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Abstract
Touchscreens are nowadays the preferred choice for user interfaces in consumer electronics.

Significant technological advances have been made in terms of touch sensing and visual qual-

ity. However, the haptic feedback offered by commercial products is still primitive, primarily

because it affects the whole touch surface and can only render vibration buzzes.

Several researchers are currently concerned with enriching haptic feedback on touch surfaces.

One approach is to use an array of transducers, bonded to the surface, and exploit the wave

propagation phenomenon to operate in the far field of the actuators. For instance, the time-

reversal method has been used to create elastic wave-fronts and obtain localized vibrations.

One of the limitations of a wave-focusing strategy is the appearance of secondary displacement

peaks in undesired locations, which lowers the contrast of the focalization.

This thesis explores the potential of state-of-the-art Deep Learning strategies to create alterna-

tive signals that allow to reduce the number of actuators required, improve the contrast ratio,

and evoke novel feelings to the users of the device with vibrotactile feedback.

In this work, machine learning models are used to extract relevant features from an impact

signal and predict the location where the impact has occurred. A transformation of the time-

domain signal permits to obtain a representation that improves the precision of the prediction

of the impact source location.

Furthermore, a new approach to optimize the localized peaks obtained with time-reversed

impulse response signals is developed using Deep Neural Networks (DNNs) and Reinforce-

ment Learning (RL). The optimization increases the peak amplitude and contrast ratio while

ensuring that the peaks appear at the desired location.

Moreover, a novel approach to storing and generating time-reversed signals is developed

using Generative Adversarial Networks (GANs). The effect of the diversity provided by deep

generative models on the generated signals is evaluated. The effect on the properties of the

localized peaks created with the GAN-generated signals is studied in an experimental setup.

This effect inspires the development of a novel stimulation pattern for vibrotactile feedback.

A transparent haptic demonstrator surface is developed. The demonstrator can create local-

ized vibrations within the human perception range. This haptic surface is used to perform a

human perception experiment that compares the perceived alertness provided by the novel

pattern with the traditional stimulation pattern. The novel pattern is perceived as more

alerting and evokes different perceptual sensations that can lead to novel vibrotactile cues.
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Abstract

This exploratory work introduces state-of-the-art machine learning techniques into the time-

reversal haptics field of study. It demonstrates the potential of these approaches to bring new

knowledge into the haptics research field.

Keywords: Deep Learning, Digital Musical Instruments, Generative Adversarial Networks,

Haptics, Localized Vibrotactile Feedback, Piezoelectric Transducers, Reinforcement Learning,

Time-reversal Acoustics.
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Résumé
Les écrans tactiles sont aujourd’hui le choix privilégié pour les interfaces utilisateur dans

l’électronique grand public. D’importantes avancées technologiques ont été réalisées en

termes de détection du toucher et de qualité visuelle. Cependant, le retour haptique offert

par les produits commerciaux est encore basique, principalement parce qu’il affecte toute

la surface tactile et ne peut reproduire que des vibrations simples. Plusieurs travaux s’inté-

ressent actuellement à l’enrichissement du retour haptique sur les surfaces tactiles. Parmi tant

d’autres, une approche consiste à utiliser un réseau de transducteurs, collés à la surface, et à

exploiter le phénomène de propagation des ondes afin d’opérer dans le champ éloigné des

actionneurs. De plus, la méthode d’inversion temporelle a été utilisée pour créer des fronts

d’ondes élastiques et obtenir des vibrations localisées. L’une des limites de la stratégie de

focalisation des ondes est l’apparition de pics de déformation secondaires à des endroits non

désirés, ce qui diminue le contraste de la focalisation.

Cette présente thèse explore le potentiel des stratégies de Deep Learning les plus modernes

pour créer des signaux de nature différente qui permettent de réduire le nombre d’actionneurs

nécessaires, d’améliorer le rapport de contraste du pic et de créer des ressentis inédits aux

utilisateurs d’un dispositif avec retour vibrotactile.

Dans ce travail, des modèles d’apprentissage automatique sont utilisés pour extraire des

caractéristiques pertinentes d’un signal d’impact et prédire l’endroit où ce dernier s’est produit.

Une transformation du signal temporel permet d’obtenir une représentation qui améliore la

précision de la prédiction de l’emplacement de la source de l’impact.

En outre, une nouvelle approche pour optimiser les pics localisés obtenus avec des signaux

à réponse impulsionnelle inversée dans le temps est développée en utilisant des réseaux

neuronaux profonds (DNN) et l’apprentissage par renforcement (RL). L’optimisation aug-

mente l’amplitude du pic ainsi que le rapport de contraste tout en garantissant que les pics

apparaissent à l’endroit souhaité.

En outre, une nouvelle approche du stockage et de la génération de signaux inversés dans le

temps est développée à l’aide de réseaux antagonistes génératifs (GANs). L’effet de la diversité

fournie par les modèles génératifs profonds sur les signaux générés est évalué. L’effet sur les

propriétés des pics localisés créés avec les signaux générés par les GANs est également étudié

dans une configuration expérimentale. Cet effet a inspiré le développement d’un nouveau

motif de stimulation pour le retour vibrotactile.

v



Résumé

Une surface de démonstration haptique transparente a été développée. Le démonstrateur peut

créer des vibrations localisées dans la gamme de la perception humaine. Cette nouvelle surface

haptique a été utilisée pour réaliser une expérience de perception humaine qui compare la

perception du niveau d’attraction de l’attention fournie par le nouveau motif avec le motif

de stimulation traditionnel. Le nouveau motif est perçu comme plus alertant et évoque des

sensations perceptives différentes qui peuvent conduire à de nouveaux signaux vibrotactiles.

Ce travail exploratoire introduit des techniques d’apprentissage automatique de pointe dans

le domaine d’étude de l’haptique à inversion temporelle. Il démontre le potentiel que ces

approches ont pour apporter de nouvelles connaissances dans le domaine de la recherche

haptique.

Mots-clés : Apprentissage profond, Apprentissage par renforcement, Haptique, Instruments

de musique numériques, Réseaux antagonistes génératifs, Retournement temporel, Retour

vibrotactile localisé, Transducteurs piézoélectriques.
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1 Introduction

The interest in developing haptic capabilities for tactile surfaces has increased in the last

several years. Touch screens are the most relevant interface in the context of human-computer

interaction. Nevertheless, information feedback is usually achieved via visual and auditory

modalities. These modalities have proven slower than the tactile channel and might not be

viable under certain circumstances (bright and/or noisy environments). Moreover, academia

and industry rely on the assumption that adequately designed haptic interfaces can improve

tactile device user experience, performance, and usability [1, 2]. For instance, it has been

demonstrated that using rich vibrotactile feedback can increase the quality of multi-touch or

multi-user interactions with tactile screens [3].

Digital musical instruments (DMIs) can significantly gain from haptic technology. Previous

studies demonstrated that, while playing traditional instruments, the musician’s haptic chan-

nel is involved in a complex action-perception loop [4]. This is why re-establishing a rich

haptic exchange between musicians and digital interfaces would improve user experience,

enhance performance control, and support expressivity. In addition, haptic musical interfaces

have a high potential for providing guidance in musical tuition, large ensembles, and remote

performance. Moreover, haptics could grant access to music for persons with somatosensory

loss, the visually and even the hearing impaired.

The EPFL – Laboratoire d’actionneurs intégrés (LAI), in partnership with the ZHdK – Institute

for Computer-music and Sound Technology (ICST), carried out the HAPtic TEchnology and

EValuation for digital musical instruments (HAPTEEV) project funded by the Swiss National

Science Foundation (SNSF Grant # 178972). This project pursued the design, implementation,

and evaluation of novel haptic technologies for rendering rich vibrotactile feedback DMIs. A

crucial part of the HAPTEEV project addresses the modeling, design, and implementation of

an advanced haptic surface and is the key motivator for this thesis.
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Introduction

1.1 Scope

The main driver of this thesis is to propose new methods to obtain multi-touch and localized

vibrotactile feedback over a surface. Furthermore, having a transparent surface is of high

interest to enable the future integration of a screen for multi-modal interaction. For this

purpose, wave-focusing strategies appear attractive because they allow to move the actuators

to the border of the surface while creating peaks of displacement on the far field of the

actuators. The localized peaks can be repeated to create a localized vibration and provide

feedback to the users.

In general, wave propagation strategies have one drawback: additional displacement peaks

appear in undesired locations over the surface. To provide high-quality localized feedback, it is

key to lower the amplitude of these peaks with respect to the main peak. The ratio between the

amplitude of the peak and the displacement elsewhere is called the "contrast ratio". Different

mathematical and experimental approaches have provided solutions to improve the contrast

ratio and increase the amplitude of the localized peaks (they are further described in Chapter

2).

Building on these approaches, this thesis aims to evaluate the potential of different state-of-

the-art Deep Learning (DL) techniques to model and generate the signals that are used to

create a converging wave field to obtain localized peaks of displacement over a surface. The

main hypothesis is that "Deep Learning strategies can create alternative signals that permit to

reduce the number of actuators required, improve the contrast ratio, and evoke novel feelings

to the users of the device with vibrotactile feedback." The scientific approach is to answer a

set of research questions. Their answers can be considered as the building blocks to validate

this hypothesis. The relevant research questions and the associated hypothesis are presented

at the beginning of each chapter.

1.2 Thesis Overview

This thesis is divided into seven chapters as follows:

Chapter 2 presents a state-of-the-art review of the most relevant concepts to develop this

thesis. The concept of haptics and digital musical instruments are first introduced. Then, the

most relevant surface haptics methods are compared, and the selection of the wave-focusing

method is motivated. Later, the selection of the actuation strategy is discussed. Lastly, the

relevant topics in machine learning and deep learning are introduced, and the motivation to

use them to improve the vibrotactile feedback is presented.

Chapter 3 proposes an iterative approach to develop an impact position detection system

based on Machine Learning that can be used to detect the position of a finger contact over a

surface. This study allows us to understand how Machine Learning (ML) and DL can extract

relevant features from the impact signals to predict the position of the impact. The impact
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signals are acquired using an experimental setup with a single transducer. The focus of the

chapter is to understand the best representation of the impact signal that helps the ML model

to predict the impact source location. In addition, the effect of the impact contact duration on

the prediction error is studied.

Chapter 4 develops an alternative approach based on deep learning to generate and optimize

a localized peak. First, two different methods to acquire the time-reversed signals that can

create a localized peak are compared. One of the two methods is selected and used to acquire

a dataset of time-reversed signals. A deep neural network is pre-trained to generate the

time-reversed signals. Then it is optimized to maximize the contrast ratio and amplitude of

the localized peak. The signal representation proposed in Chapter 3 helps to simplify the

optimization process. The properties of a peak obtained with the traditional time-reversed

signal are compared to a peak obtained with a signal from the optimized neural network.

In Chapter 5, deep generative models are used to establish an alternative method to store

and generate the time-reversed signals. An existing generative model is modified to control

the type of signal generated, thus the location where the peak will appear. The chosen deep

generative model provides some diversity compared to traditional neural networks. This

means that the signals that are generated are not always the same. Profiting from the diversity

in the generation process, a novel pattern of stimulation is developed. The novel pattern is hy-

pothesized to increase the perceived alertness compared to the vibration from the traditional

wave-focusing method.

In Chapter 6, the time-reversal method is used to conceive a transparent haptic demonstrator.

The effect of the boundary conditions on localized peak amplitude is studied. The amplitude,

contrast ratio, and resolution of the localized peak are compared to the theoretical values.

Some alternatives to further improve the quality of the peak are proposed. Moreover, a model

to predict the peak amplitude based on the driving voltage and the number of actuators is

developed. A perception experiment is designed, and the haptic demonstrator is used to

validate the hypothesis from the novel pattern. A threshold perception experiment is carried

out to understand the effect of the novel pattern on the perception threshold.

Chapter 7 concludes the work of this thesis by answering the research questions from each

chapter. The main contributions of this thesis are highlighted, and the research outlook is

presented.
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2 State of the Art and Discussion

2.1 Introduction

In the context of human-machine or human-computer interaction, it is of critical importance

to give feedback to the user. When interacting with objects in the real world, humans have the

possibility to perceive static and dynamic properties of the objects they are manipulating. This

ability is deprived when using a touch-screen to interact with virtual objects, digital musical

instruments, or remotely operated robots.

This chapter introduces the concept of haptics and links it with the different applications in

the musical context. The different receptors that are involved on the perception of vibration

are described. In addition, an overview of the main methods for surface haptics is presented,

which motivates the choice of surface haptics method and drives the selection of the actuating

technique. The Time-Reversal Method (TRM) is studied and its limitations are explained. The

advancements in Machine Learning (ML) for Signal processing inspire the exploration of novel

strategies to improve the haptic feedback while reducing the amount of energy.

In Section 2.2, the concept of haptics is first introduced and defined, then a list of the different

types of haptic feedback is presented based on the sensation they can evoke. This is then

followed by Section 2.3 in which the importance of haptics in digital musical instruments

is brought forward and some of the most interesting works are presented. Then, Human

vibrotactile receptors and their properties are detailed in Section 2.4.

After that, in Section 2.5, the most relevant methods for surface haptics are compared and

the physics behind them is explained. An emphasis in wave-focusing techniques is made,

specifically the TRM.

Section 2.6 motivates the selection of the surface haptics approach implemented in this thesis.

While Section 2.7 goes further into the TRM and the associated engineering tradeoffs. In

Section 2.8, the most relevant actuators to vibrate a surface are listed and the criteria to choose

the actuating method are argued.
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Finally, in Section 2.9, different ML techniques for signal processing and signal generation

are introduced. In this section, the inspiration to develop novel techniques for vibration

rendering, based on Deep Learning (DL), is discussed along with some recent applications of

DL in haptics.

2.2 Haptics

Haptic technology was developed to recreate the experience of touch by means of motion,

forces, or vibrations. The main objective is to be able to recreate virtual objects and to inter-

act with them. For instance, computer simulations, augmented reality, remote operation of

machines in hazardous environments, and high-precision surgical tools are some of the appli-

cations where haptic technology can be used to reproduce, in a natural way, the interaction

with different objects in the real world.

The term "Haptics" was introduced nearly one century ago, when psychophysicists studied

human touch-based manipulation and perception of objects [5]. Nevertheless, the first haptic

technology was implemented 30 years later. By adding vibration into the control joystick

of a supersonic aircraft, it was possible to alert the pilots of dangerous flight conditions

(e.g. stall) [6]. Additionally, force feedback from the servo systems was integrated into the

joystick to recreate the sensation of directly manipulating the control surface of the vehicle (e.g.

aileron, elevator, rudder). Nowadays, bulk vibration for tactile stimulation is incorporated into

everyday devices (e.g. smartphones, touchscreens, and cars). While this might be sufficient

for daily use, this avenue to provide feedback to the user is limited in providing high-quality

and high-efficient interaction for professional scenarios.

2.2.1 Types of Haptic Feedback

Haptic feedback can be classified in different manners. Three main categories are defined

based on how they are implemented and what are the sensations that they can recreate:

• Force Feedback stimulates the kinesthetic sense by means of force and motion. It is able

to reproduce the sensation of manipulating or holding a real object and the dynamic

aspects of such interaction, for instance, the weight and inertia of a body [7]. An example

is shown in Fig. 2.1. In general, this type of interaction is referred to as kinesthetic Haptic

feedback.

• Vibration or Vibro-tactile Feedback stimulates the tactile sense, so properties like

texture, temperature, pressure, or vibration can be perceived [9]. This category is the

main focus of this thesis and will be further discussed in Sections 2.5 and 2.8. An

illustration can be seen in Fig. 2.2. The implementation of this feedback is known as

surface haptics.

• Contact-less Haptics or mid-air haptics is a newer implementation of haptic technology

that stimulates the sense of touch by using focused acoustic radiation (i.e. ultrasonic
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Figure 2.1: Force Feedback Haptics. Device and figure from [8].

Figure 2.2: Vibrotactile Feedback Haptics. Prototype and figure from [10].

waves focusing), allowing the user to interact with a 3D space without having physical

contact with an input device. In 2013 Carter et al. presented UltraHaptics [11]. This

mid-air haptics system uses a phased array of ultrasonic transducers, operating at 40

kHz, to project haptic feedback in multiple points in front of a screen. The working

principle is represented in Fig. 2.3.

Figure 2.3: Mid-air Haptics. Technology and image from [12].

2.3 Musical Haptics: Digital Musical Instruments (DMIs) and Haptic

feedback

Digital Musical Instruments (DMIs) are musical instruments that rely on computers or elec-

tronic circuits to generate sound. The increasing trend for including touchscreens in different

devices has also influenced the DMI industry. For this reason, touch surfaces are now being

used as open-ended interfaces that can be reconfigured for unlimited musical applications.
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To give some examples, the most popular DMIs operated by touch are the AlphaSphere, the

Soundplane, the Reactable, the Haken Continuum fingerboard, the Sensel Morph, and the

Kaosscilator [13]. Some of these devices are presented in Fig. 2.4. In addition, there is an

immeasurable quantity of commercial applications for touchpads. For example the GeoShred

Ipad app, Rotor Ipad app, Bebot Ipad app, among others.

(a) AlphaSphere [14]. (b) The Madrona labs Soundplane [15].

(c) Reactable Mutli-touch surface [16]. (d) Haken Continuum [17].

(e) Sensel Morph [18]. (f) Korg Kaosscilator[19].

Figure 2.4: Examples of Touch-based Commercial Digital Musical Instruments.

