.

• Particle simulation is based on the assumption that a minimum of the potential
energy of the particles minimizes the distance between original and re-sampled
surface.

Since these heuristics are fundamentally different, the surfaces generated by these
algorithms will differ significantly in general. Thus, to evaluate and compare the
quality of the simplified surfaces, some generic technique for measuring the geometric
distance between two point-sampled surfaces is required. This distance measure
should be general in the sense that no additional knowledge about the specific method
used to generate the simplified surface should be required.

Further aspects in the evaluation of the various simplification algorithms include
sampling distribution of the simplified model, time and space efficiency, and
implementational issues.

3.5.1 Surface Error

Assume that two point clouds and are given, which represent two surfaces and
, respectively. The distance, or error, between these two surfaces is measured using

a sampling approach similar to the method applied in the Metro tool [18].

Let be a set of points on and let be the minimum
distance of a point to the surface . Then two error measures can be defined:

• Maximum error:

(3.4)

The maximum error approximates the two-sided Hausdorff distance of the two
surfaces. Note that the surface-based approach is crucial for meaningful error
estimates, as the Hausdorff distance of the two point sets and does not
adequately measure the distance between and . As an example, consider a

Figure 3.7 Uniform and user-controlled particle simulation. The model in the middle has been sim-
plified to 2,000 points in the left image using uniform repulsion forces. On the right, the
repulsion radius has been scaled down to 10% around the eye, leading to a higher concen-
tration of samples in this region.

P P′ S
S′

Q S d q S′,() minx S′∈ d q x,()=
q Q∈ S′

∆max S S′,() maxq Q∈ d q S′,()=

P P′
S S′

36 Surface Simplification

point cloud that has been created by randomly subsampling . Even though the
corresponding surfaces can be very different, the Haussdorff distance of the point
sets will be zero.

• Average error:

(3.5)

The average error approximates the area-weighted integral of the point-to-surfaces
distances.

The point set is created using the uniform particle simulation of Section 3.4. This
allows the user to control the accuracy of the estimates (3.4) and (3.5) by specifying
the number of points in . To obtain a visual error estimate, the sample points of
can be color-coded according to the point-to-surface distance and rendered
using a standard point rendering technique (see Figures 3.9 and 3.10).

 is calculated using the MLS projection operator with linear basis functions
(see Section 2.3.3). Effectively, computes the closest point such that

 for a , where is the surface normal at and is the distance
between and (see Figure 3.8). Thus the point-to-surface distance is
given as (see also the decomposition operator defined in Section 4.3).

Figure 3.10 shows visual and quantitative error estimates (scaled according to the
object’s bounding box diagonal) for the David model that has been simplified from
2,000,606 points to 5,000 points. Uniform incremental clustering has the highest
average error. Since all clusters consist of roughly the same number of sample points,
most of the error is concentrated in regions of high curvature. Adaptive hierarchical
clustering performs slightly better, in particular in the geometrically complex regions
of the hair. Iterative simplification and particle simulation provide lower average error
and distribute the error more evenly across the surface. In general the iterative
simplification method using quadric error metrics has been found to produce the lowest
average surface error.

Clustering methods perform worse with respect to surface error, because they do not
have the fine-grain adaptivity of the iterative simplification and particle simulation

Figure 3.8 Measuring the distance between two surfaces (red curve) and (black curve) repre-
sented by two point sets (red dots) and (black dots). is up-sampled to (blue
dots) and for each a base point is found (green dots), such that the vector

 is orthogonal to . The point-to-surface distance is then equal to
.

P′ P

∆avg S S′,() 1
Q
------- d q S′,()

q Q∈
∑=

Q

Q Q
d q S′,()

d q S′,() Ψ
Ψ q′ S′∈

q q′ d n⋅+= q Q∈ n q′ d
q q′ d q S′,()
d q q′–=

}p P∈

p′ P′∈

S′

S

q Q∈

d

q′

q

S S′
P P′ P Q

q Q∈ q′ S′∈
q q′– S′ d q S′,()
d q q′–=

3.5 Comparison 37

methods. For example, consider the hierarchical clustering algorithm as illustrated in
Figure 3.3. The split planes generated in the earlier stages of the recursion are
propagated down to all subsequent levels. This means that once a top-level split plane
has been chosen, the method cannot adapt to local variations across that split plane,
which leads to increased surface error.

3.5.2 Sampling Distribution

Apart from the geometric error, the distribution of samples within the surface can be
an important aspect for certain applications. As mentioned before, all simplification
algorithms presented in this thesis create a point cloud that is in general not a subset of
the original sample set. Where this is required, methods such as those presented by
Alexa et al. [4] or Linsen [81] are preferable.

For clustering methods the sampling distribution in the final model is closely linked
to the sampling distribution of the input model. In some applications this might be
desirable, e.g., where the initial sampling pattern carries some semantic information,
such as in geological models [55]. Other applications, e.g., pyramid algorithms for
multi-level smoothing [64] or texture synthesis [112], require uniform sampling
distributions, even for highly non-uniformly sampled input models. Here non-adaptive
particle simulation is most suitable, as it distributes sample points uniformly and
independently of the sampling distribution of the underlying surface. As illustrated in
Figure 3.7, particle simulation also provides a very easy mechanism for locally
controlling the sampling density by scaling the repulsion radius accordingly. While
similar effects can be achieved for iterative simplification by penalizing certain point-
pair contractions, particle simulation offers much more intuitive control.

Note that none of the surface simplification methods described above gives any
guarantees that the resulting point cloud satisfies the sampling criteria specified in
Section 2.2. It is rather left to the application to specify a suitable target sampling rate.

Figure 3.9 Measuring surface error. (a) original surface, (b) simplified point cloud, (c) surface ob-
tained by up-sampling the simplified point cloud, (d) color-coded error, where blue corre-
sponds to a small error, while red indicates a large error.

(a) (b) (c) (d)

38 Surface Simplification

3.5.3 Computational Effort

Figure 3.11 shows computation times for the different simplification methods both as
a function of target model size and input model size. Due to the simple algorithmic
structure, clustering methods are by far the fastest simplification techniques presented
in this thesis. Iterative simplification has a relatively long pre-computing phase, where
initial contraction candidates and corresponding error quadrics are determined and the
priority queue is set up. The simple additive update rule of the quadric metric (see
Section 3.3) make the simplification itself very efficient, however. In the current
implementation particle simulation is the slowest simplification technique for large
target model sizes, mainly due to slow convergence of the relaxation step. A possible

Figure 3.10 Surface Error for Michelangelo’s David simplified from 2,000,606 points to 5,000 points.

(a) uniform incremental clustering (b) adaptive hierarchical clustering

(c) iterative simplification (d) particle simulation

∆max 0.0049=∆avg 6.32 10
4–⋅= ∆max 0.0046=∆avg 6.14 10

4–⋅=

∆max 0.0052=∆avg 5.43 10 4–⋅= ∆max 0.0061=∆avg 5.69 10 4–⋅=

3.5 Comparison 39

improvement is the hierarchical approach introduced in [114]. The algorithm would
start with a small number of particles and relax until the particle positions have reached
equilibrium. Then particles are split, their repulsion radius is adapted and relaxation
continues. This scheme can be repeated until the desired number of particles is
obtained.

It is interesting to note that for incremental clustering and iterative simplification the
execution time increases with decreasing target model size, while hierarchical

Figure 3.11 Execution times for simplification, measured on a Pentium 4 (1.8GHz) with 1Gb of main
memory: (a) as a function of target model size for the dragon model (435,545 points), (b)
as a function of input model size for a simplification to 1%.

(a)

(b)

0

10

20

30

40

50

60

70

020406080100120140160180

Incremental Clustering
Hierarchical Clustering
Iterative Simplification
Particle Simulation

simplified model size (*1000)

Execution time (secs.)

0
50

100
150
200
250
300
350
400
450
500

0 500 1000 1500 2000 2500 3000 3500

Incremental Clustering
Hierarchical Clustering
Iterative Simplification
Particle Simulation

Execution time (secs.)

input model size (*1000)

St.Matthew

David

Drag
on

Ige
a

Isi
sSa

nta

40 Surface Simplification

clustering and particle simulation are more efficient the smaller the target models.
Thus the latter are more suitable for real-time applications where the fast creation of
coarse model approximations is crucial.

3.5.4 Memory Requirements and Data Structures

Currently all simplification methods presented in this thesis are implemented in-core,
i.e., require the complete input model as well as the simplified point cloud to reside in
main memory. For incremental clustering a balanced kd-tree is used for fast nearest-
neighbor queries, which can be implemented efficiently as an array [101], requiring

 bytes, where is the size of the input model. Hierarchical clustering builds a BSP
tree, where each leaf node corresponds to a cluster. Since the tree is built by re-ordering
the sample points, each node only needs to store the start and end index in the array of
sample points and no additional pointers are required. Thus this maximum number of
additional bytes is , where is the size of the simplified model. Iterative
simplification requires 96 bytes per point contraction candidate, 80 of which are used
for storing the error quadric (floating point numbers are stored in double precision,
since single precision floats lead to numerical instabilities). Assuming six initial
neighbors for each sample point, this amounts to bytes. Particle
simulation uses a 3D grid data structure with bucketing to accelerate the nearest
neighbor queries, since a static kd-tree is not suitable for dynamically changing particle
positions. This requires a maximum of bytes, where is the resolution of
the grid (see also Section 8.2).

Thus incremental clustering, iterative simplification and particle simulation need
additional storage that is linearly proportional to the number of input points, while the
storage overhead for hierarchical clustering depends only on the target model size.

3.5.5 Comparison to Mesh Simplification

Figure 3.12 shows a comparison of point-based simplification and simplification for
polygonal meshes. In (a), the initial point cloud is simplified from 134,345 to 5,000
points using the iterative simplification method of Section 3.3. The resulting point
cloud has then been triangulated using the surface reconstruction method of [40]. In
(b), the input point cloud has first been triangulated and the resulting polygonal surface
has then been simplified using the mesh simplification tool QSlim [39]. Both methods
produce similar results in terms of surface error and both simplification processes take
approximately the same time (~3.5 seconds). However, creating the triangle mesh from
the simplified point cloud took 2.45 seconds in (a), while in (b) reconstruction time for
the input point cloud was 112.8 seconds. Thus when given a large unstructured point
cloud, it is much more efficient to first do the simplification on the point data and then
reconstruct a mesh (if desired) than to first apply a reconstruction method and then
simplify the triangulated surface. This illustrates that point-based simplification
methods can be very useful when dealing with large geometric models stemming from
3D acquisition.

4 n⋅ n

2 2 4 m⋅ ⋅ ⋅ m

6 2⁄ 96 n⋅ ⋅

4 n k+()⋅ k

3.5 Comparison 41

Figure 3.12 Comparison of point-based (left column) and mesh-based (right column) surface simpli-
fication. The top row shows the error images, the bottom row the final, triangulated sur-
faces.

42 Surface Simplification

43

4

4MULTI-SCALE SURFACE
REPRESENTATION

In this chapter the surface representation introduced in Section 2.3.2 is extended from
a single-scale representation to a multi-scale representation, using the concept of scale-
space. This extension is motivated by the need for higher level editing semantics,
which allow surface modifications at different scales. The user should be able to edit
the surface at different approximation levels to perform coarse-scale edits on the whole
model as well as very localized modifications on the surface detail. To this end, a
multi-scale surface representation provides a set of surface approximations with
different levels of geometric detail. Depending on the intended editing operation, a
suitable level is determined and the operation is performed on the corresponding
surface approximation.

A key issue in the definition of a multi-scale surface representation is the
interconnection between successive levels in the hierarchy. To obtain intuitive editing
semantics, it is essential that changes in one level are propagated naturally to the next
higher levels. This can be achieved by encoding each level of the discrete multi-scale
representation as a normal displacement of its immediate smoother approximation.
Thus the “difference” between two successive levels can be expressed as a set of scalar
detail coefficients that determine for each point the distance between the two
approximations in normal direction. These detail coefficients can be considered as

44 Multi-Scale Surface Representation

discrete frequency bands that allow spectral filtering methods to be applied to point-
sampled models (see Section 4.4).

It is important to note the distinction between a multi-scale and a multi-resolution
surface representation. The former describes a surface at different levels of
smoothness, without any reference to a particular sampling distribution. The latter, on
the other hand, refers to a set of surface approximations with varying sampling
resolution, thus describing a surface at different levels of coarseness (see also [64]).
Multi-resolution surface representations have been used successfully in the context of
efficient rendering [97], surface compression and progressive transmission [62],
surface analysis [28, 57], and morphing [70].

Recent surface editing systems combine multi-scale and multi-resolution
representations, using, for example, multi-resolution subdivision surfaces [116].
However, Kobbelt et al. observed in [64] that rigid multi-resolution representations
like subdivision hierarchies can lead to less flexibility when defining editing
metaphors. In this thesis the focus is on surface editing, so only a multi-scale
representation will be defined. This requires two main building blocks:

• A fairing operator, i.e., a geometric low-pass filter that generates successively
smoother approximation levels of a given input surface and

• a decomposition operator, i.e., a method to encode each level relative to the next
smoother level using normal displacements to ensure intuitive detail preservation.

After a brief introduction to scale-space, various fairing operators will be derived from
a discrete approximation of a surface diffusion process. Then a multi-scale
decomposition operator will be defined based on the MLS projection method. Since
the MLS projection also implements a geometric low-pass filter (see Section 2.3.2), the
decomposition operator can be extended to directly incorporate the smoothing
approximation. Using the surface simplification methods of Chapter 3, this leads to an
efficient multi-level decomposition operator for point-sampled surfaces. Section 4.4
shows how the multi-scale representation can be used to define discrete spectral filters
that implement advanced modeling operations such as enhancement or band-stop
filtering. The chapter is concluded in Section 4.5 with a discussion on multi-scale
surface deformation.

4.1 SCALE-SPACE FOR FUNCTIONS

Scale-space methods have been used extensively in image and volume data analysis for
the last two decades (see [78] for an overview). The idea is to model a signal at
different approximation levels, or scales, to better analyze the inherent structures of the
signal.

Given a -dimensional signal , its linear scale-space representation
 is defined as the convolution

, (4.1)

where is the scale parameter and

(4.2)

d f: IRd IR→
L:IRd IR+ IR→×

L x t,() f x() g x t,()⊗=

t

g x t,() 1

2πt()d 2⁄---------------------e
xTx 2t()⁄–=

4.1 Scale-Space for Functions 45

is a Gaussian kernel whose standard deviation is related to the scale parameter
through . The scale-space representation of Equation 4.1 is often used in
combination with Fourier techniques, which allow an efficient evaluation of the
convolution operation [13].

It was first realized by Koenderink [66] that the generating equation of a linear
scale-space representation is the linear diffusion equation. So can also be obtained
as the solution to the diffusion equation

, (4.3)

where is the diffusion constant and the Laplacian operator. The initial conditions
of Equation (4.3) are given as , suitable boundary conditions depend
on the specific application. A detailed discussion of scale-space techniques can be
found in [78].

4.1.1 Discrete Scale-Space Representation for Height Fields

Before extending the concept of scale-space to point-sampled surfaces, this section
briefly describes how a discrete scale-space representation can be defined for regularly
sampled functions in 2D. Assume an discrete sample of a
function is given as

. (4.4)

Equation (4.3) can be written as

. (4.5)

The discretization of this equation in the time interval yields a set of
unknown samples with and

. The second order derivatives can be approximated by second order
divided differences as

, (4.6)

where . Using an analogous expression for the second derivative with
respect to , this leads to an explicit Euler equation of the form

, (4.7)

where and

(4.8)

σt
σt t=

L L

t∂
∂L λ L∆⋅– 0=

λ ∆
L x 0,() f x()=

Nx 1+() Ny 1+() fi j,{ }
f: 0 1,[] 0 1,[]× IR→

fi j, f xi yj,()=
xi i Nx⁄= i 0 … Nx, ,=

yj j Ny⁄= j 0 … Ny, ,=

t∂
∂L

x y t, ,() λ ∂2
L

∂x
2

--------- x y t, ,() ∂2
L

∂y
2

--------- x y t, ,()+
 
 
 
⋅– 0=

t 0 T,[]∈
li j k, , L xi yj tk, ,()= tk k T⋅ Nt k,⁄ 0 … Nt, ,= =

li j 0, , fi j,=

∂2
L

∂x
2

--------- x y t, ,()
li 1 j k, ,– 2li j k, ,– li 1 j k, ,++

hx
2

-- O hx
2()+=

hx 1 Nx⁄=
y

li j k 1+, , li j k, , λht li j k, ,∆⋅+=

ht T Nt⁄=

li j k, ,∆
li 1 j k, ,– 2li j k, ,– li 1 j k, ,++

hx
2

--
li j 1 k,–, 2li j k, ,– li j 1 k,+,+

hy
2

--+=

46 Multi-Scale Surface Representation

is a discrete approximation of the Laplacian. This explicit integration scheme can be
reformulated as an implicit Euler integration as

, (4.9)

which requires the solution of a linear system, but considerably improves the stability
and thus allows larger time steps. Equation (4.7) defines a discrete sample of the
continuous scale-space representation of the function both in space and in time.
Figure 4.1 shows examples of such a sample for 2D image data and an artificial terrain
model. Observe how high-frequency detail is gradually smoothed out with increasing
scale parameter.

4.2 SCALE-SPACE FOR POINT-SAMPLED SURFACES

The derivation of a discrete scale-space representation for point-sampled surfaces
follows the same path described in the previous section for the functional setting. First
a continuous definition of scale-space for surfaces is given using the surface diffusion
equation. A discretization both in space and time then yields an explicit or implicit
integration scheme for computing smoother approximations of the input surface.
Special attention has to be given to a suitable discretization of the Laplacian, as neither

Figure 4.1 Discrete scale-space representation of 2D image data (left column) and discrete height
field data (right column).

1 λht∆–()li j k 1+, , li j k, ,=

f

in
cr

ea
si

ng
 sc

al
e

pa
ra

m
et

er

4.2 Scale-Space for Point-Sampled Surfaces 47

global parameterization nor regular sampling pattern are provided in the surface
setting.

Continuous Formulation

Assume a surface is given. The surface diffusion equation defines a continuous set
of evolving surfaces subject to

, (4.10)

where is a point on the surface, is the time or scale
parameter and denotes the Laplace-Beltrami operator with the mean
curvature and the surface normal at (see [25]). The initial condition to
Equation (4.10) is given as .

Equation (4.10) defines an evolving surface, where each point on the surface moves
in the direction defined by the surface normal with a speed given by the mean
curvature. This method, also known as mean curvature flow, has been studied in the
context of evolving interfaces [102]. An interesting property of mean curvature flow is
that the evolving surface converges to a minimal surface, which by definition has zero
mean curvature.

4.2.1 Discrete Fairing

For discrete surfaces, a variety of surface fairing methods have been introduced in
recent years based on a discretization of Equation 4.10. Taubin pioneered these
methods and presented various approximate low-pass filters for triangle meshes using
different discrete approximations of the Laplacian [108]. His approach aims at
generalizing signal processing techniques to manifold surfaces. For this purpose he
defines discrete geometric frequencies (see also [43]) as the eigenvectors of the
Laplacian matrix, which describes the discretization of the Laplacian as a weighted
sum of adjacent vertices. This discretization leads to the common iterative explicit
Euler integration formula for Gaussian smoothing

, (4.11)

where is the new mesh vertex position and is some discrete approximation of
the Laplacian at vertex (see also Equation 4.7). Taubin demonstrates that this
iterative scheme attenuates high frequencies while preserving low frequencies, and
thus implements approximate low-pass filter behavior. A complete derivation of the
discretization of the Laplacian can be found in [55] and will here only briefly be
recalled for completeness.

For a smooth manifold surface , the Laplacian can be defined as

, (4.12)

where is parameterized locally such that . To achieve independence of
a specific parameterization, is defined as the normalized integral over all possible
parameterizations. Discretization of Equation 4.12 finally leads to

S
S t()

t∂
∂x

x∆– 0=

x S t()∈ t 0 ∞,[) IR⊂∈
x∆ κ n⋅= κ

n x
S 0() S=

v′ v λ v∆+=

v′ ∆v
v

S

x∆ 2
π--- r

2

∂
∂

S 0 0,() ϕ,d

0

π

∫= r ϕ ϕsin,cos()=

S x S 0 0,()=
x∆

48 Multi-Scale Surface Representation

, (4.13)

where the point is replaced by a vertex of a triangle mesh surface and
describes the one-ring neighborhood of . The weights depend on further
simplifying assumptions as discussed in detail in [55]. For example, the uniform
umbrella operator is obtained for , assuming that all edges have
uniform length and all angles of the incident triangles at are constant. A more
adaptive scale-dependent umbrella operator that takes different edge lengths into
account results from .

These concept can be extended to point clouds by replacing the one-ring
neighborhood relation with a point neighborhood relation introduced in Section 2.1.1.
The degree of smoothness can be controlled by the parameter (see Equation 4.11),
the number of iterations and the size of the local neighborhoods of the sample
points (see Figure 4.2). To improve the efficiency of the computations, local
neighborhoods should computed at the beginning of the smoothing operation and
cached during the iteration. This also increases the stability of the smoothing filter,
since it prevents clustering effects due to the tangential drift of sample points.

4.3 DISCRETE MULTI-SCALE SURFACE REPRESENTATION

Section 4.2 describes how a scale-space approximation of a given point-sampled
surface can be computed using geometric low-pass filtering. To define a discrete multi-
scale surface representation, subsequent approximation levels need to be encoded
relative to each other in a meaningful way. This is done by means of a decomposition
operator that encodes a detailed surface as a normal displacement of its smooth
approximation. As will be demonstrated below, normal displacements ensure intuitive
editing semantics and provide a compact representation of surface detail. While the

Figure 4.2 Iterative Laplacian smoothing.

v∆ 1
Ω---- ωi vi v–(),

i Nv∈
∑= Ω ωi

i Nv∈
∑=

x S∈ v Nv
v ωi

ωi 1 i∀,= vi v–
v

ωi 1 vi v–⁄=

λ
m k

original
model

λ 1=
m 20=
k 20=

λ 1=
m 2=

k 1000=

4.3 Discrete Multi-Scale Surface Representation 49

decomposition operator defines the transition from detailed to smooth approximation,
the reconstruction operator describes the inverse operation, i.e., adds detail to a
smooth surface.

