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Abstract (English)
The past decades have seen the advent of information theory in various fields, from quantum

physics to cosmology.

At an intermediary scale between atomic and cosmological scales are biological systems and

in particular the cell, as a constitutive element of any living organism. Molecular mechanisms

in the cell are tasked to perpetually create and maintain order, against the natural evolution

suggested by the laws of thermodynamics. Many agree that these mechanisms are strongly

related to the processing of information, but so far most of the established parallels remain

at the stage of conceptual analogy. This leaves an obvious gap in a formal and rigorous de-

scription of cellular active processes: all the elements are in place at the biochemical level to

process information. Through the internal structure of the involved macromolecules, biologi-

cal systems are able to autonomously evolve, as a result of various information-processing

steps. To this end, the present work articulates around two examples of cellular transport, in

order to highlight the molecular mechanisms inherent to the processing of information.

In the first part, we establish a model for the transport by ABC Transporters and identify the

conditions required for the creation of a concentration gradient across the membrane. The

emerging conditions are explicit demonstrations of the different steps in the transport of

substrate during which information is processed, induced by the structural and biochemical

properties of the transporter. The conclusions extend way beyond a simple conceptual analogy:

ABC transporters are autonomous Maxwell Demons.

In the second part, our work focuses on the dynamics of Hsp70-driven substrate translocation

through membrane. Our model reveals that optimality lies in a balance between the strength

of the directionality and the intrinsic diffusion rate of the substrate through the pore. These

numerical observations pave the way to a new experimental exploration: the oligomerization

of Hsp70 might accelerate the translocation, as an adaptative response to imposed conditions

in the surroundings. Finally, we show how kinetic properties of chaperone proteins emerge

from the resolution of a simple and minimal model for translocation. Such a model also

displays a mathematical structure which brings us to state that the translocation machinery is

an autonomous Szilard engine, continuously processing information.

Both projects converge to a bridge between information theory and non-equilibrium thermo-

dynamics applied to active cellular transporters. The analogy between information-processing

devices and biological molecular systems is not only conceptual: active cellular mechanisms
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Chapter 0. Abstract (English)

evolved to perpetually and autonomously process information. This results in the creation

and maintainance of order, that acts as a cornerstone of life.

Key words: Information theory | Stochastic Thermodynamics | Kinetic model | Transmembrane

transport | ABC transporter | Translocation | Hsp70.

iv



Résumé
Les dernières décennies ont marqué l’avènement de la théorie de l’information dans de nom-

breux domaines, de la physique quantique à la cosmologie. Les scientifiques de tous horizons

ont montré un intérêt croissant pour cette théorie prometteuse au champ d’application très

large.

Entre les échelles atomiques et cosmiques se trouvent les systèmes biologiques et en particulier

la cellule, élément constitutif de tout organisme vivant. Les mécanismes moléculaires qui

opèrent en son sein ont comme tâche de perpétuellement créer et maintenir de l’ordre, à

l’encontre de l’évolution naturelle suggérée par les lois de la thermodynamique. Beaucoup

s’accordent sur le fait que ces processus sont liés au traitement de l’information, mais jusqu’à

présent, la plupart des parallèles se restreignent à des analogies conceptuelles. Cela laisse un

vide évident dans une description rigoureuse des mécanismes cellulaires : au delà de l’analogie,

tous les éléments sont présents au niveau biochimique pour un traitement de l’information

autonome au sein des systèmes biologiques. C’est dans cette optique que ce travail s’articule

autour de deux exemples de transport cellulaire, afin de mettre en exergue les mécanismes

moléculaires inhérents au traitement de l’information.

Les deux objets de ce travail sont le transport cellulaire par les transporteurs ABC (ATP-

Binding Cassette) à travers la membrane plasmique et la translocation de substrats médié par

les protéines chaperones Hsp70 (Heat Schock Protein 70).

Dans la première partie, nous modélisons le transport cellulaire par les transporteurs ABC et

identifions les conditions requises pour efficacement induire un gradient de concentration à

travers la membrane. Ces conditions sont les manifestations explicites des différentes étapes

du cycle de transport au cours desquelles de l’information est traitée par le système, de par sa

structure interne biochimique. Ainsi, les résultats vont bien au-delà d’une simple comparaison

conceptuelle : les transporteurs ABC sont des Démons de Maxwell autonomes.

La seconde partie se concentre sur la dynamique de translocation d’un substrat à travers une

membrane par Hsp70. Notre modèle révèle que l’optimalité se situe dans un équilibre entre

la directionnalité imposée à la translocation et le taux de diffusion intrinsèque du substrat à

travers le pore. Ces observations ouvrent la voie vers une nouvelle exploration expérimentale :

la dimerisation de Hsp70 pour accélérer la translocation, comme une adaptabilité aux condi-

tions imposées par son environnement. Finalement, nous mettons en évidence comment

les propriétés cinétiques des protéines chaperones, induites notamment par les interactions
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Chapter 0. Résumé

avec d’autres protéines, émergent de la résolution d’un modèle simple de translocation. La

structure mathématique ainsi révélée nous amène à formuler que le mécanisme moléculaire

de translocation est en réalité un moteur de Szilard revisité qui traite de l’information de

manière autonome.

Les deux projets composants cette thèse convergent vers un lien entre la théorie de l’informa-

tion et la thermodynamique hors-équilibre. L’analogie entre les mécanismes biologiques et les

appareils qui traitent de l’information n’est pas que conceptuelle : les structures moléculaires

et cellulaires ont évolué pour constamment traiter de l’information au niveau biochimique.

Il en résulte la création et le maintien d’ordre au sein des systèmes biologiques, clé de voute

essentielle à l’existence de la vie.

Mots-clés : Théorie de l’information | Thermodynamique Stochastique | Modèle cinétique |

Transport transmembranaire | Transporteur ABC | Translocation | Hsp70.
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1 Introduction

1.1 Towards a fingerprint of Life

It is a bewildering, dizzying question I would like to start this introductory chapter with. To set

the context, it could not be better asked than through the title of E. Schrödinger’s book, "What

is Life?" [1]. This question might seem pretentious, all the more if it is raised with the certainty

that a clear and non-refutable answer exists. Rightly, in the difficulty to answer it might be the

charm and attractiveness of this question. The same attractiveness which has motivated for

centuries great thinkers from broad horizons: biologists, physicists, philosophers, ...

As an important preliminary remark, I want to point out that, more than ever, each step towards

an answer to the above-raised question instantaneously opens so many other questions. The

subjectivity associated to my choice to guide the discussion between non-Life and Life, is fully

assumed. Most of all, I dare not pretend to deal with the subject of such a high complexity in

a global and exhaustive way. Many works, books, articles have been amazingly well written,

each with a different approach, some of them being quoted hereafter.

Among the numerous possible starting point for such a discussion, lets refer to a definition of

Life. One among many others. The definition for "Life" given in the Britannica encyclopedia is:

"Matter that shows certain attributes that include responsiveness, growth, metabolism, energy

transformation, and reproduction. Although a noun, as with other defined entities, the word life

might be better cast as a verb to reflect its essential status as a process" [2]. In addition to raising

the interesting distinction between Life as a state or as a process, this definition essentially

stresses different biological criteria for life that stay to be very large-scale and general, but

we want and need to go further to grasp the intrisic property of Life way more fundamentally.

Another definition provides smaller-scale criteria, which are of greater interest within the

framework of this project: "An organism is said to be living if it exchanges matter and energy

with is surrounding while conserving its autonomy, when it reproduces and evolves by natural

1



Chapter 1. Introduction

selection" 1[3]. In this definition are the notions of exchange of energy with its surrounding and

autonomy, that will turn out to be at the heart of the different projects in this work. Although

these two notions are mostly associated to Life as an existing principle, the counterpart in

the above definition is evolution, which rises another approach, maybe the one we should

logically start with. To quote an elegant formulation by the biologist Gian-Paolo Dotto: "What

is the driving force that makes an apparently dead seed wake up under the sun, draw water,

and germinate into a plant?" [4]. In other words, what is the founding event during which Life

evolved from non-Life?

A partial answer might possibly reside in the association of two concepts, as contradictory

and complementary they paradoxically seem: Chance and Necessity 2, as a reference to the

famous eponymous book by Jacques Monod [6] , who himself refers to the philosopher from

antiquity Democritus3. On the one hand is the Chance: it took a combination of circumstances

that might be considered to be impossible, but that nevertheless happened. The one which

made that, from an ensemble of elementary particles, emerged Life. Some will be tempted to

pretend that, at this precise moment, God did play dice 4. On the other hand is the Necessity.

The one that makes that, for scores of reasons, that can be physical, biological or chemical,

this had to happen like that, and it could not be different, so that all the conditions required

for the emergence of Life were combined. In this same book, Jacques Monod establishes as a

necessary criterion for Life the notion of teleonomy. "The notion of teleonomy implies the idea

of an oriented, coherent and constructive activity. By these standards proteins must be deemed

the essential molecular agents of teleonomic performances in living beings" [6]. We are directly

projected to a much smaller scale than where we started from with the initial definition, a

scale more instructive to find the fingerprints of constitutive elements of Life: already at the

scale of a few hundreds or thousands of atoms, are articulating the first workings of Life.

However, this criterion leaves a feeling of incompleteness that might be transcribed as follows:

an activity that is oriented, coherent and constructive is a starting point to satisfactorily devel-

opp the notion of Life, but with respect to what are these three terms defined? Shall they find

their base intrinsically to the protein itself? Shouldn’t these molecular agents be considered as

being part of a more global environment, which would be the only one susceptible to define,

through its structure, the criteria and conditions to finally lead to an oriented, coherent and

constructive operation? That is one possible hypothesis, of course not the only one, and it

is corroborated in the book by Sara Walker and Paul Davies who suggest the existence of a

hierarchical organisation, in which "life may be characterized by context-dependent causal

influences, and, in particular, that top-down (or downward) causation where higher levels

1Original formulation in French: "Un organisme est dit vivant lorsqu’il échange de la matière et de l’énergie avec
son environnement en conservant son autonomie, lorsqu’il se reproduit et évolue par sélection naturelle."

2Original title in French: "Hasard et Nécessité"[5]
3"Everything existing in the universe is the fruit of chance and necessity", Democritus (460-370 BC)
4In reference to Einstein’s famous quotation "Gott würfelt nicht" [7], although in a totally different context.
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1.1 Towards a fingerprint of Life

influence and constrain the dynamics of lower levels in organizational hierarchies" [8]. From

the fingertip, we touch the heart of the problem and, by extension, the raison d’être of this

project. Indeed, how is this top-down causality "mediated" from one scale to another, for

instance from a biological environment to a protein in it? Information. The word is out and,

with it, a Pandora’s box is opening. Well ahead of a more mathematical and formal approach, a

first conceptual overview is necessary to introduce the topic.

Information might, in some sense, be associated to the "medium" (although immaterial) that

supports the top-down causality between different scales of a biological systems, from the

environment to the protein. Thanks to this transmission of information, the proper activity of

a protein can be described as being oriented and coherent, thus creating order at the molecular

level and, by extension, cellular level. Such a time-evolution is far from being the natural

dynamics of physical and isolated system, which on the contrary tend to evolve towards the

most disordered state. In this respect, Loewenstein argues that "this information flow, not

energy per se, is the prime mover of lifethat molecular information flowing in circles brings

forth the organization we call "organism" and maintains it against the ever-present disorga-

nizing pressures in the physics universe" [9]. Through a more physical and formal approach,

Schrödinger goes along with this view and refers to the other extremity of the timeline of any

living organism: death. He raises the question to determine "how would we express in terms of

statistical theory the marvellous faculty of a living organism, by which it delays the decay into a

thermodynamical equilibrium (death) ? It feeds upon negative entropy, attracting, as it were, a

stream of negative entropy upon itself, to compensate the entropy increase it produces by itself,

to compensate the entropy increase it produces and thus to maintain itself on a stationary and

fairly low entropy level" [1].

The creation of order at the molecular level, associated to operations oriented with a specifi-

cally defined goal are at the heart of the emergence of Life and its evolution over time, until it

unavoidably reaches its very end. Emergence of life "may correspond to a physical transition

associated with a shift in the causal structure, where information gains direct and context-

dependent causal efficacy over the matter in which it is instantiated" [8]. Overall, information

associated to this organisation is universal. Indeed, "information even in its functional variant

is not limited to humans, but is intrinsic to all forms of life and their devices. Moreover, the

goal-directedness of functional information is an objective and universal property of the systems

involved" [10].

The pathway which historically led to understand the notion of information such as briefly

introduced in the present paragraph was far from being straightforward. Many steps were

necessary to understand that it could be included in a perfectly autonomous and independent

manner in the formalism of Physics, and in particular consistently with the law of thermo-

dynamics. Initially, the ability to process information (without being so named) was first

attributed to mysterious agents whose properties were puzzingly anthropomorphic, as if only

humans were able to process information. This way to consider the question turned out to
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be wrong: in reality, human beings exhibit themselves a fundamental mechanism that takes

place at the atomistic and molecular scale. They don’t benefit from a general ability that they

have to transfer without evidence to molecular systems to explain their proper functioning.

This projection into an agent able to process information to such small scales is the object of

the next section and, as we will see, was the starting point of a very long way to finally unify

information theory and thermodynamics.

This short historical perspective shed light on different elements that aroused my curiosity. My

hope was to give a flavour of the merits of studying the molecular mechanisms in biological

processes under the angle of their strong interconnection with the processing of information.

As a conclusion, one might ask whether it is possible to answer the question raised by

Schrödinger which acts as a starting point of this introduction. I will try to give one through a

quotation. An answer whose brievety and its "straight to the point" formulation leave the door

open to many other fascinating reflections. "Life is the universe developing a memory, and our

chemical detection system could find it" [11].

1.2 A challenge to the second law of thermodynamics

The second law of thermodynamics is one of the most fundamental laws of physics, governing

the evolution of any type of system, from microscopic ones in living organisms, to the evolution

of stars and galaxies. It is even believed to hold the supreme position among the laws of

Nature, according to Arthur Eddington [12]. Coming back to its origins, the second law of

themodynamics was first formulated two centuries ago by Clausius (1850) and Kelvin (1851),

inspired by Carnot’s work 25 years earlier. Formally, there is no single formulation to the

second law, far from it, and there is even less a single interpretation of the various conceptual

implications.

This section does not aim, or pretend, to develop in depth the discussion around the second

law as well as the similarities and differences between the multiple definitions and various

conceptual ways to approach it. However, it is important to present an anchorage point on

which the apparent paradox that preceded the emergence of information theory finds its roots.

The second law of thermodynamics, according to a widely spread formulation is:

No device, operating in a cycle, can produce the sole effect of extraction a quantity of

heat from a heat reservoir and the performance of an equal quantity of work.

Kelvin, 1882

In other words, this formulation states that in any system operating cyclically, it is impossible
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to produce a work that is larger than the heat extracted from a reservoir. In the middle of

the above quotation, the term sole effect is more important than what it might seem. It

means that the heat flux cannot be induced by any agent or process, external to the device,

that necessarily must operate in an independent and isolated manner. By extension, such

a formulation unambiguously broke the dream that had likely lived within the hopes and

believes of scientists at that time: being able to conceive and build a perpetual machine that

nothing would stop, this being achieved in absence of any external operating system. Taking

a step back with respect to the notion of cyclic process and simultaneously focusing on the

directionality of heat fluxes, an alternative and slightly prior formulation was established by

Clausius and is so stated:

No process is possible for which the sole effect is that heat flows from a reservoir at a

given temperature to a reservoir at higher temperature.

Clausius, 1854

As a corollary, if there is no temperature gradient in a system, there is no heat flow made

possible without the action of any external device.

Historically, the notion of information (although not formulated in these words) was first

introduced in thermodynamics by Maxwell in the late nineteenth century with a Gedanken

experiment [13] , that was a posteriori named as Maxwell Demon. This opened a new era in the

description of physics, that would lead the scientific community to grasp the crucial role played

by information and open many questions about how to reconcile this vision with the current

tools of physics, in particular thermodynamics. Not only this question remained unsolved for

decades, but the debate and discussions were additionally fed with a new thought experiment

in 1929, named the Szilard engine. The concept of both thought experiments is developed

in the next paragraphs. These revolutionary ideas emerged in a scientific world in which the

second law of thermodynamics is or at least seems sacrosanct. In 1935, Arthur Eddington

provocatively stated that "if your theory is found to be against the second law of thermodynamics

I can give you no hope; there is nothing for it but to collapse in deepest humiliation" [12]. Such

a statement reflects to which extent the second law of thermodynamics is of a vertiginous

depth although it is not totally proven at that time. Luckily enough for Science, there are often

great thinkers, midway between humility and pretention, who take the risk to collapse in a

deepest humiliation: a few decades before Eddington, James Clerk Maxwell (1831-1879) came

to challenge the scientific community, rightly about the second law of thermodynamics.

In the next paragraph, we take the liberty of a slight deviation from the original formulation of

the Maxwell Demon thought experiment, with the aim of introducing it in a slightly more intu-

itive and pictorial way the original formulation being described at the end of the paragraph.
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A box is filled with particles. In the middle of the box is a wall with a trapdoor, on which an

idealized agent can operate. This agent was later named according to its creator as the Maxwell

Demon. At the very beginning, the system is supposed to be at equilibrium, that is with equal

concentrations of particles on the two sides of the box. The aim for the Maxwell Demon is to

isolate all the particles on the same side of the box, let’s say arbitrarily on the right one, in order

to create a concentration gradient. This is done by iteratively operating using a well-defined

cyclic process described in figure 1.1A. The different steps are the following. Starting a cycle

from an initial situation with particles on both sides of the middle wall (A1), the first step

is to detect a particle approaching the door from the left side (A2). The result following the

detection is kept in memory (A3), allowing the Demon to operate consecutively. The next

operation by the Demon is to open the door to let the particle go from the left to the right side

(A4). Once it is done, the door is closed and everything is reset (A5) so that a new cycle can be

operated. The Demon is also able to detect particles on the right side, but no opening of the

door follows such an observation, keeping the system unchanged for one more cycle. At the

end of the iterations, the final outcome is that the concentration of particles is higher on the

right side than on the left side (which is theoretically zero).

Coming back to the very original formulation, Maxwell describes a box at uniform temperature

in which particles have various velocities. A threshold value for the velocity is defined, so that

two types of particles are defined, the fast and slow ones. According to the second law, it is

impossible to create a temperature gradient in the box without expenditure of work. By intro-

ducing an operable door in the middle of the box, the Demon is able to create a temperature

gradient without paying the energy cost that is assumed by the second law. This would be done

by operating on the door, coordinately with what is observed about the position and velocities

of each particles. After a sequence of such operations, all the slow particles are isolated on one

side of the box and the fast one on the other, thus obviously leading to a temperature gradient.

Whatever the version of the Maxwell Demon experiment is chosen, the entropy of the system

would thus be decreased, in contradiction with the second law. Behind the experiment is the

central question of understanding why a Demon can never operate beyond the apparently

fundamental limits imposed by the second law, no matter how intelligent he is. The Maxwell

Demon experiment also intrigued because it reopened the utopian perspective on the con-

struction of a perpetual-motion machine. With the hypothesis of existence and feasibility of

such a Maxwell Demon, the procedure for perpetual motion, extracting mechanical work from

temperature or pressure gradient, is relatively simple and has been discussed by Ehrenberg

[14].

During decades, physicists struggled with this apparent conceptual contradiction, without

being able to formulate and explain the missing element to the puzzle, the one that would be

the link between the Maxwell Demon thought experiment and the second law of thermody-

namics. While some try to cripple the legitimacy of the Maxwell Demon by proposing different

arguments, others go in the reverse direction, bringing to the table of scientific advances
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1.2 A challenge to the second law of thermodynamics

diverse revisions of the Maxwell’s experiment, in which the Demon itself is not even required

to implement a similar process. We illustrate it through one example, the automated pressure

Demon proposed by Smoluchovski [15, 16]. The setup is very similar to the one illustrated in

figure 1.1A. The exception is that there is no Demon operating on the door, but the door itself

is built as a spring-loaded trapdoor, acting as a one-way valve, since only particles coming

from one side can induce the door opening. The resolution of this automated Maxwell Demon

was extensively studied by Skordos et al. in [17]. The numerical modelling of such an experi-

ment showed that the only way, with such a set up, to effectively induce a pressure gradient

between the two sides of the door is to systematically remove thermal energy from the door.

This de-thermalization prevents random opening that would lead to a flux of particles in the

undesired direction. Otherwise, the system stays at equilibrium, without any concentration

gradient between the two sides of the door.

Contributions followed one another over the years to build a new formalism able to solve the

paradox raised by the Maxwell Demon and thus make it consistent with the second law of

thermodynamics. A huge step into this direction was initiated by Leo Szilard (1898 - 1964),

who proposed a new thought experiment, the Szilard engine (1929) [18]. More than directly

proposing the full solution, this thought experiment established a new framework to guide the

reflexion around the apparent contradiction to the second law of thermodynamics, leading

many years later to the connexion between thermodynamics and information theory.

In his work, Szilard proposes a new thought experiment, 50 years after Maxwell’s one, with

a clear objective: to show that the intervention of an intelligent being, apparently allowing

the construction of a perpetual machine, is the manifestation of a measurement and memory

ability, hence causing the apparent violation of the second law [18]. Before going into the

details of this interpretation, let’s have a closer look to the experiment itself, known as Szilard

engine and schematically illustrated in figure 1.1B.

A cylinder (closed on both ends) is filled with gas at fixed temperature and is associated to a

large heat reservoir (not depicted in figure 1.1B). The gas enclosed in the cylinder consists of a

single particle and a partition can is inserted in the middle of the cylinder (B1). The Demon

detects on which side of the cylinder is the particle, either right or left (B2). The result is stored:

this is done by connecting a load through a frictionless pulley on the same side than the one

with the particle (B3). As a consequence, the gas expansion driven by the particle is converted

into the lift of the load, so that work is performed on it (B4). At the end, the system is reset by

disconnecting the load from the system as well as removing the partition and inserting it again

in the middle of the cylinder (B5). A new cycle can then be initiated.

This setup can be imagined so that the mechanical displacement of the piston is performed

freely. The expression of an external intervention simply consists in the insertion or removal

of the partition as well as the connexion between the system and the load so that the partition

displacement is converted into a work extraction. If the external agent acts on the system so
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Figure 1.1: Schematic illustration of two major thought experiments: (a slightly simplified
version of) the Maxwell Demon (A) and the Szilard engine (B) . They are depicted according to
the main steps that can be isolated in a information-processing device : measurement, storage,
feedback and resetting (C).
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that, at every iteration, the gas follows an isothermal expansion (ensured by the heat reservoir),

then work is extracted from the system at each iteration of the cyclic process. As for the Maxwell

Demon, the apparent contradiction with the second law of thermodynamics is evident, but

in this case, and thanks to the relative simplicity of the set up, the formal quantification of

the involved thermodynamic quantities has been initiated by Szilard itself, leading to the

resolution of the paradox.

The idea that emerged from both experiments the Maxwell Demon and Szilard engine is that

there is some cost associated to the measurement process. Brillouin was pioneer in attributing

an entropy increase to the measurement [19, 20]. Although it turned out to be incorrect, it

paved the way to formally bridging information theory and thermodynamics. 1961, Landauer

stated that it is not the measurement itself that increases the entropy of the system, but the

erasure at the end of the cyclic operation. This is known as the Landauer’s erasure principle

[21]. As a cornerstone of the Landauer’s erasure principle is logical irreversibility. During the

erasure, many different states converge to a single and same state after memory erasure, as

presupposed by the idea of resetting the system to its initial configuration. This many-to-one

process is associated to a logical irreversibility and thus involves dissipation. The entropy

increase that follows the memory erasure must be dissipated in the environment.

In the reverse, the measurement process can be, in principle, performed in a reversible manner

[22] and does not necessarily generate entropy dissipation. Bennett also brought significant

contributions, in the same direction as the one initiated by Szilard [22]. In particular, he

showed that the measurement expands the number of states of the memory, from one to many

possible states, which is then compressed during the erasure process. Therefore, whereas the

measurement was converted into an entropy decrease of the system by the operation of a

Demon, the erasure generates entropy, which offsets the entropy reduction.

In the background of this description are the different steps that are proper to any information-

processing cyclic operation: the measurement, storage, feedback and resetting. The corre-

spondence between these four steps with the thought experiments of the Maxwell Demon and

Szilard engine is explicitly represented in figure 1.1C.

• Measurement: Acquire knowledge on the state of the system, for instance by detecting a

particle (A2 and B2).

• Storage: The measure is temporarily stored to be converted later in the reduction of the

entropy of the system or the extraction of energy from the system. This is done either by

storing directly in a memory, whatever the form it has (A3), or by acting "mechanically"

so that energy conversion can operate (B3).

• Feedback: This is maybe the main step, the one that materialises the previous ones of

measurement and storage. This consists in the transfer of one particle through the door
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in a fixed direction (A4) or the volumic expansion of the gas (B4).

• Resetting: As every cyclic operation must, by definition, end in the same state it started,

the resetting includes the erasure of memory and bringing back to its initial physical

state. The Maxwell Demon loses trace of the previous measurement and closes the door

(A5), whereas the load is disconnected and the piston reinserted in the middle of the

cylinder (B5) in the Szilard engine.

The Maxwell Demon and Szilard engine experiments challenge the second law of thermody-

namics that was strongly believed to be inviolable. During the last century and as illustrated,

many different approaches have been used to explain and bring a physical resolution to this

apparent paradox. Whereas important steps were made by Landauer and Bennett to estab-

lish a link between the notions of measure and erasure with thermodynamic principles, in

the meantime Claude Shannon significantly contributed to advances in the development of

information theory in a totally different context. In his work "The Mathematical Theory of

Communication", he developed the carrying capacity of communication channels [23].

The central notion that was missing so far is a formal quantification of information, that

Shannon introduced as the Information entropy. A very first intuitive characterization of infor-

mation is a quantification of "what is a priori unknown". Far from scientific considerations,

if we are told that "the Earth is spherical", it is not very instructive and this claim does not

contain a significant information. However, if we are told the result of tomorrow’s lottery (and

assuming it’s correct), the amount of information in this sentence is huge. Similarly, both

Maxwell Demon and Szilard engine are the manifestation of external agents able to provide

information, a priori unknown, on the state of the system. In the first case the information

consists in the detection of an approaching particle coming from the "correct" side, whereas

in the second case, the information is simply the detection of the particle on one side of the

box.

Together with the work by Landauer and Bennett (and many other contributions that we did

not necessarily mention), the definition of information entropy by Shannon reconciliated both

Maxwell Demon and Szilard engine thought experiments with the law of physics and in partic-

ular the second law of thermodynamics. The whole mathematical and physical formalism of

information theory that is relevant within the framework of the current work is described in

chapter 2.

Although obviously not sufficient, it was necessary to validate the nascent formalism of infor-

mation theory via experimental realisations, possibly in biological systems but not only [24].

Many authors attempted to implement, by themselves, realisation of tiny demoniac agents at

the atomistic level. We will go through one example that perfectly shows how the processing

of information can be experimentally realised.

In their work, Toyabe and co-workers implemented a staircase like potential in which a dimeric
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A B

Figure 1.2: Illustration of the experimental setup. (A) In its natural evolution, the particle can
go in both upward (pink arrow) and downward (grey arrow) direction, the latter occurring
with a higher probability. (B) Under an external measurement-feedback setup, a "wall" (blue
rectangle) is inserted after each upward transition, preventing the particle to go backward.
Figure adapted from [25].

particle is embedded [25]. Initially, and without any external intervention, the particle will

tend to "fall down" the staircase-like potential (Fig 1.2A). The experiment consists in adding an

information-processing device that measures when, due to thermal fluctuations, the particle

moves in the wanted (but less frequent) direction corresponding to an upstairs displacement.

When such an event takes place, a potential barrier is inserted to prevent the particle to go

through the reverse and unwanted transition (Fig 1.2B).

Beyond the set-up itself that largely differs form the Szilard engine, its thermodynamic impli-

cations are highly similar. The experimental setup consists in a feedback-based manipulation

of a Brownian particle on the basis of information about the location of the particle. These

operations results in a conversion of information into energy, precisely like in the Szilard en-

gine experiment. However, although the experimental results obtained in this article confirm

the prediction from the theory, there is still one huge discrepancy between such a set-up and

biological systems in which life is the manifestation of molecular processing of information.

Indeed, in the previously described experiment, the measurement device is external to the sys-

tem and the resulting information is sent back to the system for a molecular feedback. A huge

challenge for experimentalists is to conceive a setup in which all the information processing

steps are taking place at the molecular level, exactly like in an information-processing system

in the cell. To our knowledge, it has not been successfully achieved yet.
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1.3 A first insight in cellular transport

The range of biological processes in living organisms is impossible to quantify, many of them

being, on their own way a manifestation of the processing of information at the molecular

level. The corresponding functions and instructions are encoded into the genome which likely

constitutes the most information-loaded biological structure. All the mechanisms that involve

substrates recognition and discrimination, transport of any type of particles and molecules, all

the ribosome construction machinery are possible illustrations of biological systems in which

information processing is at work. Even more specifically, many of them can be reconsidered,

beyond the proper biological description of the function, as various manifestations of Maxwell

Demons [26].

To set the framework of this thesis, we decided to restrict our study to some cellular transport

processes. This choice is motivated on the one hand by the huge diversity of transport mech-

anisms and the essential role that is played, biologically speaking, in many processes that

are absolutely essential for the proper functioning of living organisms. A second argument,

possibly even more decisive, is that we considered it was the most natural way to transpose

the Maxwell Demon into a biological environment. The transition from a Demon imposing to

particles a directionality to cross a door is highly reminiscent of many transporters located in

the cellular or organellar membranes.

The proper functioning of living organisms is based, among others, on the essential task

of substrates transport through biological membranes, such as the plasma membrane or

organelle membranes within the cell (intracellular transport). The range of transportable

substrates is very broad, from ions to large macromolecules. Many reasons may highlight the

importance of the transport mechanisms and why they are so essential in living organisms.

One of these is that, in general the production site of a molecular complex is not spatially close

to its destination, where it is intended to operate, to be used.

Fluxes of molecules within the cell are omnipresent and must be very precisely orchestrated:

transport of all kind of substrates is performed considering the interplay of various parameters,

such as the required transport rate, or a specifically targeted affinity with the different substrate

molecules. These parameters that drive the transport to perform such a broad range of tasks

suggest also a large diversity of transport processes: biological systems evolved to exhibit

diverse mechanisms in order to fulfil the different constrains that are imposed (substrate

selectivity, transport rate, directionality).

A proper understanding of these mechanisms is crucial for two main reasons. First, a large

number of diseases find their causes in the dysfunction of some transport process at the

molecular level [27, 28, 29]: an improved and more detailed understanding might then open

great perspectives for treatments or regulations of severe diseases such as cystic fibrosis

[30]. Second, in the last few decades, research in drug design showed amazing progresses.
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This was possible only thanks to greater and greater experimental achievements, as well as

a simultaneous improved understanding of the different transport mechanisms that are at

play: the way the pathogens reach their target and also the way the drug molecules can be

transported to their destinations, to prevent or inhibit the manifestation of diseases.

Cellular transport mechanisms are divided into two main classes: passive and active transport

[31]. The major distinction between both categories is the requirement or not of an energy

source to perform transport.

Passive transport is the simplest of the transport classes, although obviously not less essential.

Every type of passive transport is performed down a gradient, either a concentration gradient

or an electrochemical gradient. The diffusion of molecules across the membrane either

takes place directly through the lipid bilayer constituting the membrane (simple diffusion)

or through a transport channel or carrier that aims to facilitate the diffusion from the high to

the low concentration region (facilitated diffusion). In the case of passive transport process,

the gradient generates the driving force of the transport and no additional energy source is

required: the net flow of molecules is always down their gradient.