While these devices provide a robust platform to control the sound effects, none of them has

haptic feedback. On DMIs the only output to the user is sound. Nonetheless, the auditory

feedback is conceived to express musical performance, rather than presenting interaction

information to the musician. This is a major drawback since it has been found that there is

a complex action-perception loop between musicians and traditional acoustic instruments

[4]. On this action-perception loop, the musician not only perceives the sound but expects to

receive vibrational cues that can inform him about the musical process and provide a stronger

performance control (e.g. Timing and dynamic accuracy). To unlock the full potential of DMIs

it is vital to try to recreate this loop. One of the best ways to do so is to incorporate rich and

multi-touch vibrotactile feedback into the device.

Different studies on vibrotactile and kinesthetic haptic feedback concluded their importance

for instrument identification, pitch control, tempo-following tasks, among others. For exam-

ple, in [20] the virtuoso and highly deaf percussionist Evelyn Glennie described her ability

to recognize pitch, based on vibrations felt on different parts of her body. In [21], the au-
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thors describe the positive impact of well-designed vibrotactile cues in gesture-based virtual

instruments, improving temporal accuracy, velocity, and amplitude control.

Seeing that, some efforts have been made to develop haptic DMIs, by recreating the stimuli ob-

served in real instruments or defining new paradigms for haptic feedback design. For instance,

magneto-rheological technology and linear actuators have been used to recreate the touch

response and dynamic behavior of keyboard instruments [22]. In addition, voice-coil and

piezoelectric actuators have been used to induce vibrations on acoustic and electroacoustic

instruments, and by these means, induce or dampen the resonance [23]. Also, friction control

was used in [24] to study the effect in the Helmholtz motion in bow instruments (e.g. Violin).

More recently, Papetti et al. [25] proposed to add an array of piezoelectric actuators to the

surface of a multi-touch interface, which allowed them to control the vibrations in the area

of each transducer. The problem with this approach is the number of actuators required to

cover the entire area. Besides, wave propagation and reverberation have to be taken into

consideration. Moreover, this approach may limit the possibility to combine transparent

touch surfaces with screens to achieve a more immersive interaction.

The musical applications of haptic feedback pose an interesting challenge to science and

engineering. The development of such a prototype requires a 3D sensing technology (X and

Y for position over the screen and Z for the Pressing force) and the implementation of multi-

point localized vibrotactile feedback. The development of such devices will not only benefit

the Music community but also the whole tactile industry. Since touchscreens capable of

force sensing and haptic feedback can open a world of possibilities for Human-computer

interaction.

2.4 Mechanoreceptors: Human Perception of Vibrations

To properly design haptic feedback, it is important to understand the interaction between

the finger and the tactile surface. A mechanoreceptor is a specialized sensory receptor. It

detects mechanical pressure or distortion in the skin and produces an electrical signal that is

transmitted to the central nervous system, evoking sensations of touch.

Tactile perception theories rely on four mechanoreceptors to explain the perception of touch

(the Meissner corpuscles, the Merkel cells, the Ruffini endings, and the Pacinian corpuscles)

[26, 27, 28]. These receptors are organized by their sensory adaptation (FA for Fast Adaptating,

SA for Slow Adaptating) and by their receptive field size (type I for a small receptive field, type

II for large receptive field). Although there are four major receptors specialized in providing

information about touch, this study will focus on Meissner’s and Pacinian corpuscles, since

they have been identified as the main FA mechanoreceptive channels that transduce infor-

mation about vibrotactile perception. These mechanoreceptors are mainly located in the

hairless areas of the body (hands, lips, and feet) also known as the glabrous human skin. Fig.

2.5 presents the distribution of the four mechanoreceptors in the human-finger pulp.
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Figure 2.5: Mechanoreceptors in the glabrous skin (hairless skin) of the human finger [29].

The Meissner’s corpuscles lie just under the epidermis of the fingers, palms, and soles. In

the finger-pad, there is a high density of these receptors, around 100 corpuscles per square

centimeter. This receptor is considered a fast-adapting (FA) type I channel. For one thing,

it means that the electrical signal that is sent to the nervous system decays quickly when

continuous mechanical stimulation is perceived (FA). For another that they have a small

receptive field or a short sensitivity area (Type I), between 3 mm to 5 mm. Therefore, they are

precise to locate the source of the perceived stimulus and they are very efficient for detecting

low-frequency vibrations (10 - 100 Hz [26]) that may occur while exploring textured surfaces

and shapes. Nonetheless, they are not very sensitive to low frequency (in the order of a few

hertz) due to their fast adapting characteristics. Some interesting properties of this channel

are that its detection threshold does not have a high dependence on the vibration frequency

and that it is not subject to spatial or temporal summation.

The Pacinian or Lamellar Corpuscles are located deeper in the skin, in the subcutaneous

tissue. There is a lower density of these receptors (around 30 corpuscles per square centimeter).

This channel is FA and has a larger sensitivity area (Type II). Therefore, the spatial precision is

low and the perceived vibrations are rather diffuse, non-localized, and perceived as a smooth

vibration. The Pacinian corpuscles have a lower response threshold than Meissner’s corpuscles

and are mainly activated by higher frequencies (40 - 800 Hz [26]). For those reasons, they are

related to the exploration of fine textures and are considered the main receptor for vibrational

stimuli. The sensitivity of this channel depends on different factors. For instance, the threshold

plot has an up-side-down U-shape with the highest sensitivity around 250 Hz [30], where

the receptor can detect vibratory amplitudes down to 0.01 µm [31]. An illustration of these

thresholds can be seen in Fig. 2.6. An interesting property of the FA II channel is that it is
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capable of spatial and temporal summation. This means that a longer stimulus will have a

lower threshold (i.e. the probability to perceive it is higher) compared to a shorter pattern with

the same intensity. In the same way, the contact area has an effect on the perception threshold,

a bigger contact area lowers the detection threshold or increases the perceived intensity.
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Figure 2.6: Sensitivity range for vibrotactile mechanoreceptors and illustration of the threshold
for the Pacinian channel.

2.5 Surface Haptics

The development of sophisticated haptic feedback for interactive surfaces is attracting a lot of

research interest. As a result, different strategies to evoke it have been developed. On a surface,

mainly two kinds of feedback can be rendered. First, there is dynamic feedback or texture

rendering, where the goal is to recreate the sensation when the fingers are moving on a certain

surface. Then, there is static feedback, which aims to render clicks and localized vibrations.

For example, pressing a button or feeling the vibrations on different positions of an acoustic

instrument.

To create these haptic cues one can control the contact forces between the surface and the

fingers. The different approaches to doing so can be classified into two main groups. Some of

them involve the discrete deformation of the surface or independent moving elements that

are in contact with the finger, which will be called direct actuation. Other methods involve a

continuous surface that vibrates to stimulate the finger, these methods are grouped as remote

actuation.

2.5.1 Direct Actuation

These methods are localized and can be multi-touch by design. In general, a discrete number

of positions are actuated by different means and independently controlled to provide feedback

to the users.
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Pin-Array

The most common and one of the first tactile interfaces is the pin-array display. It consists

of an array of pins whose motion is driven by an actuator to stimulate the finger or to create

a specific texture to convey information to the user. The most common actuation methods

are electromagnetic [32, 33], piezoelectric [34], shape memory alloys [35], shape memory

polymers [36], or even electric motors [37]. One of the main applications of these devices is

the representation of braille characters, but they can also be used to display figures, maps, or

other geometrical figures. An example can be seen in Fig. 2.7. This approach provides the

highest spatial resolution. But the main drawback is the long time-response, which limits the

highest vibration frequency that can be presented for vibrotactile feedback.

Figure 2.7: "Keep in Touch (KiT)": Pin-Array Haptic display presenting a map of a room.
Original figure from [32].

Surface Deformation

Another method is the direct deformation of the tactile surface, which is generally a flexible

material. In [38] a flexible surface was filled with magnetorheological (MR) fluid. The shape

of the surface is modified by a magnetic field induced by an array of coils. The prototype

is displayed in Fig. 2.8. In the same manner, air and particle jamming were used in [39] to

control the shape and roughness of the surface.

In principle, these technologies can also render localized vibrational feedback. But, they are

generally limited by the response time of the actuation technology that is used to control the

discrete stimulation. For instance, for a pin-array device using shape memory alloy actuators

[40] the maximum actuation frequency is limited to 1.5 Hz.
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Figure 2.8: "MudPad": Magnetorheological (MR) fluid and an array of coils were used to
modify the shape of the surface. Original figure from [38].

Thin Actuator Array

An alternative is to attach an array of thin actuators over the tactile surface and use them to

locally render vibrotactile feedback. In [25] an array of 284 piezoelectric transducers were

incorporated into the Madrona labs soundplane to render local vibrations in the area of the

actuator, the device structure is presented in Fig. 2.9. This approach is affected by wave

propagation. As a result, the vibrations from one actuator are perceived all over the surface.

Recently, Hudin et al. [41] developed the Spatio-temporal inverse filtering to cancel the

effect of one actuator (i.e. active wave propagation dampening) in the locations of the other

actuators, enabling sectored vibrotactile feedback.

Figure 2.9: HSoundplane, Haptics enabled version of the Madrona labs sound plane as pre-
sented in [25]. Multi-layered construction of the HSoundplane: a) wood Enclosure; b) touch
surface (wood veneer, 0.5 mm); c) Plexiglas plate (1 mm); d) natural rubber foil (1.3 mm); e)
flexible PCB (0.3 mm); f ) Honeycomb piezo actuators (0.2 mm); g) natural rubber holed foil
(1.3 mm); h) carrier antennas; i) dielectric; j) pickup antennas. Original figure from [25].
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A major drawback of the previously mentioned methods is that the drive and control are

relatively massive since each position needs to be actuated independently. In addition, the

spatial resolution is limited by the number of actuators and the position where they are located.

Lastly, these methods are hard to integrate with a screen since the pins, flexible surface, and

actuator arrays are generally non-transparent. There are some exceptions where an image

was projected [38], but, the localization of the feedback is still limited by the discrete number

of actuated areas.

Electrostatic Friction Modulation

A different approach is to create an electrostatic force that can be used to increase the friction

between the finger skin and a conductive surface. This principle relies on the dielectric

behavior of dry skin when an alternating voltage is applied. This voltage or current can be

modulated in time, according to the position of the finger, to control the intermittent attraction

force. Depending on the conductive surface geometry and voltage control this approach can

provide localized and multi-touch feedback. This principle was used in [42] to recreate the

sensation of different textures when a finger is exploring the tactile surface. The working

principle is presented in Fig. 2.10.

Figure 2.10: TeslaTouch: Operating principle for the electrostatic friction modulation system.
Original figure from [42].

Controlling an electric charge is much simpler than controlling a vibrating surface. But, this

method is highly affected by the conditions of the finger. To name some, variations on the

humidity and resistance of the skin can drastically change the perceived sensation.
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2.5.2 Remote Actuation

Instead of having multiple actuators directly in contact with the user, an interesting approach

is to strategically move the transducers close to the boundaries of the surface. Then one can

benefit from the waves that propagate inside the material to indirectly stimulate the fingers in

contact with the surface. A big advantage of these approaches is that they can be implemented

on transparent surfaces. Therefore, one can integrate a screen to provide visual information

which leads to multi-modal interactions.

Global Vibration

Vibrating actuators have been integrated into handheld devices (e.g. mobile phones) to alert

the user about an incoming call or confirm a button press. In general, Eccentric Rotating

Mass (ERM) and Linear Resonant Actuator (LRA) are integrated into the structure of the

device to vibrate the whole body. This basic yet broadly adopted method can only convey

global feedback and simplified vibrational cues to the user. Thus, limiting the quality of the

interaction with the device and affecting the control over the task that is being carried out.

Friction Modulation - Squeeze Film Effect

In a similar manner, a set of actuators can be attached to a thin plate and permit the control

of the normal (i.e. out-of-the-plane) vibrations of the whole surface, as a result, an air gap

or Squeeze Film is created. Then, by controlling the frequency of the vibration and taking

advantage of the eigenmodes of the plate, it is possible to lubricate (with air) the contact

between the skin and the surface. This spatial modulation of the friction coefficient is what

the mechanoreceptors perceive as a texture. In [43] a single piezoelectric transducer is used

to actuate a circular disk, the position of the contact is tracked and the friction reduction is

activated accordingly. In [44], the authors used the Stroboscopic analysis to investigate the

interaction of a glass plate vibrating at ultrasonic frequencies on the finger that is in contact

with the glass, they confirmed the existence of an air cushion between the finger and the glass

plate, which creates a dynamic levitation that reduces the contact between the skin asperities

and the surface, thus reducing the friction.

In [45], an array of 12 piezo patches are actuated at 31.2 kHz to produce a vibration amplitude

of 1.5 µm. The system consumes only 400 mW of power (for a voltage amplitude of 150

Vpp ) and the prototype is implemented on a 93×65×0.9 mm3 glass plate. The prototype is

presented in Fig. 2.11.

The downside of the "squeeze film" effect and electrostatic forces actuation is that they require

the skin (e.g. finger in contact) to have a movement relative to the surface, in order to have an

effect. Also, these methods are highly affected by changes in the properties of the finger skin

(e.g. humidity, resistance, or dirt on the surface).
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Figure 2.11: Transparent tactile stimulator presented in [45] uses the Squeeze-film effect to
control the friction coefficient. Original figure from [45] ©2012 IEEE.

Active Lateral Forces: lateral vibrations and electrostatic force

An alternative method to overcome this problem is described in [46], where an active lateral

force of 400 mN is generated on the finger, thanks to the relative phase of lateral ultrasonic

oscillations (around 30 kHz) and out-of-plane electrostatic forces. The working principle is

depicted in Fig. 2.12. This method can be used to create both in-plane friction modulation

and lateral vibrations. This stimulus is similarly perceived by the Pacinian channel since this

receptor cannot easily differentiate between an out-of-the-plane and a lateral vibration.

Figure 2.12: On the Ultrashiver, an active lateral force is generated by synchronizing the lateral
vibration of the surface and the electro-adhesive effect. During the push phase the finger is
attracted to the surface, while during the slip phase the adhesion is reduced to let the skin
slide back. Original figure from [46] ©2018 IEEE.
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Modal Composition

Using multiple actuators, it is possible to independently control the resonant modes of the

surface (i.e. a thin surface can be considered a membrane). Different modes can be excited

by manipulating the phase and amplitude of each actuator. By exploiting general inverse

methods, one can create localized vibrations on a small region of the surface [47]. The principle

is to create constructive and destructive waves to ensure the existence of vibration in the

desired region. One approach is to create a map of the surface and pre-calibrate the actuating

frequency for each actuator so that the vibration amplitude is maximized at the desired spot

and minimized elsewhere. This principle was studied in [48]. Another option is to assign an

actuator for each desired vibration mode and then create a pulse at the desired location. In

general, this method can localize a vibration over a relatively large area. For instance, in [47],

34 actuators were able to actuate a spot of 50×50 mm2 area over a 268×170×0.7 mm3 glass

plate.

The three methods aforementioned are simple to implement, nevertheless, they can only be

used for a single-touch interaction, since they affect the entire surface.

An alternative approach, proposed in [49], demonstrates that it is possible to synthesize a

desired velocity field, at a given time, by controlling the rise time of a reduced amount of

natural modes. The authors used 4 piezoelectric transducers, fixed to an aluminum bar, to

excite the 6 modes that were chosen. In [50], perceptual experiments are carried out to confirm

the human perception of the localized velocity field, the target velocity field, and the achieved

velocity field are illustrated in Fig. 2.13.

One of the major drawbacks of this approach is the limited maximal frequency. Due to the

long rise time of the lowest frequency modes, the focusing time is around 25 ms, which limits

the maximum frequency to 20 Hz. Therefore, higher peak amplitudes are required since this

stimulation frequency is far from the detection threshold peak of sensitivity.

Figure 2.13: The target velocity field is presented as a black mesh. The colored surface repre-
sents the measured velocity field. Which is obtained after a truncated modal superimposition
is carried-out. A limited number of natural modes are used. Figure from [50] ©2018 IEEE.
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Wave focusing with the Time-Reversal Method (TRM)

An alternative to increase the frequency and focus on a smaller area (i.e. higher spatial

resolution), is to use wave focusing strategies to create a localized peak of displacement. This

peak can be repeated at a given rate to obtain a localized vibration. In [11], the phased array

method was used to focus ultrasonic waves in a non-dispersive medium (air), evoking tactile

sensations in the midst of the air, the device is presented in Fig. 2.3. The challenge with

flexible waves in solid materials is that they are dispersive, affecting the focusing resolution

[51]. In addition, the reflection of the waves in the borders of thin plates or "cavities" induces

reverberations, which complicates things even more.

In 1992, Prof. Mathias Fink presented the Time-Reversal Method (TRM) whose principles are

described in [52]. In TRM there are 2 steps, signal acquisition and wave focalization. First, an

impulsive stimulus is generated at position A while the flexural waves that propagate over

the surface are recorded at position B. Then, when the recorded signal is time-reversed and

reproduced at position B, the initial pulse excitation is restored at position A. This strategy

can be used to obtain a localized peak of displacement at a desired location. Since this

approach takes into account the reverberation of flexural waves in a closed domain, a single

actuator is able to reconstruct the vibrational field at virtually any position over the surface.

The reconstruction of a wave field in a chaotic chamber using a single transducer was first

presented in [53].

This method has multiple applications. Ranging from medical imaging and non-destructive

testing to non-invasive medical treatment (kidney stones, micro-calcifications, contrast

agents) [54]. It can also be used to localize the position of a finger impact on a thin-rigid

surface, then the recorded signals can be sent back to drive an array of voice-coil actuators and

provide haptic feedback [55]. In [56], the author used time-reversed impact signals to create

localized peaks of displacement on an aluminum beam. A single piezoelectric transducer was

driven in an analog manner. Similarly, in [51], the authors used pre-recorded time-reversed

impulse response signals to obtain localized haptic feedback in a transparent surface (i.e.

