
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Hardware-Software Co-design for Improved Resource
Utilization in DNN Accelerators

Ahmet Caner YÜZÜGÜLER

Thèse n° 9884

2023

Présentée le 30 janvier 2023

Prof. A. Roshan Zamir, président du jury
Prof. P. Frossard, directeur de thèse
Prof. L. Benini, rapporteur
Dr C. Malossi, rapporteur
Prof. D. Atienza, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de traitement des signaux 4
Programme doctoral en informatique et communications

"Science is the poetry of reality."

— Richard Dawkins

To my beloved family. . .

Acknowledgements

This thesis is the culmination of a journey that was long and arduous, but ultimately,

incredibly rewarding. It would not have been possible without the support and guidance of

my colleagues and friends, and for that, I am eternally grateful.

My most sincere thanks go to my advisor, Professor Pascal Frossard, for his ceaseless

support and guidance. Besides his vast technical contributions, Pascal’s remarkable leadership

style has made this thesis possible. Even during the most difficult moments of my Ph.D., he

managed to find a way to motivate me to move forward. Every piece of feedback that I received

from him was on point, considerate, and carefully crafted in a way that reassured me that I

was in the right path. Therefore, I consider myself extremely fortunate to have been Pascal’s

student, and I will definitely miss working under his supervision and in the superb working

environment that he has created in LTS4.

Next, I would like to thank the members of my thesis committee, Professor Amir Zamir,

Professor David Atienza Alonso, Professor Luca Benini, and Dr. Cristiano Malossi for their

time to review this thesis and for the valuable feedback that they provided. I would also like to

thank Professor Babak Falsafi for supervising my research that constitutes the backbone of the

third chapter in this thesis. I would like to send a special thanks to Professor Elif Vural, who

supervised my first research project in LTS4, and inspired me to pursue a career in research.

My deepest gratitude goes to my mentor, Professor Giovanni De Micheli, for his support

throughout my Ph.D. I would also like to acknowledge the help of the Hasler Foundation in

this thesis, for funding my research and creating an opportunity for me to achieve my goals.

The greatest sources of support throughout my Ph.D. have been my wonderful flatmates

and closest friends, Chiara and Nick. Not only did we share a cozy and welcoming home,

but we also shared similar goals and faced similar challenges. Together, we navigated the

difficulties of the COVID-19 lockdowns and it would have been awfully harder without their

presence. The time we spent together will always hold a special place in my memories and I

look forward to continuing our friendship long after the completion of our studies.

I am thankful to all of my past and current colleagues at LTS4, including Mireille, Tolis,

Beril, Isabela, Ádám, Clément, Guille, Ortal, Yamin, Harshitha, Javier, William, Jelena, and

Caroline. With them, I had many fruitful discussions, delightful lunch breaks, and wonderful

winter retreats. I would like to extend my special thanks to Nikos, who greatly contributed to

i

Chapter 0 Acknowledgements

the fourth and fifth chapters of this thesis. A special thanks also goes to Abdellah, who kindly

helped me to translate the abstract of this thesis to French.

I am deeply grateful to my former colleagues from PARSA, Yunho, Mario, Arash, Sid,

Ognjen, Simla, and Canberk. They have been an integral part of my Ph.D. and their help and

support have been invaluable. I will always treasure the memories we shared together. My

special thanks go to Yunho, Mario, and Canberk, who have made huge contributions to the

third chapter of this thesis. Their expertise and contributions have been critical to the success

of my research.

I feel lucky to have a fantastic circle of Turkish friends in Lausanne, Kağan, Arman, Didem,

Doruk, and Sinem, with whom I shared countless memories and experiences while enjoying

the comfort of speaking in my mother tongue.

Last but not least, I must express my deepest gratitude to my beloved family. My brother,

Can, and my sister-in-law, Ayça, have been constant sources of support for me over the last

years. My beloved newborn nephew, Ege, brought immeasurable joy and excitement to my

days spent writing this thesis. I wish him a long and fulfilling life, full of success and happiness.

Finally, my deepest appreciation goes to my parents, Mutlu and Kudret, who have dedicated

their entire lives to ensuring our happiness and well-being. Their unwavering support has

been the driving force behind my Ph.D. journey, and my heart is filled with an overwhelming

sense of gratitude for everything they have done for me.

Lausanne, 13 January 2023 A. C. Yüzügüler

ii

Abstract

Deep neural networks (DNN) have become an essential tool to tackle challenging tasks in

many fields of computer science. However, their high computational complexity limits their

applicability. Specialized DNN accelerators have been developed to accommodate the high

computational complexity of DNN inference, but the mismatch between the accelerators and

DNN models prevents unlocking their full potential.

In this thesis, we address the mismatch between accelerators and DNN models from both hard-

ware and software perspectives. First, we investigate one of the most widely used architectures

in DNN accelerators, i.e., systolic arrays, and identify the leading cause of underperformance

in DNN inference, namely dimension mismatches between arrays and DNN layers. We analyze

the characteristics of today’s popular DNN models, perform an extensive design-space explo-

ration and propose a novel scale-out systolic array architecture that maximizes the effective

throughput (i.e., FLOPS per second) for a given set of target DNN workloads.

Then, we go beyond the limits of what can be achieved with hardware optimization and

focus on optimizing DNN architectures to improve the resource utilization at the target accel-

erators. To that end, we study differentiable neural architecture search frameworks, which

automate the creation of DNN architectures using efficient gradient-descent optimizers. We

introduce a novel computational model for the utilization of systolic arrays and propose a

novel utilization-aware neural architecture search framework. The proposed framework is

capable of creating DNN models with improved resource utilization on target accelerators,

which permits to perform DNN inference more efficiently and faster.

The existing neural architecture search framework searches for channel dimensions of a

DNN model in a fixed search space, which requires to manually design complex search spaces.

However, designing a search space is a nontrivial task that requires heuristics and domain

expertise, which undermines the effectiveness and practicality of neural architecture search.

To eliminate the necessity to predefine search spaces, we propose a flexible channel masking

method, which dynamically adjusts the search space based on the progress of architecture

search. We introduce the differentiable neural architecture search framework that uses the

iii

Chapitre 0 Acknowledgements

flexible channel masking method, which obviates the need for manually designing a search

space. We demonstrate through extensive experiments that the proposed framework signifi-

cantly reduces the search time and memory requirements compared to the existing neural

architecture search framework with fixed search spaces.

Overall, this thesis proposes hardware and software co-design techniques to improve the

performance of DNN inference. We demonstrate that the proposed scale-out systolic array

architecture combined with DNNs optimized using the proposed neural architecture search

frameworks exhibits significantly higher resource utilization. Consequently, the proposed

methods enable faster and more efficient DNN inference, improving the effectiveness of DNN

applications on resource-constraint platforms.

Keywords: deep neural networks, systolic arrays, neural architecture search

iv

Résumé

Les réseaux de neurones profonds (DNN) sont devenus des outils essentiels pour aborder les

problèmes exigeants et complexes dans plusieurs domaines de la science de l’information.

Cependant, la complexité computationnelle de ces modèles profonds limite leur champs

d’application. Des accélérateurs spécialisés pour les DNN ont été développés pour répondre à

ce problème de complexité de calcul des DNN, mais l’inadéquation entre les accélérateurs et

les DNN nous empêche de tirer profit de l’entier du potentiel des accélérateurs.

Dans cette thèse, nous étudions deux perspectives de cette inadéquation, entre les accéléra-

teurs et les modèles du DNN, qui peuvent se manifester sous forme de problèmes hardware

ou software. Premièrement, nous investiguons une des architectures les plus utilisées parmi

les accélérateurs de DNN, i.e, systolic arrays, et nous identifions la cause fondamentale de la

sous-performance durant l’inférence des DNN, qui est l’inadéquation entre les dimensions

des arrays et celles des couches des DNN. Nous analysons les caractéristiques des modèles

DNN les plus populaires, effectuons une exploration extensive du design-space et proposons

une méthode appelée "scale-out systolic array" qui maximise le débit effectif (i.e., FLOPS per

second) pour un certain ensemble de charge de travail d’un DNN.

Deuxièmement, nous dépassons les limites de ce que nous pouvons obtenir par une op-

timisation des hardwares, en focalisant sur l’optimisation des architectures des DNN qui

améliorent l’utilisation des ressources d’un accélérateur hardware. A cet effet, nous étudions

des méthodes de recherche qui automatisent la création des architectures de DNNs en uti-

lisant une optimisation efficace par descente de gradient. Nous introduisons un nouveau

modèle de calcul pour l’utilisation des "systolic arrays" et proposons un nouveau cadre inti-

tulé "utilization-aware neural architecture search". Le cadre proposé est capable de créer des

modèles de DNNs avec des utilisations de ressources améliorées pour des accélérateurs cibles,

ce qui permet d’effectuer une inférence plus efficace et rapide.

Le cadre existant des "neural architecture search" cherche à trouver les dimensions des

channels d’un modèles DNNs dans un espace de recherche fixé, ce qui nécessite un choix

manuel d’un espace de recherche complexe. Néanmoins, le choix d’un espace de recherche

v

Chapter 0 Acknowledgements

représente une tâche non triviale qui exige des heuristiques et une expertise, ce qui affaiblit

l’efficacité et la praticité du neural architecture search. Pour éliminer la nécessité de prédéfinir

des espaces de recherche, nous proposons une méthode flexible de masquage de channel, qui

ajuste dynamiquement l’espace de recherche en se basant sur l’evaluation de la function de

recherche. Nous introduisons le cadre nommé ; “differentiable neural architecture search”, qui

utilise la méthode flexible du masquage, qui évite le besoin d’un choix manuel d’espaces de

recherche. Nous démontrons à travers différentes expériences et en comparant avec différents

modèles que le cadre proposé diminue le temps de recherche et aussi les exigences en termes

de mémoire de calcul.

En guise de conclusion, cette thèse propose des techniques de conception conjointe de

hardware et software qui améliorent les performances de l’inférence des DNNs. Nous démon-

trons qu’optimiser les DNN en utilisant le cadre proposé “differentiable neural architecture

search” et en le combinant avec la méthode scale-out systolic array, permet une utilisation très

élevée des ressources. Par conséquent, la méthode suggérée permet une inférence efficace et

rapide des DNN, ce qui améliore l’efficacité de l’application des DNNs sur les plateformes à

ressources limitées.

Mots clefs : Réseaux de neurones profonds (DNN), systolic arrays, neural architecture search

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xiii

1 Introduction 1

1.1 Multi-pod Systolic Architectures . 1

1.2 Hardware-aware Neural Architecture Search . 3

1.3 Thesis Outline . 5

2 Related Work 7

2.1 DNN Accelerators . 7

2.2 Neural Architecture Search . 10

2.2.1 DNN optimization . 10

2.2.2 Optimization strategy . 11

2.2.3 Architecture evaluation . 12

2.2.4 Search space . 13

3 Scale-out Systolic Arrays 15

3.1 Key Pillars of Multi-pod Accelerator Design . 18

3.1.1 Optimal Systolic Array Size . 18

3.1.2 Interconnection Network . 24

3.1.3 Tiling & Scheduling . 26

3.2 Scale-out Systolic Arrays . 27

3.2.1 Systolic Pod Microarchitecture . 27

3.2.2 Offline Scheduling Algorithm . 29

3.3 Experiments . 31

3.3.1 Methodology . 31

3.3.2 Results . 31

3.3.3 Array Granularity . 32

3.3.4 Interconnect . 35

3.3.5 Tiling . 37

vii

Chapter 0 CONTENTS

3.3.6 Memory . 37

3.3.7 RTL Synthesis . 38

3.3.8 Comparison to Prior Inference Accelerators 38

3.4 Conclusion . 39

4 Utilization-Aware Neural Architecture Search 41

4.1 Analytical Model for Resource Utilization in Systolic Arrays 42

4.2 Proposed NAS Framework . 46

4.2.1 Approximation of the utilization function 46

4.2.2 Multi-objective loss function . 47

4.2.3 NAS algorithm . 47

4.3 Experiments . 47

4.3.1 CIFAR10 experiments . 50

4.3.2 ImageNet100 experiments . 51

4.3.3 Sensitivity to array size . 52

4.4 Conclusion . 53

5 Flexible Channel Dimensions for Differentiable Architecture Search 55

5.1 Introduction . 55

5.2 Differentiable Channel Masking . 57

5.3 FlexCHarts . 59

5.3.1 Flexible channel masking . 59

5.3.2 Dynamic channel allocation . 61

5.4 Experiments . 63

5.4.1 Experimental setup . 63

5.4.2 Performance of the differentiable channel search 64

5.4.3 Comparison with other dimension adaptation methods 65

5.4.4 Channel search for improved resource utilization 66

5.5 Conclusion . 67

6 Conclusions 69

6.1 Summary . 69

6.2 Future Directions . 70

A Appendix of Chapter 4 73

A.1 Micro-architecture search . 73

A.2 Utilization and Runtime details . 73

A.3 Additional experimental results . 75

A.3.1 CIFAR10 dataset . 75

A.4 Hyperparameters . 78

B Appendix of Chapter 5 79

B.1 Channel ranges of DMask baselines . 79

viii

CONTENTS Chapter 0

Bibliography 91

Curriculum Vitae 93

ix

List of Figures
1.1 General overview of a multi-pod systolic architecture. 2

1.2 General overview of a hardware-aware differentiable neural architecture search. 4

2.1 Three categories of spatial architectures used in DNN accelerators. 8

3.1 A weight-stationary systolic array with r rows and c columns. Activations are

assumed to traverse along the rows from left to right, weights and partial sums

traverse along the columns from top to bottom. 16

3.2 Three main factors of underutilization in systolic arrays. 17

3.3 Trade-off between power efficiency and utilization in systolic arrays with respect

to the array dimensions. 19

3.4 Illustration of CONV-to-GEMM conversion. Four-dimensional activation and

weight tensors of a convolution operation are reshaped into two-dimensional

matrices. 20

3.5 Range of the matrix dimensions for the GEMM operations in BERT and CNN

models. d1 denotes the first dimension of activation matrix (XGE M M) and d2 and

d3 denote the first and second dimension of weight matrix (WGE M M). Horizontal

lines show 10th percentile, average, and 90th percentiles. 21

3.6 Design space exploration for systolic arrays. Colormap represents the effective

throughput (TeraOps/s) per Watt. 23

3.7 An 8×8 Butterfly network with an expansion factor of 2. Routings from s2 to d7

and from s7 to d6 are shown with blue and red lines, respectively. 25

3.8 Overview of the proposed architecture, with the internals of the Systolic Pod

shown on the right-hand side. 28

3.9 Tiling and scheduling example of a matrix multiplication of X ×W → Y , followed

by an activation function Y →Σ. The example shows the scheduling for four

systolic pods with array sizes of r × c, and four post-processors. 29

3.10 Effective throughput of SOSA with various array sizes and Monolithic baseline

for various DNN benchmarks. All values are normalized to 400 Watts. 33

3.11 Effective throughput of SOSA and Monolithic baseline for various TDP values.

For Monolithic baseline, we assume a single systolic array and vary its dimen-

sions between 400×400 and 1024×1024; whereas for SOSA designs, we use keep

the array size constant and vary the number of parallel pods. 34

xi

Chapter 0 LIST OF FIGURES

3.12 Effective throughput of SOSA for varying batch sizes for Resnet only, BERT only,

and both Resnet and BERT in parallel. 35

3.13 Effective throughput versus TDP for various interconnect types. Points represent

the number of pods, which are equal to 32, 64, 128, and 256. 36

3.14 Effective throughput versus data partition size for activation matrices. 36

3.15 Effective throughput (normalized to maximum value) and off-chip DRAM usage

for varying on-chip SRAM bank sizes. 37

4.1 Tiling of a GEMM operation onto a systolic array. 43

4.2 Measured utilization on Cloud TPUv2 versus predicted utilization with roofline

and the proposed model. 46

4.3 Proposed utilization model with exact ceil function and its smooth approxima-

tion using the generalised logistic function. 46

4.4 Experiments on CIFAR10 dataset. Upper left corner is optimal. The dashed lines

connect the points in the Pareto Front of each method. 49

4.5 Visualization of the CIFAR10 cells obtained from U-Boost and FLOPS models

during the microarchitecture search stage. 50

4.6 Histogram of channel dimensions found by U-Boost as well as FLOPS and Black-

box baselines on CIFAR10 dataset. 51

4.7 Speedups obtained using U-Boost over the FLOPS baseline for various array sizes. 53

5.1 Prior work’s search space for channel dimensions [Wan et al., 2020]. Rows cor-

respond to the channel range (between 0 and 200) of the layers in FBNetv2-F4.

Ticks denote the options for channel dimensions and red circles represent the

channel dimensions found. 56

5.2 Illustration of a convolutional operation followed by channel masking to simu-

late various output channel dimensions. 58

5.3 An example of α values in vanilla channel masking method versus the proposed

FlexCHarts methods between the first and last epoch of a search. 60

5.4 Accuracy on CIFAR10 versus computational complexity in terms of FLOPS for

DNN architectures found by FlexCHarts as well as the baseline WideResnet and

EfficientNet models. 65

A.1 Cell architectures found for λ = 0.1 on the CIFAR10 dataset. 77

xii

List of Tables

3.1 Interconnect performance metrics generated by our cycle-accurate simulator

averaged across all the workloads. 25

3.2 Performance of SOSA with various array sizes. The effective throughput is the

harmonic mean of CNN and Transformer models. 32

3.3 Optimal array size for varying batch size and number of parallel workloads. . . 35

3.4 Power and area breakdown of the proposed architecture for 256 systolic pods.

The design is synthesized in Synopsys Design Compiler using the TSMC 28nm

library for up to 16 systolic pods and the results are extrapolated for 256 systolic

pods. 38

3.5 Summary of the prior inference accelerators and SOSA. †Results of Resnet50

with a batch size of one. ∗Implemented on an Intel Arria 10 GX 1150 FPGA. ‡For a

fair comparison, we scaled SOSA down to 64 systolic pods to have equal number

of PEs with TPUv4. 39

4.1 Utilizations and runtimes for various types of DNN layers. 45

4.2 Experimental results for ImageNet100 experiments. Underlined measurements

show best per column (λ), bold show best per metric. Number of parameters

reported in millions. 52

5.1 Results of the DMaskingNAS and FlexCHarts methods targeting low and high-

resource scenarios. Check and cross marks indicate whether the requirement is

satisfied or not. 64

5.2 Comparison of DMaskingNAS and FlexCHarts for utilization-aware search. . . 66

A.1 Microarchitecture search space. DWS: Depthwise Separable. 73

A.2 Utilizations and runtimes for all building blocks. Symbols explained in text. †

includes all other layer types: identity, zero, maxpooling, ReLUs. 74

A.3 Experimental results for CIFAR10 over 3 random seeds. 76

A.4 Experiment Hyperparameters. − indicates that the ImageNet100 experiment

uses the same settings as the CIFAR10 experiment. †: the architecture for

ImageNet100 is produced by search on CIFAR10. MS: micro-architecture search,

CS: channel search, FT: final training. 78

xiii

Chapter 0 LIST OF TABLES

B.1 Channel ranges of DMask-small and Dmask-large baselines for the experiments

in Section 5.4.2 and DMask-systolic for the experiments in Section 5.4.4. 79

xiv

1 Introduction

Deep neural networks (DNN) have unlocked an unprecedented potential in solving a wide

range of challenging problems in various fields of science and engineering. The success of

DNNs is mostly attained due to their capability to automatically extract meaningful features

from large amounts of data whereas classical algorithms rather rely on human heuristics

and engineering efforts to come up with useful features. With the ever-growing amounts

of data collected every day, DNNs will undoubtedly remain for the foreseeable future as an

indispensable tool for scientists and engineers to learn effective representations of information

in various application domains.

While the principles of deep learning date back to mid-20th century, the recent increase in the

popularity of DNNs and their widespread adoption in numerous domains coincide with the

advents in parallel computing in the modern era. With their high computational complexity,

DNN applications have initially resorted to hardware platforms such as field programmable

gate arrays (FPGA) [Farabet et al., 2011] and graphic proccesing units (GPU) [Krizhevsky et al.,

2012]. However, the immense volume of DNN workloads in datacenters and mobile devices

has encouraged researchers to develop specialized hardware architectures for DNNs, which

has led to the emergence of highly efficient and powerful DNN accelerators [Jouppi et al., 2017;

Hock, 2019; Liao et al., 2019].

1.1 Multi-pod Systolic Architectures

One of the most widely used specialized hardware architectures in DNN accelerators is systolic

arrays. In systolic arrays, processing elements are typically organized in a two-dimensional

grid, where the adjacent processing elements can efficiently share data with each other through

direct links. In each cycle, processing elements retrieve data from a set of adjacent neighbors,

perform a multiply-and-accumulate operation, and pass the data and intermediate results

to another set of adjacent neighbors I. While systolic arrays can achieve exceptional power

IThe name "systolic" comes from the rhythmical pattern of data movement due to its resemblance to a
heartbeat.

1

Chapter 1 Introduction

DNN workload Tiling Scheduling

Interconnect
model

Systolic pod
model

Executables

Interconnect

Pod Pod Pod…

Shared memory

Compilation
workflow

Multi-pod
accelerator

DRAM

Host
CPU

Figure 1.1: General overview of a multi-pod systolic architecture.

efficiency thank to this unique pattern of data movement, they heavily suffer from underuti-

lization due to mismatches between the arrays and DNNs, which prevents the effective usage

of available computational resources. For instance, the average resource utilization while

processing a DNN in the latest version of a TPU, which is a systolic-array based accelerator, is

only 33% [Jouppi et al., 2021], underlining the severity of underutilization in DNN accelerators.

The leading source of underutilization in systolic arrays originates from mismatches between

arrays and DNN models [Jouppi et al., 2017; Kung et al., 2019]. When model dimensions (e.g.,

number of channels and filters) is smaller than the array dimensions, the excess rows and/or

columns in the systolic array become idle, resulting in underutilization. A trivial solution to

this problem would be to reduce the array dimensions of systolic arrays. However, data reuse

in systolic arrays is tightly correlated with the array size. Thus, while small systolic arrays may

offer a remedy to the underutilization problem, they would suffer from low data reuse and

consequently from poor power efficiency. This intricate relation between power efficiency and

utilization in systolic arrays poses a challenging optimization problem that must be carefully

addressed while designing accelerators with systolic arrays.

Because the underutilization problem places an upper bound on the size of systolic arrays,

architectures with multiple systolic arrays have emerged [Kung et al., 2019], which we simply

refer to as multi-pod architectures throughout this thesis. These architectures either partition

a single DNN workload and run different partitions in parallel pods, or they rely on task-level

parallelism and run multiple DNN workloads in parallel pods [Jouppi et al., 2021; Baek et al.,

2020].

Figure 1.1 depicts the overall diagram of a multi-pod inference accelerator, where each pod

2

Introduction Chapter 1

includes a systolic array and necessary buffers and peripherals. The pods are connected to an

on-chip shared memory through an interconnect network. DNN models and intermediate

data are typically stored in on-chip memory for temporal reuse. The accelerators typically have

interfaces to off-chip DRAM to store data when the on-chip memory size is not sufficient and

a host CPU to receive instructions. In order to map workloads to multiple systolic arrays, DNN

layers are first partitioned into tile operations of sizes that match a pod’s array dimensions.

Then, a scheduler optimizes the mapping of tile operations to pods to maximize parallelism

and throughput.

Achieving scalability and high utilization in multi-pod accelerators requires design optimiza-

tions in various aspects. First of all, systolic array dimensions should be carefully selected

to find a sweet-spot between power efficiency and utilization for the target DNN workloads.

Second, the pods should be connected to each other through an interconnect topology that

allows sufficient bandwidth with high efficiency. Third, the compiler should be capable of

tiling, mapping and scheduling DNN workloads in a way to make use of maximum number of

pods in parallel. These design requirements and constraints pose a significant challenge while

designing multi-pod accelerators. In this thesis, we address these challenges and propose

techniques to improve the resource utilization of multi-pod systolic architectures.

1.2 Hardware-aware Neural Architecture Search

Despite the improvements in hardware architectures, the performance of DNN accelerators

varies based on the computational characteristics of the DNN workloads. Therefore, DNNs

must also be designed or optimized to improve their compatibility with the target compute

platforms. Many aspects of DNNs such as layer types and dimensions have considerable

impact on their computational characteristics. However, designing DNNs while taking their

computational characteristics into account is a challenging task for developers.

To automate the task of designing DNNs, researchers have proposed neural architecture

search, which aims to replace design heuristics with optimization algorithms. Such neural

architecture search frameworks are often hardware-aware and optimizes the DNNs not only

for the accuracy at the given task but also for their computational cost at target platforms.

The early versions of neural architecture search frameworks have resorted to evolutionary

algorithms or reinforcement learning, which require a substantial computational cost to

solve this multi-objective optimization problem. However, recent improvements such as

differentiable neural architecture search frameworks have significantly reduced the cost of

design optimization, which becomes practical for a wide range of applications.

Figure 1.2 depicts the main components of a hardware-aware differentiable neural architecture

search framework. We can divide a neural architecture search framework into three phases,

namely initialization, optimization, architecture evaluation. The initialization phase includes

designing a search space, which contains the set of variables that defines possible candidate

architectures. Based on these variables, one obtains an overparameterized DNN model, which

3

Chapter 1 Introduction

Optimization
Architecture
Evaluation

Supernet
Model

weights
Architectural
parameters

SGD

DNN
Architecture

Gradients

Objective function

HW model

Search
Space

Initialization

SGD

Figure 1.2: General overview of a hardware-aware differentiable neural architecture search.

is also known as supernet. The supernet contains both trainable model weights that define its

functionality as well as a set of architecture parameters that simulate different architectural

choices. During the optimization stage, the supernet’s model weights and architectural pa-

rameters are jointly optimized using gradient descent. The gradients for these optimization

steps are obtained by calculating a loss value using a batch of training data. Finally, in case

of a hardware-aware neural architecture search, hardware-related terms are included in the

objective function (e.g., latency), which are typically estimated using a hardware model.