Contrarily to the passive mechanism, active transport takes place against a concentration

or electrochemical gradient (from low to high values). It requires a coupling to an energy

source to work against the natural evolution of the system. This coupling can take different

forms, one of them being the interaction with an associated primary transport channel,

thus indirectly benefiting from the electrochemical gradient of a second solute [32]. Such a

transport mechanism is known as a coupled carrier transport, a member of the secondary

active transport category. As a famous example, the transport of glucose across the plasmic

membrane is coupled to the transport of sodium ions, driven by its electrochemical gradient

at the membrane [33].

In the framework of the current work, the discussion will be mainly restricted to primary active

transport, in which the energy source is ATP, the energy currency driving a huge variety of

chemical reactions in the cell.

In particular, we will focus on the description of two active transporters, whose understanding

of underlying mechanisms and thermodynamics will be our guideline: transport of substrates

by ABC transporters (Chapter 3) and entropic pulling for the translocation of proteins through

mitochondrial inner membrane and endoplasmic reticulum (Chapter 4). The two transport

mechanisms differ greatly from each other, either shuttling substrates against a concentration

gradient or exerting a mechanical force on an incoming substrate protein. However, we show

that despite these flagrant differences, striking similar features emerge in the description of

both active transporters. Each system displays specific requirements, for instance in the form

of kinetic rates or biochemical conditions, necessary to impose a directionality and bring

the system out of its equilibrium state, mirroring the information processing nature of the

transporters.
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2 Basic principles on stochastic thermo-
dynamics and kinetic models

One challenge in the description and study of biological systems is to find an appropriate way

to represent them. There is obviously no unique good choice and the answer to this tricky

issue depends on many parameters: which level of specificity do we want to include in the

model? What are the figure of merits that will serve the research objective? At which scale are

the mechanisms that aim to be described? Throughout this research, we are guided by the

motivation of modelling the phenomenology of different biological systems while reducing as

much as possible the complexity of the model. The ensuing simplified vision of a biological

system is almost unavoidably achieved at the expense of biochemical accuracy, but the trade-

off is justified to preserve the minimal set of elements that reproduce the phenomenology

of the biological process of interest. In that respect, kinetic models (also named kinetic

schemes) which are introduced in this chapter are appropriate and convenient representations

of biological systems.

We first introduce the concept of stochastic thermodynamics, by showing which are the major

advances (and why they were absolutely required) with respect to classical thermodynamics.

This discussion is furthermore embedded within the framework of the description of biological

systems, to stress why such a formalism is appropriate and widely used in this field.

Second, we focus the discussion around the time-evolution of a system modelled by a kinetic

scheme. We introduce the equation that governs the temporal evolution of the system, known

as the master equation, and how the steady state can be computed from the different transition

rates. An alternative approach based on graph theory is presented, giving interesting insights

into the understanding of steady-state solution of kinetic models.

Third, we present different notions of stochastic thermodynamics that are of interest within the

framework of this research. In particular, we define the entropy of a system at different scales

and show how strongly it is related to the equilibrium or non-equilibrium state of a system.

Then, we present the formalism of information theory to show how the fundamental laws of

thermodynamics can be rewritten, taking into account the notion of information. Important
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results such as the second law of thermodynamics and the Crooks fluctuation theorem are

extended to account for the information processing.

Last, we conclude with a simple example of membrane transport to illustrate more concretely

some of the basic concepts.

2.1 From classical to stochastic thermodynamics

The formalism of classical thermodynamics provides the rigorous framework for the study

and description of an open system with its surrounding. In particular, one central question is

to understand how a system evolves from a given initial state and relaxes to a final equilibrium

state, through the exchange of heat, work and matter with its environment.

Thermodynamics is based on two fundamental laws which are stated (or re-stated) as follows

[34, 35]:

1. First principle: The first law expresses energy conservation in a closed system. More

specifically, in a thermodynamic process, the increment in the internal energy ∆E is

equal to the difference between the applied work W and the dissipated heat in the

surrounding medium Q.

∆E =W −Q (2.1)

Equation 2.1 can sometimes be found with different signs, depending on the convention

used to report on the directionality of the transfers of heat and work.

2. Second principle: The second law reflects the propensity for a system to always tend

to a highest disordered state. Considering a system in contact with a heat reservoir at

fixed temperature, the total entropy Stot is defined as the sum of internal entropy S and

the one of the medium Sm . The variation over time of the total entropy being always

positive, a system always moves to states of "higher disorder".

∆Stot :=∆S +∆Sm ≥ 0 (2.2)

The interpretation of the entropy is double. First, according to Clausius’ work, the change in

entropy is related to the heat exchanged Q with the surrounding environment at temperature

T , that is Q = T∆S [36]. The alternative interpretation is a measure of the disorder of the

system. This second approach will be widely used throughout this work.

Usually, a system is described by extensive variables which are macroscopic properties of

the system: the energy E , the volume V and the number of particles N . Based on these

three parameters, the state variable relevant to describe the state of such a system is the

entropy S(E ,V , N ). Correlated to the above second principle is the following definition of an
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equilibrium state of a system: among all the configurations compatible with the parameters

of the system (here E ,V and N ), the equilibrium state is the one maximising the entropy

S(E ,V , N ).

Historically, classical thermodynamics was formulated to report on the equilibrium state

of a system. Therefore, the formalism is not appropriate to describe the physics when a

system is moved far from its equilibrium state. It was necessary to adapt the level at which

the description is made and to move to a less coarse-grained theory. Intermediary between

a macroscopic description (the one of classical thermodynamics) and the finest description

that can be done at the microscopic scale is the mesoscopic level, rightly the framework for

the development of stochastic thermodynamics. The latter is the appropriate support for the

physics of irreversible process with entropy dissipation, typical of non-equilibrium physics.

To illustrate the importance of such non-equilibrium systems, Priogine’s seminal work states

that it is possible for a non-equilibrium system to internally create order, in absence of any

external force [37, 38, 39]. In that case, the displacement from equilibrium state is achieved by

a chemical driving force. Here is the main difference with respect to classical thermodynamics,

in which systems always relax to a state of highest entropy.

In its very first definition, and according to Boltzmann himself, the entropy is necessarily an

ensemble property and the reduction of scale to a stochastic trajectory might a priori seem

oxymoronic [40]. However, over years, the interest for such a definition applicable for instance

to a single event taking place among a sampling of random events increased. At the origin

of this question was also the will to extend both first and second laws of thermodynamics

to mesoscopic non equilibrium systems such as colloidal particles, RNA, DNA and other

biomolecules in interaction with an external experimental set-up (optical tweezers, AFM

or micropipets) [41, 42, 43, 44, 45]. These biological systems acted as a framework for the

development the stochastic thermodynamics, thanks to the major work of Sekimoto [46]. For

an extended development of the whole theory, it is suggested to refer to some articles and

reviews [35, 41, 47, 48, 49].

Three conditions have to be met to provide an appropriate basis for a stochastic description.

First, and as already mentioned, external mechanical forces or unbalanced chemical potential

are driving the non-equilibrium state; second, these systems are in a heat bath, at fixed

temperature; last, thermal fluctuations play a significant role in the evolution of the system

[35] . The third and last element is the root of the name stochastic thermodynamics, i.e. to be

able to quantify the stochastic fluctuations of the system. At a macroscopic scale, the system is

describe by ensemble and average quantities. The description is moved to a mesoscopic scale

in which the definitions of the classical thermodynamics observables (work, heat, entropy) are

extended to refer to a single stochastic trajectory [50, 51, 52, 53] .

Many biological systems operate out of equilibrium and exchange energy, heat and matter

with their environment. A typical example consists in all the processes that are driven by
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an ATPase activity. The chemical energy of ATP is used to be converted, for instance, into

mechanical work, and more generally to shift the system far from its equilibrium state. The

quantification of thermal fluctuations in molecular motors and Brownian ratchet mechanisms

is crucial, in particular to understand and quantify the induction of a directionality to a process

subject to thermal fluctuations [39, 54, 55, 56].

Leaving aside the mathematical details of the derivation, the laws of thermodynamics (equa-

tions 2.1 and 2.2) have their exact counterpart in the formulation of stochastic energetics, in

which thermodynamic quantities are defined with respect to single trajectories [35, 49]. The

first and second principles are accordingly modified as follows:

dE = d w −d q (2.3)

〈∆stot 〉 := 〈∆s +∆sm〉 ≥ 0 (2.4)

where 〈. . .〉 denotes the average over all possible trajectories the system can undergo.

These two expressions are obviously not new, since they are just a rewriting of equations

2.1 and 2.2 in which dE ,d w,d q and entropy s are defined for a single trajectory between

different states. In fact, the transition between both formulations is simply to consider much

smaller systems than in the macroscopic description. But it is nevertheless assumed that these

small parts of the system contain a sufficiently large number of particles, thus the underlying

principles still hold [57].

2.2 Time evolution of the system

A very broad range of biological systems can be coarse grained and represented as kinetic

models with a finite number of discrete states and a set of transitions defined by their kinetic

rates. Although a very refined description of biological processes at the level of molecular

structure might undoubtedly enrich the understanding of the mechanism, what remains clear

is that a very broad range of biochemical aspects can be understood without such a refinement,

restricting to a description based on empirical observations such as conformational states,

allosteric and kinetic properties of proteins [58]. The model for such a description is called a

kinetic model or kinetic scheme.

We consider a kinetic scheme with discrete states X1, X2, . . . , XN . The system can jump from

one state to another with a given probability per unit time, whose proxy is the kinetic rate k

[s−1]. From the dynamics of the system results, at each time t , a probability for the system to

be in each state given by P (X1, t ),P (X2, t ), . . . ,P (XN , t ).

A stochastic process is a generic term to account for all possible evolutions of a system which
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evolves probabilistically, subject to random fluctuations. In that case, when considering the

specific evolution along a stochastic trajectory, we can generally write

P (YN , tN |YN−1, tN−1; . . . ;Y1, t1) = P (YN , tN ;YN−1, tN−1; . . . ;Y1, t1)

P (YN−1, tN−1; . . . ;Y1, t1)
(2.5)

in which time is ordered by convenience: tN > tN−1 > ·· · > t2 > t1.

Note that {Xi } refers to the different states of the system, whereas {Yi } refers to any possible

trajectory associated to a time evolution within the set of states {Xi }: each Yi can be any of the

Xi states.

A widely studied class of systems are the one following a Markov process, i.e. the system has

no memory of past events. The state at time t is only defined by its state short before at time

t −d t , independently of the whole history from time t0 to t −d t . Under this assumption,

equation 2.5 gets:

P (YN , tN |YN−1, tN−1; . . . ;Y1, t1) = P (YN , tN |YN−1, tN−1)
P (YN , tN ;YN−1, tN−1)

P (YN−1, tN−1)
(2.6)

With such an assumption, the Chapman-Kolmogorov equation is written as follows, assuming

a discrete set of states {Xi } although it is originally written in a continuous formulation:

P (Y1, t1|Y3, t3) = ∑
Y2∈{Xi }

P (Y1, t1|Y2, t2) ·P (Y2, t2|Y3, t3) (2.7)

The formal derivation from the Chapman-Kolmogorov to the master equation is slightly

tedious and beyond the scope and aim of this work. Analytical rigorous developments and

interpretations can be found in the book by C. Gardiner [59]. In what follows, we will roughly

sketch a development, leaving aside all the terms interpreted as drift and diffusion in the

stochastic processes and only keeping trace of the discontinuous jump transitions between

states.

The transition rate between two states Yi and Y j can be expressed as the limit of a conditional

probability for state occupancy:

lim
t j→ti

1

t j − ti
P (Y j , t j |Yi , ti ) =W (Y j |Yi , ti ) for t j > ti (2.8)

By differentiating the Chapman-Kolmogorov equation, leading to the so-called differential

Chapman-Kolmogorov equation and getting rid of the drift and diffusion terms, the master

equation is obtained (here in the discrete state space formulation):

d

dt
P (Y2, t2|Y1, t1) = ∑

Z∈{Xi }
W (Y2|Z , t2)P (Z , t2|Y1, t1)−W (Z |Y2, t )P (Y2, t2|Y1, t1) (2.9)

The next and almost last step is to sum over all possible states Y1 at time t1, by apply-
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X1 X2

X3 X4

k12

k13

k14

k21

k24

k34

k31

k43

k42
k41

Figure 2.1: Kinetic scheme with 4 different states X1, X2, X3 and X4. The allowed transitions in
this example (resulting from an arbitrary choice) are shown with arrows between states. The
rate corresponding to a transition from state Xi to X j is denoted by ki j .

ing
∑

Yi∈{Xi } P (Y1, t1) · (. . . ) on both sides of equation 2.9. Associating the matrix elements

W (Y j |Yi , t ) to the rates ki j [s−1] , the final form of the master equation is given by:

d

dt
P (Y j ) = ∑

Yi∈{Xi }
W (Y j |Yi , t )P (Yi , t )−W (Yi |Y j , t )P (Y j , t ) (2.10)

d

dt
P (Y j ) = ∑

Yi∈{Xi }
ki j (t )P (Yi , t )−k j i (t )P (Y j , t ) (2.11)

Turning to a simple example, let X1, X2, X3 and X4 be the four possible states of a system. A

possible set of transitions between the states is represented in Figure 2.1.

The time evolution of the state occupancy probability P ({Xi }) is described by the above estab-

lished master equation (equation 2.11), which holds for each state Xi of the system, i = 1, . . . ,4

in the example of Figure 2.1. For the sake of brevity, we define the notation Pi := P (Xi ).

d

dt
Pi (t ) =∑

j
−ki j (t ) ·Pi (t )︸ ︷︷ ︸

out flux

+∑
j

k j i ·P j (t )︸ ︷︷ ︸
in flux

(2.12)

Implicitly, if there is no arrow between two states (for instance between X2 and X3), then

k2,3 = k3,2 = 0.

There are many different situations in which the transitions between states of a biological

system might be time-dependent and we will mention two of the most common. First, the

transition between two states Xi and X j involves another external species, let’s say Y that

binds to Xi to form X j ≡ Xi ·Y . Then the transition rate ki j = k∗
i j · [Y ](t), where k∗

i j is the

binding rate
[
M−1s−1

]
. However, in this case, the time dependence of the rates can usually be
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2.2 Time evolution of the system

removed (keeping only time-independent rates such as k∗
i j ) by adding all the possible species

that bind and form a complex, thus increasing the number of states to consider. This results

also in a non linear formulation of equation 2.12 that involves terms with products of states

probabilities and species concentrations. Second, the system might also be governed by an

external time-dependent stimulus, for instance to observe its temporal response. The latter

case is not the object of the present work.

As subsequently discussed in each specific applications of the master equations, we will restrict

our theoretical description to time-independent transition rates. In that case, the system of

master equations associated to the study model in figure 2.1 can be linearized and written in

the form of a linear system of differential equations d~P (t )/d t = M ·~P (t ):

d

dt


P1(t )

P2(t )

P3(t )

P4(t )

=


−(k12 +k13 +k14) k21 k31 k41

k12 −(k21 +k24) 0 k42

k13 0 −(k31 +k34) k43

k14 k24 k34 −(k41 +k42 +k43)


︸ ︷︷ ︸

M

·


P1(t )

P2(t )

P3(t )

P4(t )


︸ ︷︷ ︸

~P (t )

(2.13)

The steady state of the system corresponds to the case in which all the time derivative can-
cel out, that is d

dt Pi (t) = 0 ∀i . Considering an isolated system in which the total number of
particles Ntot is conserved (here

∑
i

N (Xi )(t) = Ntot , independent of t), the equations 2.13

(corresponding to the system depicted in Fig. 2.1) are linearly dependent and the determinant
of the matrix is zero. Both properties

∑
i

Mi , j = 0 and Mi , j > 0, i 6= j have important mathemati-

cal consequences. One of them is that there is one and only one eigenvector with a vanishing
eigenvalue (with the additional assumption that the graph of the kinetic scheme is strongly
connected), which has to be normalised to get a probability vector (

∑
i

Pi (t ) = 1). An alternative

but equivalent way is to replace one line of the matrix, let’s say the last one, by a normalisation
constraint. The following system of equations is solved at steady state (s-s), to obtain the
steady-state probabilities P (s−s)

i :


−(k12 +k13 +k14) k21 k31 k41

k12 −(k21 +k24) 0 k42

k13 0 −(k31 +k34) k43

1 1 1 1

 ·


P (s−s)

1

P (s−s)
2

P (s−s)
3

P (s−s)
4

=


0

0

0

1

 (2.14)
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Figure 2.2: Set χ of all the undirected spanning trees referring to the kinetic scheme in figure
2.2

2.3 State probability and net flux from kinetic scheme

An elegant approach was derived to compute the steady-state probability associated to a

kinetic scheme without solving any linear algebra operations such as computing the nullspace

or the inverse matrix. This method, named the "diagram method", is used to compute fluxes

and state probabilities in terms of the diagram rate constants [60, 75]. The proof is not given

in this section, but we will illustrate the mathematical result through the example of the toy

kinetic scheme in Figure 2.1, which can be easily extended to any larger kinetic scheme, with

the assumption it is strongly connected and without any unidirectional transitions.

In graph theory, a tree is a connected and undirected graph in which any two vertices of the

tree are connected by exactly one path. As a corrolary, a tree does not contain any loop. A

specific type of tree is called spanning tree: it is a tree that necessarily contains all the vertices

of the graph.

Coming back to the example in Figure 2.1, an exhaustive set of all spanning trees of the system

has to be built. In the example, there is a total of 8 (undirected) spanning trees, listed in

Figure 2.2. In more complex situations, the total number of spanning trees can be computed

using the Kirchhoff’s matrix tree theorem [61] and different algorithms to build all of them are

reviewed in [62]. As a side remark, the method remains unchanged in case of multiple edges

between two vertices. In that case, each spanning tree containing such an edge is duplicated

(or eventually more) to contain one of these edges. Of course no spanning tree can contain

two of them since they constitute a cycle.

Let χ be the set of undirected spanning trees represented in Figure 2.2. To each state Xi ,

i = 1, . . . ,4 is associated the set χi in which all the edges of the spanning trees are oriented

towards Xi (the example of χ2 is given in Figure 2.3).
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X2 X2 X2 X2

X2 X2 X2 X2

Figure 2.3: Set χ2 of all the directed spanning trees with every edge directed toward the vertex
X2

The steady-state probability of being in state i is given by:

Pi =

∑
~Ti∈χi

W~Ti

4∑
j=1

∑
~T j∈χ j

W~T j

(2.15)

where W~Ti
is the weight associated to oriented tree ~Ti , that is

W~Ti
= ∏

edge~e∈~Ti

k~e (2.16)

In other words, the state probability Pi is proportional (up to a normalization factor) to the

sum of the weight of all the trees oriented towards the considered state Xi .

The probability of observing a given state is important in the description of a biological

system, in particular to move from a mesoscopic description to an ensemble description

weighted-averaged over all possible states. Another cognate quantity is maybe even more

important, especially within the context of cellular transport: the net flux between two states.

The quantification of transport in a kinetic scheme will very often, if not always, be related to

the net flux between two states.

With the generic expression for the state probability Pi , we are interested in computing the

flux between two states i and j , that is:

Φi j = Pi ·ki j −P j ·k j i (2.17)

In the set χi , we can distinguish two subsets of spanning trees, the one that contain the

transition j → i (denoted by χ(+ j i )
i ) and the one that do not contain it (denoted by χ(− j i )

i ). If
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we look more closely at the contribution of one spanning tree of each subset in equation 2.17

to computeΦ12, we notice that only one of them contribute in P1 ·k12 −P2 ·k21, as shown in

equations 2.18 and 2.19.

Example for χ(+12) : − = 0 (2.18)

Example for χ(−12) : − 6= 0 (2.19)

where the red arrows represent the rates ki j and k j i in equation 2.17.

It results that only the spanning trees that do not contain the transition 1 ↔ 2 will contribute to

the expression for the net flux. The weight of each spanning tree (that enters in the definition

of the state probability) has to be multiplied by the transition rate (to compute a flux), and it

necessarily closes a cycle, for each considered spanning tree (e.g. red arrows in equation 2.19).

Thus, the summation reduces to all the cycles in the graph that contain the edge 1 ↔ 2. In this

simple case, the set of cycles C12 consists only in the two following cycles:

C12 =


X1 X2

X3 X4

;

X1 X2

X3 X4

 (2.20)

In both terms of equation 2.19, the cycle is crossed in two opposite directions, whereas all the

other edges of the spanning tree "converge" to the cycle with a same orientation.

At this point, we need to insert an additional notation that will be denoted by wc and which is

defined for each c ∈C12 and related to the set of arrows flowing into the cycle. If there are nc

vertices that are not belonging to the cycle c , the set of arrows flowing into the cycles precisely

contains nc elements, not necessarily connected. wc is sum over all possible configurations

of the product of the nc directed transitions towards the cycle. If the cycles contains all the

vertices of the graph (n = 0), then wc = 1. Applied to the set C12 defined in 2.20 (with the same

order of the list), it follows that

wc |c∈C12
= {1 ; k31 +k34} (2.21)

By combining equations 2.19 and 2.21 into eq. 2.17, the latter can be rewritten as follows :

Φ12 =
∑

c∈C12

(
W �

c −W 	
c

) ·wc =
∑

c∈C12

W �
c ·wc ·

(
1− W 	

c

W �
c

)
(2.22)
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The ratio W 	
c /W �

c is thermodynamically significant and its interpretation is related to the

entropy dissipation along the cycle, as later discussed in section 2.6.

2.4 Detailed balance and microscopic reversibility

The extension of classical thermodynamics, in which all the processes are reversible, to a

stochastic and non-equilibrium thermodynamics has one important consequence: irreversible

phenomena are associated to entropy dissipation. The condition for entropy dissipation

cannot be understood without considering microscopic reversibility and detailed balance con-

ditions, which are thermodynamic concepts playing an important role in biological systems

and their study through kinetic schemes.

The definition of microscopic reversibility states that "in a reversible reaction, the mechanism

in one direction is exactly the reverse of the mechanism in the other direction" [63, 64]. In

the general framework of molecular machines, the microscopic reversibility imposes that

forward and backward motions in a directional process are exactly cancelled. The intrinsic

asymmetry is then generated by the "introduction" of energy barriers that actively prevent the

backward transition, for instance through a dissociation constant of the considered substrate

that depends on the state of the system. [65, 66].

A consequence is the more general principle of detailed balance, which emerged very early in

the development of Thermodynamics, starting with a mention by Boltzmann in his work at the

end of the 20th century [67]. The formal definition of the principle of detailed balance given

by the International Union of Pure and Applied Chemists (IUPAC) is the following: "When

equilibrium is reached in a reaction system (containing an arbitrary number of components

and reaction paths), as many atoms, in their respective molecular entities will pass forward, as

well as backwards, along each individual path in a given finite time interval. Accordingly, the

reaction path in the reverse direction must in every detail be the reverse of the reaction path in

the forward direction (provided always that the system is at equilibrium)" [68].

To illustrate more concretely the detailed balance condition, let us consider Xi and X j as two

states of a system, with respective probabilities P (Xi ), P (X j ) and transition rates ki j ,k j i . The

detailed balance condition is:

P (Xi )(eq)k(eq)
i j = P (X j )(eq)k(eq)

j i (2.23)

By extension, the detailed balance is often written along a cycle of transitions X1 ↔ X2 ↔
. . . ↔ XN ↔ X1. Applying to every transition along the cycle, equation 2.23 can be rewritten
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independently of the state probabilities:

k1,2 ·k2,3 · . . . ·kN−1,N ·kN ,1

k1,N ·kN ,N−1 · . . . ·k3,2 ·k2,1

∣∣∣∣(eq)

= 1 (2.24)

When the system is at equilibrium, detailed balance holds by definition. The ensuing con-

straints, derived at equilibrium, must be satisfied out of equilibrium. Importantly, it is also

true that any configuration of the system for which detailed balance is satisfied necessarily

coincides with the equilibrium distribution.

2.5 Information entropy

To formally define the notion of information entropy, let us start by considering a set of N states

X1, X2, . . . , XN . It is assumed that every possible transition has its reverse in the kinetic scheme.

Each process and its reverse occur at the same flux at equilibrium, as imposed by detailed

balance constraints. The discussion of some specific cases with unidirectional transitions is

not part of the current introduction [69, 70, 71].

Historically, Shannon derived the statistical entropy within the framework of the theory of

communication to quantify the quality of the transmission of a message from one point

to another [23]. Whereas the conceptual idea of the current work is quite different, all the

formalism remains valid and is introduced directly within the context of a kinetic model.

The definition of the statistical entropy for a set of states {Xi } with probabilities P (Xi , t),

i = 1, . . . , N at time t is given by equation 2.25:

S({Xi }, t ) =−kB

N∑
i=1

P (Xi , t ) · ln(P (Xi , t )) (2.25)

The statistical entropy is also known as information entropy. The rationale for this alternative

name is that the entropy S({Xi }) quantifies how much is known on the state of the system,

or more rigorously, how much do you gain in the knowledge of the system when measuring

it. On the one hand, if the system is fully determined, that is P (Xk ) = 1 and P ({Xi 6=k }) =
0, then S({Xi }) = 0, because the state of the system is known without any doubt (in state

Xk ). On the other hand, if all states are equally distributed, that is P (Xi ) = 1
N ,∀i = 1, . . . , N ,

then S({Xi }) = kB ln(N ). Furthermore, it can be shown that any intermediary probability

distribution between the purely random distribution and the fully deterministic case will give

a value 0 < S({Xi }) < kB ln(N ) [72].
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time: t1 t2 tN→
k1,2 k2,3 kN−1,N

k2,1 k3,2 kN ,N−1

X1 X2 X3 XN−1. . . XN

Figure 2.4: Illustration of a stochastic trajectory in a kinetic scheme, from state X1 to state
XN . The thick black arrows depicts the forward direction of the trajectory, with corresponding
jumps at time t1 < t2 < ·· · < tN . The reverse trajectory is shown with the dashed arrows. ki j

denotes the transition rate from state i to j .

2.6 Entropy production along a stochastic trajectory

The scope of this paragraph is to present the formalism of entropy production along a single

stochastic trajectory, as developed by Seifert in 2005 [41]. This approach is particularly relevant

within the framework of our work in which different biological systems are studied as kinetic

models with a fixed number of discrete states.

Without losing generality, we consider a stochastic trajectory that goes from state X1 to state

XN (assuming the connectivity of the scheme, it is always possible upon an appropriate index-

ation of the states), as depicted by the thick plain arrows in figure 2.4. Each transition from

state i to state i +1 takes place at time ti , with t1 < t2 < ·· · < tN .

The stochastic entropy of a system defined for a set of states ({Xi }) suggests a possible ex-

pression to quantify the entropy of a single trajectory. Indeed, in an ensemble perspective, at

each time t the precise state of the system is not known but its statistical entropy is defined

as a weighted sum of ln(P (Xi )) (equation 2.25, in which the time dependence is implicit).

Restricting to a determined trajectory, along which the state X is precisely known at each time

t , it is a "reasonable guess" to postulate that the trajectory entropy of the system is given by:

s(t ) =− ln[P (X (t ))] (2.26)

where X (t ) is the state X of the system at time t : X (t ) = Xi , ti−1 < t ≤ ti in Figure 2.4.

The time derivative of the entropy of the system along the trajectory is given by

ṡ(t ) =− Ṗ (X )

P (X )
−∑

i
δ(t − ti ) ln

(
P (Xi+1)

P (Xi )

)
(2.27)

where the time dependence X = X (t ) is implicit.

The first term is the consequence of internal variations in the state probability either due

to transitions between states or externally-driven time-dependent parameters, whereas the

second term ensues from stochastic jumps at fixed discrete times ti along the trajectory.
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Justified by a posteriori arguments in Seifert’s article [41], the variation of the total entropy

results from two contributions: the change in the entropy of the system itself and the entropy

that is dissipated into the environment (medium):

ṡtot (t ) = ṡ(t )︸︷︷︸
system

+ ṡm(t )︸ ︷︷ ︸
medium

(2.28)

where

ṡtot (t ) =− Ṗ (X )

P (X )
−∑

i
δ(t − ti ) ln

(
P (Xi+1) ·ki+1, j

P (Xi ) ·ki ,i+1

)
(2.29)

ṡ(t ) =− Ṗ (X )

P (X )
−∑

i
δ(t − ti ) ln

(
P (Xi+1)

P (Xi i )

)
(2.30)

ṡm(t ) =−∑
i
δ(t − ti ) ln

(
ki+1,i

ki ,i+1)

)
(2.31)

Actually, the notion of entropy dissipation into the medium sm is somehow unclear and not

precisely defined. However, there are some preliminary and intuitive arguments to justify

such a proposition. One of them is that the ratio of transition rates ki j /k j i is related to the

difference of free energy between states Xi and X j , that is the energy consumed during the

transition Xi → X j [73, 74].

Let us consider a stochastic trajectory from state X0 at time t0 to state X f at time t f and as

previously with a set of jumps Xi → Xi+1 at time ti . The integration over time of the entropy

dissipation rate along such a trajectory gives:

∆stot =− ln

(
P (X f , t f )

P (X0, t0)

)
−∑

i
ln

(
ki+1,i (ti )

ki ,i+1(ti )

)
(2.32)

∆s =− ln

(
P (X f , t f )

P (X0, t0)

)
(2.33)

∆sm =−∑
i

ln

(
ki+1,i (ti )

ki ,i+1(ti )

)
(2.34)

The interpretation of these equations takes on its full meaning when considering a cyclic

trajectory. In that case, ∆s = 0, and it remains ∆stot = ∆sm . At equilibrium, from detailed

balance, ∆sm is also equal to zero and thus there is no entropy dissipation at all. Out of

equilibrium and over a cyclic trajectory, the whole entropy is dissipated into the environment.

As a side remark, this entropy dissipation term is the one that appears in equation 2.22 denoted

by W 	
c /W �

c .

To further support the split between the different contributions in equations 2.29 to 2.31, it is

interesting to move back from a single trajectory to an ensemble description of the system, by

averaging each contribution over the possible trajectories. The averaged form of equations
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2.32 to 2.34 is given respectively by equations 2.35 to 2.37:

Ṡtot (t ) = 〈ṡtot (t )〉 =∑
i , j

P (Xi , t ) ·ki j (t ) · ln

(
P (Xi , t ) ·ki j (t )

P (X j , t ) ·k j i (t )

)
(2.35)

Ṡ(t ) = 〈ṡ(t )〉 =∑
i , j

P (Xi , t ) ·ki j (t ) · ln

(
P (Xi , t )

P (X j , t )

)
(2.36)

Ṡm(t ) = 〈ṡm(t )〉 =∑
i , j

P (Xi , t ) ·ki j (t ) · ln

(
ki j (t )

k j i (t )

)
(2.37)

This result is in accordance with anterior results by Schnakenberg [75] who derived expressions

for the rate of entropy production. The present approach, using the formalism of single

trajectory, is even more general since the result is not restricted to the description of steady

state but its validity holds both at steady state and in transient regime of the time evolution of

the system.

2.7 Measurement and information

To introduce the formalism of information theory from a thermodynamic perspective, one

has to come back to the very first definition of the stochastic entropy given by equation 2.25,

rewritten in a slightly different way to introduce a dimensionless equivalent formulation of

the Shannon entropy:

S({Xi }) =−kB

N∑
i=1

P (Xi ) · ln(P (Xi )) = kB ·H({Xi }) (2.38)

where both S({Xi }) and H({Xi }) are known as the Shannon Entropy, simply differing by a unit

convention. Note that as S({Xi }) depends on {Xi } only through the probability distribution P

among the different states, it is often written as S(P ), a convention widely used in a thermody-

namic description.

In an equilibrium configuration of the system satisfying the Boltzmann distribution, the

well-known relation between entropy, energy and free energy is easily recovered.

Peq (Xi ) = exp
(−βH (Xi )

)
Z

⇒ Seq ({Xi }) = kB 〈βH (Xi )〉+kB ln(Z )

⇔ T Seq ({Xi }) = 〈H (Xi )〉−Feq ({Xi })

⇔ T Seq ({Xi }) = E({Xi })−Feq ({Xi })

(2.39)
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where H is the Hamiltonian of the system, Z the partition function and E the energy.