Borosilicate glass plate). They used 32 piezoelectric transducers driven in a digital fashion.

They reported the generation of localized peaks with an amplitude of 0.7 µm, focused in an

area of 20 mm2 with a power consumption of 45 mW, and repeated at a maximum rate of 500

Hz. The localized peak of displacement is presented in Fig. 2.14.

The main difficulty with the TRM is the appearance of secondary peaks due to the reverbera-

tions on the surface. The ratio between the main peak and the average displacement elsewhere

is called the contrast ratio. Similar to the "signal-to-noise ratio" in signal processing, this met-

ric measures the quality of the focalization. To ensure multi-touch operation and to improve

the quality of the feedback, it is key to increase the contrast ratio. The existing solutions to

overcome this challenge include increasing the number of actuators [57, 58], which makes

driving more complex and increases the amount of energy that is required.
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Figure 2.14: Displacement of the glass surface at the instant when the localized peak appears
(focus time tpeak = 2 ms). Original figure taken from [51] ©2015 IEEE.

An alternative method to improve the contrast ratio was presented in [56]. In this case, the

method was developed for an aluminum beam (i.e. a plate where the length is much larger

than the width l >> w). The author relies on mathematical modeling to find the locations

where the associated secondary peaks appear. In this 1-dimensional setup, two types of peaks

are characterized. By sending an inverted peak (i.e. a peak with the opposite direction) with

a given gain, it is possible to cancel the peaks that contribute to the background noise. An

example is presented in Fig. 2.15.
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Figure 2.15: Cancellation of associated secondary peaks using one piezoelectric actuator, the
actuator is located at xb = 0.25 (i.e. 25% of the normalized bar length). The calculation is
based on the approximate form of the surface amplitude with number of eigenmodes n = 100
and desired peak location xa = 0.4 (i.e. 40% of the normalized bar length). Original figure from
[56, p. 81].
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The main drawback of this approach is that the cancellation of these additional peaks also

affects the amplitude of the main focus point. As a consequence, it is necessary to increase

the amount of energy that is given to the system. This is done either by adding more actuators

or increasing the power provided by each actuator. In addition, this mathematical model has

to be adjusted for every particular type of plate. In a 2D plate, the cancellation becomes more

complicated and the types of peaks also increase.

2.6 Selection of the Surface Haptics Approach

Up to this point, an overview of the most relevant approaches to evoke surface haptics has

been presented. The main motivation of this thesis is the development of haptic feedback

methodologies that can be integrated into Digital Musical Instruments (DMIs). Musical

instruments rely on multi-touch interactions to achieve higher control of the generated sounds.

Furthermore, rendering rich and independent vibrational feedback to each finger result in

more natural interactions and enable new interaction designs [4]. This is not only the case

for musical applications, in general multi-touch interactions are more natural to the user and

could impact a broad number of applications. Lastly, the possibility to have a transparent

surface allows more immersive and multi-modal interactions. For these reasons, the focus

of this research project is the generation of localized, multi-point, vibrotactile feedback on

transparent surfaces.

Table 2.1 presents a comparison of the different surface haptics methods that were reviewed

in this section. The criteria to compare them are: easiness of implementation (Difficulty),

potential to be implemented on a transparent surface (Clear Surface), the capability of Multi-

touch interaction (Multi-touch), ability to provide localized vibrational feedback (Localized

Vibrations), requires finger movement relative to the surface (Needs Finger Movement).

Table 2.1: Surface Haptics methods comparison.

Method / Criteria Dificulty
Clear
Surface

Multi-
touch

Localized
Vibrations

Needs
Finger
movement

Pin-Array Complex No Yes Limited No
Direct Surface
Deformation

Complex No Possible Limited Yes / No

Thin Actuator Array Complex Limited Yes Limited No
Electrostatic Friction
Modulation

Simple Yes Possible Limited Yes

Global Vibration Simplest Yes No No No
Friction Modulation Intermediate Yes No No Yes
Active Lateral Forces Complex Yes No Yes No
Modal Composition Simple Yes Limited Limited No
Wave Focusing (TRM) Intermediate Yes Yes Yes No
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The most suited methods for this thesis are modal composition and the TRM. Both methods

can be implemented on a transparent surface and can provide feedback to a static finger. The

modal composition method is simpler to implement. But, the locations where feedback can

be provided are limited by the natural modes of the surface. In general, the spatial resolution is

low and multi-touch interaction is hard to achieve since lower frequency modes have an effect

on a big portion of the surface. While the TRM is slightly more complex, it allows to create

sharp and localized peaks at any location over the surface. More importantly, it is possible to

obtain simultaneous peaks at given locations by superposing the time-reversed signals. For

these reasons, our choice is to continue exploring haptic feedback generation with the TRM.

2.7 The Time-Reversal Method

The Time-Reversal Method or Time-Reversal Mirror (TRM) is a signal-processing strategy

to solve the problem of wave focusing through an inhomogeneous medium, which is an

important problem in the acoustics research field. TRM benefits from the reversibility of

wave propagation and the most remarkable property is that it is valid in in-homogeneous,

dispersive and even scattering medium, as long as the medium is stationary [52].

In thin plates, where the thickness h of the plate is small compared to the bending wavelength,

the wave propagation phenomena can be described by the Kirchhoff-Love plate theory. The

wave propagation equation is defined as:

D∇4u +ρh
∂2u

∂t 2 = δ(t )δ(x −xa)δ(y − ya), (2.1)

where ρ is the mass density, u the displacement of the surface, t time, δ(x, y, t) is the Dirac

delta function that represents a unit point impulsive force in coordinates (xa , ya), and D is the

plate’s bending stiffness described by:

D = h3E

12(1−ν2)
, (2.2)

where E represents the Young’s modulus and ν the Poisson ratio of the plate.

Since the wave equation (Eq. 2.1) contains only even order derivatives, it exhibits temporal

symmetry. In other words, the solutions to this equation are invariant to the transformation of

t to −t . This observation is the basis of the TRM.
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If an impulsive force is produced at a certain location A (xa , ya) and the temporal evolution of

the wave-field is measured at a discrete location B (xb , yb). Then, it is possible to reconstruct

the initial state of a wave field in A. To do this, one can drive a transducer, located in position

B, with the time-reversed version of the recorded signal. The principle is presented in Fig. 2.16.

In essence, the TRM transforms the dispersive-propagating waves into a converging wave field

at the focusing location. A comprehensive review of the TRM principle is described in [59].
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Figure 2.16: Illustration of the time-reversal method to create a localized peak of displacement
on a bounded propagation medium. 1⃝ An impulsive force stimuli is produced in position A
(xa , ya). 2⃝A diverging wave field propagates on the surface. 3⃝The flexural waves are recorded
in position B (xb , yb) during a period T of time. 4⃝ The recorded signal is reversed in time
and sent back to the transducer in position B. 5⃝ A converging wave field is recreated on the
surface. 6⃝ After T seconds the initial wave-filed is reconstructed and a peak of displacement
appears at location A.

2.7.1 TRM Signal Acquisition

There are two approaches to obtaining the localized peak signal. The first one relies on a

mathematical model or a Finite Element Analysis (FEA) simulation. The model is used to

calculate the voltage signal on the piezo when an impulsive force is given at the location where

the localized peak is desired. The second approach is to experimentally acquire impact signals.
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Alternatively, one can experimentally find the impulse response between the actuator and

different locations of a thin plate.

Impulse Response Mathematical Model Solution:

To solve the impulse-response wave equation (Eq. 2.1) one can assume a rectangular plate

with simply-supported boundary conditions, then:

u(0, y, t ) = u(l , y, t ) = u(x,0, t ) = u(x, w, t ) = 0,

uxx (0, y, t ) = uxx (l , y, t ) = uy y (x,0, t ) = uy y (x, w, t ) = 0,
(2.3)

where l and w are the length and width of the plate. The solution to the Kirchhoff-Love plate

equation proposed by Kirchhoff can be defined in terms of the modal expansion:

u(x, y, t ) =
∞∑

m=1
φm(x, y)qm(t ), (2.4)

where φm(x, y) is the eigenfunction of the m-th mode of the plate that is assumed to be simply

supported, and qm(t ) is the modal Cartesian coordinate to be estimated. As demonstrated in

[60, p. 15], the normalized eigenfunctions for Eq. 2.4 are represented by:

φm(x, y) = 2√
wlρh

sin
(mπx

w

)
sin

(nπy

l

)
. (2.5)

For the initial conditions, it is assumed that the plate is at rest. Then, the initial displacement

and speed of the plate are:

u(x, y,0) = u̇(x, y,0) = 0, where u̇ = ∂u

∂t
. (2.6)

One can substitute Eq. 2.6 into Eq. 2.4 to translate the initial conditions into the modal space:

qm(t ) = ˙qm(t ) = 0, where ˙qm(t ) = ∂qm

∂t
. (2.7)

Then, the solution to qm(t ) is found by replacing Eq.2.4 and Eq. 2.5 into Eq. 2.1:

qm(t ) = 2

Ωmn
√

wlρh
sin

(mπxa

w

)
sin

(nπya

l

)
sin(Ωmn t ), (2.8)
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where:

Ωmn =
√

D

ρh

[(mπ

w

)2
+

(nπ

l

)2
]

. (2.9)

Lastly, the substitution of Eq. 2.8 and Eq. 2.9 into Eq. 2.4 give the solution into u(x, y, t ):

u(x, y, t ) =
∞∑

m=1

∞∑
n=1

4

Ωmn wlρh
sin

(mπx

w

)
sin

(nπy

l

)
sin

(mπxa

w

)
sin

(nπya

l

)
sin(Ωmn t ). (2.10)

Eq. 2.10 is the impulse-response function for an impulsive force at location (xa , ya) to any

location (x, y) over the surface of the plate.

Impulse Response Simulation

Another approach to studying wave propagation is to use FEA Simulations. A transient analysis

(i.e. a time-dependant simulation) can be used to estimate the displacement of the surface

after an impulsive force stimulus is inputted at a given location. Tools such as ANSYS or

COMSOL are commonly used for this purpose.

The main issue with simulation and mathematical modeling is that slight differences in the

boundary conditions have a strong impact on the obtained signal. The principal effect occurs

on the attenuation factor of the system.

Experimental Impact or Impulse Response Acquisition

The most practical approach is to acquire the signals using a real experimental setup. In

general, there are two approaches to doing so. The first one is to generate mechanical impacts

at a given location. Then, the flexural waves are acquired by one or multiple transducers at pre-

defined locations. This method has been used in [55, 56]. This approach and the associated

experimental setup are further described in Chapter 3.

The second approach is to acquire the impulse response (i.e. the transfer function) between the

transducers and different locations on the surface of the plate. This approach has been studied

in [51, 57, 58] and it is further explored in Chapter 4 and Chapter 5. It will be demonstrated

that the Impulse response acquisition is easier to obtain (compared to mechanical impact

acquisition). In addition, it contain much more information (i.e. natural modes) which leads

to a better reconstruction of the localized peaks.
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2.7.2 TRM - Metrics and Tradeoffs

As with every other method, the TRM has some limitations. First, the focalization duration

should be limited. To reconstruct a localized peak, a portion of the time-reversed signal needs

to be sent into the transducer. This means that it takes some time to obtain the localized peak.

The longer the signal, the better the reconstruction. Nonetheless, the probability for signal

distortion due to thermal drift increases with the length of the signal [57]. Second, the maximal

repetition rate is limited. The duration of the signal plus the attenuation time (i.e. decay time)

limit the maximum frequency of repetition that can be achieved. Third, the sharpness of the

localized peak is affected by wave propagation. This method relies on flexural waves that

propagate. Thus, it is natural that additional peaks of displacement appear on the surface. To

achieve a high-quality haptic feedback, it is of essence to ensure that the peak amplitude at

the desired location is larger than the average displacement on the surface.

To evaluate the quality and efficiency of the feedback with TRM, it is important to understand

the most relevant metrics and the associated tradeoffs. Among them, are the contrast ratio

(Cr ), the amplitude of the peak (i.e. the displacement at the focus point A), the repetition

frequency, the spatial resolution, and the power consumption (i.e. the energy balance).

Contrast Ratio Cr

The contrast ratio is similar to the "signal-to-noise ratio" in signal processing. In this case, the

amplitude of the localized peak is compared to quadratic average displacement at all other

locations. By analogy, this average displacement is called background noise in the context of

this thesis. This metric is used to measure the quality of the localized peak. In [61] the contrast

ratio is modeled in terms of the number of actuators, the mechanical characteristics of the

plate, and the bandwidth of the time-reversed signal, Cr is defined as:

Cr =
√

BsTc

√√√√ Qτ(1−e
−2Ts
τ )

(Q +1)τ(1−e
−2Ts
τ )+Tc

, (2.11)

where Bs and Ts are respectively the bandwidth and duration of the driving signal, Q is the

number of actuators, τ the attenuation factor for the vibrations in the plate, and Tc is the time

constant for the plate, which depends on the mechanical and dimensional properties of the

plate. Tc is represented by:

Tc =
p

3S

h

√
ρ(1−ν2)

E
, (2.12)

where S, h, ρ, E , and ν are the surface area, thickness, mass density, Young’s modulus and the

Poisson ratio of the plate respectively.
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Eq. 2.11 can be simplified by assuming the effects of modal decay can be neglected (i.e. when

attenuation is negligible), this can be done when the length of the signal is much shorter than

the attenuation constant, τ>> Ts . Then, Eq. 2.11 becomes:

Cr =
√

BsTc

√
2QTs

(2Q +1)Ts +Tc
. (2.13)

From Eq. 2.13 it is possible to deduce the maximal achievable contrast ratio. This upper bound

is equal to Cr M AX =p
BsTc . This means that for a given plate, the signal bandwidth Bs has a

proportional effect on the squared contrast ratio C 2
r .

In addition, when attenuation is negligible, the contrast is maximized when QTs >> Tc . See-

ing that, when a low attenuation plate is used, one can increase the time-reversed signal

duration which enables the reduction of the number of actuators. Nonetheless, the impulse

response and impact signals can drift significantly with the temperature variations, owing to

the changes in the mechanical properties. This affects the performance of the focusing process.

A solution to this problem is proposed in [57], [61], and [62]. It has been demonstrated that

reducing the duration of the driving signal Ts reduces the sensitivity of the focusing process to

environmental changes.

Peak Amplitude upeak

Another important metric is the amplitude of the peak upeak . In general, the human detection

thresholds are given in terms of the displacement amplitude [30]. To ensure effective haptic

communication, it is of key importance to ensure that the localized peak has an amplitude

bigger than the detection threshold. In [57] the author demonstrated that upeak is proportional

to the number of transducers and the time-reversal window, following,

upeak ∝Qτ
(
1−e

−2Ts
τ

)
, (2.14)

then, Q and Ts not only have a proportional effect on the contrast ratio but also on the ampli-

tude of the peak. However if the time-reversed signal duration is longer than the attenuation

factor, Ts ≥ τ, the gain on the amplitude is attenuated.

Repetition Frequency Fr

A single peak of displacement is one way to provide feedback to the user. But given the tempo-

ral summation characteristics of the mechanoreceptors in the finger (which was described in

Section 2.4). It is more practical to sustain the stimulation with a train of pulses. For repeated

stimuli, the detection threshold decreases and the mechanoreceptors can perceive peaks with

lower amplitudes. This train of pulses is perceived as a localized vibration. The frequency of
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this vibration is limited by the attenuation factor.

To understand the limitations of this frequency, one can visualize the focusing process. To

obtain a localized peak, the piezo is driven with the time-reversed signal during a period Ts ,

at the instant t = Ts the wavefront converges and a peak of displacement is obtained on the

target location. Right after this instant, t > Ts , the wavefront diverges from this location, and

the oscillations decay with a time constant τ. When the repetition frequency is too high, this is

when Tr = 1/ fr is smaller than the plate attenuation factor, the background noise increases

since the decaying wave fields build up. Thus, the contrast ratio is decreased. An expression

for the effective contrast ratio is proposed in [51],

Ĉr =Cr

√
1−e

−2Tr
τ , (2.15)

where Cr is the achieved contrast ratio for a single peak. When the repetition frequency is

lower than one over the attenuation factor, fr ≤ (1/τ), the initial contrast is conserved by more

than 93%.

Spatial Resolution Rs and Temporal Resolution Rt

The time-reversal method permits achieving a localized peak in space and time. Given that

the time-reversed signal has a finite bandwidth, the focus point has a finite dimension and

duration in time. In general, the spatial resolution Rs is defined as the width of the localized

peak at half maximum amplitude (approximately − 3dB width). An example of the spatial res-

olution for a localized peak on an aluminum beam is presented in Fig. 2.17 (This experimental

setup and the localized peak generation are presented in Chapters 3 and 4).

The spatial resolution is limited by the diffraction limit, which dictates that the minimal width

of a peak on a vibrating medium depends on half the minimal wavelength of the flexural

waves, λmi n , excited by the actuators,

Rs = λmi n

2
. (2.16)

Furthermore, the temporal resolution, Rt , is the duration of the peak at half-maximal ampli-

tude. This value depends on the maximum frequency that is excited by the transducers, fmax .

Then:

Rt = 1

2 fmax
. (2.17)

Knowing that the flexural waves are propagating in a bounded propagation domain (i.e. a

finite plate), the wavelength and frequency are related by the dispersion law ([63, p. 236]),

27



Chapter 2. State of the Art and Discussion

then:

λ2
mi n =π h

fmax

√
E

3ρ(1−ν2)
. (2.18)

To find the relation between temporal and spatial resolution one can input Eq. 2.16 and Eq.

2.17 into Eq. 2.18. Then:

R2
s

Rt
= πhp

12

√
E

ρ(1−ν2)
. (2.19)

By definition, spatial resolution and temporal resolution are related. As a consequence, they

cannot be chosen arbitrarily (i.e. spatial focusing with TRM is a transitory phenomenon).