Formally, a discrete multi-scale representation for point-sampled surfaces can be
defined as follows:

Let be a point cloud representing a surface and a
continuous multi-scale representation of as defined by Equation 4.10. A discrete,
point-based multi-scale representation of is a sequence of point clouds

, such that

• for all there exists a such that the surface represented by
 approximates with , where and ,

• for all

• for all and all there exists a such that

, (4.14)

where is the surface normal at and a scalar-valued detail
coefficient.

Thus each sample is represented by a point plus a sequence of normal
displacement offsets . To reconstruct the position of at a certain level

 the point is recursively displaced in normal direction, i.e.,

. (4.15)

Let , where is the set of detail coefficients at
level . The reconstruction operator can be defined by applying
Equation 4.14 for each point of the argument point cloud, such that

. (4.16)

Then the reconstruction of a point cloud can be written as

, (4.17)

which directly corresponds to Equation 4.15. The inverse of the reconstruction
operator is the decomposition operator , that determines the detail
coefficients of the normal displacement offset between two point clouds. Figure 4.3
shows a discrete multi-scale representation of the Max Planck model. The 2D drawing
illustrates how the set of point clouds that represent the surfaces
can be understood of as a discretization of Equation 4.10 both in space and in time (or
scale).

The definition of a discrete multi-scale representation implies that each sample
point is active on all levels. The polygon defines the normal
trajectory of , since each polygon edge is aligned to the normal vector .
At each level the point set defines the model surface at the corresponding scale,
with level being the smoothest approximation. Note that no subsampling operator is

P p1 … pn, ,{ }= S S t()
S

S
P P

0 … P
k, ,{ }=

l 0 k 1–,{ }∈ tl 0 ∞,[)∈
P

l
S

l
S tl()= tl tl 1+> tk 0= P

k
P=

P
l

P n= = l 0 k,{ }∈

pi
l

P
l∈ l 1 k,{ }∈ pi

l 1–
P

l 1–∈

pi
l pi

l 1–
di

l 1– ni
l 1–⋅+=

ni
l 1– pi

l 1–
di

l 1– IR∈

pi P∈ pi
0

P
0∈

di
0 … di

k 1–, , pi
l

l pi
0

pi
l pi

0
di

0ni
0

di
1ni

1 … di
l 1– ni

l 1–+ + + +=

D D
0 … D

k 1–, ,{ }= D
l

d0
l … dn

l, ,{ }=
l + : P D,() P→

P
l

P
l 1–

D
l 1–+=

P
l

P
l

P
0

D
m

m 0=

l 1–

∑+=

 : – P P,() D→

P
0 …P

k,{ } S
0 …S

k,

pi P∈ pi
0 … pi

k, ,
pi pi

lpi
l 1+

ni
l

l P
l

S
l

0

50 Multi-Scale Surface Representation

applied to the lower levels, since unambiguous reconstruction of the normal trajectory
requires that each intermediate point is present.

4.3.1 Encoding

Suppose a discrete scale-space approximation of a surface has
been computed using geometric low-pass filtering as described in Section 4.2. To
encode two subsequent levels and , the detail coefficients need to be
computed. In general, however, it is not possible to find for each a
corresponding sample such that the displacement is in normal direction,
i.e.,

.

Figure 4.3 Discrete multi-scale representation. Top row: 3D surface model, bottom row: 2D illustra-
tion.

pi
j

...

...

discretization in space

discretization
in time

decomposition

reconstruction

pi
0

pi
k 1–

pi
k

S
0

di
0{

S
k 1–

S
k

S
0

S
k 1–

S
k

P
0

P
k 1–

P
k

Q Q
0 … Q

k, ,{ }= S

Q
l 1–

Q
l

D
l 1–

qi
l

Q
l∈

qi
l 1–

Q
l 1–∈

qi
l 1–

qi
l

–() ni
l 1–⋅ 0=

4.3 Discrete Multi-Scale Surface Representation 51

Thus to obtain a discrete multi-scale representation for the surface
, the surfaces represented by the need to be re-sampled to fulfill the normal

displacement criterion. There are two alternatives to compute the sequence of sets
of detail coefficients and the sequence from the discrete scale-space approximation

. Suppose two subsequent levels and are given, represented by two point
clouds and , respectively. The goal is to find two point clouds and
approximating the surfaces and , and a set of detail coefficients such that

.

Bottom-up Encoding by Ray-Shooting

One approach is to shoot a ray from each in normal direction and find
the intersection point with the surface . Then the corresponding detail
coefficient is given as

. (4.18)

Furthermore,

 and (4.19)

. (4.20)

This means that the point cloud representing the smooth surface is left
unchanged, while the point cloud representing the detailed surface is re-sampled to
fulfill the normal displacement condition.

This method of ray-shooting has been applied successfully in previous mesh-based
approaches, e.g., in [48] to build a normal mesh hierarchy. An algorithm for
intersecting a ray with an MLS surface has been introduced in [2], based on the MLS
projection operator. In this method a point on the ray is iteratively projected onto the
surface until it converges to a point both on the ray and the surface.

Top-down Encoding by Projection

The second alternative would be to start with a point and orthogonally project
it onto the surface Thus a point is obtained, where

 is the MLS projection operator with respect to the point cloud . This yields

, (4.21)

 and (4.22)

. (4.23)

Here the smooth surface is re-sampled, while the detailed point cloud remains
unaltered. This approach can easily be implemented using the MLS projection method
as described in Section 2.3.

Discussion

Figure 4.4 illustrates the encoding of two subsequent levels. In this thesis only the top-
down approach is used for the following two reasons:

P P
0 … P

k, ,{ }=
S Q

l

D
P

Q S
l 1–

S
l

Q
l 1–

Q
l

P
l 1–

P
l

S
l 1–

S
l

D
l 1–

P
l

P
l 1–

D
l 1–+=

qi
l 1–

Q
l 1–∈

ri
l

S
l∈ S

l

di
l 1– ri

l qi
l 1––=

P
l 1–

Q
l 1–=

P
l ri

l
i 1 … n, ,={ }=

Q
l 1–

S
l 1–

Q
l

qi
l

Q
l∈

S
l 1– ri

l 1– Ψ
Ql 1– qi

l() S
l 1–∈=

Ψ
Ql 1– Q

l 1–

di
l 1– qi

l ri
l 1––=

P
l 1– ri

l 1–
i 1 … n, ,={ }=

P
l

Q
l

=

52 Multi-Scale Surface Representation

• First, it can be implemented with a single MLS projection per point and does not
require an iteration of projections. This is due to the fact that the MLS projection
with linear bases is orthogonal to the surface it projects onto (see Section 2.3).
Thus top-down encoding is significantly faster than the bottom-up approach.

• Second, since the surface is a smooth approximation of the surface , re-
sampling will lead to fewer sampling artefacts, such as aliasing, as compared
to re-sampling of . The explanation for this can be found in an analogy with
Fourier sampling: When re-sampling a continuous function with a given regular
sampling grid, the function has to be band-limited to ensure exact reconstruction
without sampling artefacts (see also [117]). More precisely, all frequencies above
the Nyquist limit of the sampling grid need to be zero in the Fourier spectrum of
the function (see [13] for more details). For discrete manifold surfaces, no such
precise sampling theory has yet been formulated. Nevertheless, since is a
low-pass filtered version of , it contains less high-frequency components and
thus better fulfills a “surface Nyquist criterion”.

The complete construction of the multi-scale representation starts with the original
point cloud and encodes it with respect to the point cloud . This yields
a re-sampled point cloud , which is itself encoded with respect to the next
smoother level . This process is iterated as illustrated in Figure 4.5.

The computational effort is quite significant since the MLS projection operator has
to be applied times, where is the number of sample points in the model.
However, once a multi-scale representation is build, reconstruction of individual levels
is very efficient, since it only requires the points to be displaced in the normal direction
according to the detail coefficients.

As mentioned above, the multi-scale point cloud representation is a discrete sample
of the continuous representation both in space and in scale. In this context, the low-pass
filter determines the sampling in the scale dimension, by controlling the rate of
smoothness between two subsequent levels. The decomposition algorithm, on the other

Figure 4.4 Multi-scale encoding: The point cloud is obtained as a normal displacement of the
point cloud . The right image shows the corresponding detail coefficients, where
blue indicates maximum negative displacement and red maximum positive displacement
for outward pointing normals.

P
l

P
l 1–

D
l 1–

P
l

P
l 1–

S
l 1–

S
l

S
l 1–

S
l

f

f
S

l 1–

S
l

P
k

Q
k= Q

k 1–

P
k 1–

Q
k 2–

n k⋅ n P=

4.3 Discrete Multi-Scale Surface Representation 53

hand, needs to find the base points on the smoother level to define the normal
displacements and thus determines the sampling in the spatial dimension.

4.3.2 Continuous Representation

Note that even though the sequence of point clouds defines a
discrete sample along the scale axis, a continuous scale-space approximation can be
obtained by interpolation. For example, a linear blend between two successive levels

 and can be defined as

, (4.24)

where is the blending parameter, , and . This
corresponds to a linear blend between each individual sample described as

. (4.25)

Figure 4.6 illustrates a linear blend between two subsequent levels.

4.3.3 MLS Filtering

In Section 2.3 it has been observed that the MLS projection operator implements a low-
pass filter, whose filter characteristics are determined by the kernel width of the
Gaussian weight function (see also Figure 2.7). This suggests an alternative smoothing
method that creates smooth approximations of a given point set by simply projecting
all points of onto the MLS surface defined by . By adjusting the MLS kernel width

Figure 4.5 Building a discrete multi-scale representation.

project

smooth smooth smooth

projectproject

...

...

P
k 1–

P
0

P
k 2–

Q
k 1–

Q
k 2–

Q
0

P
k

Q
k=

P P
0 … P

k, ,{ }=

P
l 1–

P
l

P
l α() P

l 1– α D⋅ l 1–+=

α 0 1,[]∈ P
l 0() P

l 1–= P
l 1() P

l=

pi
l α() pi

l 1– α d⋅ i
l 1– ni

l 1–⋅+=

h

P
P P

54 Multi-Scale Surface Representation

, different degrees of smoothness can be obtained. In fact, can be understood
as a continuous scale parameter in the sense of the scale-space representation described
above. This means that the MLS projection replaces the fairing operator for creating
the scale-space approximation of a given surface . Since the same projection is used
for detail encoding, low-pass filtering and decomposition can be combined into a
single projection operation.

Decimation

One difficulty with using a large kernel width in the MLS projection is that large
subsets of the point cloud have to considered in the least-squares optimization. As
described in Section 2.3 this quickly leads to excessive computation times. A
substantial improvement in performance can be obtained by integrating a decimation
operator. Since large kernels imply that each individual point contributes less to the
optimization, clusters of points can be replaced by a single point without significant
loss of accuracy. Thus by first decimating the point cloud using one of the
simplification techniques introduced in Chapter 3, the MLS projection operator can be
evaluated much more efficiently (see Figure 4.7).

Note that even though a decimation is applied, the projected point clouds
 still have the same number of sample points as the original point cloud

. The decimation only affects the intermediate point clouds that
define the base surface of the MLS projection operator.

A crucial question remains: What is the appropriate decimation rate for a certain
kernel width? The qualitative argument given above indicates that the larger the kernel
width, i.e., the smoother the resulting surface should be, the higher can the decimation
rate be without losing too much in accuracy. However, since no rigorous sampling
theory has been defined for discrete manifolds yet, a precise quantitative relation is
difficult to formulate.

Thus a different approach is chosen that controls the degree of smoothness using the
sampling resolution. The kernel width is coupled to the local sampling density, e.g., as
a constant times the local sample spacing as defined in Section 2.1.2. Thus instead of

Figure 4.6 Linear blend between two subsequent levels and of a multi-scale representation.

P
l 1–

P
l 1– 1

3
---D

l 1–+ P
l 1– 2

3
---D

l 1–
+ P

l 1–
D

l 1–+ P
l=

P
l 1–

P
l

h h ht=

S

P
k 1– … P

0, ,
P

k
Q

k 1– … Q
0, ,

4.4 Spectral Filtering 55

specifying a discrete set of kernel widths, the discrete scale-space approximation is
defined by a set of sampling resolutions such that and

 and for .

A suitable choice for the is a geometric series, i.e., , where
 is the decimation factor. This approach defines a logarithmic number of

discrete scale-space levels in the number of input samples and corresponds to
pyramid algorithms used in multi-resolution methods [47].

4.4 SPECTRAL FILTERING

The previous section already hinted at a connection between the discrete multi-scale
representation and the discrete Fourier transform. This section elaborates on these
ideas and defines various spectral filters that can be used for surface editing. First a
brief review of the discrete Fourier transform shows that spectral coefficients can be
computed without applying the actual transformation by using a suitable band-pass
filter. This concept is then transferred to the multi-scale representation to illustrate that
the detail coefficients can be considered as discrete spectral bands.

4.4.1 Discrete Fourier Transform

Assume a discrete sample is given. The 1D discrete Fourier
transform of is defined as , where

Figure 4.7 Building a multi-scale representation by MLS filtering and decimation. The projection
step integrates low-pass filtering and decomposition. The reduction step improves the per-
formance of the projection.

n
k … n

0, ,{ } n
k

n P
k= =

Q
l

n
l= n

l
n

l 1–> 1 l k≤ ≤

n
l

n
l 1– γ n

l⋅=
γ 0 1,()∈

n

project

reduce reduce reduce

projectproject

...

...

P
k

P
k 1–

P
k 2–

P
0

Q
k 1–

Q
k 2–

Q
0

D
l

fi{ } i, 0 … N 1–, ,=
fi{ } Fj{ } j, 0 … N 1–, ,=

56 Multi-Scale Surface Representation

. (4.26)

The inverse discrete Fourier transform is defined as

. (4.27)

Let be a discrete filter that transforms a signal into . Such a filter is
called an ideal low-pass filter with cut-off frequency if

, (4.28)

where is the discrete Fourier transform of the signal . Similarly, an ideal
band-pass filter can be defined as , where . Given such a filter, a

Figure 4.8 Illustration of spectral decomposition. (a) and (c) transfer functions and resulting spectral
bands for Gaussian filtering, (b) and (d), transfer functions and resulting spectral bands for
ideal low-pass filtering, (e) scaling of a spectral band leads to the enhancement effect
shown in (f).

...

...

...

...

...

...... ...

... ...

(a) (b)

(c) (d)

(e) (f)

Fj
1

N
-------- fi e

2πij 1––
N

,⋅
i 0=

N 1–

∑= j 0 … N 1–, ,=

fi
1

N
-------- Fj e

2πij 1–
N

,⋅

j 0=

N 1–

∑= i 0 … N 1–, ,=

Hk fi{ } Hk fi(){ }
k

Fj
Hk

Fj j k<

0 j k≥



=

Fj
Hk Hk fi(){ }

Hk l, Hl Hk–= l k>

4.4 Spectral Filtering 57

spectral coefficient of a signal can be obtained from the filtered signal
 using Equation 4.27 yielding

. (4.29)

For this leads to . Note that the separation into distinct
Fourier coefficients is only possible if an ideal band-pass filter can be defined
and the basis functions of the spectral transform are known.

4.4.2 Multi-Scale Surface Filtering

A multi-scale representation is build by successively applying low-
pass filters with wider filter kernels. Since the detail coefficients encode the
difference between to subsequent levels, they can be understood as the result of a band-
pass filter applied to the original point cloud . Thus the detail coefficients can be
considered as the spatial representation of a spectral band. However, since the low-pass
filters are not ideal, the spectral bands are overlapping and cannot be used to determine
the coefficients of a spectral transform. Also, unlike the Fourier transform, the spectral
basis functions are not explicitly defined and can only be approximated as the
eigenfucnctions of the Laplacian operator [43].

Figure 4.8 illustrates the spectral decomposition of the multi-scale surface
representation. (a) and (b) show the filter transfer functions for Gaussian smoothing
and ideal low-pass filtering, respectively. While the latter leads to a sharp separation
into discrete frequency bands as shown in (d), Gaussian filtering creates overlapping
spectral bands as shown in (c). Nevertheless this decomposition can still be used for
filtering, as illustrated in (e), where one of the detail coefficients was scaled by a factor
of two, leading to an enhancement effect as shown in (f).

Figure 4.9 shows various spectral filters that modify the surface geometry by
scaling the detail coefficients. These filtering effects would be very difficult to achieve
without the multi-scale decomposition. One problem that does not occur in the
functional setting is that the modifications of the detail coefficients can lead to self-
intersections, which would corrupt the model surface.

The multi-scale surface representation defines a decomposition of a point-sampled
surface into discrete frequency bands. Even though many analogies to Fourier analysis
exists, and many concepts of Fourier theory serve as a motivation for the presented
techniques, this representation should not be understood as an extension of the Fourier
transform to discrete surfaces. At most, the multi-scale approach allows to implement
various filtering methods that mimic the characteristics of Fourier-based spectral
filters. The main benefit of the multi-scale representation in the context of this thesis
is the explicit representation of surface detail, which can be used to implement
sophisticated editing operations.

As indicated above, the multi-level decomposition operator introduced in
Section 4.3 does not require any correspondence of the sampling patterns between to
subsequent levels as long as the two surfaces are geometrically close. This can be
exploited for advanced filtering applications that use entirely different models to create
a decomposition. Figure 4.10 shows such an example where the Max Planck model has
been encoded onto a sphere. First the point cloud has been globally re-scaled to roughly

Fj fi{ }
Hj j 1+, fi(){ }

Hj j 1+, fi()
1

N
--------Fj e

2πij 1–
N

⋅= i 0 N 1–,[]∈∀

i 0= Fj Hj j 1+, f0() N⋅=
Hj j 1+,

P P
0 … P

k, ,{ }=
D

l

P
k

58 Multi-Scale Surface Representation

Figure 4.9 Spectral filtering. The top row shows a discrete multi-scale decomposition of the Max
Planck model. The second row illustrates different enhancement filters, where de-
notes the difference between surface and . The bottom row shows band-pass and
band stop filters.

P
0 2D

20+ P
0 2D

20
D

32+ + P
0

D
32+ P

2
D

32–

P
3

P= P
2

P
1

P
0

P
2 2D

32+ P
2 3D

32+ P
1 2D

31+ P
1 3D

31+

D
ij

Si Sj

4.4 Spectral Filtering 59

match the shape of the sphere. Then each sample point has been projected onto the
sphere to obtain the re-sampled base surface and corresponding detail coefficients.
Scaling the later leads to different filtering effects, as illustrated in Figure 4.10. For
scaling factors between zero and one, a blend between sphere and Max Planck model
can be obtained. Scaling factors larger than one lead to enhancement effects similar to
Figure 4.9.

Morphing

This scheme can also be used to implement simple morphing operations (see also [3]
and [70] for more general morphing methods). Assume that two surfaces and
represented by two point clouds and are given. The goal is to find a point cloud

 that describe a linear blend between the two. For this purpose a common base
surface defined by has to be found such that is geometrically close to both

 and . In a first step, and are projected onto yielding two point clouds
 and . To implement a morphing operation between the two models, a one-to-

one correspondence of the sample points needs to be defined. This can be achieved by
interpolating the detail coefficients of onto the sampling distribution of , or
vice versa. A linear blend of the two surfaces can then be obtained using

, (4.30)

Figure 4.10 Encoding the Max Planck model onto a sphere. (a) sampling distribution of the sphere, (b)
sampling distribution of the Max Planck model projected onto the sphere of (a), (c) - (h):
reconstructed models with detail coefficients scaled to 0% (c), 50% (d), 75% (e), 100%
(f), 150% (g), and 200% (h).

(a) (b) (c) (d)

(e) (f) (g) (h)

S1 S2
P1 P2

PM
SB PB SB

S1 S2 P1 P2 PB
P1′ P2′

P2′ P1′

pi α β,() pi α di
1 β di

2⋅+⋅() ni⋅+=

60 Multi-Scale Surface Representation

where with , , is the surface normal at , is
the detail coefficient of model , and is the interpolated detail coefficient of
model . For interpolation, a simple scheme based on -nearest neighbors is used,
as described in more detail in Section 6.2.3.

Note that this method is only guaranteed to work correctly if both input models are
already geometrically close and at least one of the two surfaces can be defined by a
functional mapping from the common base domain. Figure 4.11 shows an example of
a morph between the Igea and Max Planck models, where both surfaces have first been
scaled to a common bounding box. Then the models have been aligned manually to
create a rough correspondence of surface feature points. The base domain has been
chosen as the maximal ellipsoid that fits into the common bounding box. As the bottom
right images illustrate, the scaling factors are not restricted to a convex combination,
but can be chosen arbitrarily to enable more flexible blending operations.

4.5 MULTI-SCALE DEFORMATION

Apart from the filtering methods presented in the previous section, the multi-scale
surface representation also offers advanced modeling semantics for free-form
deformation (see also Section 6.2). Figure 4.12 illustrates the difference between

Figure 4.11 Morphing between the Igea and Max Planck models. The numbers in parentheses are the
 and scaling factors of Equation 4.30.

α β 0 1,[]∈, α β+ 1= pi P1′∈ ni pi di
1

P1′ di
2

P2′ k

1.0 0.0,() 0.75 0.25,() 0.5 0.5,() 0.25 0.75,()

0.0 1.0,()
1.0 1.0,()

α β

4.5 Multi-Scale Deformation 61

single-scale and multi-scale deformation. The surface shown in (b) has been encoded
with respect to the surface depicted in (a), i.e., the embossed text defines the surface
detail. A smooth deformation of (b) yields the surface shown in (c) and (e). Observe
that as a consequence of the deformation, the embossed text has been sheared and is no
longer orthogonal to the surface base plane. A more intuitive result can be obtained by
applying the deformation to the smooth surface of (a) and subsequently adding the
detail using normal displacements, as described in Section 4.3. The resulting surface is
shown in (d) and (f). Here the embossing is still in normal direction, which yields a
more natural deformation as compared to the single-scale operation.