The non-equilibrium free energy of a system is defined analogously [76, 77, 78], that is :

F (P,H ) ≡ 〈H (Xi )〉P −T ·S(P ) (2.40)

On a set of states X = {Xi }, we define a measurement, that is a process M that might give differ-

ent possible outcomes denoted by {m}. Given an outcome m ∈ M the probability distribution

of X is modified, from an initial probability P (Xi ) to a new conditional probability P (Xi |m)

(in general P (Xi ) 6= P (Xi |m)) after measurement which suggests a correlation between the

probability distribution of variable X and the set of possible outcomes M .

In its very general formulation, the mutual information between two random variables X and

Y , I (X ;Y ) is defined by the relative entropy between the joint distribution P (X ,Y ) and the

product of respective distributions P (X ) ·P (Y ) [79]:

I (X ;Y ) = ∑
x∈X ,y∈Y

P (x, y) ln
P (x, y)

P (x)P (y)
= H(X )+H(Y )−H(X ,Y )

= H(X )−H(X |Y )

(2.41)

Reformulated within the framework of a variable X and a measurement M on the state of the

system, we have:

I (X ; M) = H(X )−H(X |M)

⇔∆Smeas = kB (H(X |M)−H(X )) =−kB · I (X ; M)
(2.42)

whose interpretation is instructive about the conceptual idea of information. The mutual

information between a physical system X (here a set of states {Xi }) and a measurement process

M operated on it is equal to the difference between the Shannon entropy H(X ) of the system

and the Shannon entropy of the system given a measurement process, H(X |M). Equivalently,

the variation of entropy associated to the measurement is equal, in absolute value, to the

mutual information I (X ; M). The positivity (by construction) of mutual information [80]

between two variables X and M implies that the measurement always decreases the entropy

of the system, by gaining some knowledge about the state of it.

The formalism covering the definition of non-equilibrium free energy, mutual information

between a system and measurement, was introduced so far with the aim of getting to a very

impactful equation, especially because it provides the resolution of the paradox risen by the

thought experiments of Maxwell Demon and Szilard engine. Equation 2.43 is an extension of

the second law of thermodynamics that includes the information and its derivation can be
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2.8 Fluctuation theorem and time reversibility

found in the paper by Sagawa et al. [81].

W −∆F ≥−kB T I (X ; M) (2.43)

In particular, in the case of a cyclic process in which the free energy difference ∆F = 0, the

equation reduces to

W ≥−kB T I (X ; M) (2.44)

The equation states that the maximum amount of work that can be extracted (W < 0) from a

cyclic process on a system X is (in absolute value) at most equal to the information gained on

the state of the system during measurement, I (X ; M).

This equation gives new insights to the Szilard engine. Let us consider a cyclic process consist-

ing in inserting a wall in the middle of the box, moving the wall in the direction opposite to the

position of the particle (i.e. perform a volumic expansion of the gas) and finally removing the

wall to reset the system. In that case:

W =−kB T · ln(2) (2.45)

H(X ) = ln(2)

H(X |M) = 0

}
⇒ I (X ; M) = H(X )−H(X |M) = ln(2) (2.46)

The Szilard engine is an example of an optimal setup, in which the whole amount of informa-

tion issued from the measurement on the system is converted into an extracted work. The

question of optimising such a work extraction is beyond the scope of the actual description. It

has been shown that the optimal bound of equation 2.44, that is an equality between informa-

tion and work, can be reached upon reversibility of the feedback process [82, 83] . Although

we will not deal with the formal derivation of optimality conditions, tackling the question of

the time reversal of stochastic trajectories associated to measurement gives new enlightening

insights in the definition and application of information associated to a measurement.

2.8 Fluctuation theorem and time reversibility

A system is brought out of equilibrium from a macroscopic state A to a state B along a given

thermodynamic path γ. The transition is driven by tuning external parameters of the system

at a finite rate and the corresponding protocol is not necessarily assumed to be slow. When

the experiment is repeated over an ensemble of such trajectories from state A to state B , the

following inequality from macroscopic thermodynamics holds:

〈W 〉γ ≥∆F := FB −FA (2.47)

By sampling only one or a very few thermodynamic trajectories from A to B , it is clearly
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concievable to (apparently) violate the second law of thermodynamics by extracting more

work than the free energy difference between the starting and ending states: these occurences

are called the "transient violations of the second principle" [84]. However, in average, the

inequality is always satisfied, in accordance with the law of thermodynamics. This results is

made even stronger with an equality relation, linking an averaged expression of the work and

the free energy difference. The so-called Jarzynski equality [85] is given by:〈
exp

(−βW
)〉
γ = exp

(−β∆F
)

(2.48)

Such an average formulation eliminates the fluctuations that ensue from the stochastic nature

of the process. These fluctuations are captured and quantified by the Crooks fluctuation

theorem [47] :
PF (σ)

PR (−σ)
= exp(σ) (2.49)

where index F denotes the forward protocol and index R refers to the reverse protocol upon

time reversal: the operations that drive the system from B to A upon time reversal are denoted

by λR (t ) =λF (tend − t ). During both protocols λF (t ) and λR (t ) is an entropy production (+σ
and −σ respectively) since the system is driven out of equilibrium. The Crooks fluctuation

theorem relates the probabilities PF and PR of observing a entropy production ±σ during

respectively the forward and backward trajectories. Simply said, the more entropy is produced

along a trajectory, the more likely it is (with an exponential growth) to be observed rather

than the reverse trajectory. The limit case σ= 0 corresponds to an equilibrium process, with

no entropy production, in which both forward and backward trajectories are equiprobable,

analogously to the detailed balance constrains (equation 2.23).

To mirror the second principle of thermodynamics and the Jarzynski equality that involve

the work W and free energy F , an alternative formulation of equation 2.49 holds, with the

assumption that the initial state A of the system is at equilibrium:

PF (βW )

PR (−βW )
= exp(−∆F )exp

(+βW
)

(2.50)

In the same way that the second law of thermodynamics was extended to include the informa-

tion (equation 2.43), an analogous reasoning leads to a fluctuation theorem also involving the

information associated to a measurement [86, 82, 87]:

PF (γF ,m)

PR (γR ,m)
= exp(βW (γF )−∆F +I (γF ,m)) (2.51)

where γF is a stochastic trajectory associated to a fixed protocol driving from state A to state B

and γR is the reversed trajectory upon time reversal. m ∈ M is the outcome of the measurement

process and I denotes the information at the trajectory level.
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Applied to a trajectory among a discrete set of states {Xi }, a trajectory-dependent definition

of information associated to a trajectory γF (t ) = Xi (t ) and a measurement outcome m ∈ M is

given by [80] :

I (γF ,m) = ln

(
PF (m|Xi (t ))

P (m)

)
= ln

(
PF (Xi (t )|m)

P (Xi (t ))

) (2.52)

The average over all possible trajectories and measurement outcomes defined on set X and M

brings back to the mutual information (equation 2.41), that is 〈I (γF ,m)〉γF∈{X ,M } = I (X , M)

In general, there are many different formulations of the fluctuation theorems, depending

on the assumptions on the system itself and with different ranges of validity [88]. In this

introduction, we aim to give an overview of the main concept, without going too deep into the

formalism. The work of a detailed description with the underlying aim of unifying the different

formulations of the fluctuation theorem can be found in numerous reviews and articles [40,

53, 82, 84, 86, 89].

At this point, it is essential to stress out the following consideration: the above formalism has

been derived for an external measurement device that is "observing" a system and performing

a measurement on it. In that sense, the measurement device does not directly affect the system

itself. However, in the different case studies that will be described in chapters 3 and 4, we will

face an internal measurement device in which the measurement process unavoidably affects

the state of the system. This modification is crucial in the interpretation that will be made

from the measurement process itself.

Formally, equation 2.52 has to be adapted. So far, we were considering a system with states

{Xi } and probabilities P (Xi ), with a measurement device externally operating on it and the

trajectory was defined along a stochastic trajectory defined on the different states. Now, let us

consider a system split into two subsystems, each of them with N states. The internal measure-

ment process corresponds to a switch between each subsystem. In absence of measurement,

the corresponding subsystem has the probabilities P (Xi ), i = 1, . . . , N . Under the action of

an internal measurement device M , the system is moved the alternative subsystem with a

different probability distribution, given by P (Xi |m), i = 1, . . . , N where m is the measurement

outcome provided by the internal measurement device. Along the stochastic trajectory (de-

fined within the whole 2N -state system, from one subsystem to the other) going from state

Xi to state Xi |m, the corresponding information Imeasure inspired by equation 2.52 is thus

defined as:

Imeasure = ln

(
PF (Xi |m)

P (Xi )

)
(2.53)
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There is no formal defintion of such a definition associated to an internal measurement device,

However the expression directly comes out from well-established results in the case of external

measurement device and there is a strong correspondance between the two cases (internal or

external measurement). Therefore, equation 2.53 will be used in the next chapter to quantify

the trajectory-dependant information in the case of an internal measurement device.

2.9 ATP as energy source of primary active transporters

All active processes in living matter, and in particular active transport of molecules and ions

require energy. The major energy source comes from the release of an inorganic phosphate Pi

during the hydrolysis reaction from ATP to ADP, according to the following reaction :

AT P � ADP +Pi (2.54)

which releases an amount of energy ∆G̃ . The reverse reaction that consumes an amount of

energy∆G̃ is the synthesis. The notation∆G̃ corresponds to the negative free energy difference

of the reaction. At the end,∆G =−∆G̃ is defined as a positive value, just a matter of convention.

The Gibbs free energy of the reaction is given by:

∆G̃ =∆G̃0 +kB T ln
[ADP ][Pi ]

[AT P ]
(2.55)

where ∆G̃0 is the standard free energy defined by the equilibrium constant Keq of the reaction:

∆G̃0 =−kB T ln(Keq ) =−kB T ln
[ADP ]eq [Pi ]eq

[AT P ]eq
(2.56)

Assuming that the inorganic phosphate Pi is in large excess in the hydrolysis reaction (and

thus [Pi ] ≈ [Pi ]eq ), the Gibbs free energy ∆G̃ depends only on the concentrations of ATP and

ADP. Introducing the notation

α := [AT P ]

[ADP ]
and αeq := [AT P ]eq

[ADP ]eq
(2.57)

we finally obtain

∆G̃ =−kB T ln

(
[AT P ]

[ADP ]
· [ADP ]eq

[AT P ]eq

)
=−kB T ln

(
α

αeq

)
(2.58)

In typical cellular conditions, [AT P ] = 5 ·10−3M , [ADP ] = 0.5 ·10−3M and [Pi ] = 10 ·10−3M ,

thus leading to a Gibbs free energy difference in vivo −25kB T .∆G̃ .−20kB T [90].

With the convention of a positive free energy ∆G as a quantifiction of the energy brought to
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S AT P S ADP

S

ks

kh

k AT P→ADP
ex

k ADP→AT P
ex

Figure 2.5: The transition between states S AT P and S ADP can be done via two routes: hydrolysis
and synthesis (red arrows, rates kh and ks respectively) or exchange (black arrows, rates
k AT P→ADP

ex and k ADP→AT P
ex ). Implicit in the exchange process is an intermediary apo state S

(dashed circle) in which there is no nucleotide bound on the substrate.

the system in the form of AT P , we have:

∆G = kB T ln

(
[AT P ]

[ADP ]
· [ADP ]eq

[AT P ]eq

)
= kB T ln

(
α

αeq

)
(2.59)

Let us consider a substrate protein (denoted by S) that can be either bound to ATP or ADP.

The corresponding states are called the ATP state S AT P (respectively ADP state S ADP ) of the

protein. The transition between ATP and ADP states is possible through two different paths

(Figure 2.5), either the transitions of hydrolysis/synthesis or exchange. Whereas the first one is

a chemical reaction of from ATP to ADP or vice versa, the second one consists in the successive

release and binding of nucleotide with an transient apo state S of the substrate.

The expression for the exchange rates is given by equations 2.60 and 2.61

k AT P→ADP
ex = k−AT P

[ADP ]k+ADP

[ADP ]k+ADP + [AT P ]k+AT P
= k−AT P

k+ADP

k+ADP +αk+AT P
(2.60)

k ADP→AT P
ex = k−ADP

[AT P ]k+AT P

[ADP ]k+ADP + [AT P ]k+AT P
= k−ADP

αk+AT P

k+ADP +αk+AT P
(2.61)

From the detailed balance condition (equation 2.24), the ratio between hydrolysis and synthe-

sis rates is related to the dissociation constants of ATP and ADP:

kh

ks
= k ADP→AT P

ex

k ADP→AT P
ex

∣∣∣∣(eq)

= 1

αeq

Kd ,AT P

Kd ,ADP
(2.62)

where Kd ,ADP = ko f f ,AT P /kon,AT P and similarly for Kd ,AT P . It follows that the ratio between
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E1 E1 ·M

E2 E2 ·M

M

M

Membrane

Side1

Side2

Figure 2.6: Kinetic scheme for the transport of a molecule M between side 1 and side 2 of the
membrane. The transport is mediated by a membrane protein E that can be in two states E1

or E2.

exchange rates is related to the available Gibbs free energy ∆G :

k AT P→ADP
ex

k ADP→AT P
ex

= 1

α

Kd ,AT P

Kd ,ADP
= αeq

α

kh

ks
= exp(−β∆G)

kh

ks
(2.63)

2.10 Thermodynamic forces

As a conclusion of this section, we illustrate some of the above-introduced principles through a

concrete and simple example of membrane transport [73]. Let’s consider a molecule M that is

transported between two sides (side 1 and side 2) of a membrane. The transport is performed

by an auxiliary molecule E which can be seen as a "middleman" in an anthropomorphic

picture. The side of the membrane on which the molecule M binds or detaches is determined

by the state of E . The membrane protein E is assumed to be in two possible states, E1 and E2,

associated to an interaction with side 1 and side 2 respectively (Figure 2.6).

The chemical potentials of molecule M on each side of the membrane are given by µ1 and µ2

are defined as:

µM ,1 =µ0
M +kB T ln([M1])

µM ,2 =µ0
M +kB T ln([M2])

}
=⇒ XM :=∆µM = kB T ln

(
[M1]

[M2]

)
(2.64)

The difference in chemical potential ∆µM defined as XM corresponds to the driving force that

drives the transport of M from side 1 to side 2.

At equilibrium, the detailed balance holds and the condition on the rates along the cycle is
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given by:

� product of rates

	 product of rates

∣∣∣∣
eq

= kE1→E1·M ·kE1·M→E2·M ·kE2·M→E2 ·kE2→E1

kE1→E2 ·kE2·E2·M ·kE2·M→E1·M ·kE1·M→E1

∣∣∣∣
eq

= 1 (2.65)

Incorporating the explicit expression for the binding rates of molecule M on E1,E2, that is

kEn→En ·M = [Mn]kon,n with n = 1,2, the previous equation can be rewritten as:

kon,1 ·kE1·M→E2·M ·kE2·M→E2 ·kE2→E1

kE1→E2 ·kon,2 ·kE2·M→E1·M ·kE1·M→E1

= [M2]eq

[M1]eq
(2.66)

Importantly, equation 2.66 always holds, the system being at equilibrium or not. It follows

that the kinetic parameters are, in general, not independent and always related by the detailed

balance constrains. Similarly to equation 2.64, the equilibrium value of XM is defined by:

XM ,eq = kB T ln

(
[M1]eq

[M2]eq

)
→∆XM := XM −XM ,eq (2.67)

What changes when the system moves out of equilibrium is that the ratio between the products

of rates in one direction of a cycle and in the other is not necessarily equal to 1. In particular:

� product of rates

	 product of rates
= kE1→E1·M ·kE1·M→E2·M ·kE2·M→E2 ·kE2→E1

kE1→E2 ·kE2·E2·M ·kE2·M→E1·M ·kE1·M→E1

= [M1]

[M2]

/
[M1]eq

[M2]eq
= exp(∆XM )

(2.68)

The equilibrium associated to the molecule M on the two sides of the membrane is defined

by a driving force ∆XM = 0, that is [M1]/[M2] = [M1]eq /[M2]eq . When the system is moved

out of equilibrium, the natural directionality of the transport is governed by the value of XM

compared to its equilibrium value: if ∆XM > 0, then the molecule moves from side 1 to side 2

and reversely.

In biology, many of the transport mechanisms result from a coupling between different trans-

port of substrates. For instance, as introduced in Section 1.3, various transport mechanisms

get advantage of a passive transport through a membrane to actively shuttle another substrate

across the membrane. In this context, we extend the previous description of the transport

of M to a second substrate S to study a simple model of coupled carrier transport. The cor-

responding scheme is illustrated in Figure 2.7. Similarly to the expression with the binding

molecule M , we can write for S: XS =∆µS = kB T ln
(

[S1]
[S2]

)
and ∆XS = XS − XS,eq . We assume

that the system is such that [M1]/[M2] > [M1]eq /[M2]eq and [S1]/[S2] > [S1]eq /[S2]eq , that is

∆XM ,∆XS > 0, with the additional assumption that ∆XM >∆XS . When considered separately

both M and S tend to be transported from side 1 to side 2 of the membrane. How can we

thermodynamically characterize the global cycle that involves both substrate S and M , that is
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Membrane

Side1

Side2

E1

E2

E1 ·M

E2 ·M

M

M

E1 ·S

E2 ·S

S

S

Figure 2.7: The kinetic model in Figure 2.6 is extended with a second substrate molecule S that
can also bind to molecule E , although not simultaneously with M .

E1 ↔ E1 ·S ↔ E2 ·S ↔ E2 ↔ E2 ·M ↔ E1 ·M ↔ E1 ? This question is crucial to better understand

the coupling mechanisms in active transport.

In that case, an equation similar to 2.68 can be written: from the ratio of rates along the global

cycle and we find that the resulting driving force of the cycle is given by ∆XMS =∆XM −∆XS ,

positive by hypothesis. Thus the system operates in the direction that consists in moving M

from side 1 to side 2 and moving S from side 2 to side 1. The free energy of M is decreased by a

value ∆XM , whereas the free energy of S is increased of ∆XS , the whole system having its over-

all energy decreased by XM −XS . This is an example of free energy transduction [73] in which

the free energy of molecule M is transferred to the molecule S, to be used for the transport

in the thermodynamically unfavourable direction, that is from side 2 to side 1, whereas the

remaining part, XM −XS is dissipated.
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3 ABC transporters as autonomous
Maxwell Demons

The main results presented in this chapter are currently under review and published as a

preprint [91]. The majority of the figures are directly reproduced or adapted from this article.

3.1 Biological and structural characterisation of ABC transporters

ATP-Binding Cassette transporters (ABC transporters) are one of the most widespread family

of active transporters and are present in all kingdoms of life. They play a crucial role in all

living organisms, by using energy to drive the transport of several molecules, from scales of

ions to large macromolecules. Their abundance and diversity in living systems result from the

huge number of tasks that require their ability to perform active transport with an appropriate

selectivity, in many different biological organisms [92, 93, 94].

Several nutrients such as lipids, sugars, sterols and vitamins are imported into the cell by ABC

transporters and shuttled through the plasma membrane or the organellar membrane (for

instance between the cytosol and the endoplasmic reticulum) [95]. Moreover, another crucial

role played by ABC transporters is to drive the expel of metabolic waste, toxins or drugs out of

the cell.

In addition to being involved in an enormous number of tasks in the cell, ABC transporters are

also directly or indirectly implicated in the development of many diseases. On the one hand,

the unproper functionning (possibly as a consequence of mutations on the protein sequence)

might cause several diseases such as neurodegenerative pathologies (Parkinson, Alzheimer,

...), cystic fibrosis or immune deficiency [96] . On the other hand, their ability to mediate the

efflux of drugs (e.g. chemotherapeutic drugs) has been demonstrated, which might promote

multidrug resistance [97]. These different mechanisms rise a particular interest for biomedical

research on ABC transporters: the precise understanding of the proper functioning is still

partially lacking and the potential applications for treatments and regulation of many severe

diseases undoubtedly strengthens the interest around the family of ABC transporters [96, 98].
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As a preliminary remark which is nonetheless essential, transport by ABC transporters takes

place against concentration gradients and thus requires an active process mediated by an

energy source, unlike a passive and diffusive transport. Energy consumption is thus required

to go against the thermodynamically spontaneous direction of transport: the import or export

of selected substrates by ABC transporters is driven by ATP hydrolysis to shuttle molecules

against a chemical gradient.

For decades, structural and crystallographic properties of ABC transporters have been ex-

tensively characterised, revealing a large spectrum of different conformations that can be

observed during the transport cycle [99, 100]. However, there are still gaps in the under-

standing of the precise energy conversion mechanism: how is the energy released during ATP

hydrolysis converted into a chemical potential difference across the membrane? Which are

the exact biochemical reactions that induce a conformational change during the transport

cycles?

Most scientific advances in the understanding of these mechanisms were possible thanks to

the development of experimental techniques to characterize more and more precisely the

structure of ABC transporters. These results acted as a starting point to the elaboration of differ-

ent models that describe the transport mechanism, notably to report on its thermodynamics

and energetics.

All ABC transporters share a common molecular structure, a dimer made of two identical

monomers (although a few exception with distinct monomers have been reported [101]. The

first part of the monomer is t a Transmembrane Domain (TMD) which spans the plasmic

or organellar membrane: it is constituted of multiple α-helices that are the pathway for the

substrate through the lipid bilayer. The second constituent is the nucleotide binding domain

(NBD), located inside the cell (that is in the cytoplasm) and is composed of both α-helices

and β-sheets, on which ATP or ADP can bind (or rarely other nucleotides such as GTP in

some highly specific cases [102]). Although ABC transporters share a common structure,

during billions of years of evolution, members of the ABC transporters family had to adapt to a

very broad range of substrates. It results in a large diversity observed in the TMD sequences,

whereas the NBD is highly conserved through all ABC transporters reported in the different

organisms, likely as a fingerprint of the mechanism itself [103, 104].

Hydrolysis of ATP and nucleotide exchange both drive conformational changes that affect the

orientation of the transporter, switching the accessibility of the substrate binding site from

one side of the membrane to the other (Figure 3.1 B). When NBD is bound to ADP, substrates

bind to or are released from the TMDs on the in-side of the membrane. This conformation

is usually called open-inside (or inward-facing). Alternatively, when ATP is bound to the

NBD, the substrate is caught from or released to the out-side of the membrane: this is the
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IN

OUT

Cytoplasm

Plasmic

 membrane

IN

OUT

A. B.

Figure 3.1: Protein structure of ABC transporters from X-Ray experiments. (A) Structure of
an importer observed in E. Coli (E. Coli BtuCD structure, PDB 1L7V [105]). One monomer
is made of a NBD (in purple for the left monomer, pink for the right monomer) and a TMD
(green on the left, orange on the right). The plasmic membrane is schematically drawn in
light grey and the two NBDs are located inside the cell. (B) Structure of an exporter. The same
transporter is observed in two different conformations, inward-facing (left, PDB 3QF4 [106])
and outward-facing (right, PDB 6QV0 [107]). The arrows show the binding and unbinding of
substrate (schematic red dot) on the side corresponding to the orientation of the transporter.
Plain black arrow is the dominant transition in the case of an export cycle, with respect to the
dashed black arrow.
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Chapter 3. ABC transporters as autonomous Maxwell Demons

open-outside (or outward-facing) conformation.

At the scale of the transporter in its whole, the global mechanism with a conformational change

is relatively well understood presently, but there are still debates and gaps in the understanding

of how these specific mechanisms and the underlying intermediary steps are biochemically

driven.

Importantly in the working of ABC transporter is the conformational switch of the TMD, de-

pending on the nucleotide bound on the NBD. Each step of the catalytic cycle, which are the

ATP binding, ATP hydrolysis as well as ADP and inorganic phosphate release) contribute to

the conformational changes in the transporter and, by extension, also input energy into the

transport cycle [108].

It is still unclear which precise step in the catalytic cycle induces the conformational change.

Some results suggest that the power stroke is rightly generated by ATP hydrolysis, by pushing

together and pulling apart the cytoplasmic ends of the TMD [109], possibly through an inter-

mediate conformation of the NBD called Nucleotide Sandwich Dimer [110, 99], whereas other

results tend to show that the ATP binding generates the power stroke [111, 112].

Mechanistically, the transmission of the signal from the NBD associated to the conformational

switch results from the interaction between the helical domain of NBD and the coupling

helices of the TMD [93]. The dimeric structure of ABC transporters, and thus the presence of

two nucleotide binding domains, raises the question of the role played by the two nucleotides

in the transport mechanism. Structural observations show that the nucleotide binding pocket

(the precise location of the nucleotide on the NBD) are really close, suggesting a cooperativity

of nucleotides in the transport mechanism: it is more reasonable to think of a pair of nu-

cleotides that affect the biochemical properties of the transporter, more than two independent

nucleotides, each playing a specific role [113]. Out of a few specific exceptions [114], both ATP

binding pockets are always required for the transport mechanism [93] .

These conformational transitions, mirroring the interaction from the NBD to the TMD, are

obviously essential part of the global mechanism of substrate transport. As a counterpart in

the understanding of the transport mechanism is the "reverse" interaction at a distance, that

is from the TMD to the NBD. The arising question pertains to the effect of the substrate bound

on the TMD. More specifically, it consists in understanding how the structural and kinetic

properties of the NBDs are affected by the presence of a substrate on the TMD.

The presence of a substrate strongly affects ATP hydrolysis or nucleotide exchange rates (or

both). The induced kinetic asymmetry between states with and without substrates accelerates

the ATPase cycle of ABC transporters [93, 115]. Importantly, since the nucleotide binding site

is not in direct contact with the substrate, there must necessarily be a long range allosteric

transmission pathway, from the substrate binding site to the nucleotide binding domain [116,

117].
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3.1 Biological and structural characterisation of ABC transporters

So far, ABC transporters were described through a general approach, without distinguishing

their proper transport function. This choice deliberately lays the foundations for a generic

mechanism, but it obviously does not mean that, for an accurate biological description, the

structural and functional discrepancies within the ABC transporters family must be totally

omitted.

In the past few decades, experimental advances in the characterisation of ABC transporters

revealed a large number of structural properties. Very often, they are associated to a specific

transport mechanism. The whole family comprises two main families, importers and exporters,

that represent the huge majority of transporters. In addition, other less common and more

specific transport functions have been reported, such as extractors and mechanotransmitters

[104, 118].

Among the importers are two subfamilies, importers of type I and of type II. The essential

distinction between both, that likely originates the structural and mechanistic differences,

is the task they are assigned to. Type I importers transport diverse small nutrients that are

abundant in the cell (sugars, amino acids,...). The orientation switch between the inward-

facing and outward-facing conformations is unambiguous and is, as described in the previous

section, related to the nucleotide on the NBD. This type of importer has been extensively

studied in the case of the maltose transport by E.Coli for instance. Importers of Type II are

required to transport larger substrates that are present at low concentration in the cellular

environment: a typical member of this family is the protein BtuCD which mediates the import

of vitamin B12 [105]. The α−helices of the TMD form a gate spanning the membrane and the

successive rearrangements in their relative structures enclose the substrate in the translocation

pathway, progressively shuttling it from the out- side to the in- side of the membrane.

Exporters are found both in prokaryotes and eukaryotes. In the latter, they are located on

the plasma membrane, as for prokaryotes, but also on the organellar membranes [101]. The

exact understanding of the mechanism through an experimental description of the structure

is much more difficult and still incomplete, because most of the experimental structures do

not reveal bound substrate on the TMD [109, 101].

Most of the models (if not all) proposed for ABC transporters, both importers and exporters,

find their origins in the alternating access model, an allosteric molecular model that describes

a broad range of energy-consuming transporters, such as membrane pumps [120]. Specifically

applied to the study of ABC transporters, this description led to various models [93, 109, 121]:

the alternating catalytic site model [122] the ATP switch model [113], the reciprocating twin

channel model and the constant contact model [123].

Obviously, these models are representative of different transport mechanisms and there is no

unified description at the molecular level, so much the required tasks (import ou export) as

well as the characteristics of substrates (size, concentration) might be different. However, from

a broader perspective, the coupling between substrate- and nucleotide-dependent conforma-

tional changes (resulting in different rates between the possible conformations) suggests the
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Chapter 3. ABC transporters as autonomous Maxwell Demons

existence of fundamental similarities in the transport by ABC transporters, independently of

the substrate and the transport directionality [113, 119, 124].

Therefore, our goal is to develop a model as universal as possible, in which essential features

of ABC transporters are captured by a unifying model, as a consequence of a global common

mechanism.

3.2 Construction and motivation of the model

As a starting point for the elaboration of our model is the work by Douglas Rees et al. [93] in

which they built an idealized kinetic model with four states, the minimal number of states that

reproduces the working of an ABC transporter: two ATP-bound states and two ADP-bound

states, with the corresponding orientation, respectively outward-facing and inward-facing.

For each of these conformations, a substrate can be bound on the TMD or not. It is notably

shown that three parameters play an important role to optimize the transport performance,

illustrated hereafter in the case of an importer (the model omitting all the structural details that

distinguish importers from exporters, the analogy with the exporter is direct). First, the affinity

of the substrate for the transporter has to be larger in outward-facing than inward-facing

conformation. Second, the ATPase activity must be larger when the substrate is bound in

the outward-facing conformation. Last, in the absence of substrate, Nucleotide Exchange

Factor (NEF, cochaperone proteins that accelerate exchange rates) must favourably drive the

transition from an ADP-bound state (inward-facing) to an ATP-bound state (outward-facing)

to reset the state of the transporter and thus allow the start of a new transport cycle. An

adequate relation between these parameters allows the system, among other, to minimize

the number of futile cycles during which energy released by ATP hydrolysis is not effectively

involved in the transport of a substrate from one side of the membrane to the other.

Among the three above-mentioned conditions for a performant transport, the second one

(a larger ATPase activity in the presence of substrate) is at the heart of our conception of

the model, with the aim of improving the fidelity of the model to biochemical and structural

arguments. The ATP-bound states must in reality be an ensemble of at least two conformations,

characterized by different nucleotide-processing rates, whose relative equilibrium is tuned by

substrate binding.

Therefore, we extend the model proposed by Rees and co-workers to report on the allosteric

property of the transporter that materializes the interplay between the presence of substrate

and its ATPase activity. The initial 4-state model is thus extended to 6 states through the

duplication of the ATP-bound states, both in presence and absence of substrates. The four

states T S, DS, T and D (independently of the transition rates between each) are the one of

the original four-state model [93, 122, 125]. The two additional states T ∗S and T∗ are added

to include the allosteric transition between two states with different nucleotide-processing

rates (figure 3.2). Although the model might include few additional transitions, it is also
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Figure 3.2: (A) ABC transporters span the plasma membrane phospholipid bilayer. The ATPase
domains (blue circles) are located on the inner side of it and bind ATP (small green circles) or
ADP (small yellow circles). When bound to ATP, there are two possible states (orange or green
trans-membrane domains), both in an open outside conformation. The relative population of
these two states is shifted by the presence or not of a substrate (small red circle) bound on the
TMD. The ADP-bound state (open-inside conformation, violet trans-membrane domains) is
reached from the ATP-bound conformations through a "two-branch" reaction (red arrows). (B)
The composite reactions (red arrows in figure A) are implicitly representing the two branches,
which are either the ATP hydrolysis/synthesis (blue arrow) or the exchange (green arrows).
Overall, the resulting net flux between ATP- and ADP-bound states is depicted with the black
hollow arrow.
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aimed to stay as simple as possible in order to capture the essential features of the observed

phenomenology. Therefore some hypotheses are made to reduce the complexity of the kinetic

model.