What’s more, the spatial resolution depends only on the mechanical properties of the plate

(e.g., the plate’s bending stiffness, D) and the highest frequency stimulated by the transducers.

The spatial resolution is an essential parameter. It sets the minimal distance between two

localized peaks, which is important for multi-touch interaction since it defines the minimal

distance between two adjacent fingers.
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Figure 2.17: Localized peak spatial resolution. The figure presents the surface displacement
scan for a localized peak created on an aluminum beam (250× 16× 2 mm3) with a single
piezoelectric transducer. The peak is created using a time-reversed Impulse response signal
with T = 20 ms and the focusing location is at position xa = 163 mm, ya = 8 mm.

28



2.8 Actuators for Surface Haptics

Power Consumption P

This is the most important metric. The effectiveness of TRM for haptic feedback depends on

the amount of energy that is needed to create a localized peak, with a given amplitude upeak

and spatial resolution Rs . The energy balance is obtained by evaluating the total mechanical

energy in the plate, J , at the instant of focalization [51]:

J = π3

18

E

1−ν2 h3
(

upeak

Rs

)2

. (2.20)

In other words, J represents the total energy that the actuators transfer into the plate during

the time-reversal window Ts . Let the average input energy per transducer be JQ = J/Q. Then

the average power on each actuator is PQ = J/(QTs). From Eq. 2.20 it is evident to conclude

that the thickness of the plate h is a crucial parameter since the total energy is proportional to

its cube.

These metrics will be used and further studied in Chapter 6 for the conception of a time-

reversal haptic demonstrator and the validation of the effect of the novel haptic feedback

strategies.

2.8 Actuators for Surface Haptics

The most common actuators, to create vibrations on a haptic surface are: Eccentric Rotating

Mass (ERM), Voice-coil actuators including the Linear Resonating Actuator (LRA), and Piezo-

electric disc or patch (Piezo). Even though the principle is the same, a driver which controls

an actuator to generate vibrations, each one has its own advantages and limitations. Choosing

the right actuator for the application is an important step in the design process. As presented

in Section 2.5 there are other actuation technologies that are primarily used to render textures

and directly stimulate the finger by deforming the surface, these actuation approaches are not

the main focus of this thesis and they will not be further studied.

2.8.1 Eccentric Rotating Mass (ERM), Voice-coil Actuators and Linear Resonant
Actuator (LRA)

An ERM is composed of a DC motor which has an off-center mass attached to the rotor. When

it is activated, the oscillation of the mass creates simultaneous accelerations in two directions

(X, Y, or Z axis). This is perceived as a vibration. This actuator is cheap and simple to control.

But, the mass must reach a minimal speed to start generating a significant vibration. This is

commonly known as start-up time, which varies between 50 - 100 ms for ERMs [64].

In addition, it takes the same time to slow down. Therefore, the overhead is around 100 - 200

ms to render a click, which is quite slow. The frequency of vibration can be controlled by
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varying the input voltage. However, the amplitude is fixed, which restricts the diversity of the

waveforms that can be generated. ERM are widely used in commercial devices, but due to

their limitations, they are being replaced by LRA and Piezo actuators.

A Voice-coil is an electromagnetic actuator that behaves in the same manner as a loudspeaker.

A coil is used to generate a magnetic field which in turn can be used to control the position of

a magnet or a ferromagnetic material. This moving part is coupled to the actuated surface.

In principle, this actuator can reproduce an arbitrary waveform with a fast response. But,

the bandwidth is limited by the dynamic properties of the system (i.e. response time inertia,

and coupling). Under certain circumstances, this transducer can be used as a sensor (i.e. to

acquire vibrations from the surface). Nonetheless, Voice-coils are generally not optimized for

the sensing task.

A Linear Resonating Actuator (LRA) is one type of voice-coil actuator. They are made up of

a linear motion mass-spring system and a coil. When the driving system applies a current

through the coil, a magnetic field is generated causing the movement of a magnet that is

attached to the mass and vice-versa. When the system reaches its resonant frequency, it can

generate great accelerations (1.7 g) [65], which are felt as vibrations. The acceleration occurs

in a single direction, making this actuator more efficient (i.e. less energy consumption). This

kind of actuator only works within a low bandwidth around the resonant frequency (±2 Hz)

due to the spring constant and has a start-up time of 20 – 60 ms [66].

2.8.2 Piezoelectric Actuators

Piezoelectric transducers are frequently used in the research community since they can

easily convey high bandwidth signals (from a few hertz to several mega-hertz) by controlling a

voltage signal. Also, it is easy to attach them to a surface and they can quickly generate high

forces. The two major challenges are that they are generally controlled at high voltage (in

the order of 60 V to 200 V) and that they generate small displacements (few µm). For these

reasons, their adoption in commercial applications has been limited.

The piezoelectric effect occurs in monocrystalline materials and in polycrystalline ferroelectric

ceramics. Two principal effects are defined for this materials [67]:

• Direct Piezoelectric effect: Piezoelectric coupling converts mechanical energy into

electrical energy (i.e. Vibrating a piezoelectric material generates a voltage). Under

this effect, the piezoelectric material can be used as a sensor and allows to acquire the

vibrations that occur on a surface.

• Inverse Piezoelectric effect: Piezoelectric coupling converts electric energy into me-

chanical energy (i.e. Applying a voltage to a piezoelectric material generates a displace-

ment). Under this effect, the piezoelectric material can be used as an actuator. For

example, it can generate flexural waves on a surface (i.e. generate out-of-the-plane

displacements).
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The equations that relate the electrical and elastic properties to describe the piezoelectric

effect are shown in Eq. 2.21 as described in [67]. These relations are valid only for small signal

values (Small electrical and mechanical amplitudes):

D = dT + εT E ,

S = sE T + dE ,
(2.21)

where D , d , T , and E are the Electric charge density, the Piezoelectric coefficient, the Mechan-

ical stress, and the Electric field respectively. And S, εT , and sE are the Mechanical strain, the

permittivity (for constant T ), and the Compliance or elasticity coefficient (for constant E) in

the same order.

Generally, piezoelectric patches are a composite structure with three layers, electrode + Piezo-

electric material + electrode. The most used type of electrode is silver. And there are many

types of piezoelectric materials. The most common one is lead zirconate titanate also called

Lead Zirconium Titanate (PZT).

2.8.3 Actuators Comparison

Table 2.2 presents a comparison of the three main types of actuators that are utilized for

generating vibrational haptic feedback.

Table 2.2: Vibrotactile Haptics Actuators Comparison [65].

Criteria ERM/LRA Voice Coil Piezo
Size [mm3] Bulky [8 x 3 x 3] Bulky [9 x 3 x 5] Slim [9 x 9 x 0.2]
Acceleration g [-] 0.6-1.7 2.5 8
Rise Time [ms] 20-60 15-25 <1
Operation Voltage [V] 3 3-5 15 - 120
Energy per Click [mJ] 15-17 15 1 - 8
Custom Waveforms No Yes Yes
Bandwidth Limited High Highest
Actuation and acquisition No Possible Yes
Force Sensing No No Yes
Driver Design Easy - Moderate Moderate - Complex Complex

In general, piezoelectric patches achieve precise haptic actuation as they are able to trans-

duce arbitrary signals with higher bandwidths when compared to ERMs and LRAs. A higher

bandwidth permits the creation of richer and custom haptic cues. For example in [68], the
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authors used piezo actuators to transduce signals in the range of 20 kHz to 70 kHz (50 kHz

bandwidth). In addition, piezo-actuators have faster start-up times and they are able to

achieve accelerations up to 8 g [66], resulting in stronger vibration. Furthermore, piezoelectric

transducers can work in both directions, excite vibrations when given a voltage input and also

acquire vibrations giving a voltage input proportional to the displacement. Owing to these

facts, piezoelectric transducers are the most suitable actuators for this research work and will

be used in the different experiments in this thesis. The two piezoelectric transducers that are

used in this thesis are presented in Fig. 2.18.

Silver
Electrode

Piezo
ceramic

Brass plate
(Electrode)

Silver
Electrode

Piezo
ceramic

Figure 2.18: Off-the-shelf piezoelectric transducers. LEFT Murata 7BB-12-9 Piezoelectric
Diaphragm [9 mm Piezo diameter]. RIGHT Steminc SM412 Piezo Ceraminc Plate [7 × 8 × 0.2
mm3].

2.9 AI, Machine Learning, and Deep Learning

The term Artificial Intelligence (AI) refers to the development of machines that are able to

learn, reason, and make decisions by themselves. This field is evolving so fast that its definition

changes constantly. However, most of the progress and applications that are mentioned today,

refer to a sub-field of AI called Machine Learning (ML). ML makes use of statistical tools to

find patterns or "learn" from big sets of data. Later on, these patterns are used to predict or

make decisions on new input data. In the same way, Deep Learning (DL) is a sub-category of

machine learning which makes use of Neural networks, with multiple layers, to extract and

amplify the least notorious patterns. This kind of models do not require any specific definition

of the target patterns. They rather gather knowledge from experience. So in the multiple or

"deep" layers, they have abstract representations of the patterns. I.e. Deep Learning is able to

learn complicated concepts by building them out of simpler ones [69].

This section provides an overview of the implementation and the main types of ML / DL

tasks. Then the use of Deep Learning for signal processing is presented. What’s more, the

state-of-the-art generative models that are relevant to raw signal generation are displayed.

The main goal is to motivate the use of ML in the context of this thesis and explain the choice

of the different ML approaches that will be described in the following chapters.
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2.9.1 Machine Learning Implementation

To implement machine learning models, the first step is to obtain a dataset that can properly

model the phenomena to study. It is key to have strong domain knowledge (i.e. to understand

the nature of the data and its sources). This prior knowledge can guide the selection of the

best representation of the data that will be fed into the model. The data set is divided into

several subsets of data that are used to train, evaluate and test the model.

The next step is to use the biggest portion of the data to train the model, it is common to

experiment with different models or neural network architectures, the objective is to find the

one that permits achieving the required precision with the least amount of computational

resources (i.e. find the simplest model that can provide the required precision).

The last step is to evaluate the quality of the trained model, for this purpose a small portion

of the dataset (i.e. the test set is a data set that has never been seen by the model) is used to

evaluate the robustness and generalization of the model.

2.9.2 Types of Machine Learning Tasks

There are two main types of ML tasks. The first one is the data discrimination or feature

extraction task that usually contemplates either classification or regression problems [70].

The second one is data generation, which involves the augmentation of existing datasets with

similar but not copies of the existing data points [69]. The first problem is studied in Chapter

3, in particular a regression problem. The goal is to find the position of an impact (contrary to

generating a localized peak on a given position). By first solving the inverse problem, one can

get a deeper understanding of the behavior of this data type in different ML architectures and

better inform the generation process.

For data generation, the model is designed to depart from a lower dimensional space of

features into generating realistic data points. For example, provided a category "dog" the

model can generate a realistic image of a dog. Or given the desired location of a peak "xa =

200 mm", the model is able to synthesize a time-reversed signal to create a localized peak of

displacement in that position.

The simplest approach to this task is to train a neural network to upsample from a single

feature point into a realistic signal, this is called one-to-one mapping. This approach is

explored in Chapter 4. This method does not yield a lot of diversity (i.e. not a lot of new data

points), but, serves as a tool to optimize the signals towards a given goal (e.g. higher contrast

ratio).

Another alternative is to rely on robust generational models. Instead of learning a simple

mapping from a lower dimensional space into a single output, one can learn the statistical

representation of the data. This way the model learns to generate realistically looking data

samples while obtaining some diversity (i.e. not all the samples look the same). This is called
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a one-to-many mapping. This approach serves as a framework to explore many alternative

signals that can yield localized peaks on a given position. This method is explored in Chapter

5.

At the same time, ML problems can be subdivided into supervised and unsupervised learning,

depending on the approach that is used to train the model. Supervised learning is the most

common way of ML. In this case, the model learns from pre-labeled data points. For each

training example, there is a set of input values and a label that serves as a target. The model is

trained by minimizing the difference between the predicted class (for classification problems)

or value (for regression problems) and the original label. Unsupervised learning differs in the

sense that the training set does not contain a label and the model is trained by optimizing a

given loss function (e.g. maximizing the separation between the data points).

2.9.3 Deep Learning for Signal Processing

Signal Processing is a branch of electrical engineering that models and analyzes data represen-

tations of physical events. Signal processing traces back to Joseph Fourier (1768-1830) when

he developed the "Fourier transform" while he was working on the equations governing heat

propagation. Signal processing is by definition an intersection of disciplines. Physical stimuli,

as the source of information, mathematics as the tool to represent and analyze this data, and

informatics as a framework to efficiently implement these models. In this context, a signal is a

digitized representation of a physical quantity that changes over time. It can include, images,

videos, audio waves, sensor data, among other sources of information.

In recent years, with the growing amounts of data, signal processing needs to rely on powerful

processing tools such as deep learning. Many different fields have been positively impacted

by ML strategies. Image processing was one of the first domains to make use of Deep Neural

Networks (DNNs) to classify and extract features from image data. For this purpose, Deep

Convolutional networks were developed [71], this architecture is inspired by the signal pro-

cessing domain knowledge and is designed to exploit the structure of the data (i.e. images

are a two-dimensional array that represents objects that can change in size, orientation and

position).

Convolutional and De-convolutional NN (CNNs)

CNNs or ConvNets, make use of the convolution operator to reduce the dimensionality of the

input data and a fully connected layer to extract the features or labels from the data. They

are very effective for processing data with a grid-like topology (e.g. time series data being a

1D grid and images being a 2D grid of pixels). In general, CNNs have four main operators

or blocks: convolution, non-linearization, pooling (i.e. sub-sampling), and classification (i.e.

fully connected layer). Lately, these models have been successfully used in image recognition,

image feature extraction, and image classification. A reversed convolutional network (i.e.
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de-convolutional network) can be used to reverse the process, and create data from a set of

input labels of features, one example of a Deep convolutional generative model to generate

images is presented in [72], in this case, the architecture is an encoder-decoder network, where

the first part reduces the dimensionality of the image into a lower dimensional vector called

"latent space" and the second part up-samples this smaller vector to reconstruct the original

image.

2.9.4 Deep Generative Models

CNNs as well as Deep Neural Networks enabled a whole new pathway to signal processing and

drive the creation of many new deep learning architectures for data generation. As mentioned

before, generative models aim to create new data samples by learning the distribution of the

data. In other words, given a dataset X of data samples {x1, . . . , xn} ∈ X , one can assume that

these examples were drawn from an underlying data distribution pX (x). Then the parameters

θ of a neural network can be trained to approximate this distribution. Such a model could

then be used to generate new samples that look like they could have been part of the original

dataset.

Conditional Generative Models

Generative models become more useful when one can exert control over the samples that

are drawn from the modeled distribution. This can be done by providing the model with

a condition signal c, that contains information about the type of sample that should be

generated. In this case, the model is trained to fit a conditional distribution pX (x|c) instead of

pX (x).

The condition signals come in many different shapes and forms. For example, the condition

can be a discrete label "cat" or it can be a raw signal itself. They can be sparse or dense

conditioning signals (i.e. contain more or less information). The richer the signal the easier

the modeling problem becomes because the uncertainty about the desired data point x is

reduced.

Types of Generative models

The most common approaches to generative models are flow-based models and Adversarial

models.

Likelihood-based models directly parameterise pX (x). The parameters θ are fitted by maxi-

mizing the likelihood of the data under the model:

θ∗ = argmaxLθ(x) where Lθ(x) = ∑
x∈X

log pX (x|θ) . (2.22)
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The most popular flavors of likelihood-based models are Auto-regressive models [73, 74] (Such

as the PixelRNN [75]), flow-based models [76], and Variational Auto-encoders (VAEs) [77].

All of these frameworks have their pros and cons. VAEs allow to perform a compression of the

data into a "latent space" and regenerate the original data sample from it. This enables the

creation of new samples by manipulating the different values of the lower dimensional vector.

The downside is that the generated samples tend to be slightly blurry (i.e. noisy).

Auto-regressive models are simple to train and achieve high quality. But, they are slow for

generation and do not provide a "latent space" that can be easily manipulated to affect the

generated outcome.

Flow-based models are fast for generation but they required a large number of parameters to

be effective, which makes them impractical for mobile applications.

Adversarial models take a different approach to capture the data distribution. In Generative

Adversarial Networks (GANs) [78, 79], two neural networks compete against each other. The

first one works as a Generator. It aims to produce new artificial outputs, after learning the

probability distribution of the training dataset. The second network work as a Discriminator.

It aims to recognize if the output of the generator is real (i.e. if this new data is part of the real

data distribution) or fake. This is done by comparing the generated samples with samples from

the original dataset. The objective of the generator is to increase the error of the discriminator

by producing data that looks as real as the training data. High-quality results have been

obtained from different types of data, in [80] a fingerprint synthesis system was developed,

and in [81] an authentic voice is created by generating a synthetic spectrogram and using the

Griffin-Lim method to reconstruct the time-domain signal. More recently raw audio signals

have been modeled with extremely high quality [82, 83, 84]. GANs currently generate the

sharpest images and audio clips but the training process can be unstable (this is partially

solved when training in a supervised fashion).

While adversarial and likelihood-based models are both ultimately trying to model pX (x).

They approach this task from very different angles. GANs tend to be better at producing

realistic examples, but worse at capturing the full diversity of the data distribution, compared

to likelihood-based models.

When a model cannot capture all the variability in the data, different compromises can be

made. If all examples should be reasonably likely. Then, the model will have to overgeneralize

and put probability mass on interpolations of examples that may not be meaningful (mode-

covering). If there is no such requirement, the probability mass can be focused on a subset of

examples. But some parts of the distribution will be ignored by the model (mode-seeking) [85].