Estimating the hardware-related metrics accurately and efficiently is, however, critical to

obtain DNNs that perform well on target platforms. While simplistic hardware models such

as FLOPS per second or roofline [Williams et al., 2009] might give rough estimates about

the latency or throughput of selected DNNs, they do not capture the nonlinear runtime

characteristics of systolic architectures. This leads to discrepancies between estimated and

ground-truth values, resulting in DNNs that do not perform well on the target platforms. To

overcome the discrepancy between estimated and ground-truth values, researchers have

proposed to use black-box models, in which measurements from physical devices are stored in

lookup tables and retrieved during the architecture search. However, such black-box models

are not differentiable; thus, they can not be effectively used in differentiable neural architecture

search frameworks that require gradient calculations. Overall, the existing methods to estimate

hardware-related metrics are unfortunately either inaccurate for systolic architectures or

incompatible with the efficient neural architecture search frameworks.

Besides the challenges in estimating hardware-related metrics, another obstacle to develop

an effective and efficient hardware-aware neural architecture search relates to the quality of

their search space. Because the search space defines all possible DNN configurations, having

a poor search space design may lead to finding suboptimal DNNs. A trivial solution to this

problem might be to use an excessively large search space to ensure that it covers the optimal

DNN configurations, but this would introduce large amounts of redundant computation,

increasing the computational cost of the search. As a result, the existing frameworks rely

on domain experts to carefully design an effective search space, which defeats the purpose

of automating the design of DNNs. Due to these limitations inherent to their search space,

existing frameworks are not capable of finding optimal DNNs that perform well at target

4

Introduction Chapter 1

platforms. In this thesis, we address the challenges in estimating hardware-related metrics

for systolic architectures and limitations inherent to the search space of neural architecture

search frameworks.

1.3 Thesis Outline

This thesis addresses the underutilization problem in DNN inference accelerators and pro-

poses solutions from both hardware and software perspectives. We first study the fundamental

design trade-offs in systolic arrays and perform a design space exploration for server-grade

accelerators targeting convolutional and moderately-sized Transformer models. Then, we

study three key design aspects in multi-pod systolic architectures and identify the optimal

array granularity, interconnect topology, and tiling strategies. Based on our findings from our

design space exploration and analysis on these three key design pillars, we propose a novel

scale-out systolic array architecture. We demonstrate that the proposed architecture achieves

higher resource utilization and effective throughput in DNN inference workloads compared

to the baseline designs.

Then, we turn our focus towards the optimization of DNN models to improve their resource

utilization on target inference platforms. Using our insights from the scale-out systolic array

architecture, we develop an analytical model for resource utilization on systolic architec-

tures and propose a smooth approximation that makes it suitable for effective optimization

methods such as differentiable architecture search. We then develop the novel utilization-

aware differentiable neural architecture search framework, which allows finding DNNs that

exhibit high resource utilization on target inference platforms. Our experiments on popular

vision tasks such image classification show that the DNNs found by the proposed framework

achieve higher accuracy and/or shorter inference latency thanks to more effective usage of

computational resources at target platforms.

To improve the efficiency and practicality of the proposed utilization-aware neural architecture

search framework, we finally address the limitations inherent to the search space of the neural

architecture search. We propose a flexible search space, which allows finding the optimal

channel dimensions for DNNs without the need for manually designing a search space, and a

novel dynamic channel allocation mechanism that enables modifying the dimensions of a

supernet efficiently in neural architecture search. We show that the proposed flexible search

space and the dynamic channel allocation mechanism obviate the need for manually designing

search spaces for channel dimensions and improves the efficiency of neural architecture search

compared to the existing frameworks with fixed search spaces.

In short, this thesis makes the following contributions:

• We analyze the workload characteristics of widely used CNN and Transformer models

and perform a design space exploration to find the optimal array dimensions in systolic

5

Chapter 1 Introduction

architectures.

• We study various interconnect topologies and identify the ideal topology to connect

large numbers of systolic pods in DNN accelerators.

• We study tiling and scheduling methods for DNN workloads and propose a novel tiling

strategy for multi-pod systolic architectures.

• We propose the novel scale-out systolic array architecture and show that it outperforms

the existing architectures in DNN inference workloads.

• We develop an analytical model for resource utilization in systolic arrays and propose

a smooth approximation to make this model differentiable and amenable to effective

optimization.

• We propose a novel utilization-aware differentiable neural architecture search frame-

work that improves the resource utilization of DNNs on target accelerators.

• We introduce a flexible search space for channel dimensions in differentiable neural

architecture search and we propose a novel dynamic channel allocation mechanism to

improve the efficiency of differentiable neural architecture search.

The rest of this thesis is organized as follows: We first introduce the prior work on DNN

accelerators and neural architecture search in Chapter 2. Then, we explain the key design

considerations for multi-pod systolic architectures and propose the scale-out systolic array

architecture in Chapter 3. e introduce our analytical model for resource utilization and propose

the utilization-aware differentiable neural architecture search framework in Chapter 4. Then,

we elaborate on the flexible search space for channel dimensions and the dynamic channel

allocation mechanism in Chapter 5. Finally, we provide a summary of the contributions that

we make in this thesis and discuss potential future directions in Chapter 6.

6

2 Related Work

To accommodate the high computational complexity of DNN inference, a myriad of hardware

and software techniques have been proposed. In this chapter, we first give background

information and elaborate on the prior work on the specialized hardware for DNN inference,

and then we discuss the prior work on software optimizations and co-design techniques with

a focus on hardware-aware neural architecture search.

2.1 DNN Accelerators

DNN workloads have been deployed in a wide range of compute platforms from general-

purpose CPUs to specialized accelerators. We can categorize these platforms based on their

processing units into four groups: CPU, GPU, FPGA, and ASIC. General-purpose CPUs require

low development cost thanks to their programmability; thus, they are in use of DNN inference

for certain datacenter applications such as Facebook [Hazelwood et al., 2018]. However,

CPUs exhibit high latency and limited throughput and power efficiency due to their long

execution pipeline, deep memory hierarchy and complex control flow, which encourages the

development and deployment of more specialized platforms for DNN workloads.

Thanks to their massive parallel execution capabilities, GPUs today are widely used in process-

ing DNN workloads. Recent GPUs are equipped with specialized tensor cores [Choquette et al.,

2021] and support custom data encoding formats such as BFloat16 [Kalamkar et al., 2019]

to further improve their performance and power efficiency on DNN workloads. While their

exceptional throughput with such customizations have made GPUs indispensable for DNN

training, their long execution pipeline still incurs long latencies as in CPUs, which undermines

their applicability in DNN inference for latency-critical online services.

To further improve the efficiency and performance of DNN inference, some services use the

FPGA nodes in cloud services [Fowers et al., 2018]. Thanks to their reconfigurability capability,

FPGAs enable building execution pipelines that are highly specialized to efficiently process

DNN inference [Xuechao Wei et al., 2017; Alwani et al., 2016; Farabet et al., 2011]. Moreover,

7

Chapter 2 Related Work

Memory Control logic ALU Interconnect

a) Dataflow engine b) Systolic array c) Tensor core

Figure 2.1: Three categories of spatial architectures used in DNN accelerators.

the customized execution pipelines in FPGAs can benefit from more aggressive quantization

schemes [Zhang et al., 2018] and efficiently exploit the sparsity [Nurvitadhi et al., 2017] of

DNN models. However, the additional logic for reconfigurability incurs significant overhead

in FPGAs, placing an upper bound on their maximum clock frequency, arithmetic density and

overall performance. Therefore, FGPAs do not offer an effective solution to accommodate the

high computational cost of DNN inference.

To maximize throughput and efficiency in DNN workloads, many applications have invested in

ASIC solutions. Despite their high cost of development and lack of reconfigurability, ASICs pro-

vide 1-2 orders of magnitude higher throughput compared to CPU, GPU, and FPGAs [Jouppi

et al., 2017]. These accelerators typically use spatial architectures to simplify data movement

between processing elements. Based on the type of spatial architecture that they use, we can

group these ASIC solutions into three categories: Dataflow engines (e.g., Eyeriss [Chen et al.,

2016], Wave DPU [Nicol, 2017]), Tensor cores (e.g., NVIDIA A100 [Raihan et al., 2019], Huawei

DaVinci [Liao et al., 2019]), and Systolic arrays (e.g., Google TPU [Jouppi et al., 2017], Baidu

Kunlun [Ouyang et al., 2020]). More details are given below about these spatial architectures,

which are illustrated in Figure 2.1.

Dataflow engines typically consist of a grid of processing elements that are connected through

a two-dimensional mesh topology, as shown in Figure 2.1a. These architectures aim to maxi-

mize both spatial and temporal data reuse by implementing certain mapping and scheduling

patterns that are called dataflow [Chen et al., 2017]. Thanks to their ability to support various

mapping and scheduling patterns, dataflow engines can adapt varying workload characteris-

tics to improve utilization [Lu et al., 2017]. To implement such dataflow schemes, however,

dataflow engines typically require a scratchpad memory and control logic in each processing

element. Unfortunately, prior work reports that the scratchpad memory and control logic in

processing elements incur significant overhead in power consumption and silicon area (up to

90% [Chen et al., 2016]), which places an upper bound on their efficiency and throughput.

8

Related Work Chapter 2

In contrast to dataflow engines, tensor cores employ simplistic processing elements without

any scratchpad memory or control logic [Raihan et al., 2019], as shown in Figure 2.1c. Instead

of implementing configurable dataflow schemes, they typically act as matrix multiplication

engines with a fixed dataflow. To benefit from the three-dimensional spatial data reuse inher-

ent to the matrix multiplication operations, the processing elements in tensor cores are often

organized in a cube topology [NVIDIA, 2020]. While their simplistic design of the processing

elements and their cube topology aim to maximize the throughput in matrix multiplication

operations, they require large numbers of memory operations and high bandwidth between

processing elements and on-chip memory due to the lack of temporal data reuse, which results

in high power consumption and reduced efficiency.

Systolic arrays, which are depicted in Figure 2.1b, achieve superior power efficiency compared

to tensor cores as they exploit both spatial and temporal data reuse in DNNs [Kung, 1982].

While performing a matrix multiplication operation, they store the elements of one of the

operands in the registers of processing elements and reuse them throughout the operation,

reducing the memory access and bandwidth requirements between processing elements

and on-chip memory. Thanks to these advantages, systolic arrays have been used in various

commercial accelerators [Jouppi et al., 2017; Ouyang et al., 2020].

Because systolic arrays reuse one of the operands temporally while performing a matrix

multiplication, their spatial data reuse is limited to two-dimensional data. As a result, unlike

the tensor cores that are often designed as a three-dimensional cube, the systolic arrays are

typically organized in two-dimensional grid topologies. This fundamental limitation in the

topology of systolic arrays has significant implications on their resource utilization. For the

same number of processing elements, a systolic array organized in a two-dimensional grid has

much larger dimensions than a three-dimensional tensor core. As a result of their large grid

dimensions, underutilization due to dimension mismatches becomes a significant problem in

systolic arrays.

The severity of the underutilization problem in systolic arrays has attracted considerable

research efforts and led to various modifications in commercial accelerators. While the

first generation TPUs consist of large and monolithic systolic arrays with an array size of

256×256 [Jouppi et al., 2017], its successors adopted a multi-pod design with smaller systolic

arrays of 128×128 [Jouppi et al., 2021]. Likewise, researchers have proposed architectures

that consist of many fine-grained systolic arrays with array sizes as small as 8×8[Kung et al.,

2019], which greatly sacrifices the power efficiency. However, the question of how to find the

optimal array dimensions for systolic arrays for a given set of target DNNs remains unknown.

Therefore, in this thesis, we first focus on finding the optimal array granularity in multi-pod

systolic array architectures.

The interconnection between the cores of a DNN accelerator pods also plays a critical role in

its performance. While prior work has extensively studied the interconnection topologies in

the context of dataflow engines, the findings of these studies do not apply to multi-pod systolic

9

Chapter 2 Related Work

architectures due to former’s unique computational characteristics and data movement pat-

terns. Many of the prior work used Mesh [Chen et al., 2017, 2014b; Gao et al., 2019; Shao et al.,

2019] or H-tree [Kung et al., 2019; Stevens et al., 2019] topologies to connect the processing

elements in DNN accelerators. However, these topologies lack sufficient bisection bandwidth

to support a large number of pods in multi-pod systolic architectures. Qin et al. proposed to

use a Benes topology due to its high bisection bandwidth [Qin et al., 2020] but this topology

suffers from a long round-trip latency, which leads to reduced utilization. Trivial solutions

such as Crossbar or Bus are unfortunately not suitable for multi-pod architectures due to their

poor scalability. As a result, finding the optimal interconnect topology in multi-pod systolic

architectures is also an open research question.

Besides the research efforts in array granularity and interconnect topology, prior work has

also explored concurrency as a possible solution to the underutilization problem in systolic

architectures. AI-MultiTasking [Baek et al., 2020] has proposed a scheduling strategy to miti-

gate the memory stalls in multi-pod systolic arrays. PREMA [Choi & Rhu, 2020] has resorted

to multi-tenancy to improve the array utilization. Likewise, Equinox [Drumond et al., 2021]

has proposed to piggyback DNN training tasks on inference accelerators to claim idle cycles.

However, these proposals offer improvements in architectures only with a few pods and do

not address the challenges in tiling and scheduling inherent to the architectures with large

numbers of pods. Therefore, in this thesis, we also focus on tiling and scheduling DNN infer-

ence on multi-pod accelerators that scale up to hundreds of pods, which is critical to unlock

the full potential of these accelerators.

To get the best of both systolic arrays and tensor cores, prior work has proposed to integrate

these two types of architectures on a single-chip [Guo et al., 2020a]. To enable such integration,

Guo et al. proposes micro-architectural modifications in the systolic arrays to make their

memory access coalesced. However, these micro-architectural modifications require longer

links between processing elements, hindering the arrays’ scalability. In this thesis, we adopt

a much simpler approach to make the systolic arrays’ memory access coalesced without

any modifications required in the arrays. We simply devise skew buffers in the systolic pods

between on-chip memory banks and systolic arrays to transform coalesced memory accesses

into the unique data pattern required by the systolic arrays. Therefore, this thesis proposes a

simpler and more efficient solution to the limitations inherent to the uncoalesced memory

access patterns of systolic arrays than Guo et al.

2.2 Neural Architecture Search

2.2.1 DNN optimization

The development of methods to build DNN architectures that achieve higher accuracies in

the given tasks while maintaining low hardware footprint (such as model size and latency [Tan

et al., 2019; Wu et al., 2019]) has received considerable attention from researchers. While early

10

Related Work Chapter 2

work has introduced design heuristics such as residual connections [He et al., 2016], batch

normalization [Ioffe & Szegedy, 2015] and bottleneck layers [Sandler et al., 2018], building

DNNs with these techniques requires human expertise and domain knowledge.

To minimize the need for human supervision while building DNNs, researchers have first

resorted to model compression and network pruning techniques [Luo et al., 2017; He et al.,

2017; Yu & Huang, 2019; Dong & Yang, 2019b]. Likewise, Jha et al. proposed to optimize DNN

architectures for the data reuse to improve resource utilization by eliminating the memory

bottlenecks [Jha et al., 2020]. Unfortunately, these methods still rely on human supervision

for the design of the initial DNN architectures as starting points, which hinders their effec-

tiveness and prevents them from realizing the purpose of automating DNN design. Moreover,

addressing only the memory bottlenecks is not sufficient to achieve high resource utilization

in systolic array accelerators, which requires a more complex modelling of the computational

characteristics of these accelerators.

To that end, researchers have focused on neural architecture search, which aims to fully auto-

mate the design process of DNNs without any need for human supervision. There are three

components of neural architecture search frameworks that are critical for their effectiveness

and efficiency: optimization strategy, architecture evaluation, and search space. In this section,

we discuss the prior work on these three critical components of neural architecture search.

2.2.2 Optimization strategy

Early work on neural architecture search adopted reinforcement learning [Pham et al., 2018;

Tan et al., 2019; Zoph & Le, 2017; Zoph et al., 2018], evolutionary algorithms [Marchisio

et al., 2020; Real et al., 2019], and Bayesian optimization [Bergstra et al., 2011]. Because

these methods operate on a discrete search space and need to perform many trials while

searching for an optimal architecture in an exponentially-increasing hyperparameter space,

they require thousands of GPU-hours to find optimal DNN architectures, which greatly limits

their applicability and even raises concerns about their impact on environment [Patterson

et al., 2021]. To mitigate the prohibitive cost of architecture search, techniques such as weight-

sharing [Pham et al., 2018] and one-shot search [Bender et al., 2018] have been proposed.

Likewise, prior work has also used sparse optimization techniques such as compressed sensing

to efficiently search discrete search spaces [Hazan et al., 2018; Cho et al., 2019]. While these

techniques reduce the cost of each trial by allowing to reuse trained parameters, they still

require many trials to find the optimal DNN architectures.

To further reduce the computational cost, recent work has proposed differentiable neural

architecture search [Cai et al., 2019; Chang et al., 2019; Liu et al., 2018; Nayman et al., 2019;

Xie et al., 2019; Xu et al., 2020], which is a weight-sharing method with a gradient-descent

optimizer. In these methods, a continuous relaxation is applied to the categorical decisions

using a set of trainable weights (i.e., architectural parameters). Because differentiable NAS

methods use the information from gradients with respect to the architectural parameters

11

Chapter 2 Related Work

during training, they achieve faster convergence than their non-differentiable counterparts.

Thanks to reusing trained parameters and faster convergence, differentiable methods achieve

a reduction of 2-3 orders of magnitude in the computational cost of neural architecture

search [Dong & Yang, 2019a; Stamoulis et al., 2019].

This remarkable reduction in computational cost has encouraged researchers to use differ-

entiable neural architecture search in various ways: Liu et al. proposed to use this technique

to search microarchitecture cells (i.e., basic building blocks) [Liu et al., 2019]. Wu et al. pro-

posed a differentiable hardware-aware neural architecture search [Wu et al., 2019], and Wan

et al. used a differentiable neural architecture search to find optimal spatial and channel

dimensions for DNNs [Wan et al., 2020]. Because of their superior efficiency and widespread

adoption in various application domains, in this thesis, we also focus on differentiable neural

architecture search.

2.2.3 Architecture evaluation

The objective functions of hardware-aware neural architecture search frameworks typically

contain multiple terms such as accuracy on a given task, inference latency [Wu et al., 2019] and

energy consumption [Dai et al., 2019]. While the accuracy metrics can be straightforwardly

obtained by calculating the cross-entropy loss on a training dataset, the existing hardware-

aware neural architecture search frameworks differ in the way that they estimate the hardware-

related metrics. Some of the prior work evaluates the DNN directly on physical devices during

the search and use real-time measurements on the loss function [Tan et al., 2019; Yang et al.,

2018]. While this approach may allow obtaining hardware metrics accurately, it requires access

to physical devices during the search, which hinders its practicality and reproducability.

To eliminate the need for accessing physical devices, more recent work proposed to store

the measurements from physical devices on lookup tables and read these values during the

search to calculate the loss function [Dai et al., 2019; Stamoulis et al., 2019; Wan et al., 2020;

Wu et al., 2019]. However, this approach is also not practical due to two reasons. First, the

number of required measurements to represent a search space grows combinatorially with

the number of architectural parameters and hardware configurations. Second, these lookup

tables correspond to black-box models, which are non-differentiable and therefore do not

allow gradient calculations. As a result, these models can not effectively be used in gradient

descent optimizers.

To obtain a differentiable latency model, some of prior work exploits the fact that a DNN’s

total latency is equal to the sum of individual layers’ latency [Wu et al., 2019]. While this

approach allows using gradient descent optimizers to make layer-wise decisions such as

which layers to keep or discard, it still assumes black-box models to characterize the latency

of each layer, prohibiting the usage of gradient descent to optimize layer parameters such as

operator type and channel dimensions. Therefore, the proposed differentiable models are

effective to optimize only certain aspects of DNNs and do not offer a complete solution.

12

Related Work Chapter 2

To be fully compatible with differentiable frameworks, prior work proposed to estimate the

hardware-related metrics using surrogate models such as linear regression [Xiong et al., 2021]

or neural networks [Choi et al., 2021]. Unfortunately, these models require large numbers of

samples for training and do not generalize well to the out-of-distribution samples; therefore,

this approach does not offer an effective solution. Other prior works proposed to use analytical

hardware models, which estimates the hardware performance metrics using a cycle-accurate

model [Marchisio et al., 2020] or a roofline model [Gupta & Akin, 2020; Li et al., 2021a]. Unfor-

tunately, these models do not represent the runtime characteristics of systolic architectures

accurately, leading to significant discrepancies between the estimated and actual values of

runtime measurements.

In short, the prior approaches to estimate hardware-related metrics in neural architecture

search are either not practical, differentiable, or accurate for systolic architectures. Therefore,

this thesis also focuses on developing efficient and effective hardware models for systolic

architectures that are compatible with differentiable neural architecture search frameworks.

2.2.4 Search space

The design of the search space plays a critical role in the outcome of the neural architecture

search; thus, researchers have put considerable effort into developing strategies to design more

efficient and extensive search spaces. To simplify the search complexity, Zoph et al. [Zoph

et al., 2018] proposed to search for basic building blocks (cell), which can be stacked up

to form a DNN architecture. Although this approach can construct intricate cell structures

with relatively low search space complexity and is widely adopted by others [Liu et al., 2018;

Pham et al., 2018; Liu et al., 2019; Real et al., 2019], using identical cells in all stages of DNN

architectures has a negative impact on its accuracy and efficiency [Wu et al., 2019]. Therefore,

Tan et al. proposed the hierarchical search space, which allows searching unique cells on

different stages of a DNN architecture with varying macro-architectural properties such as the

number of layers, spatial and channel dimensions.

Among the macro-architectural properties, channel dimensions are especially of interest

due to their significant impact on the computational characteristics of DNN architectures.

To that end, prior work has proposed numerous methods to search for optimal channel

dimensions [He et al., 2018; Ashok et al., 2018; Cai et al., 2018; Tan et al., 2019]. Among these

methods, DMaskingNAS [Wan et al., 2020] have become widely popular thanks to its efficiency.

However, this method relies on a fixed search space for the channel dimensions that must be

carefully tuned for target resource budget, which undermines its practicality.

A few prior work have addressed the issues inherent to such fixed search spaces. Liu et al. [Liu

et al., 2018] proposed the progressive neural architecture search, which gradually increases

the complexity of the search space during search. Similarly, Ci et al. [Ci et al., 2021] proposed

the neural search space evolution technique, which enables adding new operations to the

search space as the architecture search progresses. However, both of these techniques address

13

Chapter 2 Related Work

only the search space for cell structures, ignoring other critical properties of DNNs such as

channel dimensions. As a result, channel dimension search without the restrictions of a fixed

search space remains as an open research question. Therefore, in this thesis, we also focus

on developing an efficient neural architecture search for channel dimensions with a flexible

search space.

14

3 Scale-out Systolic Arrays

Systolic arrays have become the architecture of choice for DNN accelerators as they offer

superior power efficiency, high arithmeric density, and scalable design. While many variants

of systolic arrays have been used in various data processing applications [Kung, 1982], two-

dimensional systolic arrays are adopted for DNN accelerators because of their efficiency in

performing matrix multiplication (GEMM) operations, which constitute the backbone of DNN

workloads. The GEMM operations compiled from DNN layers are typically in the form of

X W +Pi n = Pout , where X is the input of the layer, W is the trainable parameters of the layer,

Pout is the output of the layer, and Pi n is the inital value of Pout . Throughout this thesis,

we refer to X , W , Pi n , and Pout as the activations, weights, input sums, and output sums,

respectively.

Figure 3.1 depicts a two-dimensional systolic array, in which the processing elements are

placed in a grid of r rows and c columns. Each processing element includes a multiply-and-

accumulate (MAC) arithmetic logic unit and a small number of registers to temporarily store

the input and output data. The processing elements are connected to their neighbors along

rows and columns through uni-directional point-to-point links. While multiple equivalent

dataflows exist for two-dimensional systolic arrays, in this thesis, we focus on a weight sta-

tionary dataflow due to its widespread adoption in the literature and commerically available

accelerators [Jouppi et al., 2017; Kung et al., 2019].

To perform a GEMM operation, a systolic array first fetches the weight matrix row by row

and stores them in processing elements. Then, in every cycle, the processing elements in

the left-most column fetch activations from the memory banks. Likewise, the processing

elements at the top row fetch the input partial sums from the memory banks, perform a

multiply-and-accumulate operation, and pass the resulting partial sum to the row below. The

operation continues with activations flowing from left to right, partial sums flowing from

Part of this chapter has been accepted to be published in
"Scale-out Systolic Arrays", ACM Transactions on Architecture and Code Optimization, 2022.

15

Chapter 3 Scale-out Systolic Arrays

Memory Banks (Input Partial Sums)

Memory Banks (Weights)
M

em
or

y
Ba

nk
s

(A
ct

iv
at

io
ns

)

Memory Banks (Output Partial Sums)

Activations Weights Partial sums

𝑐 columns

𝑟
ro

w
s

…

…

…

… … …

Figure 3.1: A weight-stationary systolic array with r rows and c columns. Activations are
assumed to traverse along the rows from left to right, weights and partial sums traverse along
the columns from top to bottom.

top to bottom, and weights staying stationary. The processing elements at the bottom row

produce the final results and write them back to the memory banks.

While a single unit of systolic array can effectively perform a GEMM operation, modern

accelerators often deploy multiple of them in a single die (i.e., multi-pod designs) to allow data

and task-level parallelism [Kung et al., 2019; Baek et al., 2020; Jouppi et al., 2021]. A multi-pod

accelerator’s effective throughput is a function of the overall utilization of processing elements

both within and across pods. Therefore, maintaining a high utilization not only maximizes

the gain from provisioned silicon resources but also improves the overall performance of an

accelerator. Figure 3.2 illustrates three main causes of the underutilization in a multi-pod

accelerator: (1) dimension mismatch [Samajdar et al., 2020] between array and workload

resulting in underutilization within a pod, (2) poor connectivity resulting in underutilization

across pods, and (3) sub-optimal tiling resulting in underutilization both within and across

pods.