As a first assumption is the correlation between the transporter orientation and the substrate

binding/release ability on the corresponding side of the membrane. In other words, when the

transporter is in the ATP-state, respectively ADP-state, the binding and unbinding of substrate

are only from/to the out- side, respectively the in- side, of the membrane. This is qualitatively

in line with the description of the transport cycle and also further confirmed by the numerical

values of the rates [125] which suggest a difference of four order of magnitude between binding

rates on the "good" side with respect to the opposite side (and similarly for the unbinding).

Second, the binding/unbinding events between T ∗ and T ∗S are not considered. There is

obviously no experimental evidence for such an assumption, since the existence of these two

additional states T ∗ and T ∗S is precisely our main hypothesis, the object of this work. The

addition of these two transitions is discussed in section 3.7.

The notation for the different rates corresponding to the transition arrows illustrated in Figures

3.2A and 3.2B is the following:

• kh ,kS
h ,k∗

h and k∗S
h [s−1] are the hydrolysis rates. They correspond to the hydrolysis of

the ATP-bound transporter, respectively in the T state, T S state, T ∗ state and T ∗S state.

• ks ,kS
s ,k∗

s and k∗S
s [s−1] are the synthesis rates. They correspond to the synthesis re-

action, from an ADP-bound to an ATP-bound state and the same notation for the

superscript holds than for the hydrolysis rates.

• kT→D
ex [s−1] is the exchange rate from T to D state. The other exchange rates are defined

with the same notation and the corresponding names of the states.

• kT→D and kD→T [s−1] (red arrows in Figure 3.2B) are the sum of hydrolysis or synthesis

rate and the exchange rate. The same notation holds for the other states, from/to T ∗

and in presence of substrate.

• kD
on [µM−1s−1] and kD

o f f [s−1] are the binding and unbinding rates of substrates, from/to

the in-side of the membrane. The same is for kT
on and kT

o f f , from/to the out-side of the

membrane.

• k+ and k− [s−1] are the transition rates between T and T ∗: k+ from T to T ∗ and k−
from T ∗ to T . kS+ and kS− are similarly defined in presence of substrate.

The two possible transitions between ATP-bound state and ADP-bound state are related to the

energy consumption of the system or through exchange. These transitions are unbalanced
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3.3 Characteristic parameters to capture the phenomenology

out of equilibrium and follow the relation 2.63 introduced in section 2.9 to account for the

available energy of the system (∆G), that is specifically for this model:

kh

ks
= exp

(
∆G

kB T

)
kT→D

ex

kD→T
ex

(3.1)

kS
h

kS
s
= exp

(
∆G

kB T

)
kT S→DS

ex

kDS→T S
ex

(3.2)

k∗
h

k∗
s
= exp

(
∆G

kB T

)
kT ∗→D

ex

kD→T ∗
ex

(3.3)

k∗S
h

k∗S
s

= exp

(
∆G

kB T

)
kT ∗S→DS

ex

kDS→T ∗S
ex

(3.4)

(3.5)

The detailed balance condition (equation 2.24) must always be satisfied for each of the ther-

modynamic cycles in Figure 3.2A, not only between exchange and hydrolysis/synthesis, thus

restricting the number or independent parameters of the system. Last but not least, we in-

troduce a few parameters to stress the interpretation of some characteristic features of our

model.

3.3 Characteristic parameters to capture the phenomenology

Based on the different states and rates, we introduce two parameters that conceptually mirror

the conception of the model and the different biochemical arguments raised so far.

Different ATPase activity between the two ATP-bound states

The states T ∗ and T ∗S are characterized by different nucleotide-processing rates compared to

states T and T S and especially by different hydrolysis rates. To quantify this distinction, we

introduce the parameter η:

η := k∗
h

kh
=

k∗S
h

kS
h

(3.6)

One single value of η is defined on both sides of the system, that is the ratio between the

two hydrolysis rates is the same with (k∗S
h /kS

h) and without (k∗
h /kh) substrates. The reason

is precisely that we aim to point out the existence of two structurally similar but kinetically

different ATP-bound states, which exist both in absence and presence of substrates. This is

specifically the raison d’être of the extension of the model from [93, 125], in which the presence

of substrate directly affects the ATPase activity of the ATP-bound (and ADP-bound) states.

In our model, the substrates obviously plays a role and the set of three states with substrate

(T S,T ∗S and DS) as a subsystem does not have the same kinetics than the set of three states
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Chapter 3. ABC transporters as autonomous Maxwell Demons

without substrate (T,T ∗ and D). This difference is detailed in the next paragraph.

The presence of substrate shifts the equilibrium towards the one or the other ATP-bound

states

In our conception of the model, on the one hand, the binding of the substrate on the TMD tilts

the equilibrium in favour of either T S or T ∗S, each of them with their own ATPase activity. On

the other hand, when the substrate is released, the occupation of states T ∗ and T is affected.

These two properties are characterised by different equilibrium constants defined in equations

3.7 and 3.8

Ke = k+
k−

(3.7)

K S
e = kS

+
kS−

(3.8)

Combining the imposition of thermodynamic constraints and the introduction of the parame-

ters η, Ke and K S
e , we report the expression of all the rates in the appendix (Table A.1).

3.4 Logics of transport

The time evolution of the occupancy of each state of the system is given by the master equation
(equation 2.12) which provides the following set of equations:

dP (T S)

dt
=−P (T S)(kS++kT S→DS +kT

o f f )+P (T∗S) ·kS−+P (DS)kDS→T S +P (T )[out ]kT
on (3.9)

dP (T∗S)

dt
= P (T S)kS+−P (T∗S)(kS−+kT ∗S→DS )+P (DS)kDS→T ∗S (3.10)

dP (DS)

dt
= P (T S)kT S→DS +P (T∗S)kT ∗S→DS −P (DS)(kDS→T S +kDS→T ∗S +kD

o f f )+P (D)[i n]kD
on (3.11)

dP (T )

dt
=−P (T )(k++kT→D + [out ]kT

on )+P (T∗) ·k−+P (D)kD→T +P (T )kT
o f f (3.12)

dP (T∗)

dt
= P (T )k+−P (T∗)(k−+kT ∗→D )+P (D)kD→T ∗ (3.13)

dP (D)

dt
= P (T )kT→D +P (T∗)kT ∗→D −P (D)(kD→T +kD→T ∗ + [i n]kD

on )+P (D)kD
o f f (3.14)

In this problem, we are interested in the non-equilibrium steady-state (NESS):

dP (T S)

dt
= dP (T ∗S)

dt
= dP (DS)

dt
= dP (T )

dt
= dP (T ∗)

dt
= dP (D)

dt
= 0 (3.15)

The equations are obviously linearly dependent, from the conservation of the total number

of transporters. In order to get a probability distribution for each state, one of the equation
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3.4 Logics of transport

(arbitrarily chosen) can be substituted by a normalisation condition reflecting the conservation

of the total number of transporters, that is:

P (T S)+P (T ∗S)+P (DS)+P (T )+P (T ∗)+P (D) = 1 (3.16)

The NESS probabilities are associated to a stationary probability occupancy of each state of

the transporter. However, it does not imply that the net flux of substrates between the two

sides of the membrane equals to zero.

We therefore have to impose another constraint, a zero net flux between the in- and out- sides

of the membrane, which corresponds to a zero net flux between the substrates in solution and

substrates bound on the transporter. The two formulations (either relative to the in or out side

of the membrane) are strictly equivalent. In other words, the net flux from the membrane to

the in- side is necessarily equal (up to a sign convention) to the net flux from the membrane to

the out- side of the membrane. There is thus a single condition:

P (T S)kT
o f f −P (T )[out ]kT

on = 0

m
P (DS)kD

o f f −P (D)[i n]kD
on = 0

(3.17)

By substituting the expression of probabilities obtained from the resolution of the master

equations (equations 3.9 to 3.14), probabilities that themselves depend on [i n] and [out ],

and subsequently solving equation 3.17, an expression for the ratio [i n]/[out ] is found. The

sketch of the analytical derivation is described in the Appendix, section A.1.3. The final result

is slightly shortened to keep trace only of the emerging mathematical structure of the solution,

which gives:

[i n]

[out ]
= [i n]eq

[out ]eq

[
1+

(
α

αeq
−1

)
·
(

Ke

K S
e
−1

)
·
(

1− k+k∗
h kD→T

ex

k−khkD→T ∗
ex

)
·F ({k})

]
(3.18)

where F ({k}) is a positive and non-zero function that depends on the whole set of rates.

Remarkably, it ensues from the expression that three conditions have necessarily to be satisfied

in order to move the system from equilibrium and create a concentration gradient across the

membrane, with respect to the equilibrium configuration. As we will see, these conditions can

be described as reminiscent of the action of an internal Maxwell Demon. The parallel between

the historical experiment of Maxwell Demon (section 1.2) and ABC transporters, which acted

as a motivation of our project, is thus a posteriori strengthened by the interpretation of the

conditions that emerge from the analytical derivation.

• Available energy: α 6=αeq

This first condition is not so surprising: the system requires energy in order to move
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from equilibrium. If the concentration ratio between ATP and ADP is equal to the one

at equilibrium, then it is thermodynamically impossible for the system to impose and

maintain a substrate gradient across the membrane shifted from its equilibrium value.

• Storage of the measure: Ke 6= K S
e

Second, the binding and release of substrate have to affect the kinetics of the system.

More precisely the two subsystems T , T ∗, D and T S, T ∗S, DS must be driven by differ-

ent kinetic rates. Following the assumptions that were made to build the model, the

asymmetry between the two subsystems is exclusively contained in the equilibrium

constants Ke and K S
e . Considering ABC transporters as being driven by an internal and

autonomous Maxwell Demon, the condition can be so reformulated: once the substrate

is detected by the Demon, the measure has to be stored at the molecular level, which

consists in tilting the system in one state or another (for instance T S or T ∗S after bind-

ing), in a different way than in absence of substrate.

If Ke and K S
e are equal, the measure is not adequately stored in the system, thus merging

the two subsystems as a single one, consequently dissociating the molecular events on

the TMD (substrate binding and release) from the kinetics of the nucleotide-processing

transitions taking place on the NBD. It is similar to considering a Maxwell Demon that

would indeed detect the particle, without being able to record and memorize it for the

purpose of operating the door.

The storage of the measurement is the first step of the feedback, whose second step is

reflected by the following condition.

• Directionality of the feedback: kS+k∗S
h kDS→T S

ex 6= kS−kS
hkDS→T ∗S

ex

It is assumed from the two previous paragraphs that the transporter is such that there is

available energy in its environment and it is biochemically able to store the measure.

Then, the third required condition for transport is related to the directionality of the

feedback, which corresponds to the second step after the storage of the measure. More

explicitly, it means that, considering the kinetic cycle of import (anti-clockwise in Figure

3.2A) and export (clockwise), their respective total rates along the cycles (i.e. product of

the rates) has to be different. The symmetry between both direction must be broken so

that the transporter is able to effectively convert the measure into an effective transport

of substrate from one side to another.

As a concrete example for an importer, the typical sequence of events that moves the

system from equilibrium consists of the detection of the substrate from the out- side

(binding T → T S), followed by the storage of the measure and subsequent hydrolysis

(T S → T ∗S → DS). Then the substrate is released inside (DS → D). The system is

brought back to its initial state through a direct exchange (D → T ), without going through

the state T ∗. In fact, only the cycles that go through one hydrolysis/synthesis and one

exchange can move the system from equilibrium. Furthermore, the cycles through both

50



3.4 Logics of transport

T∗ and T ∗S or restricted to the central 4-state cycle are always equilibrated and cannot

support the transport of substrate in one preferential direction.

T → T S → T ∗S
hydrolysis−−−−−−−→ DS → D

exchange−−−−−−→ T

T
hydrolysis−−−−−−−→ D → DS

exchange−−−−−−→ T ∗S → T S → T
:

kT
onkS+k∗,S

h kD
o f f kD→T

ex

khkD
onkDS→T ∗S

ex kS−kT
o f f

= [i n]eq

[out ]eq

kS+kh∗,SkDS→T S
ex

kS−kS
hkDS→T ∗S

ex

T → T S
hydrolysis−−−−−−−→ DS → D

exchange−−−−−−→ T ∗ → T

T → T ∗ hydrolysis−−−−−−−→ D → DS
exchange−−−−−−→ T S → T

:
kT

onkS
hkD

o f f kD→T ∗
ex k−

k+k∗
h kD

onkDS→T S
ex kT

o f f

= [i n]eq

[out ]eq

kS+k∗S
h kDS→T S

ex

kS−kS
hkDS→T ∗S

ex

(3.19)

T → T S → T ∗S
hydrolysis−−−−−−−→ DS → D

exchange−−−−−−→ T ∗ → T

T → T ∗ hydrolysis−−−−−−−→ D → DS
exchange−−−−−−→ T ∗S → T S → T

:
kT

onkS+k∗,S
h kD

o f f kD→T ∗
ex k−

k+k∗
h kD

onkDS→T ∗S
ex kS−kT

o f f

= [i n]eq

[out ]eq

T → T S
hydrolysis−−−−−−−→ DS → D

exchange−−−−−−→ T

T
hydrolysis−−−−−−−→ D → DS

exchange−−−−−−→ T S → T
:

kT
onkS

hkD
o f f kD→T

ex

khkD
onkDS→T S

ex kT
o f f

= [i n]eq

[out ]eq

(3.20)

The same arguments hold for cycles going through synthesis from ADP-bound state to

ATP-bound state and exchange for the reverse transition, but this case is obviously ther-

modynamically much less favourable. Equations 3.19 and 3.20 reflect that the precise

path followed by the system is immaterial, in the sense that all paths are thermodynami-

cally equivalent.

The directionality of the transport cycle finds its equivalence into the Maxwell Demon ex-

periment as follows: once the Demon detected and stored the measure, the consecutive

action must be dependent on the measure itself. If there is no preferential direction-

ality, i.e. if it opens and closes the door following the same protocol whatever side the

particle comes from, then the action of the Demon will not induce any temperature (or

equivalently concentration) gradient between both sides of the box.

A pictural analogy between the Maxwell Demon and ABC transporters is presented in figure

3.3.

These three conditions can be summarized in a sequence of steps that are required for the
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Figure 3.3: (A) Illustration of the main constitutive steps associated to the Maxwell Demon
experiment. A "double" information-storage device is explicitly represented, with a value
of 1 if a particle is detected on one side or the other of the box, a value of 0 otherwise. (B)
Counterpart of the different steps in the transport cycle by ABC transporter (here importer).
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3.5 Energy cost of information processing

successful action of the autonomous Maxwell Demon that operates at the molecular level the

ABC transporter. This reflects a logical AND-like condition that links the three terms in brackets

in equation 3.18. First, it must consume energy. Second, it must be able to biochemically

record the measure. Third, there must be an asymmetry in the directionality of the transport

rates, otherwise the measure and its storage cannot be converted into an effective action,

namely the transport of substrate in a preferential direction.

Remarkably, it reveals that the analogy between ABC transporters and the Maxwell Demon is

not only conceptual: behind the biochemical properties of ABC transporters is underlying an

autonomous Maxwell Demon that operates through a sequence of steps at the molecular level,

reproducing each of the information-processing stages that are governing the Mawell Demon

operation in the historical thought experiment.

In section 3.6, we will numerically explore each of these conditions and describe the behaviour

of the model more quantitatively. In particular how the concentration gradient [i n]/[out ]

varies depending on F ({k}), a term we so far put aside in the discussion of the logical necessary

conditions for transport that emerged from the analytical derivation.

3.5 Energy cost of information processing

During decades, many physicists struggled to build a formalism of information theory in order

to explain (and solve) the paradox of the Maxwell Demon experiment, by considering the

thermodynamic cost of the measurement. This opened great perspectives, both fundamentally

and through potential applications in various fields. In this section, we go the other way

around and show how the formalism of information theory applies to the description of ABC

transporters as autonomous Maxwell Demon.

Keeping in mind the historical resolution of the Maxwell Demon paradox, we propose an

alternative approach that is based on the construction of an energy balance, considering the

thermodynamic cost of each information-processing steps during one transport cycle. For the

sake of simplicity, the discussion will be focused on the case of a single import cycle. Obviously,

the same formalism holds also for an export cycle in the reverse direction (see Appendix A.1.4),

thus confirming one more time that import and export processes can be combined in a unified

framework.

Measurement and resetting: A transition between two analogous subsystems

The only way for the transporter to detect the presence of a substrate, as the Demon would

do, is through its binding to the TMD. Considering the three possible states of the NBD as

forming one single subsystem, the measurement consists in the transition from the three-

state subsystem without substrate (T , T ∗, D) to the one with substrate (T S, T ∗S, DS). The

complementary process of resetting the system is the reverse transition of substrate release.
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Associated to the measurement and resetting is a gain of information about the state of the

system: as would the Demon gain information on the state of the system by detecting the

approaching particle, the binding of substrate is the only way to internally acquire information

at the biochemical level on the state of the system. Similarly, although we refer to it as a

resetting, the reverse process of unbinding can be described as a gain of information about

the state of the system, in the sense that the system gets rid of the degree of freedom on the

NBD. In that case the internal measurement takes place between the two subsystems without

and with substrate, that is {T,T ∗,D} {T S,T ∗S,DS}. Thus, for both measurement and resetting

steps in the transport, the amount of information associated is quantified according to eq 2.53,

which transposes to equations 3.21 (measurement from T to T S) and 3.22 (resetting from DS

to D) in the case of an import cycle.

kB T Imeasure = kB T ln
(

P3(T S)
P3(T )

)
(3.21)

kB T Ireset = kB T ln
(

P3(D)
P3(DS)

)
(3.22)

where P3(T ) and P3(T S) are the steady-state probabilities of the T state conditional to the

absence or presence of a bound substrate, respectively. They must be computed on the

corresponding 3-state subsystems (T -T ∗-D and T S-T ∗S-DS) as illustrated in Figure 3.4 A.

Feedback as a source of entropy dissipation

Although the Maxwell Demon is assumed to be able to operate the door without paying any

energy cost, such an eventuality is impossible in a biological system working out of equilibrium.

Thus the feedback steps that are at play in the two subsystems {T S, T ∗S, DS} and {T , T ∗, D}

unavoidably cause energy losses in the system, in the form of entropy dissipation into the

environment.

More concretely, there are different paths in each feedback loop that might be used to import a

substrate. In fact, the choice of the considered path is immaterial, since all dissipate the same

amount of entropy, and thus energy. The system is brought to equilibrium by going through

one hydrolysis (after the measurement) and one exchange (after resetting). There are formally

four combinations that satisfy this constraints. They are listed in equation 3.23 to 3.26 and

it is shown that all of them indeed dissipate the same amount of energy. The four additional

cycles with one exchange and one synthesis might also be considered, leading exactly to the

same entropy dissipation, but they are not mentioned here since thermodynamically almost

impossible.

• TS → T∗S
hydrolysis−−−−−−−→ DS after measurement and D

exchange−−−−−−→ T after resetting

∆Sfeedback = kB ln

(
kS+k∗S

h kD→T
ex

kS−k∗S
s kT→D

ex

)
= kB ln

(
K S

e

Ke

k∗S
h k∗

s

k∗S
s k∗

h

α

αeq

)
(3.23)
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• TS
hydrolysis−−−−−−−→ DS after measurement and D

exchange−−−−−−→ T∗ → T after resetting

∆Sfeedback = kB ln

(
kS

hkD→T∗
ex k−

kS
s kT ∗→D

ex k+

)
= kB ln

(
K S

e

Ke

k∗S
h k∗

s

k∗S
s k∗

h

α

αeq

)
(3.24)

• TS → T∗S
hydrolysis−−−−−−−→ DS after measurement and D

exchange−−−−−−→ T∗ → T after resetting

∆Sfeedback = kB ln

(
kS+k∗S

h kD→T∗
ex k−

kS−k∗S
s kT∗→D

ex k+

)
= kB ln

(
K S

e

Ke

k∗S
h k∗

s

k∗S
s k∗

h

α

αeq

)
(3.25)

• TS
hydrolysis−−−−−−−→ DS after measurement and D

exchange−−−−−−→ T after resetting

∆Sfeedback = kB ln

(
kS

hkD→T
ex

kS
s kT→D

ex

)
= kB ln

(
K S

e

Ke

k∗S
h k∗

s

k∗S
s k∗

h

α

αeq

)
(3.26)

After a slight rearrangement of the expression, we can alternatively show that

T∆Sfeedback = kB T ln

(
[i n]eq kD

onkT
o f f α

[out ]eq kD
o f f kT

onαeq

)
(3.27)

The definitions (both conceptual and formal) of the measurement, resetting and feedback

suggest that the transporter can be, in some sense, described as two three-state systems (Figure

3.4 B), the three states corresponding to the possible states of the NBD. Each system (the two

grey triangles) has its own transition rates between the three states, which are (have to be)

biochemically modified, depending on the presence or not of substrate. These rates are rightly

the one that are comprised in the different steps of feedback (black arrows). The transition

between these two systems (red arrows) correspond to the measurement and resetting, through

the binding and release of substrate.

Let’s take a step back from the equations to consider how energy is expected to be used in the

system (Figure 3.4 A). An amount of free energy is brought to the system, in the form of ATP,
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Chapter 3. ABC transporters as autonomous Maxwell Demons

with a corresponding free energy ∆G = kB T ln([AT P ]/[ADP ] · [ADP ]eq /[AT P ]eq ).

First, a part of it is used to acquire information about the state of the system (kB T Imeasure and

kB T Ireset). This terms numerically appears as a negative contribution because it prevents

dissipation in the case Imeasure + Ireset < 0, increasing the final difference in chemical potential.

Second, some energy is dissipated by the feedback steps (∆Sfeedback), both to store the measure

and go through the hydrolysis/exchange transitions.

At the end of the process, the difference in chemical potential across the membrane

∆E := kB T ln

(
[i n]

[out ]

/
[i n]eq

[out ]eq

)
(3.28)

is expected to be equal to the remaining amount of available energy, that is

∆G − (kB T Imeasure +kB T Ireset)−∆Sfeedback (3.29)

Combining the definitions and values of these quantities through equations 3.21, 3.22, 3.27,

3.28, A.13, we can indeed show that:

∆E =∆G −kB T (Imeasure + Ireset)−T∆Sfeedback (3.30)

This alternative approach based on the formalism of information theory is remarkable be-

cause it bridges the gap between two conceptions of the same biological system that are

apparently very different. On the one hand, we went through the analytical derivation to

solve a set of master equations that describe the kinetic of the system and its steady-state,

to finally obtain an expression for the concentration ratio of substrates generated across the

membrane (equation 3.18). This approach is exclusively based on a biochemical and ther-

modynamic consideration of the transport process. On the other hand, a more abstract way

was used, greatly inspired by the notions and formalism of information theory. We showed

that both approaches converge to the same result, supporting our working hypothesis: ABC

transporters are autonomous Maxwell Demons whose action is hidden in the sequence of

chemical reactions at the molecular level.

3.6 Numerical results

The analytical derivation for the steady state concentration gradients highlighted three neces-

sary conditions that must be simultaneously satisfied to move the system out of equilibrium

(Equation 3.18). Beyond the logic of these three conditions, the performance of the transporter

is defined through the interplay of a whole set of rates and parameters, which cannot be easily

captured by the analytical solution. In the first part of this section, we explore how the system
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TS

DS

T*S

T

D

T*

Measurement

Resetting

Measurement

Resetting

Feedback
Feedback

Figure 3.4: Each of the grey triangles corresponds to a three-state system either with (TS-T*S-
DS, left) or without (T-T*-D, right) bound substrate. Solid and dashed arrows correspond to
the typical cycle respectively for the import, respectively export, of substrate. Red arrows are
measurement and resetting processes (respectively materialized by binding and unbinding
of substrate). Black arrows are the rates realizing the feedback. The composite reactions
(hydrolysis/synthesis and exchange) are implicit in the figure.

behaves in non-equilibrium conditions and how its performance depends on the parameters

associated to each of the above-mentioned condition. In a second part, we address a few

specific examples to show that the model, although very simplistic, is able to qualitatively

reproduce experimental results. A possible extension of the model is proposed to give a flavour

of possible future results that can be produced with this updated model, opening perspectives

to reproduce the phenomenology of other experimental realisations.

If not specifically mentioned, all the results are produced with the rates given in the Appendix,

Table A.2.

3.6.1 Transport performance far from equilibrium conditions

As a first condition for moving the system out of equilibrium is the presence of an energy

source ∆G corresponding to the addition of ATP in the biological environment of the trans-

porter. Figure 3.6 shows that similarly for an importer and an exporter, the system reaches

relatively fast a plateau upon intake of ATP, around a ratio [AT P ]/[ADP ] ≈ 10−5. With specific

parameters, we observed an intermediary plateau in which the transport performance is

slightly lower than the optimal one. However, despite these numerical refinements, the main

conclusions always hold and in particular the transport performance is optimal in typical

cellular conditions (1 . [AT P ]/[ADP ] . 10 [126, 90], in general 10 in the simulations). The

system is always operating at its best, fully harnessing the transport capacity associated to the

intrinsic rates of the system. Moreover, the system cannot use the energy source to endlessly
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Information
Imeasure+Ireset<0

Chemical potential difference : ∆E
∆E = ∆G - ∆Sfeedback + |Imeasure+Ireset|

NBD-related 
transitions

Energy Input : ∆G

Substrate-related 
transitions

Entropy
dissipation
∆Sfeedback >0

Figure 3.5: Schematic representation of the energy balance for ABC transporters. First, the blue
box refers to the transitions in the each 3-state subsystems (either with or without substrate).
There is an associated entropy dissipation (blue dashed arrow). Second, the red box refers
to the substrate binding and release reactions. The energy associated to the processing
of information is depicted with the dashed red arrow. The remaining energy is effectively
converted into a net chemical potential difference, through a substrate concentration gradient.
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Figure 3.6: Concentration ratio [i n]/[out ] as a function of α for different values of Ke . In this
simulation K S

e = 1,η= 10 and [i n]eq /[out ]eq = 1. The vertical dashed line (α= 10, value used
for the future results) corresponds to typical cellular environment (more broadly between 1
and 10 in general).

increase the transport performance: there are asymptotic limits that are imposed by the differ-

ent rates of the system and their interplay, which induce the presence of the plateau and its

corresponding value for the ratio [i n]/[out ].

As a second condition is the storage of the measure associated to the presence or absence

of substrate: the equilibrium constant Ke (eq. 3.7) between states T and T ∗ in absence of

substrate has to be different than the one governing the population of states T S and T ∗S

(i.e. K S
e , eq. 3.8) when a substrate is bound. In Figure 3.7A, we illustrate this requirement by

showing the ratio [i n]/[out ] as a function of both equilibrium constants Ke and K S
e

As expected, the black dashed line delimits the transition between an importer and an exporter.

Over this line, the equality Ke = K S
e prevents the system from moving out of equilibrium. In the

simulation, the states T ∗ and T ∗S are the one with a fast hydrolysis rate (η= k∗
h /kh = k∗S

h /kS
h =

10).

For a better understanding of which transport cycle dominates each regime, the fluxes between

states are computed when the equilibrium condition on the substrate in solution [i n] = [i n]eq

and [out ] = [out ]eq is imposed. With that given initial condition, the system will evolve

towards its non-equilibrium steady-state. This evolution follows one dominant cycle, which is

illustrated in Figure 3.7B, both for an importer (top) and an exporter (bottom). The preferential

cycle driving the system from equilibrium to a NESS corresponds to what is expected from the

construction of the model. In the case of an importer (Figure 3.7B,top), after measurement
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Figure 3.7: (A) Concentration ratio [i n]/[out ] as a function of Ke and K S
e for different values

of η= 10,α= 10 and [i n]eq /[out ]eq = 1. (B) Thick black arrow represent the dominant cycle
inducing the transport directionality from the equilibrium concentration conditions ([i n]eq =
[out ]eq = 1) towards the steady state of the system). The dashed arrows show the net fluxes
between two states which are overall not dominant and oriented in the reverse direction with
respect to the global transport direction.
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(T → T S), the presence of the substrate is chemically stored by shifting the system towards the

state with a fast hydrolysis (T S → T ∗S → DS). Then the substrate is released (DS → D) and

nucleotides are exchanged to initiate a new cycle (D → T ).

Alternatively formulated, from the perspective of a Maxwell Demon, the results point out

that when the equilibrium constants Ke and K S
e are very different the one from the other,

the Demon is able to efficiently acquire the information about the state of the system and

detect the presence of a substrate, as it would be able to detect the presence of an approaching

particle in the original Maxwell Demon experiment.

The third condition is related to a global directionality that has to be imposed to the system.

As shown in equations 3.19, two cycles that both go through one hydrolysis and one exchange,

but following the reverse direction must be unequally weighted.

To simplify the analysis and come back to the initial assumption that was used to build the

model, a hypothesis is made on the values of the rates: the exchange rates are the same both

when it involves the state T or T ∗, that is kD→T
ex = kD→T

ex and kT→D
ex = kT ∗→D

ex (and similarly for

T S and T ∗S). Thus, after imposing the detailed balance constraints, the condition for the

directionality can be simplified in the following way:

kS+k∗S
h kDS→T S

ex

kS−kS
hkDS→T ∗S

ex
6= 1 =⇒ η 6= 1 (3.31)

where η is the ratio between hydrolysis rates η= k∗
h /kh = k∗S

h /kS
h (equation 3.6).

Figure 3.8 shows how the transport performance evolves as a function of η. As expected from

the analytical expression, reversing the value of η from η< 1 to η> 1 is sufficient to reverse

the transport directionality from an importer to an exporter. For very small values of η, the

hydrolysis and synthesis rates from/to T ∗ and T ∗S go to zero, but there is still the exchange

rates that are making the transport cycle through T ∗ and T ∗S possible, maintaining the system

out of equilibrium.

Then, in the regime η> 1 there is first an increase in the performance of the transporter that

is the consequence of a stronger differentiation between states T and T ∗ (T S and T ∗S as

well). In the language of the Maxwell Demon, it would be associated to the fact that, as a

consequence of the detection of an approaching particle, the consecutive action of opening

and closing the door isn’t the same, depending whether it is detected on the left or on the right.

When η is sufficiently increased, the system is largely dominated by the fluxes through the

states T∗ and T ∗S, reducing the direct flux between T and D as well as between T S and DS

to zero. Thus the system falls back in an symmetric configuration in which both import and

export cycles are equilibrated.

In between, there is an optimal value of η, named ηopt that optimizes the transport per-

formance. Interestingly, the value of ηopt decreases with Ke and the evolution of ηopt as a
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Figure 3.8: Concentration ratio [i n]/[out ] as a function of η for different values of Ke . K S
e =

1,α= 10 and [i n]eq /[out ]eq = 1. The vertical coloured dashed lines show in the cases Ke = 10
(red) and Ke = 0.1 (yellow) the value of η> 1, named ηopt , for which the concentration ratio
[i n]/[out ] reaches a local optimum.

function of Ke for a fixed K S
e is shown in Figure 3.9. The explanation is related to the different

time scales of the transition rates, and more precisely beyond which value of η the system is

effectively dominated by the cycle through both T S and T ∗S that equilibrates as previously

mentionned. The higher Ke , the smaller has to be η to observe the transition between the two

regimes, corresponding to the value ηopt .

So far, we quantitatively explored the role played by the main parameters of our model, i.e.

α, Ke , K S
e and η in order to explicit their respective effect on the dynamics of the system. The

discussion was steered with in mind the autonomous Maxwell Demon that operates in ABC

transporter through the different information-processing and energy consuming steps of the

transport cycle.

3.7 Reproduction of experimental phenomenology

To the best of our knowledge, models that were proposed in the last few decades for transport

by ABC transporters often fail to reproduce the very diverse phenomenology observed in

experiments. As an example, the mechanism of trans-inhibition was observed with different

experimental setups, which is one of the fascinating behaviours exhibited by ABC transporters.