A key criterion to choose a generative model is the degree to which it has a mode-covering or

a mode-seeking nature. On the one hand, Likelihood-based models are by definition mode-

covering. This is a consequence of their objective, as they are fitted by maximizing the joint

likelihood of the data. On the other hand, Adversarial models are typically mode-seeking,
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which leads to higher fidelity. In general, mode-covering behavior is desirable in sparsely

conditioned applications, where a big degree of “creativity” (i.e. diversity) is expected from the

model. While, mode-seeking behavior is more useful in densely-conditioned settings, where

most of the variability is captured in the conditioning signal, and realism of the generated

output is preferred over diversity.

When considering time-reversed impact signals or time-reversed impulse responses, the data

coming from different locations over the plate is quite homogeneous. In fact, the nature of the

signals follows a similar trend (since the system is the same for all signals). In our application,

there is no need to prefer a high diversity. But it is critical to ensure high quality in the signal

generation. This is key to ensure the localized peak appears in the right location and to keep

the noise to a minimum. For these reasons, this thesis will focus on mode-seeking models and

in particular on the GANs framework. This model is further studied in Chapter 5.

Initial Application of GANs for Haptics

GANs applications for vibrotactile feedback have recently attracted some attention. There

are few publications on the subject. For the moment the existing works focus on fine-tuning

vibrotactile signals rather than generating the driving signal. In [86, 87] the authors use GANs,

in real-time, to fine-tune the texture rendering. Note that no publications have been found (up

to the date of writing the thesis) on the use of deep learning to generate vibrotactile feedback.

Our novel approach is presented in Chapter 5.

2.9.5 Discussion on Deep Learning Motivation for Haptics

During the last 20 years, deep learning methods have proven to be successful at modeling

different complex systems. In some cases overpassing the accuracy of mathematical models

when sufficient data, that can properly describe the phenomena, is available. The tradeoff

with this approach is the lack of interpretability of the representations and transformations

inside the model. Nevertheless, in the field of time-reversal and wave focusing for vibrotactile

feedback, different academic groups have provided an extensive and successful understanding

of the interaction between the actuators and the response of the surface [51, 53, 55, 56, 58, 88].

This knowledge can guide the selection of ML strategies and the design of neural network

architectures that can contribute to the localized peak generation and to reduce the amount

of energy that is required.

One can get inspired by the recent success of GANs for RAW-Audio generation [82, 84] and

the similarity in the nature of a time-reversed impact signal with a drum-beat audio signal

(i.e. Drum sound effects) [83]. More details are given in Chapter 5. Thus, one can justify the

need to explore the ability of deep generative models to capture the distribution of a dataset

containing time-reversed impact signals and/or impulse responses, and evaluate the viability

of real-time signal generation to obtain localized vibrations. Furthermore, one can use deep
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learning methods to optimize the generated signals with the goal of improving the contrast

ratio and reducing the amount of energy required to create a localized peak of displacement.

2.10 Conclusion

Different methods to obtain haptic feedback have been presented. It is clear that there is a high

interest in the different applications of haptics both on tactile interfaces for Human-machine

Interaction (HMI) and for Digital Musical Instruments (DMIs). The time-reversal method is the

preferred method for this thesis. It enables multi-touch interactions and can achieve localized

vibrations within the perception range. Besides, TRM can be implemented on transparent

surfaces, which enables the development of multi-modal interactions by adding screens to

the controller. Piezoelectric actuators are chosen as the actuation method since they can be

used as sensors and actuators.

The time-reversal method has been properly modeled and remains an active topic among the

research community. From the state of the art, it seems that the optimal point for time-reversal

haptics has been reached. But, given the assumptions on the mathematical modeling and

the potential to exploit the boundary conditions (reflections and particular conditions of the

system), it is interesting to explore alternative solutions to improve the contrast ratio while

decreasing the amount of energy that is required.

Machine learning and in particular Deep learning are powerful signal processing tools. In

recent years they have impacted different research fields and it is gaining interest in the

haptics community. In particular generative models can serve to discover novel approaches

and alternatives to create localized haptic feedback.
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3 Machine Learning for Impact Position
Detection

3.1 Introduction

The best approach to introduce Machine Learning (ML) strategies into vibrotactile feedback

is to study the inverse problem. This chapter focuses on the detection of the impact source

location (impact position), which is indispensable to introducing ML into the peak generation

task.

The research question for this chapter is "How can ML models represent the relevant features

of the impact data?". The derived hypothesis is that "ML can accurately extract features from

impact signals and improve the accuracy for impact position detection compared to traditional

signal processing approaches".

In this chapter, the goal is to extract relevant features from the recording of an impact. This

recording contains the flexural waves that propagate on the surface of a thin plate when an

impulsive force is exerted on it. The chosen feature is the location where the impact occurred.

By solving the impact location problem, one can understand the behavior of impact signals

when processed by ML models. Also, it is possible to gain a deeper understanding of the

content of such signals. As a consequence, it is possible to find the best representation of the

signal that helps on the extraction or estimation of the impact location. Furthermore, this

technique can be used to add touch capabilities to large surfaces.

3.1.1 Traditional Approaches for Touch Detection and Impact Position Detection

For many years now, touch-screen technology has positioned itself as the principal interface

for human-computer interaction. Different methodologies have been studied and developed

to accurately detect the position of a finger that is in contact with a surface.

On the one hand, resistive and capacitive sensing are the most common technologies when it

comes to small devices. On the other hand image processing, dispersive signal technology
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(DST), surface acoustic waves (SAW), and time-reversal method have been also successfully

implemented. The latter have proven more viable (effective) for larger surfaces. The use of

touch sensing technologies can transform arbitrarily shaped solid objects into interactive

interfaces as shown in [89] or into Digital Musical Instruments (DMI) [90].

A different application for impact position detection, which is highly related, appears in

the field of composite materials for aerospace. Structural health monitoring is crucial for

composite structures as they suffer of "barely visible impact damage" [91]. Thus, knowing the

position and intensity of an impact is crucial to determine the maintenance tasks to preserve

structural integrity.

The traditional approach relies on multiple vibration sensors (minimum three) and signal

processing strategies. For example, the Time of Arrival (ToA) method or the cross-correlation

of the impact signal with a reference signal, are commonly used to find the location of an

impact. Nonetheless, these methods are highly sensitive to changes on the system and external

sources of noise.

The use of piezoelectric transducers [91] or displacement sensors [92] and Artificial Neural

Networks (ANNs), has proven to be an effective solution to reconstruct the impact force,

recover the impact location and determine if damage has occurred in the structure. In the

work by Jones et al. [92], the authors use Finite Element Analysis (FEA) to obtain the frequency

response data and strain traces after a simulated impact has occurred. They use this data to

train an ANN with a small dataset. Despite the small amount of data, the trained model was

able to predict the position of the impact with an error smaller than 8 mm for experimental

data on isotropic materials (i.e. an aluminum plate with dimensions 368×584×6.35 mm3).

Similarly, in [93], the authors used data from FEA and ANNs to detect the position where an

impact occurred in the wing of an airplane. In [91], experimental impact data is recorded using

piezo-ceramic sensors placed on a composite panel. ANNs are used to locate the position

of the impact and extract the maximum force that was exerted. What’s more, Worden et al.

presents a Genetic Algorithm approach to find the optimal placement for the sensors. In [94],

the authors use a larger number of spectral components as input to the ANN model. They

study the uncertainty of the input variables and its propagation during the training of the

model. They obtained an error of 14% for the impact force recovery and 9 mm error for the

position detection (on a 230×260×3.4 mm3 composite plate), which is not accurate enough

to detect the position of a finger on a touch surface.

3.2 Methodology

To answer the research question, the proposed methodology is to study the problem in

separate building blocks. A diagram with the general approach is presented in Fig. 3.1.

The first step is to build domain knowledge of the system. In essence, to understand the

system that is being modeled, particularly the interaction of the piezo with the surface.

40



3.2 Methodology
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Figure 3.1: Building blocks and flow diagram to represent the proposed approach for impact
position detection.

With a clear picture of the piezoelectric transducer and plate interaction, it is possible to

propose a methodology to develop an ML strategy for impact source location. The second

step is to acquire a dataset of impact signals. For this purpose, an automated experimental

setup is developed and two different impact generation systems are evaluated. The third step

involves finding and evaluating the best representation of the data. The goal is to minimize

the number of features (i.e. the number of inputs) without losing resolution on the prediction

of the position. Two different signal transformations are evaluated.

The fourth step is to train different ML and DL models with the acquired dataset. Four models

are chosen and for each of them, the predicted value is compared with the known position

label to evaluate their performance.

The last step is to analyze the results and define the next steps to improve the prediction error.

The proposed methodology is an iterative process, so once the first iteration is complete, the

loop goes back to re-designing the acquisition and signal representation strategies.

3.2.1 Domain Knowledge: Piezo-transducer and Plate Coupling

Prior to exploring the impact position detection task, it is critical to understand the interaction

between a piezoelectric transducer and a thin plate. Because of the easy integration and

the dual status as sensor and actuator, piezoelectric transducers are chosen to acquire the

vibrations that occur on a surface and also to excite vibrational modes on it. Because of that, it

is key to understand the mechanical interaction of a piezoelectric patch glued to a thin plate.

Consider a piezo-ceramic bonded to the surface of a thin plate. If this structure is thin,

compared to the bending radius, and if the size of the piezo is small, compared to the total

area of the plate, it can be assumed that the deformation of the surface is not affected by the

presence of the piezoelectric patch. Thus, the motion of the surface can still be described

by Kirchhoff’s plate theory (which is described in Section 2.7). The coupling between the

piezo-ceramic and the plate can be described in terms of an internal bending moment.
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The transducer can operate in two modes. The first one is sensing, which will be exploited in

this chapter. The second mode is actuation, which will be exploited in the following chapters

(Chapter 4, Chapter 5, and Chapter 6).

Piezoelectric Sensing Mode

When an impact occurs on a thin plate, flexural waves propagate on its surface. Due to these

waves, the surface of the plate is deformed over time. This deformation results in stress inside

the piezo-ceramic that is bonded to the surface. According to the direct piezoelectric effect,

this stress generates a voltage signal across the electrodes of the transducer. These signals

are proportional to the amplitude of the out-of-the-plane deformation. In this way, the piezo

actuator is used to acquire the vibrations on the surface.

Piezoelectric Actuator Mode

When a voltage is applied across the electrodes of the piezo-ceramic it will undergo uniform

deformation (i.e. expansion in two axes and contraction in one axis). If the actuator is

properly fixed to the surface of the plate and due to the bonding interaction, the actuator will

generate stress on the surface of the plate. This stress will propagate in the thickness direction.

Consequently, strain will occur. This stress can be modeled in the form of an effective bending

moment and the generated deformation is equivalent to half the wavelength of a flexural wave

that will propagate on the surface of the plate. The coupling effect is illustrated in Fig. 3.2.

Note that if the polarity of the applied voltage is inverted the deformation direction is reversed.

∆L’

∆L’

∆L

∆L

∆L
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∆L’
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Thin
Plate

Piezoelectric
Patch

∆L’∆L’

2∆L

Figure 3.2: Graphical representation of the mechanical interaction of a piezoelectric patch and
a thin plate. (LEFT) Unconstrained piezoelectric element deformation in one plane. (RIGHT)
Deformation on the plate induced by the deformation of the piezo-patch or vice-versa (cross-
section view).
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Optimal Piezo Thickness

The strain-stress interaction between the piezo and the plate can also be represented in terms

of an internal bending moment. In [95], Kim et.al. proposed an analytical model to represent

the effective bending moment in terms of the mechanical properties of the piezo and the

plate. The model is presented in Eq. 3.1. This model assumes that a pair of piezo-actuators

are perfectly bonded (i.e. bonding layer with 0 mm thickness) to the upper and lower faces

of a thin surface, and takes advantage of the symmetry plane in the middle of the composite

structure. Certain assumptions are made to simplify the problem. For instance, linear strain

distribution, equal strains in the x and y directions, and a homogeneous plate are considered.

mx = my = ρz (2 +ρz )

1 +βρz (3 +ρ2
z +3ρz )

h2

4
γΛ,where

ρz = 2tz

h
, β= 1−νp

1−νz

Ez

Ep
, γ= Ez

1−νz
, Λ= V

tz
d31 .

(3.1)

In Eq. 3.1, the subscript p refers to the plate and the subscript z refers to the piezo-actuators.

ρz is the non-dimensional piezo to plate thickness ratio, where h and tz are the plate and

piezo thickness, respectively. β represents a non-dimensional material property ratio and γ is

the piezo-actuator stress-strain ratio, where E and ν are the Young modulus and the poison

ratio. Finally, Λ is the actuator free piezoelectric strain, where V , is the voltage across the

electrodes of the piezo and d31 is the piezoelectric coefficient.

Using this equation, it is possible to plot the effective bending moment mx for different values

of the non-dimensional thickness ratio ρz . Thus, one can find the optimal thickness of the

piezo actuator for different substructure materials. The results for eight different materials are

presented in Fig. 3.3.

Since steel has the highest bending moment of all the studied materials, it could be thought

that a steel structure would exhibit the largest vibration amplitude. However, the actual

vibration induced by the piezo-actuators depends on the ratio of the effective moment to

the bending stiffness (also called flexural rigidity) [95]. The bending stiffness is defined in Eq.

2.2 in Chapter 2. The expected displacement can be estimated by integrating the effective

bending moments from the piezo actuator as the external plate loads of the Kirchhoff wave

equation. Then, the wave propagation equation becomes:

D∇4u +ρh
∂2u

∂t 2 = ∂2mx

∂x2 + ∂2my

∂y2 . (3.2)

Fig. 3.4 shows the expected vibration amplitudes for the different substrates. Since the flexural

rigidity of aluminum is approximately one-third compared to steel, the induced vibration is
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Figure 3.3: Effective bending moment vs. Non-dimensional piezo/plate thickness ratio. The
maximum moment value represents the optimal thickness ratio.

slightly higher for the aluminum substructure.

From Fig. 3.3 and Fig. 3.4 it can be concluded that the optimal ρz for an aluminum structure

is 0.9. Furthermore, the optimal thickness and expected vibration amplitude for aluminum

and for the different glass structures are very similar. This makes sense because the moment-

to-bending stiffness ratio is in the same order of magnitude.

The optimal thickness relation is more important for the actuation mode than for the sensing

mode. This knowledge will be further explored in Chapter 6, during the development of a

haptic surface demonstrator.

Minimal Achievable Spatial Resolution

Another important step is to understand the minimal wavelength for the flexural waves that

propagate in the plate. This wavelength is directly linked to the highest spatial resolution of a

localized peak.

The minimal achievable resolution can be modeled using the Kirchhoff theory of thin plates

[96]. Assuming that the shearing of cross sections and the rotational inertia are negligible, and

assuming the plate to be isotropic. Then, the flexural wavenumber, k f , is defined as:
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Figure 3.4: Expected vibration amplitude induced by a pair of piezo actuators bonded on a
steel or an aluminum plate with thickness h = 2mm. Amplitude for different thickness ratios.

k f =
(
ω2ρ h

D

) 1
4

. (3.3)

And the phase velocity, Cϕ, which represents the relation between the angular velocity and the

linear speed of propagation, can be modeled by:

Cϕ = ω

k f
. (3.4)

By replacing the bending stiffness of the plate (Eq. 2.2) into the plate flexural wavenumber (Eq.

3.3) and then the resulting equation into the phase velocity equation (Eq. 3.4), one can obtain

the phase velocity in terms of the plate mechanical properties and the circular frequency ω

[96]:

Cϕ =
(

E h2

12ρ (1 − ν2)

) 1
4 p

ω . (3.5)

The phase velocity can also be expressed in terms of the wavelength, λ, and the time period,

T :
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Cϕ = λ

T
= λ f = λ ω

2π
. (3.6)

Then, the achievable wavelength is calculated by putting Eq. 3.5 into Eq. 3.6:

λ=
(

E h2

12ρ (1 − ν2)

) 1
4 2πp

ω
. (3.7)

Given that ω= 2π f , then:

λ=
(

E h2

12ρ (1 − ν2)

) 1
4
√

2π

fmax
. (3.8)

The resulting model represents the minimal wavelength λ in terms of, f , the highest frequency

mode that is excited on the plate, and the plate’s mechanical properties.

When using the piezoelectric transducer as an actuator, half of this wavelength is the highest

resolution that can be achieved for a localized peak. This spatial resolution limits the minimal

distance between two adjacent fingers.

Optimal Location of the Piezoelectric Transducers

The location of the transducers plays an important role both in the sensing and actuating

modes. Depending on the location, the piezo actuator will be able to excite in a better way

certain resonant modes of the system. This occurs because the maximal amplitude of the

vibration for a given mode occurs at the antinodes, while there is no displacement on the

nodes. The location of the nodes and antinodes changes for the different eigenfrequencies.

In [97] different piezo patch shapes and locations were evaluated experimentally. It was

confirmed that the location of the actuator strongly influences the ability of the actuator to

excite certain modes as well as the excitation of undesired modes (what they call spillover). In

[98, 99] an optimization algorithm was implemented in Matlab. Eight piezoelectric patches

were located in different positions within a pre-defined area. Using FEA, the time reversal

focusing was simulated and the maximum amplitude was validated.