Utilization within a pod highly depends on the pod’s systolic array granularity and the layer

16

Scale-out Systolic Arrays Chapter 3

Idle rows and columns due
to dimension mismatch

Pod is idle because
interconnect can not route

one of the operand tiles

Pod is idle because there are
not as many tile operations as
the number of pods

Figure 3.2: Three main factors of underutilization in systolic arrays.

dimensions of a DNN workload. Prior multi-pod accelerators [Jouppi et al., 2017; Google,

2017; Baek et al., 2020] opt for larger array dimensions to reduce access to on-chip memory,

provisioning higher power for processing elements. Unfortunately, larger arrays also increase

the likelihood that the workload’s layer dimensions are smaller than the number of array’s rows

or columns, resulting in idle processing elements and wasted throughput/Watt. In contrast,

minimizing the array dimensions per pod reduces the mismatch between the workloads and

the array, resulting in improved utilization. Smaller systolic arrays, however, increase the

power required for on-chip memory access, undermining the overall throughput/Watt. In

this chapter, we show that the optimal array size for DNN workloads is an order of magnitude

smaller than that widely adopted by academia and industry and identify the optimal array

size for widely used DNN workloads for computer vision and natural language processing

applications.

The interconnect also plays a key role in utilization and effective throughput in multi-pod

accelerators [Kung et al., 2019]. To achieve a scalable multi-pod accelerator architecture

with high utilization, the interconnect should allow transferring data tiles between systolic

pods and memory banks with minimal contention at high efficiency. Therefore, the selected

network topology should satisfy several design requirements such as high bisection band-

width, high combinatorial power, low latency, and good scalability. As these requirements are

often contradictory to each other, the network topologies should be carefully evaluated from

the perspective of scale-out architectures to ensure high performance and scalability of the

accelerators. In this chapter, we perform a quantitative analysis of network topologies in the

context of multi-pod accelerators and identify the optimal network topology to connect large

numbers of pods efficiently.

Finally, the tile size for each pod fundamentally impacts utilization in multi-pod accelerators

and should be tuned with care. We observe that conventional approaches to tiling for systolic

arrays [Baek et al., 2020; Choi & Rhu, 2020] fall well short of generating a sufficient number of

tile operations to populate a large number of pods, resulting in idle arrays during execution.

17

Chapter 3 Scale-out Systolic Arrays

On the one hand, choosing large tiles limits the overall number of tile operations and results

in idle pods. On the other hand, choosing a small tiling size may introduce underutilization

within pods due to internal buffering times. Therefore, we study the impact of tiling size on

the utilization in multi-pod accelerators and propose a new tiling strategy that improves the

utilization in accelerators with large numbers of pods.

The rest of this chapter is organized as follows: We first investigate the design considerations

for the multi-pod accelerators and identify the optimal design choices for target DNN work-

loads. Then, we introduce the Scale-out Systolic Arrays architecture and elaborate on its

implementation details. Finally, we give the details of our experiments and discuss its results.

3.1 Key Pillars of Multi-pod Accelerator Design

Designing a multi-pod accelerator that can efficiently scale to hundreds of pods is a challenging

task. To address the challenges in multi-pod accelerator design and develop an effective scale-

out architecture, we identify the key design aspects and study them in this section. First,

we show that the optimal systolic array size is a function of data dimensions in target DNN

workloads and perform a design space exploration of the optimal array sizes for various

scenarios. Second, we analyze the charachteristics of the possible interconnection topologies

between the pods and memory banks and discuss the advantages of the expanded Butterfly

network for the multi-pod DNN accelerators. Finally, we elaborate on tiling and scheduling of

DNN workloads on multi-pod architectures and discuss their impact on utilization in DNN

accelerators.

3.1.1 Optimal Systolic Array Size

The dimensions of a systolic array have a significant impact on its power efficiency and re-

source utilization. When the systolic array is fully utilized, all processing elements in a systolic

array perform a MAC operation while only those at the edges perform memory operations.

More specifically, in each cycle, a systolic array with dimensions of r × c reads r activation,

c weights, c input partial sums from, and writes c to the on-chip memory, adding up r +3c

memory operations per cycle, while it performs r ×c MAC operations. Therefore, the number

of memory accesses increases linearly with the array dimensions, while the number of MAC

operations grows quadratically. As such, with the increasing array dimensions, a systolic array

performs more MAC operations for every byte of data fetched from the memory.

The ability to perform more MAC operations per data, or simply higher data reuse, has signifi-

cant implications on the power efficiency of systolic arrays. The systolic arrays in inference

accelerators typically have low-complexity, integer-point arithmetic logic units in their process-

ing elements due to the reduced precision requirements of DNN inference, which consumes

significantly less power (about an order of magnitude [Chen et al., 2016]) than fetching data

from on- or off-chip memory. As a result, the power consumption of DNN accelerators is often

18

Scale-out Systolic Arrays Chapter 3

8x8 16x16 32x32 64x64 128x128 256x256
Array size

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Po
we

r E
ffi

cie
nc

y
(Te

ra
Op

s/
s/

W
at

t)

0

20

40

60

80

100

Ut
iliz

at
io

n
(%

)

Power eff.
Util.

Figure 3.3: Trade-off between power efficiency and utilization in systolic arrays with respect to
the array dimensions.

dominated by the memory operations. Because memory operations constitute the majority

of the power consumption, higher data reuse thanks to the larger array dimensions directly

translates into higher power efficiency, encouraging monolithic designs with larger systolic

arrays in DNN accelerators such as Google’s TPU [Jouppi et al., 2017].

Despite their high power efficiency, systolic arrays with large array dimensions suffer from

underutilization. As we increase the array dimensions, the number of rows and columns in

a systolic array starts to exceed matrix dimensions of DNN layers. When the weight matrix

dimensions are smaller than the array dimensions, the excess rows and columns become

idle, resulting in underutilization. Moreover, in systolic array designs with double buffering

[Ross, 2017], the entire array stalls between operations if the matrix multiplication takes fewer

cycles than the weight buffering time. Because the execution time of a GEMM operation is

approximately equal to the first dimension of the activation matrix and the weight buffering

time is proportional to the number of rows in the array, choosing a number of rows that is

larger than the dimensions of the activation matrix also results in underutilization. In short,

systolic arrays with large numbers of rows and columns are suffer from underutilization due

to dimension mismatches and weight buffering times.

To study the trade-off between power efficiency and utilization in systolic arrays, we developed

a computational model for systolic arrays. The proposed computational model estimates

the power efficiency and utilization of a systolic array by calculating the required amount of

on-chip memory access and MAC operations and simulating the execution of a DNN model on

systolic arrays with various array dimensions. We validated the correctness of our power and

utilization estimations against the post-synthesis simulations of our RTL design. Figure 3.3

shows the results of our power and utilization estimates for InceptionNet [Szegedy et al.,

2016] with an image size of 299×299 and a batch size of 1. We observe that, for small array

dimensions, systolic arrays exhibit low power efficiency due to low data reuse whereas they

19

Chapter 3 Scale-out Systolic Arrays

g

h

w
⋯

⋯

×b

×f

ac
tiv

at
io

ns
w

ei
gh

ts

g s

p

CONV-to-GEMM

𝑋!"#$ ∈ ℝ%×'×(×)

𝑊!"#$ ∈ ℝ*×+×(×,

𝒅𝟐

𝒅𝟐

𝒅𝟑

𝑋/011 ∈ ℝ2!×2"

𝑊/011 ∈ ℝ2"×2#

𝒅𝟏

Figure 3.4: Illustration of CONV-to-GEMM conversion. Four-dimensional activation and
weight tensors of a convolution operation are reshaped into two-dimensional matrices.

run the model’s inference with high utilization as they are less likely to suffer from dimension

mismatches. As we increase the array dimensions, we see that the power efficiency increases

thanks to higher data reuse. However, we observe that the utilization starts sharply falling for

the array dimensions larger than 32×32 due to higher mismatch between the model’s layers

and array dimensions. Therefore, these two metrics that are critical for the performance of

the systolic arrays, namely power efficiency and utilization, are inversely proportional to each

other in terms of array dimensions and finding an optimal design point requires an in-depth

study of the workload characteristics and a detailed design space exploration.

To gain insights into the distinguishing characteristics of various DNN workloads, we analyze

the operand dimensions of the GEMM operations in popular DNN workloads. To do so, we

must first understand how such workloads are compiled into GEMM operations.

Convolutional layers correspond to four-dimensional tensor operations; thus, they are first

transformed into two-dimensional matrix multiplications with a process called CONV-to-

GEMM conversion [Jordà et al., 2019]. Figure 3.4 illustrates the CONV-to-GEMM conversion

process, where the four-dimensional activation (XCONV) and weight (WCONV) tensors are

rearranged to obtain two-dimensional XGE M M and WGE M M matrices. In this figure, h×w and

p × s denote the window size of activations and weights and g , f , and b denote the number

of input channels, filters, and batch size, respectively. As a result of this CONV-to-GEMM

transformation, the dimensions of the XGE M M and WGE M M matrices are also transformed and

become equal to: d1 = hwb, d2 = psg , and d3 = f . In contrast to the convolutional layers, the

fully-connected and self-attention layers are linear transformations, thus they can be directly

represented as GEMM operations. Therefore, in fully-connected and self-attention layers,

20

Scale-out Systolic Arrays Chapter 3

Transformer CNN
0

1000

2000

3000

4000

5000

d1

Transformer CNN

500

1000

1500

2000

2500

3000

3500

4000

d2

Transformer CNN
0

500

1000

1500

2000

2500

3000

3500

4000

d3

Figure 3.5: Range of the matrix dimensions for the GEMM operations in BERT and CNN models.
d1 denotes the first dimension of activation matrix (XGE M M) and d2 and d3 denote the first
and second dimension of weight matrix (WGE M M). Horizontal lines show 10th percentile,
average, and 90th percentiles.

d1, d2, and d3 are simply equal to the batch size, number of features, and number of filters,

respectively.

Figure 3.5 shows the range of the values for d1, d2, and d3 in CNN models (i.e., Resnet, Incep-

tionNet, and Densenet with an image size of 299) and Transformer models (i.e., BERT-medium,

BERT-base, and BERT-large with a sentence length of 128) models. We calculated the val-

ues of d1, d2, and d3 as a result of the CONV-to-GEMM conversion process explained above.

Although the dimensions of the DNN layers vary both across and within models, we make

the following observations. First, GEMM operations in CNN models have significantly larger

values for d1 (15× on average) than Transformer models. This large difference is mainly due

to the convolutional reuse, i.e., filters in convolutional layers stride across input images. As a

result, CNN models run at higher utilization on systolic arrays with a larger number of rows

than columns. Our second observation is that GEMM operations in Transformer models have

significantly larger values for d3 (about 6×) than convolutional layers, which indicates that

Transformer models are better suited than CNNs for systolic arrays with more columns than

rows. These observations indicate that the computational requirements of these two popular

DNN workloads are contradictory to each other, complicating the design of a generic DNN

accelerator that performs well on both type of workloads.

To find the optimal array sizes for these two types of workloads, we perform a design space

exploration. For this purpose, we use an optimization metric called effective throughput per

Watt, which is a function of both utilization and power efficiency. Due to the utilization

component of the effective throughput/Watt metric, the optimal array size is sensitive to the

selection of target workloads. Therefore, we conduct a design space exploration for three

21

Chapter 3 Scale-out Systolic Arrays

cases: we first study the CNN and Transformer models separately, and then a mixture of

both types. To compare our proposed design choice, we pick four baseline array sizes that

represent the majority of designs in industry and academia: 512×512, which represents the

monolithic systolic array; 256×256, which represents Google’s TPU v1 [Jouppi et al., 2017],

128×128, which represents TPU v4 [Jouppi et al., 2021] and AI-MT [Baek et al., 2020], and 8×8,

which represents the Maestro [Kung et al., 2019]. For this design space exploration, we use our

computational model for systolic arrays to obtain the power efficiency and utilization values,

and then calculate the effective throughput as peak throughput multiplied by utilization. Our

design space exploration is isopower because DNN inference accelerators are typically bound

by power consumption because of their dense arithmetic formats [Sze et al., 2017].

Figure 3.6a shows the design space exploration for CNN models, namely Inception-v3, ResNet,

DenseNet with input image sizes of 224×224, 256×256, and 299×299. Because the number

of filters in CNN models is typically limited compared to the number of filter reuse and the

number of features as shown in Figure 3.5, we observe that optimal design points have a

large number of rows and a small number of columns. In fact, the design point with the

highest effective throughput for CNN models is 66×32, which is about 1.3× better than any

other baselines. In contrast, Figure 3.6b shows the design space for Transformer models with

sequence lengths of 10, 20, 40, 60, 80, 100, 200, 300, 400, 500. Because the number of filter

reuse in Transformer models is typically limited compared to the number of filters and number

of features as shown in Figure 3.5, we observe that the optimal design points have a large

number of columns and a small number of rows. More specifically, the design point with

the highest effective throughput for Transformer models is 20×128, which is also about 1.7×
better than any other baselines.

Our design space exploration for CNN and Transformer models show that accelerators that

are specialized for either CNNs or Transformers have contrasting optimal array dimensions.

An accelerator that is specialized for one type of model would perform poorly for the other

type. Therefore, we perform a design space exploration that takes both types of models into

account. Figure 3.6c shows the design space for a mixture of CNN and Transformer models

with equal weights. In this case, data dimensions of both model types have an impact on

the shape of the design space: the areas with large array dimensions exhibit low effective

throughput/Watt due to underutilization. Likewise, areas with very small dimensions also

have low effective throughput/Watt due to poor power efficiency. We identify that only a small

part of the design exhibits high effective throughput/Watt, where the number of rows and

columns are in the order of ten to hundreds. In fact, the highest effective throughput/Watt is

obtained with array dimensions of 20×32, which has an effective throughput/Watt of 1.34,

0.93, and 1.1 TeraOps/s/Watt for CNNs, Transformers, and their mixture, respectively. To

facilitate implementation and connectivity to memory (e.g., alignment to cache block size),

we round up the number of rows from 20 to 32 and choose 32×32 as the array size in our

design.

22

Scale-out Systolic Arrays Chapter 3

64 128 192 256
of columns

64

128

192

256

of

 ro
ws

66x32
32x32

8x8
128x128

256x256

0.0

0.5

1.0

1.5

(a) Effective throughput (TeraOps/s) per Watt for CNN models.

64 128 192 256
of columns

64

128

192

256

of

 ro
ws

20x128
32x32

8x8
128x128

256x256

0.0

0.2

0.4

0.6

0.8

1.0

(b) Effective throughput (TeraOps/s) per Watt for Transformer
models.

64 128 192 256
of columns

64

128

192

256

of

 ro
ws

20x32
32x32

8x8
128x128

256x256

0.00

0.25

0.50

0.75

1.00

(c) Effective throughput (TeraOps/s) per Watt for the mixture of
CNN and Transformer models.

Figure 3.6: Design space exploration for systolic arrays. Colormap represents the effective
throughput (TeraOps/s) per Watt.

23

Chapter 3 Scale-out Systolic Arrays

3.1.2 Interconnection Network

For the interconnect between systolic arrays and memory banks, we prioritize four design

requirements. First, the interconnect should provide sufficient bisection bandwidth to allow

continuous data read and write for all systolic pods simultaneously. Second, the interconnect

should facilitate high combinatorial power (i.e., the ratio of realizable input-output permuta-

tions [Beneš, 1964]) to connect large numbers of pods with memory banks freely. Third, the

interconnect should have a latency shorter than the execution of tile operations so that the

interconnect latency can be hidden by computation. Finally, the interconnect should scale

well up to hundreds of systolic pods in terms of power consumption and silicon area.

2D mesh [Chen et al., 2017, 2014b; Gao et al., 2019; Shao et al., 2019] and H-trees [Kung

et al., 2019; Stevens et al., 2019] are popularly used in many DNN accelerators thanks to

their relatively low hardware cost. However, neither of them can provide enough bisection

bandwidth for large numbers of systolic pods. To improve their bisection bandwidth, one can

replicate an H-tree interconnect N -times (scaled-up H-tree [Kung et al., 2019]), which results

in an unfeasible hardware cost with a complexity of N 2. Although Crossbar interconnect [Zhu

et al., 2020] offers high bisection bandwidth, it also has a quadratically increasing hardware

cost with respect to the number of pods. As such, we conclude that H-tree and Crossbar are

not suitable for multi-pod DNN accelerators due to their excessive hardware cost.

Multistage interconnect networks emerge as a promising solution for the energy-efficient

multi-pod DNN accelerators as they exhibit sufficient bisection bandwidth, relatively low

hardware cost with a complexity of N log N and low latency. Prior DNN accelerators[Qin et al.,

2020] have proposed to use Benes network[Beneš, 1964], which is a non-blocking multistage

interconnection that consists of (2log N −1) stages. Compared to the H-tree and Crossbar, the

Benes network has a feasible hardware cost of N log N while providing a sufficient bisection

bandwidth of N . However, the Benes network suffers from a considerable latency that is

proportional to its large number of stages, 2log N −1. While the Benes network can route all

possible input-output permutations without contention, it offers only a limited multi-casting

capability. Due to this limitation, we consider the augmented version of the Benes network

with a copy network [Liew & Lee, 2010] instead of its standard implementation, which enables

the full multi-casting capability at the expense of longer latency. Consequently, none of these

interconnects mentioned above satisfy the design requirements of an accelerator with a large

number of pods.

The Butterfly network, which is also a multistage interconnect, offers high bisection band-

width with low latency and scalable hardware cost. A standard Butterfly network provides

only limited multicasting and combinatorial power; however, this limitation can be alleviated

by employing multiple of them in parallel [Liew & Lee, 2010], where the number of parallel

butterflys is referred to as expansion factor. Figure 3.7 depicts an example Butterfly network

with eight source and destination ports, and with an expansion factor of two. Thanks to the

redundant switches and links between source and destinations facilitated by the expansion,

24

Scale-out Systolic Arrays Chapter 3

Path from 𝑠! to 𝑑"
Path from 𝑠" to 𝑑#

Butterfly
8x8

Butterfly
8x8

𝑠! 𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠' 𝑠(

𝑑!𝑑"𝑑#𝑑$ 𝑑%𝑑&𝑑' 𝑑(

Figure 3.7: An 8×8 Butterfly network with an expansion factor of 2. Routings from s2 to d7

and from s7 to d6 are shown with blue and red lines, respectively.

we achieve higher combinatorial power than the standard Butterfly network; i.e., more permu-

tations are feasible without network contention. For instance, the paths from s3 to d2 and s6

to d3 can be routed simultaneously as shown in Figure 3.7, whereas this permutation would

not be possible in a standard Butterfly implementation. Moreover, because the network is

expanded vertically rather than horizontally, its latency remains low, allowing to overlap data

movement with computation for a larger number of pods. In the rest of this thesis, we will

refer to the expanded Butterfly network as Butterfly-k, where k is the expansion factor.

Table 3.1: Interconnect performance metrics generated by our cycle-accurate simulator aver-
aged across all the workloads.

Type
Busy Pods

[%]
Cycles per

Tile Op.
mW/byte

Butterfly-1 66.81 19.72 0.23
Butterfly-2 72.41 20.17 0.52
Butterfly-4 72.26 20.27 1.15
Butterfly-8 72.43 20.48 2.53

Crossbar 72.38 19.73 7.36
Benes 72.38 30.00 0.92

To evaluate various interconnect types from the perspective of the design requirements, we

identified three performance metrics, which are listed in Table 3.1. First, the percentage

of busy pods is defined as the average ratio of busy pods to the total number of pods. We

expect that the interconnects with higher combinatorial power achieve a higher percentage

of busy pods due to reduced contention. Second, the number of cycles per tile operation

describes how long it takes for a systolic pod to complete a tile operation. As we overlap the

25

Chapter 3 Scale-out Systolic Arrays

interconnect accesses with the systolic pod computation, the interconnect latency is typically

hidden by the execution time of tile operations. However, if the interconnect latency is too

long, it may become exposed, thereby increasing the number of cycles per tile operation

metric. Finally, Watt/byte of the interconnect characterizes the power consumption. We seek

a smaller Watt/byte value for reducing the overall power consumption.

Table 3.1 presents the previously mentioned performance metrics for various types of inter-

connects. First, we observe that the standard Butterfly network has a reduced percentage

of busy pods by 6% due to its insufficient combinatorial power. However, expanding it with

a factor of two is sufficient to increase its percentage of busy pods to that of interconnects

with full combinatorial power, such as Crossbar and Benes. Second, the interconnect types

with low latencies (i.e., Butterfly and Crossbar) results in the minimum number of cycles

per tile operation because their latencies are hidden by the computation. However, Benes

network, which has a substantially longer latency incurs a significant overhead (around 50%

more) in the number of cycles per tile operation. Finally, Crossbar, whose power consumption

increases quadratically with the number of arrays, requires 8× and 32× more watts per byte

than Benes or standard Butterfly networks for 256 pods. To conclude, the standard Butterfly,

Benes, and Crossbar interconnects are not suitable for multi-pod accelerators due to their

insufficient combinatorial power, long latency, and high watts per bytes metrics, whereas But-

terfly network with an expansion of two is the optimal design choice thanks to its sufficiently

high combinatorial power, relatively short latency, and low watts per bytes.

3.1.3 Tiling & Scheduling

Tiling and scheduling play an essential role in maintaining high utilization across large num-

bers of pods. In this subsection, we first propose a fixed-length tiling strategy with an emphasis

on optimal tiling dimensions that maximize utilization across a large number of pods. Then,

we explain our scheduler implementation, which maps tile operations onto systolic pods

while handling the interconnect constraints, tile dependencies, and bank conflicts.

Performing a GEMM operation on systolic arrays often requires partitioning data into tiles

due to dimension mismatches. The resulting tile operations can be performed on a single

array sequentially, or they can be distributed among multiple arrays and performed in parallel.

In weight stationary systolic arrays, the weight matrix W is spatially laid out onto the systolic

arrays; thus, W must be partitioned into tiles of r × c to match the array dimensions, where r

and c denote the number of array rows and columns, respectively. Because the first dimension

of W must match the second dimension of the activation matrix X in a matrix multiplication,

X ’s second dimension is also required to be partitioned with a size of r . Moreover, we can

further partition X ’s first dimension to obtain more tile operations. Because the execution

time of a matrix multiplication is approximately equal to X ’s first dimension, the resulting tile

operations have shorter execution times.

We observe that the data tiling strategies proposed by prior work either do not partition

26

Scale-out Systolic Arrays Chapter 3

X ’s first dimension [Baek et al., 2020], or choose a partition size that is much larger than

array dimensions [Choi & Rhu, 2020]. We argue that not partitioning X ’s first dimension or

choosing a large partition size does not exploit the available data-level parallelism in matrix

multiplication operations to the fullest extent, limiting the number of pods that can run in

parallel. Partitioning the X matrix into smaller tiles produces more tile operations that can

run in parallel. However, decreasing the partition size below a certain threshold value results

in underutilization within pods. This threshold is the number of rows in an array (r) because

the execution time for tile operations becomes shorter than r cycles, which exposes the weight

buffering time. Therefore, we propose to partition the activation matrix X into tiles of r × r ,

which produces as many parallel tile operations as possible without undermining utilization

within pods.

Our compiler first performs a tiling stage during the compile time, which determines the

start and end of the tiles addresses from activation and weight matrices. During the runtime,

the proposed architecture loads the tiles onto on-chip memory banks in the proposed tiling

format and performs GEMM operations using the loaded tiles. The resulting partial sum tiles

are either consumed directly from on-chip memory by the subsequent GEMM operations, or

they are written back to the off-chip memory.

3.2 Scale-out Systolic Arrays

In the previous section, we found that the optimal array size to maximize effective through-

put/Watt is 32×32, which requires a thermal design power (TDP) of about one Watt. Today’s

server form factors allow TDPs of up to several hundreds of Watts, which implies that a single

accelerator can contain hundreds of optimally sized systolic arrays. Therefore, in this section,

we propose the scale-out systolic array (SOSA) architecture, which efficiently employs multiple

systolic arrays in parallel to accelerate DNN workloads.

Figure 3.8 shows the overall diagram of the SOSA accelerator. Each systolic pod encapsulates a

systolic array with the peripherals required to perform GEMM operations. The main controller

fetches instructions from a dedicated cache, issues them to the corresponding pods, and

synchronizes the pods to perform their operations in lockstep. Activation, weight, and partial

sum tiles are stored in dedicated on-chip memory banks to reduce the interconnect width

between memory banks and systolic pods. A SIMD post-processor performs element-wise

operations on the partial sums and writes its results back to the activation or partial sum

banks.

3.2.1 Systolic Pod Microarchitecture

Our systolic pod design brings CONV-to-GEMM converter and skew/deskew buffers near

systolic arrays to minimize interconnect traffic. As shown on the right-hand side of Figure 3.8,

a systolic pod consists of a systolic array, a CONV-to-GEMM converter, skew/deskew buffers,

27

Chapter 3 Scale-out Systolic Arrays

Main
Controller Control bus

Ac
tiv

at
io

ns

W
ei

gh
ts

Pa
rti

al
 su

m
s

I-C
ac

he

Ba
nk

 1

Ba
nk

 2

Ba
nk

 N

Interconnect

Interconnect

Ba
nk

 1

Ba
nk

 2

Ba
nk

 N

Ba
nk

 1

Ba
nk

 2

Ba
nk

 N

Interconnect

Interconnect

Post-processor

…Systolic
Pod 1

Systolic
Pod 2

Systolic
Pod N

Interconnect

C
O

N
V-

to
-G

EM
M

C

on
ve

rte
r

Sk
ew

 B
uf

fe
r

Skew Buffer

Deskew Buffer

Systolic
Array

FSM

Task Queue

… …

Activations
Weights
Partial sums

Figure 3.8: Overview of the proposed architecture, with the internals of the Systolic Pod shown
on the right-hand side.

and a local controller (FSM) with a task queue that stores instructions. The CONV-to-GEMM

converter [Liu et al., 2020b] is a hardware block that converts activation data from a four-

dimensional convolutional to two-dimensional matrix format to prevent redundant on-chip

memory accesses. Likewise, skew and deskew buffers apply a skew to activation and input

partial sums, and remove the skew from output partial sums to improve the memory efficiency.