Figure 4.13 shows the same effect for a topologically more complex surface of
genus 16. The surface in (a) has been deformed in (d) and (f) by displacing each sample
point into the normal direction of the base plane, using a smooth deformation function
as explained in Section 6.2. For multi-scale deformation, the surface of (a) has first
been encoded onto the plane shown in (b). This plane has then been deformed with the
same deformation function used in the single-scale deformation, yielding the deformed
base surface of (c). Finally, the sample points have been displaced using the detail
coefficients obtained in the encoding stage. Observe how for the multi-scale
deformation the blue handles are still orthogonal to the deformed surface, whereas for
single-scale deformation no such preservation of angles is achieved.

Figure 4.12 Multi-scale vs. single-scale modeling. (a) base surface, (b) surface with detail, (c) and (e)
single scale deformation of (b), (d) and (f) multi-scale deformation of (a) with subsequent
normal displacement.

(a) (b)

(c) (d)

(e) (f)

62 Multi-Scale Surface Representation

This example also illustrates that detailed surface and base surface are not required
to have the same genus. This is a distinct feature for point-sampled surfaces, since no
consistency constraints are imposed on the sample positions, i.e., the neighborhood
relations of the detailed surface need not be consistent with the neighborhood relations
on the base surface.

Figure 4.13 Multi-scale vs. single-scale modeling. (a) original surface, (b) base domain, (c) deformed
base surface, (d) and (f) single-scale deformation, (e) and (g) multi-scale deformation.

(a)

(b) (c)

(d) (e)

(f) (g)

63

5

5FEATURE EXTRACTION

In this chapter a new method for detecting and extracting line-type features on point-
sampled surfaces is presented [87]. This type of information can serve as input for
many geometry processing applications such as meshing, model segmentation, or
anisotropic fairing [19]. Feature lines can also be used for visualization to enhance the
semantics of renditions of 3D objects. Section 5.5 will show how artistic line drawings
of point-sampled surfaces can be created using the extracted feature curves.

Features are usually defined as entities of an object that are considered important by
a human for an accurate description of the object. This definition is highly subjective,
however, and very difficult to express in algorithmic form.

The goal of this work is to design a feature extraction algorithm that requires no
additional semantic information about the object. Also, the method should be semi-
automatic, i.e., only require the user to specify a few thresholding parameters.
Additional interaction with the object, such as setting seed points or guiding feature
movement, is not necessary. Therefore, the definition of a feature is based on low-level
information using a statistical operator that measures local surface variation as
introduced in Section 2.1.3. This operator classifies points according to the likelihood
that they belong to a feature. To improve the robustness and reliability of the
classification stage, the operator is applied at multiple scales (see also Chapter 4),

64 Feature Extraction

which allows to measure the persistence of a feature [30]. Additionally, multi-scale
classification provides further structural information per classified point, e.g., the
characteristic scale at which a feature is most prominent.

This work concentrates on line-type features. These are probably the most important
features for surfaces, which are often composed of patches that are framed by feature
lines. A feature line approximately passes along a ridge of maximum inflection, which
is adequately captured in the surface variation estimate.

Since the feature definition relies solely on low-level surface information, some
user feedback is required, in particular for the example application of an artistic line-
drawing renderer. To obtain visually pleasing renditions, the user has to adjust the
various parameters of the feature extraction pipeline until she is satisfied with the
result. Hence particular emphasis is put on efficiency, allowing interactive control in a
low-latency feedback loop.

5.1 PREVIOUS WORK

Feature extraction is a well-studied research area in many scientific fields, including
computer vision, medical imaging and computational fluid dynamics. Most of the past
research efforts concentrated on data defined in a Euclidean domain, e.g., images,
volume data, or flow fields. Feature extraction on surfaces, i.e., 2-manifolds embedded
in 3-space, has gained less attention, but is important in many fields such as range data
analysis or reverse engineering. In these applications, the input data is typically a large
point set acquired by some 3D scanning device. Thus feature extraction directly on the
point cloud is very attractive, as it can be used to support early processing steps such
as surface reconstruction or adaptive decimation.

The feature extraction method presented here combines and extends existing
techniques from different research fields, integrating recent results from image
processing, discrete geometric modeling and scale-space theory.

Canny [15] introduced an optimal filter for step-edge detection in images. He found
that there exists a natural uncertainty principle between detection and localization
performance and derives operators that are optimal at any scale. His method of
hysteresis thresholding will be used during feature classification (see Section 5.4.1).

Hubeli and Gross [57] introduced a multi-resolution framework for feature
extraction on triangle meshes. Based on various classification operators they identify
a set of feature edges and use thinning to extract line-type features from the set of
selected edges.

Feature sensitive meshing of surfaces defined as the zero-set of a discrete 3D
distance function has been presented in [65]. Here features are detected using the width
of the normal cone spanned by adjacent vertices as a measure of surface curvature. The
focus in this work is on avoiding the aliasing artefacts generated by the standard
marching cubes algorithm and the authors report that their simple feature classification
method yields good results for this purpose.

Geometric snakes have been used in [72] to extract feature lines in triangle meshes
based on normal variation of adjacent triangles. This system requires the user to
specify an initial feature curve, which is then evolved under internal and external
forces and re-projected onto the surface using a local parameterization.

5.2 Overview 65

Gumhold et al. [46] presented a feature extraction method for point clouds that is
similar to the method introduced here. They also use covariance analysis for
classification and compute a minimum spanning graph of the resulting feature nodes.
Their scheme is extended in this work by using a multi-scale classification that allows
robust feature extraction for noisy surfaces. Additionally, more control on the
smoothness of the extracted feature lines can be achieved by modeling the feature lines
using snakes, as compared to the spline fitting method used in [46].

5.2 OVERVIEW

Figure 5.1 gives an overview of the feature extraction pipeline. Given an unstructured
point cloud that approximates a surface , the algorithm starts by classifying points
according to the likelihood that they belong to a feature (Section 5.3). This is done
using a multi-scale approach that assigns weights to each . After
thresholding these weights, a minimum spanning graph of the remaining sample points
is computed (Sections 5.4.1 and 5.4.2). Each separate component of the graph is
modeled by a snake, an energy-minimizing spline that is attracted to the feature
vertices. The snakes can be smoothed using Euler integration, while maintaining a
close connection to the underlying surface (Section 5.4.3). The extracted feature lines
can then be visualized using non-photorealistic point-based rendering (Section 5.5).

5.3 FEATURE CLASSIFICATION

The first stage of the feature extraction pipeline is classification. For each point
a weight is computed that measures the confidence that belongs to a feature.
Feature classification is based on surface variation estimation using covariance
analysis of local neighborhoods (see Section 2.1.3). This statistical approach can be
incorporated into a scale-space framework that allows feature classification at multiple
scales.

Given the multi-scale representation introduced in Chapter 4, feature classification
can be performed at multiple scales by applying a suitable classification operator, e.g.,
curvature estimation, on each of the discrete surface approximations. For large models,
the computational overhead quickly becomes excessive, however, since the curvature
estimation has to be applied for each sample point at each scale. An alternative
approach uses the surface variation estimate based on local neighborhoods, as defined
in Section 2.1.1.

5.3.1 Multi-scale Variation Estimation

The concepts of scale-space (see Section 4.1) can be applied for feature classification
using surface variation based on the observation that the size of the
neighborhood of a sample can be understood as a discrete scale parameter (see also
Figure 2.3). In fact, increasing the size of the local neighborhood is similar to applying
a smoothing filter. This becomes intuitively clear when looking at the way the
covariance matrix is defined as sums of squared distances from the neighborhood’s
centroid. If the neighborhood size is increased, each individual point contributes less
to the surface variation estimate. Hence high-frequency oscillations are attenuated,
analogous to standard low-pass filter behavior.

P S

ωi pi P∈

pi P∈
ωi pi

σn p() n
p

66 Feature Extraction

Comparison to Gaussian Smoothing

To evaluate the multi-scale variation estimation, the above method is compared to the
traditional multi-scale approach using Gaussian filter kernels (see Section 4.1). For this
purpose a terrain model is used that is defined as a regularly sampled height-field.
Since this surface can be parameterized without distortion, coarse scale representations
can be computed using standard Gaussian filtering for grids. As illustrated in
Figure 5.2, the classification on the smoothed surfaces using surface variation of
smaller neighborhood sizes corresponds very well to the output of the variation
estimate on the rougher surfaces with bigger neighborhood sizes. Even though some
quantitative deviations are observable, in terms of feature classification both methods
are almost equivalent and thus interchangeable.

Efficient Computation

This section presents an incremental method for computing the surface variation
 at a point for increasing neighborhood size (see also Section 2.1.3).

Assume a neighborhood has already been computed with mean , covariance
matrix and corresponding eigenvalues . Now the neighborhood size is

Figure 5.1 Feature extraction pipeline.

multi-scale
classification

feature
smoothing

MSG
construction

input
point cloud

line art
rendering

hysteresis
thresholding

σn p() p n
Np p

C λ0 λ1 λ2≤ ≤

5.3 Feature Classification 67

increased by one, i.e., the next closest point to is included. The new mean can
be obtained as

 (5.1)

and the new covariance matrix as

, (5.2)

where [49]. The eigenvalues can be computed as the roots of the
characteristic polynomial, i.e., by solving

Figure 5.2 Multi-scale surface variation on height field data. Left column: Scale-space representation
of a terrain model with increasing smoothness from top to bottom. Right column: Corre-
sponding surface variation with increasing neighborhood size from bottom to top.

in
cr

ea
si

ng
 G

au
ss

ia
n

fil
te

r
w

id
th

in
cr

ea
si

ng
 n

ei
gh

bo
rh

oo
d

si
ze

q Np p′

p′ np q+() n 1+()⁄=

C′

C′ n
n 1+
------------ C

q′q′T

n 1+
-------------+ 

 =

q′ q p–=

68 Feature Extraction

. (5.3)

The explicit formula for analytically computing the roots of a cubic polynomial uses
trigonometric functions. A more efficient method exploits coherence of the local
neighborhood: Since only the smallest eigenvalue of is of interest (note that

, cf. Equation 2.16) a Newton iteration can be used to find .
Since the characteristic polynomial changes only slightly when adding another
sample point to the neighborhood of , provides a very good initial guess for
(see Figure 5.3). Due to the quadratic convergence of the Newton scheme, typically
less than 3 iterations are sufficient.

5.3.2 Determining Feature Weights

Given a multi-scale variation estimate, the user can specify the appropriate scale of
interest and use the variation estimate of that scale as the feature weights . Thus by
selecting a single parameter, the scale, the user can decide whether fine-scale or coarse-
scale features should be extracted.

Automatic Scale Selection

However, finding the right scale parameter is often difficult and this is why methods
for automatic scale selection have been of interest in many fields. Lindeberg pioneered
these techniques for functional scale-space representations [79]. His principle for scale
selection states that the scale level at which some normalized derivative operator
assumes a local maximum reflects a characteristic length of the corresponding
structure in the data. As illustrated in Figures 5.4 and 5.5 this principle can easily be
transferred to the scale-space representation introduced above. To determine the
feature weights, the strongest local maximum in the surface variation at all points
across the scale axis is determined. The points on the ear, nose and leg in Figure 5.5,
for example, have been classified as feature points because they exhibit a distinct local
maximum in surface variation, while the point on the back shows no such
characteristic.

Persistence

Instead of using a single local maximum for classification, one can also look at the
number of times that the surface variation exceeds a certain threshold . For a point

 and a neighborhood size define

Figure 5.3 Exploiting coherence when computing surface variation for increasing neighborhood siz-
es using Newton’s method.

Γ λ() C λI– λ3 pλ2 qλ r+ + + 0= = =

λ0′ C′
p– λ0 λ1 λ2+ += λ0′

Γ λ()
p λ0 λ0′

Γ λ()

Γ′ λ()

λ0 λo′

ωi

σmax
pi P∈ n

5.3 Feature Classification 69

Figure 5.4 Automatic scale selection for a 1D signal. The top row shows the signal, the bottom row
the variation at the central point as a function of neighborhood size. The local maxima are
indicated as vertical lines and the characteristic lengths as horizontal bars. In (a) a simple
sine curve is analyzed, while in (b) another high-frequency sine wave has been added.
Note how the different frequencies are reflected in the distinct local maxima of the varia-
tion estimate. In (c) random noise has been added to the signal. When looking at the coars-
er scales, i.e., larger , the feature can still be recovered faithfully.

Figure 5.5 Multi-scale surface variation. The left diagram shows values of for different points on
the bunny as a function of neighborhood size . To avoid instabilities in the detection of
local maxima, these curves have been pre-smoothed as shown on the right. The vertical
lines show the scale of the extracted maxima in surface variation.

σn σn σn

n n n
(a) (b) (c)

n

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100

σ20 σ80

σn
n

70 Feature Extraction

, (5.4)

so that the corresponding feature weight is given as

. (5.5)

Thus this counting approach measures the persistence of a feature over all scales (see
also [30]).

Surface Boundaries

When dealing with non-closed surfaces, the feature classification method is extended
to include points that lie on the surface boundary. These points are detected using the
method of Linsen et al. [81]. All points of a local neighborhood of size of a point

 are projected into the tangent plane and ordered according to angle. Whenever
the angular distance between two consecutive points exceeds some maximum angle

, is classified as a boundary point and its feature weight is set to maximum.
The parameters and effectively control the size of the holes that are detected as
boundaries.

Neighborhood Size

Increasing the size of the local neighborhood when computing the variation estimate
eventually violates the prerequisite that all points of the neighborhood belong to the
same connected region of the underlying surface (see Section 2.1.1). This problem can
be addressed in two different ways: Either neighborhood relations that are more
sophisticated than Euclidean distance are used, e.g., a Riemannian graph or mesh
connectivity, if available. Or one can try to estimate when the neighborhood becomes
too large and stop the calculations of the variation measure. A simple heuristic that
works well in practice is to look for jumps in , as they indicate strong deviations in
the normal direction. Figure 5.6 shows an example for this method for a point on the
bunny’s ear. When increasing the size of the neighborhood, points from the opposite
side of the ear will eventually be included in the set of -nearest neighbors, as
illustrated in Figure 5.6 (a). This critical neighborhood size can be determined by
examining the variation-scale curve as shown in Figure 5.6 (b).

5.4 FEATURE RECONSTRUCTION

Feature reconstruction consists of three stages: First a set of feature nodes is
selected, i.e., points that with high probability belong to a feature. Then a minimum
spanning tree (MST) for these feature nodes is computed. After pruning short branches
and closing cycles, each component of the resulting graph is modeled as a snake, which
allows user-controlled smoothing of the feature lines.

5.4.1 Selecting Feature Nodes

In the classification stage of Section 5.3 weights have been assigned to each sample
point that measure the confidence that belongs to a feature. To select the

Ω pi n,()
1

0



=
σn pi() σmax>

σn pi() σmax≤

ωi

ωi Ω pi n,()
n
∑=

nb
pi P∈

αb pi ωi
nb αb

σn

k

Q P⊂

ωi
pi P∈ pi

5.4 Feature Reconstruction 71

relevant feature nodes , all points whose weights fall below a certain threshold
could simply be discarded. This hard thresholding can cause undesirable artefacts,
however, such as interrupted or dangling feature lines. As suggested in [15], hysteresis
thresholding can alleviate these effects by using two thresholds . Points
with weights smaller than are discarded, while points with are
included into the set of feature nodes . All points with will be used
to bridge the gaps between feature nodes during the construction of the minimum
spanning tree (see below).

5.4.2 Minimum Spanning Graph

To create a set of feature patterns, a minimum spanning tree (MST) of the set of feature
nodes is computed. In the beginning all feature nodes are sorted according
to their weights. Then the feature node with biggest weight is chosen as the seed
point for the construction of the MST. Each of the -nearest neighbors of defines
an edge with corresponding edge cost

, (5.6)

where is the length of the diagonal of the bounding box of all points in , and is
an additional parameter that allows to balance feature weights against Euclidean
distance. All these edges are put on a heap ordered by increasing cost values. Then the
edge with the smallest cost is taken from the heap and added to the MST, if both edge
nodes are not already part of the tree. For the new feature node a new set of edges and
corresponding cost values is computed and also put on the heap. This process is
repeated until the heap is empty. Figure 5.7 (b) shows the MST of the dinosaur head
generated with this algorithm.

Pruning and Closing of Cycles

As can be seen in this example, the MST of all feature nodes contains many short
branches, which are usually treated as artefacts that do not describe salient features. A
bottom-up graph pruning method is applied to eliminate these short branches from the
set of feature patterns. The algorithm starts by sorting all leaves of the MST according

Figure 5.6 (a) Illustration of an invalid neighborhood, (b) the critical neighborhood size for a point
on the bunny’s ear occurs at a jump in the variation-scale curve.

0.05

0.1

0.15

0.2

0.25

50 100 150 200

p

Np

(a) (b)

σn

n

Q P⊂

ωmin ωmax<
ωmin ωi ωmax>

Q ωmin ωi ωmax≤ ≤

Q qi Q⊂
q

k qi q

c q qi,() 1
ωqωqi

--------------- γ
q qi–

d
------------------⋅+=

d Q γ

72 Feature Extraction

to their depth. By traversing the tree upward from the deepest node, the longest path
can be determined, which defines a new root of the MST. Now all branches of the tree
are computed recursively and each branch is assigned an importance value that is given
as the length of the branch multiplied by the product of all edge weights. Thus short
branches are retained that contain feature nodes with high confidence values and only
those branches are pruned that with low probability are part of a feature line.

The MST construction above does not support cycles in the feature lines. It is often
desirable, however, to allow closed loops as these more naturally describe certain
feature lines. Therefore, the MST is transformed into a graph by closing cycles that are
longer than a user-specified threshold, using those edges whose feature nodes are
already in the graph. From both of these nodes the tree is traversed upward until the
two paths cross at a common node. The sum of the two path lengths then equals the
cycle length. Note that the method for pruning and closing cycles does not require an
expensive breadth first search as was done, for example, in [46]. Figure 5.7 (c) shows
the MST of Figure 5.7 (b) after pruning and closing cycles.

5.4.3 Active Contour Models

As can be seen in Figure 5.7 (c), the extracted feature lines connect samples of the
original point cloud and are often jagged. This might be acceptable for partitioning
algorithms, but for feature-based visualization methods (see Section 5.5) it leads to
inferior rendering quality. Such applications require some mechanism for smoothing
feature lines. Spline fitting has been used in previous approaches [46], but it provides

Figure 5.7 Feature reconstruction on the dinosaur head: (a) feature weights, (b) minimum spanning
tree of feature nodes, (c) MST after pruning and closing cycles, (d) smoothing with snakes.

(a) (b)

(c) (d)

5.5 Non-Photorealistic Rendering 73

little flexibility and insufficient control over the smoothness and accuracy of the
extracted feature lines. In [60], Kass et al. introduced snakes, active contour models,
for detecting features in images. A snake is an energy-minimizing spline that moves
under internal and external forces. For point-sampled surfaces, snakes can be used to
smooth the feature curves, while maintaining a close contact to the surface. The main
benefit of snakes is their explicit control over the degree of smoothness that can be
adapted to the specific application needs. Additionally, external constraints can easily
be incorporated, for instance to enable user interaction for positioning feature lines.

Energy Minimization

Each component of the MSG is modeled as a parametric curve that tries to
minimize the energy functional

, (5.7)

The internal spline energy consists of first- and second-order terms, modeling the
behavior of a membrane and a thin plate, respectively:

, (5.8)

where and control the relative weight of the two terms. The external energy
is related to the surface variation:

, (5.9)

where is computed by interpolating the maximum variation of each point
 at . Discretization of the functional finally leads to a system of Euler

equations that is solved using Euler integration (see [60] for details). Figure 5.7 (d)
shows the smoothing effect on the dinosaur head.

5.5 NON-PHOTOREALISTIC RENDERING

The extracted feature lines can be used as input for a variety of processing algorithms,
including mesh generation, anisotropic fairing and model segmentation. In this section
a point rendering system is introduced for creating line drawings of point-sampled
surfaces. Based on the surface splatting technique of Zwicker et. al. [119], the renderer
takes as input a point model of the original surface and the output of the feature
extraction method. Each feature line is converted into a set of feature points by
sampling the model surface along the feature line. The sample points of the original
model are only rendered into the z-buffer to resolve visibility and are assigned the
background color. The final image is then only composed of the visible feature points.
Note that no shading computations are applied, which significantly improves rendering
performance.

The additional information of the classification stage can be utilized to enhance the
semantics of these renditions. The splat radii of the feature points can be scaled
according to scale and the intensity (e.g., grey level) adjusted according to the
maximum surface variation. Thus features on coarser scales are rendered as thicker
lines, while features on fine scales are rendered as thinner lines. Also prominent
features are rendered at high intensities, while less significant features are rendered at

v s()

E Eint v s()() Eext v s()()+ sd∫=

Eint v s()() α s() v s()′ 2 β s() v s()″ 2
2⁄⋅+⋅=

α s() β s()

Eext v s()() 1 σ̃ v s()()⁄=

σ̃ v s()()
p P∈ v s() E

74 Feature Extraction

low intensity. With these simple extensions, a very intuitive effect is achieved, similar
to what a painter would do when drawing an image. Additional screen space filters can
be applied to obtain more artistic looking renditions, as illustrated in Figures 5.8 to
5.12.

5.6 EXAMPLES

This section illustrates the effectiveness of the feature extraction pipeline for a number
of point-sampled models. Tables 5.1 and 5.2 summarize performance data for the
different stages of the pipeline. For multi-scale classification the surface variation
estimate is evaluated for each point for all neighborhood sizes between
15 and 200 using the method introduced in Section 5.3.1. The set of -nearest
neighbors is computed using a kd-tree, as described in Section 8.2.1. Note that the
interactive feedback loop for adjusting the various thresholding parameters does not
include the multi-scale classification stage, which hence needs to be executed only
once.

Figure 5.8 shows feature lines extracted on the Igea model. The middle image
shows a rendition without the artistic screen space filter.

The cat model of Figure 5.9 is a difficult example, since it exhibits strong local
imbalances in the sampling pattern. Still the salient surface features are faithfully
recovered.

Model multi-scale-classifi-
cation

MST, pruning, clos-
ing cycles

snakes (100 Euler
steps)

Igea 25.156 1.468 0.203

Cat 1.829 0.062 0.031

Gnome 6.703 0.203 0.047

Dinosaur 10.187 2.484 0.234

Dragon 64.422 8.469 1.125

Table 5.1 Timing of the feature extraction pipeline in seconds on an Intel Pentium IV, 2.8 GHz.