The general recommendation is to distribute the piezoelectric patches avoiding any symme-

tries with respect to the axis of the plate. In this manner one piezo does not cancel the effect

of the other in the actuation mode. Similarly, piezoelectric transducers in non-symmetrical

locations will not retrieve redundant information. In the case of a single piezo, the guideline is

to keep some space from the borders of the plate. In this way, the effect of reflection and the

appearance of virtual sources will increase the quality of the peak reconstruction.
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3.2.2 Experimental Setup and Data Acquisition

Machine Learning (ML) models and especially Deep Learning (DL) algorithms require big

amounts of data. In particular, labeled datasets are needed to carry out the supervised training

process. Seeing that, manual impulse generation processes that are used in [56] and [55]

are not viable and need to be automated. This is why, a Linear Impact Generator (LIG) was

developed. The goal is to obtain repeatable impulsive force stimuli in different locations of

the touch surface.

Linear impactors were originally invented to simulate the head-to-head collisions that occur

on American football when testing the protective headgear (i.e. Helmets) [100, 101]. The two

principal methods that are used for this test are: The vertical drop tower, where a mass is

released from a fixed height. And the pneumatic ram test, where a mass is linearly propelled

at a pre-defined speed using a pneumatic actuator. Similar test methods are used in material

science [102] to estimate the energy that is absorbed by a material when a fracture occurs, or

in modal analysis to find the impulse response of a structure [103].

Inspired by these standardized methods, two versions were developed for the LIG. The first

one is an electromagnetic actuator and the second one is based on a pneumatic actuator. Both

are described in Section 3.3.

Experimental Setup: Aluminum Beam

To simplify the impact detection problem, the study will be made on a one-dimensional (1D)

scenario. In this case an aluminum beam is chosen. A beam is a special case of a plate where

the width is much shorter compared to the length (l ≫ w). In this particular case, the geometry

of the plate behaves as a wave-guide where the wave propagation and reflection mainly occur

in the length direction. So, it can be assumed that the wave propagation occurs in 1D and the

surface motion at the center-line of the plate will represent the wave propagation phenomena.

This experimental setup is also used for the peak generation experiments using Deep Learning

(Chapter 4 and Chapter 5). Particularly, in these experiments, several scans of the surface

vibration are carried out. Having a 2D surface (regular plate) would have taken more time

than studying a single line on a beam.

To develop the experimental setup, a 7×7×0.2 mm3 piezo-ceramic transducer (Steminc -

SMPL7W8T02412WL) was bonded to a 250×16×2 mm3 (l×w×h) aluminum beam (Aluminum

AW-6082) using epoxy glue. The piezoelectric transducer was placed at position xb = 62.5 mm

(in the length direction) and yb = 8 mm (in the width direction). The beam is fixed to a pair of

solid aluminum blocks using double-sided tape. To avoid dampening the vibrations and allow

wave reflection, the thinnest available tape (200 µm thick) is chosen. The fixing is symmetrical

and the bar is supported over a length of 2 mm. The single-piezo aluminum bar experimental

setup is illustrated in Fig. 3.5.
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(xb , yb) Piezoelctric Patch

250 mm

16 mm

(x0, y0) Relative Zero

Figure 3.5: One-dimensional (1D) wave propagation experimental setup. A single piezoelectric
transducer is bonded to an aluminum beam which supported on two solid aluminum blocks.

Acquisition System Automation

To automate the dataset acquisition, the LIG is mounted on a 3-axis CNC table (Stepcraft D600).

The signals from the piezoelectric actuator are acquired using an oscilloscope (Lecroy LT224).

Finally, to control the acquisition process, an automation script was implemented in Python.

The Python program can trigger the single-impact sequence on the LIG and communicates

with the oscilloscope. An overview of the system is presented in Fig. 3.6.

Oscilloscope

Piezoelectric patch [xb = 62.5]

Linear Impact
Generator (LIG)]

Aliminum Bar
(Surface under Study)

Xaxis

xa

x0 x = 250 mm

CNC

Figure 3.6: Experimental setup for automated mechanical impact signal acquisition.

The system operates as follows: First, the area of interest is defined. Then, the spatial resolution

is fixed. The spatial resolution defines the distance between two adjacent impact locations.

An N×M array of coordinates for the measuring points is defined. When the acquisition starts,

the system moves the LIG to the first coordinate (xst ar t , yst ar t ). At this point, the computer

triggers a single-impact over the surface of the aluminum beam. After each impact, flexural

waves propagate on the surface and diverge from the contact point. The piezo patch is used to

convert the stress signal into an electric signal. The trigger signal also starts a single acquisition

on the oscilloscope, which records the voltage across the electrodes of the piezo-ceramic patch.

The software retrieves the signal from the oscilloscope and stores it in an array. Then the

system moves to the next location. The acquisition procedure is repeated N ×M times, all

across the surface.

The automatic acquisition system is used throughout the rest of the thesis. More details are

given on each chapter.
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Data Acquisition

The impact data is acquired using the automated LIG. For this reason, the aluminum beam

experimental setup is mounted on the CNC table and the relative zero is set at the lower left

corner of the aluminum beam, as shown in Fig. 3.5.

The study region was arbitrarily chosen with no significant effect on the results. The impact

acquisition starts at position xst ar t = 63 mm, yst ar t = 8 mm and ends at position xend = 240

mm, yend = 8 mm. The spatial resolution is set to 1 mm, which leads to 177 unique locations.

At every position, 30 samples (i.e. single-impact repetitions) are acquired. As a consequence,

the dataset contains 5310 impacts. The position ya is kept constant during the whole study (ya

= 8 mm, which corresponds to the mid-line of the beam). The study region and experimental

setup are illustrated in Fig. 3.7.

Piezo Patch
Location

177 x Impact
Locations
(Step = 1 mm)

Study Region

xst ar t =63 mmx0 xend =240 mm

[xb=62.5 mm]

Figure 3.7: The aluminum beam and the aluminum blocks are mounted on the CNC table
using double-sided tape. The piezoelectric patch is glued under the beam at position xb = 62.5
mm. The study region goes from xst ar t = 63 mm and goes until position xend = 240 mm.

Certain variables cannot be controlled in this experimental setup. Such as the temperature

of the room and external vibrations. For this reason, the whole acquisition is divided into

5 different datasets. Each of them with a separation of 5 mm between consecutive impact

locations and a 1 mm shift with respect to the previous acquisition group. Each subset is

acquired at different times of the day. In this way, the variation of these external variables

is contained in the data. This approach helps the ML model to generalize, which is further

discussed in Section 3.2.4. The conditions for the acquired datasets are as follows:

• Dataset # 1: Starting at xst ar t = 63 mm with steps of 5 mm until xend = 238 mm.

• Dataset # 2: Starting at xst ar t = 64 mm with steps of 5 mm until xend = 239 mm.

• Dataset # 3: Starting at xst ar t = 65 mm with steps of 5 mm until xend = 240 mm.

• Dataset # 4: Starting at xst ar t = 66 mm with steps of 5 mm until xend = 236 mm.

• Dataset # 5: Starting at xst ar t = 67 mm with steps of 5 mm until xend = 237 mm.
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3.2.3 Data Pre-processing

One of the key steps in the ML pipeline is to prepare the dataset. This refers to pre-processing

the data with the goal of finding the best representation of the features contained in the raw

signals. Apart from acquiring a good-quality dataset, the representation of the input data has

the biggest influence on the ML models’ prediction error.

The recorded impact signal is a time series that contains the changes in the voltage of the

piezo in time. This time series can be represented as a one-dimensional vector, where the

length of the array is equal to the number of voltage samples. The easiest approach to predict

the position where an impact occurs would be to feed this vector to the ML model. If that was

the case, each time sample will be entered as an input feature for the ML model. Nonetheless,

slight variations in the time when the impact has occurred would lead to a wrong prediction.

For example, if the impact is delayed by a couple of milliseconds with respect to the trigger

signal, the impact signal will shift in time.

An interesting solution to this issue comes from domain knowledge of the impact signals. As

discussed in Chapter 2, flexural waves are dispersive when propagating in solid media. This

means that the propagation speed changes for the different frequencies. This effect is modeled

by the phase velocity equation (Eq. 3.4) presented in Section 3.2.1. In addition, as described in

Section 3.2.1, the piezo-transducer and the plate are bonded and the wave propagation can be

described by Kirchhoff’s plate theory. As a consequence, the resonant modes of the system are

related to the frequency content of the signal on the piezo.

Based on this knowledge, there are two signal representations that are interesting.

• The first one is a data transformation that can extract the changes in the frequency in

time. A spectrogram is a visual representation of a signal. It makes use of the Fast Fourier

Transform (FFT) and window analysis to represent the spectrum of frequencies as it

varies in time. For a spectrogram, each pixel contains the intensity of a given frequency

in a given window of time.

• The second one is a data transformation that can extract the frequency content of the

signal. The magnitude of the FFT is a simpler transformation of the time-domain signal,

which contains the intensity of each frequency on the impact signal. In this case, there

is no information about the variation in time, which could lead to a more "distilled"

representation to inform about the location where the impact occurred.

The effect of these representations on the ML models is studied in Section 3.3, and the predic-

tion results for both representations are compared.

Impact Data Transformation

Depending on the chosen representation, the acquired impact data is transformed into a

dataset of spectrograms or a dataset containing the magnitude of the FFT for each impact

signal.
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Each matrix is reshaped into a single column by stacking each column on top of each other.

As a result, a 1D vector is obtained. After all transformations are carried out, the dataset is

created by appending, side by side, all the transformed vectors. Each data point is labeled with

the position where the impact was generated and the number of the sample.

Data Analysis

The final step of the data pre-processing is to run a preliminary evaluation of the proposed

representation. One of the most effective methods to do this is the Principal Component

Analysis (PCA). This statistical model transforms the data into a lower-dimensional version

with no physical meaning. The final set of orthogonal components (i.e. vectors) is a linear

combination of the original data [69]. In other words, PCA is used to find a lower-dimensional

representation of the data. When the number of components is set to 2 or 3, it is possible to

get a visual representation of the distribution of the data. This intuitive visualization gives an

idea of the separability of the data, thus the effectiveness of the chosen representation.

3.2.4 ML and DL Models, Training, and Testing

The impact position detection task is considered a regression problem. In this manner, it is

possible to obtain a continuous prediction of the impact position that allows the model to

generalize to other locations. In other words, the model can infer the location of impacts that

were not observed during the training stage.

ML Models and Neural Networks

To predict the impact location two machine learning algorithms and two deep learning models

are selected. This allows to test and compare different approaches to process the data. For

machine learning the simplest model and one of the most advanced models are chosen. For

deep learning, two common architectures with different processing layers are explored.

First, the linear regression model from Scikit-learn [104]. Second, the XGBoost-Regressor

which is an implementation of the gradient-boosted decision trees [105]. Third, a vanilla Neu-

ral Network (NN) [69]. This NN has 4 hidden layers with ReLU activation, batch normalization,

and Gaussian noise to improve the generalization. The output layer of the NN has a linear

activation function. This layer defines the model behavior as a regression problem. Lastly,

a 2D Convolutional Neural Network (2D CNN). The 2D CNN has four convolutional layers,

the first two layers with a depth of 32, and the second two layers have a depth of 64. The 4

layers have ReLU activation. MaxPooling is used to reduce the dimension of the input and

a dropout of 0.5 which helps to improve the generalization of the model. The output of the

convolutional layers is flattened and passed to a fully connected NN with one hidden layer.

The hidden layer has ReLU activation and an output layer with linear activation. More details

on the architecture for the NN are presented in Appendix A.
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Data Preparation

To help the models to generalize, one can profit from the separated subsets. One portion of the

data is used to train the model and another portion is used to test the models. Thus, the data

is separated into two main groups, the train and validation set, and the test set. The first group

contains the data to train the model and to validate the error after each training iteration. This

group is created by merging datasets # 1, # 2, and # 3. Then randomly shuffling the data and

splitting it into two subsets, 80% of this merged set is used for training, and 20% is used for

validation. The second group is used to test the performance of the trained models. The test

error measures the generalization of the model. In other words, how well the models perform

with data that have never been observed before. For this purpose, the datasets # 4 and # 5 are

used independently.

Training and Testing

The linear regression and XGBoost-Regressor models are fit using the training portion of the

data. Then, the trained model is used to predict the impact location for the validation data

and the Test data. The Mean Absolute Error (MAE) is used to measure the error between the

real position (i.e. known dataset labels - y) and the predicted value (ŷ). The MAE is also known

as the L1-norm loss function and it is presented in the following equation:

MAE(y, ŷ) = 1

nsamples

nsamples−1∑
i=0

∣∣yi − ŷi
∣∣ . (3.9)

The two NN are implemented using TensorFlow [106]. Both models use the MAE as the loss

function. The NN weights are updated using the Adam optimizer [107], which is more powerful

and efficient than the classical stochastic gradient descent. To accelerate the training, a high

learning rate (Lr = 0.001) is used during the first 100 epochs. Then a lower learning rate (Lr =

0.00001) is used through 900 epochs.

After every training batch, the validation dataset is used to evaluate the progress of the model.

When the training phase is completed, the test datasets (# 4 and # 5) are passed through the

model and the MAE is calculated.

3.3 Impact Position Detection Experiments

3.3.1 Impact Position Detection: Iteration 1

The first version of the Linear Impact Generator (LIG v1) is the electromagnetic LIG and it is

called LIG v1. It is a relatively simple linear actuator that consists of a dropping mass controlled

by an electromagnetic actuator.
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Construction and Working Principle of the LIG v1

Let an object with a known mass m be suspended at a defined height h0 over a surface. When

this body is dropped, its motion can be described by the "Newtonian classical mechanics"

bouncing ball problem. If the effect of air friction is ignored, then the instantaneous speed right

before it makes contact with the surface is equal to: V f =
√

2g h0, where g is the acceleration

due to gravity at the place of the experiment. Now, considering that the impact occurs

perpendicular to the surface. The impact energy is equal to Ui = mg h0 −mg hb , where hb is

the maximum height reached by the body after the first bounce. This height will principally

depend on the material properties and geometry of the body and is commonly represented by

the coefficient of restitution.

If the parameters are kept constant (m, h0, and g constant) and the body is re-grabbed after

the first bounce, one can expect that every time, the mass will impact the surface with the

same amount of energy. In order to change the amount of energy, thus, the magnitude of the

impact force, one can either modify the mass of the object or change the initial drop height.

30 mm

1

Secondary
Coil

2Iron
Screw

3Primary
Coil

4Drop-bar

Figure 3.8: Linear Impact Generator (LIG). On the LEFT side the CAD model and on the RIGHT
side the first functional prototype. Modified figure from [108] ©2019 IEEE.

The electromagnetic LIG is presented in Fig. 3.8. A magnet (red element) is attached to the

upper end of a steel bar (gray element). This body, called the drop-bar, can move freely inside

a tube made of acrylic. A pair of coils, operated with MOSFET transistors, are used to control

the motion of the drop-bar. The operation principle is as follows: When the drop-bar (4) is at

the lower position (i.e. in contact with the surface), the primary coil (3) generates a magnetic

field to propel the bar upwards until it is attracted to an iron screw (2).
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At this point, the bar is magnetically stuck to the screw and it will rest in equilibrium until a

triggering signal is received. When desired, the secondary coil (1) generates an inverse field in

the screw which lets the bar drop in free-fall and impact the surface for a single time. After

the first bounce, the primary coil is activated once again. This magnetic field provides the

additional energy to return the bar to the upper position until it is attracted to the screw.

The MOSFETs are driven by a microcontroller that constantly measures the position of the

drop-bar. A hall-effect sensor, which is placed in the lower part of the actuator, is used for

this purpose. The switching sequence is adjusted to ensure that a single bounce is achieved

and that the bar always falls from the same height. Fig. 3.9a, displays a plot of the position

of the bar (measured by the hall-effect sensor) and the switching sequence for the primary

and secondary coils. The LIG single bounce sequence is triggered with a digital signal coming

from the automated acquisition system described in Section 3.2.2.

Validation of the Impact Produced by the LIG v1

To validate the nature of the impact, a force sensor is used (compression load cell from TE

Connectivity FS20). Fig. 3.9a presents the force signal that is acquired after a single impact

and Fig. 3.9b illustrates the setup to measure the impact force. Note that a non-ferromagnetic

stainless steel bar is placed on top of the force sensor. This is done because the surface of the

sensor is a ferromagnetic material. By doing so the drop-bar does not remain magnetically

attached to the sensor, instead, it bounces on the surface.
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(a) Impact force sensing using a load cell in the surface to measure
the impact signal after the bar is released.
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(b) Side view of the set-up for the
impact force signal acquisition.

Figure 3.9: Validation of the impact produced by the LIG v1. Modified figure from [108] ©2019
IEEE.
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The force signal reveals that the impact occurs 100 ms after the drop signal is given. The

force signal has an Impulse-like waveform, where a peak amplitude is achieved in a very short

period of time. As expected, the contact duration is minimal. This duration directly affects

the frequency content of the excitation induced on the plate (i.e. the quality of the impulse

stimulus). If the contact duration is longer, some of the eigenmodes of the bar are damped

and the voltage signal on the piezo would change drastically.

Data Acquisition LIG v1

The LIG v1 is used to acquire an impact dataset. The data is acquired as described in Section

3.2.2.

An example of the acquired impact signal is presented in Fig. 3.10a. To synchronize all the

acquisitions of the dataset, the triggering signal of the LIG was also acquired. The impact

signal appears at the instant t = 100 ms, as expected. Nonetheless, some variations were

observed. The impact signal could shift in time by 10 ms. This can be explained by intermittent

friction between the drop-bar and the acrylic tube.

Data Pre-processing LIG v1

In the first iteration, only the spectrogram transformation is used. The spectrogram function

in Matlab is used to generate a spectrogram for each impact signal on the dataset. A window

of 256 points, an overlap of 64 points, a fast Fourier transform window of 256 points, and

a sampling frequency of 50 kHz are defined. As a result, a matrix with 128×234 "pixels" or

features is obtained. An example of the spectrogram transformation for an impact signal is

displayed in Fig. 3.10b.