In the next section, we show that the relevance and robustness of our model largely lies in its

ability to reproduce the experimental phenomenology observed with ABC transporters. In

particular, we point out that we are able to qualitatively reproduce some experimental results,
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Figure 3.9: Value of ηopt for different values of Ke . The parameters are K S
e = 1,α= 10. There

is no point for Ke = K S
e = 1, since the notion of local optimum is not defined in this case, the

system being at equilibrium.

despite we have to raise a few assumptions on the numerical values of the rates. We are also

facing some limitations that are intrinsic to our conception of the model, which gives us the

opportunity to extend it to a slightly more complicated one, upon the addition of possible

transitions between states. These results both confirm the robustness of the emerging logic

and open exciting perspectives to report on additional experiments.

Microscopic reversibility

In section 2.4 was introduced the principle of microscopic reversibility. Specifically applied to

our model for ABC transporter, the "energy barrier" that breaks the symmetry and generates a

directional process is underlying the feedback steps, both through storage of information and

feedback directionality.

Ensuing from microscopic reversibility, two phenomena might be observed, both correspond-

ing to a system working against its "natural" working mechanism. On the one hand, close

to equilibrium, the system might use the available energy to produce a net synthesis of ATP

against the strong tendency to hydrolyse ATP, which is a thermodynamically much more

favourable process. On the other hand, it was also observed experimentally that a system

might use the energy from ATP hydrolysis in order to operate according to the reverse motion,

which is a priori less favourable [127]. In the following results, we focus on the first described

phenomenology and show that, close to equilibrium, our model indeed predicts a net synthe-

sis of ATP.
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Figure 3.10: Net hydrolysis rateΦhyd −Φs yn . On the horizontal axis is the ratio α/αeq , on the
vertical axis is the concentration ratio [i n]/[out ] (the concentration [i n] is fixed and [out ]
varies). The blue curve is the limitΦhyd −Φs yn = 0: on the left side of the curve, the synthesis is
dominant with respect to hydrolysis. The vertical dashed lines corresponds to the equilibrium
condition α=αeq . [i n] = 1, η= 10, Ke = 100, K S

e = 0.01.

We define the net hydrolysisΦ [s−1] rate as the difference between hydrolysis and synthesis

fluxesΦhyd andΦs yn :

Φ := [
P (T )kh +P (T ∗)k∗

h +P (T S)kS
h +P (T ∗S)k∗S

h

]︸ ︷︷ ︸
Φhyd

−[
P (D)(ks +k∗

s )P (DS)(kS
s +k∗S

s )
]︸ ︷︷ ︸

Φs yn

(3.32)

In Figure 3.10, we show that very close to equilibrium and for specific imposed concentrations

of substrates, the net hydrolysis fluxΦ gets negative, corresponding to a dominant synthesis

of ATP over hydrolysis.

Trans-inhibition

In 2008, Gerber et al. performed experimental works highlighting how substrates in solution

can inhibit the transport by ABC transporters, a phenomenon called "trans-inhibition" [128].

The inhibitory effect is caused by the increase in the substrate concentration on the target
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side after the translocation (the in- side for an importer and reversely). In the experiment,

Gerber and co-workers studied a transporter called MaModBC, specific for molybdate and

tungstate substrate. Moreover, its specificity is to have a regulatory domain on the NBD. Its

exact function is not well understood but it seems that it plays an essential role to mediate the

inhibiting effect of substrates on the working of MaModBC transporter. The authors computed

the relative ATP hydrolysis rates in the presence of different substrates. For high concentration

of both substrates targeted by the transporter (molybdate and tungstate), the ATP hydrolysis

drops really fast, as soon as the substrate concentration is increased (Figure 3.11A).

Additionally, the experiment was reproduced with transporters without regulatory domain

and the ATPase activity was not affected by the increase in the concentration gradient, con-

firming that the regulatory domains is necessary for the substrates to inhibit the activity of the

transporter.

We used our model to compute the relative ATP hydrolysis rate according to equation 3.33

Relative ATPase activity([i n]) = Φhyd ([i n])

Φhyd ([i n] = 0)
(3.33)

whereΦhyd is the hydrolysis net flux as defined in equation 3.32.

Although the ratio [i n]/[out ] depends only on the rates, the flux depends also on the absolute

value of the concentrations. Thus the concentration [i n] is the parameter tuned in the simu-

lation and [out ] is computed accordingly at steady-state. In Figure 3.11B, we show how our

model reproduces this trans-inhibition phenomenon, with a strong decrease of the hydrolysis

flux when the concentration on the target (in-) side is increased, which is qualitatively in a

strong accordance with the experimental results produced by Gerber et al. Unfortunately, this

result has to be considered with caution. Indeed, in order to produce this result, the symmetry

between the rates, with and without substrates that was so far only broken through the equi-

librium constants Ke and K S
e is also internally broken on the exchange rates (through binding

rates k+T ,k∗
+T ,kS

+T and k∗S
+T ). The fundamental reason of it is not so clear, and there are two

possible explanations. First, the rates we are using are not compatible with the reproduction

of trans-inhibition while keeping the hypotheses of the model. This would require to carefully

study the experimental parameters of the experiment to, hopefully, reproduce the results while

keeping the symmetry arguments valid. The alternative explanation might be much deeper: in

the internal structure of the model, the reproduction of trans-inhibition is incompatible with

the hypotheses that were made, and in particular regarding the symmetry breaking between

rates in the substrate-bound or -unbound states. We are possibly facing the limitation of our

minimal kinetic toy model that we tried to keep as simple as possible.

Interestingly, this limitation arises when we aim to reproduce experimental phenomenology
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Figure 3.11: (A) Relative ATPase activity as a function of the oxyanion concentration. The plot
is shown for three different oxyanions: molybdate (open circles), tungstate (solid diamonds)
and sulfate(solid squares). Figure from [128]. (B) Relative hydrolysis flux as a function of the
imposed concentration of substrate on the in side of the membrane. The reference value is
the hydrolysis flux when [in] goes to zero. The [out] concentration being fixed, the vertical
red dotted line corresponds to the steady-state ratio [i n]/[out ]. Numerical parameters: k+T =
0.5s−1,kS

+T = 5s−1,k∗
+T = 0.5s−1,k∗,S

+T = 0.05s−1,η = 100,Ke = 0.01,K S
e = 0.02,α = 10,[out ] =

1[µM])
.
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that includes also other protein domains, such as the regulatory domain in this specific case,

which is on its own a confirmation of the huge biological complexity of the phenomenon.

Extension of the model

The previous illustration consisting in the modelling of trans-inhibition shed light on possible

limits of our model. To illustrate it with an additional example, we come back to the derivation

of the solution (Eq. 3.18). We showed that the steady-state concentration ratio depends only

on the rates, and not on the relative concentrations inside and outside the cell. However, this

result is not in accordance with experiments found in the literature, showing that there are

effects induced by the absolute value of the substrate concentration. In particular, in 2014,

Grossmann et al. studied the export of antigens by ABC transporters outside the endoplasmic

reticulum lumen, which is essential to the proper working of the immune system [129]. They

showed that the increase of the outside concentration of antigens inhibits the transport and

thus saturates the internal (lumenal) concentration of antigens (Figure 3.13 B).

In order to break the linearity of our model (at the origin of the independence of [i n]/[out ]

on the absolute concentrations), we introduce a transition that was neglected so far, namely

the possibility for the transporter to bind and release substrates between states T ∗ and T ∗S.

Before going on with the experiment performed by Grossmann, we first show that all the main

principles that were described in the most simple model are robust upon this extension: Figure

3.12 shows that the three conditions detailed in section 3.18 are still necessary conditions to

move the system out of equilibrium. More in details, there must be an input of energy (A), a

feedback directionality through the parameter η 6= 1 (B) and the equilibrium constants Ke and

K S
e must be different (C).

Coming back to the experiment by Grossmann, we show in Figure 3.13 that when the outside

concentration [i n] is numerically increased, the concentration [out ] is lower than what is

observed in the linear case (corresponding to kT∗
on = 0), thus confirming the existence of an

inhibitory effect of the substrate on the activity of ABC transporter. As a side remark, and

counter-intuitively, the external peptide concentration in the experiment corresponds in our

model to the concentration on the in- side of the transporter, relatively to its orientation

through the membrane. However, as shown in Figure 3.13A, our result do not exhibit a so

strong trans-inhibition that lead to a full saturation of the system as experimentally observed

(Figure 3.13 A). It is likely that with other set of parameters, the asymptotic limit can be

decreased, but we restricted this work to a more phenomenological reproduction, without

paying a specific attention to the quantification of the amplitude.
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Figure 3.12: The logic of ABC transporter remains unchanged upon addition of the binding
(unbinding) transition between T ∗ and T ∗S. (A) Concentration ratio [i n]/[out ] as a function of
[AT P ]/[ADP ], for η= 0.1 (blue) and η= 10 (red). Ke = 10 and K S

e = 1. (B) Concentration ratio
[i n]/[out ] as a function of η. K S

e = 1 and Ke = 0.1 (red), 1 (green), 10 (blue). [AT P ]/[ADP ] = 10.
(C) Concentration ratio [i n]/[out ] as a function of Ke and K S

e . [AT P ]/[ADP ] = 10 and η= 10.
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Figure 3.13: (A) Steady-state [out ] concentration as a function of an imposed [i n] con-
centration, for different binding rates from state T ∗ to T ∗S (kT∗

on = 0 (dashed blue, corre-
sponding to the initial model), kT∗

on = 10−4 (red). The equilibrium state of the system is
shown with the black dashed line. k+ = kS+ = 10−3 [s−1], k+T = 5 [s−1], k∗
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Ke = 10,K S

e = 0.1,η= 10,α= 10. (B) Internal (Lumenal) concentration of peptide as a function
of the external concentration. Experimental results are shown for a wild-type transporter
(wt/wt, black dot) and a mutant complex (D674A/wt, open circles). The red dashed horizontal
line is the saturation threshold. The red line (L/E=1) shows the linear regime in which both
concentrations are equal. Figure from [129]
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Chapter 3. ABC transporters as autonomous Maxwell Demons

3.8 Conclusive discussion

In this chapter, we built a minimal toy model for ABC transporters whose building blocks are

exclusively imported from structural and biochemical results that have been developed for

thirty years.

The picture that has emerged from our model shows that there are striking similarities between

the transport by ABC transporters and the action of the Maxwell Demon in the historical

thought experiment. The similarities are not only conceptual, but it amazingly turns out

that they arise from the mathematical solution of the model. All the information-processing

steps associated to the operation of an autonomous Maxwell Demon find their counterpart

both in the different steps of the transport cycle and also, more strikingly, as logical necessary

conditions to shift the system from its equilibrium state. These conditions are associated to a

symmetry breaking, either between substrate-bound and -unbound states (Ke 6= K S
e ) or more

globally in the transport directionality (η 6= 1). As a consequence of these logical conditions is

the existence of different routes to turn an importer to an exporter.

These results are further supported by an energy balance that drives the transport by ABC

transporters, bridging all the thermodynamic quantities that describe the system: the available

energy, entropy dissipation, the amount of internally processed information and the resulting

chemical potential across the membrane.

In the second part of this work, we showed that the model is able to reproduce the phenomenol-

ogy of different experimental results, thus giving a flavour of the potentiality of such a model,

despite its apparent simplicity. On the other hand, we also faced the limitations of the model,

induced by the same above-mentioned simplicity. Thus the model was extended in order to

reproduce non-linear behaviours and additional experimental results. This evolution showed

that the logic of ABC transporters is conserved and not restricted to a model in its greatest

simplicity. This obviously strengthens the robustness of our model and opens perspectives on

promising developments that such a model can originate to push further the fundamental

understanding of transport mechanism by ABC transporters.

In the continuity, one natural extension of the model of great interest would be to tackle the

question of substrate selectivity in the transport process, which turns out to play a crucial

role in many biological natural processes, as well as in the development of new drugs that

need to target specific substrate molecules. It would be very interesting to highlight how

this selection mechanism processes information, possibly through the implementation of

a demoniac kinetic proofreading model aiming at optimising the required selectivity of the

transport process. These results might possibly exhibit the existence of competition and

inhibition between cognate and non-cognate substrates, as already described in the literature

[130].
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Taking a step back, all these results implies that ABC transporter not only behaves like

Maxwell Demon, but indeed is an autonomous Maxwell Demon, in the sense that each of

the information-processing step of the Maxwell Demon naturally takes place in the form of

biochemical reactions at the molecular level. The formalism of information theory is not

only "used to" describe in a excessively simple way how active biological systems such as

ABC transporters work, but indeed, the internal information processing devices are essential

constitutive part of the transporter itself.

As a final word, this work opens many doors to explore other cellular transporters, always from

the angle of Information Theory. In this context, the next section is dedicated to the study

of a different type of cellular transport, the translocation of substrate proteins by chaperone

proteins Hsp70, through the membrane of mitochondria and endoplasmic reticulum.
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4 Substrate Translocation induced by
Entropic pulling

4.1 Biological context for protein translocation

Translocation is the biological process during which proteins move between cellular compart-

ments through aqueous and gated channels. It takes place in various cellular organisms and

organelles: translocation has been observed among others in the Endoplasmic Reticulum

(ER) of eukaryotes, the plasma membrane, mitochondria, chloroplasts and peroxisomes [131].

Several principles are shared by these translocation mechanisms such as the requirement of

molecular chaperones in the cytosol and inside the organelles as well as the consumption

of ATP (or GTP) to drive the hydrolysis step [132], supporting a unified framework for their

study and description, although each of them has its own specificities, as a consequence of

the biological environment and constraints.

In this work, we focus on the translocation driven by a specific molecular chaperone, Hsp70,

which mostly takes place in two cellular organelles, mitochondria and the ER [93].

An evolutionary hypothesis to explain the origin of mitochondria is endosymbiosis [133].

It is very likely that billions of years ago, some bacteria survived endocytosis by other cells

and evolved towards symbiosis with the hosting cell becoming mitochondria. The initial

bacterial DNA was drastically reduced and simplified during evolution, to keep only a few

specific functions. The remaining functions are part of the symbiotic interaction between

mitochondria and the cell, that is essentially metabolic and to be the power supply of the cell.

Many other functions are not encoded in the mitochondrial DNA: the import of proteins into

the mitochondria is thus required to guarantee its proper functioning.

All the cellular proteins resulting from mRNA transcription by ribosomes are divided into

two categories: the ones that are used within the cell and the ones that are synthesised to

be exported outside the cell. Whereas, in the first case, the translation is performed by free

polysomes, in the second case, mRNA strand is translated by individual ribosomes on the

rough ER and then translocated into the ER Lumen. After being translocated into the lumen,
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A B

Figure 4.1: Schematic representation of the translocation channel: (A) in the ER. Figure from
[134] (B) in the mitochondrion. Figure from [135].

the proteins are packed into small vesicles that are packaged to be delivered outside the ER.

Finally, the vesicles fuse with the plasmic membrane to, after intermediary steps, discharge

their proteic content outside the cell or on the extracellular side of the plasma membrane.

The structure of the channel in the ER and mitochondria as well as the translocation mecha-

nism itself turn out to be very similar, as illustrated with the schematic representation of the

translocation channel in Figures 4.1A and 4.1B.

An extended description of the structures are available in the literature for mitochondria

and for the ER [134, 136, 135]. In the next paragraph, we focus on the main elements of the

translocation machinery, in particular the ones that are part of our model.

The central subunit of the translocation channel, the one through which protein is translocated,

is the complex Sec61c in the ER (referred by (ER)) and Tim23 in mitochondria (referred by

(mt)) and other subunits are structured all around it to help translocation.

The Hsp70 chaperone protein (BiP (ER), mtHsp70 (mt)) is the motor for the translocation,

through successive binding to the translocating substrate protein after its insertion into the

pore. It stimulates the translocation of precursor proteins [137] and drives the translocation

through a mechanism that cannot be understood without having a closer look to the structural

properties of Hsp70.

Hsp70 is made of two main domains: first the Nucleotide Binding Domain (NBD) that hosts

the binding of either ATP or ADP. The NBD itself is composed of different lobes surrounding the

nucleotide denoted by Lobe I and Lobe II (Figures 4.2A,B in light and dark blue, respectively).

Second is the Substrate Binding Domain (SBD) composed of two subdomains, SBDα and
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A

Synthesis

Exchange 

Hydrolysis
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C

NBD
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NBDATPADP

ATPADP

Figure 4.2: (A) and (B): Protein structure of Hsp70 with its different subunits in the open
(A) and closed (B) conformations. The SBD subunits are in orange and pink. The NBD
subunits are in light and dark blue. Visible and exposed in the closed conformation (B) is
the linker (purple). Figures from [138]. (C) Two kinetic paths between the open and closed
conformations: exchange or hydrolysis/synthesis. Figure adapted from [139].

SBDβ, which are also known as Helicoidal Lid SubDomain (HLSD) and Substrate Binding

SubDomain (SBSD) (Figures 4.2A,B in orange and red, respectively). The conformation of the

SBD is greatly affected by the nucleotide on the NBD, through an allosteric pathway between

the NBD and the SBD. The subdomain SBDα acts as a lid closing upon SBDβ and "capturing"

the substrate when bound (Figure 4.2B)[138].

The two domains NBD and SBD are distant over the protein sequence, with a long linker in

between. The conformational rearrangement of the protein upon nucleotide binding also

affects the structure of the linker: the linker is rigid and hidden when bound to ATP since the

different domains are folding around it. When ADP is bound on the NBD, the linker is getting

more flexible and exposed to the environment, enabling the possible binding of other proteins

on the linker itself.

The schematic representation of the allosteric conformational change between open and

closed conformations is shown in figure 4.2C. There are two possible routes to switch from

one to the other, which are either hydrolysis/synthesis or exchange of nucleotides ATP↔ADP.

In the structure of both translocation channels, the presence of J-proteins anchored to the

membrane stands out: Sec63 and ERj1 (ER, [134]) and Tim14 (mt, [140]) that stimulate the
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ATPase activity of Hsp70. Although the precise interactions are still unclear, it is believed that

their function during the translocation process is improved and/or stabilized thanks to their

interaction with J-like proteins: Sec62 (ER, [141]) and Tim16, Tim17 (mt, [142]).

In addition to J-proteins, other co-chaperones play a role in the translocation. The Nucleotide

Exchange Factors (NEFs) increase the exchange rates from ADP-bound to ATP-bound states,

to indirectly accelerate the release of Hsp70 from its substrate. The NEF are Sil1, Grp170 (mt)

and Mge1(ER) [136, 143].

An important part of the translocation machinery in the mitochondria is the Tim44 subunit

that acts as a organizational hub between all the different subunits [135]. Interestingly, Tim44

seems to have no counterpart in the ER.

4.2 Different models to explain the translocation mechanism

The structure and the role of each component is increasingly understood, as well as the

interactions between each of them. Yet the precise mechanism by which chaperone protein

Hsp70 drives translocation is still debated. Historically, three main mechanisms have been

proposed in the last decades: the power stroke model, the Brownian ratchet model and the

entropic pulling model. Here, we give a brief description of the first two, whereas the third one

is the cornerstone of the current project.

4.2.1 Brownian ratchet model

The first model proposed in 1994 is known as the Brownian ratchet model (Figure 4.3A). The

dynamics, in the supposed absence of Hsp70, is governed by Brownian motion due to thermal

fluctuations without any preferential direction of motion. The model suggests a cooperativity

between the protein complex Tim44 and Hsp70: Tim 44 first binds to the emerging portion of

the translocating chain, before transferring it to Hsp70. It follows that the binding of Hsp70

close to the pore prevents retro-translocation, thus imposing the direction of the subsequent

thermal motion. Once a new portion of the chain is emerging, the process is repeated, opening

the possibility of binding another Hsp70 [143]. In this model, there is no net force that is

strictly applied on the translocating polypeptide, but only a directionality that results from

obvious steric arguments.

4.2.2 Power stroke model

Two years later, Horst et al. proposed an alternative model known as the power stroke model

(Figure 4.3B) [146]. In this description, Hsp70 binds to the substrate protein close to the pore,
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A

B

C

Figure 4.3: Schematic illustration of the different existing translocation mechanisms: (A) the
Brownian ratchet model, Figure adapted from [144]; (B) the power stroke model, Figure from
[144]; (C) the entropic pulling model, Figure from [145].
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also through a cooperative mechanism with the Tim44 complex. Once the incoming protein is

captured by Hsp70, a conformational switch of the chaperone protein follows the hydrolysis

of ATP and induces a power stroke on the protein. Contrarily to the Brownian ratchet, there is

an effective mechanical force exerted on the protein, whereas thermal fluctuations are not

considered to explain the translocation.

These two models are based on very different arguments but they are not mutually incom-

patible in the description of biological processes, in the sense that both mechanisms might

simultaneously play a role to drive the translocation [144].

4.2.3 Entropic pulling model

The third model can be seen as a reconciliation of both previous leading ideas: the entropic

pulling model [145, 147] conserves the idea of an effective pulling force exerted on the sub-

strate (as in the power stroke model, although it is not a purely mechanical force), combining

it with the idea of a motion induced by thermal fluctuations (Brownian ratchet model).

During translocation, the portion of the protein in the mitochondrial matrix or in the ER

lumen can move freely, always with the physical constraint that it cannot move beyond the

membrane. It results in a set of allowed and forbidden conformations (Figure 4.3C, top). The

binding of Hsp70 leads to possible steric clash between Hsp70 and the membrane surround-

ing the pore, thus reducing the number of reachable configurations (Figure 4.3C, bottom).

Thermodynamically, it corresponds to a reduction of the entropy of the system induced by

the binding of Hsp70 which is associated to a force exerted on the substrate that drives the

translocation inside the mitochondria or the ER.

More precisely, the entropy variation associated to the reduction of the number of reachable

configurations of the protein has been analytically solved [145]. The free energy profile f (nK )

is given by:

f (nK ) = 3

2
kB T

R2

b2nK
(4.1)

where R is the radius of the particle (here Hsp70) that binds and causes the entropy decrease,

b is the length of a Kuhn segment of the polymer and nK is the number of Kuhn segments

between the pore and the binding site.

Beyond the proportionality constants, the essential point of this formula is that the free energy

is inversely proportional to nK and thus the distance along the protein between the pore and

the binding site. The way this formula, and more generally the entropic pulling mechanism,

enters into our model is presented in section 4.3.

Although the entropic pulling itself is based on mechanical and statistical arguments, the

way it is involved in protein translocation in biological systems reveals the translocation as

an active process, in which the nucleotide-dependant and allosteric nature of Hsp70 plays
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a key role. The associated mechanism of ultra-affinity significantly enhances the affinity of

the chaperone for its substrate [148, 149]. When bound to ATP, the SBD of Hsp70 is in an

open conformation with large binding and unbinding rates. In contrast, when bound to ADP,

the binding and unbinding rates are low since the SBD is in a closed conformation. Out of

equilibrium, there is a mix of the different timescales relative to ATP and ADP bound states

leading to an effective affinity, precisely known as ultra-affinity, that is not reachable in any

equilibrium configuration and that might be order of magnitudes larger than the equilibrium

one with ATP or ADP. Ultra-affinity furthermore results in an acceleration of the translocation

rate, by increasing the time Hsp70s are bound on the substrate protein and consequently the

pulling force exerted by Hsp70 on the translocating protein by entropic pulling. So far, most of

the developments on the entropic pulling mechanism have been focused on a description at

the level of a single Hsp70, on how the binding is converted into a force, but there is a lack in a

more global and dynamical perspective of the translocation process.

In the next section, we aim at building a minimal model based on the entropic pulling model

to reproduce the phenomenology of the translocation in order to reveal different inherent

mechanisms. First we present the kinetic model that we built to study the dynamics of the

protein translocation. Then, we show how different parameters affect the overall dynamics of

the system and which are the possible consequences on the dynamical evolution of biological

systems, also opening hypotheses on possible structural rearrangements of Hsp70s.

4.3 A kinetic model for protein translocation

We model a protein that is translocating through the pore of a membrane, either toward

the ER lumen or the matrix of the mitochondrion. The model is sufficiently generic so that

specific details relative to the distinction between mitochondria and ER are not taken into

consideration.

The translocated proteins are of finite size and the insertion of the terminal at the beginning

of the process is an important part to understand the translocation in its whole. However,

our model focuses on a transient regime (leaving aside the possible "boundary effects") that

operates at steady-state, that is when the translocation rate of the protein is constant over

time. To that aim, we define a simulation box that contains a fixed number of binding sites

(Figure 4.4A). In solution, chaperone proteins Hsp70s can be either in the ATP state or in the

ADP state and can bind to an empty binding site. The possible transitions that can occur at the

level of a single site (Sn , the nth site from the pore) on the protein sequence are the following

(Figure 4.4B) :

• kSn
on,HT

and kSn
on,HD

[µM−1s−1]: Binding rates of Hsp70 in the ATP and ADP state respec-

tively;

79



Chapter 4. Substrate Translocation induced by Entropic pulling

• kSn

o f f ,HT
and kSn

o f f ,HD
[s−1]: Unbinding rates of Hsp70 in the ATP and ADP state respec-

tively;

• kSn
ex,HT →HD

and kSn
ex,HT →HD

[s−1]: Exchange rates (respectively ATP → ADP and ADP →
ATP) on the nth site of the protein sequence;

• kSn

h and kSn
s [s−1]: Hydrolysis and synthesis rates on the nth site of the protein sequence.

In addition, there are two rates that do not involve a single Hsp70 on a given site but the whole

protein. For each non-empty sequence in which n1 denotes the index of the first occupied

binding site on the protein sequence, the system can undergo either a forward or a backward

translocation, whose rates are given by:

• k(n1)
f [s−1]: Forward translocation rate. During the forward translocation, the index of

the first non-empty binding site shifts from n1 to n1 +1

• k(n1)
b [s−1]: Backward translocation rate (retro-translocation). During the backward

translocation, the index of the first non-empty binding site shifts from n1 to n1 −1

The numerical values of the rates as well as experimental results that provide orders of mag-

nitude for the different parameters introduced hereafter are presented and discussed in the

Appendix (Table A.6, equations A.43 and A.44).

To build a more detailed approach of the model, we detail each of the main parameters and

their transition rates. In particular, we expose how they are defined in accordance with the

entropic pulling free energy (equation 4.1). The hypotheses considered to model the different

rates are also discussed. Here, we first present the expression of all the rates, but for ther-

modynamic consistency the system must always satisfy detailed balance. It follows that all

the rates cannot be chosen independently and their expression as a function of independent

parameters is shown in the Appendix (Tables A.3 to A.5).

Entropic pulling force: To the entropic pulling free energy (equation 4.1) is associated a

pulling force exerted on the translocating substrate. To explicitly report on this pulling force,

the expression for the entropic pulling free energy is alternatively rewritten in the following

way:

f (n1) = F1 ·
x2

1

xn1

(4.2)

where x1 is the position of the first binding site, the closest to the pore and xn1 is the position of

the nth
1 binding site (the first with a Hsp70 along the sequence). An expression for xn1 cannot

be considered without tackling the question of the distribution of the binding sites along
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Simulation volume (Nsite=4)
Substrate protein
Binding site

Membrane

S·HATP

S·HADP

Sn·HATP

HATP
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Figure 4.4: (A) A simulation volume (green dashed box) contains the pore and a portion of
the translocating protein with exactly Ns ≡ Nsite binding sites (brown circle; here Ns = 4). The
simulation volume contains Hsp70 in solution that can be either in an ADP or ATP states
(respectively denoted by HADP , light red oval or HAT P , light blue oval). These chaperone
proteins can bind or unbind (dashed arrows) to any empty site Sn of the protein, leading to
the states Sn ·HAT P with dark red oval or Sn ·HAT P with dark blue oval. (B) Possible transitions
on a site Sn of the protein sequence.
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the protein sequence, which is far from being trivial. As a very first and rough description

of the translocation, it can be considered that the binding can occur according to a quasi-

continuous distribution, that is on every amino-acid of the protein sequence. However,

experimental and structural studies of interactions between substrate proteins and Hsp70

reveal that the average distance statistically corresponds to 36 amino-acids (abbreviated

by aa) [150, 151]. Our model neglects possible fluctuations around this average value and

we thus fixed ∆x = 35 aa = 10.5 nm. The position of the first binding site after entering

the mitochondrion or ER lumen was found to be between 8 and 15 aa [145] and we fixed

x1 = 8 aa = 2.4 nm. The distance between the binding site n1 and the pore is thus defined by:

xn1 = x1 + (n1 −1) ·∆x (4.3)

Going back to equation 4.2 and its interpretation, the parameter F1 is a measure of the pulling

force exerted on the protein upon Hsp70 binding on the first site. For this reason, we often

refer to F1 as the entropic pulling force parameter. The comparison between expressions 4.1

and 4.2 gives an expression for F1 as a function of the parameters of the system:

F1 = 3

2
kB T

R2

bx2
1

(4.4)

The larger the parameter F1, the stronger is the pulling force exerted on the translocating

protein, on the first site but also by extension on the further ones. Its numerical value is

expressed in the Appendix, equation A.44.

Forward and backward translocation: The entropic pulling force parameter F1 tunes the

forward and backward translocation rates by favouring the forward translocation event with

respect to the backward one. The ratio between both is related to the free energy difference

between two consecutive states:

k(n1)
f

k(n1+1)
b

= exp

(
f (n1)− f (n1 +1)

kB T

)
(4.5)

where k(n1)
f and k(n1+1)

b are the rates for two reverse transitions, as illustrated in equation 4.6.

1st site with Hsp70: n1

k
(n1)
f

�
k

(n1+1)
b

1st site with Hsp70: n1 +1 (4.6)

Whereas F1 tunes the asymmetry between the rates, and by extension the strength of the
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imposed directionality, there is for now no parameter that mirrors the speed of the transloca-

tion process, irrespective of its directionality. A parameter k0 is introduced to give an explicit

expression for both rates k f and kb :

k(n1)
f = k0 exp

(
f (n1)− f (n1 +1)

kB T

)
(4.7)

k(n1+1)
b = k0 (4.8)

As a preliminary remark, the choice to include the whole contribution of the entropic pulling

into the forward translocation rate is arbitrary and many other choices would have been

thermodynamically consistent. Our choice was motivated by an alternative but equivalent

formulation of the entropic pulling mechanism: having in mind the kinetic theory of gases, the

successive collisions of the chaperone with the membrane and pore can be seen as generating

a repulsive force exerted on the membrane[152]. Within this perspective, it was decided

to mirror it in an increase of the forward translocation rate, rather than a decrease of the

backward translocation rate. The latter is constant and interpreted as the consequence of

thermal fluctuations, independent on the position of the bound chaperone on the substrate.

The parameter k0 is referred to be a diffusion rate, a proxy for the diffusion constant of the

protein through the pore. It reflects the speed of the translocation but does not directly impact

the directionality of the translocation by favouring one direction or the other. Its expected

numerical value is discussed in the appendix (equation A.44).

Binding and unbinding rates: The free energy gradient associated to the pulling force exerted

on the substrate unavoidably has a thermodynamic cost that has to be "paid" on other tran-

sitions in the system. Considering the cycle including backward and forward translocation

and crossed in two reverse directions ( 4.9 and 4.10), detailed balance condition in the form of

equation 4.11 has to be satisfied.

Binding on site n1 −→ forward translocation −→ Unbinding from site n1 +1 (4.9)

Unbinding from site n1 ←− backward translocation ←− Binding on site n1 +1 (4.10)

k
Sn1
on,HX

·k
Sn1

f ·k
Sn1+1

o f f ,HX

k
Sn1

o f f ,HX
·k

Sn1+1

b ·k
Sn1+1

on,HX

= 1 (4.11)

where HX can be either HT or HD .