Model #input points #feature nodes #snake points

Igea 134,345 40,509 7,327

Cat 10,000 3,593 798

Gnome 54,659 9,655 1,714

Dinosaur 56,194 45,879 6,395

Dragon 435,545 203,713 31,154

Table 5.2 Complexity of the different stages.

σn p P∈ n
k

5.6 Examples 75

Figure 5.10 shows an example of a noisy laser range scan, which demonstrates that
the multi-scale method is superior to single-scale classification. Also note that this is a
difficult example for a (semi-) automatic feature extraction algorithm, because humans
have a very clear and distinct perception of important feature lines in faces.

The dragon and dinosaur models (Figures 5.11 and 5.12) show that the feature
reconstruction method in connection with the point-based rendering method is very
suitable for generating artistic line drawings of complex geometric surfaces.

These examples demonstrate that multi-scale feature analysis offers a number of
advantages. First it makes the method more robust in the presence of noise. Second it
allows coarse-scale features to be extracted even though the curvature might be low.
Third it provides additional structural information, which can be used, for example, to
adapt the width of feature lines according to the scale.

Figure 5.8 Feature reconstruction on the Igea model. (a) shaded surface, (b) extracted feature lines,
(c) rendition with artistic screen space filter.

Figure 5.9 As illustrated in (a) the cat model is sampled very non-uniformly. (b) shows the extracted
feature lines.

(a) (b) (c)

(a) (b)

76 Feature Extraction

Figure 5.10 Multi-scale feature extraction (bottom right) is superior to single scale extraction (bottom
left) on a noisy range scan. The top row shows the original point cloud and variation esti-
mates for different scales.

Figure 5.11 Feature extraction on the dinosaur model.

Figure 5.12 Feature extraction on the dragon model.

77

6

6SHAPE MODELING

Modeling the shape of 3D objects is one of the fundamental techniques in digital
geometry processing. In this chapter two fundamental modeling approaches for point-
sampled geometry will be presented: Boolean operations and free-form deformation
[88, 89]. While the former are concerned with building complex objects by combining
simpler shapes, the latter defines a continuous deformation field in space to smoothly
deform a given surface. As discussed in the introduction, boolean operations are most
easily defined on implicit surface representations, since the required inside-outside
classification can be directly evaluated on the underlying scalar field. On the other
hand, free-form deformation is a very intuitive modeling paradigm for explicit surface
representations. For example, mesh vertices or NURBS control points can be directly
displaced according to the deformation field.

For point-based representations, the hybrid structure of the surface model defined
in Section 2.3.2 can be exploited to integrate these two modeling approaches into a
unified shape modeling framework. Boolean operations can utilize the signed distance
function defined by the MLS projection (see Section 2.3.3) for inside-outside
classification, while free-form deformations operate directly on the point samples.

78 Shape Modeling

6.1 BOOLEAN OPERATIONS

A common approach in geometric modeling is to build complex objects by combining
simpler shapes using boolean operations [51] (see Figure 6.1). In constructive solid
geometry (CSG) objects are defined using a binary tree, where each node corresponds
to a union, intersection, or difference operation and each leaf stores a base shape.
Operations such as ray-tracing, for example, are then implemented by traversing this
tree structure. More commonly, surfaces are defined as boundary representations (B-
Reps) of solids. Here boolean operations have to be evaluated explicitly, which
requires an algorithm for intersecting two surfaces. Computing such a surface-surface
intersection can be quite involved, however, in particular for higher order surfaces (see
for example [68]).

As will be demonstrated below, the MLS projection operator (see Section 2.3.2) can
be used both for inside/outside classification as well as for explicitly sampling the
intersection curve. The goal is to perform a boolean operation on two orientable, closed
surfaces and that are represented by two point clouds and , to obtain a
new point cloud that defines the resulting surface . consists of two subsets

 and plus a set of newly generated sample points that explicitly
represent the intersection curves. Thus in order to perform a boolean operation for
point-sampled geometry, the following techniques are required:

• a classification predicate to determine the two sets and ,

• an algorithm to find samples on the intersection curve, and

• a rendering method that allows to display crisp features curves using point
primitives.

Figure 6.1 Boolean operations of a sphere and a cylinder . The bottom row illustrates the sam-
pling distribution.

S1 S2 P1 P2
P3 S3 P3

Q1 P1⊆ Q2 P2⊆

Q1 Q2

A B∪ A B– A B∩

A B

6.1 Boolean Operations 79

6.1.1 Classification

The goal of the classification stage is to determine which are inside or outside
the volume enclosed by the surface and vice versa. For this purpose a classification
predicate is defined such that for

(6.1)

where is the volume bounded by the MLS surface represented by the point cloud
. Let be the closest point on from . It is well-known from differential

geometry that, if is continuous and twice differentiable, the vector is aligned
with the surface normal at [25]. If surface normals are consistently oriented to
point outwards of the surface, then if and only if . Since only a
discrete sample of the surface is given, the closest point on is replaced by the
closest point . Thus is classified as outside if , i.e., if the angle
between and the normal at is less than (see Figure 6.2, left image).
This discrete test yields the correct inside/outside classification of the point if the
distance is larger than the local sample spacing (see Section 2.1.2) at . If

 is extremely close to the surface, the classification could fail, as illustrated in the
right image of Figure 6.2. In this case the exact closest point is computed using
the MLS projection (Section 2.3).

Since for classification only an inside/outside test is of interest, the performance can
be significantly improved by exploiting local coherence:

 for all points that lie in the sphere around with radius
. Thus the number of closest point queries and MLS projections can be

reduced drastically, in practice up to 90 percent.

Given the classification predicate , the subsets and can be computed as
shown in Table 6.1. As Figure 6.3 illustrates, the resulting inside/outside classification
is very robust and easily handles complex, non-convex surfaces. Observe that boolean
operations can easily create a large number of disconnected components, i.e., can lead
to a significant change in genus.

Figure 6.2 Inside/outside test. For very close to the surface, the closest point can yield a
false classification (right image). In this case, is classified according to its MLS projec-
tion .

p P1∈
S2

ΩP x IR3∈

ΩP x()
1

0



=
x V∈
x V∉

V S
P y S∈ S x

S x y–
ny y

x y–() ny 0>⋅ x V∉
P S y S

p P∈ x x p–() np 0>⋅
x p– np p π 2⁄

x
x p– ηp p

x
y S∈

x p

p

ny

np

np

ny

Ψ P x,() y=

π
2
--->

y

x

x p P∈
x

y

ΩP x() ΩP x'()= x' x
x p– ηp–

Ω Q1 Q2

80 Shape Modeling

6.1.2 Intersection Curves

Taking the union of and will typically not produce a point cloud that accurately
describes the surface , since the intersection curve of the two MLS surfaces and

 is not represented adequately. Therefore, a set of sample points that lie on the
intersection curve is explicitly computed and added to , to obtain the point
cloud . First, all points in and are found that are close to the intersection
curve by evaluating the distance function induced by the MLS projection operator.
From all closest pairs of these points a point on the intersection
curve is computed using a Newton-type iteration. This is done as follows (see
Figure 6.4 (a-d)): Let be the point on the intersection line of the two tangent planes

Table 6.1 Classification for boolean operations.

Figure 6.3 Boolean operations of a blue dragon (A) and a white dragon (B).

Q1 Q2

S1 S2∪ p P1 ΩP2
p()∈ 0={ } p P2 ΩP1

p()∈ 0={ }

S1 S2∩ p P1 ΩP2
p()∈ 1={ } p P2 ΩP1

p()∈ 1={ }

S1 S2– p P1 ΩP2
p()∈ 0={ } p P2 ΩP1

p()∈ 1={ }

S2 S1– p P1 ΩP2
p()∈ 1={ } p P2 ΩP1

p()∈ 0={ }

A B∪ A B∩

A B– B A–

Q1 Q2
S3 S1

S2
Q1 Q2∪

P3 Q1 Q2

q1 Q1 q2 Q2∈,∈() q

r

6.1 Boolean Operations 81

of and that is closest to both points, i.e., that minimizes the distance
. is the first approximation of and can now be projected onto

 and to obtain two new starting points and for the iteration. This
procedure can be repeated iteratively until the points and converge to a point
on the intersection curve. Due to the quadratic convergence of the Newton iteration,
this typically requires less than three iterations.

The sampling density estimation of Section 2.1.2 is used to detect whether the
sampling resolution of the two input surfaces differs significantly in the vicinity of the
intersection curve. To avoid a sharp discontinuity in sampling density, the coarser
model is up-sampled in this area to match the sampling density of the finer model,
using the dynamic sampling method of Section 6.2.2.

Note that the above Newton scheme also provides an easy mechanism for
adaptively refining the intersection curve. A simple subdivision rule is evaluated to
create a new starting point for the Newton iteration, e.g., the average of two adjacent
points on the curve. Applying the iteration then yields a new sample on the intersection
curve (see Figure 6.5).

Figure 6.4 Sampling the intersection curve. (a) closest pairs of points in and , (b) first esti-
mate , (c) re-projection, (d) second estimate .

Figure 6.5 Adaptive refinement. (a) original intersection curve, (b) new point inserted in region of
high curvature, (c) final, adaptively sampled intersection curve.

q1 q2
r q1– r q2–+ r q

S1 S2 q1' q2'
q1 q2 q

S1 S2

r

q1 q2

q1' q2' r'

Q1
Q2

intersection curve

(a) (b)

(c) (d)

Q1 Q2
r r'

(a) (b) (c)

82 Shape Modeling

6.1.3 Rendering Sharp Creases

The accurate display of the intersection curves requires a rendering technique that can
handle sharp creases and corners. For this purpose an extension of the surface splatting
technique presented in [119] is used. In this method, each sample point is represented
by a surfel, an oriented elliptical splat that is projected onto the screen to reconstruct
the surface in image space (see also Section 8.1.2). A point on the intersection curve
can now be represented by two surfels that share the same center, but whose normals
stem from either one of the two input surfaces. During scan-conversion, each of these
surfels is then clipped against the plane defined by the other to obtain a piecewise linear
approximation of the intersection curve in screen space (see Figure 6.6). This concept
can easily be generalized to handle corners as shown in Figure 6.6 (e).

Figure 6.7 shows an example of a difficult boolean operation of two identical
cylinders that creates two singularities. While the classification and intersection curve
sampling work fine, the rendering method produces artefacts. This is due to numerical
instabilities, since the clipping planes of two corresponding surfels are almost parallel.
However, such cases are rare in typical computer graphics applications, e.g., digital
character design. As such, the algorithms for boolean operations are less suited for
industrial manufacturing applications, where robust handling of degenerated cases is
of primary concern.

6.1.4 Particle-Based Blending

As illustrated in Figure 6.1, boolean operations typically produce sharp intersections.
In some applications it is more desirable to create a smooth blend between the two

Figure 6.6 Rendering the intersection curve. (a) mutual clipping of two surfels on the intersection
curve, (b) boolean differences on the bunny model, (c) zoom of the intersection curves, (d)
sampling distribution, where samples on the intersection curve are rendered using two red
half ellipses, (e) an example of a corner.

clipped areas

(a) (e)

(b) (c) (d)

6.1 Boolean Operations 83

combined surface parts. To smooth out the sharp creases created by boolean operations
an adaptation of oriented particles [107] has been implemented. The idea is to define
inter-particle potentials in such a way that the minimum of the global
potential function yields a smooth surface that minimizes curvature. Summing up these
potentials yields a particle’s total potential energy . From this potential energy one
can derive the positional and rotational forces that are exerted on each particle and
compute its path of motion under these forces.

Additionally, an inter-particle repulsion force is applied to equalize the particle
distribution (see also Section 3.4.2). All forces are scaled with a smooth fall-off
function that measures the distance to the intersection curve to confine the particle
simulation to a small area around the intersection curve without affecting other parts
of the surface. A detailed discussion on implementational issues of the particle
simulation used in this thesis can be found in [61].

Figure 6.8 shows the particle-based blending for the intersection of two planes,
where the degree of smoothness can be controlled by the number of iterations of the
simulation.

In Figure 6.9, a more complex blending operation is shown. A union operation of
three tori has created numerous sharp intersection curves as shown in (a). These can be
blended simultaneously as illustrated in (b) using the particle simulation described
above. The same blending technique can of course also be applied to the intersection
and difference operations described in Section 6.1.

Hole Filling

Witkin and Heckbert have introduced particle simulation to sample and control
implicit surfaces [114]. Their algorithm dynamically adapts the distribution of
particles by splitting or killing particles depending on the local particle density. This
idea has been incorporated into the oriented particle simulation described above to
handle non-uniformly sampled surfaces. An interesting application of this approach is
hole filing for scanned surfaces, which are often incomplete due to occlusion in the
scanning process (see Section 1.1.1). Figure 6.10 illustrates hole filling by adaptive

Figure 6.7 A difficult boolean difference operation that creates two singularities.

Φ pi pj,()

Ei

84 Shape Modeling

particle simulation on the Igea model. Parts of the nose have been removed to simulate
the effect of scanner occlusion. The samples on the so created boundary are marked as
particles, either manually using a selection tool (see Section 8.1.1) or automatically
using some surface boundary detection method (cf. Section 5.3.2). After starting the
simulation, these particles will drift towards the center of the hole, away from its
boundary. When the local particle density becomes too low, new particles will be
introduced by splitting existing particles into two (see also Section 6.2.2). Eventually,
the surface will be closed, as shown in Figure 6.10 (b) and (e).

Experiments showed that this hole-filling method works well for small holes with
simple boundaries. It is not suitable as a general tool for pre-processing incomplete
scanner data, however. When the size of the holes becomes too large, or their boundary
is strongly convoluted, the particle simulation becomes unstable and does not converge
to the desired watertight surface. For such cases, methods based on volumetric
diffusion [21] are more appropriate.

Figure 6.8 Particle simulation to blend two intersecting planes. Gray particles participate in the sim-
ulation, blue points indicate the fixed boundary.

(a) initial configuration (b) 10 iterations

(c) 20 iterations (d) 50 iterations

(e) 100 iterations (f) 200 iterations

6.1 Boolean Operations 85

Figure 6.9 Boolean union of three tori. (a) reconstruction with sharp feature curves, (b) feature curves
have been blended using particle simulation.

Figure 6.10 Hole filling using particle simulation. (a) original surface with hole, (b) surface after hole
has been filled, (c) sampling distribution of (b), (d - f) zooms of (a - c).

(a) (b)

(a) (b) (c)

(d) (e) (f)

86 Shape Modeling

6.2 FREE-FORM DEFORMATION

Apart from composition of surfaces using boolean operations, many shape design
applications require the capability to modify objects using smooth deformations. These
include bending, twisting, stretching, and compressing of the model surface. For this
purpose a point-based free-form deformation tool is introduced that allows the user to
interactively deform a surface by specifying a smooth deformation field.

The user first defines a deformable region on the model surface and marks
parts of this region as a control handle. The surface can then be modified by pushing,
pulling or twisting this handle. These user interactions are translated into a continuous
tensor-field, which for each point in the deformable region defines a translatory and
rotational motion under which the surface deforms. The tensor-field is based on a
continuously varying scale parameter that measures the relative distance of
a point from the handle. The closer a point is to the handle, the stronger will the
deformation be for that point. More precisely, let be the handle, also called
one-region, and the zero-region, i.e., all points that are not part of the
deformable region. For both zero- and one-region distance measures and ,
respectively, are defined as

, (6.2)

for . From these distance measures the scale parameter is computed as
, where is a continuous blending

function with and . Thus for and for
. Using this scale parameter, the position of a point after the

deformation is determined as , where is a deformation function
composed of a translatory and a rotational part. The deformation function can be
written as , where

• with a translation vector and

• , where is the matrix that specifies a rotation
around axis with angle .

Figure 6.11 shows a translatory deformation of a plane where the translation vector
is equal to the plane normal. This figure also illustrates the effect of different choices
of the blending function . In Figure 6.12, two rotational deformations of a cylinder
are shown, while a combination of both translatory and rotational deformations is
illustrated in Figure 6.17.

To perform a free-form deformation the user only needs to select the zero- and one-
regions and choose an appropriate blending function. She can then interactively
deform the surface by displacing the handle with a mouse or trackball device, similar
to [64]. This gives the method great flexibility for handling a wide class of free-form
deformations, while still providing a simple and intuitive user interface. The
deformable region and the handle can be specified using a simple paint tool that allows
the user to mark points on the surface by drawing lines, circles, rectangles, etc. and
applying flood filling and erasure. The system also supports pre-defined and user-
editable selection stencils, which can be used to create embossing effects (Figure 6.13).

χd S⊂

t 0 1,[]∈

χ1 χd⊂
χ0 S χd–=

d0 d1

dj p()
0 p χj∈
minq χj∈ p q–() p χj∉




=

j 0 1,= t
t β d0 p() d0 p() d1 p()+()⁄()= β:[0,1] 0 1,[]→

β 0() 0= β 1() 1= t 0= p χ0∈ t 1=
p χ1∈ p χd∈

p′ F p t,()= F

F p t,() FT p t,() FR p t,()+=

FT p t,() p t v⋅+= v

FR p t,() R a t α⋅,() p⋅= R a α,()
a α

v

β

6.2 Free-Form Deformation 87

Figure 6.11 Deformations of a plane for three different blending functions. Left: Blending function,
middle: Color-coded scale parameter, where blue indicates the zero region () and
red the one-region (), right: Final textured surface.

Figure 6.12 Rotational deformations of a cylinder. (a) original, (b) color-coded scale parameter, (c) ro-
tation around axis , (d) rotation around axis .

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

t 0=
t 1=

(a) (b) (c) (d)

a1

a2

a1 a2

88 Shape Modeling

6.2.1 Topology Control

An important issue in shape design using free-form deformation is the handling of self-
intersections. During deformation, parts of the deformable region can intersect other
parts of the surface, which leads to an inconsistent surface representation. A solution
to this problem requires a method for detecting and resolving such collisions.

Collision Detection

Similar to boolean operations, this requires an inside/outside classification to
determine which parts of the surface have penetrated others. Thus the classification
predicate defined in Section 6.1.1 can be used for this purpose. First, the closest
point to each sample point is computed. This defines an empty sphere

 around with radius . If the point only moves within this sphere during
deformation, it is guaranteed not to intersect with the zero-region (see Figure 6.14). So
additionally to exploiting spatial coherence as for boolean classification, this approach
also exploits the temporal coherence induced by the smooth deformation field. The
classification predicate has to be re-evaluated only when leaves , which at the
same time provides a new estimate for the updated sphere .

Figure 6.13 Embossing effect. The Siggraph label on the top left has been converted to a selection
stencil using simple image processing tools. This stencil can then be mapped to a surface,
where blue color corresponds to the zero-region and red to the one-region. Subsequent de-
formation yields an embossing effect as shown on the right.

Figure 6.14 Temporal coherence for collision detection during deformation. The points and
can move with the spheres and , resp., without intersecting the zero-region.

Ω
q χ0∈ p χd∈

sp p p q– p

Ω p sp
sp

χ0

χ0

χd

s1
p1

s2
p2

p1 p2
s1 s2

6.2 Free-Form Deformation 89

Collision Handling.

There are different ways to respond to a detected collision. The simplest solution is to
undo the last deformation step and recover the surface geometry prior to the collision.
Alternatively, the penetrating parts of the surface can be joined using a boolean union
operation to maintain the validity of the surface.

Figure 6.15 shows an editing session, where a deformation causes a self-
intersection. After performing a boolean union, a sharp intersection curve is created as
shown in (d). In the context of free-form deformation it is often more desirable to
create a smooth transition between the two combined surface parts. Thus the particle
simulation described in Section 6.1.4 can be used to blend the intersection region.

6.2.2 Dynamic Sampling

Large deformations may cause strong distortions in the distribution of sample points
on the surface that can lead to an insufficient local sampling density. To prevent the
point cloud from ripping apart and maintain a high surface quality, new samples have
to be included where the sampling density becomes too low. This requires a method
for measuring the surface stretch to detect regions of insufficient sampling density.
Then new sample points have to be inserted and their position on the surface

Figure 6.15 Interactive modeling session with collision detection. (a - b) intermediate steps of the de-
formation, (c) collision detection, where the blue part has been detected as self-intersect-
ing, (d), boolean union with sharp intersection curve, (e - f), particle-based blending with
different fall-off functions.

(a)

(b)

(c)

(d)

(e)

(f)

90 Shape Modeling

determined. Additionally, scalar attributes, e.g., color values or texture coordinates,
have to be preserved or interpolated.

Measuring Surface Stretch

The first fundamental form known from differential geometry [25] can be used to
measure the local distortion of a surface under deformation. Let and be two
orthogonal tangent vectors of unit length at a sample point . The first fundamental
form at is defined by the matrix

. (6.3)

The eigenvalues of this matrix yield the minimum and maximum stretch factors and
the corresponding eigenvectors define the principal directions into which this
stretching occurs. When applying a deformation, the point is shifted to a new

position and the two tangent vectors are mapped to new vectors and . Local
stretching implies that and might no longer be orthogonal to each other nor do
they preserve their unit length. The amount of this distortion can be measured by taking
the ratio of the two eigenvalues of Equation 6.3 (local anisotropy) or by taking their

Figure 6.16 Dynamic sampling. Top row: Deformation of a plane. (a) local stretching: blue corre-
sponds to zero stretch, while red indicates maximum stretch, (b) surface after re-sampling,
(c) sampling distribution. Bottom row: illustration of point insertion.

u v
p

p 2 2×

u2 u v⋅

u v⋅ v2

p

(a) (b) (c)

Deformation RelaxationSplitting

p′ u′ v′
u′ v′

6.2 Free-Form Deformation 91

product (local change of surface area). When the local distortion becomes too strong,
new samples have to be inserted to re-establish the prescribed sampling density. Since
Equation 6.3 defines an ellipse in the tangent plane centered at with the principal
axes defined by the eigenvectors and eigenvalues, can be replaced by two new
samples and that are positioned on the main axis of the ellipse (see Figure 6.16).

6.2.3 Filter Operations

Whenever a splitting operation is applied, both the geometric position and the scalar
function values for the newly generated sample points have to be determined. Both
these operations can be described as the application of a filtering operator: A relaxation
filter determines the sample positions while an interpolation filter is applied to obtain
the function values.