(a) Single impact acquisition for an impulsive
force in position xa = 63 mm.

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

(b) Spectrogram transformation for a single impact
with the LIG v1.

Figure 3.10: Impact signal and spectrogram transformation at location xa = 63 mm. Impact
created with the LIG v1. Figure from [109] ©2019 IEEE.
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As expected, at t = 100 ms there is a high concentration of all of the frequencies. Because

of dispersion, it can be observed that the lower frequencies take longer to dissipate. Each

spectrogram matrix is reshaped into a single column, thus a 1D vector with length 29952 is

obtained.

The Scikit-learn Python module [104], which implements the randomized truncated singular

value decomposition (SVD) method by Halko et al. [110], is used to obtain the PCA in 3D.

The PCA is fit to reduce Dataset # 1 into the three main components and plotted on a three-

dimensional (3D) figure. The results are presented in Fig. 3.11. The results show a promising

data separation where the 30 samples from each location agglomerate in a specific region of

the 3D plot. Even if the separation is not perfect in 3D, this indicates a high chance of obtaining

a good regression model, especially when using all the features on the data representation

(29952 components).
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Figure 3.11: PCA 3D for Dataset # 1. Graphical representation of the reduction to the 3 principal
vectors (i.e orthogonal components with the highest variance), each set of acquisitions at a
specific position is represented by one unique color. Figure from [109] ©2019 IEEE.

Model Training and Results LIG v1

The two ML and two DL models are trained as depicted in Section 3.2.4. Table 3.1 presents

the results obtained for the four models during the training/validation phase and the testing

phase. For the training step, the validation set of data is used to evaluate the error. And during

the testing phase, the test datasets # 4 and # 5 are used. All the error values come from the

MAE (in mm) and the percentage of error is calculated considering the length of the working

area of 177 mm.

The best models are the XGBoost and the 2D CNN. The XGBoost has the best results for

the particular training dataset (merge of data # 1, # 2, and # 3) but it does not have a good

generalization when evaluated in the test data (Data # 4 and # 5), which contain unseen data

points. Similarly, the 2D CNN presents good results for the training data. Nonetheless, it also

presents low and constant error values for both test datasets.
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3.3 Impact Position Detection Experiments

Table 3.1: Validation and test MAE [mm and %] for LIG v1 Data.

LIG v1 - Spectrogram dataset
Error LinearReg XGBoost NN 2D CNN
Validation 19.5 / 11.2% 7.6 / 4.3% 14.9 / 8.4% 8.1 / 4.6%
Test # 4 22.2 / 12.6% 12.4 / 7.0% 21.6 / 12.2% 15.7 / 8.9%
Test # 5 31.7 / 17.9% 20.4 / 11.5% 26.9 / 15.2% 14.8 / 8.4%

This means that the 2D CNN has better generalization. It is important to highlight that during

the training phase, the 2D CNN presented an MAE of 13 mm while the validation MAE is 8

mm, this shows that the model still needs more exploitation and deepening. The fact that the

training error is above the validation error, means that the model needs more data to reduce

the error while maintaining a high generalization.

Generally speaking, 2D CNN presents better results because they use kernels to find the 2D

relationships of data. The kernels are able to find patterns that are shifted in time. On the other

hand, the other models which are more sensitive to time variations, present higher errors

and less generalization. Nonetheless, they are predicting the impact position with an error

below 20%. This is an early indicator of the robustness of the ML approach for impact position

detection. The results are not yet acceptable and do not overpass the state-of-the-art results

so a second iteration is required.

3.3.2 Discussion

After the first iteration, there is big room for improvement, especially in the quality of the

impact data. When analyzing the spectrogram representation of the impact signal (Fig. 3.10b),

it is clear that the drop-bar is mostly stimulating the low-frequency modes of the bar. In

addition, the energy dissipates quite fast which also indicates that the LIG is not giving a big

amount of energy to the system. The principal reason for this can be the contact duration

between the bar and the surface. If the bar remains in contact with the surface, the plate will

not reverberate freely and the impact would not resemble a perfect impulse.

To validate this, a high-speed camera (Photron FASTCAM Mini AX100 recording @ 8400 FPS)

was used to track the displacement of the drop-bar. After analyzing the frames, it was found

that the drop-bar is not bouncing immediately, but it remains in contact with the aluminum

beam for 4 ms. This time varied in the order of ±1 ms. This variation is again explained by the

friction between the drop-bar and the acrylic tube.

The LIG v1 does not allow to control the contact duration, Tcont act , so it is not possible to

change this value to study its effect on the prediction of the position. In the following sections

of this chapter, the contact duration will prove to be an important factor for the precision of

the impact position detection.
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To fully understand the use of ML on the impact position detection task, it is important to

study different types of impacts, especially, if the desired goal is to obtain an impact position

detection system that can be used to detect finger taps on a touch surface. In reality, when

humans interact with a surface, the contact duration between the fingertip and the surface

varies.

For the second version of the LIG with the second iteration of the ML approach, the objective

is to improve the quality of the acquired impact signals and to find a better representation of

the impact data. The quality of the impact signals and the way that the data is pre-processed

can bring important improvements on the training and testing error. At the same time, it is

interesting to study if the contact duration has an effect on the precision of the impact position

detection.

For these reasons, an improved version of the LIG is developed. The new impact generator

(LIG v2) creates an impact that is not dampening the natural modes of the bar and enables the

control of Tcont act .

3.3.3 Impact Position Detection: Iteration 2

Based on the knowledge from the first iteration and inspired by the linear impactors mentioned

in Section 3.2.2, a pneumatic actuator was chosen to generate the impacts for the second

version of the LIG. The functional prototype for LIG v2 and the pneumatic system diagram

can be seen in Fig. 3.12.

Figure 3.12: The new version of the Linear Impact Generator. (LEFT), functional prototype
LIG V3. (RIGHT), Pneumatic system diagram. Figure from [111].
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3.3 Impact Position Detection Experiments

Construction and Working Principle of the LIG v2

An air cylinder (SMC - CDJ2D10-15Z-B) driven by a mono-stable 5/2 solenoid valve (SMC -

SY3120-5LOU-M5-Q) is used to impact the surface. An arbitrary signal generator (TG 2512A),

which can be remotely controlled (via Ethernet), creates the signal to control the solenoid

valve. The duration of this signal sets the period during which the impactor stays in the lower

position, thus the contact duration, Tcont act . The signal generator is controlled by the Python

automation script described in Section 3.2.2.

Validation of the Impact Produced by the LIG v2

The contact time is validated using the same high-speed camera, and the validation exper-

iment is displayed in Fig. 3.13a. After analyzing the frames of the video, one can track a

reference point in the moving part and obtain the displacement profile for the tip of the

impactor.

By changing the length of the square pulse that drives the solenoid valve, it is possible to

modify the contact duration, Tcont act . Different types of impacts are presented in Fig. 3.13b.

The four graphs present the displacement profile for the LIG after different pulses are used to

drive the solenoid valve. As a consequence, four different impacts, with different Tcont act , are

created.

(a) High-speed camera experimental set-up
for the analysis of the displacement profile for
the tip of the LIG v2. The blue cross is tracked.
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(b) Displacement profile for the tip of the Pneu-
matic LIG when 4 different diving pulses are used
to drive the solenoid valve.

Figure 3.13: Validation of the impact produced by the LIG v2. Figure from [111].
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The LIG v1 achieved a contact time of approximately 4 ms. The new version can go down to

a Tcont act of 0.24 ms. Also, the signals acquired with the new actuator are more consistent

among several repetitions.

Data Acquisition LIG v2

The LIG v2 is used to acquire a second impact dataset. The acquisition procedure is described

in Section 3.2.2. The signal sampling rate was 250 kHz instead of 50 kHz. This modification

allowed to capture a higher frequency bandwidth and to recover important spectral content

that was neglected in the first iteration. For example, the frequency components around

42 kHz which present the highest magnitudes on the spectral content (see Fig. 3.17b). An

example of a single acquisition, with the new sampling conditions, is presented in Fig. 3.14.
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Impact at Position X = 63 mm Sample 1

Figure 3.14: Example of a single stress signal acquisition for an impact induced at position
xa = 63 mm. Figure from [111].

To train the models and to test the effect of the contact duration four types of impacts are

defined. The displacement profile for each type of impact is presented in Fig. 3.13b. The

reference Tcont act was 0.24 ms. This type of impact is closer to a perfect impulse and is

obtained when a drive signal of 15 ms is sent into the solenoid valve. The dataset obtained for

this type of impact is used to train and test the model (Section 3.3.3).

Three additional Tcont act are defined, 8 ms, 15 ms, and 21 ms. During the acquisition of each

group of 5 datasets Tcont act remains constant. The three additional datasets are used to test

the effect of the contact duration on the impact position detection error. This effect is studied

in Section 3.4.
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3.3 Impact Position Detection Experiments

Frequency content study LIG v2

To gain further knowledge on the nature of impact signals, it is interesting to visualize the

frequency content for impact signals at different locations. Fig. 3.15 presents the magnitude

of the FFT for six different impact locations (xa = [63, 68, 73, 78, 83, 88]).

0 10 20 30 40 50 60
Frequency [kHz]

0

20

40

60

80

100

120

FF
T 

M
ag

ni
tu

de
 [ 

]

0 25 50 75 100 125
Frequency [kHz]

0

100

200

300

400

500

FF
T 

M
ag

ni
tu

de
 [ 

]
FFT_X63_Y8_S1
FFT_X68_Y8_S1
FFT_X73_Y8_S1

FFT_X78_Y8_S1
FFT_X83_Y8_S1
FFT_X88_Y8_S1

Figure 3.15: Frequency content for different impact locations. The signals are obtained from
the magnitude of the FFT for each impact signal.

The main figure contains the most relevant frequency range and a sub-figure presents a zoom-

out where the magnitude of the FFT can be seen for all frequencies. It is evident that the

frequency values remain constant. Nonetheless, the magnitude of each frequency component

varies for every impact location. As discussed in Chapter 2, these frequencies are related to

the resonant frequencies of the system. This finding is crucially important since it inspires the

use of the magnitude of the FFT as an alternative representation to the spectrogram.

Another key information from the frequency analysis is that the sampling rate plays a key role

in signal acquisition. On the first iteration, the signals were sampled at 50 kHz. According to

the Nyquist-Shannon sampling theorem, the sampling frequency should be at least two times

bigger than the maximal frequency to be acquired.
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This is why on the first iteration the highly relevant frequencies around 42 kHz were lost. To

understand the origin of these frequency components, an impedance analysis of the system

can be carried out. Using a precision impedance analyzer (Agilent 4294A), a swept sine wave

is sent into the piezo actuator on the aluminum beam. At the same time, the magnitude and

phase for the current and voltage on the piezo are measured. Based on this value, it is possible

to find the complex electrical impedance as a function of frequency. Fig. 3.16 presents the

magnitude of the impedance for different frequencies. From this analysis, it was found that

the highest resonant effect appears around 42 kHz. Thus, this frequency is associated with

the electrical resonance of the whole system (i.e. the piezo and bar coupled). Note that the

resonant frequency of the piezo patch, when it is not bound to the aluminum bar, is around

200 kHz.

Figure 3.16: Impedance analysis of the single-piezo aluminum beam experimental setup.
Sweep from 20 kHz to 100 kHz, the first resonance appears at 42.3 kHz.

Data Pre-processing LIG v2

For this iteration, two different transformations are used and their effect on the precision of

the impact detection is evaluated. The results are presented later in this Section.
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3.3 Impact Position Detection Experiments

The first representation is the spectrogram. As in Section 3.3.1, the spectrogram function in

Matlab is used. The only difference is the sampling frequency which is 250 kHz. The output of

this function is a 128×260 "pixels" matrix, which is transformed into a single column vector of

length 32280. As a reference, the spectrogram obtained from a single acquisition is presented

in Fig. 3.17a.

The second representation is the magnitude of the FFT. In this case, the Python Numpy real

FFT module (numpy.fft.rfft) [112] is used to transform the time-domain impact signal. After

that, the magnitude of the complex number is calculated for each impact. The result of this

transformation is a single-column vector of length 25000. All the signals are labeled with the

position where the impact was induced and the sample number. As a reference, the magnitude

of FFT transformation for an impact signal is presented in Fig. 3.17b.
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(a) Spectrogram transformation for a single impact
with the LIG v2.
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(b) Magnitude of the FFT for a single impact with
the LIG v2.

Figure 3.17: Signal transformation for an impact at location xa = 63 mm. Impact created with
LIG v2. Figure from [111].

Once again, the PCA method is used to reduce the number of features from 32280 (for the spec-

trogram) or 25000 (for the magnitude of the FFT) to 3. The goal is to get a three-dimensional

(3D) visualization of the dataset, which provides insight on the distribution of the data. The

PCA is fit to reduce both the Spectrogram and FFT Magnitude of LIG v2 dataset # 1 into the

three main components and plotted on a 3D figure. The results are presented in Fig. 3.18a and

Fig. 3.18b.

As expected, the spectrogram dataset for LIG v2 impacts presents more clustered data (com-

pared to the first iteration Fig. 3.11), which seems easier to separate or classify. What’s more,

the frequency-domain transformation leads to an even more separated representation in

the 3D PCA plot. This confirms that this representation contains richer or more condensed

information for the impact position detection task.
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(a) PCA for spectrogram transformation.
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(b) PCA for FFT Magnitude transformation.

Figure 3.18: Three-dimensional graphic representation of the PCA dimensionality reduction,
for dataset LIG v2 # 1. Each set of acquisitions at a specific position is represented by one
unique color. Figure from [111].

Model Training and Results LIG v2

Following the approach proposed in Section 3.2.4, the prediction task is treated as a regression

problem and the same 4 ML models are trained and evaluated.

For the spectrogram dataset, the four models were trained. Whereas for the magnitude FFT

dataset, the 2D CNN was not used due to the structure of the data: The FFT dataset has

changes along only one dimension (i.e. it is a single vector containing the magnitude for each

frequency component), opposed to the 2D nature of the spectrogram dataset.

The results for the four models that were trained with the spectrogram dataset, are presented

in the lower part of Table 3.2. While the results for the three models that were trained using the

FFT dataset appear in Table 3.3. For all results, the error term refers to the MAE in millimeters,

while the percentage (%) refers to the ratio between the error and the total length of the

studied area (i.e. 177 mm). As a reference, the results from the first iteration (Section 3.3.1) are

presented in the top part of Table 3.2.

As anticipated, the precision of the impact position detection increased with the new version

of the LIG and the increased sampling rate. When observing the results for the models trained

with the spectrogram dataset, all four models achieve a test error below 5%. Additionally,

the NN which was not very performant in the first iteration, overcame the accuracy and

generalization capabilities of the 2D CNN.

What’s more, the frequency-domain data transformation led to a better prediction of the

position. This was already expected after the PCA 3D visualization of the data. It appears that

the simpler ML models (XGBoost-Regressor and Linear Regression) performed better with

this transformation of the data.
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3.4 Effect of the Impact Contact Duration

Table 3.2: Validation and test MAE for the four models [mm and %].

Iteration 1 Results (LIG v1) - Spectrogram dataset
Error LinearReg XGBoost NN 2D CNN
Validation 19.5 / 11.2% 7.6 / 4.3% 14.9 / 8.4% 8.1 / 4.6%
Test # 4 22.2 / 12.6% 12.4 / 7.0% 21.6 / 12.2% 15.7 / 8.9%
Test # 5 31.7 / 17.9% 20.4 / 11.5% 26.9 / 15.2% 14.8 / 8.4%

Iteration 2 Results (LIG v2) - Spectrogram dataset
Error LinearReg XGBoost NN 2D CNN
Validation 6.42 / 3.63% 0.81 / 0.46% 2.26 / 1.28% 3.45 / 1.95%
Test # 4 9.19 / 5.19% 2.98 / 1.68% 3.66 / 2.07% 5.32 / 3.01%
Test # 5 8.85 / 5.00% 4.85 / 2.74% 4.68 / 2.64% 7.43 / 4.20%

Table 3.3: Validation and test MAE for the three relevant models [mm and %].

Iteration 2 Results (LIG v2) - FFT Magnitude Dataset
Error LinearReg XGBoost NN 2D CNN
Validation 0.54 / 0.31% 0.31 / 0.18% 0.44 / 0.25% N/A
Test # 4 1.73 / 0.98% 2.01 / 1.14% 6.50 / 3.67% N/A
Test # 5 2.40 / 1.36% 2.06 / 1.16% 4.64 / 2.62% N/A

However, the three evaluated models achieve a test MAE lower than the average contact size of

a fingertip (i.e. 6 mm << 10 mm which is the diameter of the average contact area of a finger

with a surface), which proves their potential for finger touch detection.

The precision improvement is associated with the nature of the impact signals. The shorter

Tcont act achieved by the new version of the LIG makes the impacts closer to a perfect impulse.

A better impulse stimulus can stimulate a larger number of frequencies on the plate, which

provides more precise information about the location of the impact.

As discussed in Section 3.3.3, the excited frequencies are directly related to the natural har-

monics of the plate. These frequency values remain constant if the system does not change,

only the magnitude for each frequency component changes with the location of the impact.

The higher precision on impact position detection for the FFT confirms the hypothesis of the

FFT representation being a better representation than the spectrogram.

3.4 Effect of the Impact Contact Duration

To test the effect of the contact duration, three additional spectrogram datasets were obtained.

For each dataset Tcont act was fixed to a given value. The pre-trained ML models with the best

results were chosen. In this case, the three groups of five datasets with different contact times

were independently fed to the models. The predicted position values were compared with the

original labels to obtain the MAE for each test dataset.
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Later, the average MAE and the percentage were estimated for each contact duration. Table

3.4 presents the error for each dataset when Tcont act was set to 7.77 ms. For the other contact

duration values, only the average value on the 5 datasets is presented. This is done because

the error values for the different datasets are very similar.