In this design, we encapsulate the systolic arrays with the CONV-to-GEMM converters and

skew/deskew buffers to improve memory efficiency and reduce network traffic.

In standard systolic array implementations, activations and partial sums propagate at a rate of

one column and one row per cycle. These slow propagation rates incur long pipeline latencies

and require large skew/deskew buffers. To mitigate these problems, prior work [Kung, 1982;

Liu et al., 2020a] proposed to multicast activations across multiple rows at each cycle and use

adder trees to accumulate multiple partial sums at each cycle. In our systolic pod design, we

also use activation multicasting and partial sum fan-in methods to reduce pipeline bubbles

and buffer sizes. In each cycle, we multicast activation values to U consecutive processing

elements along the rows. Likewise, we propagate partial sums with an offset of V processing

elements along the columns and use adder trees accumulate V partial sums. The selection

of the design parameters U and V is critical for the performance of the systolic pods. On

the one hand, setting the parameters U and V as one (corresponds to the standard systolic

arrays) leads to the best timing thanks to the short paths between registers. However, it incurs

large pipeline latencies that result in idle processing elements between tasks. On the other

hand, choosing large U and V parameters hinders timing characteristics due to longer paths

between registers, but it improves utilization thanks to reduced pipeline latencies. For the

optimal array size that we found in our design space exploration (32×32), we choose the

parameters U and V as 16 and 16, respectively.

28

Scale-out Systolic Arrays Chapter 3

𝑥!! 𝑤!! 	𝑦
!!
!

𝑥!! 𝑤!" 	𝑦
!!
"

𝑥!! 𝑤!# 	𝑦
!!
#

𝑥"! 𝑤!! 	𝑦
"!
!

𝑥"! 𝑤!" 	𝑦
"!
"

𝑥"! 𝑤!# 	𝑦
"!
#

𝑥!" 𝑤"!	𝑦
!!
!

	𝑦
!"
!

𝑥!" 𝑤""	𝑦
!!
"

	𝑦
!"
"

𝑥!" 𝑤"#	𝑦
!!
#

	𝑦
!"
#

𝑥"" 𝑤"!	𝑦
"!
!

	𝑦
""
!

𝑥"" 𝑤""	𝑦
"!
"

	𝑦
""
"

𝑥"" 𝑤"# 	𝑦
""
#

𝑥!# 𝑤#!	𝑦
!"
!

	𝑦
!#
!

𝑥!# 𝑤#"	𝑦
!"
"

	𝑦
!#
"

𝑥!# 𝑤##	𝑦
!"
#

	𝑦
!#
#

𝑥"# 𝑤#! 	𝑦
"#
!

𝑥"# 𝑤#"	𝑦
""
"

	𝑦
"#
"

𝑥"# 𝑤##	𝑦
""
#

	𝑦
"#
#

𝑥!! 𝑥!" 𝑥!#

𝑥"! 𝑥"" 𝑥"#

𝑤!! 𝑤!" 𝑤!#

𝑤"! 𝑤"" 𝑤"#

𝑤#! 𝑤#" 𝑤##

	𝑦
"!
#

	𝑦
"#
#

	𝑦
""
!

	𝑦
"#
!

	𝜎
"!

	𝜎
"#

	𝑦
"!
#

	𝑦
"#
#

	𝜎
"#

	𝑦
""
!

	𝑦
"#
!

	𝜎
"!

	𝜎
!"

	𝜎
!!

	𝜎
""

	𝜎
!#

Systolic Pod Schedule Post-processor Schedule

Systolic Pod 1 Systolic Pod 2 Systolic Pod 3 Systolic Pod 4 Post-Proc 1 Post-Proc 2 Post-Proc 3 Post-Proc 4

𝑦!! 𝑦!" 𝑦!#

𝑦"! 𝑦"" 𝑦"#

𝜎!! 𝜎!" 𝜎!#

𝜎"! 𝜎"" 𝜎"#

Activation
function× =

𝑟

𝑟
𝑟

𝑐

Sl
ic

e
1

Sl
ic

e
2

Sl
ic

e
3

Sl
ic

e
4

Sl
ic

e
5

Sl
ic

e
6

𝑋
𝑊 𝑌 Σ

𝑟

𝑐
Ti
m
e

Figure 3.9: Tiling and scheduling example of a matrix multiplication of X ×W → Y , followed
by an activation function Y →Σ. The example shows the scheduling for four systolic pods
with array sizes of r × c, and four post-processors.

3.2.2 Offline Scheduling Algorithm

Based on the fixed partition size that we described in Section 3.1.3, we propose an offline

scheduling algorithm for multi-pod systems. Compared to online (dynamic) scheduling

algorithms, the proposed algorithm enables performing more aggressive code optimizations

(e.g., reordering and remapping the operations), leading to higher resource utilization and

faster execution. Because our data tiling scheme produces tile operations with identical

execution times, we design a scheduler with fixed time slices of r cycles. The scheduler takes a

list of tile operations generated by the tiling algorithm and attempts to map and schedule them

on the slots of available systolic pods at the earliest available time slice. The scheduler has

three constraints while checking a tile operation’s availability for a slot. First, there must be no

read-after-write data dependence between scheduled tile operations. Second, a memory bank

can not be accessed by another pod as we assume single-ported banks. Third, the interconnect

must be able to route all pod-bank permutations for a given time slice. Starting from the first

tile operation, the scheduler searches for available slots in time slices that satisfy all three

conditions.

Algorithm 1 shows the pseudocode of how the scheduler schedules a tile operation (g). The

scheduler first finds the earliest possible time slice (l) by checking the dependencies among

tile operations. Then, it finds the idle systolic pods and memory banks in the time slice found

in the previous step. Next, it exhaustively searches all combinations of available pods and

memory banks and checks whether a routing between pods and banks is possible. If it finds a

valid routing for all X , W , and P interconnects, it schedules the tile operation in the time slice

l . If it fails to find any valid routing after all combinations are exhausted, it repeats the same

steps for the next time slice, l +1. The scheduler repeats this process until all tile operations

29

Chapter 3 Scale-out Systolic Arrays

Input: g : Tile operation
l ← find layer’s beginning round
while g is not scheduled do

Si dle ← find idle systolic pods in round l ;
Xi dl e ← find available X banks in round l ;
Wi dle ← find available W banks in round l ;
Pi dle ← find available P banks in round l ;
foreach s in Si dle do

foreach x in Xi dl e do
if x → s is not free then

continue;
end
foreach w in Wi dle do

if w → s is not free then
continue;

end
foreach p in Pi dle do

if s → p is not free then
continue;

else
assign g to s in round l ;
assign tiles to bank x, w , and p;
return ;

end
end

end
end

end
r ← r +1;

end
Algorithm 1: The proposed mapping and scheduling algorithm. a → b represents the
interconnect path from a to b

are scheduled.

Figure 3.9 shows the result of our tiling and scheduling algorithm on a small-scale example.

Each column in the figure represents a systolic pod or post-processor and each row represents

a time slice. In each time slice, a systolic pod performs a tile operation xi j ×w j k + yi mk = yi j k ,

where xi j and w j k are tiles from X and W , respectively, yi mk is an optional input partial

sum, and yi j k is the output partial sum. The output partial sums (yi j k) are then aggregated

to obtain the final output tiles: yi k =
∑

j yi j k . Finally, post-processors applies an activation

function on final output tiles (yi k) to obtain output activations, σi k .

Due to the aggregation operations between partial output tiles, there are data dependencies

between the tile operations. There are two ways of performing these tile aggregations. The

30

Scale-out Systolic Arrays Chapter 3

output of a tile multiplication can be mapped onto a later multiplication as the input partial

sum (shown with dashed lines in Figure 3.9), or the aggregation of two tiles can be performed

in the idle slots of post-processors. Post-processors work in pairs to perform tile aggregations

to match the throughput of systolic pods. We use an exhaustive search to map aggregation

operations on systolic arrays and post processors.

3.3 Experiments

3.3.1 Methodology

We synthesized the proposed systolic pods using the TSMC 28nm process technology and

Synopsis Design Compiler, then measured that the energy consumption per MAC operation is

0.4 pJ at a clock frequency of 1GHz. We encoded the weight and activation values as 8-bit and

partial sums as 16-bit integers, the same as prior work [Drumond, 2020; Jouppi et al., 2017;

Baek et al., 2020]. We modeled the on-chip memory banks using Cacti-P [Li et al., 2011]. As we

use an N-to-N interconnect, we employ the same number of SRAM banks as the number of

systolic pods. We chose the SRAM bank size as 256 KB, which is the smallest bank size that

can store the working set of all of the benchmarks. We calculated that the energy per byte for

accessing memory banks is 2.7 pJ/Byte using Cacti-P [Li et al., 2011]. For off-chip memory

access, we assume 32GB HBM3 memory with a bandwidth of 1.2 TB/s.

To evaluate the proposed method, we selected a number of benchmarks from the two most

widely used application domains of DNNs, namely computer vision and natural language

processing. Because the majority of DNN models (all top ten models in the Imagenet com-

petition) for computer vision tasks are convolutional, we choose a number of widely used,

state-of-the-art CNN models, namely Inception-v3 [Szegedy et al., 2016], ResNet50, ResNet101,

ResNet152 [He et al., 2016], DenseNet121, DenseNet169, and DenseNet201 [Huang et al., 2017].

We use the pre-trained models provided by Keras [Chollet, 2015] for CNNs with an input image

size of 299×299×3. Transformer models are ubiquitous in the NLP domain (eight out of the

top ten in the WMT-14 English-German dataset use a form of Transformer models). Therefore,

we select three BERT models [Devlin et al., 2019], namely BERT-medium, BERT-base, and

BERT-large [Google, 2020]. For BERT models, we select the median value of the sequence

lengths from the benchmark [Tencent, 2020], which is equal to 100.

3.3.2 Results

In this section, we first show that the proposed array size (32×32) offers the highest effective

throughput among all other design points. Then, we show and discuss the impact of multi-

batching and multi-tenancy in the effective throughput and its scalability. After that, we

evaluate various interconnect types presented in Section 3.2 and demonstrate that the Butterfly

network is the most optimal choice to connect large numbers of systolic pods. Next, we

evaluate the proposed tiling scheme and quantitatively show the improvement achieved by

31

Chapter 3 Scale-out Systolic Arrays

choosing the optimal tiling size. Later, we analyze the SRAM bank size’s impact on the off-

chip DRAM usage and effective throughput, and identify the optimal SRAM bank size for the

proposed design. Finally, we share the details of our RTL implementation and synthesis results

to show the validity of our insights and assumptions. For all design points, we consider a TDP

of 400 Watts as in [NVIDIA, 2020] and calculate the number of parallel systolic arrays as the

largest power-of-two number that results in a peak power consumption smaller than the TDP.

3.3.3 Array Granularity

Systolic array designs in academia and industry covers a wide range of array sizes (e.g., 8×8 in

Maestro [Kung et al., 2019], 128×128 in TPUv2, v3, v4 [Google, 2017] and AI-MT [Baek et al.,

2020], and 256×256 in TPUv1 [Jouppi et al., 2017]. To cover the entire design space, we run

our experiments with array sizes from 16×16 to 512×512 with steps of power-of-two numbers.

Moreover, to compare SOSA against the monolithic designs (e.g., TPUv1 [Jouppi et al., 2017]),

we have the Monolithic baseline, in which available processing elements are organized in the

form of a single systolic array. For the TDP of 400 Watts, the monolithic baseline corresponds

to an array size of 512×512, while it varies from 400×400 to 1024×1024 for the experiments

shown in Figure 3.11.

Table 3.2 summarizes the performance results of SOSA with varying array granularities. Be-

cause large systolic arrays have higher power efficiency than smaller ones, Monolithic baseline

achieves the highest theoretical peak throughput (1.85 PetaOps/s) among all other array gran-

ularities. However, due to underutilization in large systolic arrays, Monolithic baseline exhibits

only 10.3 % of its peak throughput, which corresponds to an effective throughput of 191.3

TeraOps/s. In contrast, array granularity of 16×16 has the lowest peak throughput due to its

low power efficiency. As a result, even though it achieves the highest utilization, its effective

throughput is only 198.9 TeraOps/s because of its limited peak throughput.

Table 3.2: Performance of SOSA with various array sizes. The effective throughput is the
harmonic mean of CNN and Transformer models.

Systolic Array
Size

of
Pods

Peak
Power

[Watts]

Peak
Throughput

@400W
[TeraOps/s]

Util.
[%]

Effective
Throughput

@400W
[TeraOps/s]

512×512 1 113.2 1853 10.3 191.3
256×256 8 245.0 1712 14.0 183.0
128×128 32 283.1 1481 13.8 205.0

64×64 128 362.2 1158 17.4 200.9
16×16 512 210.6 498.0 55.5 198.9
20×32 256 211.1 620.8 40.0 344.5
32×32 256 260.2 806.0 39.4 317.4

32

Scale-out Systolic Arrays Chapter 3

Bert-m
edium

Bert-b
ase

Bert-la
rge

Densenet121

Densenet169

Densenet201
Inception

Resnet50

Resnet101

Resnet152

Harm. mean
0

100

200

300

400

500

600

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (T
er

aO
ps

/s
)

16x16 64x64 128x128 256x256 Monolithic SOSA (32x32)

Figure 3.10: Effective throughput of SOSA with various array sizes and Monolithic baseline for
various DNN benchmarks. All values are normalized to 400 Watts.

As discussed in the design space exploration of Section 3.1.1, the array size of 20×32 finds

a balance between power efficiency and utilization and achieves the maximum effective

throughput, which is 344.5 TeraOps/s. However, the number of rows in this specific array

size is not a power of two, which introduces the following implementation difficulties and

inefficiencies: First, memory bus and SRAM banks typically have a width value that is power-

of-two; thus, aligning data size with the bus and cache block width by choosing a number of

rows that is a power of two in an array improves memory efficiency. Second, systolic arrays

typically utilise adder trees to reduce pipeline latencies: their efficiency is maximised when

the array dimensions are powers of two. Thus, we round up the number of rows from 20 to 32

and use the array size of 32×32.

The results given in Table 3.2 also show the effectiveness of the proposed design space ex-

ploration method introduced in Section 3.1.1. Although the computational model used in

the design space exploration is a first-order approximation and orders of magnitude faster

than the cycle-accurate simulations, it can identify the optimal array size for the given DNN

workloads. Therefore, we conclude that the proposed design space exploration method can

be employed to analyze the performance of multi-pod systolic arrays.

Figure 3.10 shows the breakdown of effective throughputs for individual DNN models. We

observe, in nine out of ten benchmarks, SOSA with the array size of 32×32 outperforms other

designs by up to a factor of ∼ 1.6. The only benchmark that 32×32 does not exhibit the highest

throughput is BERT-large, for which the array size of 256×256 outperforms 32×32 by a factor

of 1.06. We argue that the reason why 256×256 outperforms other designs for BERT-large

is because its array dimensions are well-aligned with the data dimensions in BERT-large.

Nevertheless, these results show that SOSA with the array size of 32×32 is the optimal design

point for a wide range of state-of-the-art DNN workloads, with an average effective throughput

higher than prior designs by a factor of 1.55×.

In the previous evaluation, we assumed the number of systolic pods as 256. However, AI

accelerators’ power and area budgets may vary depending on the system requirements; thus,

33

Chapter 3 Scale-out Systolic Arrays

0 100 200 300 400 500
TDP (Watts)

0

50

100

150

200

250

300

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (T
er

aO
ps

/s
) SOSA (32x32)

16x16
64x64

128x128
256x256
Monolithic

Figure 3.11: Effective throughput of SOSA and Monolithic baseline for various TDP values.
For Monolithic baseline, we assume a single systolic array and vary its dimensions between
400×400 and 1024×1024; whereas for SOSA designs, we use keep the array size constant and
vary the number of parallel pods.

we evaluate the proposed architecture’s sensitivity to the number of pods. Figure 3.11 shows

the effective throughput for various numbers of pods. We observe that, for TDP values larger

than 90 Watts, SOSA with the array size of 32×32 outperforms all other designs by a factor

up to 1.5×, when the number of arrays is scaled up to 512. We also observe that the increase

in the effective throughput starts to saturate as we increase the number of arrays more than

128. This is because of the fact that we target a batch size of one for all workloads to mimic an

online setting, which easily falls short of tile operations that run in parallel in large numbers of

arrays. This limitation can be easily avoided by increasing the data size, either by increasing

the batch size or running multiple workloads in parallel.

To show the impact of choosing larger batch sizes and running multiple workloads in parallel,

we measured the effective throughput of a Resnet-152 and BERT-medium models with varying

batch sizes, which is shown in Figure 3.12. We observe that, because the proposed design

already achieves an effective throughput close to its peak throughput for the Resnet model,

increasing the batch size does not lead to a significant improvement in its effective throughput.

In contrast, because the proposed design is underutilized while running the BERT model

due to insufficient number of tile operations, increasing the batch size results in a significant

improvement in effective throughput. Likewise, running multiple workloads in parallel also

increases the number of tile operations. As such, running the Resnet and BERT models in

parallel with a batch size of one achieves an effective throughput of 397 TeraOps/s, which is

1.44× higher than running them sequentially.

To understand how the optimal array size changes in multi-workload and multi-batch scenar-

34

Scale-out Systolic Arrays Chapter 3

Resnet BERT Resnet+BERT0

100

200

300

400

500

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (T
er

aO
ps

/s
)

Batch size:
1 2 4 8

Figure 3.12: Effective throughput of SOSA for varying batch sizes for Resnet only, BERT only,
and both Resnet and BERT in parallel.

ios, we perform an ablation study where we vary the batch size and the number of parallel

workloads, and calculate the optimal array size using our design space exploration. Table 3.3

shows the optimal array sizes for various batch sizes and numbers of workloads. We observe

that increasing the number of parallel workloads or the batch size results in an increase in the

optimal array size due to larger model dimensions and higher degree of available parallelism.

Therefore, we conclude that the designs that target single-batch and single-workload settings

(e.g., real-time applications) should pick a small array size (i.e., 20×32), whereas the designs

that target multi-batch and multi-workload settings (e.g., datacenter applications) benefit

from picking larger array sizes (e.g., TPU).

3.3.4 Interconnect

To demonstrate the interconnect’s impact on a multi-pod system, we measured the effective

throughput and calculated the TDP for various numbers of pods and for various types of inter-

connects, which is shown in Figure 3.13. Crossbar achieves the highest effective throughput

Table 3.3: Optimal array size for varying batch size and number of parallel workloads.

No. of workloads
1 2 4

B
at

ch
si

ze 1 20×32 32×64 40×32
2 40×32 40×32 64×32
4 40×32 64×32 80×32
8 80×32 80×32 80×32

16 80×32 96×64 128×64

35

Chapter 3 Scale-out Systolic Arrays

100 200 300 400 500 600
TDP (Watts)

0

50

100

150

200

250

300

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (T
er

aO
ps

/s
)

Butterfly-1
Butterfly-2
Butterfly-4
Butterfly-8
Crossbar
Benes

Figure 3.13: Effective throughput versus TDP for various interconnect types. Points represent
the number of pods, which are equal to 32, 64, 128, and 256.

20 40 60 80 100 120
Partition size of X's first dimension

0

50

100

150

200

250

300

Ef
fe

ct
iv

e
Th

ro
ug

hp
ut

 (T
er

aO
ps

/s
) Fixed partition

No partition

Figure 3.14: Effective throughput versus data partition size for activation matrices.

(213.8 TeraOps/s) thanks to its high connectivity and low latency but it requires around 2.3×
more peak power than any other interconnect due to its quadratically increasing hardware

cost. Although Benes network offers high connectivity, it performs poorly for the increasing

number of pods mainly due to the fact that their long latency becomes exposed, reducing its

effective throughput. This experiment confirms that Butterfly is the optimal interconnect for

multi-pod systems, which achieves an effective throughput only 4% less than Crossbar but at

a much lower TDP.

Figure 3.13 also evaluates the impact of the expansion factor for the Butterfly network. For

increasing expansion factors, Butterfly networks are capable of routing more input and output

permutations, reducing network contention and improving effective throughput. However,

the hardware cost of the interconnect increases with the expansion factor, which reduces its

36

Scale-out Systolic Arrays Chapter 3

6412
8

25
6

51
2

10
24

SRAM Bank size (kB)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Ef

f.
Th

ro
ug

hp
ut

0

100

200

300

400

500

600

DR
AM

 B
an

dw
id

th
 U

sa
ge

 (M
B)

Eff. Throughput
DRAM BW Usage

Figure 3.15: Effective throughput (normalized to maximum value) and off-chip DRAM usage
for varying on-chip SRAM bank sizes.

effectiveness. Our experiment shows that the expansion factors larger than two achieve only

a marginal increment in effective throughput (less than 2%) while the hardware cost of the

interconnect doubles with every expansion. Thus, we conclude that Butterfly network with an

expansion factor of two is the optimal choice of interconnect, with an effective throughput of

206.5 TeraOps/s at a TDP of 260 Watts.

3.3.5 Tiling

To demonstrate the effect of our proposed tiling strategy quantitatively, we measured the

effective throughput for CNN and BERT benchmarks using various partition sizes for activa-

tion matrix’s first dimension. Figure 3.14 shows the sensitivity in effective throughput with

respect to partition size. When the activation matrix’s first dimension is not partitioned or the

partition size is larger than the number of rows in the systolic array, the effective throughput is

suboptimal because the number of tile operation that can run in parallel is not sufficient to

keep large numbers of arrays active. When the partition size is smaller than the number of

rows, the effective throughput also decreases because the interconnect and buffering latencies

become exposed. Therefore, we identify the optimal partition size for the activation matrix as

r × r , which maximizes the overall effective throughput in a multi-pod system.

3.3.6 Memory

The effective throughput of the proposed architecture is also sensitive to the on-chip SRAM

capacity because an SRAM capacity that is smaller than the workload’s active working set

may lead to latency and energy overhead due to frequent off-chip DRAM accesses, whereas

an unnecessarily large SRAM capacity increases energy consumption and silicon area cost.

37

Chapter 3 Scale-out Systolic Arrays

To show the effective throughput’s sensitivity to on-chip SRAM capacity, we vary the bank

size from 64kB to 1MB, and measured the effective throughput and DRAM bandwidth usage,

which are shown in Figure 3.15. In this experiment, we used the workload with the largest

active working set among all benchmarks, namely Resnet152, with a batch size of eight. We

observe that, choosing an SRAM bank size smaller than 256kB results in tile eviction and SRAM

misses, which leads to both increased DRAM bandwidth usage, which consequently reduces

the effective throughput. As a result, we pick a bank size of 256kB in our proposed design.

3.3.7 RTL Synthesis

To verify our assumptions on hardware parameters, we synthesized the proposed design in

Synopsys Design Compiler using TSMC 28nm library. Table 3.4 summarizes our synthesis

results. We observe that on-chip SRAM memory constitutes the majority of the power con-

sumption (45.81%) and silicon area (75.37%). The results also demonstrate that the proposed

interconnect, namely the Butterfly network with an expansion factor of two, is only 15.06%

of the total power consumption and 4.18% of the total silicon area. Unsurprisingly, systolic

arrays constitute a large portion of a pod’s total power consumption (97.58%) and silicon area

(97.82%), whereas the rest is taken by the control logic and buffers. Leakage power constitutes

only 1.5% of the total power of systolic pods.

Table 3.4: Power and area breakdown of the proposed architecture for 256 systolic pods. The
design is synthesized in Synopsys Design Compiler using the TSMC 28nm library for up to 16
systolic pods and the results are extrapolated for 256 systolic pods.

Power [%] Area [%]
SRAM 45.81 75.37
Post-processor 0.56 0.25
Interconnect 15.06 4.18

Sy
st

o
li

c
Po

d

Systolic Array 37.64 19.76
Job Queue 0.30 0.18
Act. Buffer 0.07 0.01
Conv. Buffer 0.19 0.06
Input Psum Buffer 0.09 0.03
Output Psum Buffer 0.09 0.03
Others 0.19 0.13

3.3.8 Comparison to Prior Inference Accelerators

Table 3.5 summarizes the properties of prior inference accelerators as well as the proposed

SOSA architecture. We can classify the prior accelerators into two groups based on their TDPs,

namely mobile and server accelerators. The mobile accelerators such as Eyerissv2 [Chen

et al., 2019], NVDLA [NVIDIA, 2018], and DianNao [Chen et al., 2014b] prioritize low power

consumption due to the strict resource constraints of mobile devices; and consequently, they

38

Scale-out Systolic Arrays Chapter 3

Table 3.5: Summary of the prior inference accelerators and SOSA. †Results of Resnet50 with a
batch size of one. ∗Implemented on an Intel Arria 10 GX 1150 FPGA. ‡For a fair comparison,
we scaled SOSA down to 64 systolic pods to have equal number of PEs with TPUv4.