Relaxation

Introducing new sample points through a splitting operation creates local imbalances
in the sampling distribution. To obtain a more uniform sampling pattern, a relaxation
operator is applied that moves the sample points within the surface (see Figure 6.16).
Similar to [111] (see also Section 3.4) a simple point repulsion scheme is used with a
repulsion force that drops linearly with distance. This confines the radius of influence
of each sample point to its local neighborhood, which allows very efficient
computation of the relaxation forces. The resulting displacement vector is then
projected into the point’s tangent plane to keep the samples on the surface.

Interpolation

Once the position of a new sample point is fixed using the relaxation filter, the
associated function values need to be determined. This can be achieved using an
interpolation filter by computing a local average of the function values of neighboring
sample points. The relaxation filter potentially moves all points of the neighborhood of

. This tangential drift leads to distortions in the associated scalar functions. To deal
with this problem a copy of each point that carries scalar attributes is created and its
position is fixed during relaxation. In particular, for each sample that is split a copy is
maintained with its original data. These points will only be used for interpolating scalar
values, they are not part of the current geometry description. Since these samples are
dead but their function values still live, they are called zombies. Zombies will undergo
the same transformation during a deformation operation as living points, but their
positions will not be altered during relaxation. Thus zombies accurately describe the
scalar attributes without distortions. Therefore, zombies are only used for
interpolation, while for relaxation only living points are considered. After an editing
operation is completed, all zombies will be deleted from the representation.

Figure 6.17 illustrates this dynamic re-sampling method for a very large
deformation that leads to a substantial increase in the number of sample points. While
the initial plane consists of 40,000 points, the final model contains 432,812 points,
clearly demonstrating the robustness and scalability of the method in regions of
extreme surface stretch.

p
p

p1 p2

p

p

92 Shape Modeling

6.2.4 Down-Sampling

Apart from lower sampling density caused by surface stretching, deformations can also
lead to an increase in sampling density, where the surface is squeezed. It might be
desirable to eliminate samples in such regions while editing, to keep the overall
sampling distribution uniform. However, dynamically removing samples also has
some drawbacks. Consider a surface that is first squeezed and then stretched back to
its original shape. If samples get removed during squeezing, surface information such
as color will be lost, which leads to increased blurring when the surface is re-stretched.
Thus instead of dynamic sample deletion, an optional “garbage collection” is
performed at the end of the editing operation. To reduce the sampling density, any of
the simplification methods of Chapter 3 can be used.

Figure 6.17 A very large deformation using a combination of translatory and rotational motion. The
left column shows intermediate steps with the top image indicating zero- and one-regions.
Each point of the surface carries texture coordinates, which are interpolated during re-
sampling and used for texturing the surface with a checkerboard pattern. The bottom row
illustrates this interpolation process, where the function values are indicated by vertical
lines.

Zombie

New Samples

Deformation RelaxationSplitting Deletion of zombiesInterpolation

93

7

7APPEARANCE MODELING

The previous chapter has introduced boolean operations and free-form deformation for
point-based shape modeling. Apart from the mere geometric shape, which is described
by the position of the sample points in space, 3D objects also carry a number of
additional attributes, such as color or material properties, that determine the overall
appearance of the surface. In this chapter, a number of tools and algorithms for
interactively editing surface appearance attributes will be presented [118]. These
methods can be understood as a generalization of common photo editing techniques
from 2D images to 3D point-sampled surfaces.

7.1 OVERVIEW

This section gives an overview of the appearance modeling functionality for point-
sampled models by defining a surface editing operation on an abstract level. A brief
analysis of 2D photo editing identifies three fundamental building blocks of an
interactive editing operation: parameterization, re-sampling, and editing. It will be
shown that these concepts can be extended from 2D photo editing to 3D surface
editing. For this purpose an operator notation will be introduced that allows a wide
variety of editing operations to be defined in a unified and concise way. The

94 Appearance Modeling

fundamental differences between functional images and manifold surfaces lead to
different implementations of these operators, however.

7.1.1 2D Photo Editing

A 2D image can be considered as a discrete sample of a continuous image function
containing image attributes such as color or transparency. Implicitly, the discrete
image always represents a continuous image, yet image editing operations are
typically performed directly on the discrete samples.

A general image editing operation can be described as a function of a given image
 and a brush image . The brush image is used as a generic tool to modify the image
. Depending on the considered operation it may be interpreted as a paint brush or a

discrete filter, for example.

The editing operation involves the following steps: First, a parameter mapping
has to be found that aligns the image with the brush . For example, can be
defined as the translation that maps the pixel at the current mouse position to the center
of . Next, a common sampling grid for and has to be established, such that there
is a one-to-one correspondence between the discrete samples. This requires a re-
sampling operator that first reconstructs the continuous image function and then
samples this function on the common grid. Finally, the editing operator combines
the image samples with the brush samples using the one-to-one correspondence
established before. The resulting discrete image is then obtained as a concatenation
of the operators described above:

. (7.1)

The goal is to generalize the operator framework of Equation 7.1 to irregular point-
sampled surfaces, as illustrated in Figure 7.1. Formally, this can be done by replacing
the discrete image by a point cloud that represents a surface . The discrete
sample points can be considered as a direct extension of image pixels, carrying the
attributes shown in Figure 7.4 (a). This motivates the term surfel, short for surface
element, similar to pixel, which stands for picture element (see also [92]). The
transition from image to surface has the following effects on the individual terms of
Equation 7.1:

Parameterization

For photo editing, the parameter mapping is usually specified by a simple, global
2D to 2D affine mapping, i.e., a combination of translation, scaling, and rotation.
Mapping a manifold surface onto a 2D domain is much more involved, however.
Therefore, the user interactively selects subsets, or patches, of that are parameterized
individually. In general, such a mapping leads to distortions that cannot be avoided
completely. Section 7.2 will introduce two algorithms for computing a
parameterization that correspond to two different interaction schemes:
Parameterization by orthogonal projection for interactive brush painting, and a method
to compute a constrained minimum distortion parameterization. The latter allows the
user to control the mapping in an intuitive manner by setting corresponding feature
points both on the parameter plane and the surface, respectively.

I

I

I B
I

Φ
I B Φ

B I B

Ψ
Ω

I′

I′ Ω Ψ Φ I()() Ψ B(),()=

I P S

Φ

Φ

S

7.1 Overview 95

Re-sampling

Images are usually sampled on a regular grid, hence signal processing methods can be
directly applied for re-sampling. However, the sampling distribution of surfaces is in
general irregular, requiring alternative methods for reconstruction and sampling. For
this purpose a parameterized scattered data approximation is used that reconstructs a
continuous function from the samples (see [118]). This continuous function can then
be evaluated at the desired sampling positions.

Editing

Once the parameterization is established and re-sampling has been performed, all
computations take place on the discrete samples in the 2D parameter domain. Hence
the full functionality of photo editing systems can be applied for texturing and texture
filtering. Additionally, operations that modify the geometry, e.g., sculpting or
geometry filtering, can easily be incorporated into the system. As will be described in
Section 7.1.3, all of these tools are based on the same simple interface that specifies an
editing tool by a set of bitmaps and few additional parameters. For example, a sculpting
tool is defined by a 2D displacement map, an alpha mask and an intrusion depth.

Figure 7.1 Overview of the operator framework for point-based surface editing [118].

Parameterized patch Φ(S)

Resampled patch Ψ(Φ(S))

Brush Ψ(B)

Modified patch

Ψ

Ω

Original point-based surface

Φ

Modified point-based surface

Ψ

Ω

96 Appearance Modeling

7.1.2 Interaction Modes

The appearance attributes of a point-sampled model can be manipulated using two
different interaction schemes:

Brush Interaction

In this interaction mode the user moves a brush device over the surface and
continuously triggers editing events, e.g., painting operations (see Figure 7.2). The
brush is positioned using the mouse cursor and aligned with the surface normal at the
current interaction point. In terms of Equation 7.1, this means that the parameterization
is continuously and automatically re-computed and re-sampling is performed for each
editing event. A complete editing operation is then performed using a fixed brush
image.

Selection Interaction

Here the user first selects a subset of the surface called a patch and defines the
parameter mapping interactively by imposing point constraints (see Figure 7.3). Based
on this fixed parameterization, various editing operations can be applied. Hence
parameterization and re-sampling operators in Equation 7.1 are evaluated once, while
different editing operators can be applied successively.

7.1.3 Brush Interface

All appearance modeling operations are based on a generic brush interface (see also
Figure 7.1). A brush is defined as a grid , where each grid point

, stores all the
surface appearance attributes shown in Figure 7.4 (a). Each individual bitmap, e.g., the
diffuse color image , defines a brush channel that represents a corresponding
continuous attribute function, similar to the surface samples that represent the
continuous surface . Additionally, each brush channel carries an alpha mask that can
be used for blending the brush coefficients with the surface coefficients as described
in Section 7.4.1. The channel defines a bitmap of displacement coefficients that

Figure 7.2 Brush interaction: (a) brush cursor movement, (b) parameterization by orthogonal projec-
tion onto the brush plane (2D for illustration), (c) painted surface

parameter plane

sample points
orthogonal projection

(a) (b) (c)

M N× B
bmn cmn dmn smn ka mn, kd mn, ks mn, smn, , , , , ,{ }= 1 m M≤ ≤ 1, n N≤ ≤

cmn{ }
P

S

dmn{ }

7.2 Parameterization 97

can be used for sculpting operations, such as normal displacement or carving (see
Section 7.4.2).

Figure 7.4 shows a typical brush that combines texture, geometry and material
properties to support flexible editing operations.

7.2 PARAMETERIZATION

This section describes two different methods to compute a parameterization for a
point-sampled surface that correspond to the two interaction schemes defined above.
For brush interaction the parameter mapping will be computed by a simple orthogonal
projection, while an optimization method is applied for computing a constrained
minimum distortion parameterization for selection interactions (see also [117]). To
define the parameterization , the user first selects a subset of the surface ,
described by a point cloud . A mapping is then
computed that assigns parameter coordinates to each point .

7.2.1 Orthogonal Projection

A simple method for computing a parameter mapping is dimension reduction. 2D
parameter values for a point can be obtained by simply discarding one of the
three spatial coordinates. With an appropriate prior affine transformation, this amounts
to an orthogonal projection of the sample points onto a plane. This plane can either be
specified by the user, or computed automatically according to the distribution of the
sample points, e.g., as a least-squares fit. Using covariance analysis (see Section 2.1.3),
the normal vector of the parameter plane would then be chosen as the eigenvector of
the covariance matrix with smallest corresponding eigenvalue.

Figure 7.5 shows examples of texture-mapping operations using a parameterization
obtained by orthogonal projection. In general, such a mapping will exhibit strong
distortions and discontinuities, leading to inferior editing results. However, if the
surface patch is sufficiently small, distortions will be small too and no discontinuities
will occur. Thus orthogonal projection is a suitable parameterization method for brush
interactions, where the parameter plane is defined by the surface normal at the tool

Figure 7.3 Selection Interaction: (a) Feature points on parameter plane, (b) feature points on surface,
(c) final texture-mapped surface.

(a) (b) (c)

Φ S′ S
P′ P⊆ Φ:P′ 0 1,[] 0 1,[]×→

ui pi P′∈

pi P′∈

98 Appearance Modeling

Figure 7.4 Brush interface: (a) a brush specified by a set of bitmaps, (b) the brush applied to a surface.
The zooms on the right show the surface under different illumination to illustrate how the
reflectance properties have been modified.

Figure 7.5 The Max Planck model parameterized by orthogonal projection from the front. (a) texture
mapped surface, (b) the color-coded first derivative of the parameterization measures the
stretch of the mapping, where blue corresponds to minimum, red to maximum stretch.

diff
use co

lor

norm
al d

isp
lacement

sp
ecu

lar c
olor

ambient c
oeffi

cie
nt

diff
use co

effic
ient

sp
ecu

lar c
oeffi

cie
nt

sh
ininess

(a)

(b)

cmn{ } dmn{ } smn{ } ka mn,{ } kd mn,{ } ks mn,{ } smn{ }

(a) (b)

7.2 Parameterization 99

cursor and the surface patch is defined by the projection of the brush onto the surface.
as shown in Figure 7.2.

7.2.2 Constrained Minimum Distortion Parameterization

As Figure 7.5 illustrates, orthogonal projection leads to strong distortions in the
parameterization. Furthermore, it provides little support for interactive control of the
mapping by the user. Consider the typical texture mapping operation shown in
Figure 7.3. The goal is to map a 2D image of a human face onto a laser-range scan of
a different face. It is certainly desirable to minimize the distortion of the mapping.
Equally important, however, is a good correspondence of feature points, e.g., the tip of
the nose in the image should be mapped onto the tip of the nose on the surface. Thus
some mechanism is needed that allows the user to define corresponding feature points
both in the image and on the surface. These point-to-point correspondences are then
incorporated as constraints into an optimization that computes the mapping [77].

First, an objective function for a continuous surface patch is defined that penalizes
high distortion as well as the approximation error of the feature point constraints. A
suitable discretization then yields a system of linear equations that can be solved using
conjugate gradient methods [104].

Objective Function

A continuous parameterized surface can be defined by a mapping

, (7.2)

which for each parameter value

determines a point

(7.3)

on the surface . The mapping defines a parameterization of the surface . Let
 be the inverse mapping, i.e., a function that assigns parameter coordinates

 to each point . The distortion of the parameter mapping can be measured
using the cost function

, (7.4)

where ,

, (7.5)

and

. (7.6)

SX

X: 0 1,[] 0 1,[]× SX IR3⊂→

u u v,() 0 1,[] 0 1,[]×∈=

x X u() x u() y u() z u(), ,() SX∈= =

SX X SX
U X

1–
=

u x SX∈

Cdist X() γ u() ud
H
∫=

H 0 1,[] 0 1,[]×=

γ u()
r

2

2

∂
∂

Xu θ r,()
 
 
  2

θd
θ
∫=

Xu θ r,() X u r θ()cos
θ()sin

+
 
 
 

=

100 Appearance Modeling

 is defined as the integral of the squared second derivative of the parameterization
in each radial direction at a parameter value using a local polar re-parameterization

. If vanishes, the parameterization is arc length preserving, i.e., defines
a polar geodesic map at .

Additionally, a set of point-to-point correspondences can be specified such that
a point of the point cloud corresponds to a point in the parameter domain for

. These point pairs serve as constraints that are approximated in a least-squares
sense using the cost function

. (7.7)

The two cost function and can be combined into the objective function

, (7.8)

where is an additional parameter that allows to control the relative weight of the
fitting error and distortion measure. This derivation of the objective function follows
Levy’s method for triangle meshes [77]. By replacing the mesh connectivity with a
point neighborhood relation as defined in Section 2.1.1, a discrete formulation of the
objective function can be derived for point-sampled surfaces. This requires a
discretization of the directional derivatives in Equation 7.5, which can be obtained
using divided differences on a discrete set of normal sections. For a complete
derivation, the reader is referred to [118]. When substituting for , the discrete
objective function finally has the form

, (7.9)

where is the vector of all unknowns . The coefficients result from
the discretization of the second derivatives and the are derived from the fitting
constraints. Using normal equations, the linear least squares problem of Equation 7.9
can be transformed to a sparse system of linear equations, which can be solved with
conjugate gradient methods [104].

Nested Iteration

A standard approach for improving the convergence of iterative conjugate gradient
solvers is nested iteration. The system is first solved on a coarse representation and this
solution is propagated to the finer representation. Since each unknown in Equation 7.9
corresponds to a sample of the model point cloud, a coarser representation can be
obtained using the clustering methods presented in Section 3.2. This scheme can be
recursively extended to a hierarchy of nested approximations as illustrated in
Figure 7.6. Special care has to be taken to define the constraints on the coarser levels,
as the original point pair correspondences were defined on the finest level. A simple
solution is to just propagate the constraint to the centroid of the cluster it belongs to. If
a point carries more than one constraint at a certain level, all but one of the constraints
are removed on this level to maintain the injectivity of the mapping.

γ u()
u

Xu θ r,() γ u()
u

M
pj uj

j M∈

Cfit X() X uj() pj–{ }2

j M∈
∑=

Cdist Cfit

C X() Cfit X() β Cdist X()⋅+=

β

X U

C̃ U() bj aj i, ui

i 1=

n

∑–
 
 
 
  2

j
∑ b Au– 2= =

u ui ui vi,()T= aj i,
bj

7.2 Parameterization 101

Discussion

Figure 7.7 shows the influence of the parameter in Equation 7.8. As the images
illustrate, it allows the user to define a trade-off between the approximation of the
fitting constraints and the smoothness of the mapping.

Floater has presented a different approach to compute a parameterization for point-
sampled surfaces using shape preserving weights [34]. In his method the system of
equations is obtained by expressing each unknown as a convex combination of its
neighbors. This means that the boundary of the surface has to be mapped onto a convex
region in parameter space. In the above formulation no such constraints have been
imposed, which allows the method to be used as an extrapolator.

Note that at least three point-pair correspondences are required to define the
mapping. Also, if the point cloud is a sample of a plane and the fitting constraints can

Figure 7.6 Hierarchy used for nested iteration. The top-row shows the clusters color-coded on the
original point cloud.

simplify by
clustering

simplify by
clustering

simplify by
clustering

set up
linear system

solve
equations

set up
linear system

solve
equations

set up
linear system

solve
equations

set up
linear system

solve
equations

β

102 Appearance Modeling

be expressed by an affine mapping, then the parameterization will be an affine
mapping too (see Figure 7.8 (a)). As illustrated in Figure 7.8 (b), the parameterization
is not guaranteed to be bijective. It is rather left to the user to select a suitable patch and
appropriate point correspondences to obtain the desired mapping.

Figure 7.7 Influence of the weighting parameter of Equation 7.8. The top images illustrate the fea-
ture point correspondences, the bottom row show the resulting mapping for different val-
ues of .

Figure 7.8 Constrained minimum distortion parameterization: (a) reproduction property, (b) the pa-
rameterization is not guaranteed to be bijective.

β 1= β 0.1=β 4=β 10=

β

β

(a) (b)

7.2 Parameterization 103

Figure 7.9 shows two examples of a texture mapping operation using the minimum
distortion parameterization. As described in Section 7.1.2, this type of operation
requires the user to interactively define corresponding feature points both on the 2D
image and on the 3D point-sampled surface, as shown on the left. Figure 7.10
illustrates the distortion of these parameterizations by mapping a regular square grid
texture onto the surface.

Performance data for the example shown in the top row of Figure 7.9 is given in
Table 7.1 (similar results are obtained for the lion example). 18 feature point
correspondences have been specified on a patch consisting of 39,194 sample points.
During initialization, the cluster hierarchy is created and the system of linear equations
is set up. The system of equations is solved in the solving stage using iterative methods
as described above. This example shows that significant speed-ups can be achieved
using the nested iteration approach. In particular, the time of the solving stage is
reduced up to a factor of 7 at a moderate increase in initialization cost. This is
especially useful when the user interactively changes the feature point constraints to

Figure 7.9 Texture mapping using the minimum distortion parameterization. The images on the left
show the corresponding feature points. On the right, the final textured surface is shown.

104 Appearance Modeling

Figure 7.10 Illustration of local stretching for the texture mapping examples of Figure 7.9. The image
on the right shows the color-coded first derivative of the parameterization, where blue de-
notes minimum absolute value and red denotes maximum absolute value.

#Levels Cluster size Initialization Solving Total

1 - 4.93 27.81 32.74

2 2 6.97 24.32 31.29

2 6 5.71 5.06 10.76

2 10 5.53 4.68 10.21

2 14 5.29 4.59 9.88

4 2 8.37 4.55 12.92

4 6 5.74 3.96 9.70

4 10 5.56 3.81 9.37

6 2 8.64 3.85 12.49

6 4 5.71 3.82 9.53

Table 7.1 Timing data for computing the minimum distortion parameterization in Figure 7.9 using
nested iteration with different numbers of hierarchy levels and cluster sizes. All timings
are given in seconds on a 2.0 GHz Pentium IV.

7.3 Re-sampling 105

adapt the parameter mapping. The same cluster hierarchy can be re-used and changes
of the constraints can be computed efficiently using incremental updating. Thus the
computational overhead during interactive editing is dominated by the solving stage,
leading to increased overall performance.

7.3 RE-SAMPLING

The mapping function defines a parameter value for each of the selected
surface patch . To create a one-to-one correspondence between the surface samples

 and the brush , either the surface or the brush needs to be re-sampled.
Note that the brush samples are implicitly parameterized, i.e., each has parameter
coordinates .

7.3.1 Re-sampling the Brush

Re-sampling the brush is performed by evaluating the continuous brush function
represented by the discrete brush bitmaps at the parameter values of the sample points
of the surface patch. The most simple reconstruction uses piecewise constant basis
functions which amounts to nearest neighbor sampling. As Figure 7.11 (a) illustrates,
this can lead to severe aliasing artefacts, which can be reduced by applying a Gaussian
low-pass filter to the brush function prior to sampling. This filtering is analogous to the
elliptical weighted average (EWA) filtering used in point rendering and the reader is
referred to [119] for further details. Note that if the model surface is sampled
substantially less dense than the brush, Gaussian filtering will lead to significant
blurring. If the brush contains high-frequency detail, this information cannot be
accurately mapped onto the surface without introducing new samples into the model.

7.3.2 Re-sampling the Surface

To overcome the problem of information loss when re-sampling the brush, an
alternative sampling method re-samples the surface to exactly map the
sampling grid of the brush. For this purpose a parameterized scattered data

Figure 7.11 Re-sampling the brush on a model consisting of 40,880 points. (a) nearest-neighbor sam-
pling, (b) - (d) Gaussian filtering with increasing filter width.

Φ ui pi P′∈
S′

pi P′∈ bmn B∈
bmn

m M⁄ n N⁄,() 0 1,[]∈

(a) (b) (c) (d)

M N×

106 Appearance Modeling

approximation is used. This method reconstructs a continuous surface from the discrete
sample points, which can then be sampled at the parameter values of the brush samples.
The idea is to compute local polynomial fitting functions at each that are
blended using a mapping from the local parameter plane of the fitting functions into
the global parameter space of the surface (see [118] for details).