Here again, for similar arguments than the one described in the case of forward and backward

translocation, we assume that the whole contribution of the energy cost associated to entropic
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pulling free energy is paid on the binding, whereas the unbinding rates k
Sn1

o f f ,HX
only depend on

chemical affinities of either HT or HD for the substrate. Therefore, the binding and unbinding

rates are defined as follows:

kSn
on,HX

= k(0)
on,HX

exp

(
− f (n)

kB T

)
(4.12)

kSn

o f f ,HX
= k(0)

o f f ,HX
(4.13)

Hydrolysis and synthesis: The model does not involve explicitly the J-proteins and their inter-

actions with chaperone proteins (mtHsp70 or BiP). In itself, the whole mechanism associated

to the acceleration of ATPase activity is very complex, involving the interplay between subunits

Tim14 (Pam18) and Tim16 (Pam16) of the TIM23 complex [153] in the mitochondria. In the ER,

a similar acceleration is observed, mediated by the Sec63 subunit of the translocation channel

[154].

We only keep its essential feature in our model, that is the resulting acceleration of the ATPase

activity. It is made in a very simplistic way, by introducing a numerical factor λ quantifying the

acceleration of both hydrolysis and synthesis rates when bound close to the membrane, on the

first binding site after its insertion in the mitochondrial matrix or ER lumen. The hydrolysis

(kh) and synthesis (ks) rates are defined accordingly:

kS1

h =λkS
h kSn>1

h = kS
h (4.14)

k(1)
s =λkS

s kSn>1
s = kS

s (4.15)

Exchange: The exchange rates only depend on the affinity of ATP and ADP to chaperone

proteins Hsp70 when bound to the substrate. In particular, they do not depend on the binding

position. Exchange rates are given by:

kSn ·HD→Sn ·HT
ex = kS

−D

αkS
+T

kS
+D +αkS

+T

(4.16)

kSn ·HT →Sn ·HD
ex = kS

−T

kS
+D

kS
+D +αkS

+T

(4.17)

where, as a reminder, α denotes the ratio [AT P ]/[ADP ].

Boundary of the simulation volume: When the protein undergoes a forward translocation,

the site Ns escapes from the simulation volume and the possibly bound Hsp70 is no longer

considered. On the reverse, when the protein is backward translocated, the question of the

incoming binding sites (i.e. site Ns after the translocation) arises. We hypothesise that the
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4.3 A kinetic model for protein translocation

site entering the simulation volume is always empty. Alternatively, it could be in the state

SNs ·HT or SNs ·HD , with a distribution that follows the one of a protein in solution (without

considering any translocation). In the results part, it is shown that this assumption does not

affect the overall dynamics of the system.

Hsp70 in solution: It is assumed that Hsp70 in solution are at fixed concentrations, either

thanks to a chemostat or by hypothetically reaching equilibrium with the surrounding Hsp70

in solution sufficiently fast. Consequently, the binding and unbinding events do not effectively

affect the concentrations of free chaperones bound to ATP and ADP, respectively [HT ] and

[HD ].

Their concentrations are expressed by considering a simple two-state system with HT and HD

at steady state, leading to equation 4.18 and 4.19.

[HT ] = [H ]tot
k HD→HT

ex +ks

(k HD→HT
ex +ks)+ (k HT →HD

ex +kh)
(4.18)

[HD ] = [H ]tot
k HT →HD

ex +kh

(k HD→HT
ex +ks)+ (k HT →HD

ex +kh)
(4.19)

where, similarly to the substrate-bound rates,

k HD→HT
ex = k−D

αk+T

k+D +αk+T
(4.20)

k HT →HD
ex = k−T

k+D

k+D +αk+T
(4.21)

Again, all the parameters are not independent the one from the other and their expressions

after imposing detailed balance conditions are given in the Appendix, Tables A.3 to A.5.

4.3.1 Mathematical formulation of the model

So far, we have presented in details the different transitions involving a single chaperone

protein, as well as the forward and backward translocations the substrate protein can undergo.

In the present section, we introduce the formalism used to solve the system at steady state

and compute the main quantity of interest to describe the dynamics of translocation, the net

translocation rate of the protein through the pore.

The portion of the protein in the simulation volume (figure 4.4A) is defined by its sequence of

Ns ≡ Nsite binding sites, as a vector~s of size Ns : ~s := (σ1, · · · ,σNs ). Each σi is the state of the

binding site i , that is σi ∈ {Si ·HT ,Si ·HD ,Si }. Therefore, there are 3Ns sequences which are

combined in a single vector ~Ψ := (~s1, · · · ,~s3Ns ) that contains all the possible configurations of
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Chapter 4. Substrate Translocation induced by Entropic pulling

the protein in the simulation volume.

For each sequence~s j ∈ ~Ψ, the possible transitions are either localised on one site (transitions

from Fig 4.4B) or involve the whole protein with either the backward or forward translocation.

The dynamics of the system can be written as a set of linear differential equations, in the form

d

d t
~P (~Ψ) = Mk ·~P (~Ψ)

steady-state= 0 (4.22)

where Mk is a 3Ns ·3Ns matrix, with elements corresponding to the total transition rates between

two sequences (equation 4.23). As an example, the full matrix is written in the appendix

(equations A.46 and A.47) for the simple case of a system with two sites, corresponding to a

9×9 matrix.

M (i , j )
k =

Ns∑
n=1

 k
(s(n)

j →s(n)
i )

h/s︸ ︷︷ ︸
Hydrolysis or synthesis

+k
(s(n)

j →s(n)
i )

ex︸ ︷︷ ︸
Exchange

+ k̃
(s(n)

j →s(n)
i )

off/on︸ ︷︷ ︸
(Un−)Binding

+ k
(~s j→~si )
f /b︸ ︷︷ ︸

Translocation

(4.23)

where the notation k̃ for the (un-)binding rates aims to avoid the confusion between the

binding rates kon,HX [µM−1s−1] and the effective binding rate k̃on,HX [s−1] = [HX ] ·kon,HX . Of

course, k̃o f f ,HX = ko f f ,HX .

The time derivative d~Ψ/d t is imposed to be zero at steady-state (s-s). Steady-state means that

the probability of each sequence is constant in time, even if the protein is translocating at a

constant rate. Equation 4.22 is then solved by computing the kernel of the matrix Mk , giving

after appropriate normalisation the steady-state probability of each sequence (Ps−s(~Ψ)).

The main quantity of interest that will be used to describe the system and in particular its

dynamics is the net translocation rate, R (equation 4.24). This quantity directly follows from

the sequence probability distribution Ps−s(~Ψ):

R = ∑
~si∈~Ψ

Ps−s(~si ) ·
[

k(n1(~si ))
f −k(n1(~si ))

b

]
(4.24)

where k(n1(~si ))
f and k(n1(~si ))

b refer to the equations 4.7 and 4.8 applied to the first bound site

associated to protein sequence~si , that is n1(~si ).

4.3.2 An alternative stochastic approach to solve the system

At the very beginning of the project, we started to simulate the system using a Kinetic Monte

Carlo simulation (Gillepsie algorithm), before moving to the above-presented method consist-

ing in solving a linear system of equations. A few simulations were performed with the exactly

same definition of the possible rates and the same hypotheses than the one presented so far.
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4.4 Translocation as a balance between force and binding frequency

For one figure, we show in the appendix that indeed the two methods provide the same results

(Figure 4.8 in the main text reproduced in the Appendix, Figure A.2). However, this method

was not used for a long time and thus is not extensively described.

4.4 Translocation as a balance between force and binding frequency

In the first part of this project, we focus our study on three parameters: α and the two main pa-

rameters that characterise the entropic pulling, k0 and F1. We first show how the translocation

performance is increased upon uptake of energy into the system. Then we discuss how the

"strength" of the entropic pulling force represented by F1 and its "velocity" via the parameter

k0 (a proxy for the diffusion constant of the protein through the pore) modify the observed net

translocation rate R.

We highlight an optimal regime, suggesting a balance between on the one hand the imposition

of a directionality to the translocation process and on the other hand the binding frequency of

Hsp70 on the substrate, indeed the key-element necessary for translocation.

In a second part, motivated by the interpretation of this directionality-affinity balance, we

study the impact of an hypothetical Hsp70 dimerization, in which two chaperones consecu-

tively bind the one on the other. We show that the effect of a possible dimerisation is significant

and might be of high relevance in some specific biological conditions. These results reflect

an adaptability of the system to external conditions, for instance the presence of an obstacle

which possibly reduces the intrinsic diffusion rate of the substrate through the channel.

Before turning to the numerical results of the model and the description of how the different

parameters affect the translocation rate of the protein, we briefly describe a few preliminary

results that are not directly related to the physics of the model but that deal with the choices

and hypotheses that are made in the implementation and interpretation of it.

As illustrated in figure 4.4 A, the simulated box is of finite size, with a fixed number of binding

sites. Based on the actual understanding of the translocation mechanism by entropic pulling,

it is expected that the most important contribution to the pulling force comes from chemical

transitions taking place close to the membrane, suggesting that is should not be necessary to

simulate a too large number of sites. We simulated the evolution of the translocation rate as a

function of [AT P ]/[ADP ], for Ns = 2,4,6, and an example of the results is shown in figure 4.5A,

which is representative of all the observations that were made with different set of parameters.

Close to equilibrium, there is a visible difference between Ns = 2 and Ns ≥ 4, whereas moving

far from equilibrium, the difference gets negligible and all the three curves overlap. Based

on these observations, from now on, all the simulations are performed with Ns = 4. Beyond

technical considerations, this first observation interestingly provides a length scale of the

portion of the protein on which the entropic pulling mechanism is effectively taking place and

leading to the translocation of the protein, either inside the mitochondria or ER: the order of
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Figure 4.5: (A) Translocation rate as a function of [AT P ]/[ADP ]. The simulation is made with
different number of binding sites in the simulation volume: Ns = 2 (dashed blue), Ns = 4
(green) and Ns = 6 (dashed red). F1 = 6pN, k0 = 10−2s−1. (B) Translocation rate as a function of
[AT P ]/[ADP ]. The red curve is computed with the assumption of an empty incoming binding
site into the simulation volume during a retro translocation event. Alternatively, for the dashed
blue curve, it is assumed that the distribution of incoming binding site is representative of the
steady-state distribution on a protein in solution, without translocation mechanism involved.
F1 = 6pN, k0 = 10−2s−1.

magnitude is around a hundred amino acids.

Second, we hypothesize in the model that when there is a retro-translocation event, the

binding site that enters into the simulation volume is empty. It might seem more realistic

to consider a probability distribution that follows the distribution that would be observed

for a protein in solution, independently of any translocation event. The results associated

to both possible implementations are shown in figure 4.5B. Clearly, although there is a tiny

difference between both curves around [AT P ]/[ADP ] ≈ 10−3, it is reasonable to consider that

our assumption to model an empty incoming site when retro translocating is correct, in the

sense that it does not affect at all the effective translocation rate R. Moreover, it confirms also

the conclusion from figure 4.5A, according to which the translocation is mediated by chemical

transitions taking place essentially on binding sites closer to the membrane than the fourth

one, thus validating the choice of parameter Ns = 4.
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Figure 4.6: Translocation rate as a function of [AT P ]/[ADP ] for different values F1 = 4,6 and
9pN. The region corresponding to typical biological conditions is represented with a grey
rectangle. The vertical dashed line illustrates the value [AT P ]/[ADP ] = 10 that is used in
further simulations. k0 = 10−2s−1.

4.5 Pulling stronger, but less frequently

As for all active transport processes, energy is required to efficiently drive the translocation of

proteins, to accelerate the transport with respect to what it would be in equilibrium conditions.

We start by showing how the translocation rate R depends on the available energy, through

the ratio [AT P ]/[ADP ]. Figure 4.6 shows how the translocation rate increases when energy

is brought to the system. At equilibrium, the dynamics is driven by the successive binding

and translocation events (as in the Brownian ratchet model), the binding of another Hsp70 on

the first site preventing the retro-translocation. The uptake of energy favours the cycle that

involves the hydrolysis of HAT P close to the membrane before the exchange HADP → ADP after

translocation. For a given set of parameters, a plateau is reached around [AT P ]/[ADP ] ≈ 0.1,

which is slightly below the typical biological conditions, 1. [AT P ]/[ADP ]. 10 [155, 156]. No

precise experimental result was found for the ratio [AT P ]/[ADP ] in the ER lumen, but we

expect it to be in order of magnitude equal to the one in the cytosol and mitochondria.

To study the dynamics of translocation, we focus on the two main parameters that tune the

translocation rates k f and kb . At a first stage, the diffusion rate k0 is discussed, before turning

to the entropic pulling force parameter F1 at a second stage.

First of all, as the translocation rate R is proportional to k0, it is more convenient to define

the relative translocation rate R/k0 in order to get rid of this explicit dependence on k0 and
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Figure 4.7: (A) Translocation rate as a function of k0 for F1 = 4,6,9 pN and [AT P ]/[ADP ] = 10.
(B) The position of the Hsp70 chaperone the closer to the membrane (here the position refers
to the discrete index n1 of the binding site 1,2, . . . Ns) is averaged according to the steady-state
distribution of all sequences. The average 〈n1〉 is plotted as a function of k0, with F1 = 6 pN
and [AT P ]/[ADP ] = 10.

thus isolate the hidden interplay between k0 and all the other transition rates. We show in

Figure 4.7A how the relative translocation rate R/k0 depends on the diffusion rate for different

entropic pulling forces F1. The decreasing behaviour can be easily understood as a competition

between on the one hand the diffusion rate and on the other hand the binding rate. When

the diffusion rate k0 is large, the translocation associated to the presence of a chaperone

protein on the second (or further) binding site is more probable to happen, well before the

binding of another Hsp70 on the first binding site. As a consequence, the system does not

perform optimally since the closer to the membrane is the Hsp70, the stronger the entropic

pulling. The interpretation of the decrease is supported by figure 4.7B, which illustrates the

average position of the first bound site (i.e. where is the closer chaperone with respect to the

pore), as a function of k0. Whereas it is predominantly on the first site for low k0 (average

index 〈n1〉 < 1.2), it gets further when k0 is increased (average index 〈n1〉 > 2) because the

translocation occurs faster, reducing the time in which sequences with n1 = 1 are observed,

and thus explaining the decrease of the relative translocation rate R/k0.

In addition to the diffusion rate k0 is the parameter F1 that characterises the exerted pulling

force on the incoming protein.

Figure 4.8A shows how the relative translocation rate R depends on the parameter F1. Inde-

pendently of the value of k0, it is observed that the translocation rate R has a non monotonic

90



4.5 Pulling stronger, but less frequently

behaviour as a function of F1 and reaches a local maximum. In the first regime, that is for

low values of F1, increasing the entropic pulling force improves the translocation, by pulling

stronger on the incoming protein, through a stronger asymmetry between inward and outward

translocation rates. However, as illustrated by equation 4.12 and the associated discussion,

the symmetry breaking has a cost that is paid on the binding rates of the chaperone proteins

in solutions to the incoming polypeptide. Thus when F1 is too large, the system moves to a

second regime in which it is not favourable to increase F1, because the cost on the binding is

too high and is not compensated by the gain on the translocation directionality. The transition

value of F1 associated to local maximum is denoted by F∗
1 and an illustration is given with

the vertical blue dashed line in figure 4.8A for the parameter k0 = 10−3. Obviously, there is no

unique value of F∗
1 but it depends on k0 and the dependence is illustrated in figure 4.8B. The

exhibited decrease of F∗
1 as a function of k0 can be interpreted in the following way: when the

diffusion rate is decreased, the translocation events (in both directions, forward and backward)

are less and less frequent. In that case, it is optimal for the system to translocate in the good

direction, by imposing a stronger asymmetry between inward and outward translocation

rates, respectively k f and kb or, alternatively formulated, to pull stronger on the incoming

substrate. This holds despite the associated energy cost on the binding. In the reverse, for

large k0 and a high translocation velocity, the systems works optimally with a smaller value

of F1: binding events are more frequent on the sites left empty after translocation, although

the fluctuations between forward and backward are more important (because of the weaker

asymmetry between k f and kb).

Clearly, there is a strong interconnection between on the one hand the translocation rate R

that depends on F1 and the force exerted on the substrate, in average, during the steady-state

of the translocation mechanism. The average force 〈F 〉 is defined as:

〈F 〉 =∑
{σ}

P (σ) ·F (σ) (4.25)

where F (σ) is the entropic pulling force, depending on the position of the first Hsp70 in the

corresponding protein sequence σ.

R and 〈F 〉 are two ways of quantifying the mechanism of translocation, it is worth to compare

both, and in particular with in mind the perspective of the optimal regime discussed in figure

4.8, with respect to R. On the same plot are shown R and 〈F 〉, for two values of k0 (figure 4.9).

There is a non-negligible shift in the optimal value of F1 associated to 〈F 〉 and F∗
1 defined for the

translocation rate R , the latter being slightly larger. However, these are quantitative differences

that are expected not to drastically change the qualitative description and understanding of

the translocation mechanism. Therefore, we will always be using the translocation rate R to

quantify the ability of the system to translocate a substrate protein, mostly leaving aside the

average force 〈F 〉.
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Figure 4.8: (A) Relative translocation rate R/k0 as a function of F1 for k0 = 10−1,10−2,10−3,10−4
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denoted by F∗

1 in the case k0 = 10−3 s−1. (B) Optimal value F∗
1 plotted for a set of parameters

k0. [AT P ]/[ADP ] = 10.

Following the discussion and interpretation of figure 4.8B, a natural question arises: if the

system works optimally by "pulling stronger" on the protein when the intrinsic diffusion rate

k0 is small, what if the system is able to bind a second Hsp70 on a same site, exerting an even

stronger pulling force on the incoming protein? The answer to this question is developed in

section 4.8 after a presentation of the Hsp70 oligomerization, both from physical and biological

perspectives

4.6 Hsp70 oligomerisation in protein folding

The configuration in which a Hsp70 is bound to another has been extensively observed and

described, both in vivo and in vitro, and for various Hsp70 family members [157, 158]. These

works all tend to show that dimerization and higher order assemblies might be a general

property of Hsp70. These observations have been mostly performed in experiments where

Hsp70 assist the folding of non-native proteins. In this case, it has been observed that the

ADP-bound form of Hsp70 (as well as the free form, essentially neglected here) are prone to

oligomerize. However, the specific case of Hsp70 dimerization within the framework of protein

import into either the mitochondria or the ER has not been reported in the literature. There is

no experimental evidence for such a conformation in that precise process but, importantly,

there is also no evidence for its impossibility, for any biological, biochemical or physical
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Figure 4.10: Dimer structure of the Substrate Binding Domain (A) PDB structure 4R5J from
Leu et al. [161]. The structure shows two dimerized SBDs of Hsp70 (yellow-red-orange and
shades of blue) with their different subdomains (Linker, Substrate Binding Subdomain (SBSD)
and Helicoidal Lid Subdomain (HLSD)). (B) Schematic representation of two Hsp70 oligomers:
dimer (left) and trimer (right). Figure from [157].

arguments. Thus, we extend the model to a possible dimeric state, in which a second Hsp70 is

bound on the initially bound chaperone protein.

The allosteric transformation between ADP and ATP bound states has a strong effect on the

different possible dimer states. On the one hand, the oligomerization is mediated by the linker

between the NBD and SBD and, on the other hand, the linker is exposed in the ADP state

but "inserted" in the NBD in the ATP bound state [159]. These are simple arguments that are

in favour of a strong dominance of monomers in the ATP-bound state whereas higher order

oligomers are observed in the ADP state (schematically illustrated in figure 4.10B) [157, 158,

160].

4.7 Extended model with Hsp70 dimerization

Two additional states are added into the initial model (figure 4.11, dashed grey rectangle)

which are the Sn ·HADP ·HADP and Sn ·HADP ·HAT P . Theoretically, there are few other possible

transitions that might be included into the updated model, but we always try to keep it as

simple as possible despite the addition of two states. The hypotheses that were made to follow

this approach are double. First, we neglect the binding (and unbinding) of a Hsp70 dimer that

could have been formed in solution, which also means that the fixed concentrations [HAT P ]

and [HADP ] remain unchanged with respect to the initial formulation of the model (Equations
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Figure 4.11: Extension of the model (from Figure 4.4B). Two states are added (grey rectangle)
which correspond to a dimer structure of Hsp70: On the state Sn ·HADP can bind a second
Hsp70 either in ATP state or ADP state, leading respectively to Sn ·HADP ·HAT P (right top) and
Sn ·HADP ·HADP (right bottom) states.

4.18 and 4.19). Second, we neglect the possibility for the first bound chaperone (in the ADP

state) to go through synthesis or exchange. Biologically, it is not clear whether this can be

considered and with which kinetics, but since it would lead to states that are by assumption

not part of the kinetic model (Sn · HAT P · HADP and Sn · HAT P · HAT P ), this possibility is left

aside. Indeed it is likely that the presence of the second Hsp70 drastically reduce the exchange

rates ADP → AT P on the first chaperone because the second one constitutes a steric obstacle

to such an exchange process.

The free energy associated to a dimer binding has to be adapted, given that the size of the

bound particle increases (eq. 4.1). To account for this increase, but keeping the definition of

F1 unchanged for sake of results comparability, we introduce a parameter γ in equation 4.2 :

f2(x) := γF1 ·
x2

1

x
(4.26)

The appropriate value of the parameter γ is not clearly defined and it will depend, among other

95



Chapter 4. Substrate Translocation induced by Entropic pulling

factors, on the spatial arrangement of the dimer. Since the free energy depends quadratically

of the size of the bound chaperone(s) [145], as a first approximation, it is reasonable to

assume that γ ∈ [
22/3,22

]
that is an intermediate value between purely linear and volumetric

rearrangements. We found out that varying γ within this range of values does not affect the

results qualitatively, in particular the evolution of the translocation rate, and thus all the

results are performed with γ= 2. This choice has its part of arbitrariness and for more realistic

results, it is possible that a parameter γ≈ 1.8 sticks more with existing numerical simulations

performed in the recent past [unpublished work]. Figure A.1 shows that in the case of fast

translocation (k0 = 10−2 s−1), the difference between γ= 1.8 and γ= 2 is very weak. By slowing

the translocation (k0 = 10−5 s−1), there is a more important difference between γ= 1.8 and

γ= 2, around approximatively 10%, but that does not change the qualitative interpretation of

our simulations.

The rates related to the entropic pulling free energy profile (which are the forward translocation

rates and the binding rates) have to be modified accordingly, including the factor γ.

The binding rate of the second Hsp70 depends on γ in the following way, in order to satisfy

detailed balance :

k(n)
on,HT

=
{

k(0)
on,HT

·exp
[−β f (xn)

]
monomer

k(0)
on,HT

·exp
[−β( f2(xn)− f (xn))

]
dimer

(4.27)

k(n)
o f f ,HT

= k(0)
o f f ,HT

(4.28)

k(n)
on,HD

=
{

k(0)
on,HD

·exp
[−β f(xn)

]
monomer

k(0)
on,HT

·exp
[−β( f2(xn)− f (xn))

]
dimer

(4.29)

k(n)
o f f ,HD

= k(0)
o f f ,HD

(4.30)

Similarly, the inward and backward translocation rates are modified accordingly:

k(n)
f =

{
k0 exp

[−β( f (xn+1)− f (xn))
]

monomer

k0 exp
[−β( f2(xn+1)− f2(xn))

]
dimer

(4.31)

k(n)
b = k0 (4.32)

Finally, the exact same procedure is used to solve the steady state, through the resolution of a

5Ns -dimensional system of linear equations (similar to eq. 4.22). The new net translocation

rate denoted by R(2) is defined similarly to equation 4.24, that is:

R(2) = ∑
~si∈~Ψ

Ps−s(~si ) · [k f (~si )−kb(~si )
]

(4.33)

where k f (~si ) and kb(~si ) depend on the position of the first bound site of protein sequence~si ,

according to equations 4.31 and 4.32. A summary of the expression for all the rates is given in
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Hsp70 and R, with at most one Hsp70 per site. The ratio is plotted as a function of both
parameters k0 and F1. The colour points show the optimal value F∗

1 (red) and F (2)∗
1 (green) for

a discrete set of values k0. The two light dashed rectangles highlight the region compatible
with typical biological conditions, that is k0 = 5 ·10−4 −5 ·10−2 s−1 and F1 = 6−8 s−1.

the Appendix, Tables A.3 to A.5.

4.8 Stronger together

To quantify the effect of the possible binding of a second Hsp70, we compare the updated

translocation rate R(2) given by equation 4.33 with the "basal" one computed in the first part

of this chapter, R (equation 4.24). We compute the ratio R(2)/R, which will be often referred

(by misuse of language) to the acceleration or enhancement of the translocation, to give an

appreciation of how much faster is the translocation if there is a possible dimerization of

Hsp70 on the substrate binding sites. The result is shown as a function of the two parameters

F1 and k0 in Figure 4.12.

As a first observation, we notice the presence of a orange-yellow region, corresponding to a
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ratio R(2)/R ≈ 4−8, reflecting a significant enhancement of the translocation. This acceleration

takes place at low values of k0, i.e. for slow diffusive translocating proteins. By slow, it is meant

approximatively 2-3 orders of magnitudes slower than what is expected in typical biological

conditions, that is k0 ≈ 5 ·10−4 −5 ·10−2s−1 (light dashed rectangle). The red points show the

optimal value F∗
1 as a function of k0, computed with the model with only a single binding per

site (see figure 4.8B). Similarly, the same optimum value of F1 is computed when an additional

binding is allowed in the extended model, thus defining F (2)∗
1 and corresponding to the green

dots.

The discontinuity of F (2)∗
1 reveals a phase transition between two regimes.

• On the upper part of Figure 4.12 is the regime driven by the translocation with one single

Hsp70 (red and green line almost overlap, because dimeric states form very rarely).

The range of parameters for which the translocation is optimal (that is the the red and

green curves) falls within the expected biological conditions (see Appendix A.2.2), that is

k0 ≈ 5 ·10−4−5 ·10−2 s−1 and F1 ≈ 6−8 pN. It is highly remarkable because, according to

our model, biological systems evolved so that a mechanism such as protein translocation

takes place in conditions that are optimal or quasi optimal, thus enabling an efficient

translocation of substrate proteins into the ER lumen and the mitochondria.

• Let us consider the situation in which k0 is decreased while assuming a fixed value

F1 ≈ 6−8 pN (illustrated by the thin light rectangle). On the one hand, we notice that we

fall again on the optimality condition associated to multiple binding (that is the lower

part of the green dashed line). On the other hand, it also coincides with the range of

parameters for which the translocation is strongly enhanced upon a possible second

binding (illustrated by the yellow-orange region). Both observations together are very

strong: if for some reasons the diffusion of the substrate along the pore is not favourable,

there is an emerging adaptation of the system, in which two Hsp70 will simultaneously

bind to accelerate the translocation and perform it almost optimally.

To strengthen the idea that the system adapts to external conditions through a second binding

(and not simply a new steady state involving essentially binding sites with a single Hsp70), we

computed the average number of Hsp70 that are bound at steady state on the first binding

site.

Figure 4.13 supports the emergence of the dimeric state, by showing that for k0 < 10−3 the

average number of chaperone proteins bound on the first binding site (which can also be

empty) increases to a value larger than 1 (∼ 1.3).

The discontinuity observed on the green dotted line in figure 4.12 comes from the presence of

two distinct local maxima when plotting the translocation rate R(2) as a function of F1 (figures

4.14A to 4.14D). The one associated to a lower value of F1 progressively increases, until getting
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Figure 4.13: Average number of chaperone on the first binding site S1, the one the closest to
the pore. The result is shown with the initial model (single binding, red) and with the extended
model (possible double binding, black). F1 = 6 pN and [AT P ]/[ADP ] = 10.

dominant with respect to the one on the left which corresponds to the red dotted line in figure

4.12.

To push further the interpretation of the two peaks, we consider more closely the case k0 =
10−5 s−1 (Figure 4.14C). We show in Figure 4.15 both translocation rates R and R(2) (respectively

the red and black lines) and additionally split R(2) into two contributions: the one with one

Hsp70 on the first bound site and the one with two Hsp70 on the first bound site. These two

contributions are illustrated with the black dashed line (one Hsp70) and black dotted line (two

Hsp70s).

Concretely, these observations are possibly reflecting the adaptation of the system to the

external environment. A decrease of the diffusion rate k0 is the consequence of the presence of

a misfolded protein at the pore, whose conformation makes the translocation mechanistically

more difficult. As a consequence, and to adapt to such a situation, there is a combined action

of multiple Hsp70s to exert a stronger force. The mechano-adaptation highlighted by these

results reminds of other biological systems that exhibit such similar behaviours [162, 163].

4.9 Analytical study of a simple model of translocation

The results of the numerical simulations of both the first model and its extension reveal new

interesting features of the translocation mechanism and possible implications on structural

rearrangement of chaperone proteins within the framework of protein translocation. This
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model obviously contains some limitations: numerical simulations provide very instructive

results about the dynamics of translocation but the analytical solution, although formally

possible, gets very quickly unfeasible as soon as the size of the simulation volume increases

(system of 3Ns or 5Ns linear equations). Our next goal is thus to develop a simpler description

highlighting the intrinsic logic of translocation, even at the expand of biological accuracy.

With that aim, the model is further simplified with the following assumptions:

• There are only two binding sites on the protein;

• At most one Hsp can be bound on the protein (not only on a given site);

• When a Hsp70 is on the second site, the protein can undergo a backward translocation,

not a forward one;

• As in the original model, the concentration in solution is chemostated to its steady-state

value in solution.

Considering also the possible state of Hsp70 either with AT P or ADP , there are 5 possible

configurations for the 2-site protein sequence, which are illustrated in figure 4.16 with the

possible associated transitions. We address the question of an analytical expression for a

translocation rate in this simplified model.
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Figure 4.16: Simple kinetic model of translocation. The protein sequence with two sites can be
in only 5 configurations. The membrane is represented with a grey rectangle on the left of the
protein sequence. The notation HT (resp. HD ) is used in the text to refer to the states HAT P

(resp. HADP ).

Hereafter, we present only the starting and ending points of the analytical development in the

main text. A more detailed derivation is reported in the Appendix (A.2.6). The translocation

rate R is given by:

R = P (S1 ·HT ) ·k(1)
f ,HT

−P (S2 ·HT ) ·k(2)
b,HT︸ ︷︷ ︸

φT

+P (S1 ·HD ) ·k(1)
f ,HD

−P (S2 ·HD ) ·k(2)
b,HD︸ ︷︷ ︸

φD

(4.34)

where we explicitly considered the state HX of the chaperone in the forward and backward

transition rate (e.g. k(1)
f ,HX

), although it is assumed to be invariant.

The translocation rate is the sum of two net fluxes (φT and φD ) for which equation 2.22 (re-

minded below) relative to the previously introduced formalism of kinetic models is applicable.

As a reminder, the equation to compute the flux between two states X1 and X2 in a kinetic

model is:

Φ12 =
∑

c∈C12

(
W �

c −W 	
c

) ·wc =
∑

c∈C12

W �
c ·wc ·

(
1− W 	

c

W �
c

)
(4.35)

where C12 is the list of cycles that contain the transition between X1 and X2. The corresponding

sets in the translocation model are CT (between S1 ·HT and S2 ·HT ), and similarly for CD .
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CT →

 ; ; ; ; ; ;

 (4.36)

CD →

 ; ; ; ; ;

 (4.37)

where the double arrows stand for the combination of exchange and hydrolysis/synthesis.

The cycle with one (respectively two) double arrows is the concise representation of two

(respectively four) distinct cycles in the summation.

From the combined summation on both sets CT and CD , two classes of cycles lead to vanishing

terms. First, the cycles c for which W 	
c /W �

c = 1. Such cycles are the one that go through

either only exchange or only hydrolysis/synthesis. Second the cycles that go through two

translocation transitions, one in the forward and one in the backward direction. These terms

vanish because the contribution in the summation over CT is the exact opposite than the one

in the summation over CD , thus summing to zero in equation 4.34.