Array size
No. of
arrays

No. of
PEs

Data
format

Clk freq.
(GHz)

Tech.
node

Die area
(mm2)

TDP
(Watts)

Peak
throughput
(TFLOPS/s)

Eff.
throughput†

(TFLOPS/s)

M
o

b
il

e

Eyerissv2
[Chen et al., 2019]

3×4 16 192 INT8 0.2 65nm 24 <1 0.15 –

NVDLA
[NVIDIA, 2018]

– – 2k INT8 1.0 16nm 3.3 0.76 2.0 2.0

DianNao
[Chen et al., 2014a]

– – 496 INT16 0.98 65nm 3 0.48 0.45 –

Se
rv

er

Brainwave
[Fowers et al., 2018]

– – 1.5k BF16 0.3 20nm∗ – 60 9.8 4.5

Simba
[Shao et al., 2019]

16×8 36 4.6k INT8 1.8 16nm 216 – 128 16.4

NVIDIA P4
[Cherlopalle et al., 2019]

– – 2.5k
INT8/FP16/

FP32
1.53 16nm 314 75 22 13.9

NVIDIA T4
[Cherlopalle et al., 2019]

4×4×4 320 20k
INT4/INT8/
FP16/FP32

1.59 12nm 545 70 130 31

TPUv4
[Jouppi et al., 2021]

128×128 4 65k INT8/BF16 1.05 7nm <400 175 138 55.8

SOSA 32×32 64‡ 65k INT8 1.0 28nm 160 65 131 110

can exhibit only limited throughput. In contrast, the server accelerators enjoy much higher

power envelopes; thus, they can reach up to hundreds of TeraOps/s. However, due to low

utilization ratios, the effective throughput of these inference accelerators corresponds only

to a fraction of their theoretical peak throughput. In fact, Google’ TPUv4 [Jouppi et al., 2021]

exhibits the highest effective throughput (55.8 TeraOps/s) among all the server-grade inference

accelerators while maintaining a utilization ratio of 40%. As a result of the design optimizations

proposed in this thesis, SOSA exhibits a significantly higher resource utilization (84%) than

any other server-grade accelerators, achieving an effective throughput that is almost 2× higher

than TPUv4.

3.4 Conclusion

In this chapter, we studied the power efficiency and utilization in systolic arrays and identified

three key design aspects, namely array granularity, interconnect, and tiling. Our analysis

on DNN workloads and design space exploration allowed us to identify the optimal array

granularity as 32×32 for an accelerator that targets widely used convolutional and transformer

DNN models. We also studied various interconnect topologies for their suitability to connect

large numbers of systolic arrays on a single chip and identified that the Butterfly topology is

the ideal design choice for multi-pod systolic architectures. Moreover, we showed the impact

of the tiling strategy on the utilization of a multi-pod systolic architecture and proposed a

novel tiling scheme to maximize the utilization across multiple systolic pods.

39

Chapter 3 Scale-out Systolic Arrays

Based on the insights that we gained on the three key design aspects of systolic arrays, we

introduced the scale-out systolic array architecture. We demonstrated that the proposed

architecture offers 1.5× higher effective throughput and improves the resource utilization by

up to 3× compared to the baseline that is equivalent to widely used TPU designs.

40

4 Utilization-Aware Neural Architecture
Search

In the previous chapter, we addressed the problem of underutilization in systolic arrays due

to dimension mismatches between array and DNN dimensions. To improve the resource

utilization, we performed a design space exploration to identify the optimal array granularity

and proposed a novel hardware architecture. However, the problem of underutilization due to

dimension mismatches can also be seen as an optimization problem for DNN architecture. In

this chapter, we address the underutilization problem in systolic arrays from the perspective

of DNN architectures.

Finding optimal DNN architectures that achieve high accuracy at the given task with minimal

computational requirements has been a challenging task for developers. To offload the task

of finding optimal DNN architectures from developers to efficient optimization algorithms,

prior work has proposed neural architecture search. With the recent advancements in their

optimization algorithms and search space, neural architecture search has become an essential

tool in designing DNN architecture that can outperform the hand-crafted ones in complex

tasks such as image classification or object detection.

The design process of DNN architectures often requires solving a multi-criteria optimization

problem that includes the accuracy and computational cost as optimization objectives. To

solve this multi-criteria optimization problem, hardware-aware neural architecture search al-

gorithms have been proposed, which are generally formulated using a loss function composed

of the accuracy and hardware-related metrics such as latency and energy consumption. While

the accuracy metric in the loss function can be easily calculated using a test dataset during

the architecture search, the efficiency and accuracy of the hardware-related metrics play an

important role in the effectiveness of the hardware-aware neural architecture search algo-

Part of this chapter has been published in
"U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search", In European Conference on

Computer Vision (ECCV), 2022. [Yüzügüler et al., 2022]

41

Chapter 4 Utilization-Aware Neural Architecture Search

rithms. While prior work has proposed various techniques to estimate the hardware-related

metrics for DNN architectures during the search, none of them addresses the leading source

of underutilization in systolic arrays, namely dimension mismatches. As a result, the DNN

architectures found by the existing hardware-aware neural architecture search algorithms can

not exploit the available computational resources the array-based DNN accelerators to the full

extent, leading to sub-optimal inference performance.

To design DNN architectures that minimize dimension mismatches on array-based accel-

erators, in this chapter, we propose a novel framework, namely utilization-boosted neural

architecture search (U-Boost). Using our insights about systolic arrays from the previous chap-

ter, we first develop an analytical model for the resource utilization in array-based accelerators.

Then, we propose a smooth approximation for the utilization model to integrate it with the

efficient differentiable neural architecture search algorithms. Moreover, we extend the loss

function of the existing hardware-aware neural architecture search frameworks with a utiliza-

tion term and search for DNN architectures that maximize the effective usage of the hardware

resources at the target inference platforms. Our experiments on popular computer vision tasks

as well as our extensive hardware simulations show that the proposed U-Boost framework

significantly improves the resource utilization at target platforms, leading to shorter inference

time and/or higher accuracy.

The rest of this chapter is organized as follows: We first introduce our analytical model for

resource utilization in array-based accelerators. Then, we give details about the proposed

neural architecture search framework. Finally, we elaborate on our experimental details and

discuss their results.

4.1 Analytical Model for Resource Utilization in Systolic Arrays

Prior hardware-aware neural architecture search frameworks often use inference latency as a

hardware performance metric in their loss functions. While this approach can easily reduce

the inference latency by limiting the number of layers in DNN architectures, the resulting

DNN architectures do not necessarily correspond to those with high resource utilization at

target inference platforms. Therefore, we adopt a different approach and use both latency

and utilization as hardware performance metrics in the loss function. Because the under-

utilization problem is especially evident in systolic arrays due to mismatches between DNN

architectures and array dimensions, in this section, we develop an analytical model for the

resource utilization in systolic arrays.

As we already discussed in the previous chapter, systolic arrays consist of a two-dimensional

grid of processing elements, as shown in Figure 3.1. Let us assume a systolic array of r × c

with a weight stationary dataflow. In this dataflow, the weights are spatially mapped onto

the array, activations are streamed along the rows, and partial sums are accumulated along

the columns [Jouppi et al., 2017]. In this dataflow, any mismatch between the array and

weight dimensions results in idle rows and columns of processing elements, which reduces

42

Utilization-Aware Neural Architecture Search Chapter 4

𝒅𝟐

𝒅𝟐

𝒅𝟑

𝑋#$%% ∈ ℝ&!×&"

𝑊#$%% ∈ ℝ&"×&#

𝒅𝟏 ⋯

⋯
⋯ ⋯

𝒅𝟏

𝒓

𝒓

𝒄

𝑥$ 𝑥% 𝑥&

𝑤$$

𝑤%$

𝑤&$

𝑤$%

𝑤%%

𝑤$'

𝑤%'

𝑤&'𝑤&%

Tiling

Figure 4.1: Tiling of a GEMM operation onto a systolic array.

the array utilization. Although we consider the weight stationary dataflow in this thesis due to

its widespread adoption, the same phenomenon occurs in other dataflows as well; thus, our

method is applicable to other dataflows without loss of generality.

Let us consider the GEMM operation YGE M M = XGE M M WGE M M , where the operands are

XGE M M ∈ Rd1×d2 and WGE M M ∈ Rd2×d3 . In case d2 > r or d3 > c, XGE M M and WGE M M must

be divided into smaller tiles for this GEMM operation to be mapped onto the systolic array,

as shown in Figure 4.1. In this tiling process, XGE M M is divided into I tiles of x ∈ Rd1×r and

WGE M M is divided into I × J tiles of w ∈Rr×c as follows:

XGE M M =
[

x1 . . . x I
]

, WGE M M =


w11 . . . w1J

...
. . .

...

w I 1 . . . w I J



With this tiling scheme, the output YGE M M can be obtained as:

YGE M M =
[

y1 . . . y J
]

where y j ∈Rd1×c is equal to:

43

Chapter 4 Utilization-Aware Neural Architecture Search

y j =
I∑

i =1
xi w i j

As such, the output can be calculated in I × J tile operations and I and J are equal to:

I =

⌈
d2

r

⌉
, J =

⌈
d3

c

⌉

where the ceil function is defined as ⌈x⌉ = min{n ∈Z : n ≥ x}.

While performing a tile operation xi w i j , a systolic array fetches one row of xi in each cycle.

Therefore, each tile operation takes as many cycles as the number of rows in xi , namely d1.

Multiplying the cycles per tile operation by the number of tile operations, we obtain the total

execution runtime (latency) in terms of the number of cycles as follows:

RUNTIME = d1

⌈
d2

r

⌉⌈
d3

c

⌉
(4.1)

The effective throughput (i.e., operations per unit time) is equal to the ratio of the number

of operations to the execution time. Given that the number of multiply-and-accumulate

operations needed to perform the matrix multiplication of XGE M M WGE M M is equal to d1 ×
d2 ×d3 and using the RUNTIME given in Equation 4.1, we calculate the effective throughput in

terms of MAC per cycle as:

EFF. THROUGHPUT =
d2d3⌈

d2

r

⌉⌈
d3

c

⌉

The utilization of processing elements can be simply calculated as the ratio of the effective

throughput to the peak throughput. Given that the theoretical peak throughput of a systolic

array is r × c MAC operations per cycle, we finally obtain the utilization of a systolic array as:

UTIL =
d2d3

r c

⌈
d2

r

⌉⌈
d3

c

⌉ (4.2)

44

Utilization-Aware Neural Architecture Search Chapter 4

Table 4.1: Utilizations and runtimes for various types of DNN layers.

Block Type Runtime Utilization

Convolution

⌈
k1k2g

r

⌉⌈
f

c

⌉
hwb

k1k2g f

r c

⌈
k1k2g

r

⌉⌈
f

c

⌉
Depthwise Convolution g

⌈
k1k2

r

⌉
f hwb

k1k2⌈
k1k2

r

⌉
f

Fully connected
⌈g

r

⌉⌈
f

c

⌉
b

g f

r c
⌈g

r

⌉⌈
f

c

⌉

The expression derived above gives us insights about how dimension mismatches affect the

utilization in systolic arrays. Consider the case where the operand dimensions exactly match

the array dimensions: d2 = r and d3 = c. Then, Equation 4.2 simplifies to a utilization of 1.0,

which indicates that the systolic array runs at full capacity. However, if the operand dimensions

are slightly increased, for instance d2 = r +1, the ceil function reveals a significant drop in

utilization since

⌈
d2

r

⌉
=

⌈
r +1

r

⌉
= 2, resulting in a utilization of about 0.5. In other words,

a slight modification in operand dimensions may lead to a significant change in hardware

utilization in systolic arrays.

The utilization term derived in Equation 4.2 is a function of the operand dimensions of a

GEMM operation. Table 4.1 summarizes the expressions for the runtime and utilization

terms for various types of DNN layers in terms of layer dimensions, where k1 and k2 are

kernel size, f is the number of filters, g is the number of input channels, h and w are the

input image size, and b is the batch size. The expressions derived for different type of DNN

layers also indicates that hardware utilization in systolic arrays is also highly sensitive to

the layer type. For instance, depthwise convolutional layers [Sandler et al., 2018], which are

widely used in mobile applications, have only a single filter (f = 1) and perform convolution

operations channel-by-channel. As a result, depthwise convolutional layers require matrix

multiplications with dimensions equal to the hwb ×k1k2 and k1k2 ×1, which is much smaller

than the standard convolutional layers. The small matrix dimensions inherent to depthwise

convolution often lead to a hardware utilization as low as 1% [Cho, 2021; Gupta & Akin, 2020],

which reduces their inference performance in systolic. Therefore, selecting layer types with

high utilization is also crucial to obtain DNN architectures that perform well in systolic arrays.

To validate the proposed utilization model and to demonstrate the impact of channel dimen-

sions on hardware utilization, we performed dense and convolutional DNN inference with

varying numbers of output channels on a Cloud TPU v2 and measured the runtime and uti-

lization values using Google Cloud’s XLA op_profiler tool. Figure 4.2 shows the result of our

experiment as well as estimated values with the proposed and roofline [Williams et al., 2009]

models. Because Cloud TPUv2 have an array size of 128×128, we observe significant drops in

45

Chapter 4 Utilization-Aware Neural Architecture Search

100 200 300 400 5000

Number of output channels

0

100

80

60

40

20

Ut
iliz

at
io

n
(%

)

Cloud TPU
Proposed Model

Roofline

Figure 4.2: Measured utilization on Cloud
TPUv2 versus predicted utilization with
roofline and the proposed model.

100 200 300 400 5000

Number of output channels

0

100

80

60

40

20

Ut
iliz

at
io

n
(%

)

Smooth
Exact

Figure 4.3: Proposed utilization model with
exact ceil function and its smooth approxima-
tion using the generalised logistic function.

utilization when the channel dimensions exceed multiples of 128. The roofline model, which

accounts only for memory bottleneck, does not capture these drops in utilization, leading to

a discrepancy up to 40% between measured and estimated values. The proposed utilization

model, however, accounts for the dimension mismatches and is therefore able to estimate the

actual utilization value with an error of only up to 2%.

4.2 Proposed NAS Framework

Using the proposed utilization model, we introduce a utilization-aware differentiable NAS

framework. In this Section, we first explain how we approximate the proposed utilization

model, then we formulate our multi-objective loss function, and finally, we describe the NAS

algorithm used to search optimal DNN architectures.

4.2.1 Approximation of the utilization function

The ceil function in Equation 4.1 is not differentiable and can only be used as a collection of

point estimates. This limits the effectiveness of the neural architecture search and allows only

for evolutionary or reinforcement learning methods, which require orders of magnitude more

computational resources compared to differentiable methods. For this reason, we use the

generalised logistic function to obtain a smooth approximation of ceil function:

CEILsmooth(x) =
∑

i

[
1+ exp(−B(x −wi))

C

]−1/v

where wi are intervals between zero and a fixed value; C , B , and v are constants that adjust the

46

Utilization-Aware Neural Architecture Search Chapter 4

smoothness of the approximation. We empirically selected C = 0.2, B = 20, and v = 0.5, which

leads to a smooth and accurate approximation of the original ceil function. Figure 4.3 shows a

comparison between the true utilization, denoted as hard, and its smooth counterpart. We

verify that both hard and smooth utilization models yield peak utilization values at the same

channel dimensions. Therefore, we replace the original utilization model with its smooth

approximation in the proposed NAS framework.

4.2.2 Multi-objective loss function

Let F be the hypothesis class of neural networks that characterizes the search space. The

candidate neural network α ∈F implements the function fα : X →Y where X and Y are

the domains of the input and the output for our dataset D, respectively. Let (x , y) ∈X ×Y be

a sample. Then the loss function consists of three terms:

L (x , y,α) = Lcl assi f i cati on(fα(x), y)+λ ·Ll atenc y (α)−β ·Luti l i zati on(α) (4.3)

where λ> 0 and β> 0 determine the tradeoff between the accuracy, latency and utilization.

The classification loss corresponds to cross-entropy, while the latency and utilization terms

have been discussed in the previous section.

4.2.3 NAS algorithm

The search algorithm employs a hierarchical search similar to prior work [Liu et al., 2019;

Wan et al., 2020]. Concretely, it consists of three stages: microarchitecture search, macro-

architecture search and training of the selected architecture α ∈F . The first stage searches

for layer types and connections using a model of a single cell and fixed channel dimensions.

After obtaining the optimal candidate cell, the macroarchitecture stage constructs a model

with k sequential cells sequentially and searches for the optimal channel dimensions cell-wise

using the Dmasking method [Wan et al., 2020]. In both stages, each architectural decision

(i.e, type of operator in the former and number of channels in the latter) is modelled by a

probability simplex of dimension m equal to the number of choices and is parameterized by

Gumbel-Softmax [Jang et al., 2017].

4.3 Experiments

To evaluate the effectivenes of the proposed method, we perform image classification experi-

ments on the CIFAR10 and ImageNet100 datasets and compare our results with prior work.

In this section, we first explain our experimental setup, then analyse the characteristics of the

DNN architectures obtained with the proposed method, and finally, report and discuss the

performance results of our experiments.

47

Chapter 4 Utilization-Aware Neural Architecture Search

Experimental setup

We perform experiments on widely used computer vision datasets, namely CIFAR10 [Krizhevsky,

2009] and ImageNet100, which is a subset of the Imagenet (ILSVRC 2012) classification dataset

[Deng et al., 2009] with randomly-selected 100 classes. As in prior work [Liu et al., 2019; Wu

et al., 2019], the optimal-architecture search stage for both datasets is performed on a proxy

dataset, namely CIFAR10. We compare the results of our proposed method against three

hardware-aware NAS methods that use FLOPS [Gordon et al., 2018], Roofline [Li et al., 2021a],

and Blackbox [Wu et al., 2019] models to estimate the latency. In FLOPS baseline, we simply

calculate the latency as the number of operations required to perform inference divided by

the theoretical peak throughput of inference platform assuming full-utilization. In Roofline

baseline, we consider two modes, namely memory-bound and compute-bound. While the

compute-bound mode is the same as the FLOPS baseline, in memory-bound mode, we calcu-

late the latency as the memory footprint size divided by the off-chip bandwidth. In Blackbox

baseline, we fill a lookup table with latency values for all layer types and dimensions with a

quantization of 16 obtained with the hardware simulator, and retrieve these values during

architecture search using nearest-neighbor interpolation.

Search Space

The cell architecture and search space are inspired by the DARTS architecture [Liu et al., 2019]

with a few minor modifications. In all search and training stages, the candidate architecture

consists of a preparatory block, k stack of cells, and a fully connected classifier. Each cell is a

multigraph whose edges represent different operators, including depthwise separable, dilated,

and standard convolutional layers as well as identity and zero operations corresponding to

residual and no connections, respectively. Candidate kernel sizes for all convolutional layers

are 3×3 and 5×5. Each cell has two input nodes connected to the output nodes of two previous

cells. Each convolution operation has a stride of 1 and is followed by batch normalization

and ReLU activation functions. The channel search space corresponds to a dimension range

of 64 to 280 with increments of 8. For CIFAR10, we use a stack of three cells (k = 3), each

of which is followed by a 2×2 maxpooling layer. To accomodate the increased complexity

of ImageNet100, we use a stack of nine cells (k = 9), where only one of every three cells is

followed by maxpooling. More details about the search space are given in appendix.

NAS settings

During the microarchitecture and channel search stages, the first 80% of the batches of each

epoch is used to train model weights, while the last 20% is used to train the architectural pa-

rameters using a batch size of 64. The weights are optimized with Stochastic Gradient Descent

(SGD) with learning rate 0.05, momentum 0.9 and weight decay 3e −4, while the architectural

parameters use Adam [Kingma & Ba, 2015] with learning rate 0.1. The microarchitecture

and channel search stages last 10 and 30 epochs, respectively. To improve convergence, the

48

Utilization-Aware Neural Architecture Search Chapter 4

0.00 0.05 0.10 0.15 0.20 0.25
Runtime(ms)

84

86

88

90

92

Ac
cu

ra
cy

(%
)

U-Boost
FLOPS
Roofline
Lookup Table

Figure 4.4: Experiments on CIFAR10 dataset. Upper left corner is optimal. The dashed lines
connect the points in the Pareto Front of each method.

temperature parameter τ of the Gumbel-Softmax is annealed exponentially by 0.95 per epoch

from the initial value of 1. For fairness, we use the same NAS algorithm and hyperparame-

ters for all baselines and the proposed method. After the search stages are completed, the

selected DNN architecture is trained from scratch. In CIFAR10 experiments, we train the

models for 200 epochs with a batch size of 64 using the original image resolution of 32×32. In

ImageNet100 experiments, we train the models for 70 epochs with a batch size of 256 using

an input resolution of 128×128. For both datasets, we use a preprocessing stage consisting of

normalization, random crop and vertical flip.

Metrics

For all experiments, we report top-1 classification accuracy from the test datasets. Runtime

and utilization values are measured by running the DNN models on our custom-made cycle-

accurate hardware simulator. Correctness of our hardware simulator is validated against an

RTL design of a systolic array architecture. During the hardware simulations, we assumed an

array size of 128×128 as in Cloud TPUv4 [Jouppi et al., 2020] with a 15 MB on-chip memory and

an 80 GB/s off-chip memory bandwidth and 1 GHz clock frequency. To quantify the trade-off

between accuracy and latency, we calculate the hypervolume score [Zitzler & Thiele, 1999],

which is calculated as the volume of the union of axis-aligned rectangles from each point in a

Pareto front [Désidéri, 2012]. We select the reference point to calculate the hypervolume score

as the perfect oracle: 100% accuracy with zero runtime. Consequently, lower scores indicate

design points that are close to the ideal.

49

Chapter 4 Utilization-Aware Neural Architecture Search

xl−1 xl−2

+ +

+

xl

U-Boost

xl−1 xl−2

+ +

+

xl

FLOPS

Convolution Depthwise Separable Convolution

Dilated Convolution

Zero

Identity+ Tensor addition

Figure 4.5: Visualization of the CIFAR10 cells obtained from U-Boost and FLOPS models
during the microarchitecture search stage.

4.3.1 CIFAR10 experiments

To evaluate the proposed method on CIFAR10 dataset, we set the utilization coefficient β = 1

in Equation 4.3 and vary the latency coefficient λ ∈ {0.1,0.5,1,5} for all baselines to control

accuracy-latency trade-off. Figure 4.4 shows the accuracy and latency of the DNN architectures

found by the proposed method and baselines. We observe that U-Boost significantly improves

the accuracy-latency Pareto front with a 2.8−4× speedup in runtime compared to baseline

methods while achieving comparable accuracy. The improvement in the Pareto front is also

reflected in the hypervolume metric: U-Boost has a hypervolume of 0.39 whereas FLOPS,

Roofline, and Blackbox baselines have hypervolumes of 2.68, 1.86, and 1.47, respectively,

corresponding to an improvement in the range of 3.7−6.8×.

The reason why U-Boost achieves better accuracy-latency Pareto front is mainly because the

selected cell microarchitecture and channel dimensions are well-suited for the target inference

platform. To validate this insight, we analyze and compare the cell microarchitecture and

channel dimensions selected by U-Boost and other baselines. Figure 4.5 depicts examples

of cell microarchitectures selected by U-Boost and FLOPS baseline. We observe that the cell

microarchitecture selected by FLOPS baseline mostly consists of depthwise separable convo-

lutional layers because they require a smaller number of operations. However, these layers

run at low utilization at the inference platforms, which increases their latency. By contrast,

the cell microarchitecture selected by U-Boost consists of standard or dilated convolutional

layers because U-Boost is utilization-aware and it chooses layers that run at higher utilization

in target platforms, reducing the latency.

50

Utilization-Aware Neural Architecture Search Chapter 4

32 64 96 128 160 192 224 256
Number of output channels

0

10

20

30

40

50
H

is
to

gr
am

U-Boost

Blackbox

FLOPS

Utilization

0

20

40

60

80

100

U
ti

liz
at

io
n

(%
)

Figure 4.6: Histogram of channel dimensions found by U-Boost as well as FLOPS and Blackbox
baselines on CIFAR10 dataset.

Besides the cell microarchitecture, we also analyze the channel dimensions selected by the U-

Boost and other baselines. Figure 4.6 shows the histogram of channel dimensions selected by

U-Boost, FLOPS, and Blackbox baselines. We observe that the channel dimensions selected by

FLOPS and Blackbox baselines are mostly concentrated on each end of the search space, which

is bounded by channel dimensions of 64 and 280, rather than dimensions that correspond to

high utilization. As a consequence, DNN architectures with such layers run at low utilization in

target inference platforms. Unlike FLOPS and Blackbox baselines, we observe that the channel

dimensions selected by U-Boost are concentrated on either 128 or 256, which are multiples of

the array size and correspond to high utilization. As such, the DNN architectures selected by

U-Boost run at high utilization, accelerating the inference at target platforms.

4.3.2 ImageNet100 experiments

To show the effectiveness of the proposed method on a more complex dataset, we also perform

a set of experiments on ImageNet100. For this set of experiments, we set the latency coeffi-

cient λ ∈ {0.1,1.0,5.0} to control the accuracy-latency tradeoff. Table 4.2 reports the results of

these experiments. We observe that FLOPS and Roofline baselines result in poor inference

hardware utilization (< 10%) as they estimate hardware performance inaccurately during the

architecture search. The second best method in terms of utilization, namely Blackbox, im-

proves the hardware utilization to 69% as it can estimate the hardware performance accurately

during the search. Still, around 30% of hardware resources remain unutilized during inference

as the Blackbox method can not find the optimal channel dimension since it operates on a

discrete search space and is unable to exploit gradient information to successfully navigate

the search.

51

Chapter 4 Utilization-Aware Neural Architecture Search

By contrast, the proposed U-Boost method, which both estimates the hardware performance

accurately and uses the information from gradients to find the optimal cell microarchitecture

and channel dimensions, achieves inference hardware utilization up to 91%, which is 1.3×
higher than the second best baseline. Consequently, DNN architectures obtained with U-

Boost achieve the best top-1 accuracy (87.9%), which is 0.1%, 0.7%, and 1.4% higher than the

best of Blackbox, FLOPS, and Roofline baselines, respectively, while achieving speedups of

2.1× and 3.3× compared to the second best baselines across λ values. These results reiterate

the importance of incorporating and correctly modeling utilization in hardware-aware NAS.

Table 4.2: Experimental results for ImageNet100 experiments. Underlined measurements
show best per column (λ), bold show best per metric. Number of parameters reported in
millions.