Figure 7.12 shows various examples of editing operations where the surface has
been re-sampled according to the sampling grid of the brush. If the sampling resolution
of the brush decreases, surface detail is lost. This is complementary to the situation
described above, where brush information was lost due to insufficient sampling density
of the model surface.

7.4 SURFACE EDITING

The re-sampling method of Section 7.3 provides samples of the surface
 and of the brush with identical sampling distribution.

Thus the two can be combined by applying an editing operator directly on the discrete
coefficients. Note that both and represents all the sample attributes shown in
Figure 7.4 (a). Depending on the intended functionality, an editing operator will then
manipulate a subset of these surface attributes, such as diffuse color or spectral
coefficient. In the following some of the editing operators will be described that have
been implemented into the Pointshop3D system (see Chapter 8). A prime will denote
the manipulated attributes, e.g., describes the position of a sample of the edited
surface. Quantities that stem from the brush are marked with a bar, e.g., is the
diffuse color of a brush sample. All other variables are part of the surface function .

7.4.1 Painting

Painting operations modify surface attributes by alpha-blending corresponding surface
and brush coefficients. For example, the diffuse color can be altered by applying the
painting operator on the color values, i.e.,

Figure 7.12 Re-sampling the surface. The sampling resolution of the brush varies from
pixels in (a), pixels in (b), pixels in (c), to pixels in (d).

pi P′∈

(a) (b) (c) (d)

500 500×
250 250× 100 100× 50 50×

SΨ Ψ Φ S()()= BΨ Ψ B()=

SΨ BΨ

xi′
BΨ ci

SΨ

7.4 Surface Editing 107

, (7.10)

where is an alpha value specified in the brush function (see Figure 7.13 (a)).
Similarly, painting can be applied to other attributes, e.g., reflectance coefficients
(Figure 7.16 (a)).

7.4.2 Sculpting

The system supports two variations of sculpting operations that modify the geometry
of the surface. The first option is to apply normal displacements to the sample
positions, i.e.,

, (7.11)

where is a displacement coefficient given in the brush function. As illustrated in
Figure 7.15 (a), this type of editing operation is particularly suitable for embossing or
engraving. On the other hand, a carving operation is motivated by the way artists work
when sculpting with clay or stone. It implements a “chisel stroke” that removes parts
of the surface in the fashion of a boolean intersection (see also Section 6.1). The editing
tool is defined with respect to a reference plane that is specified by the surface normal
of the touching point and an intrusion depth. The new sample position is then given by

, (7.12)

where is the base point on the reference plane and the plane normal (see
Figure 7.14). Carving operations can also be applied to rough surfaces (see
Figure 7.15 (b)), where normal displacements fail due to the strong variations of the
surface normals.

Figure 7.13 Editing operations on the Chameleon (101,685 points): (a) texture painting, where the
flowers shown on the left have been alpha-blended onto the surface, (b) texture filtering,
where an oil-paint filter has been applied to the left half of the model.

ci′ αi ci 1 αi–() ci⋅+⋅=

αi

(a) (b)

xi′ xi di ni⋅+=

di

xi′
bi di n⋅+ xi bi– di<

xi otherwise 



=

bi n

108 Appearance Modeling

7.4.3 Filtering

Filtering is a special kind of editing operation that modifies the samples of the original
model using a user-specified filter function . First, the filter function is applied to
yielding . Then filtered and original attributes are combined using the
brush function for alpha blending. As an example, consider texture filtering, i.e.,

, (7.13)

where is the filtered color value (illustrated in Figure 7.13 (b)). The filter function
is usually implemented as a discrete convolution. Therefore, arbitrary discrete linear
filters can be implemented by simply choosing the appropriate kernel grid. Filters can
be applied to any attribute associated with a sample, e.g., color, normal, or distance
from the reference plane for geometric offset filtering (Figure 7.16 (b)). Note that
filtering with large kernels can be implemented efficiently in the spectral domain,
similar to [91].

Figure 7.14 Normal displacements vs. carving. (a) brush image, (b) normal displacement, (c) carving.

Figure 7.15 Editing operations. (a) normal displacements, (b) carving on a rough surface. The gray-
scale images on the upper left show the displacement coefficients of the brush.

original samples
new samples

original samples
new samples

bi

n

(a) (b) (c)

(a) (b)

f SΨ
SΨ

f
f SΨ()=

ci′ α ci
f 1 α–() ci⋅+⋅=

ci
f

7.4 Surface Editing 109

Figure 7.16 Editing operations on the Igea model (134,345 points): (a) modifying the specular coeffi-
cient: the diffuse surface has been painted with a specular text, (b) geometry filtering,
where the region around the eye has been smoothed by a geometric low-pass filter.

(a) (b)

110 Appearance Modeling

111

8

8POINTSHOP3D

This chapter introduces Pointshop3D, a software platform for point-based shape and
appearance modeling [1, 118]. All algorithms presented in this thesis have been
implemented and analyzed within this framework. A brief description of the main
components is followed by a more detailed discussion on data structures for spatial
queries. The chapter concludes with some examples of point-based surfaces that have
been created or edited in Pointshop3D, using the algorithms described in the previous
chapters.

8.1 SYSTEM OVERVIEW

Pointshop3D is designed as a modular software platform and implementation test-bed
for point-based graphics applications. It provides a set of kernel functions for loading,
storing, modifying, and rendering point-sampled surfaces. Most of the functionality is
implemented in various tools and plug-ins that are briefly discussed below. A more
detailed description of the software architecture and user interface can be found in [63]
and in the online documentation available at [1].

112 Pointshop3D

8.1.1 Tools and Plug-ins

The interaction metaphor of Pointshop3D is similar to common photo editing tools
such as Adobe’s Photoshop. Figure 8.1 shows a screen shot of the main user interface,
where the most important interaction tools are annotated:

• The color picker tool allows to extract sample attributes from the model.

• The selection tool is used to select parts of the surface, e.g., to create a patch for
selection interactions (see Section 7.1.2).

• The navigation tool controls the camera position and the relative orientation of
different objects with respect to the world coordinate system.

• The brush tool implements brush interactions (see Section 7.1.2).

• The deformation tool supports free-form deformation as described in Section 6.2.

• The eraser tool allows to remove parts of the surface.

• The filter tool implements various filters (see Section 7.4.3).

Figure 8.1 The main Pointshop3D interface.

Color Choser Tool

Selection Tool

Navigation Tool

Brush Tool

Deformation Tool

Eraser Tool

Filter Tool

Lighting Tool

Parameterization Tool

Template Tool

Color Picker Tool

What's this? Tool

Brush Builder
Brush Chooser

Tool Settings Viewer
Preview Renderer

Object Chooser

8.1 System Overview 113

• The lighting tool controls the position of the light source.

• The parameterization tool allows the specification of point constraints for
computing a minimum distortion parameterization (see Section 7.2.2).

• The template tool is a place-holder that supports easy extensions of the system by
adding new tools.

• The What’s this? tool provides an online help.

• The color chooser tool allows to select an rgb color from a palette for brush
painting.

• The brush builder is used to create new brushes (see Figure 7.4) for brush
interactions.

• The brush chooser stores a list of pre- or user-defined brushes used for brush
interactions.

• The tool settings viewer displays additional parameters of the currently active
tool.

• The preview renderer icon activates the preview renderer (see Section 8.1.2).

• The object chooser selects a certain object within the scene.

Each of these tools can be configured as described in the online documentation of
Pointshop3d [1]. Additional functionality, e.g., the boolean operations defined in
Section 6.1, or the multi-scale decomposition of Section 4.2, is implemented as plug-
ins that are accessible via the main menu. Tools and plug-ins are implemented as
dynamic link libraries and can be loaded dynamically at run-time, which makes the
system easily extensible (see [63]).

8.1.2 Rendering

Pointshop3D supports a number of different point-based renderers that can also be
dynamically loaded at run-time. Most relevant for this thesis are the following three
renderers:

• A purely software-based EWA surface splatting renderer [119] is used for high
quality renditions of still images and for off-line computations of animated
sequences. Most images in this thesis have been created with this renderer, see for
example Figures 8.5 to 8.11.

• A fast OpenGL renderer is used during navigation, e.g. when the object is scaled,
rotated or zoomed. The OpenGL renderer uses rounded, rectangular splats, whose
size is dynamically computed during rendering using vertex shader programming
(see [1]).

• A non-photorealistic renderer to create line drawings of extracted feature curves as
described in Section 5.5.

Figure 8.2 shows renditions produced by the three different renderers. In general, the
rendering quality of the surface splatting renderer is significantly higher as compared
to the OpenGL renderer, in particular for models containing high-frequency textures
as shown in Figure 8.2 (d) and (e). A detailed analysis of point-based rendering
algorithms can be found in [117].

114 Pointshop3D

8.2 DATA STRUCTURES

The central computational primitive required by the algorithms described in the
previous chapters is closest points query: Given a point find the point(s)

 such that is minimal. Closest point queries occur in two different
contexts:

• The neighborhood relations defined in Section 2.1.1 are based on the -closest
points of a sample in . In this case the query point is part of the set of point
samples, i.e., . The number of required closest points ranges from 8 to 20
for, e.g., normal estimation (Section 2.1.3), to up to about 200 for multi-scale
variation estimation for feature classification (Section 5.3.1).

• Spatial queries are also required for the MLS projection (Section 2.3.2), boolean
classification (Section 6.1.1), and collision detection (Section 6.2.1). Here the
query point can be arbitrary, i.e., in general, and typically only a single
closest point is required.

The performance of the algorithms presented in this thesis critically depends on
efficient data structures for such queries. The requirements for these data structures
vary considerably, depending on the specific context. For example, multi-scale feature
classification (Section 5.3.1) applies nearest neighbor queries with varying
neighborhood size for static objects, while particle simulation (Section 3.4) requires

Figure 8.2 Renderers used in Pointshop3D. Top row: Three different renditions of the dinosaur mod-
el: (a) surface splatting renderer, (b) OpenGl slpat renderer, (c) feature-based line render-
er, bottom row: texture filtering: (d) surface splatting, (e) OpenGL renderer.

(a) (b) (c)

(d) (e)

x IR3∈
pi P∈ x pi–

k
P x

x P∈

x P∉

8.2 Data Structures 115

closest point queries for completely dynamic point distributions. Other operations,
e.g., the filtering methods applied during free-form deformation (Section 6.2.3)
operate on models with dynamic point locations, but mostly constant neighborhood
relations (see also the discussion in Section 8.2.4).

In the design of appropriate data structures, one is typically faced with a trade-off
between efficient construction/updating of the data structure and fast query response
[85]. In this thesis two data structures, kd-trees and dynamic grids, have been
implemented. Kd-trees feature fast query response, yet perform poorly when new
points need to be inserted or existing points updated or removed. Dynamic grids
provide efficient updating at the expense of slower query response times.

8.2.1 Kd-Trees

Bentley introduced kd-trees as a generalization of binary search trees in higher
dimensions [11]. A number of improvements have been proposed since then, see for
example [36, 105]. Kd-trees are binary trees, where each node is associated with a
cubical cell and a plane orthogonal to one of the three coordinate axes. The plane splits
the cell into two sub-cells, which correspond to two child nodes in the tree. The cells
of the leaf nodes are called buckets and represent the whole space.

In Pointshop3D, kd-trees are built in a recursive top-down approach, where the
sliding-midpoint rule is used to determine the split axis (see [9]). Average time
complexity for the construction of the tree is for a point cloud consisting of

 sample points. To compute the -closest points from a given location , the
tree is traversed from the root until the bucket containing is found. From this leaf
node, the -closest points are determined by back-trapping towards the root. Finding
the -closest points takes time on average, insertions and updates of
single points require time [99]. A detailed analysis of the kd-tree
implementation of Pointshop3D can be found in [61].

8.2.2 Dynamic Grids

Dynamic grids have been implemented as a data structure for closest point queries in
dynamic settings. The idea is to subdivide space into a regular grid of cubical cells,
each of which stores a list of all points that fall within its cell [50]. Range queries can
be performed by scan-converting the query sphere to determine all cells that potentially
contain samples located within the query range. Each of these cells is then processed
by testing all points of the cell against the query sphere. To accommodate variations of
point density over time, the grid can be re-structured dynamically as described in [50].

Finding the correct grid cell for a point that lies within the object’s
bounding box takes time. Thus a dynamic grid for samples can be constructed
in time and the insertion and updating of a single point takes time. Since
each grid cell stores a linear list of points, the average time complexity of a query is

, where is the average number of points per cell. Note that a linear list of all
sample points is a special case of a grid data structure consisting of only one grid cell.

Figure 8.3 shows a 2D illustration of the kd-tree and grid data structures. Table 8.1
compares the average time complexity of these data structures for typical operations
used in the algorithms of this thesis.

O n nlog()
n k x IR3∈

x
k

k O k nlog+()
O nlog()

x IR3∈
O 1() n

O n() O 1()

O m() m

116 Pointshop3D

8.2.3 Neighborhood Caching

For many processing methods the -closest points of a sample point have to be
determined to establish local neighborhood relations (see Section 2.1.1). Often the
point cloud is static or semi-dynamic, i.e., point locations vary but neighborhood
relations remain (mostly) constant. If neighborhood relations have to be used multiple
times, the efficiency of the computations can be improved considerably by caching
these neighborhoods. Each sample point explicitly stores a list of its -nearest
neighbors computed using a kd-tree or a dynamic grid. This defines an adjacency graph
that is comparable to a connectivity graph for triangle meshes. Unlike the latter, the
adjacency graph does not define a consistent manifold surface, however. Thus the
construction of the adjacency graph is significantly more efficient than the
reconstruction of a triangle mesh from a given point cloud.

8.2.4 Spatial Queries in Pointshop3D

This section discusses the use of the data structures described above in the algorithms
presented in the previous chapters.

Surface Simplification

Spatial data structures for surface simplification have already been discussed in
Section 3.5.4. Incremental clustering (Section 3.2.1) uses kd-trees for nearest neighbor

Figure 8.3 Spatial data structures for closest point queries, where the red dot indicates the query lo-
cation and the black circle shows the query sphere. (a) kd-tree, where the numbers indicate
the order in which the buckets are traversed, (b) dynamic grid, where the gray cells mark
the intersection with the query sphere.

Data Structure Construction Insertion Update Query

List

Grid

Kd-tree

Table 8.1 Average time complexity for spatial data structures used for closest point queries. is
the number of points in , is the average number of points in each grid cell. Update
refers to a change of sample position or a sample point deletion.

1

2
3

4

5

67

8

(a) (b)

O n() O 1() O 1() O n()

O n() O 1() O 1() O m()

O n nlog() O nlog() O nlog() O nlog()

n
P m

k p P∈

k

8.2 Data Structures 117

queries, since the point cloud is static. Hierarchical clustering (Section 3.2.2) builds a
BSP-tree and does not require closest point queries. Iterative simplification
(Section 3.3) builds an explicit adjacency graph using kd-trees during initialization,
which is maintained during simplification. Particle simulation (Section 3.4) makes use
of dynamic grids, since individual particles experience significant drifts along the
surface, which leads to dynamically changing point neighborhoods.

Boolean Classification

For boolean operations (Section 6.1), two static objects are positioned relative to each
other by the user. Since the resulting affine transformation can be directly incorporated
into the query, no updates of point locations are required. Thus closest point queries
for classification (see Section 6.1.1) are implemented using kd-trees.

Free-Form Deformation

For free-form deformation (Section 6.2) closest point queries are required to evaluate
the distance functions (see Equation 6.2) for computing the scale factor . This is
done once at the beginning of the modeling session, so no dynamic updates are
required while the user interactively deforms the surface. Thus a kd-tree is most
suitable for scale factor computation.

Collision Detection

For collision detection (Section 6.2.1) the classification predicate (see
Equation 6.1) has to be evaluated for dynamically varying point locations. Since
performance is most critical, the algorithm only detects collisions of the deformable
region with the zero-region. Since the latter is described by a static point cloud, kd-
trees can be used for efficient closest point queries. Thus the collision detection
algorithm in its current version cannot detect collisions of the deformable region with
itself.

Particle-Based Blending

The blending method based on oriented particles (Section 6.2.1) uses the dynamic grid
data structure. Since the particle simulation is mostly used to smooth out the sharp
creases created by boolean operations (see Figure 6.9), particles experience a small
spatial displacement during the simulation. Thus the neighborhood relations typically
remain constant for a certain number of iterations. This can be exploited to improve the
performance by caching the neighborhoods as discussed above.

Dynamic Re-sampling

When dynamically sampling the surface during deformation (Section 6.2.2), the
relaxation and interpolation filters (Section 6.2.3) require nearest neighbor information
for samples in the deformable region. Since these samples vary in position and new
samples are inserted dynamically, kd-trees cannot be used efficiently. The dynamic
grid data structure has also been found to be unsuitable, due to the relatively high cost
of a spatial query.

The relaxation filter shifts the point locations only slightly, which typically does not
change the neighborhood relation significantly. Therefore, neighborhoods are
computed at the beginning of the interaction and cached during deformation (see
above). When new points are inserted, neighborhoods have to be updated, however.

dj t

Ω

118 Pointshop3D

Since new samples are created by splitting an existing sample into two, the
corresponding neighborhood relations can be propagated from the parent sample to its
child samples. To maintain neighborhood consistency, each sample stores bi-
directional neighborhood relations, i.e., a list of its neighbors and a list of samples of
which itself is a neighbor (note that with the -nearest neighbor relation (see Section
2.1.1), does not imply).

A different dynamic sampling method has been used in Section 7.3.2 for appearance
modeling. Here a whole patch of a surface is replaced by a set of new points that are
sampled according to the grid of the currently active brush. Since the regular lattice of
the brush defines an implicit neighborhood relation of the sample points, no additional
spatial data structure is required for nearest neighbor queries.

8.3 EXAMPLES

This sections shows examples of surfaces that have been created or edited using the
shape and appearance modeling functionality introduced in the previous chapters (see
Figure 8.4).

Figures 8.5 and 8.7 show shape modeling operations using the multi-scale
representation introduced in Chapter 4. The deformations have been applied on the
smooth base shape and high-frequency detail has been reconstructed after the
deformation. In Figure 8.7, the detail coefficients have also been scaled to achieve an
enhancement effect as described in Section 4.4.

In Figure 8.6 the handle of the coffee mug has been created using the deformation
tool in connection with a boolean union operation and particle-based blending as
described in Section 6.2.1. The interior of the mug has been cut out with a boolean

Figure 8.4 Statistics of the example models of Figures 8.5 to 8.11.

k
j Npi
∈ i Npj

∈

Male

Igea

Max Planck

Octopus

Spiral

Coffee Mug

Gnome

multi-
sca

le

boolean operatio
ns

fre
e-fo

rm
 deform

atio
n

parti
cle

 blending

texturin
g

scu
lptin

g

MLS sm
oothing

148,138

152,819

25,020

295,220

69,268

222,955

100,269

15

15

10

35

10

25

30

#points
in

fin
al m

odel

 tim
e of m

odelin
g

sessi
on in

 m
inutes

Model

8.3 Examples 119

difference and the dragon head has been added using a union operation. Finally, the
Siggraph logo has been embossed and the model has been textured.

Figure 8.8 shows boolean operations with two sparsely and non-uniformly sampled
models, illustrating that the methods work well for a wide class of input models. First
the skull has been deformed to better match the shape of the head. Then a boolean
difference of the head with a plane, and a subsequent union and difference with the
skull have been performed.

Figure 8.9 shows the model of the Octopus, whose shape has been created from a
single sphere entirely using the free-form deformation tool (see Section 6.2). First a
global deformation has been applied to create an ellipsoid, then the tentacles have been
pulled out using a similar deformation as the one shown in Figure 6.17. The eyes and
suckers have been added using displacement mapping (Section 7.4.2) and the model
has finally been textured using the paint tool of Pointshop3D (Section 7.4.1). This
example illustrates that dynamic re-sampling is essential when dealing with large
deformations. The initial sphere contains 69,706 points, while the final model contains
295,220 points.

Figure 8.10 illustrates that the sharp intersection curves created by a boolean
difference operation are well preserved during a subsequent deformation.

Figure 8.11 demonstrates that the point-based shape and appearance modeling
framework is well suited for scanned surfaces. The smoothing effect of the MLS
projection (see Section 2.3.2) has been used to de-noise the input data set. After this
minimal pre-processing, free-form deformations and boolean operations can be
directly applied to the acquired point cloud. This example also illustrates a typical cut-
and-paste operation. The ear has been extracted from the Max Planck model and pasted
onto the scanned surface using a boolean union. After modeling the shape of the object,
a texture mapping operation using the constrained minimum distortion
parameterization (see Section 7.2.2) has been applied.

120 Pointshop3D

Figure 8.5 Multi-scale modeling on a human body. (a) original, (b) smooth base domain, (c) final de-
formed surface.

Figure 8.6 Creating a coffee mug using boolean operations, deformation, collision detection and par-
ticle-based blending.

(a) (b) (c)

8.3 Examples 121

Figure 8.7 Multi-scale modeling on the Igea model. (a) original model, (b) smooth base domain, (c)
deformed base domain, (d) final model, where the displacement coefficients have been
scaled by a factor of two to achieve an enhancement effect. Additionally, two boolean dif-
ference operations have been applied.

Figure 8.8 Boolean operations of the Max Planck bust, a plane and the skull model.

(a) (b)

(c) (d)

122 Pointshop3D

Figure 8.9 Creating an Octopus from a sphere using the deformation tool with dynamic sampling.

Figure 8.10 Combination of boolean operations and subsequent deformation.

8.3 Examples 123

Figure 8.11 Boolean operations and deformations on scanned data: (a) noisy range scan, (b) surface
smoothed by MLS projection, (c) surface after local deformations, (d) objects used for
boolean union, (e) surface after boolean union, (f) final textured surface.

(a) (b)

(c) (d) (e)

(f)

124 Pointshop3D

125

9

9CONCLUSIONS

This chapter concludes the dissertation with a summary of the main contributions, a
discussion of advantages and drawbacks of the chosen approach, and some ideas for
future research.