It remains six terms in both sums (over CT and CD ). The corresponding set of cycles, with the

associated values of W 	
c /W �

c (or the inverse) and wc are the following:

CT →

 ; ; ; ; ;

 (4.38)

W �
c

W 	
c

→
{

α

αeq
;
αeq

α
;

PD P eq
T

PT P eq
D

;
αPD P eq

T

αeq PT P eq
D

;
PT P eq

D

PD P eq
T

;
αeq PT P eq

D

αPD P eq
T

}
(4.39)

wc →
{

1;1;k(2)
b,HD

+kS2
s +kS2·HD→S2·HT

ex +kS2

o f f ,HD
;kS1

b,HD
+kS2

s +kS2·HD→S2·HT
ex +kS2

o f f ,HD
;

k(1)
f ,HD

+kS1
s +kS1·HD→S1·HT

ex +kS1

o f f ,HD
;k(1)

f ,HD
+kS1

s +kS1·HD→S1·HT
ex +kS1

o f f ,HD

} (4.40)

CD →

 ; ; ; ; ;

 (4.41)

W 	
c

W �
c

→
{
αeq

α
;
α

αeq
;

PT P eq
D

PD P eq
T

;
αeq PT P eq

D

αPD P eq
T

;
PD P eq

T

PT P eq
D

;
αPD P eq

T

αeq PT P eq
D

}
(4.42)
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wc →
{

1;1;k(1)
b,HT

+kS2

h +kS2·HT →S2·HD
ex +kS2

o f f ,HT
;k(2)

b,HT
+kS2

h +kS2·HT →S2·HD
ex +kS2

o f f ,HT
;

k(1)
f ,HT

+kS1

h +kS1·HT →S1·HD
ex +kS1

o f f ,HT
;k(1)

f ,HT
+kS1

h +kS1·HT →S1·HD
ex +kS1

o f f ,HT

} (4.43)

In what comes next, the notation assumes that the exchange rates do not depend on the site,

that is

kS1·HD→S1·HT
ex = kS2·HD→S2·HT

ex =: kS·HD→S·HT
ex (4.44)

kS1·HT →S1·HD
ex = kS2·HT →S2·HD

ex =: kS·HT →S·HD
ex (4.45)

The kinetic asymmetry between transitions on site 1 (S1 ·HT ↔ S1 ·HD ) and site 2 (S2 ·HT ↔
S2 ·HD ) is only modelled through the hydrolysis and synthesis rates. In addition, we kept the

analytical trace of the distinction between k0,HT and k0,HD , although they are assumed to be

the same.

After an analytical development of the summation (sketched in the Appendix, section A.2.6),

we obtain for the net translocation rate:

R = ·
(
1− αeq

α

)
︸ ︷︷ ︸

(1)

·
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1


︸ ︷︷ ︸

(2)

· (λ−1)︸ ︷︷ ︸
(3)

·F ({k}) (4.46)

where (1), (2) and (3) refer to the below discussion and

F ({k}) =
k(0)

o f f ,HD
·

α
αeq

k HT →HD
ex

kh + α
αeq

k HT →HD
ex

+kS·HD→S·HT
ex

(
PD k(0)

on,HD

PT k(0)
on,HT

+1

) (4.47)

Equation 4.46 sheds light on three conditions that have to be satisfied to move the system

from its equilibrium dynamics, namely the absence of translocation (R = 0). These conditions

remarkably mirror some main biological features of Hsp70 and the translocation machinery.

The enumeration (1, 2 and 3) refers to the annotation in equation 4.46.

1. The system is moved far from equilibrium conditions:

The term (1) vanishes if and only if α = αeq . As a fingerprint of the non-equilibrium

nature of translocation, the uptake of energy in the form of ATP is necessary to observe

a net translocation of the protein.

2. Hydrolysis is accelerated close to the membrane:

The condition λ = kS,1
h /kS,2

h 6= 1 formally breaks the symmetry between the two sites
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1 and 2 of the protein. If both are governed by a same dynamics, the translocation is

not effective. This condition finds its counterparts in the biological description of the

translocation: the role of J-protein cochaperones is rightly to accelerate the ATP-ase

activity of Hsp70 close to the membrane

3. The unbinding rate of the substrate is larger in the HT state than in the HD state:

As a preliminary remark, the discussion assumes that k0,HT = k0,HD = k0. The rationale

is that the diffusion constant of the protein through the pore is not affected by the state

of the bound chaperones HT or HD . We kept trace of the distinction for a more accurate

analytical result, but it is expected that the ratio kT
0 /kD

0 is unitary.

This being said, the condition restricts to k(0)
o f f ,HD

6= k(0)
o f f ,HT

. The structure of the Hsp70

SBD illustrated in figure 4.2 with the closing of the lid, capturing the substrate, is the

biological manifestation of the present condition. In the closed conformation of the

SBD (with HD ), the unbinding rate is much smaller than in the open state (with HD ).

More abstractly, the condition acts as an additional symmetry breaking requirement. In

the previous point, we discussed the symmetry breaking between sites 1 and 2. Here,

the other symmetry of the kinetic scheme has to be broken, that is between states of the

protein with bound HT or HD . This symmetry breaking is achieved via the condition

k(0)
o f f ,HD

6= k(0)
o f f ,HT

.

Interestingly the double symmetry breaking acts as an overall requirement for a cyclic di-

rectionality. If at least one of them is not broken, the dynamics of the system is stuck in a

stationary regime in which no net translocation is achieved.

It is remarkable how such a simple model is able to grasp the logic of the protein translocation.

The different conditions mirror key biological aspects, structural and functional, that are

essential to an efficient translocation. However, this has to be moderated, by keeping in mind

that these results do not accurately model the dynamics of the translocation.

The main limitation of the current model, that makes it importantly differ from the numerical

simulations, is the restriction to a single Hsp70 on the protein sequence. In real biological

instances, the simultaneous action of Hsp70, binding to the incoming site "as soon as possible"

is at the heart of the performance of the translocation for multiple reasons: it prevents retro-

translocation, it leads to a stronger exerted force, even before the previous Hsp70 has detached

from the substrate and thus decreases the time scales in game during the translocation.

The three conditions reveal the emerging logic of the translocation machinery. In the next

section, we go further in this direction and show that the translocation is in fact the result of

an information-processing cycle of operations, mediated by chaperone protein Hsp70.
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4.10 Translocation as an autonomous Szilard Engine

In this section, we go deeper into the identification of the information processing steps

achieved during the translocation of proteins. The analytical development is guided by the

interpretation of the different biochemical transitions between states and how they are in-

volved in translocation. We start by presenting the derivation that ensue from the definition

of the translocation rate and show in which way the information emerges from these equa-

tions. The result is then discussed by representing the translocation machinery as a stochastic

autonomous Szilard engine, as suggested by the analytical expression.

First of all, one hypothesis is made with respect to the kinetic scheme shown in figure 4.16 to

further simplify the analytical development and its interpretation. We believe this assumption

does not change the conceptual implications of our results, its validity being discussed at the

end of this section.

We hypothesise that the apo state (empty protein) is a transient state in the consecutive

unbinding and binding events of Hsp70 in the same state, either ATP-bound or ADP-bound.

That is we neglect the possible "cross-interaction", consisting of releasing a Hsp70 in an ATP-

state and binding a Hsp70 in an ADP-state, or vice versa. As a consequence, there are two

possible transitions between states S1 ·HT ↔ S2 ·HT and similarly between S1 ·HD ↔ S2 ·HD :

i) the translocation, as defined in the previous models; ii) the sliding of Hsp70 along the

substrate protein, through consecutive unbinding and binding on two neighbour sites.

The representation of the different transitions is illustrated in figure 4.17A and we briefly

introduce or remind the notation used for each of them.

• Free energy along the substrate protein: fi := f (xi ) = F1x2
1/xi , i = {1,2} (equation 4.2).

• Translocation: k(1)
f ,HX

:= k0,HX exp(β( f1 − f2)) and k(2)
b,HX

= k0,HX for the forward and

backward translocation rates (X = {D,T }).

• Binding-release: The "sliding" rates (terminology used to reflect the consecutive un-

binding and binding on two neighbour sites) are defined by:

kS1·HT →S2·HT

sl i de := kT
sl i de exp(−β f2) (4.48)

kS2·HT →S1·HT

sl i de := kT
sl i de exp(−β f1) (4.49)

kS1·HD→S2·HD

sl i de := kD
sli de exp(−β f2) (4.50)

kS2·HD→S1·HD

sl i de := kD
sli de exp(−β f1) (4.51)

so that detailed balance is satisfied with the translocation rates.

• Hydrolysis-synthesis: kS1

h =λkS
h and kS2

h = kS
h . Similarly is defined synthesis, to satisfy

detailed balance with exchange.
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• Exchange: kS·HT →S·HD
ex and kS·HD→S·HT

ex are the exchange rates and do not depend on

the considered binding site 1 or 2.

• Total transition rate: we define the total transition rate between two states on the same

binding site as kSi ·HT →Si ·HD
tot := kSi

h +kS·HT →S·HD
ex and kSi ·HD→Si ·HT

tot := kSi
s +kS·HD→S·HT

ex .

Coming back to the very first definition of translocation rate,

R = P (S1 ·HT ) ·k(1)
f ,HT

−P (S2 ·HT ) ·k(2)
b,HT

+P (S1 ·HD ) ·k(1)
f ,HD

−P (S2 ·HD ) ·k(2)
b,HD

(4.52)

we can develop the expression by introducing the formalism with the spanning trees explained

in section 2.3 and already used in the previous analytical development (section 4.9). In that

case, the structure of the kinetic scheme is more simple without the central state, reducing the

length of the expressions. All the steps are written in the Appendix, section A.2.7.

R = 1

ΣT OT

[
kS1·HT →S1·HD

tot kS2·HT →S1·HT

sl i de kS2·HD→S2·HT
tot k(1)

f ,HD

]

·

1− PS1 (S1 ·HT )PS2 (S2 ·HD )

PS1 (S1 ·HD )PS2 (S2 ·HT )︸ ︷︷ ︸
(∗)

·
k(2)

b,HD
kS1·HT →S2·HT

sl i de

k(1)
f ,HD

kS2·HT →S1·HT

sl i de︸ ︷︷ ︸
(∗∗)


+ 1

ΣT OT

[
kS2·HT →S2·HD

tot kS2·HD→S1·HD

sl i de kS1·HD→S1·HT
tot k(1)

f ,HT

]

·

1− PS1 (S1 ·HD )PS2 (S2 ·HT )

PS1 (S1 ·HT )PS2 (S2 ·HD )︸ ︷︷ ︸
(∗)

·
k(2)

b,HT
kS1·HD→S2·HD

sl i de

k(1)
f ,HT

kS2·HD→S1·HD

sl i de︸ ︷︷ ︸
(∗∗)


(4.53)

where ΣT OT is the sum of all the spanning trees over the four-state kinetic model.

At this point, we need to push further the interpretation of the two types of fractions (∗) and

(∗∗) in brackets .

1. (∗) Ratio of conditional probabilities:

The force exerted by entropic pulling on the substrate protein depends on the relative

position of Hsp70 with respect to the pore, not on the nucleotide bound on it. Thus, in

general, the systems works optimally if it favours successive binding of Hsp70 on the

first site, more than on the second one.

Taking a closer look to the terms in red in Equation 4.53, we see that there are two cycles
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with respect to the model illustrated in (A).
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that are contributing to a net forward translocation. These two cycles are either

S2
sliding−−−−−→
D-state

S1
translocation−−−−−−−−−→

T-state
S2 or S2

sliding−−−−→
T-state

S1
translocation−−−−−−−−−→

D-state
S2 (4.54)

It is thus reasonable to postulate that the measurement process is defined by the tran-

sition from site S2 to site S1 and the resetting that follows the measurement is the

transition from site S1 to site S2.

Formally speaking, the paradigm of the measurement and resetting is very general, by

identifying the measurement to any transition from S2 to site S1 and the resetting to

any transition from S1 to S2. The information associated to both steps is defined as a

trajectory-dependant information (Section 2.8) and the ideas behind these definitions

are strongly similar to the one used to describe ABC Transporters (Section 3.5).

Importantly, in the most general description, measurement is any transition S2 → S1.

However, if we refer more specifically to the two cycles that "carry" the forward translo-

cation, the measurement consists in both cases in the sliding transition, associated to

the unbinding from S2 and consecutive binding on S1. Similarly, the resetting from S1

to S2 is always in the form of a forward translocation.

Measurement S2 ·HT
sliding−−−−→ S1 ·HT : Imeas,T := ln

(
PS1 (S1 ·HT )

PS2 (S2 ·HT )

)
(4.55)

Measurement S2 ·HD
sliding−−−−→ S1 ·HD : Imeas,D := ln

(
PS1 (S1 ·HD )

PS2 (S2 ·HD )

)
(4.56)

Resetting S1 ·HT
translocation−−−−−−−−−→ S2 ·HT : Ir eset ,T := ln

(
PS2 (S2 ·HT )

PS1 (S1 ·HT )

)
(4.57)

Resetting S1 ·HD
translocation−−−−−−−−−→ S2 ·HD : Ir eset ,D := ln

(
PS2 (S2 ·HD )

PS1 (S1 ·HD )

)
(4.58)

where Imeas,T =−Ir eset ,T =: IT and Imeas,D =−Ir eset ,D =: ID .

In the end, we obtain:

PS1 (S1 ·HT )PS2 (S2 ·HD )

PS1 (S1 ·HD )PS2 (S2 ·HT
= exp

(
Imeas,T + Ir eset ,D

)
(4.59)

PS1 (S1 ·HD )PS2 (S2 ·HT )

PS1 (S1 ·HT )PS2 (S2 ·HD
= exp

(
Imeas,D + Ir eset ,T

)
(4.60)

2. (∗∗) Possible ways to accelerate the translocation:

The two terms (∗∗) are the two following fractions:

exp
(
βχT

)
:=

k(1)
f ,HT

kS2·HD→S1·HD

slide

k(2)
b,HT

kS1·HD→S2·HD

slide

and exp
(
βχD

)
:=

k(1)
f ,HD

kS2·HT →S1·HT

slide

k(2)
b,HD

kS1·HT →S2·HT

slide

(4.61)
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Following the detailed balance constrains, they can be rewritten only as a function of

exchange rates:

exp
(
βχ

)
:= kS1·HT →S1·HD

ex kS2·HD→S2·HT
ex

kS1·HD→S1·HT
ex kS2·HT →S2·HD

ex

= exp
(
βχT

)= exp
(−βχD

)
(4.62)

Putting all the ingredients together, we obtain the final expression for the net translocation
rate:

R = 1

ΣT OT

[
kS1·HT →S1·HD

tot kS2·HT →S1·HT
sl i de kS2·HD→S2·HT

tot k(1)
f ,HD

]
· (1−exp(Imeas,T + Ir eset ,D )exp(βχT )

)
+ 1

ΣT OT

[
kS2·HT →S2·HD

tot kS2·HD→S1·HD
sl i de kS1·HD→S1·HT

tot k(1)
f ,HT

]
· (1−exp(Imeas,D + Ir eset ,T )exp(βχD )

)
(4.63)

or equivalently with a slightly condensed notation:

R = 1

ΣT OT

[
kS1·HT →S1·HD

tot kS2·HT →S1·HT

sl i de kS2·HD→S2·HT
tot k(1)

f ,HD

]
· (1−exp(IT − ID +βχ)

)
+ 1

ΣT OT

[
kS2·HT →S2·HD

tot kS2·HD→S1·HD

sl i de kS1·HD→S1·HT
tot k(1)

f ,HT

]
· (1−exp(−IT + ID −βχ)

) (4.64)

The structure of the last equation provides many insights to better understand the translo-

cation as an information processing mechanism. First of all, the mathematical structure

highlights that there are exactly two possible trajectories that drive the forward translocation,

either

S2 ·HT → sliding → S1 ·HT → S1 ·HD → translocation → S2 ·HD → S2 ·HT

or

S2 ·HD → sliding → S1 ·HD → S1 ·HT → translocation → S2 ·HT → S2 ·HD .

Each of the trajectories has a weight, in the form (1− [. . . ]), where the two bracketed terms [. . . ]

are the inverse of each other: necessarily, one cycle will contribute positively to the forward

translocation and the other will contribute negatively (i.e induce a backward translocation).

In accordance with the definition of exchange rates (independent on the binding site), χ= 0.

However, this term might, from a broader perspective, play an important role. Indeed, differ-

ent hypotheses go in the direction of χ 6= 0, that could lead to the acceleration of Hsp70. A

first one is to include in our model that binding a NEF far from the pore is more favourable,

as for Hsp70. It would result in a symmetry breaking in the ratio of exchange rates, with
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4.10 Translocation as an autonomous Szilard Engine

kS2·HD→S2·HT
ex /kS2·HT →S2·HD

ex > kS1·HD→S1·HT
ex /kS1·HT →S1·HD

ex . Another hypothesis comes from in-

formal discussions: it might be that the ATPase activity of the Hsp110 NEF is essential to

the protein disaggregation. Similarly during the translocation, the energy consumed from

the ATPase activity could thus lead to a term χ 6= 0 that would accelerate the translocation.

Obviously these are hypotheses that still have to be studied and confirmed, but our model

paves the way to understand the different biochemical mechanisms that could contribute to

accelerate the translocation through a membrane.

Overall, when considering all the elements and putting them into perspective with the bio-

logical description of the translocation, a global picture of the mechanism is captured by our

model. The interplay between Hsp70 and cochaperones induces a directionality in the two

subsystems that are either on site 1 (S1 = {S1 ·HT ,S1 ·HD }) or on site 2 (S2 = {S2 ·HT ,S2 ·HD }).

First, the activity of J-protein is targeted around its anchorage point, on Tim44, and results

in an acceleration of the hydrolysis on the first binding site. Second, the NEFs favor the ex-

change from ADP-bound to ATP-bound Hsp70 on both sites S1 and S2 but the effect of their

interaction with Hsp70 dominates after the translocation, that is on S2. As a consequence,

when considering the two subsystems (site 1 and site 2) as non interacting, and comparing

the relative occupancy of HT − or HD− bound sites, we get PS1 (S1 · HT ) < PS2 (S2 · HT ) and

PS1 (S1 ·HD ) > PS2 (S2 ·HD ). Therefore, IT − ID < 0, which means that the translocation cycle

that go through S2 ·HT → sliding → S1 ·HT → S1 ·HD → translocation → S2 ·HD → S2 ·HT is

amplified and dominates the overall translocation mechanism.

At equilibrium, there is no information that is driven between the two sites and thus in both

cases, Imeas + Ir eset = 0, leading unavoidably to R = 0. The preponderance of this cycle is

especially true since the product of rates along the dominant cycle

kS1·HT →S1·HD
tot kS2·HT →S1·HT

s kS2·HD→S2·HT
tot k(1)

f ,HD

is expected to be way larger than the product of rates on the alternative cycle from the following

equalities and inequalities:

kS1·HT →S1·HD
tot > kS1·HD→S1·HT

tot (4.65)

kS2·HT →S1·HT
s > kS2·HD→S1·HD

s (4.66)

kS2·HD→S2·HT
tot > kS2·HT →S2·HD

tot (4.67)

k(1)
f ,HD

= k(1)
f ,HT

(4.68)

As a conclusion to this chapter on the translocation as an information processing mechanism,

we build a revisited Szilard Engine that shares all the different stages of the translocation

machinery. The correspondence is illustrated in figure 4.17A, bottom illustration of boxes I to

V .
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In order to reproduce the two possible binding sites in the simple model of translocation,

the setup consists of a box with a wall that can be in two different positions. The particle is

assumed to be always located on the right of the wall when it is inside the box. When the wall is

on the right, it moves in a small volume (A.I and A.III). Conversely, when the wall is on the left,

the particle moves in a larger volume (A.II and A.IV). When a Hsp70 is bound on the first site,

it exerts a pulling force to move to a more favourable state, a state of higher entropy. Similarly,

the favourable evolution of the system when a particle is in a small volume is to undergo a

volume expansion, by pushing on the wall and thus increasing the available volume (A.I →
A.II and A.III → A.IV).

Also, it is possible for Hsp70 to detach and bind from the substrate protein. This has to be

part of the Szilard device: the particle can escape from the box and move to a side reservoir

(A.V), pictured as a grey rectangle on the top of the box. The bound nucleotide does not

directly affect the translocation rates but strongly modifies the affinity of the chaperone for the

substrate, and thus the sliding rates. In the perspective of the Szilard engine, it corresponds to

a membrane between the box and the reservoir that can have different permeability properties.

On the one hand, it can let the particle go to the reservoir and come back into the box relatively

freely, as would Hsp70 do in the ATP-bound state by frequently binding and unbinding. On

the other hand, the membrane can be almost impermeable, in the same way the dissociation

constant of ADP-bound Hsp70 for the substrate is very low.

Importantly the stochasticity associated to this description makes it differ conceptually from

the original Szilard Engine, in which every step is preformed externally and in a totally deter-

ministic way, without any fluctuations. Indeed, among all the possible cycles that are included

in our model, the only one that is iteratively repeated in the original Szilard Engine can be

assimilated to:

S2 ·HT
sliding−−−−−−−−−→

measurement
S1 ·HT → S1 ·HD

translocation−−−−−−−−−→
resetting

S2 ·HD → S2 ·HT

in which even the internal transitions S1 ·HT → S1 ·HD and S2 ·HD → S2 ·HT are not explicit

part of the description.

The exact transposition of the translocation machinery into an autonomous stochastic Szilard

Engine supports the analytical development that led us to understand the translocation as a

result of an autonomously information processing molecular device.

4.11 Conclusive discussion

Throughout this project about the translocation of substrate proteins across the membrane, we

studied the dynamics of the translocation based on the entropic pulling model. The aim was

to highlight the fundamental biological properties of the system that drive the translocation

process, and how they affect the performance of the translocation, quantified by the net
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translocation rate.

As a basis of our work is the entropic pulling model, one possible model for the translocation

mechanism across the membrane. Our model includes all the physical and biological features

of the entropic pulling that were so far reported in the literature, essentially characterized by

considering a single Hsp70 interacting with a substrate protein. The interest of our study lies

in the description at a larger scale, that is a substrate protein interacting with multiple Hsp70

chaperone proteins in solution. The model provides a precise description of dynamics, from

which exciting features emerge to better understand the underlying mechanism.

The results of this project essentially articulate around two directions.

First, we showed from numerical simulations that the translocation is optimally achieved when

the interplay between two counterbalancing effects is adequate: on the one hand, the entropic

pulling force must be large enough to impose a directionality to the translocation. On the

other hand, this same parameter has to be sufficiently small, so that Hsp70s bind frequently

enough to the protein to generate a pulling force. Resulting from these observations, we also

showed the existence of a range of biological conditions in which the dimerization of Hsp70

strongly accelerates the translocation rate of substrate protein, as an adaptative process with

respect to the environment. This might occur for instance in the presence of an obstacle to

the translocation, such as a misfolded substrate protein, that would unavoidably slow down

the translocation.

Second, we went through the analytical solution of a simpler model of translocation to reveal

the logics of transport and its fundamental mathematical structure. Interestingly, all the

biological conditions emerge as logical requirements, such as the acceleration of ATP-ase

activity and different affinity for the substrate in the ATP- and ADP- states, all this being

possible only upon uptake of energy with respect to equilibrium conditions. As a final step of

this work, we showed that all the steps of the translocation mechanism find their counterpart

in a revisited autonomous Szilard Engine, in which an information flow between different

states of the system drives the translocation.

Our results are very far-reaching and complementary. The numerical simulations are meant to

be realistic and representative of biological systems. Despite evident assumptions and simplifi-

cations in the model, we obtain highly relevant results, especially the predicted dimerization of

Hsp70 to drive the translocation. These numerical observations open interesting perspectives

for new experimental set-ups to answer the following question: are Hsp70s observed in a

dimeric form during the translocation when the diffusion rate of the protein is reduced, for

instance if it is in a misfolded state? The experimental challenge behind is significant, but

nonetheless exciting.

Importantly, all these results are characteristic of the steady-state of the translocation, that

is when the boundary effects (insertion of the protein through the membrane, for instance)
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are neglected. Moreover the protein is of finite size and is probably relatively fast translocated

in its whole. Future numerical simulations using Kinetic Monte Carlo algorithm would be

adequate to include this effect into the model and quantify how does it affect the translocation

rate, and to compare it with the steady-state transient regime we focused on in this work.

The theoretical part of the model is much more fundamental and contains important assump-

tions and limitations. The main one being that only one Hsp70 can be bound simultaneously

on the whole two-site protein. In spite of this, and here is the strength of the results, logics of

transport is amazingly grasped and reveals the information-processing nature of the transloca-

tion machinery. A future challenging analytical and numerical research would be the extension

of these results by raising some of the main hypothesis, to capture more precisely the real

energy consumption balance that operates during the protein translocation, in particular the

one associated to the processing of information.
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5 Conclusion and outlooks

Throughout this thesis, we described biological systems as information-processing devices

and showed that this characterisation finds its roots in the biochemical interactions at the

molecular level. During our research, we aspired to describe cellular transporters with models

as simple as possible, still grasping the essential features of the inherent mechanisms sug-

gested by the biological description of the systems. Finding the appropriate balance between

simplification and the right amount of complexity was a real challenge, which we faced us-

ing kinetic models and applying the formalism of stochastic thermodynamics to study and

characterise the transport processes. We shed light on the logical mathematical structure,

remarkably mirroring the information-processing stages that are intrinsically part of these

processes, letting us state that active and energy consuming biological systems are internally

and autonomously perpetually processing information to achieve their assigned task. This

approach was used to tackle two types of membrane transporters: ABC transporters and the

translocation machinery involving chaperone proteins Hsp70s.

In the first part, we built a kinetic model for ABC transporters. As a cornerstone is the experi-

mentally observed dependence of the ATPase activity on substrate binding. The associated

allosteric property was reproduced by introducing two distinct ATP-bound states with differ-

ent hydrolysis rates, consecutively modelling the effect of the substrate as a population shift

between these two states. We quantified the steady-state concentration gradient that results

from such a characterisation.

With this innovative description, we revealed the intrinsic logic of the transport mechanism

through the simultaneous necessity of different conditions. These three requirements are

strongly related to symmetry breakings: the symmetry between kinetic properties of ATP-

bound states with and without substrate; the symmetry between the direction of transport

(import or export), and finally the symmetry of time-reversal, specifically by breaking the de-

tailed balance and moving the system out of equilibrium. These symmetry breakings perfectly

mirror the information-processing steps of measurement, storage, feedback and resetting that
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we identified as integral parts of the transport cycle, exactly as in the Maxwell Demon thought

experiment. Last, we built an energy balance for the transport cycle by ABC transporters, thus

quantifying the energy and entropy variation associated to each information-processing step.

Moreover, we were able to qualitatively reproduce the phenomenology of various experimental

data, thus supporting the validity and robustness of our model.

In a nutshell, we showed, starting from a biochemical description, that ABC transporters are

autonomous Maxwell Demons, in which all the information processing is constantly taking

the form of successive molecular interactions.

In the second part, we moved to the study of a completely different transport mechanism, the

translocation of a protein through a membrane by entropic pulling induced by Hsp70s.

First, the numerical simulations reveal that the translocation optimality is the consequence

of a balance between, on the one hand, the affinity of Hsp70 for the substrate and, on the

other hand, the exerted pulling force. This result led us to postulate the existence of a so-

far unobserved biological state of Hsp70 in the framework of translocation. Indeed, we

showed numerically that the translocation is strongly accelerated under specific conditions

if two chaperones bind to a same site to form a dimer, strengthening the pulling force. This

is particularly so when the external conditions are not favourable to the translocation, for

instance when the translocating substrate is misfolded.

Second, we studied the translocation through a simpler analytical model, expliciting the

different conditions which have to be satisfied to impose a directionality to the translocation.

In a two site-model, we showed that the symmetry between kinetic properties of the two sites

has to be broken, as well as the symmetry between ATP-state and ADP-state of Hsp70 on

binding sites. Even more fundamentally, energy has to be brought to the system to move the

system from equilibrium and induce a translocation directionality. In the last part, we showed

that the the translocation results from acquisition of information about the relative position of

the membrane with respect to Hsp70, which is exactly the characteristic features of a (slightly

revisited) Szilard Engine. The key message that arises from this work within the framework

of information theory is the description of the translocation mechanism as an autonomous

Szilard Engine. It is something new that was, as far as we know, not described in the literature.

All the results we produced in the two projects open exciting perspectives for future work,

both in the direction of a more precise description for each of them, as well as with the aim of

building a unified framework for cellular transporters and, by extension, many other active

biological systems.

In particular, one interesting perspective for ABC Transporters would be to explore more

deeply the non-linear effects that arise from the complexification of our model. Another is

to study the reactivity to changes in external conditions, extending the observations from

steady-state to the time-evolution during the transitional regime.

The main challenge in the translocation would be to extend the formalism of information
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theory that we built in the second part of the project to the first and more accurate description

of translocation. We believe that the associated mechanism is in fact a collection of "intricate"

Szilard engines that act simultaneously to generate a more complex mechanism than the one

analytically described in this work.

As a whole, we believe that all the conclusions drawn throughout the present work can be

unified in a more global formalism. With that aim, a future work direction would be to establish

a generic model to grasp through the formalism of information theory the characteristics

of wider class of transport mechanisms, taking steps back from specific examples. In that

sense, we aim to generalize kinetic transitions such as binding and unbinding, hydrolysis

and synthesis as carrying and converting information inside the biological systems. As a

corollary, it would also reveal the crucial nature of symmetry breaking as a necessary condition

to perform any autonomous information-processing task at the molecular level.

In this work, we built a bridge between biological description of transport and information

theory. Whereas many articles artificially introduce elements from the latter into the model,

we showed that the biochemical characterisation naturally leads to the proper nature of

biological systems, as information-processing devices. Thought experiments that acted as

a starting point to the development of formalism of information theory arise at the end of

this process. ABC transporters, the translocation channel and hypothetically most of active

biological processes evolved for billions of years to autonomously process information at the

molecular level, without interference of small external intelligent and demoniac beings.

This likely does not fully answer the question "What is Life?" , but we believe to have provided

in this work the evidence that information is one touchstone among others, that has been

essential to the emergence and development of Life since its origin billions of years ago.
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A Appendix

A.1 ABC Transporters

A.1.1 Analytical expression of all the rates

All the transition rates in the model are expressed as a function of a set of independent

parameters. The expression written in the right column of Table A.1 satisfy detailed balance

constraints.

A.1.2 Numerical values of the rates

If not stated otherwise, the numerical values used for the simulations are shown in table A.2.
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Table A.1: Expression of the rates as a function of independent parameters, after introducing
detailed balance constrains as well as η,Ke and K S

e . All the terms in the right column "Expres-
sion" can be defined independently.

Rate Expression Rate Expression

kT
on kT

on kT
o f f kT

o f f

k(0)
on,HD

k(0)
on,HD

kD
o f f kD

o f f

k+ k+ kS+ kS+

k− k+
Ke

kS−
kS
+

K S
e

kh kh ks
[i n]eq

[out ]eq

kh kT
o f f kD

on kS
s

kS
h kD

o f f ko nT

kT→D
ex

k−T k+D
k+D+αk+T

kD→T
ex

[i n]eq

[out ]eq

αk−T kT
o f f kD

on k+D kS
s

αeq kS
h kD

o f f kT
on (k+D+αk+T )

k∗
h ηkh k∗

s
[i n]eq

[out ]eq

ηKe kh kT
o f f kD

on kS
s

kS
h kD

o f f kT
on

kT∗→D
ex

k∗
−T k∗

+D
k∗
+D+αk∗

+T
kD→T∗

ex
[i n]eq

[out ]eq

αKe k∗
−T kT

o f f kD
on k∗

+D kS
s

αeq kS
h kD

o f f kT
on (k∗

+D+αk∗
+T )

kS
h kS

h kS
s kS

s

kT S→DS
ex

kS
−T kS

+D

kS
+D+αkS

+T
kDS→T S

ex
αkS

−T kS
+D kS

s

αeq kS
h (kS

+D+αkS
+T )

k∗S
h ηkS

h k∗S
s ηK S

e kS
s

kT∗S→DS
ex

k∗S
−T k∗S

+D

k∗S
+D+αk∗S

+T
kDS→T∗S

ex
αK S

e k∗S
−T k∗S

+D kS
s

αeq kS
h (k∗S

+D+αk∗S
+T )
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Rate Value Rate Value

kT
on 0.5 µM−1s−1 kT

o f f 0.01 s−1

kD
on 0.5 µM−1s−1 kD

o f f 0.01 s−1

k+ 1 s−1 kS+ 1 s−1

kh 0.02 s−1 kS
h 0.02 s−1

kS
s 2 ·10−9 s−1

k−T 10−4 s−1 kS
−T 10−4 s−1

k∗
−T 10−4 s−1 k∗S

−T 10−4 s−1

k+T 0.5 s−1 kS
+T 0.5 s−1

k∗
+T 0.5 s−1 k∗S

+T 0.5 s−1

k+D 0.1 s−1 kS
+D 0.1 s−1

k∗
+D 0.1 s−1 k∗S

+D 0.1 s−1

Table A.2: Numerical values of the rates. The rates that are not defined in this table ensue from
detailed balance conditions and thermodynamic constraints (see S.I., Table A.1).