Accuracy (%,↑) Runtime (ms,↓) HV (↓)

λ = 0.1 λ = 1.0 λ = 5.0 λ = 0.1 λ = 1.0 λ = 5.0 (across λ)

Blackbox 87.5 87.8 87.9 4.8 4.05 3.8 45.98

Roofline 86.5 84.0 74.2 4.7 3.5 2.9 100.62

FLOPS 87.2 78.4 80.2 6.1 3.45 3.42 102.02

U-Boost 87.8 87.9 86.3 2.2 1.05 0.77 13.94

4.3.3 Sensitivity to array size

In the experiments so far, we assumed an array size of 128×128 due to its adoption in commer-

cially available DNN accelerators [Jouppi et al., 2021]. However, in Chapter 3, we showed that

the utilization is highly sensitive to the array size. Therefore, we also investigate the proposed

method’s sensitivity to the array size of the target DNN accelerators. For this purpose, we

repeat our experiments on CIFAR10 for varying array sizes and measure the speedup that

we obtain using the proposed U-Boost method over the FLOPS baseline. We measure the

speedup by comparing the runtimes of these two methods’ Pareto fronts at the classification

accuracy of 91%.

Figure 4.7 shows the speedups obtained for various array sizes including the optimal array

size that we found in Chapter 3, namely 32× 32. In Chapter 3, we made the observation

that the systolic architectures with smaller arrays sizes suffer less from the underutilization

problem. Aligned with this observation, the speedup that we achieve using the proposed

U-Boost method decreases with the array size from 4.2× at the array size of 128×128 to 1.3×
at the array size of 32×32. Nevertheless, this experiment shows the importance of utilization-

aware neural architecture search as the proposed U-Boost method improves the runtime of

DNN inference by a factor of 1.3× even on a systolic array that is optimized for utilization.

52

Utilization-Aware Neural Architecture Search Chapter 4

32x32 64x64 96x96 128x128
Array size

0

1

2

3

4

5

Sp
ee

du
p

1.3x
1.7x

2.6x

4.2x

Figure 4.7: Speedups obtained using U-Boost over the FLOPS baseline for various array sizes.

4.4 Conclusion

In this chapter, we have illustrated the importance of resource utilization in runtime character-

istics on target inference platforms. We demonstrated that by optimizing DNN architectures

in terms of resource utilization as well as task accuracy and latency, we achieve significant

improvement in accuracy-latency Pareto front. We proposed a utilization-aware differentiable

neural architecture search method, namely U-Boost. We provided an analytical model for

resource utilization in widely used array-based hardware accelerators, which allows estimating

the utilization efficiently and accurately during the architecture search. Through extensive

experiments on popular computer vision datasets and detailed hardware simulations, we

showed that the proposed U-Boost NAS method achieves 2.8−4× inference latency speedup

with similar or improved accuracy, compared to utilization-agnostic methods. This work high-

lights the importance of a holistic approach for hardware-aware neural architecture search

method and the proposed method enables the design of DNNs with improved performance in

inference accelerators.

53

5 Flexible Channel Dimensions for Dif-
ferentiable Architecture Search

5.1 Introduction

In Chapter 4, we showed that neural architecture search can effectively find DNN architectures

that maximize resource utilization on target inference platforms. When we investigate the

DNN architectures found by U-Boost, we observe that the channel dimensions (i.e., the

number of features in the input and output of DNN layers) are equal to the multiples of the

array dimensions as expected. This was possible because we deliberately design the search

space of U-Boost to include the channel dimensions with maximum resource utilization using

our domain knowledge on systolic arrays. However, the reliance on the domain knowledge

and the requirement of a manually designed search space partially defeat the purpose of

automatic search of DNN architectures. Therefore, in this section, we focus on developing

a neural architecture search method that can find optimal channel dimensions without the

need for manually designing the search space for channel dimensions.

The channel dimensions of DNN architectures do not only influence the resource utilization

in systolic arrays but also other performance metrics (e.g., latency) of inference platforms

in general. On the one hand, larger channel dimensions correspond to DNNs with more

parameters and often lead to higher accuracy in the given task. On the other hand, DNNs with

larger channel dimensions require more computation and memory to perform the inference

task. As such, designers need to carefully tune the channel dimensions of DNN architectures

to achieve the desired accuracy under the given resource constraints of the target inference

platforms.

Many of the widely popular DNN architectures such as Alexnet [Krizhevsky et al., 2012],

ResNet [He et al., 2016], and InceptionNet [Szegedy et al., 2016] have channel dimensions that

follow a specific design pattern, where the channel dimensions are increased with the depth

of the network by doubling them in certain layers. However, this design pattern has been

created heuristically and does not necessarily correspond to the optimal design choice. In fact,

prior work [Gordon et al., 2018] has demonstrated that optimizing the channel dimensions

of DNN layers individually using an iterative process can improve the accuracy significantly.

55

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

Figure 5.1: Prior work’s search space for channel dimensions [Wan et al., 2020]. Rows corre-
spond to the channel range (between 0 and 200) of the layers in FBNetv2-F4. Ticks denote the
options for channel dimensions and red circles represent the channel dimensions found.

Moreover, other neural architecture search methods also adopt iterative optimization algo-

rithms such as Bayesian optimization [Bergstra et al., 2011] and Evolutionary Algorithms (e.g.,

Nevergrad [Rapin & Teytaud, 2018]). Unfortunately, such iterative process requires several

costly trials where the networks need to be trained for a number of epochs, which has an

overwhelming computational complexity.

To mitigate the high computational cost of iterative optimization frameworks, prior work

proposed differentiable neural architecture search methods, which allows to optimize the

architectural parameters that define the properties of network in a single training run [Liu

et al., 2019; Wu et al., 2019]. Compared to the iterative optimization frameworks, differentiable

neural architecture search methods achieve a reduction in computational cost by a factor

of 2-3 orders of magnitude. This brings down the cost of DNN architecture optimization

to only a few GPU-hours [Dong & Yang, 2019a] and make it available for a wide range of

applications. While the early differentiable methods mostly focused on searching for cell

structures (i.e., basic building blocks of a DNN architecure) [Liu et al., 2019; Wu et al., 2019],

the substantial improvement in efficiency also encouraged researchers to apply the same

principles in the search for channel dimensions, giving rise to the differentiable frameworks

such as DMaskingNAS [Wan et al., 2020] that can search channel dimensions efficiently using

a gradient descent optimizer.

Despite their potential to find optimal channel dimensions with great efficiency, the existing

differentiable neural architecture search frameworks require a well-designed search space.

Figure 5.1 shows the search space of an existing differentiable neural architecture search

framework for channel dimensions [Wan et al., 2020]. We observe that the channel ranges in

56

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

this search space are narrowed down to a few options out of a wide range using heuristics, while

allowing only a limited degree of freedom for the optimizer. Unfortunately, determining the

channel range of each layer is nontrivial as it requires expert knowledge on DNN architectures.

Also, the resulting search space is specific to the problem that it is designed for, so it may not

be transferable to the settings with different objectives and constraints. Moreover, when we

investigate the channel dimensions found within this search space, as shown by red circles

in Figure 5.1, we observe that many channel dimensions are located at the boundary of the

search space, which indicates that the optimal channel dimensions mostly lie outside of the

engineered search space, resulting in a DNN architecture that does not correspond to the

optimal solution for the given objectives and constraints.

A trivial solution to the problems inherent to the fixed search space would be to choose

excessively large channel ranges in order to increase the likelihood of finding the optimal

channel dimensions. However, expanding the range would require training a larger supernet,

which would linearly increase the amount of computation to be performed during the search.

As a result, the trivial solution of excessively expanding the channel range would exacerbate the

computational cost of the search. Therefore, the fixed search space in the existing differentiable

neural architecture search frameworks are either unpractical or computationally inefficient

while searching for the optimal channel dimensions.

In this chapter, we propose a novel differentiable neural architecture search framework that

searches optimal channel dimensions within a flexible range. We reformulate the problem

of differentiable channel search to enable adapting the search space freely and seamlessly

based on the progress during the search phase. Moreover, we also propose a novel dynamic

channel allocation mechanism that appends new channels to the layers of the supernet and

frees those that are no longer used in order to reduce memory size and increase the efficiency

of the search. Our experiments show that the proposed differentiable neural architecture

search framework finds optimal channel dimensions for DNN architectures without any need

for a manually-engineered search space and with faster search time than existing channel

masking methods with fixed ranges.

The rest of this chapter is organized as follows: We first give a background information on the

differentiable channel masking method, which is the basis of our work. We then elaborate on

the proposed FlexCHarts method as well as our novel dynamic channel allocation mechanism.

Then, we give the details of our experiments and discuss the results. Finally, we conclude this

chapter with a summary.

5.2 Differentiable Channel Masking

In standard search methods, each candidate channel dimension requires an additional con-

volutional kernel in the supernet, which increases the computational cost and memory re-

quirements of the search linearly with the number of channel options. The channel masking

method, on the other hand, simulates various candidate channel dimensions on a single

57

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

𝐶
𝐶

… =

𝐹
𝑊!

𝑊"

𝑋 𝑌 ×

×𝛼#

×𝛼!

×𝛼$

+…

+

…

𝑓!

𝑓"

𝐹
𝐶

∗ = 𝑌)𝑚$

𝑚!

𝑚#

Convolution Channel Masking

Figure 5.2: Illustration of a convolutional operation followed by channel masking to simulate
various output channel dimensions.

overparameterized kernel, incurring only minimal computational overhead. Because of its

computational efficiency, we use the channel masking method as a basis for the proposed

framework.

Let us assume that we have K candidate channel dimensions for the output of a convolutional

layer where { fk | fk ∈Z,k ∈Z,1 ≤ k ≤ K } denotes the set of possible channel dimensions. The

channel masking method defines a set of trainable parameters {αk |αk ∈R,1 ≤ k ≤ K }, where

αk corresponds to the weight assigned to the channel dimension fk .

Figure 5.2 illustrates how the output of a convolutional layer with multiple candidate chan-

nel dimensions is calculated with the channel masking method. Let us assume that input

activation (X) and weight (W) tensors have channel dimensions of C and the output of the

convolutional operation (Y) has a channel dimension of F , which is equal to the number of

filters. The channel masking method exploits the fact that any convolutional layer with an

output channel dimension fk that is smaller than F can be obtained simply by selecting fk

channels from Y and masking out the rest. For this purpose, the channel masking method

instantiates a set of masks {mk | k ∈Z,1 ≤ k ≤ K }, where mk = (1) fk

i =1 ∪ (0)F
i = fk+1. In other words,

the first fk elements of mk are one whereas the remaining elements are zero; thus, the mk

allows selecting the first fk channels of Y and zeroes out the channels that are greater than fk .

During the search phase, the DMaskingNAS method multiplies the output activation Y by the

masks mk and calculate Ŷ , which is the weighted sum of the output of simulated layers with

various channel dimension using the following formula:

Ŷ =
K∑

k=1
gτ(αk)mk Y (5.1)

where gτ is a Gumbel softmax function with the temperature constant τ that maps the α

58

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

values between 0 and 1 [Wan et al., 2020]. The expression in Equation 5.1 can be simplified by

taking Y out of the summation, reducing the overhead of masking to only a weighted sum of

low-dimensional masks. Therefore, the channel masking method simulates multiple channel

dimensions with negligible computational overhead.

During the search phase, the channel masking method updates the α values with a gradient

descent optimizer by minimizing the following loss function:

min
α

min
W

Lacc (Nα,W (x), y)+λLl atenc y (Nα,W) (5.2)

where Nα,W represents the supernet, and x and y represent training samples and ground-

truth, and Lacc and Ll atenc y represent the loss functions for classification accuracy and

latency, respectively. The coefficient λ controls the trade-off between accuracy and latency. As

suggested by the prior work [Liu et al., 2019], the loss function is minimized by calculating

the gradients using a first-order approximation in order to reduce the computational cost of

the search. At the end of the search phase, the final channel dimensions are selected as the

channel dimensions that correspond to the maximum αi , where i = argmax
k

αk .

The channel masking method allows searching for channel dimensions among various options

with minimal computational overhead. However, the standard channel masking methods

proposed in prior work can search only within a fixed range of channel dimensions [Wan

et al., 2020], which hinders its effectiveness and practicality. Thus, in the next section, we

introduce FlexCHarts, which is a differentiable channel masking method that allows searching

for channel dimensions in a flexible range.

5.3 FlexCHarts

To enable searching for channel dimensions in a flexible range, in this section, we first in-

troduce the flexible channel masking method, which reformulates the α variables in order

to permit to change the range of channel dimensions as the search progresses. Then, we

elaborate on our dynamic channel allocation mechanism, which modifies the supernet to

accommodate the changes in the channel dimension ranges during the search.

5.3.1 Flexible channel masking

Despite its computational efficiency, the vanilla channel masking method can search only

within a fixed range of channel dimensions. To overcome this limitation, FlexCHarts refor-

mulates the α variables in such a way that the channel dimension range can be changed

on-the-fly during the search while still benefiting from the computational efficiency of the

vanilla channel masking method. Instead of defining each αk as an independent variables

59

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

36 72 108 144 180
Channel dimensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 v
al

ue
s

Epoch: 1

36 72 108 144 180
Channel dimensions

Epoch: 50

(a) Vanilla channel masking.

0 50 100 150 200
Channel dimensions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 v
al

ue
s

Epoch: 1

0 50 100 150 200
Channel dimensions

Epoch: 50

(b) FlexCHarts.

Figure 5.3: An example of α values in vanilla channel masking method versus the proposed
FlexCHarts methods between the first and last epoch of a search.

as in the vanilla channel masking method, we define αk as a smooth function of the channel

dimension that it corresponds to, where it has the highest value at the center and close to zero

at the edges of the range. While various smooth functions would be equally applicable, we

used the following exponential function to define αk in this work due to its simplicity:

αk = exp(−1

2
(

fk −µ

σ
)2) (5.3)

where µ and σ are the mean and standard deviation of the exponential function. The formula-

tion given above differs from the vanilla channel masking method in the sense that α is no

longer a trainable variable. Instead, the proposed flexible channel masking method defines

µ as the trainable variable and derives the α values from the exponential function given in

Equation 5.3. This formulation smoothly adapts theα values to different channel ranges based

on the information on the gradients of µ.

60

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

Figure 5.3 shows an example of how α values change in vanilla channel masking and Flex-

CHarts between the first and last epochs of a search. In vanilla channel masking method, as

shown in Fig. Figure 5.3a, α values are initialized randomly. During the search, the α values

are updated independently and eventually in the last epoch, the α value that corresponds

to the optimal channel dimension becomes significantly higher than the others, setting the

channel dimension for the final architecture. In contrast, the α values in FlexCHarts, as shown

in Figure 5.3b, are taken from the exponential function given in Equation 5.3 (shown with red

dashed line in the figure). The mean value of the exponential function is updated at every step

of the search phase, gradually shifting the α values towards the optimal channel dimension.

The proposed reformulation of α variables in Equation 5.3 has two main advantages. First, the

given expression is already differentiable; thus, it eliminates the need for tuning additional

optimization hyperparameters such as temperature and noise in Gumbel softmax to make the

optimization amenable to solution with gradient descent as in the prior work [Wan et al., 2020].

Second, thanks to αk values that are close to zero at the edges of the range, shifting the range

to larger or smaller values gently introduces the new parameters to the kernels, preventing

abrupt changes in the loss value that would otherwise be detrimental to the search process. In

short, the proposed formulation of α variables is more efficient, flexible and easier to tune

than the vanilla channel masking method. Thus, it provides a better solution for searching

optimal channel dimensions in DNN architectures.

5.3.2 Dynamic channel allocation

In vanilla channel masking method, the supernet kernels do not require any dimension

changes during the search phase as the channel range remains as the same. However, with the

reformulation of the α variables in FlexCHarts that permits to change the channel dimension

range as the search progresses, the dimensions of the supernet kernel must also be efficiently

adapted during the search phase. In this section, we elaborate on how we modify the supernet

kernels for dynamic channel dimension range.

Supernet kernels in channel masking methods must have a number of channels equal to or

greater than the maximum of the channel dimension range. Therefore, when the range of the

channel dimensions shifts to higher values, we need to instantiate a larger supernet kernel.

Likewise, when the range of channel dimensions shifts to smaller values, a part of the supernet

kernel becomes redundant due to multiplication with an αk value that is close to zero and is

therefore no longer needed. As such, we can reduce the memory footprint and improve the

computational efficiency of the search by switching to a smaller supernet kernel. To adjust the

dimensions of the supernet kernels based on the changes in the channel dimension range, we

introduce the dynamic channel allocation algorithm.

There are two critical design considerations for the dynamic channel allocation algorithm.

First, changing the supernet kernels should have minimal impact on the on-going search to

prevent loss of progress. Second, allocating new channels should incur only an insignificant

61

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

Supernet Nα,W with parameters W and α;
Optimizer weight optimizer Ow , arch optimizer Oa ;
Dataset training: D t , search: Ds ;
Initialize;
for all epoch e do

for all steps s do
Read training batch bt ← D t ;
Backpropagate Nα,W with bt ;
Update W ←Ow ;
Read search batch bs ← Ds ;
Backpropagate Nα,W with bs ;
Update α←Oa ;

end
Update channel dimensions of Nα,W ;

end
Algorithm 2: FlexCHarts algorithm for channel dimension search with dynamic channel
allocation.

computational overhead. To achieve the first condition, when the proposed dynamic channel

allocation algorithm changes the dimensions of a kernel, it transfers the trained weights of

the old kernel to the new one where applicable, which preserves the progress made in earlier

training steps. For the latter objective, the proposed algorithm shall not react to changes in αk

values in every step. Instead, it waits until the end of an epoch to perform the changes to the

supernet kernels to reduce the computational overhead. Altogether, the proposed dynamic

channel allocation algorithm enables changing the dimensions of the supernet kernel with

minimal impact on the search process and negligible computational overhead.

In more details, the dynamic channel allocation proceeds as described in Algorithm 2. The

algorithm takes a supernet Nα,W with weights W and channel parameters α as inputs, as well

as the gradient descent optimizers Ow and Oa to update the weights and channel parameters,

respectively. It also takes three datasets as inputs: equally sized D t and Ds to train the weights

and channel parameters, respectively. In each step of the algorithm, it reads a batch of samples

from D t , performs a backpropagation on the supernet, and updates the weights. Then, it

repeats the same steps for channel parameters by reading a batch from Ds , performing a

backpropagation, and updating them. When the same operations are performed for all

samples in datasets D t and Ds , it updates the channel dimensions of the supernet based on

the changes made to α values. We repeat the same operations for a predefined number of

epochs.

In short, the proposed FlexCHarts algorithm permits to search for optimal channel dimensions

in a flexible channel dimension range while automatically managing the changes in the

supernet with minimal computational overhead.

62

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

5.4 Experiments

We now show the effectiveness of the proposed method through a number of experiments. In

this section, we first give details about the search space, datasets, and hyperparameters that

we use in the experiments, then we compare the proposed FlexCHarts method against the

baseline methods through extensive experiments and discuss the results.

5.4.1 Experimental setup

We perform experiments on a widely used image classification dataset, namely CIFAR10
[Krizhevsky, 2009] with a preprocessing pipeline for training that consists of a random crop

of the input image with a size of 32 and padding of 4, random horizontal flip, normalization,

and a cut-out with a length of 16 [DeVries & Taylor, 2017]. For the validation and test phases,

we use only a normalization layer in the preprocessing pipeline. We use a batch size of 96

for both the search and training phases. We perform all the experiments on an NVIDIA Tesla

V100-SXM2 GPU with a 32GB memory.

For the search phase, we randomly split the training data set into two equally sized subsets to

train the weights and channel parameters separately. We use a stochastic gradient descent

(SGD) optimizer with a momentum coefficient of 0.9, a weight decay of 3e −4, a gradient clip

of 5 to train the weights. We initialize the learning rate of the SGD optimizer to 0.025 and

anneal it every step with a cosine annealing scheduler down to 0 at the end of the last step.

We use an Adam optimizer [Kingma & Ba, 2015] with a learning rate of 0.1, running average

coefficients of 0.5 and 0.999, and a weight decay of 0 to train the channel parameters. We use

a dropout with a probability that starts at 0 and linearly increases to 0.2 until the end of the

last step. The search phase takes 50 epochs to complete. After the search phase is completed,

we train the DNN architecture with the discovered channel dimensions from scratch for 100

epochs to obtain its final accuracy. We also use an SGD optimizer in the training phase with

the same hyperparameters as for the search phase.

As widely adopted by the community [Liu et al., 2019; Wu et al., 2019; Wan et al., 2020], we

use a fixed stem and head stages at the beginning and end of our DNN architectures while we

are searching for the optimal channel dimensions for the intermediate stages. The stem and

head stages consist of convolutional blocks with kernel sizes of 3×3 and 1×1 and channel

dimensions of 108 and 256, respectively. The intermediate block consists of 20 stages, each

with a microarchitecture identical to the DARTS architecture [Liu et al., 2019]. Each stage may

have different channel dimensions as a result of the search phase while all the layers in a stage

share the same channel dimension. For the training phase, we also use an auxiliary head that

consists of three fully-connected layers with an auxiliary weight of 0.4 as proposed by the prior

work [Liu et al., 2019].

63

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

Table 5.1: Results of the DMaskingNAS and FlexCHarts methods targeting low and high-
resource scenarios. Check and cross marks indicate whether the requirement is satisfied or
not.

Evaluation Search

Scenario
Search Top-1 acc. Latency FLOPS Search time Search

algorithm (%) (ms) ×109 (GPU-hours) memory (GB)

Low-resource
(<0.3ms latency)

DMask-small 95.62 0.366 () 0.258 2.63 10.3
DMask-large 93.40 0.288 () 0.095 5.75 28.3
FlexCHarts 94.10 0.287 () 0.093 3.36 16.6

High-resource
(>96% accuracy)

DMask-small 95.67 () 0.452 0.433 2.74 12.0
DMask-large 96.06 () 0.606 0.736 5.78 28.3
FlexCHarts 96.04 () 0.654 0.773 4.37 19.1

5.4.2 Performance of the differentiable channel search

To evaluate the effectiveness of the proposed FlexCHarts method, we first compare it against

the DMaskingNAS method, which has a fixed search space. Because the effectiveness and

efficiency of DMaskingNAS method is highly sensitive to their predefined range of channel

dimensions, we create two baselines that represent DMaskingNAS methods with small and

large range of channel dimensions, which we simply refer to as DMask-small and DMask-large.

The details of these search spaces are deferred to Section B.1.

To mimic target inference platforms with different resource constraints, we perform our

experiments under low- and high-resource scenarios. For the low-resource scenario, we

prioritize the computational requirements of the searched DNN architectures and target an

inference latency under 0.3 millisecond per sample. In contrast, for the high-resource scenario,

we prioritize the accuracy and aim for DNN architectures that achieve a top-1 test accuracy

higher than 96% on CIFAR10. We adjust the latency coefficients (i.e., λ in Equation 5.2) to

fulfill these accuracy and computational complexity requirements.

Table 5.1 summarizes the results of our experiments with the FlexCHarts, DMask-small, and

DMask-large methods under the low- and high-resource scenarios. For the low-resource

scenario, while the DMask-small method has the highest top-1 accuracy and lowest search

time and memory, it fails to find a DNN architecture that achieves the target of 0.3 millisecond

inference latency per batch due to its limited channel range. The DMask-large and FlexCHarts

methods succeed to find DNN architectures that achieve the given inference latency target.

However, the DMask-large method requires 5.75 GPU-hours and 28.3 GB of memory to find

the DNN architecture as it needs to train a larger supernet whereas the FlexCHarts method

finds an equivalent architecture only in 3.36 GPU-hours and using 16.6 GB of memory.

The FlexCHarts method also outperforms the DMaskingNAS method in the high-resource

scenario. Due to its limited range of channel dimensions, DMask-small fails to find a DNN

architecture that is large enough to achieve a top-1 accuracy greater than 96%. In contrast,

64

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

0.5 1.0 1.5
GFlops

91

92

93

94

95

96

To
p-

1
Ac

cu
ra

cy
 (%

)

FlexCHarts
WideResnet-22
EfficientNet

Figure 5.4: Accuracy on CIFAR10 versus computational complexity in terms of FLOPS for DNN
architectures found by FlexCHarts as well as the baseline WideResnet and EfficientNet models.

both DMask-large and FlexCHarts methods are able to find DNN architectures with the target

accuracy requirements. Similarly to the low-resource scenario, the DMask-large method

requires 5.78 GPU-hours and 28.3 GB of memory to achieve this goal whereas the FlexCHarts

method finds an equivalent DNN architecture in 4.37 GPU-hours and using 19.1 GB of memory.

These experiments clearly show that the proposed FlexCHarts method can find the channel

dimensions that meet the requirements of varying resource constraints and optimization

goals without the restrictions of a fixed search space. Moreover, it does not require to train a

redundantly large supernet, thus it searches for the channel dimensions efficiently with lower

GPU-hours and memory requirements than the DMaskingNAS methods.

5.4.3 Comparison with other dimension adaptation methods

We now proceed with the experiments that compare the proposed FlexCHarts method against

other channel dimension scaling methods. For this purpose, we use the following baselines:

WideResnet architectures [Zagoruyko & Komodakis, 2016], which proposes to scale DNN

architectures by simply multiplying its channel dimensions by a predetermined coefficient,

and EfficientNet architectures [Tan & Le, 2019], which proposes compound scaling, in which

the depth and width are scaled uniformly by a coefficient.

In these experiments, we use WideResnet with a depth of 22 and width factors of 1, 2, and

4 and EfficientNet with its four largest variants, namely B6, B7, B8, and L2, which requires

a similar range of FLOPS with the DNN architectures found by FlexCHarts. To eliminate

the performance discrepancies caused by differences in their implementations, we compare

their computational complexity in terms of FLOPS. For different search runs with FlexCHarts,

we used the latency coefficients (λ) varying between 1e − 3 and 1e − 1. We train all DNN

architectures using the same training parameters given in Section 5.4.1.

65

Chapter 5 Flexible Channel Dimensions for Differentiable Architecture Search

Table 5.2: Comparison of DMaskingNAS and FlexCHarts for utilization-aware search.