9.1 PRINCIPAL CONTRIBUTIONS

The main focus of this thesis is the use of point primitives for digital geometry
processing. In this context, the following contributions have been made:

• Methods for local surface analysis of point-sampled models based on -nearest
neighbors have been discussed and analyzed. A theoretical analysis of sampling
criteria has been given and suitable bounds for have been formulated. An
extension of the moving least squares surface model has been presented that adapts
to the local sampling density.

• Various simplification algorithms for reducing the complexity of point-sampled
surfaces have been introduced. Incremental and hierarchical clustering, iterative
point contraction, and particle simulation methods have been implemented and
analyzed.

• Based on the moving least squares surface model, a multi-scale surface
representation has been presented that supports multi-scale modeling and discrete
spectral filtering. To build such a representation, point-based surface fairing
methods have introduced, as well as a multi-level decomposition operator for
efficient detail encoding.

• The concept of scale-space has also been applied to implement a feature
extraction pipeline for point-sampled surfaces. It has been shown that feature
classification at multiple scales yields a robust feature detection method that
faithfully recovers salient line-type features even for noisy surfaces.

k

k

126 Conclusions

• Two fundamental shape modeling approaches, boolean operations and free-form
deformation, have been integrated into a unified geometric modeling system. This
required a method to represent, sample and render sharp creases and corners in
point-sampled surfaces and a dynamic sampling strategy for large model
deformations. To support and control changes in topology during editing, a point-
based collision detection algorithm has been incorporated into the system.

• A generic framework for appearance modeling has been defined that supports
surface editing operations such as painting, texturing, sculpting and filtering. Core
components of this framework are a new method for computing a constrained
minimum distortion parameterization, a parameterized surface model for dynamic
re-sampling, and a set of editing operators for point-sampled surfaces.

9.2 DISCUSSION

It has been demonstrated that point primitives are useful for advanced shape and
appearance modeling operations. The structural simplicity of point-sampled surfaces
leads to a number of advantages:

• No global combinatorial structure, such as a mesh connectivity graph, needs to be
maintained. This allows efficient re-structuring of the surface during interactive
modeling. Thus very large model deformations can be supported by dynamically
inserting new sample points into the model.

• The moving least squares approximation provides a meshless, continuous surface
model and gives access to the signed distance function. This enables efficient
classification for boolean operations and accurate sampling of surface intersection
curves. Additionally, the MLS projection operator can be utilized to determine
point-to-surface distances for error measurement and detail encoding.

• Point primitives are a compact representation for discrete surfaces. This reduces
memory traffic and leads to space and time efficient implementations.

• Many of the presented techniques can be directly applied to scanned data. In
particular, local surface analysis allows to extract semantic information about the
model from the point cloud data. Early processing methods such as simplification,
segmentation, or filtering benefit from this information, which can lead to
significant improvements in processing performance.

• Point samples provide a unified representation primitive for acquisition,
processing and rendering of 3D objects. Thus the whole 3D content creation
pipeline (see Figure 1.1) can be implemented using point primitives, eliminating
the need for any conversion algorithms between different surface representations.

On the other hand, point-sampled surfaces have a number of limitations that need to be
considered when evaluating their use for a specific geometric modeling application:

• Point-sampled surfaces need to observe a certain sampling density. When the
spacing between adjacent samples becomes too large, topologically correct
reconstruction might no longer be feasible without explicit connectivity
information. For example, the surface simplification algorithms described in
Chapter 3 give no guarantees that the simplified point cloud is still sampled
adequately dense.

9.3 Future Work 127

• The minimum sampling density is not only dependent on local surface properties,
such as curvature, but also needs to take into account the distance to the medial
axis, which is a global concept. In particular, the separation of two distinct sheets
of the surface that are close in space requires a dense sampling, even though the
curvature might be low.

• Many advanced geometry processing algorithms are based on consistent
connectivity information. For example, subdivision surfaces are defined by an up-
sampling operator and a geometric filtering operator, which requires consistent
neighborhood relations. Thus many of the processing methods based on semi-
regular meshes [106] are currently not available for point-sampled geometry.

• Graphics hardware is very much optimized for triangles as a rendering primitive.
Even though point primitives are simpler to render, the performance of triangle-
based renderers is still higher for comparable image quality.

In conclusion it can be stated that point-based representations are mostly suitable for
densely sampled models stemming from 3D acquisition, iso-surface extraction or
sampling of implicit functions. They are less suited for surfaces that have been
carefully designed in a particular surface representation, such as low-resolution
polygonal CAD data. Thus for industrial design or manufacturing applications, where
mostly static surfaces are considered and geometric accuracy is of primary importance,
point-based representations are inferior to existing methods such as NURBS or
polygonal meshes. On the other hand, if appearance is more important than accuracy,
or the shape of models needs to be modified significantly, point primitives are a viable
alternative. This makes them most attractive for low cost 3D content creation, e-
commerce and entertainment applications, rapid prototyping tools, or educational
systems.

9.3 FUTURE WORK

Digital geometry processing comprises many other topics that have not been addressed
in this thesis. For example, compression and progressive transmission of geometric
data are of paramount importance for many applications [62]. With the increasing
proliferation of geometric models, questions of determining ownership will also be of
interest, requiring watermarking methods for authentication [93].

I believe that point primitives can be useful in other related fields, such as physical
simulation. Particle systems are already widely used to model natural phenomena such
as liquids [17], fire, or smoke [96]. Deformable objects are also gaining increasing
attention, e.g., in medical simulation [109]. Point clouds could be an interesting
representation for such models, in particular since volumetric aspects can easily be
modeled using point primitives.

Special attention in computer graphics has always been given to complex real-world
models, such as furry objects [42], or plants, such as trees or fern [95]. The methods
presented in this thesis are not suitable for such models, since they are based on a
smoothness assumption of the underlying continuous surface. For complex natural
objects, a more “fuzzy” approach using statistical methods seems more appropriate.
This could also incorporate procedural modeling algorithms or fractal methods.

Another promising idea is to combine point samples with other surface
representations, e.g., implicit surfaces like level sets, to define hybrid surface models

128 Conclusions

[31]. With a careful design of such representations it should be possible to bring
together the strengths and advantages of each component, while avoiding many of their
drawbacks.

An interesting field that has not been addressed in this thesis is the design of user
interfaces for 3D shape modeling. In particular, haptic devices in connection with
physical simulation of material properties could provide a very powerful and intuitive
mechanism for shape deformation.

The simplicity and compactness of point-based representation should allow for
efficient hardware implementations. One could even imagine a customized point
processing chip that integrates basic algorithms from the different stages of the 3D
content creation pipeline.

In my opinion, the greatest challenge that still remains is the formulation of a
rigorous sampling theory for discrete manifold surfaces. Ideally, one would want a
generalization of Fourier theory to discrete geometry. The approach taken in
Section 2.2 considers the intrinsic structure of discrete surfaces using concepts from
computational geometry such as the Voronoi diagram or the medial axis. The derived
sampling criteria give some first quantitative results, yet the gap between theory and
practice is still significant. First provable theoretic bounds are much too pessimistic
compared to empirical evidence obtained by practical experiments. Additionally,
important aspects, such as entropy or noise, are not considered in this approach.

Maybe a combination of concepts from signal processing, approximation theory,
and computational geometry yields a more general sampling theory for discrete
manifolds.

129

A

AREFERENCES

[1] Pointshop3D, http://graphics.ethz.ch/pointshop3d/

[2] A. Adamson and M. Alexa. Ray Tracing Point Set Surfaces. In Proceedings of Shape
Modeling International, 2003.

[3] M. Alexa. Recent Advances in Mesh Morphing, In Computer Graphics Forum, 21(2),
pages 173-196, 2002.

[4] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point Set
Surfaces. In Proceedings of IEEE Visualization 2001, pages 21–28. IEEE Computer
Society Technical Committee on Computer Graphics, 2001.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Computing
and Rendering Point Set Surfaces. In IEEE Transactions on Visualization and
Computer Graphics, Vol. 9, Nr. 1, 2003.

[6] N. Amenta, M. Bern, and D. Eppstein. The crust and the beta-skeletion: combinatorial
curve reconstruction. In Graphical Models and Image Processing, 60/2, pages 125-
135, 1998.

[7] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface
reconstruction algorithm. In M. F. Cohen, editor, SIGGRAPH 98 Conference
proceedings, July 19–24, 1998, pages 415-421, New York, 1998.

[8] N. Amenta, S. Choi, T. K. Dey, and N. Leekha. A simple algorithm for homeomorphic
surface reconstruction. In Proceedings of the 16th ACM Symposium on Computational
Geometry, pages 213-222, 2000.

[9] S. Arya and H. A. Fu. Expected-case Complexity for Approximate Nearest Neighbor
Searching. In Symposium on Discrete Algorithms, pages 379-388, 2000.

[10] R. Baule. Moving Least Squares Approximation mit parameterabhaengigen
Gewichtsfunktionen. Diploma thesis, Institut for numerical and applied mathematics,
University of Goettingen, 2000.

130 References

[11] J. L. Bentley. Multidimensional Binary Search Trees Used for Associative Searching.
In Communications of the ACM, pages 509-517, September 1985.

[12] P. J. Besl and N. D. McKay. A Pyramid Approach to Subpixel Registration Based on
Intensity. In IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2),
pages 239-256, Feb. 1992.

[13] R. N. Bracewell. The Fourier Transform and Its Applications, 2nd revised edition.
McGraw-Hill, 1986.

[14] D. Brodsky and B. A. Watson. Model simplification through refinement. In
Proceedings of Graphics Interface, pages 221-228, 2000.

[15] F. J. Canny. A computational approach to edge detection. IEEE Trans PAMI,
8(6):679–698, 1986.

[16] J. Carr, R. Beatson, J. Cherrie, T. Mitchell, W. Fright, B. McCallum, and T. Evans.
Reconstruction and representation of 3d objects with radial basis functions. In
E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 67–76. ACM Press / ACM SIGGRAPH, 2001.

[17] M. Carlson, P. Mucha, B. van Horn III, and G. Turk. Melting and Flowing. In ACM
SIGGRAPH Symposium on Computer Animation San Antonio, Texas, July 21-22,
2002.

[18] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified
surfaces. Computer Graphics Forum, 17(2), June 1998.

[19] U. Clarenz, U. Diewald, and M. Rumpf. Anisotropic geometric diffusion in surface
processing. In T. Ertl, B. Hamann, and A. Varshney, editors, Proceedings
Visualization 2000, pages 397–405. IEEE Computer Society Technical Committee on
Computer Graphics, 2000.

[20] B. Curless and M. Levoy. A Volumetric Method for Building Complex Models from
Range Images. In H. Rushmeier, editor, SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 303-312. ACM SIGGRAPH, Addison Wesley, Aug.
1996. held in New Orleans, Louisiana, 04-09 August 1996.

[21] J. Davis, S. Marschner, M. Garr, and M. Levoy. Filling holes in complex surfaces using
volumetric diffusion. In First International Symposium on 3D Data Processing,
Visualization, Transmission, June, 2002.

[22] T. DeRose, M. Kass, and T. Truong. Subdivision surfaces in character animation. In
M. F. Cohen, editor, SIGGRAPH 98 Conference proceedings, July 19–24, 1998, pages
85–94, New York, 1998.

[23] M. Desbrun, M. Meyer, P. Schröder, and A. H. Barr. Implicit fairing of irregular
meshes using diffusion and curvature flow. In A. Rockwood, editor, Siggraph 1999,
Annual Conference Series, pages 317–324, Los Angeles, 1999. ACM Siggraph,
Addison Wesley Longman.

[24] T. K. Dey, J. Giesen, S. Goswami, and W. Zhao. Shape dimension and approximation
from samples. In Proceedings of the 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 772-780, 2002.

[25] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Upper
Saddle River, New Jersey 07458, 1976.

131

[26] N. Dyn. Interpolation and approximation by radial and related functions.. In C. K.
Chui, L. L. Schumaker, J. D. Ward, editors, Approximation Theory VI, volume 1, pages
211-234, Academic Press, New York, 1989.

[27] N. Dyn and S. Rippa. Data-dependent triangulations for scattered data interpolation
and finite element approximation. In Applied Numerical Mathematics, 12, pages 89-
105, 1993.

[28] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.
Multiresolution analysis of arbitrary meshes. In R. Cook, editor, SIGGRAPH 95
Conference Proceedings, pages 173–182. ACM SIGGRAPH, Aug. 1995.

[29] M. Eck and H. Hoppe. Automatic reconstruction of B-Spline surfaces of arbitrary
topological type. In H. Rushmeier, editor, SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 325–334. ACM SIGGRAPH, Addison Wesley, Aug.
1996. held in New Orleans, Louisiana, 04-09 August 1996.

[30] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and
simplification. In Proceedings of the 41st IEEE Symposium on the Foundations of
Computer Science 2000, pages 454-463, 2002.

[31] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A Hybrid Particle Level Set Method
for Improved Interface Capturing. Journal of Computational Physics 183, pages 83-
116, 2002.

[32] G. Farin. Curves and Surface for CAGD, 5th edition, Morgan-Kaufmann, 2001.

[33] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Progressive Point Set Surfaces,
ACM Transactions on Graphics, to appear.

[34] M. S. Floater and M. Reimers. Meshless parameterization and surface reconstruction
In Computer Aided Geometric Design, 18, pages 77-92, 2001.

[35] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics, Principles and
Practice. Addison-Wesley, Reading, Massachusetts, second edition, 1990.

[36] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An Algorithm for Finding Best
Matches in Logarithmic Expected Time. In ACM Transactions on Mathematical
Software, pages 209-226, September 1977.

[37] S. Funke and E. A. Ramos. Smooth-surface reconstruction in near-linear time. In
Proceedings of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 781-790, 2002.

[38] M. Garland. Quadric-Based Polygonal Surface Simplification. Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, CMU-CS-99-105, May 1999.

[39] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In
T. Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 209–216. ACM SIGGRAPH, Addison Wesley, Aug. 1997.

[40] J. Giesen and M. John. Surface Reconstruction Based on a Dynamical System. In
Proceedings of the 23rd Annual Conference of the European Association of Computer
Graphics (Eurographics), Computer Graphics Forum 21, pages 363-371, 2002.

[41] J. Giesen and U. Wagner. Shape dimension and intrinsic metric from samples of
manifolds with high co-dimension. In Proceedings of the 19th annual symposium on
Computational Geometry, 2003.

132 References

[42] D. G. Goldman. Fake fur rendering. In T. Whitted, editor, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, pages 127-134. ACM SIGGRAPH, Addison
Wesley, Aug. 1997.

[43] M. H. Gross and A. Hubeli. Eigenmeshes. Technical report, ETH Zurich, Mar. 2000.

[44] J. P. Grossman and W. J. Dally. Point sample rendering. In G. Drettakis and N. Max,
editors, Rendering Techniques ’98, Eurographics, pages 181–192. Springer-Verlag
Wien New York, 1998. Held in Vienna, Austria, July.

[45] A. Gruss, S. Tada, and T. Kanade. A VLSI Smart Sensor for Fast Range Imaging. In
Proceedings of IEEE International Conference on Intelligent Robots and Systems,
1992.

[46] S. Gumhold, X. Wang, and R. McLeod. Feature Extraction from Point Clouds. In
Proceedings of the 10th International Meshing Roundtable, Newport Beach, 2001.

[47] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal processing for
meshes. In A. Rockwood, editor, Siggraph 1999, Computer Graphics Proceedings,
Annual Conference Series, pages 325–334, Los Angeles, 1999.

[48] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes. In K. Akeley,
editor, Siggraph 2000, Computer Graphics Proceedings, Annual Conference Series,
pages 95–102. ACM Press / ACM SIGGRAPH / Addison Wesley Longman, 2000.

[49] P. M. Hall, A. D. Marshall, and R. R. Martin. Incremental Eigenanalysis for
Classification. In Proceedings of the British Machine Vision Conference 1998,
Volume 1, 1998.

[50] P. S. Heckbert. Fast Surface Particle Repulsion. CMU Computer Science Tech. Report
CMU-CS-97-130, 1997.

[51] C. M. Hoffmann. Geometric and solid modeling: An Introduction. Morgan Kaufmann,
1989.

[52] H. Hoppe. Progressive meshes. In H. Rushmeier, editor, SIGGRAPH 96 Conference
Proceedings, Annual Conference Series, pages 99–108. ACM SIGGRAPH, Addison
Wesley, Aug. 1996. held in New Orleans, Louisiana, 04-09 August 1996.

[53] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface
reconstruction from unorganized points. Computer Graphics, 26(2):71–78, July 1992.

[54] B. K. P. Horn and M. J. Brooks. Shape from Shading, MIT Press, Cambridge,
Massachusetts, 1989.

[55] A. Hubeli. Multiresolution Techniques for Non-Manifolds. PhD thesis, Department of
Computer Science, ETH Zurich, 2002.

[56] A. Hubeli and M. Gross. Fairing of non-manifolds for visualization. In Proceedings
Visualization 2000, pages 407–414. IEEE Computer Society Technical Committee on
Computer Graphics, 2000.

[57] A. Hubeli and M. Gross. Multiresolution feature extraction from unstructured meshes.
In Proceedings Visualization 2001, pages 287–294. IEEE Computer Society Technical
Committee on Computer Graphics, 2001.

[58] I. Jolliffe. Principal Component Analysis, Springer Verlag, 1986.

133

[59] A. Kalaiah and A. Varshney. Differential Point Rendering. In S. J. Gortler, K.
Myszkowski, editors, Rendering Techniques ‘01, Springer Verlag, pages 139-150,
2001.

[60] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In First
International Conference on Computer Vision, (London, England, June 8–11, 1987),
pages 259–268, Washington, DC., 1987. IEEE Computer Society Press.

[61] R. Keiser. Collision Detection and Response for Interactive Editing of Point-Sampled
Models. Diploma thesis, Department of Computer Science, ETH Zurich, 2003.

[62] A. Khodakovsky, P. Schröder, and W. Sweldens. Progressive geometry compression.
In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceedings, Annual
Conference Series, pages 271–278. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[63] O. Knoll. Interaktive Bearbeitung von Point-Sample basierten Objekten. Diploma
thesis (in German), Computer Science Department, ETH Zurich, 2001.

[64] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive multi-resolution
modeling on arbitrary meshes. In M. Cohen, editor, Proceedings of SIGGRAPH 98,
Annual Conference Series, Addison Wesley, pages 105–114. Addison Wesley, 1998.

[65] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel. Feature Sensitive Surface
Extraction from Volume Data. In E. Fiume, editor, SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 57–66. ACM Press / ACM
SIGGRAPH, 2001.

[66] J. J. Koenderink. The structure of images. Biological Cybernetics, Volume 50, pages
363-370, 1984.

[67] V. Krishnamurthy and M. Levoy. Fitting Smooth Surface to Dense Polygon Meshes.
In H. Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 313-324. ACM SIGGRAPH, Addison Wesley, Aug. 1996. held in New
Orleans, Louisiana, 04-09 August 1996.

[68] S. Krishnan and D. Manocha. An efficient surface intersection algorithm based on
lower-dimensional formulation. In ACM Transactions on Graphics 16(1), 1997.

[69] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods.
Math. Comp., 37, pages 141-159, 1981.

[70] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh morphing. In
A. Rockwood, editor, Siggraph 1999, Computer Graphics Proceedings, Annual
Conference Series, pages 343–350, Los Angeles, 1999. ACM Siggraph, Addison
Wesley Longman.

[71] I. Lee. Curve Reconstruction from Unorganized Points. In Computer Aided Geometric
Design, Vol 17, pages 161-177, 2000.

[72] Y. Lee and S. Lee. Geometric Snakes for Triangle Meshes. In Proceedings of the 23rd
Annual Conference of the European Association of Computer Graphics
(Eurographics), Computer Graphics Forum 21, pages 229-238, 2002

[73] D. Levin. The approximation power of moving least-squares. In Math. Comp. Vol 67,
No. 224, pages 1517-1531, 1998.

[74] D. Levin. Mesh-independent surface interpolation, Advances in Computational
Mathematics, submitted, 2001.

134 References

[75] M. Levoy, K. Pulli, B. Curless, S. Rusinnkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The Digital Michelangelo
Project: 3D Scanning of Large Statues. In K. Akeley, editor, Siggraph 2000, Computer
Graphics Proceedings, Annual Conference Series, pages 131-144. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[76] M. Levoy and T. Whitted. The use of points as display primitives. Technical Report
TR-85-022, The University of North Carolina at Chappel Hill, Department of
Computer Science, 1985.

[77] B. Levy. Constrained texture mapping for polygonal meshes. In E. Fiume, editor,
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pages
417–425. ACM Press / ACM SIGGRAPH, 2001.

[78] T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers,
ISBN 0-7923-9418-6, 1994

[79] T. Lindeberg. Feature Detection with Automatic Scale Selection. In International
Journal of Computer Vision, Volume 30, no. 2, 1998.

[80] L. Linsen. Point Cloud Representation. Technical Report, Faculty of Computer
Science, University of Karlsruhe, 2001.

[81] L. Linsen and H. Prautzsch. Global Versus Local Triangulations. In Eurographics
2001 Proceedings, Short Presentations, 2001.

[82] L. Linsen and H. Prautzsch,. Fan Clouds - An Alternative To Meshes. In T. Asano, R.
Klette, Ch. Ronse, editors, Proceedings of Dagstuhl Seminar 02151 on Theoretical
Foundations of Computer Vision - Geometry, Morphology, and Computational
Imaging, IEEE Computer Society Press, 2002.

[83] W. E. Lorensen and H. E. Cline. Marching Cubes: a high resolution 3D surface
reconstruction algorithm. In Computer Graphics, Vol. 21, No. 4, (Proceedings of ACM
SIGGRAPH), pages 163-169, 1987.

[84] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. Level set surface editing
operators. In J. F. Hughes, editor, SIGGRAPH 2002, Computer Graphics Proceedings,
Annual Conference Series. ACM Press / ACM SIGGRAPH, 2002.

[85] J. Nievergelt and K. H. Hinrichs. Algorithms & Data Structures. vdf Hochschulverlag
AG, ETH Zurich, 1999.

[86] Y. Parish and P. Mueller. Procedural Modeling of Cities. In E. Fiume, editor,
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, pages
301–308. ACM Press / ACM SIGGRAPH, 2001.