A.1.3 Sketch of the analytical derivation

We solve the equation 3.17 referring to the state probabilities P (T S) and P (T ) but ananalog

derivation obviously holds also for P (DS) and P (D) leading exactly to the same final result.

Let’s start by decomposing the state probabilities P (T S) and P (T ) relatively to the set of span-

ning trees converging respectively to T S and T . The decomposition can be pushed further by

splitting the system in two three-state systems and possible transitions in between.

In what follows, Γ(T ) refers to the set of oriented spanning trees toward the vertex T of the

graph, similarly for all other states. Γ(DS)
3,S is the restriction to the three-state system with

substrate {T S,T ∗S,DS} and denotes the set ot spanning trees towards DS in this subsystem.∏
l∈γ

kl (T ) is the product of all the rates in the oriented spanning tree γ.
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P (T ) = ∑
γ∈Γ(T )

∏
l∈γ

kl (T ) (A.1)

= ∑
γ∈Γ(T S)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(T )
3

∏
l∈γ

kl ·kT
o f f (A.2)

+ ∑
γ∈Γ(DS)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(T )
3

∏
l∈γ

kl ·kD
o f f (A.3)

+ ∑
γ∈Γ(T S)

3,S

∏
l∈γ

kl ·kT
o f f [i n]kD

on(kT∗→D +k−) (A.4)

+ ∑
γ∈Γ(T )

3

∏
l∈γ

kl ·kT
o f f kD

o f f (kS
−+kT∗S→DS) (A.5)

and similarly

P (T S) = ∑
γ∈Γ(T S)

∏
l∈γ

kl (T S) (A.6)

= ∑
γ∈Γ(T )

3

∏
l∈γ

kl ·
∑

γ∈Γ(T S)
3,S

∏
l∈γ

kl · [out ]kT
on (A.7)

+ ∑
γ∈Γ(D)

3

∏
l∈γ

kl ·
∑

γ∈Γ(T S)
3,S

∏
l∈γ

kl · [i n]kD
on (A.8)

+ ∑
γ∈Γ(T )

3

∏
l∈γ

kl · [out ]kT
onkD

o f f (kT∗S→DS +kS
−) (A.9)

+ ∑
γ∈Γ(T S)

3,S

∏
l∈γ

kl · [out ]kT
on[i n]kD

on(k−+kT∗→D ) (A.10)

Substituting these two expressions in

P (T S)kT
o f f −P (T )[i n]kT

on = 0

most of the terms cancel out and it remains

P (T S)kT
o f f −P (T )[i n]kT

on (A.11)

= ∑
γ∈Γ(DS)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(T )
3

∏
l∈γ

kl ·kD
o f f [out ]kT

on − ∑
γ∈Γ(T S)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(D)
3

∏
l∈γ

kl ·kT
o f f [i n]kD

on (A.12)
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Finally, imposing a zero flux betwee states T and T S, it leads to:

[i n]

[out ]
=

∑
γ∈Γ(DS)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(T )
3

∏
l∈γ

kl ·kD
o f f kT

on∑
γ∈Γ(T S)

3,S

∏
l∈γ

kl ·
∑

γ∈Γ(D)
3

∏
l∈γ

kl ·kT
o f f kD

on
=

kD
o f f kT

on

kT
o f f kD

on

P3(T )P3(DS)

P3(T S)P3(D)
(A.13)

This formulation is the most general formulation that is only built on the topology of the model.

The next step is to push the analytical development further, by introducing the definition of

the rates (table), thus taking into account the biochemical considerations that were introduced

into the physical and biochemical conception of our model, through the explicit definition of

the transition rates.

As a preliminary step, we will determine how the presence or absence of substrate affects each

of the term in eq (), that is between P3(T ) and P3,S(T S) as well as between P3(D) and P3,S(DS).

kT ∗S→DSkT S→DS = kT ∗→D kT→D (A.14)

kS
−kT S→DS = Ke

K S
e

k−kT→D (A.15)

kT ∗S→DSkS
+ = kT ∗→D k+ (A.16)

kT ∗S→DSkDS→T S =
[out ]eq kT

onkD
o f f

[i n]eq kT
o f f kD

on
kT ∗→D kD→T (A.17)

kS
−kDS→T S =

[out ]eq kT
onkD

o f f

[i n]eq kT
o f f kD

on

Ke

K S
e

k−kD→T (A.18)

kDS→T ∗SkS
+ =

[out ]eq kT
onkD

o f f

[i n]eq kT
o f f kD

on
kD→T ∗

k+ (A.19)

It follows two relations between P3(T ) and P3,S(T S) as well as between P3(D) and P3,S(DS).

P3(DS) = P3(D)+ (
Ke

K S
e
−1)k−kT→D (A.20)

P3(T S) =
[out ]eq kT

onkD
o f f

[i n]eq kT
o f f kD

on

(
P3(T )+ (

Ke

K S
e
−1)k−kD→T

)
(A.21)
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Combining equations A.20 and A.21 into equation A.13, we obtain:

[i n]

[out ]
= [i n]eq

[out ]eq

[
P3(D)+ ( Ke

K S
e
−1)k−kT→D

]
P3(T )[

P3(T )+ ( Ke

K S
e
−1)k−kD→T

]
P3(D)

(A.22)

[i n]/[out ]

[i n]eq /[out ]eq
−1 =

(
Ke

K S
e
−1

)
[

P3(T )+ ( Ke

K S
e
−1)k−kD→T

]
P3(D)

{
k−kT→D P3(T )−k−kD→T P3(D)

}
(A.23)

Let’s now focus on the term between {. . .} in the previous equation[
k−kT→D P3(T )−k−kD→T P3(D)

]
(A.24)

=k−kT→D
(
k−kD→T +k−kD→T ∗ +kT ∗→D kD→T ∗)

(A.25)

−k−kD→T
(
k−kT→D +k+kT ∗→D +kT ∗→D kT→D

)
(A.26)

=k− ·
[

k−kT→D kD→T ∗ −k+kT ∗→D kD→T
]

(A.27)

The transitions between T and D as well as between T ∗ and D have to be decomposed into the

hydrolysis/synthesis and exchange. As a consequence from detailed balance, only the cycles

that go through one hydrolysis/synthesis and one exchange contribute to the term, otherwise

the product of rates are equal in both directions of the cycle. Thus the last expression can be

rewritten as:

k− ·
[

k−kT→D kD→T ∗ −k+kT ∗→D kD→T
]

(A.28)

=k− ·
[

(k−kT→D
ex k∗

s −k+k∗
h kD→T

ex )+ (k−khkD→T ∗
ex −k+kT ∗→D

ex ks)
]

(A.29)

=k−
[(αeq

α
−1

)
k+k∗

h kD→T
ex +

(
α

αeq
−1

)
k+kskT ∗→D

ex

]
(A.30)

=k−
(
α

αeq
−1

)(
k+kskT ∗→D

ex − αeq

α
k+k∗

h kD→T
ex

)
(A.31)

The final step of the derivation consists in introducing from table A.1 the explicit form of the
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rates. After a few calculations, we obtain:

k−
(
α

αeq
−1

)[
k+kskT ∗→D

ex − αeq

α
k+k∗

h kD→T
ex

]
(A.32)

=k−
(
α

αeq
−1

)[
k+kS

s kT ∗→D
ex

[i n]eq kT
o f f kD

on

[out ]eq kT
onkD

o f f

(
1− k+k∗

h kD→T
ex

k−khkD→T ∗
ex

)]
(A.33)

Finally, plugging back equation A.33 into eq A.23, we obtain the final expression:

[i n]

[out ]
= [i n]eq

[out ]eq

[
1+

(
α

αeq
−1

)
·
(

Ke

K S
e
−1

)
·
(

1− k+k∗
h kD→T

ex

k−khkD→T ∗
ex

)
· k+k−kS

s kT ∗→D
ex

P3(D)P3(T S)

]
(A.34)

A.1.4 Energy balance for an exporter

As stated in the main text, the energy balance reported for an importer also holds for an

exporter and all the physical quantities are defined analogously.

The available energy ∆G is obviously the same, that is

∆G = kB T log

(
α

αeq

)
(A.35)

Along the export cycle, the substrate is bound on the in- side of the membrane (from D to DS,

"measurement") and released on the out- side (from T S to T , resetting). The corresponding

information associated to each of the two processes is:

kB T Imeasure = kB T ln
(

P3(DS)
P3(D)

)
(A.36)

kB T Ireset = kB T ln
(

P3(T )
P3(T S)

)
(A.37)

The entropy dissipation is defined on a cycle going through hydrolysis in absence of substrate

and exchange when a substrate is bound. The different routes for such a cycle are equivalent

and we illustrate it through a single example:

• DS
exchange−−−−−−→ TS after measurement and T → T∗ hydrolysis−−−−−−−→ D after resetting

∆Sfeedback = kB T ln

(
kS+k∗,S

h kD→T
ex

kS−k∗,S
s kT→D

ex

)
= kB T ln

(
Ke

K S
e

k∗,S
s k∗

h

k∗,S
h k∗

s

α

αeq

)
(A.38)

125



Appendix A. Appendix

which is equal to:

T∆Sfeedback = kB T ln

(
[out ]eq kD

o f f kT
onα

[i n]eq kD
onkT

o f f αeq

)
(A.39)

Finally, the difference in chemical potential across the membrane at the end of the process is:

∆E := kB T ln

(
[out ]

[i n]

/
[out ]eq

[i n]eq

)
(A.40)

Combining the equations A.36, A.37, A.39, A.40, A.13, we can indeed show that the exact same

energy balance relation holds for importers and exporters, that is:

∆E =∆G −kB T (Imeasure + Ireset)−T∆Sfeedback (A.41)

A.2 Translocation

A.2.1 Analytical expressions of the rates and numerical values of the parameters

The detailed balance constrains is imposed on the system so that all the rates are not inde-

pendant the one from the other. In Table A.3 to A.5 are listed the expressions for the rates as a

function of independant parameters.

A.2.2 Numerical estimations of rates and parameters

Numerical estimation of F1:

The numerical estimation of the entropic pulling force F1 comes from equation 4.4, which is

as a reminder

F1 = 3

2
kB T

R2

bx2
1

(A.42)

As a numerical estimation, we took kB T = 4pN ·nm, x1 ≈ 8 residues ≈ 2.5−3nm , b ≈ 1nm

and R70 ≈ 3nm. Hence
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Hydrolysis-synthesis and exchange rates in substrate-bound states

kSn

h


kS

h ·λ n = 1

kS
h n > 1

kSn
s


λαeq kS

h

k−D k+T kT→T S
on,0 kDS→D

o f f ,0

k−T k+D kD→DS
on,0 kT S→T

o f f ,0

n = 1

αeq kS
h

k−D k+T kT→T S
on,0 kDS→D

o f f ,0

k−T k+D kD→DS
on,0 kT S→T

o f f ,0

n > 1

kSn ·HT →Sn ·HD
ex

k(0)
on,HD

k(0)
o f f ,HT

k(0)
on,HT

k(0)
o f f ,HD

k−T k+D
k−D k+T

kSn
−D

kSn
+T

kSn
+D+αkSn

+T

kSn ·HD→Sn ·HT
ex kSn

−D
αkSn

+T

kSn
+D+αkSn

+T

Table A.3: Analytical expressions for the transition rates of Hsp70s bound on the substrate, as
a function of independent parameters.

Hydrolysis-synthesis and exchange rates in solution

kh kh

ks αeq kh
k−D k+T
k−T k+D

k HT →HD
ex k−T

k+D
k+D+αk+T

k HD→HT
ex k−D

αk+T
k+D+αk+T

Table A.4: Analytical expressions for the rates between HT and HD in solution, as a function of
independent parameters.
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Binding, unbinding and translocation rates

kSn
on,HT


k(0)

on,HT
·exp

[−β f (xn)
]

monomer

k(0)
on,HT

·exp
[−β( f2(xn)− f (xn))

]
dimer

kSn

o f f ,HT
k(0)

o f f ,HT

kSn
on,HD


k(0)

on,HD
·exp

[−β f (xn)
]

monomer

k(0)
on,HD

·exp
[−β( f2(xn)− f (xn))

]
dimer

kSn

o f f ,HD
k(0)

o f f ,HD

k(n)
i n


k0 exp

[−β( f (xn+1)− f (xn))
]

monomer

k0 exp
[−β( f2(xn+1)− f2(xn))

]
dimer

k(n)
out


0 n=1, monomer & dimer

k0 n>1, monomer & dimer

Table A.5: Analytical expressions for the binding, unbinding and translocation rates as a
function of independent parameters.
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F1 ≈ 6−8pN (A.43)

Numerical estimation of k0:

There is no experimental data that provides a precise estimation for the value of the parameter

k0. Nevertheless, there are numerical models [164] corroborating experimental results on

protein translocation [165] which provide a broad range of potentially acceptable values for

the parameter k0 in our model. However, we have to point out that the assumptions of the

model are very different from our model, so these values have to be considered even more

carefully.

The set of inward and backward translocation rates is in the range 2−20min−1, which corre-

sponds to 0.03−0.3s−1. In particular, far from the pore, an equal translocation rate in both

directions is given by 12min−1 = 0.2s−1.

Second, we compared the difference between inward and backward translocation rate associ-

ated to chaperone binding. In Liebermeister2001, the net effect is an inward translocation with

a rate of 21min−1. In our model, taking F1 ≈ 6−8pN leads to a net effect associated to the bind-

ing on the first site equal to ≈ 20−45 ·k0. Thus, we get k0 ≈ 0.4−1min−1 ≈ 7 ·10−3 −2 ·10−2s−1.

Hence, we keep the broad range

k0 ≈ 5 ·10−3 −5 ·10−1s−1 (A.44)

Numerical values of the parameters

Besides F1 and k0, all the other independant parameters that are part of the expressions in

tables A.3 to A.5 are listed in table A.6.

A.2.3 Full Matrix in the simple case Nsi te = 2

Let’s consider only two sites on the protein in the simulation volume. The basis of protein

sequences is the following:

~Ψ={(S1 ·HT ,S2 ·HT ), (S1 ·HT ,S2 ·HD ), (S1 ·HT ,S2), (S1 ·HD ,S2 ·HT ),

(S1 ·HD ,S2 ·HD ), (S1 ·HD ,S2), (S1,S2 ·HT ), (S1,S2 ·HD ), (S1,S2)}
(A.45)

The matrix Mk with elements M (i , j )
k defined according to expression 4.23 is given by equations
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Numerical value of
independent parameters

Parameter Num. value
α 10
αeq 10−9

k−T 1.33 ·10−4s−1

k−D 0.022s−1

k+T 0.13µM−1s−1

k+D 0.267µM−1s−1

kS
−D 0.022s−1

kS
+T 0.13µM−1s−1

kS
+D 0.267µM−1s−1

kh 6 ·10−4s−1

kS
h 10−3s−1

λ 1800
k(0)

o f f ,HD
4.7 ·10−4s−1

kT
o f f ,HT

2s−1

k(0)
on,HD

10−3µM−1s−1

k(0)
on,HT

0.45µM−1s−1

x1 8 ·0.3nm
∆x 35 ·0.3nm

Table A.6: The numerical values are from different references in the literature [126, 166, 167,
168].
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A.46 (non-diagonal elements) and A.47 (diagonal elements). To shorten the notation in the

matrix, we define Si ·HX =: Xi .

M1,1 k
D2→T2
tot [HT ]k

S2
on,HT

k
D1→T1
tot 0 0 [HT ]k

S1
on,HT

0 0

k
T2→D2
tot M2,2 [HD ]k

S2)
on,HD

0 k
D1→T1
tot 0 0 [HT ]k

S1
on,HT

0

k
S2
o f f ,HT

k
S2
o f f ,HD

M3,3 0 0 k
D1→T1
tot k(2)

b,HT
0 [HT ]k

S1
on,HT

k
T1→D1
tot 0 0 M4,4 k

D2→T2
tot [HT ]k

S2
on,HT

[HD ]k
S1
on,HD

0 0

0 k
T1→D1
tot 0 k

T2→D2
tot M5,5 [HD ]k

S2
on,HD

0 [HD ]k
S1
on,HD

0

0 0 k
T1→D1
tot k

S2
o f f ,HT

k
S2
o f f ,HD

M6,6 0 k(2)
HD

[HD ]k
S1
on,HD

k
S1
o f f ,HT

+k(1)
f ,HT

k(1)
f ,HT

k(1)
f ,HT

k
S1
o f f ,HD

0 0 M7,7 k
D2→T2
tot [HT ]k

S2
on,HT

0 k
S1
o f f ,HT

0 k(1)
f ,HD

k
S1
o f f ,HD

+k(1)
f ,HD

k(1)
f ,HD

k
T2→D2
tot M8,8 [HD ]k

S2
on,HD

0 0 k
S1
o f f ,HT

0 0 k
S1
o f f ,HD

k
S2
o f f ,HT

+k(2)
f ,HT

k(2)
o f f ,HD

+k(2)
f ,HD

M9,9


(A.46)

Where the diagonal elements are

M1,1 =− (kT2→D2
tot +kS2

o f f ,HT
+kT1→D1

tot +kS1

o f f ,HT
+k(1)

f ,HT
)

M2,2 =− (kD2→T2
tot +kS2

o f f ,HD
+kT1→D1

tot +k(1)
f ,HT

+k(1)
o f f ,HT

)

M3,3 =− ([HT ]kS2
on,HT

+ [HD ]kS2
on,HD

+kT1→D1
tot +k(1)

f ,HT
+kS1

o f f ,HT
)

M4,4 =− (kD1→T1
tot +kT2→D2

tot +kS2

o f f ,HT
+kS1

o f f ,HD
+kS1

f ,HD
)

M5,5 =− (kD1→T1
tot +kD2→T2

tot +kS2

o f f ,HD
+kS1

o f f ,HD
+kS1

f ,HD
)

M6,6 =− (kD1→T1
tot + [HT ]kS2

on,HT
+ [HD ]kS2

on,HD
+k(1)

f ,HD
+kS1

o f f ,HD
)

M7,7 =− ([HT ]kS1
on,HT

+k(2)
b,HT

+ [HD ]kS1
on,HD

+kT2→D2
tot +kS2

o f f ,HT
+k(2)

b,HT
)

M8,8 =− ([HT ]kS1
on,HT

+ [HD ]kS1
on,HD

+k(2)
b,HD

+kD2→T2
tot +kS2

o f f ,HD
+k(2)

f ,HD
)

M9,9 =− ([HT ]kS1
on,HT

+ [HD ]kS1
on,HD

+ [HT ]kS2
on,HT

+ [HD ]kS2
on,HD

)

(A.47)

A.2.4 Dependance of the system on γ

The choice of the numerical value of parameter γ is not so trivial. We show in figure A.1A and

A.1B how the translocation rate R(2) depends on γ. Obviously, the rate R does not depend

on γ, since it refers to the initial model with only a single possible binding on each site. The

horizontal dashed lines serve as reference value. For high diffusion rates k0 (k0 = 10−2s−1,

figure A.1A), as the dimerization does not play a significant role, the dependance of R(2) on

γ is negligible. For slower diffusive process (k0 = 10−5s−1, figure A.1B), the dependance is

much stronger. However, we expect that varying γ in a range between 1.8 and 2.2 does not

significantly modify the qualitative interpretation of the results. Therefore, all the simulations

are performed with a unique value of γ= 2.
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Figure A.1: Relative translocation rate as a function of γ. The reference value (R/k0, indepen-
dant of γ) is represented with dashed lines. The relative translocation rate R(2)/k0 that depends
on γ is a continuous line. F1 = 6pN, [AT P ]/[ADP ] = 10. and (A)k0 = 10−2s−1, (B)k0 = 10−2s−1.

A.2.5 Implementation of a Kinetic Monte Carlo algorithm

As mentioned in the main text, the model was first solved by using with a Kinetic Monte

Carlo algorithm, before turning to the resolution of a linear system of equations to get the

translocation rate at steady-state. Although the switch from one method to the other was

made early along the study of our model, we show in figure A.2 that both methods provide the

same result.

With our hypotheses and quantity of interest that we defined, it was not useful to go on with

the KMC algorithm. However, clearly, this is a much more powerful (although way more

computationnaly expensive) technique if we aim to extend the model with other objectives.

For instance, it might be interesting to study the transient regime in which the system evolves

towards the steady-state of the translocation, or, even more realistic, to include in the KMC

algorithm the modelisation of the boundary effects to study the insertion of the protein at the

beginning ot the translocation.

A.2.6 Analytical development for the translocation rate in the simple model

Applying formula 2.22 to the set of parameters 4.38 to 4.40 (translocation with HT ) and 4.41 to

4.43 (translocation with HD ), there are in total 12 contributing terms that will be split in two
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KMC
ME

1280 4
F1[pN]

R
 [s

-1
] 0.06

0.04

0.02

0.1

0.08

15

Figure A.2: Comparison between the Kinetic Monte Carlo algorithm ("KMC", black dots) and
the solution obtained by solving the Master equation ("ME", red line). The parameters of the
simulation are the same than in Figure 4.8 (green curve, k0 = 10−2s−1).

categories for a first analytical development. There are the two first terms in each set that go

through the five states and for which wc = 1. We will deal with them later (equations A.63 and

A.64). We start to focus on the other terms, the one represented by a triangular-shaped cycle.

Preliminary remark - notation in this development

- Exchange rates on the susbtrate, independant on the binding site: kT→D
ex,S and kD→T

ex,S ;

- Diffusion rates kT
0 (respectively kD

0 ) when Hsp70 in ATP-state (resp ADP-state) is bound

on the substrate;

Step 1: Combine contributions of similar cycles with hydrolysis/synthesis and exchange

Let’s first introduce a notation to shorten the following expressions. The notation ΣXi denotes

the term in wc associated to the converging flux from state Si ·HX to the "triangular" cycle

that does not contain Si ·HX . With this notation, let’s combine the terms three and four in the
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summation over cycles illustrated in 4.38.

ΣD2

(
1− PT P eq

D

PD P eq
T

)
+ ΣD2

(
1− PT P eq

D αeq

PD P eq
T α

)
(A.48)

= ΣD2 ·
[(

1− PT P eq
D

PD P eq
T

)
+ kD→T

ex

γλkS
h

(
1− PT P eq

D αeq

PD P eq
T α

)]
(A.49)

= ΣD2 ·
[(

1+ kD→T
ex

γλkS
h

)
− PT P eq

D

PD P eq
T

(
1+ αeq kD→T

ex

αγλkS
h

)]
(A.50)

Similarly, we get three other terms for the other pair of cycles, thus giving the four terms in

total:

ΣD2 ·
[(

1+ kD→T
ex

γλkS
h

)
− PT P eq

D

PD P eq
T

(
1+ αkD→T

ex

αeqγλkS
h

)]
(A.51)

ΣD1 ·
[(

1+ αeq kD→T
ex

αγkS
h

)
− PD P eq

T

PT P eq
D

(
1+ kD→T

ex

γkS
h

)]
(A.52)

ΣT2 ·
[(

1+ αeq kD→T
ex

αγλkS
h

)
− PD P eq

T

PT P eq
D

(
1+ kD→T

ex

γλkS
h

)]
(A.53)

ΣT1 ·
[(

1+ kD→T
ex

γkS
h

)
− PT P eq

D

PD P eq
T

(
1+ αeq kD→T

ex

αγkS
h

)]
(A.54)

Step 2: Summing the flux terms associated to a translocation in the HT state (and similarly

with HD )

We now sum the equations associated to the net flux when HT (respectively HD ) is bound on

the protein, that is equations (A.51)+(A.52) (resp. (A.53)+(A.54)), using the relations between

the ratio of cycles: /
=λPD P eq

T

PT P eq
D

and

/
= 1

λ

PD P eq
T

PT P eq
D

(A.55)

(A.51)+ (A.52) → ΣD1

{[
(1− PD P eq

T

PT P eq
D

)(1−λΣD2

ΣD1

)

]
+ kD→T

ex

γkS
h

[
(
αeq

α
− PD P eq

T

PT P eq
D

)(1− ΣD2

ΣD1

)

]}
(A.56)
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(A.53)+ (A.54) → ΣT2

{[
(1− PD P eq

T

PT P eq
D

)(1− 1

λ

ΣT1

ΣT2

)

]
+ kD→T

ex

γkS
h

1

λ

[
(
αeq

α
− PD P eq

T

PT P eq
D

)(1− ΣT1

ΣT2

)

]}
(A.57)

Step 3: Compute the total flux, either with HD or HT

The same method is used, that is computing the sum using the ratio between the two cycles.

Precisely, the ratio of interest here is:

/
=λkD

0

kT
0

(A.58)

Giving:

(A.56)+ (A.57) →
(1−

PD P
eq
T

PT P
eq
D

)

ΣD1
−λΣD2

+
kD

0

kT
0

λΣT2
−

kD
0

kT
0

ΣT1

+ kD→T
ex

γkS
h

(
αeq

α
−

PD P
eq
T

PT P
eq
D

)

ΣD1
−ΣD2

+
kD

0

kT
0

ΣT2
−

kD
0

kT
0

ΣT1

 (A.59)

We go one step further in the development of the expression, by focusing on the terms between

[. . . ]. They can be rewritten as follows :

[
ΣD1 −λΣD2 +

kD
0

kT
0

λΣT2 −
kD

0

kT
0

ΣT1

]
= (−1+λ)

kD→T
ex (

αeq kD
0

αkT
0 γ

−1)+k(0)
o f f ,HD

(
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1)



(A.60)[
ΣD1 −ΣD2 +

kD
0

kT
0

ΣT2 −
kD

0

kT
0

ΣT1

]
= (−1+λ)kS

h(γ− kD
0

kT
0

) (A.61)

Substituting into equation A.59, we get:

(A.59) → (λ−1)

(1−
PD P

eq
T

PT P
eq
D

)

kD→T
ex (

αeq kD
0

αkT
0 γ

−1)+k(0)
o f f ,HD

(
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1)

+ kD→T
ex

γkS
h

(
αeq

α
−

PD P
eq
T

PT P
eq
D

)kS
h (γ−

kD
0

kT
0

)

 (A.62)

Step 4: Contribution of the "pentagonal" cycles through the five states

We now turn to the cycles that go through all the states, which are the two first in the lists (4.41)
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and (4.38) to compute the expression:

(1−αeq

α
)+ (1− α

αeq
)+ (1− α

αeq
)+ (1−αeq

α
) (A.63)

We rewrite each cycle using its ratio with the cycle that was arbitrarily used as a "reference" so

far ( ), so that the summation with equation A.62 will be easier. We get:

(A.63) → (1− αeq

α
)(1−λ)kD→T

ex

PD k(0)
on,HD

PT k(0)
on,HT

−
kD

0 k(0)
o f f ,HT

kT
0 k(0)

o f f ,HD

 (A.64)

Step 5: Sum of the two contributions to get the final expression

The last step of the derivation is to sum equations A.62 and A.64 to get the net translocation

rate R defined in equation 4.34. This results from the sum of all the 12 terms in 4.41 and 4.38

with corresponding weights. The last few steps are:

R = (λ−1)

{
(1− PD P eq

T

PT P eq
D

)

(
kD→T

ex (
αeq kD

0

αkT
0 γ

−1)+k(0)
o f f ,HD

(
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1)

)
+kD→T

ex

γkS
h

(
αeq

α − PD P eq
T

PT P eq
D

)kS
h(γ− kD

0

kT
0

)

+(−1) · (1− αeq

α )kD→T
ex

(
PD k(0)

on,HD

PT k(0)
on,HT

− kD
0 k(0)

o f f ,HT

kT
0 k(0)

o f f ,HD

)}
(A.65)

= (λ−1)

{
(1− PD P eq

T

PT P eq
D

)k(0)
o f f ,HD

(
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1)

+kD→T
ex ·

(
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1

)(
1− αeq

α

)(
1+ PD k(0)

on,HD

PT k(0)
on,HT

)
(A.66)

If we furthermore note that(
1− PD P eq

T

PT P eq
D

)
=

(
1− αeq

α

)
·

α
αeq

kT→D
ex

kh + α
αeq

kT→D
ex

(A.67)

we finally obtain the following expression for the translocation rate:

R = ·(λ−1)·
k(0)

o f f ,HT
kD

0

k(0)
o f f ,HD

kT
0

−1

·(1− αeq

α

)
·
k(0)

o f f ,HD
·

α
αeq

kT→D
ex

kh + α
αeq

kT→D
ex

+kDi→Ti
ex (

PD k(0)
on,HD

PT k(0)
on,HT

+1)


(A.68)
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A.2.7 Translocation machinery as an information processing device

Derivation of equation 4.53

R = P (S1 ·HT ) ·k(1)
f ,HT

−P (S2 ·HT ) ·k(2)
b,HT

+P (S1 ·HD ) ·k(1)
f ,HD

−P (S2 ·HD ) ·k(2)
b,HD

(A.69)

R = 1

ΣT OT

[
kS1·HT →S1·HD

tot kS2·HT →S1·HT
s kS2·HD→S2·HT

tot k(1)
f ,HD

−kS1·HD→S1·HT
tot kS1·HT →S2·HT

s kS2·HT →S2·HD
tot k(2)

b,HD

+kS1·HT →S1·HD
tot k(2)

b,HT
kS2·HD→S2·HT

tot k(1)
f ,HD

−kS1·HD→S1·HT
tot k(1)

f ,HT
kS2·HT →S2·HD

tot k(2)
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+kS2·HT →S2·HD
tot kS2·HD→S1·HD

s kS2·HT →S1·HT
tot k(1)

f ,HT
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tot kS1·HD→S2·HD

s kS1·HT →S1·HD
tot k(2)

b,HT

+kS2·HT →S2·HD
tot k(2)

b,HD
kS2·HT →S1·HT

tot k(1)
f ,HT

−kS2·HD→S2·HT
tot kS1·HD→S2·HD

s kS1·HT →S1·HD
tot k(2)

b,HT

+ (kS2·HD→S1·HD
s k(1)

f ,HD
−kS1·HD→S2·HD

s k(2)
b,HD

) · (. . . )

+(kS2·HT →S1·HT
s k(1)

f ,HT
−kS1·HT →S2·HT

s k(2)
b,HT

) · (. . . )
]

(A.70)

where ΣT OT is the sum of all the spanning trees over the four-state kinetic model.

R = 1

ΣT OT

[
kS1·HT →S1·HD

tot kS2·HT →S1·HT
s kS2·HD→S2·HT

tot k(1)
f ,HD

−kS1·HD→S1·HT
tot kS1·HT →S2·HT

s kS2·HT →S2·HD
tot k(2)

b,HD

+kS2·HT →S2·HD
tot kS2·HD→S1·HD

s kS1·HD→S1·HT
tot k(1)

f ,HT

−kS2·HD→S2·HT
tot kS1·HD→S2·HD

s kS1·HT →S1·HD
tot k(2)

b,HT

]
(A.71)
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R = 1

ΣT OT

[
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ΣT OT
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