Util-aware Util. Search time Search Top-1 FLOPS Latency
(%) (GPU-hours) mem. (GB) acc. (%) ×109 (ms)

DMask No 72.6 7.85 31.3 93.34 0.74 0.99
DMask Yes 93.6 7.79 31.3 93.05 1.11 1.15

FlexCHarts No 81.9 5.21 15.2 94.0 0.78 0.93
FlexCHarts Yes 92.8 5.15 17.8 94.03 0.91 0.96

Figure 5.4 shows the top-1 accuracy and FLOPs requirements of the DNN architectures found

by the proposed FlexCHarts method as well as the baseline methods. Because FlexCHarts can

automatically search the optimal channel dimensions within a flexible range, the architectures

found by FlexCHarts achieve between 0.5-1% and 2-4% better accuracy than WideResnet

and EfficientNet for similar FLOPS requirements, respectively. Moreover, the effectiveness

of the channel scaling methods used in WideResnet and EfficientNet is highly sensitive to

the design of initial DNN architectures, which requires heuristics and manual development

efforts. In contrast, the proposed FlexCHarts method finds channel dimensions that achieve

better accuracy and/or FLOPS and it does so completely in an automatic fashion.

5.4.4 Channel search for improved resource utilization

We have so far evaluated FlexCHarts on accuracy, latency, and FLOPs metrics. In Chapter 4, we

have shown that a utilization-aware neural architecture search finds DNN models that exhibit

improved resource utilization at target array-based accelerators, which consequently leads

to better accuracy and/or latency. Therefore, we now evaluate FlexCHarts with an objective

function that includes a utilization term as in Equation 4.3. We perform an architecture

search with FlexCHarts and DMaskingNAS using the cell structure that we found in Chapter 4.

For the channel range of DMaskingNAS, we use a channel range similar to what we use in

Chapter 4, which is shown in Section B.1. We use the analytical model for systolic arrays that

we developed in Chapter 4 to estimate the utilization and latency terms during the search

while assuming an array size of 32×32 following our analysis in Chapter 3. We finally use the

cycle-accurate systolic array simulator that we introduced in Chapter 3 to obtain the latency

and utilization of the DNNs that are found by FlexCHarts and DMaskingNAS.

Table 5.2 summarizes the results of experiments for the utilization-aware search. We observe

that both DMaskingNAS and FlexCHarts methods find DNN architectures with similar resource

utilizations, namely 93.6% and 92.8%, which is about 10-20% higher than the DNNs found by a

utilization-agnostic search. However, the FlexCHarts completes the search in 5.15 GPU-hours

using only 17.8 GB of memory, which is 1.5× faster and 40% more memory efficient than the

DMaskingNAS method thanks to its flexible search space.

66

Flexible Channel Dimensions for Differentiable Architecture Search Chapter 5

5.5 Conclusion

In this chapter, we addressed the limitations of neural architecture search methods that have

fixed search space for channel dimensions. We reformulated the architectural variables in the

differentiable channel masking method to enable searching for channel dimensions smoothly

and freely without a fixed range. We also introduced a new dynamic channel allocation

mechanism that allows changing the dimensions of the supernet efficiently during the search.

Through extensive experiments, we demonstrated that the proposed FlexCHarts framework

finds optimal channel dimensions for DNN architectures under various resource constraints

and performance objectives without the limitations of the existing methods with fixed search

spaces. Moreover, it searches the optimal channel dimensions faster and with reduced memory

requirements than the existing methods.

67

6 Conclusions

6.1 Summary

In this thesis, we addressed the underutilization problem in DNN inference accelerators from

both hardware and software perspectives. We first studied the multi-pod systolic architectures

for DNN inference workloads. Then, we analyzed the characteristics of popular DNN work-

loads such as CNNs and Transformer and performed a design space exploration using the

effective throughput per Watt metric to find the optimal array dimensions. While the optimal

array size that we found is workload-dependent, this design space exploration is important to

understand the trade-off between power efficiency and utilization with respect to the array

dimensions in systolic architectures. It further demonstrates the gap between the existing

accelerators and the optimal design points. Moreover, the proposed design space exploration

is open-sourced: it can easily be used to determine the optimal array dimensions for any give

set of target DNN workloads and hardware specifications.

We then investigated how we can design a multi-pod systolic architecture using the optimal

array dimensions. To that end, we first analyzed various interconnect topologies in order to

efficiently connect large numbers of systolic pods. We showed that the expanded Butterfly

topology outperforms all other candidate topologies due to its high bisection bandwidth

and short round-trip latency. Then, we demonstrated that the existing tiling and scheduling

strategies do not exploit the degree of parallelism in DNN workloads to its full extent. Thus,

they fail to maintain high utilization for a large number of pods. Therefore, we also introduced

a novel tiling strategy that maximizes utilization in multi-pod systolic architectures. Based

upon our findings in array granularity, interconnect topology, and tiling strategy, we proposed

a novel scale-out systolic array architecture. Through extensive experiments with various

DNN workloads and detailed cycle-accurate hardware simulations, we demonstrated that the

proposed scale-out systolic array architecture achieves significantly higher resource utilization

than the existing architectures, paving the way for the development of faster and more efficient

DNN accelerators.

Despite the improvements in accelerator architectures, we observe that DNNs that are not

69

Chapter 6 Conclusions

optimized for the target accelerators still can not achieve high resource utilization. Thus,

we then focused on optimizing DNNs for target accelerators using hardware-aware neural

architecture search. For this purpose, we developed an analytical model for the resource

utilization in array-based DNN accelerators and proposed a smooth approximation that makes

it differentiable. We then developed a utilization-aware differentiable neural architecture

search framework, which builds DNNs with high resource utilization at target inference

accelerators. We demonstrated that the DNNs built with the proposed framework achieve

shorter inference latency and/or higher accuracy thanks to improved resource utilization,

allowing higher quality inference at reduced cost.

While the proposed framework can successfully find DNNs with high resource utilization, its

fixed search space imposes limitations on its efficiency and practicality. Therefore, we then

focused on improving the efficiency of the proposed neural architecture search framework

and addressing the limitations imposed by the common search space methods. To that end,

we reparametrized the architectural parameters of the channel masking method used in

differentiable neural architecture search frameworks. We proposed a novel differentiable

neural architecture search framework with flexible search space for channel dimensions,

which automatically updates the search space on-the-fly based on the progress made during

the search. We showed that the proposed framework with the flexible search space can find

DNNs equivalent to those that are found by the existing frameworks. However, this is achieved

without the need for manually designing a search space while significantly reducing the

required GPU-hours. Combined with the utilization-aware neural architecture search, the

proposed framework finally permits to obtain DNNs that exhibit high resource utilization at

target array-based accelerators at a reduced search cost in a fully automated manner.

In summary, this thesis makes contributions to the fields of DNN accelerators and architec-

tures. The proposed scale-out systolic array architecture and the utilization-aware differen-

tiable neural architecture search framework with the flexible search space offer significant

improvements in the resource utilization of the accelerators and the efficiency of neural

architecture search. These improvements will allow researchers and engineers to develop

more efficient and cost-effective DNN applications that can be deployed on a wider range of

platforms.

6.2 Future Directions

In Chapter 3, we targeted a generic DNN accelerator that works well for both computer vision

and natural language processing tasks. Thus, we selected a mixture of CNN and Transformer

models as benchmark to find the optimal array granularity. However, recent work has shown

that Transformer models can outperform their CNN counterparts in vision tasks as well [Doso-

vitskiy et al., 2021]. As a result, we observe that the usage of Transformers is rapidly increasing

in vision tasks, which will encourage researchers to develop DNN accelerators that are more

specialized to Transformer models. Although this thesis have already covered the optimal

70

Conclusions Chapter

array dimensions for NLP Transformer models, the three key design pillars that have been

discussed in this thesis should be reiterated for Vision Transformers considering their distinct

computational characteristics and requirements. Likewise, the utilization-aware neural archi-

tecture search framework that is presented in Chapter 4 should be adapted to Transformer

models in order to improve the resource utilization of inference accelerators for both Vision

and NLP Transformers.

While designing the SOSA, we have assumed that the DNN models fit on the on-chip memory

banks, which is a common and valid assumption due to the moderate size of today’s CNN

and Transformer models. However, in recent years, we have observed a significant increase in

the popularity and the size of language models such as OpenAI’s GPT-3 [Brown et al., 2020],

which do not fit on the on-chip memory of standard inference accelerators. As a result, the

efficiency of inference accelerators would drop due to frequent off-chip memory accesses.

To mitigate the overhead of off-chip memory accesses for the large language models, future

research should focus on three-dimensional integrated circuit (3D-IC) technologies [Li et al.,

2021b] to efficiently integrate memory and logic in inference accelerators.

In parallel with the increase in the size of the models, some companies develop wafer-scale

accelerators [Lie, 2021], which offer up to two orders of magnitude larger power envelope

and silicon area than today’s server form-factors. To scale the SOSA design to such large

settings, we need to rethink how the systolic pods are connected to each other. In this thesis,

we demonstrated that the Butterfly topology is ideal for standard server form-factors. However,

the wire lengths in a Butterfly topology grows with a logarithmic complexity with respect to

the number of pods and might incur long latencies for large numbers of pods in a wafer-scale

accelerator. As a result, the SOSA design with a Butterfly topology might not scale well to such

large settings. To overcome the limitations due to the wire lengths in the Butterfly topology,

future work should investigate the usage of a hierarchical interconnect topology, where a

different topology might connect the clusters of systolic pods that are far from each other in

the chip layout.

While searching for DNN models using neural architecture search, the task accuracy is natu-

rally one of the optimization objectives besides the resource utilization. However, prior work

has shown that adversarial perturbations may easily reduce a DNN’s accuracy to zero [Good-

fellow et al., 2015; Moosavi-Dezfooli et al., 2017]. Thus, finding DNN architectures with high

clean accuracy using neural architecture search does not guarantee that these DNNs can be

reliably deployed on real-world settings. Moreover, despite the research efforts in some recent

work [Guo et al., 2020b; Hosseini et al., 2021], the impact of DNN architectures on adversarial

robustness is not yet understood well. Therefore, the neural architecture search proposed in

this thesis can be extended to cover the adversarial robustness aspect of DNN architectures in

order to find DNNs that not only exhibit high resource utilization and clean accuracy but are

also resilient against adversarial perturbations.

71

A Appendix of Chapter 4

A.1 Micro-architecture search

Table A.1 presents the candidate operations in a cell. We include standard, dilated and

depthwise separable (DWS) convolutions along with the identity and zero operations. For

simplicity, we only consider ReLU activations.

Table A.1: Microarchitecture search space. DWS: Depthwise Separable.

block name type kernel dilation nonlinearity

conv2d_3x3 Convolution 3 1 ReLU
conv2d_5x5 Convolution 5 1 ReLU
dws_3x3 DWS Conv. 3 1 ReLU
dws_5x5 DWS Conv. 5 1 ReLU
dil_3x3 Convolution 3 2 ReLU
dil_5x5 Convolution 5 2 ReLU
identity - - - -
zero - - - -

A.2 Utilization and Runtime details

In this section, we analyze the utilization and runtime of all the building blocks. We consider

the operations of Table A.1 as well as fully connected layers (for the classifier). Maxpooling

layers, batch normalization and activation functions, i.e., ReLUs, are characterized by full

utilization and zero runtime, since they need no matrix multiplications.

Let k1 and k2 be the kernel sizes, c and f the input and output channels, s1 and s2 the systolic

array dimensions, h and w the height and width of the input, b the batch size. The number of

operations is

73

Chapter A Appendix of Chapter 4

Table A.2: Utilizations and runtimes for all building blocks. Symbols explained in text. †
includes all other layer types: identity, zero, maxpooling, ReLUs.

Block Type Runtime Utilization

Convolution
⌈

k1k2c
s1

⌉⌈
f
s2

⌉
hwb k1k2c f

s1s2

⌈
k1k2c

s1

⌉⌈
f

s2

⌉
Depthwise Convolution c

⌈
k1k2

s1

⌉
f hwb k1k2⌈

k1k2
s1

⌉
f

Fully connected
⌈

c
s1

⌉⌈
f
s2

⌉
b c f

s1s2

⌈
c

s1

⌉⌈
f

s2

⌉
† 0 1

MACs = hwbk1k2c f (A.1)

The utilization of a specific layer is computed by dividing the number of MACs by the runtime.

Convolution

The runtime and utilization of a convolution are computed in Section 4.1 of the main text:

RUNTIMEconv =

⌈
k1k2c

s1

⌉⌈
f

s2

⌉
hwb (A.2)

UTILconv =
k1k2c f

s1s2

⌈
k1k2c

s1

⌉⌈
f
s2

⌉ (A.3)

Depthwise Convolution

A single convolutional filter is applied to each input channel. In this case the number of input

and output channels is the same c = f . There is no input reuse, meaning that only one column

of the systolic array is used. In other words, the
⌈

f
s2

⌉
term in Equation A.2 is replaced by⌈

1
s2

⌉
= 1. Finally, the operation is repeated c times, yielding the following runtime:

74

Appendix of Chapter 4 Chapter A

RUNTIMEdepthwise = c

⌈
k1k2

s1

⌉
hwb (A.4)

UTILdepthwise =
k1k2

s1s2

⌈
k1k2

s1

⌉ (A.5)

The utilization is calculated by dividing the number of multiply-accumulates (MACs) by the

runtime. Equation A.5 shows the ineffectiveness of the depthwise convolution, which is

inversely proportional to the second dimension of the systolic array.

Depthwise Separable (DWS) Convolution

The depthwise separable convolution is the sequence of a depthwise convolution and a

(standard) convolution. Thus, the runtime and utilization are computed via addition of the

respective terms.

Fully Connected layers

The runtime and utilization can be derived from the convolution formulae by setting k1 = k2 = 1

and h = w = 1. Concretely, the kernel size can be considered to be 1× 1, while the fully

connected layer has c inputs and f outputs.

RUNTIMEfc =

⌈
c

s1

⌉⌈
f

s2

⌉
b (A.6)

UTILfc =
c f

s1s2

⌈
c
s1

⌉⌈
f
s2

⌉ (A.7)

A.3 Additional experimental results

In this Section, we present additional experiments on CIFAR10 and ImageNet100 datasets.

A.3.1 CIFAR10 dataset

Figure A.1 shows the cells found during the micro-architecture search stage for all methods.

The methods opt for different configurations. Specifically, the FLOPS model selects mainly

depthwise separable convolutions, since they correspond to fewer operations. However,

such convolutions result in very increased runtimes and severe mitigation in utilization, as

Equation A.4 and Equation A.5 show. The Roofline model operates on the compute-bound

region and behaves identically as the FLOPS model. The Blackbox model tries to compensate

75

Chapter A Appendix of Chapter 4

Table A.3: Experimental results for CIFAR10 over 3 random seeds.

Accuracy (%,↑) Runtime (µs,↓) HV (↓)

λ 0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0

Blackbox 91.4±1.07 90.2±0.25 91.3±0.66 90.4±0.83 209±57 155±9 147±14 122±2 1.47

Roofline 91.7±0.68 89.2±0.85 88.7±0.91 87.6±4.58 214±43 175±33 137±62 252±53 1.86

FLOPS 90.0±0.88 88.4±1.91 84.0±6.39 87.0±0.99 235±26 320±37 251±55 159±33 2.68

U-Boost 90.9±0.88 91.4±0.90 91.3±0.24 89.5±1.14 73±8 51±10 39±9 30±0 0.386

(in terms of utilization) by omitting convolutions, including depthwise separable convolutions.

This suggests that it is able to understand that DWS are antithetical to the utilization objective

and opts for operations with no utilization overhead, such as the identity and zero gates.

Table A.3 presents the experimental results for CIFAR10 in more detail. The proposed method

achieves significantly lower runtimes for all λ values outperforming the baselines in a range

of ∼ 2.8−5×. It is also worth mentioning that the FLOPS and Roofline models do not exhibit

decreasing runtimes asλ increases. They are also characterized by high variance in the runtime

measurements, indicating an unsophisticated search. This drawback can be attributed to

the loss function for the utilization term which does not take into account the number of

channels. The blackbox model and our proposed method have lower standard deviations

and a monotonically decreasing runtime. Finally, our proposed method has better quality of

exploration for the tradeoff of accuracy and runtime, as the Hypervolume metric indicates.

76

Appendix of Chapter 4 Chapter A

xl−1 xl−2

+ +

+

xl

U-Boost

xl−1 xl−2

+ +

+

xl

FLOPS

xl−1 xl−2

+ +

+

xl

Black-box

xl−1 xl−2

+ +

+

xl

Roofline

Convolution DepthWise Separable Convolution

Dilated Convolution

Zero

Identity+ Tensor addition

Figure A.1: Cell architectures found for λ = 0.1 on the CIFAR10 dataset.

77

Chapter A Appendix of Chapter 4

A.4 Hyperparameters

The complete list of hyperparameters is presented in Table A.4.

Table A.4: Experiment Hyperparameters. − indicates that the ImageNet100 experiment uses
the same settings as the CIFAR10 experiment. †: the architecture for ImageNet100 is produced
by search on CIFAR10. MS: micro-architecture search, CS: channel search, FT: final training.

CIFAR10 ImageNet100

ms_no_epoch 10 †

cs_no_epoch 30 †

ft_no_epoch 100 70

array_size [128, 128] −
start_arch_train 0 −
weight_vs_arch 0.8 −
search_sgd_init_lr 0.05 −
search_sgd_momentum 0.9 −
search_sgd_weight_decay 3e-4 −
search_weight_grad_clip 0.5 −
adam_init_lr 0.1 −
adam_weight_decay 0 −
init_tau 1.0 −
tau_anneal_rate 0.95 −
min_tau 0.001 −
search_batch_size 64 −
train_batch_size 256 −
train_sgd_init_lr 0.1 −
train_sgd_momentum 0.9 −
train_sgd_weight_decay 5e-4 −
train_weight_grad_clip 0.5 −

78

B Appendix of Chapter 5

B.1 Channel ranges of DMask baselines

Table B.1: Channel ranges of DMask-small and Dmask-large baselines for the experiments in
Section 5.4.2 and DMask-systolic for the experiments in Section 5.4.4.

DMask-small DMask-large DMask-systolic
Cell id start end step start end step start end step

0 24 32 8 16 160 16 16 200 8
1 24 32 8 16 160 16 16 200 8
2 24 32 8 16 160 16 16 200 8
3 24 32 8 16 160 16 16 200 8
4 24 32 8 16 160 16 16 200 8
5 24 32 8 16 160 16 16 200 8
6 48 64 8 16 160 16 16 200 8
7 48 64 8 16 160 16 16 200 8
8 48 64 8 16 160 16 16 200 8
9 48 64 8 16 160 16 16 200 8

10 48 64 8 16 160 16 16 200 8
11 48 64 8 16 160 16 16 200 8
12 48 64 8 16 160 16 16 200 8
13 96 160 16 16 160 16 16 200 8
14 96 160 16 16 160 16 16 200 8
15 96 160 16 16 160 16 16 200 8
16 96 160 16 16 160 16 16 200 8
17 96 160 16 16 160 16 16 200 8
18 96 160 16 16 160 16 16 200 8
19 96 160 16 16 160 16 16 200 8

79

Bibliography

Alwani, M., Chen, H., Ferdman, M., and Milder, P. Fused-layer CNN accelerators. In The 49th

Annual IEEE/ACM International Symposium on Microarchitecture MICRO. IEEE Press, 2016.

Ashok, A., Rhinehart, N., Beainy, F., and Kitani, K. M. N2N learning: Network to network

compression via policy gradient reinforcement learning. In 6th International Conference on

Learning Representations, ICLR, Conference Track Proceedings, 2018.

Baek, E., Kwon, D., and Kim, J. A multi-neural network acceleration architecture. In 47th

ACM/IEEE Annual International Symposium on Computer Architecture, ISCA, pp. 940–953.

IEEE, 2020.

Bender, G., Kindermans, P., Zoph, B., Vasudevan, V., and Le, Q. V. Understanding and sim-

plifying one-shot architecture search. In Proceedings of the 35th International Conference

on Machine Learning, ICML, volume 80 of Proceedings of Machine Learning Research, pp.

549–558. PMLR, 2018.

Beneš, V. E. Optimal rearrangeable multistage connecting networks. The Bell System Technical

Journal, 43(4):1641–1656, 1964.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms for hyper-parameter optimization.

In Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural

Information Processing Systems, pp. 2546–2554, 2011.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child,

R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,

M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and

Amodei, D. Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell,

R., Balcan, M., and Lin, H. (eds.), Advances in Neural Information Processing Systems 33:

Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

Cai, H., Chen, T., Zhang, W., Yu, Y., and Wang, J. Efficient architecture search by network

transformation. In McIlraith, S. A. and Weinberger, K. Q. (eds.), Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence, pp. 2787–2794. AAAI Press, 2018.

81

Chapter B BIBLIOGRAPHY

Cai, H., Zhu, L., and Han, S. ProxylessNAS: direct neural architecture search on target task and

hardware. In 7th International Conference on Learning Representations, ICLR, 2019.

Chang, J., Zhang, X., Guo, Y., Meng, G., Xiang, S., and Pan, C. DATA: differentiable architecture

approximation. In Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems, NeurIPS, pp. 874–884, 2019.

Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen, Y., and Temam, O. DianNao: A small-

footprint high-throughput accelerator for ubiquitous machine-learning. In Proceedings

of the 19th International Conference on Architectural Support for Programming Languages

and Operating Systems, ASPLOS, pp. 269–284, New York, NY, USA, 2014a. Association for

Computing Machinery.

Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N., and Temam, O.

DaDianNao: A machine-learning supercomputer. In 47th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO, pp. 609–622. IEEE Computer Society, 2014b.

Chen, Y., Emer, J. S., and Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow

for convolutional neural networks. In 43rd ACM/IEEE Annual International Symposium on

Computer Architecture, ISCA, pp. 367–379, 2016.

Chen, Y., Krishna, T., Emer, J. S., and Sze, V. Eyeriss: An energy-efficient reconfigurable

accelerator for deep convolutional neural networks. IEEE J. Solid State Circuits, 52(1):

127–138, 2017.

Chen, Y., Yang, T., Emer, J. S., and Sze, V. Eyeriss v2: A flexible accelerator for emerging deep

neural networks on mobile devices. IEEE J. Emerg. Sel. Topics Circuits Syst., 9(2):292–308,

2019.

Cherlopalle, D., Rengan, X., Han, F., and Ta, Q. INFERENCE using the NVIDIA T4. https:

//www.dell.com/support/kbdoc/en-us/000143470/inference-using-the-nvidia-t4, 2019.

Accessed: 2022-12-23.

Cho, H. Risa: A reinforced systolic array for depthwise convolutions and embedded tensor

reshaping. ACM Trans. Embed. Comput. Syst., 20(5s):53:1–53:20, 2021.

Cho, M., Soltani, M., and Hegde, C. One-shot neural architecture search via compressive

sensing. arXiv preprint, 2019.

Choi, K., Hong, D., Yoon, H., Yu, J., Kim, Y., and Lee, J. DANCE: differentiable accelerator/net-

work co-exploration. In 58th ACM/IEEE Design Automation Conference, DAC, pp. 337–342.

IEEE, 2021.

Choi, Y. and Rhu, M. PREMA: A predictive multi-task scheduling algorithm for preemptible

neural processing units. In IEEE International Symposium on High Performance Computer

Architecture, HPCA, pp. 220–233. IEEE, 2020.

82

https://www.dell.com/support/kbdoc/en-us/000143470/inference-using-the-nvidia-t4
https://www.dell.com/support/kbdoc/en-us/000143470/inference-using-the-nvidia-t4

BIBLIOGRAPHY Chapter B

Chollet, F. Keras. https://keras.io, 2015.

Choquette, J., Gandhi, W., Giroux, O., Stam, N., and Krashinsky, R. NVIDIA A100 tensor core

GPU: performance and innovation. IEEE Micro, 41(2):29–35, 2021.

Ci, Y., Lin, C., Sun, M., Chen, B., Zhang, H., and Ouyang, W. Evolving search space for neural

architecture search. In IEEE/CVF International Conference on Computer Vision, ICCV, pp.

6639–6649. IEEE, 2021.

Dai, X., Zhang, P., Wu, B., Yin, H., Sun, F., Wang, Y., Dukhan, M., Hu, Y., Wu, Y., Jia, Y., Vajda,

P., Uyttendaele, M., and Jha, N. K. Chamnet: Towards efficient network design through

platform-aware model adaptation. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 11398–11407. Computer Vision Foundation / IEEE, 2019.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. Imagenet: A large-scale hierarchical

image database. In IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 248–255. IEEE Computer Society, 2009.

Désidéri, J.-A. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.

Comptes Rendus Mathematique, 350:313–318, 2012.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT: pre-training of deep bidirectional

transformers for language understanding. In Proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, NAACL-HLT, pp. 4171–4186, 2019.

DeVries, T. and Taylor, G. W. Improved regularization of convolutional neural networks with

cutout. arXiv preprint, 2017.

Dong, X. and Yang, Y. Searching for a robust neural architecture in four GPU hours. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1761–1770. Computer

Vision Foundation / IEEE, 2019a.

Dong, X. and Yang, Y. Network pruning via transformable architecture search. In Wallach, H. M.,

Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett, R. (eds.), Advances

in Neural Information Processing Systems 32: Annual Conference on Neural Information

Processing Systems, NeurIPS, pp. 759–770, 2019b.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. An image is worth

16x16 words: Transformers for image recognition at scale. In 9th International Conference

on Learning Representations, ICLR, 2021.

Drumond, M., Coulon, L., Zarandi, A. P., Yüzügüler, A. C., Falsafi, B., and Jaggi, M. Equinox:

Training (for free) on a custom inference accelerator. In MICRO: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 421–433. ACM, 2021.

83

https://keras.io

Chapter B BIBLIOGRAPHY

Drumond, M. P. Coltrain: Co-located dnn training and inference. EPFL, 2020.

Farabet, C., Martini, B., Corda, B., Akselrod, P., Culurciello, E., and LeCun, Y. Neuflow: A

runtime reconfigurable dataflow processor for vision. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR Workshops, pp. 109–116, 2011.