[87] M. Pauly, R. Keiser, and M. Gross. Multi-scale Feature Extraction on Point-Sampled
Models. In Proceedings of the 24rd Annual Conference of the European Association
of Computer Graphics (Eurographics), Computer Graphics Forum, to appear, 2003.

[88] M. Pauly, R. Keiser, L. Kobbelt, and M. Gross. Shape Modeling with Point-Sampled
Geometry. In SIGGRAPH 2003, Computer Graphics Proceedings, Annual Conference
Series. ACM Press / ACM SIGGRAPH, to appear, 2003.

[89] M. Pauly, L. Kobbelt, and M. Gross. Multiresolution Modeling of Point-Sampled
Geometry. Technical report, ETH Zurich, 2002.

135

[90] M. Pauly, M. Gross, and L. Kobbelt. Efficient Simplification of Point-Sampled
Surfaces. In Proceedings Visualization 2002, pages 163–170. IEEE Computer Society
Technical Committee on Computer Graphics, 2002.

[91] M. Pauly and M. H. Gross. Spectral processing of point-sampled geometry. In
E. Fiume, editor, SIGGRAPH 2001, Computer Graphics Proceedings, Annual
Conference Series, pages 379–386. ACM Press / ACM SIGGRAPH, 2001.

[92] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as
rendering primitives. In K. Akeley, editor, Siggraph 2000, Computer Graphics
Proceedings, Annual Conference Series, pages 335–342. ACM Press / ACM
SIGGRAPH / Addison Wesley Longman, 2000.

[93] E. Praun, H. Hoppe, and A. Finkelstein. Robust Mesh Watermarking. In A. Rockwood,
editor, Siggraph 1999, Annual Conference Series, pages 49-56, Los Angeles, 1999.
ACM Siggraph, Addison Wesley Longman.

[94] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer
Verlag, New York, 1985.

[95] P. Prusinkiewicz, L. Mündermann, R. Karwowski, and B. Lane. The use of positional
information in the modeling of plants. n E. Fiume, editor, SIGGRAPH 2001, Computer
Graphics Proceedings, Annual Conference Series, pages 289–300. ACM Press / ACM
SIGGRAPH, 2001.

[96] W. Reeves. Particle systems - a technique for modeling a class of fuzzy objects. In
Computer Graphics, 17(3), pages 359-376, July 1983.

[97] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering complex
scenes. In Geometric Modeling in Computer Graphics, B. Falcidieno and T. Kunii,
eds., pp. 455-465, Springer-Verlag, 1993.

[98] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for
large meshes. In K. Akeley, editor, Siggraph 2000, Computer Graphics Proceedings,
Annual Conference Series, pages 343–352. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000.

[99] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley,
Reading, MA, 1990.

[100] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. In International Journal of Computer Vision, 47(1), pages
7-42, May 2002.

[101] R. SedgeWick. Algorithms in C++ (3rd edition). Addision Wesley, 1998.

[102] J. A. Sethian and S. Osher. Fronts Propagating with Curvature-Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational
Physics, 79, pages 12-49, 1988.

[103] E. Shaffer and M. Garland. Efficient adaptive simplification of massive meshes. In
Proceedings Visualization 2001, pages 127–134. IEEE Computer Society Technical
Committee on Computer Graphics, 2001.

[104] J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. available at http://www-2.cs.cmu.edu/~jrs/jrspapers.html, August
1994.

136 References

[105] R. L. Sproull. Refinements of Nearest-Neighbour Searching in k-dimensional Trees.
In Algorithmica, Vol. 6, pages 579-589, 1991.

[106] W. Sweldens and P. Schröder. Digital Geometry Processing. In Course notes of
Siggraph 2000, ACM SIGGRAPH, 2001.

[107] R. Szeliski and D. Tonnesen. Surface modeling with oriented particle systems. In E. E.
Catmull, editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, July
1992.

[108] G. Taubin. A signal processing approach to fair surface design. In R. Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages 351–358.
ACM SIGGRAPH, Addison Wesley, Aug. 1995. held in Los Angeles, California, 06-
11 August 1995.

[109] M. Teschner. Direct Computation of Soft-Tissue Deformation in Craniofacial Surgery
Simulation. Ph.D. thesis, Shaker Verlag, Aachen, Germany, ISBN 3-8265-8317-5,
January 2001.

[110] D. Tonnesen, Dynamically Coupled Particle Systems for Geometric Modeling,
Reconstruction, and Animation. Ph.D. thesis, University of Toronto, Toronto, Canada,
1998.

[111] G. Turk. Re-Tiling Polygonal Surfaces. In E. E. Catmull, editor, Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 55–64, July 1992.

[112] G. Turk. Texture Synthesis on Surfaces. In E. Fiume, editor, SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, pages 347–354. ACM
Press / ACM SIGGRAPH, 2001.

[113] L. Velho, J. Gomes, and L. Figueiredo. Implicit Object in Computer Graphics.
Springer Verlag, New York, 2002.

[114] A. P. Witkin and P. S. Heckbert. Using particles to sample and control implicit
surfaces. In SIGGRAPH 1994, Computer Graphics Proceedings, Annual Conference
Series, pages 269–278, 1994.

[115] D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, and W. Sweldens.
Subdivision for modeling and animation. In Course notes of Siggraph 2000, ACM
SIGGRAPH, 2000.

[116] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution mesh editing. In
T. Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 259–268. ACM SIGGRAPH, Addison Wesley, Aug. 1997. ISBN 0-
89791-896-7.

[117] M. Zwicker. Continuous Reconstruction, Rendering, and Editing of Point-Sampled
Surfaces. Ph.D. thesis, Computer Graphics Laboratory, Computer Science
Department, ETH Zurich, 2003.

[118] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop3d: An interactive system for
point-based surface editing. In J. F. Hughes, editor, SIGGRAPH 2002, Computer
Graphics Proceedings, Annual Conference Series. ACM Press / ACM SIGGRAPH,
2002.

[119] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In E. Fiume,
editor, SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, pages 371–378. ACM Press / ACM SIGGRAPH, 2001.

137

B

BGLOSSARY OF NOTATIONS

Point-Sampled Surfaces

. A set of point samples

. A point in

. A manifold surface

. The local neighborhood of a point

. The set of -nearest neighbors

 The set of BSP neighbors

 The set of Voronoi neighbors

 The MLS reference plane

 The discrete local sampling density at the ith point of a point cloud

 The radius of the local neighborhood of the ith point of a point cloud

. The continuous local sampling density at a point

. The average local sample spacing

. The centroid of a local neighborhood

 The covariance matrix of the sample positions of a local neighborhood

. The surface variation

. The covariance matrix of the normals of a local neighborhood

 The normal variation

 The medial axis of a surface

 The local feature size

 The restricted Voronoi diagram

P

p IR3

S

Np p

Np
k

k

Np
B

Np
V

H

ρi

ri

ρ x() x

η x()

p

C

σn p()

C'

σn' p()

M S() S

f x()

VP S,

138 Glossary of Notations

. The restricted Delaunay triangulation

. The set of restricted Delaunay neighbors

. The space of polynomials of degree in

 . . . The MLS kernel function for two points and

. The radially symmetric MLS kernel function for a distance

 The MLS scale parameter

. The MLS projection operator

. The distance function

. The signed distance function

. The adaptive MLS scale parameter

Surface Simplification

. A cluster of point samples

. The maximum cluster size

. The maximum cluster variation

 The error quadric associated with a point

. The tangent plane associated with an edge .

 The repulsion force exerted on particle

. The distance of a point from a surface

 . The maximum distance between two surfaces and

. . The average distance between two surfaces and

Multi-Scale Representation

 A scale-space approximation of a function

 A Gaussian filter kernel

. The scale parameter

 The Laplacian operator of a function

 The diffusion constant

 A discrete 2D signal

 The Laplace-Beltrami operator at a point

 The approximation of the Laplace-Beltrami operator at a vertex

. The weights in the discrete approximation of the Laplacian

 A discrete multi-scale representation

. The point cloud of level of a discrete multi-scale representation

DP S,

Np
D

Πm
d

m IRd

Φ xi xj,() xi xj

φ r() r

h

ΨP

d x()

d+ x()

hx

Ci

nmax

σmax

Qp p

Ei i

F p() p

d q S,() q S

∆max S S′,() S S′

∆avg S S′,() S S′

L f

g x t,()

t

L∆ L

λ

fi j,

x∆ x

v∆ v

ωi

P

P
l

l

139

 The sequence of sets of detail coefficients

. The set of detail coefficients of level of multi-scale representation

Feature Extraction

. The feature weights

. The characteristic polynomial of the covariance matrix

. . . . The thresholding function

. The size of the neighborhood for boundary detection

. The maximum angle for boundary detection

 The set of feature nodes

. The minimum variation bound

. The maximum variation bound

 The edge cost between two points of the MST

 A parametric feature curve

 The energy functional for active contour models

. The internal energy

 The external energy

 The interpolated maximum variation

Shape Modeling

 The boolean classification predicate

. The deformable region

 The deformation scale parameter

. The one-region

. The zero-region

 The distance from the zero- resp. one-region

. The deformation blending function

 The deformation function

 The translatory deformation function

 The rotational deformation function

 The temporal coherence sphere centered at

 . . . The inter-particle potential between and

 The potential of particle

D

D
l

l

ωi

p λ()

Ω pi n,()

nb

αb

Q

ωmin

ωmax

c q qi,()

v s()

E

Eint

Eext

σ̃ v s()()

ΩP x()

χd

t

χ1

χ0

dj p()

β

F p t,()

FT p t,()

FR p t,()

sp p

Φ pi pj,() pi pj

Ei pi

Appearance Modeling

. A 2D discrete image

 A brush image

. A parameterization

. The re-sampling operator

. An editing operator

 An entry in the brush grid

. The diffuse color

 The displacement coefficient

. The specular color

 The ambient coefficient

 The diffuse coefficient

 The specular coefficient

. The shininess coefficient

. The cost function for parameter distortion

. The cost function for the fitting constraints

 The discrete objective function

 The local fitting functions

I

B

Φ

Ψ

Ω

bmn

cmn

dmn

smn

ka mn,

kd mn,

ks mn,

smn

Cdist

Cfit

C̃

φi u()

141

C

CSAMPLING REQUIREMENTS

This section analyses sampling requirements for a point cloud sampled from a
smooth, twice-differentiable manifold surface . The goal is to define sampling crite-
ria such that the methods for local surface analysis based on -nearest neighbors (Sec-
tion 2.1.3) are provably accurate. The approach taken here follows recent work in
surface reconstruction [7, 8]. First some definitions and previous results are stated:

Definition C.1: The medial axis of a surface in is defined as the set of
all points such that there exist two points with

 such that and no other point
with . In other words, the medial axis is the clo-
sure of the set of points which have more than one closest point on .

Definition C.2: The local feature size of a point is a function
that measures the minimum distance of to the medial axis ,
i.e., .

Definition C.3: A point cloud is an -sample of a surface if for every
there exists a such that .

An interesting property of the local feature size is Lipschitz continuity, i.e.,
 [8]. The -sampling criterion guarantees that a surface is

sampled densely in areas of high curvature and where two separate sheets of the
surface come close together (see Figure 2.4). For suitable , this allows topologically
exact reconstruction of the surface from an -sample (see [7]). For example, [8]
presents an algorithm that for computes a piecewise-linear 2-manifold
homeomorphic to such that for each there exists an with

.

P
S

k

M S() S IR
3

x IR3∈ x1 x2 S∈,
x1 x2≠ x x1– x x2–= x3 S∈

x x3– x x1–<
S

f x() x S∈ f:S IR→
x M S()

f x() miny M S()∈ x y–{ }=

P ε S x S∈
p P∈ x p– ε f x()⋅≤

f
f x() f y() x y–+≤ ε S

ε
S ε P

ε 0.08≤ T
S y T∈ x S∈

x y–
1.3εf x()

1 ε–
--------------------≤

142 Sampling Requirements

The -sampling criterion alone is not sufficient for local surface analysis based on -
nearest neighbors, however. Consider the example shown in Figure C.1 (a), where a
cylindrical surface is sampled densely along the circumference, but sparsely in the
direction of its axis. For any given and , one can always find an -sample of
the cylinder such that

• the distance between neighboring rows is less than , where is the cylinder
radius which is equal to the local feature size, and

• the -nearest neighbors all lie on a single row, e.g., when the samples are
uniformly sampled along the circumference with a local sample spacing of .

With such a sample, the covariance analysis of Section 2.1.3 will fail. For example, the
normal estimation at a point based on the -nearest neighbors at , will yield
a normal vector that is perpendicular to the true surface normal. As Figure C.1 (b)
illustrates, such point clouds are quite common in practice, since the resolution of 3D
scanners often varies depending on the spatial direction.

This example demonstrates that additional sampling criteria are required for the
local surface analysis based on -nearest neighbors to be provably accurate. In [24, 37]
the notion of an -sample has been introduced:

Definition C.4: A sample of a surface is called -sample of for
, if is an -sample, and for all

.

The -criterion gives a lower bound on the sampling density, while the -criterion
provides a corresponding upper bound and controls the positions of the samples to
ensure a certain uniformity of the sampling distribution. Note that from a theoretical
point of view, the -criterion is not a severe limitation, since Funke and Ramos

Figure C.1 (a) -sample of a cylinder, where -nearest neighbors do not adequately represent the
surface patch intersected by the query ball, (b) rotational laser scan of a vase that exhibits
a similar sampling pattern.

ε k

ε k ε Pε k,

d ε r⋅ r

k
d k⁄

p Pε k,∈ k p

medial axis

query ball

d = εr

r = f(x)

d/k

(a) (b)

ε k

k
ε δ,()

P S ε δ,() S
ε 2 δ ε 1< <≤⁄ P ε pi pj– δf pi()≥
pi pj, P∈

ε δ

δ

143

presented an algorithm that computes an -sample from a given -sample using
point removal [37]. Points that are not essential for the description of the surface are
discarded, i.e., the redundancy of an -sample is diminished.

Given an -sample of a surface the goal is to find a such that the -
nearest neighbors of a sample point are an adequate sample of the surface patch

. A more formal definition of “adequate” makes use of the concept of Voronoi
diagram and its dual, the Delaunay triangulation:

Definition C.5: Let be the Voronoi diagram and the Delaunay triangulation
of [94]. The restricted Voronoi diagram is the restriction of

 to , i.e., consists of the restricted Voronoi cells ,
where is the Voronoi cell of a point . The dual of the
restricted Voronoi diagram is the restricted Delaunay triangulation

.

Definition C.6: An edge , is called a restricted Delaunay edge, if
, i.e., if and only if . A point is

called a restricted Delaunay neighbor of a point if and
are connected by a restricted Delaunay edge.

Note that for a sufficiently dense sample of a closed surface , the collection of
restricted Delaunay edges incident at a point , defines a piecewise linear surface
(triangle fan) that is homeomorphic to a disc. In [6] it has been shown that the set
of restricted Delaunay neighbors of a point allows stable estimation of local
surface properties such as the tangent plane. Thus should be chosen such that the
restricted Delaunay neighbors are a subset of the -nearest neighbors, i.e., .

The following lemma states that a restricted Delaunay edge of an -sample cannot
be longer than a constant times the distance to the medial axis [41]:

Lemma C.1: Let be an -sample of a surface with . If , is
a restricted Delaunay edge, then

.

Thus all Delaunay neighbors of a point are located within a sphere of radius
 around . The maximum number of points that can be fitted in this

sphere under the sampling criterion gives a lower bound for . To compute this
bound the following two lemmas are required [6, 24, 41]:

Lemma C.2: Assume that for and some . Then the
angle between the line segment and the tangent space of at

 satisfies

.

Lemma C.3: If with , then .

ε δ,() ε
S

ε

ε δ,() P S k k
p P∈

Sp k,

VP DP
P VP S,

VP S Vi S, Vi S∩=
Vi pi P∈

DP S,

pipj pi pj, P∈
pipj DP S,∈ Vi S, Vj S, ∅≠∩ pj P∈

pi P∈ pi pj

S
pi P∈

Np
D

p P∈
k

k Np
D

Np
k⊆

ε

P ε S ε 1< pipj pi pj, P∈

pi pj–
2ε

1 ε–
-----------f pi()≤

pi
f pi()2ε 1 ε–()⁄ pi

ε δ,() k

x y– θ f x()⋅≤ x y, S∈ θ 0>
α xy Tx S

x

α θ
2
---≤sin

x y, S∈ x y– ε f x()⋅≤ f x() 1
1 ε–
-----------f y()≤

Given these two lemmas, the desired lower bound for can be estimated using a
packing argument. The idea is to count the number of balls of radius that can be
packed without intersection onto the surface patch that contains all the restricted
Delaunay neighbors. The following lemma formalizes this idea:

Lemma C.4: Let be an -sample of a surface with ,
 and

.

Then the -nearest neighbors of a sample point include the set
of restricted Delaunay neighbors of .

Proof: Let be the intersection of the surface with the ball
centered at with radius . The goal is to
determine the number of -balls of radius with centers
on than can be packed onto , where .
This problem can be simplified by considering the intersection of these

-balls with the tangent space at (see Figure C.2). From
Lemma C.2 it follows that the maximum distance of a point
from is bounded by . Thus the smallest radius of
the intersection of any of the -balls with is bounded by

, where (see Lemma C.3). A con-
servative estimate on the number of circles of radius that can be
packed into a circle of radius is . Combining these
results yields the following upper bound on :

.

For example, given an -sample with it is guaranteed that for all
restricted Delaunay neighbors are among the -nearest neighbors. For and

, the lower bound on converges to 16. A similar argument yields an upper
bound for the size of the query ball of the -nearest neighbors with respect to the
feature size. Here one tries to pack as many -balls, i.e., balls with radius into
the surface patch .

k
δf x()

P ε δ,() S ε 0.15<
ε 2 δ ε 1< <≤⁄

k
16 ε 1–()2

ε3 3ε2– 7ε 1–+() ε3 3ε2– ε– 1–()
---≥

k p P∈
p

S′ S sp∩= S sp
p P∈ R f p()2ε 1 ε–()⁄=

M δ r δfmin=
S S′ fmin min f pi() pi sp∈{ }=

δ Tp p
d x S′∈

Tp d f p()R2 2⁄≤ r′
δ Tp

r′2 r
2

f p()R2 2⁄–≥ r δf p() 1 ε–()≥
r′

R M M′≤ R
2

r′2⁄=
M

M
16 ε 1–()2

ε3 3ε2– 7ε 1–+() ε3 3ε2– ε– 1–()
---≤

ε δ,() ε 0.1< k 35>
k ε 0→

δ ε 2⁄= k
k
ε εf x()

S′

145

Figure C.2 Illustration of the proof of Lemma C.4. (a) Packing -balls into the intersection of the sur-
face with a sphere of radius , (b) reduction to sphere packing in the tangent space, (c-f)
illustration of the relations of the different variables used in the proof.

p

R
r

r′

Tp

sp

R
d

d
r

r′p

q q

q
q

(a) (b)

(c) (d)

(e) (f)

δ
R

146 Sampling Requirements

147

D

DDATA SOURCES

The following list specifies the sources of origin of all models used in this thesis that
have not been scanned or created by the author.

• The dinosaur, ball joint, vase, male, santa,
Igea, face, and Isis models are courtesy of
Cyberware Inc., USA.

• The bunny and dragon models are courtesy of the Stanford
3D Scanning Repository, Stanford University, USA.

• The David and St. Matthew models are courtesy of Marc
Levoy, Digital Michelangelo Project, Stanford University,
USA.

• The cat model is courtesy of Hugues Hoppe, Microsoft Research, USA.

• The Max Planck model is courtesy of MPI Saarbrücken, Germany

148 Data Sources

149

E

ECURRICULUM VITAE

Personal Data

Mark Pauly
Address:
Swiss Federal Institute of Technology (ETH)
Computer Graphics Laboratory
ETH Zentrum, IFW C25.2
8092 Zurich, Switzerland
++41-1-6320906
pauly@inf.ethz.ch
http://graphics.ethz.ch/~pauly/

18. Feb. 1974 born in Bernkastel - Kues, Germany

Education

Oct. 1992 - Dec. 1999 study of computer science at the University of Kaiser-
slautern, Germany

Oct. 1994 - Jul. 1995 study of computer science at the University of Edin-
burgh, Scotland

Apr. 1997 - Jul. 1997 research visit at the Imager Computer Graphics Labo-
ratory at the University of British Columbia, Vancou-
ver, Canada,

Oct. 1997 - Apr. 1998 research assitantship at the University of New South
Wales, Sydney, Australia

150 Curriculum Vitae

Dec. 1999 computer science diploma (with honours)

since Apr. 2000 Ph.D. student at the Swiss Federal Institute of Technol-
ogy, Zürich, Switzerland

Oct. 2002 - Nov. 2002 research visit at the multires modeling group, Caltech,
Pasadena, USA

Scholarships

Mar. 1993 - Dec. 1999 full-time scholarship of the German National Merit
Foundation

Apr. 2000 - Mar. 2003 Ph.D. scholarship of the European Graduate Program
on Combinatorics, Geometry & Computation

Publications

EUROGRAPHICS 2003 Mark Pauly, Richard Keiser, Markus Gross: Multi-
scale Feature Extraction on Point-sampled Surfaces

SIGGRAPH 2003 Mark Pauly, Richard Keiser, Leif Kobbelt, Markus
Gross: Shape Modeling with Point-sampled Geometry

IEEE Visualization 2002 Mark Pauly, Markus Gross, Leif Kobbelt: Efficient
Simplification of Point-sampled Surfaces

SIGGRAPH 2002 Matthias Zwicker, Mark Pauly, Oliver Knoll, Markus
Gross: Pointshop3D: An Interactive System for Point-
based Surface Editing

ETH Technical Report
2002

Mark Pauly, Leif Kobbelt, Markus Gross: Multiresolu-
tion Modeling of Point-Sampled Geometry

SIGGRAPH 2001 Mark Pauly, Markus Gross: Spectral Processing of
Point-sampled Geometry

Eurographics Workshop
on Rendering 2000

Mark Pauly, Thomas Kollig, Alexander Keller:
Metropolis Light Transport for Participating Media

University of Kaiserlau-
tern, diploma thesis
1999

Mark Pauly: Robust Monte Carlo Methods for Photo-
realistic Rendering of Volumetric Effects