Fowers, J., Ovtcharov, K., Papamichael, M., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman,

M., Adams, L., Ghandi, M., Heil, S., Patel, P., Sapek, A., Weisz, G., Woods, L., Lanka, S.,

Reinhardt, S. K., Caulfield, A. M., Chung, E. S., and Burger, D. A configurable cloud-scale

DNN processor for real-time AI. In 45th ACM/IEEE Annual International Symposium on

Computer Architecture, ISCA, pp. 1–14, 2018.

Gao, M., Yang, X., Pu, J., Horowitz, M., and Kozyrakis, C. TANGRAM: optimized coarse-grained

dataflow for scalable NN accelerators. In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS, pp. 807–820, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial exam-

ples. In 3rd International Conference on Learning Representations, ICLR, Conference Track

Proceedings, 2015.

Google. Cloud TPU. https://cloud.google.com/tpu, 2017. Accessed: 2018-01-31.

Google. BERT. https://github.com/google-research/bert, 2020. Accessed: 2020-10-5.

Gordon, A., Eban, E., Nachum, O., Chen, B., Wu, H., Yang, T., and Choi, E. Morphnet: Fast

& simple resource-constrained structure learning of deep networks. In 2018 IEEE Confer-

ence on Computer Vision and Pattern Recognition, CVPR, pp. 1586–1595. Computer Vision

Foundation / IEEE Computer Society, 2018.

Guo, C., Zhou, Y., Leng, J., Zhu, Y., Du, Z., Chen, Q., Li, C., Yao, B., and Guo, M. Balancing

efficiency and flexibility for DNN acceleration via temporal GPU-systolic array integration.

In 57th ACM/IEEE Design Automation Conference, DAC, pp. 1–6. IEEE, 2020a.

Guo, M., Yang, Y., Xu, R., Liu, Z., and Lin, D. When NAS meets robustness: In search of robust

architectures against adversarial attacks. In 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR, pp. 628–637. Computer Vision Foundation / IEEE, 2020b.

Gupta, S. and Akin, B. Accelerator-aware neural network design using AutoML. arXiv preprint,

2020.

Hazan, E., Klivans, A. R., and Yuan, Y. Hyperparameter optimization: a spectral approach. In

6th International Conference on Learning Representations, ICLR, Conference Track Proceed-

ings, 2018.

Hazelwood, K. M., Bird, S., Brooks, D. M., Chintala, S., Diril, U., Dzhulgakov, D., Fawzy, M.,

Jia, B., Jia, Y., Kalro, A., Law, J., Lee, K., Lu, J., Noordhuis, P., Smelyanskiy, M., Xiong, L., and

84

https://cloud.google.com/tpu
https://github.com/google-research/bert

BIBLIOGRAPHY Chapter B

Wang, X. Applied machine learning at Facebook: A datacenter infrastructure perspective.

In IEEE International Symposium on High Performance Computer Architecture, HPCA, pp.

620–629. IEEE Computer Society, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition, CVPR, pp. 770–778, 2016.

He, Y., Zhang, X., and Sun, J. Channel pruning for accelerating very deep neural networks. In

IEEE International Conference on Computer Vision, ICCV, pp. 1398–1406. IEEE Computer

Society, 2017.

He, Y., Lin, J., Liu, Z., Wang, H., Li, L., and Han, S. AMC: automl for model compression and

acceleration on mobile devices. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y.

(eds.), ECCV - 15th European Conference on Computer Vision, Proceedings, Part VII, volume

11211 of Lecture Notes in Computer Science, pp. 815–832. Springer, 2018.

Hock, A. Introducing Cerebras Systems . https://cerebras.net/introducing-cerebras-systems/,

2019. Accessed: 2020-04-08.

Hosseini, R., Yang, X., and Xie, P. DSRNA: differentiable search of robust neural architectures.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 6196–6205.

Computer Vision Foundation / IEEE, 2021.

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. Densely connected convolutional

networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp.

2261–2269. IEEE Computer Society, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reduc-

ing internal covariate shift. In Bach, F. R. and Blei, D. M. (eds.), Proceedings of the 32nd

International Conference on Machine Learning, ICML, volume 37 of JMLR Workshop and

Conference Proceedings, pp. 448–456, 2015.

Jang, E., Gu, S., and Poole, B. Categorical reparameterization with gumbel-softmax. In 5th

International Conference on Learning Representations, ICLR, Conference Track Proceedings,

2017.

Jha, N. K., Ravishankar, S., Mittal, S., Kaushik, A., Mandal, D., and Chandra, M. DRACO:

co-optimizing hardware utilization, and performance of DNNs on systolic accelerator. In

IEEE Computer Society Annual Symposium on VLSI, ISVLSI, pp. 574–579. IEEE, 2020.

Jordà, M., Valero-Lara, P., and Peña, A. J. Performance evaluation of cuDNN convolution

algorithms on NVIDIA Volta GPUs. IEEE Access, 7:70461–70473, 2019.

Jouppi, N. P., Young, C., Patil, N., Patterson, D. A., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S.,

Boden, N., Borchers, A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J., Daley, M., Dau,

M., Dean, J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho,

C. R., Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A., Jaworski, A., Kaplan, A.,

85

https://cerebras.net/introducing-cerebras-systems/

Chapter B BIBLIOGRAPHY

Khaitan, H., Killebrew, D., Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D., Leary, C.,

Liu, Z., Lucke, K., Lundin, A., MacKean, G., Maggiore, A., Mahony, M., Miller, K., Nagarajan,

R., Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omernick, M., Penukonda, N., Phelps, A.,

Ross, J., Ross, M., Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snelham, M., Souter, J.,

Steinberg, D., Swing, A., Tan, M., Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan, V.,

Walter, R., Wang, W., Wilcox, E., and Yoon, D. H. In-datacenter performance analysis of

a tensor processing unit. In Proceedings of the 44th Annual International Symposium on

Computer Architecture, ISCA, pp. 1–12, 2017.

Jouppi, N. P., Yoon, D. H., Kurian, G., Li, S., Patil, N., Laudon, J., Young, C., and Patterson, D. A.

A domain-specific supercomputer for training deep neural networks. Commun. ACM, 63(7):

67–78, 2020.

Jouppi, N. P., Hyun Yoon, D., Ashcraft, M., Gottscho, M., Jablin, T. B., Kurian, G., Laudon, J., Li,

S., Ma, P., Ma, X., Norrie, T., Patil, N., Prasad, S., Young, C., Zhou, Z., and Patterson, D. Ten

lessons from three generations shaped google’s tpuv4i : Industrial product. In ACM/IEEE

48th Annual International Symposium on Computer Architecture (ISCA), pp. 1–14, 2021.

Kalamkar, D., Mudigere, D., Mellempudi, N., Das, D., Banerjee, K., Avancha, S., Vooturi, D. T.,

Jammalamadaka, N., Huang, J., Yuen, H., et al. A study of BFLOAT16 for deep learning

training. arXiv preprint, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In 3rd International

Conference on Learning Representations, ICLR, 2015.

Krizhevsky, A. Learning multiple layers of features from tiny images. pp. 32–33, 2009.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. ImageNet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems 25: 26th Annual

Conference on Neural Information Processing Systems 2012, pp. 1106–1114, 2012.

Kung, H. T. Why systolic architectures? IEEE Computer, 15(1):37–46, 1982.

Kung, H. T., McDanel, B., Zhang, S. Q., Dong, X., and Chen, C. Maestro: A memory-on-logic

architecture for coordinated parallel use of many systolic arrays. In 30th IEEE International

Conference on Application-specific Systems, Architectures and Processors, ASAP, pp. 42–50,

2019.

Li, S., Chen, K., Ahn, J. H., Brockman, J. B., and Jouppi, N. P. CACTI-P: architecture-level

modeling for SRAM-based structures with advanced leakage reduction techniques. In

IEEE/ACM International Conference on Computer-Aided Design, ICCAD, pp. 694–701, 2011.

Li, S., Tan, M., Pang, R., Li, A., Cheng, L., Le, Q. V., and Jouppi, N. P. Searching for fast model

families on datacenter accelerators. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 8085–8095. Computer Vision Foundation / IEEE, 2021a.

86

BIBLIOGRAPHY Chapter B

Li, Y., Tang, J., Gao, B., Yao, J., Xi, Y., Li, Y., Li, T., Zhou, Y., Liu, Z., Zhang, Q., Qiu, S., Li, Q., Qian,

H., and Wu, H. Monolithic 3D integration of logic, memory and computing-in-memory

for one-shot learning. In 2021 IEEE International Electron Devices Meeting (IEDM), pp.

21.5.1–21.5.4, 2021b.

Liao, H., Tu, J., Xia, J., and Zhou, X. Davinci: A scalable architecture for neural network

computing. In IEEE Hot Chips 31 Symposium (HCS), pp. 1–44. IEEE, 2019.

Lie, S. Multi-million core, multi-wafer AI cluster. In IEEE Hot Chips 33 Symposium, HCS, pp.

1–41. IEEE, 2021.

Liew, S. C. and Lee, T. T. Principles of Broadband Switching and Networking, volume 32. John

Wiley & Sons, 2010.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A. L., Huang, J., and

Murphy, K. Progressive neural architecture search. In ECCV - 15th European Conference on

Computer Vision, Proceedings, Part I, volume 11205 of Lecture Notes in Computer Science,

pp. 19–35. Springer, 2018.

Liu, H., Simonyan, K., and Yang, Y. DARTS: differentiable architecture search. In 7th Interna-

tional Conference on Learning Representations, ICLR, 2019.

Liu, Z. G., Whatmough, P. N., and Mattina, M. Systolic tensor array: An efficient structured-

sparse GEMM accelerator for mobile CNN inference. IEEE Comput. Archit. Lett., 19(1):

34–37, 2020a.

Liu, Z.-G., Whatmough, P. N., and Mattina, M. Sparse systolic tensor array for efficient CNN

hardware acceleration. arXiv preprint, 2020b.

Lu, W., Yan, G., Li, J., Gong, S., Han, Y., and Li, X. Flexflow: A flexible dataflow accelerator

architecture for convolutional neural networks. In IEEE International Symposium on High

Performance Computer Architecture, HPCA, pp. 553–564, 2017.

Luo, J., Wu, J., and Lin, W. Thinet: A filter level pruning method for deep neural network

compression. In IEEE International Conference on Computer Vision, ICCV, pp. 5068–5076.

IEEE Computer Society, 2017.

Marchisio, A., Massa, A., Mrazek, V., Bussolino, B., Martina, M., and Shafique, M. Nascaps: A

framework for neural architecture search to optimize the accuracy and hardware efficiency

of convolutional capsule networks. In IEEE/ACM International Conference On Computer

Aided Design, ICCAD, pp. 114:1–114:9. IEEE, 2020.

Moosavi-Dezfooli, S., Fawzi, A., Fawzi, O., and Frossard, P. Universal adversarial perturbations.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 86–94. IEEE

Computer Society, 2017.

87

Chapter B BIBLIOGRAPHY

Nayman, N., Noy, A., Ridnik, T., Friedman, I., Jin, R., and Zelnik-Manor, L. XNAS: neural

architecture search with expert advice. In Advances in Neural Information Processing

Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS, pp.

1975–1985, 2019.

Nicol, C. A dataflow processing chip for training deep neural networks. In Proceedings of the

IEEE Hot Chips 29 Symposium, 2017.

Nurvitadhi, E., Venkatesh, G., Sim, J., Marr, D., Huang, R., Hock, J. O. G., Liew, Y. T., Srivatsan, K.,

Moss, D. J. M., Subhaschandra, S., and Boudoukh, G. Can FPGAs beat GPUs in accelerating

next-generation deep neural networks? In Proceedings of the 2017 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, FPGA, pp. 5–14. ACM, 2017.

NVIDIA. NVDLA Primer. http://nvdla.org/primer.html, 2018. Accessed: 2022-12-23.

NVIDIA. NVIDIA A100 40GB PCIe GPU accelerator product brief, 2020.

Ouyang, J., Noh, M., Wang, Y., Qi, W., Ma, Y., Gu, C., Kim, S., Hong, K., Bae, W., Zhao, Z., Wang,

J., Wu, P., Gong, X., Shi, J., Zhu, H., and Du, X. Baidu kunlun an AI processor for diversified

workloads. In IEEE Hot Chips 32 Symposium, HCS, pp. 1–18. IEEE, 2020.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M.,

and Dean, J. Carbon emissions and large neural network training. arXiv preprint, 2021.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. Efficient neural architecture search

via parameter sharing. In Proceedings of the 35th International Conference on Machine

Learning, ICML, volume 80 of Proceedings of Machine Learning Research, pp. 4092–4101.

PMLR, 2018.

Qin, E., Samajdar, A., Kwon, H., Nadella, V., Srinivasan, S., Das, D., Kaul, B., and Krishna,

T. SIGMA: A sparse and irregular GEMM accelerator with flexible interconnects for DNN

training. In IEEE International Symposium on High Performance Computer Architecture,

HPCA, pp. 58–70. IEEE, 2020.

Raihan, M. A., Goli, N., and Aamodt, T. M. Modeling deep learning accelerator enabled GPUs.

In IEEE International Symposium on Performance Analysis of Systems and Software, ISPASS,

pp. 79–92. IEEE, 2019.

Rapin, J. and Teytaud, O. Nevergrad - A gradient-free optimization platform. https://GitHub.

com/FacebookResearch/Nevergrad, 2018.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized evolution for image classifier

architecture search. In The Thirty-Third AAAI Conference on Artificial Intelligence, pp.

4780–4789. AAAI Press, 2019.

Ross, J. Prefetching weights for use in a neural network processor, 2017. US 2017/0103314 A1.

88

http://nvdla.org/primer.html
https://GitHub.com/FacebookResearch/Nevergrad
https://GitHub.com/FacebookResearch/Nevergrad

BIBLIOGRAPHY Chapter B

Samajdar, A., Joseph, J. M., Zhu, Y., Whatmough, P. N., Mattina, M., and Krishna, T. A systematic

methodology for characterizing scalability of DNN accelerators using scale-sim. In IEEE

International Symposium on Performance Analysis of Systems and Software, ISPASS, pp.

58–68. IEEE, 2020.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. Mobilenetv2: Inverted

residuals and linear bottlenecks. In 2018 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 4510–4520. Computer Vision Foundation / IEEE Computer Society,

2018.

Shao, Y. S., Clemons, J., Venkatesan, R., Zimmer, B., Fojtik, M., Jiang, N., Keller, B., Klinefelter,

A., Pinckney, N. R., Raina, P., Tell, S. G., Zhang, Y., Dally, W. J., Emer, J. S., Gray, C. T., Khailany,

B., and Keckler, S. W. Simba: Scaling deep-learning inference with multi-chip-module-

based architecture. In MICRO: The 52nd Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 14–27, 2019.

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D., Priyantha, B., Liu, J., and Marculescu, D.

Single-path NAS: designing hardware-efficient convnets in less than 4 hours. In Machine

Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD, Pro-

ceedings, Part II, volume 11907 of Lecture Notes in Computer Science, pp. 481–497. Springer,

2019.

Stevens, J. R., Ranjan, A., Das, D., Kaul, B., and Raghunathan, A. Manna: An accelerator

for memory-augmented neural networks. In Proceedings of the 52nd Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO, pp. 794–806. ACM, 2019.

Sze, V., Chen, Y., Yang, T., and Emer, J. S. Efficient processing of deep neural networks: A

tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. Rethinking the inception

architecture for computer vision. In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR, pp. 2818–2826, 2016.

Tan, M. and Le, Q. V. EfficientNet: Rethinking model scaling for convolutional neural networks.

In Proceedings of the 36th International Conference on Machine Learning, ICML, volume 97

of Proceedings of Machine Learning Research, pp. 6105–6114. PMLR, 2019.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. Mnasnet:

Platform-aware neural architecture search for mobile. In IEEE Conference on Computer

Vision and Pattern Recognition, CVPR, pp. 2820–2828. Computer Vision Foundation / IEEE,

2019.

Tencent. Turbo Transformers. https://github.com/Tencent/TurboTransformers, 2020. Ac-

cessed: 2020-09-26.

Wan, A., Dai, X., Zhang, P., He, Z., Tian, Y., Xie, S., Wu, B., Yu, M., Xu, T., Chen, K., Vajda, P., and

Gonzalez, J. E. Fbnetv2: Differentiable neural architecture search for spatial and channel

89

https://github.com/Tencent/TurboTransformers

Chapter B BIBLIOGRAPHY

dimensions. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR,

pp. 12962–12971. Computer Vision Foundation / IEEE, 2020.

Williams, S., Waterman, A., and Patterson, D. A. Roofline: An insightful visual performance

model for multicore architectures. Commun. ACM, 52(4):65–76, 2009.

Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y., and Keutzer, K. Fbnet:

Hardware-aware efficient convnet design via differentiable neural architecture search. In

IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 10734–10742.

Computer Vision Foundation / IEEE, 2019.

Xie, S., Zheng, H., Liu, C., and Lin, L. SNAS: stochastic neural architecture search. In 7th

International Conference on Learning Representations, ICLR, 2019.

Xiong, Y., Liu, H., Gupta, S., Akin, B., Bender, G., Wang, Y., Kindermans, P., Tan, M., Singh, V., and

Chen, B. Mobiledets: Searching for object detection architectures for mobile accelerators.

In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 3825–3834.

Computer Vision Foundation / IEEE, 2021.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G., Tian, Q., and Xiong, H. PC-DARTS: partial channel

connections for memory-efficient architecture search. In 8th International Conference on

Learning Representations, ICLR, 2020.

Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang, and

Cong, J. Automated systolic array architecture synthesis for high throughput CNN inference

on FPGAs. In 54th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2017.

Yang, T., Howard, A. G., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., and Adam, H. Netadapt:

Platform-aware neural network adaptation for mobile applications. In ECCV - 15th European

Conference on Computer Vision, Proceedings, Part X, volume 11214 of Lecture Notes in

Computer Science, pp. 289–304. Springer, 2018.

Yu, J. and Huang, T. Autoslim: Towards one-shot architecture search for channel numbers.

arXiv preprint, 2019.

Yüzügüler, A. C., Dimitriadis, N., and Frossard, P. U-Boost NAS: utilization-boosted differen-

tiable neural architecture search. In ECCV - 17th European Conference on Computer Vision,

Proceedings, Part XII, volume 13672 of Lecture Notes in Computer Science, pp. 173–190.

Springer, 2022.

Zagoruyko, S. and Komodakis, N. Wide residual networks. In Wilson, R. C., Hancock, E. R.,

and Smith, W. A. P. (eds.), Proceedings of the British Machine Vision Conference 2016, BMVC.

BMVA Press, 2016.

Zhang, X., Wang, J., Zhu, C., Lin, Y., Xiong, J., Hwu, W. W., and Chen, D. DNNBuilder: an

automated tool for building high-performance DNN hardware accelerators for FPGAs.

In Bahar, I. (ed.), Proceedings of the International Conference on Computer-Aided Design,

ICCAD, pp. 56. ACM, 2018.

90

BIBLIOGRAPHY Chapter B

Zhu, H., Wang, Y., and Shi, C. R. Tanji: a general-purpose neural network accelerator with

unified crossbar architecture. IEEE Des. Test, 37(1):56–63, 2020.

Zitzler, E. and Thiele, L. Multiobjective evolutionary algorithms: a comparative case study and

the strength Pareto approach. IEEE Trans. Evol. Comput., 3(4):257–271, 1999.

Zoph, B. and Le, Q. V. Neural architecture search with reinforcement learning. In 5th Interna-

tional Conference on Learning Representations, ICLR, 2017.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning transferable architectures for scalable

image recognition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR,

pp. 8697–8710. Computer Vision Foundation / IEEE Computer Society, 2018.

91

Ahmet Caner Yüzügüler

Contact Info
Address Avenue du 24-Janvier, 28,

1020, Renens, VD, Switzerland
Mobile +41 (0) 78 769 96 41
E-mail ahmet.yuzuguler@epfl.ch

Website acyuzuguler.github.io

Education
Sept.,2018 –
Dec.,2022

Ph.D., Computer Science, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, Advisor: Prof. Pascal Frossard

Sept.,2015 –
March,2018

M.Sc., Computer Science, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, GPA – 5.52 / 6.0

2009–2014 B.Sc., Electrical and Electronics Engineering, Middle East Technical University,
Ankara, Turkey, GPA – 3.73 / 4.0

Honors
2018 EPFL PhD Fellowship
2015 EPFL Master Research Scholarship
2014 High Honor Roll at B.Sc. degree

Experience
Sept.,2018 –
Dec.,2022

Ph.D. Candidate,
EPFL
{ Developed a neural architecture search framework that optimizes deep neural networks for target

hardware accelerators.
{ Developed a scale-out systolic array architecture that increases hardware utilization and power

efficiency in DNN accelerators.
{ Developed a novel analog circuit for deep neural networks.

Feb.,2017 –
March,2018

Research Intern,
ABB Corporate Research, Automation System Architecture Department
{ Implemented a real-time software for power grid simulations in C++ for multi-core processors

and GPUs.
{ Master’s thesis on the subject of approximating power grid models with deep neural networks for

real-time simulations.
Sept.,2015 –
August,2016

Research Assistant,
EPFL, Rigorous System Design Laboratory
{ Algorithm design and software implementation of a medical imaging platform on an FPGA and

a many-core Kalray MPPA-256 processor.
July,2014 –

August,2015
Hardware Design Engineer,
Aselsan Inc., Division of Defense Systems Technologies
{ PCB and FPGA design of embedded computers for defense applications.

1015, Lausanne, Switzerland
H +41 (0) 78 769 96 41 • B ahmet.yuzuguler@epfl.ch

Í acyuzuguler.github.io 1/2

93

Skills
Competence
Deep learning, Hardware accelerators, FPGA/ASIC design, Computer architecture, Embed-
ded systems
Programming Languages
C/C++, Python, VHDL, Verilog, CUDA, Tensorflow, Pytorch
Design Tools
Synopsys Design Compiler, Xilinx ISE/Vivado Design Tools, Altera Quartus II, Modelsim,
Matlab, Simulink

Languages
Turkish Native
English Advanced, TOEFL iBT: 107/120
French Beginner, CEFR Level: A2/B1

Publications
2022 A.C.Yüzügüler, N.Dimitriadis, P.Frossard, U-Boost NAS: Utilization-Boosted Differen-

tiable Neural Architecture Search, European Conference on Computer Vision (ECCV).
2022 A.C.Yüzügüler, C.Sönmez, M.Drumond, Y.Oh, B.Falsafi, P.Frossard, Scale-out Systolic

Arrays, ACM Transactions on Architecture and Code Optimization
2021 M.Drumond, L.Coulon, A.Pourhabibi, A.C.Yüzügüler, B.Falsafi, M.Jaggi, Equinox: Train-

ing (for Free) on a Custom Inference Accelerator, MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture

2019 A.C.Yüzügüler, F.Celik, M.Drumond, P.Frossard, B.Falsafi, Analog Neural Networks with
Deep-submicrometer Nonlinear Synapses, IEEE Micro Special Issue on Machine Learning
Acceleration

2018 A.C.Yüzügüler, A.Moga, C.Franke, Towards Commoditizing Simulations of System Mod-
els Using Recurrent Neural Networks, IEEE International Conference on Communications,
Control, and Computing Technologies for Smart Grids (SmartGridComm)

2017 F. Angiolini, A. Ibrahim, W.Simon, A.C.Yüzügüler, M. Arditi, J.-P Thiran and G. De
Micheli, 1024-Channel 3D ultrasound digital beamformer in a single 5W FPGA, Design,
Automation & Test in Europe Conference & Exhibition (DATE)

2016 A.C.Yüzügüler, W.Simon, A. Ibrahim, F. Angiolini, M. Arditi, J.-P Thiran and G. De
Micheli, (Demo) Single-FPGA 3D Ultrasound Beamformer, International Conference on
Field-Programmable Logic and Applications (FPL)

2014 A.C.Yüzügüler and E. Şahin, Changing Utilization Rates in Real Time to Investigate
FPGA Power Behavior, Xilinx Xcell Journal Issue 89 pg.60

2014 A.C.Yüzügüler, E. Vural and P. Frossard, Transformation-invariant Dictionary Learning
for Fast Image Classification, IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP)

1015, Lausanne, Switzerland
H +41 (0) 78 769 96 41 • B ahmet.yuzuguler@epfl.ch

Í acyuzuguler.github.io 2/2

94

	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Multi-pod Systolic Architectures
	Hardware-aware Neural Architecture Search
	Thesis Outline

	Related Work
	DNN Accelerators
	Neural Architecture Search
	DNN optimization
	Optimization strategy
	Architecture evaluation
	Search space

	Scale-out Systolic Arrays
	Key Pillars of Multi-pod Accelerator Design
	Optimal Systolic Array Size
	Interconnection Network
	Tiling & Scheduling

	Scale-out Systolic Arrays
	Systolic Pod Microarchitecture
	Offline Scheduling Algorithm

	Experiments
	Methodology
	Results
	Array Granularity
	Interconnect
	Tiling
	Memory
	RTL Synthesis
	Comparison to Prior Inference Accelerators

	Conclusion

	Utilization-Aware Neural Architecture Search
	Analytical Model for Resource Utilization in Systolic Arrays
	Proposed NAS Framework
	Approximation of the utilization function
	Multi-objective loss function
	NAS algorithm

	Experiments
	CIFAR10 experiments
	ImageNet100 experiments
	Sensitivity to array size

	Conclusion

	Flexible Channel Dimensions for Differentiable Architecture Search
	Introduction
	Differentiable Channel Masking
	FlexCHarts
	Flexible channel masking
	Dynamic channel allocation

	Experiments
	Experimental setup
	Performance of the differentiable channel search
	Comparison with other dimension adaptation methods
	Channel search for improved resource utilization

	Conclusion

	Conclusions
	Summary
	Future Directions

	Appendix of Chapter 4
	Micro-architecture search
	Utilization and Runtime details
	Additional experimental results
	CIFAR10 dataset

	Hyperparameters

	Appendix of Chapter 5
	Channel ranges of DMask baselines

	Bibliography
	Curriculum Vitae