Table 3.4: Contact Duration Effect - Validation and test MAE for the three relevant models.

Test of the Contact Duration effect - Spectrogram dataset
Error - Tcont act [ms] XGBoost NN 2D CNN
Validation - 0.24 00.81 / 00.46% 02.26 / 01.28% 03.45 / 01.95%
Test # 1 - 7.77 49.29 / 27.85% 52.55 / 29.69% 40.44 / 22.85%
Test # 2 - 7.77 49.10 / 27.74% 51.10 / 28.87% 41.53 / 23.46%
Test # 3 - 7.77 40.41 / 22.83% 49.08 / 27.73% 41.96 / 23.71%
Test # 4 - 7.77 38.82 / 21.93% 51.25 / 28.95% 42.52 / 24.02%
Test # 5 - 7.77 35.72 / 20.18% 51.60 / 29.15% 45.48 / 25.69%
Average - 7.77 42.67 / 24.11% 51.12 / 28.88% 42.39 / 23.95%
Average - 14.7 48.98 / 27.67% 40.83 / 23.07% 48.22 / 27.24%
Average - 20.9 63.32 / 35.77% 43.26 / 24.44% 51.46 / 29.07%

For the XGBoost and 2D CNN, it is possible to observe a proportional relation between Tcont act

and the increase in the error. While for the NN model, the relation is not proportionally

consistent. Nevertheless, it is possible to conclude that the fact that there is a longer contact

duration affects the precision of the impact position detection. This result was expected, and

it could be related to the fact that the impactor is dampening the vibrations on the plate. Thus,

affecting the magnitude of the natural frequencies that are excited.

To make the model more robust, Tcont act can be set as a second predicted value on the ML

models. In this case, the system will not only predict the location of the impact but also the

contact duration. The developed experimental setup can be used, in a straightforward manner,

to obtain different datasets with diverse conditions (e.g. contact duration, force, among others).

This approach can also be used for other predicted variables or input variables.

3.5 Conclusion

This chapter presents an iterative methodology, based on a set of building blocks, in this

manner, it is possible to develop an impact position detection strategy using Machine learning.

This study helps to understand the behavior and performance of machine learning for impact

position detection in the particular domains that will be used for haptic feedback (i.e. thin

rigid plates). Also, provide an alternative method for detecting the position of the finger in the

tactile surface of a Digital Musical Instrument.

An automated impact acquisition system is proposed and two different versions of a Linear

Impact Generator (LIG) are studied.
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3.5 Conclusion

In addition, two representations for the time-domain impact signals were proposed based on

domain knowledge, and the effect of both representations on the error of the impact source

location task is studied. It was found that even though the FFT magnitude transformation

is a simpler representation when compared to the spectrogram (i.e. it does not present the

frequency changes in time), it allows the models to obtain better impact position detection

results.

The proposed ML pipeline permits to extract the impact position from the stress signals that

are recorded using a single piezoelectric transducer. The obtained precision is higher than

the requirements for finger taps detection, and the error for impact location is lower than in

previous studies in composite materials.

It was found that when an impact occurs, the duration of the contact with the surface has an

important effect on the impact location precision. This parameter can be integrated into the

inputs of the models to improve the robustness and generality of the detection task.

The proposed methodology and the experimental setup can be used to develop more complex

ML systems.

In the future, it could be interesting to study why the error on the NN does not increase

proportionally with the contact duration as in the other two models. Also, following the same

methodology, one can build an ML system with multiple outputs. It is possible to predict the

impact force and the number of contact points. If a limited number of contacts is defined, the

model can be designed to extract multiple contact locations from the acquired signal, thus

providing a multi-touch detection system with a single transducer.

Publications related to this chapter :

• C. H. Mejia, J. Jayet, P. Germano, A. Thabuis, and Y. Perriard, “Linear Impact Generator for

Automated Dataset Acquisition of Elastic Waves in Haptic Surfaces,” in 2019 22nd International

Conference on Electrical Machines and Systems (ICEMS), pp. 1–5, Aug. 2019.

• C. H. Mejia, P. Germano, S. C. Echeverri, and Y. Perriard, “Artificial Neural Networks for Impact

Position Detection in Haptic Surfaces,” in 2019 IEEE International Ultrasonics Symposium (IUS),

pp. 1874–1877, Oct. 2019.

• C. Hernandez-Mejia, J. Chavanne, P. Germano, and Y. Perriard, “Effect of the Impact Contact

Duration on Machine Learning Models for Impact Position Detection,” in 2020 23rd International

Conference on Electrical Machines and Systems (ICEMS), pp. 2063–2068, Nov. 2020.

67





4 Reinforcement Learning for Localized
Peak Generation

4.1 Introduction

The Time-Reversal Method (TRM) dictates that localized peaks can be obtained using time-

reversed signals to drive one or multiple actuators on a surface. These peaks are repeated to

obtain a localized vibration and provide haptic feedback. This chapter studies an alternative

method to improve the quality of the peaks. This optimization is carried out in an experimental

setup with a single piezoelectric transducer.

The research questions for this chapter are "How can Machine Learning (ML) and Deep Learn-

ing (DL) be used to represent the time-reversed signals used to create a localized peak?" and

"How can DL be used to optimize the contrast ratio and ensure the desired location of the

peak?". The associated hypothesis is that "DL can capture the one-to-one mapping between

the time-reversed signals and the peak location, and this representation can be improved by

imposing some metrics on the generated data points".

Deep learning can be used to model and optimize complex systems. Moreover, it has proven

to overpass the accuracy and generalization of some mathematical modeling strategies when

sufficient data are available [69, 113]. Seeing that, it is interesting to study the ability of Deep

Neural Networks to generate time-reversed signals capable of creating localized peaks.

Reinforcement Learning (RL) [114] is an approach for training deep-learning models to map

situations of an environment with the actions of an actor aiming to maximize a numerical

reward. In this framework, the learner is not told which actions to take but must discover

which actions yield the highest reward by examining them (i.e., a trial-error approach).

In this chapter, we explore the potential of RL to optimize the time-reversed signals used in an

experimental setup to obtain localized peaks. The aim is to increase the contrast ratio (ratio

between the peak amplitude and the displacement elsewhere at the instant of focalization,

Section 2.7.2) and ensure that the localized peak occurs at the desired spot.
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Chapter 4. Reinforcement Learning for Localized Peak Generation

The first step is to select the time-reversed signal acquisition strategy and explain how these

signals are used to generate a localized peak. The second step is to introduce the reinforcement

learning framework and select the most suited algorithm that will be used for the optimization

experiments. The last step is to run the RL optimization and evaluate the generated peaks

using an experimental setup and a set of metrics.

4.2 Domain Knowledge on Peak Generation with TRM

Before training and optimizing a Neural Network (NN) to generate localized peaks, let us

start by understanding how to acquire a time-reversed signal and create a localized peak.

Furthermore, two methods to acquire the Tr-signal are compared.

As mentioned in Chapter 2, there are two experimental methods to obtain such a signal. One

is to create mechanical impacts and record the flexural waves using piezoelectric transducers,

which is described in Chapter 3. The other is to use the Impulse Response (IR) between the

actuator and a given location on the surface of the plate.

4.2.1 Impulse Response (IR) Acquisition

An alternative to the mechanical impacts comes from the system control theory. Different

input stimuli are used in system identification to understand the system’s response. For

example, the Step Response can provide information on the system’s dynamics, and the

Impulse Response can give information on the stability and frequency response.

Instead of using the piezoelectric transducer as a sensor, one can feed a voltage signal (Vpi ezo)

into the piezo (at location xb) and measure the displacement ua(t ) at a given location (xa) on

the surface of the plate. Hence, the Transfer Function can be obtained by linking the input

and the output of the system. This transfer function relates the voltage input on the actuator

to the displacement at a particular location. Then, applying the inverse Fourier transform to

the transfer function, one can obtain the IR of the system. The IR represents the signal on the

piezoelectric transducer when an impulsive stimulus is given at the focusing location (xa).

This approach not only simplifies the acquisition, but also helps to reduce the error coming

from mechanical delays (e.g., the friction of the mechanical system and delays in pneumatic

actuation). Moreover, creating a repeatable electrical signal is much simpler than a repeatable

mechanical stimulus.

The common approach to acquiring the IR is to feed a broadband signal, like white noise, to

the piezo actuator. While the signal is emitted, a Compact Laser Vibrometer (CLV) is used

to measure the displacement (C LVout ) at the focusing location (xa). Both signals are used

to calculate the transfer function. Finally, the IR is obtained using the inverse Fast Fourier

Transform (inverse FFT). This approach has been used by several authors [57, 58, 62].
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4.2 Domain Knowledge on Peak Generation with TRM

Signal processing strategies can inspire an important simplification to this procedure. Instead

of using white noise, one can use a swept-sine wave. Since the linear sine sweep is a white

excitation signal, the impulse response can be directly calculated by performing the convolu-

tion between the measured displacement C LVout (t ) and the time-reversed excitation signal

Vpi ezo(−t ) [115]:

I R(t ) =C LVout (t )∗Vpi ezo(−t ) . (4.1)

Experimental Setup for IR Data Acquisition

To create an IR dataset, a considerable amount of linear sine sweeps must be acquired. Thus,

it is necessary to automate the acquisition of the swept-sine response. For this purpose, the

automated experimental setup used in Chapter 3 is transformed into an automated surface

vibration scanning system.

To do this, the LIG is replaced with a Compact Laser Vibrometer (Polytec CLV 1000), which

allows measuring the speed and displacement of a given spot on a vibrating surface. The CLV is

mounted on the CNC table, so it is possible to focus the laser spot at different locations over the

surface of the aluminum beam. Then, an arbitrary signal generator (TG5012A) is coupled with

a voltage broadband amplifier (TOE7607) to reproduce the desired signal. This voltage signal

is fed to the piezo on the aluminum beam experimental setup (described in Section 3.2.2).

Lastly, an oscilloscope (Lecroy Wavesurfer 3074) is used to acquire a) the surface-displacement

signal (i.e., the CLV output), b) the piezo input voltage (e.g., the amplified swept-sine signal),

and c) a trigger signal that synchronizes all the devices. The entire system is controlled from

a remote computer that runs the automation script in Python. The automated vibration

scanning system is depicted in Fig. 4.1.

Piezoelectric patch [xb = 62.5]

Xaxis

xa

Aliminum Beam
(Surface under Study)

Compact Laser
Vibrometer (CLV)

x = 250 mm

CNC

x0

Figure 4.1: Experimental setup for automated swept-sine acquisition.

Since the CLV is very sensitive, any external vibrations (e.g., noise from the building) would be

captured on the response of the system (C LVout ). To ensure a clean displacement acquisition,

the CNC system is mounted on top of a vibration-dampening table (TMC’s CleanBench Table).
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IR Data Acquisition

The acquisition process is conducted independently for every position. First, the CNC table

moves the CLV laser spot to the starting point xst ar t = 63 mm. Later, the signal generator is

configured to generate a linear sine sweep with a starting frequency, fst ar t = 1 kHz and an

ending frequency, fstop = 70 kHz. The duration of the sine sweep is set to Tsweep = 500 ms.

Once the signal is sent to the piezo, the oscilloscope acquires both the piezo input signal

Vpi ezo(t) and the response of the system VC LV (t) (i.e., the displacement of the aluminum

surface at location xa). The acquisition sampling rate is fs = 200 kHz. The acquisition is

repeated 30 times at every location. Finally, the laser spot is moved to the next position, and

the process is repeated.

Following the approach from Chapter 3, the sine-sweep acquisition is divided into five groups.

This approach helps to consider the effect of temperature variations in the dataset. Each group

is acquired at different times of the day. The conditions for the acquired datasets are:

• Dataset # 1: Starting at xst ar t = 63 mm with steps of 5 mm until xend = 238 mm.

• Dataset # 2: Starting at xst ar t = 64 mm with steps of 5 mm until xend = 239 mm.

• Dataset # 3: Starting at xst ar t = 65 mm with steps of 5 mm until xend = 240 mm.

• Dataset # 4: Starting at xst ar t = 66 mm with steps of 5 mm until xend = 236 mm.

• Dataset # 5: Starting at xst ar t = 67 mm with steps of 5 mm until xend = 237 mm.

An example of a swept-sine response acquisition at location xa = 93 mm is displayed in Fig. 4.2.

One can observe the linear sine sweep signal (Vpi ezo) in blue and the response of the system

(C LVout ) in orange. The spikes on C LVout appear at the system’s resonant frequencies for that

particular location. To help visualize the linear sine sweep, a sub-figure displays Vpi ezo with

the time axis in the logarithmic scale.

Finally, the IR is calculated for every location using the approach presented in Eq. 4.1. An

example of the calculated IR for location xa = 93 mm is presented in Fig. 4.3. Because of the

convolution operation, the length of the signal is twice the duration of the swept-sine. The

first half of the signal can be discarded since it does not contribute to the localized peak.

The last steps to obtain the Time-reversed Impulse Response Dataset (TrIRDs) are: to flip

the signal in time (time-reverse), to normalize the signal (between -1 and 1), and to crop the

region of interest. The signal is cropped because only a portion of the IR is required to recreate

the peak. This portion is defined by the time-reversal window (the duration of the driving

signal Ts). Then, for the experiments in this chapter, the length of the signal is set to Ts = 20

ms. The TrIRDs has a total of 5310 TrIR signals. The TrIR for location xa = 93 mm is presented

in Fig. 4.4. It is possible to see the amplitude increasing until the instant t = 20 ms when the

converging wavefront is reconstructed, and the localized peak is created.
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Figure 4.2: Swept-sine acquisition for location xa = 93 mm. A subplot displays the linear
sine-sweep (Vpi ezo) in the logarithmic scale.
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Figure 4.4: Time-reversed Impulse Response for location xa = 93 mm. The signal is cropped to
Ts = 20 ms.

4.2.2 Peak Generation and Comparison

As described in Chapter 2, to create a localized peak at location xa it suffices to feed the

time-reversed impact or IR signal into the actuator in location xb .

To evaluate the properties of a localized peak, it is critical to measure the displacement of the

surface over time. This evaluation allows us to compare a peak created by a time-reversed

impact with a peak created by a time-reversed IR.

Experimental Setup for Surface Vibration Acquisition and Localized-peak Evaluation

The previous experimental setup was initially conceived to acquire the swept-sine response.

However, it can also be used to study the wave propagation by scanning the entire surface of

the aluminum beam. After this scan, one can evaluate the quality of a localized peak. The

only change is that the swept-sine signal is replaced with the time-reversed impact or IR. The

experimental setup for the surface vibration acquisition is presented in Fig. 4.5.

The surface vibration scan goes as follows: first, the time-reversed signal is transferred to

the signal generator. This signal is amplified and fed to the piezoelectric actuator. Then, the

CLV and CNC acquire the vibrations at several locations. Since the CLV can only record the

displacement in one position at a time, the acquisition is repeated at several points over the

surface. An N ×M matrix of points defines the area of interest. N is the number of points in
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Figure 4.5: Experimental setup for automated surface vibration acquisition (surface vibration
scan).

the X direction, and M is the number of points in the Y direction. The CNC moves the laser

spot to the first point where the acquisition starts. At each location, the laser remains static

while the same signal is fed to the piezo actuator. This signal also triggers the acquisition of

the oscilloscope. After each acquisition, the computer stores the displacement signal. Then,

the CNC moves to the next location, where the acquisition is repeated. Fig. 4.6 presents the

displacement of the surface for a single location, xa = 93 mm, when the time-reversed IR for

location xa = 93 mm is supplied to the piezoelectric transducer. The signal generator is set to

2.5 Vpp, and the voltage amplifier multiplies the amplitude by 20 (i.e., the drive signal has an

amplitude of 50 Vpp).

When the whole surface has been scanned, the displacement signals can be superposed in

space and explored in the time dimension to study wave propagation. Fig. 4.7 presents an

example of a 3D plot with the displacement of the surface at the instant of the focalization

(tpeak = 20 ms). The peak is created when the time-reversed IR for location xa = 93 mm

(presented in Fig. 4.4) is used to drive the piezo actuator. For this displacement acquisition,

the surface was scanned from xst ar t = 0 mm to xend = 248 mm. The scan spatial resolution is

set to Rscan = 2 mm, which leads to an N = 125. In the Y direction, eight rows were scanned,

thus M = 8. A cutting plane is displayed at the center line of the 3D plot, y = 8 mm, and the

displacement profile is the plot in black.

Because of the geometrical properties of the beam (l ≫ w), this study can be considered a

one-dimensional wave propagation problem. Thus, it is only necessary to study the center

line or middle plane of the aluminum beam (plane located at y = 8 mm). The displacement

profile for the center line at the instant of the focalization is presented in Fig. 4.8. The 2D scan

of the surface takes 55 minutes, while the 1D acquisition (scan of the center line) takes only 8

minutes.
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Figure 4.6: Displacement of the surface over time (C LVout (t )) for the focusing location, xa =
93 mm.

Figure 4.7: Three-dimensional plot (3D) for a surface vibration acquisition at the instant when
the peak occurs, tpeak = 20 ms. The thickness of the aluminum beam is not at scale.
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Figure 4.8: Displacement profile of the beam center line for the Time-Reversed IR at xa = 93.

After the vibration scan, the quality of the localized peak can be evaluated. For this purpose,

four metrics are defined. xpeak , tpeak , upeak , and C ′
r respectively, the location of the maximal

displacement peak, the instant when the localized peak appears, the amplitude of the localized

peak, and the modified contrast ratio.

This chapter proposes a modified version of the contrast ratio, C ′
r . In the proposed metric, the

peak amplitude (upeak ) is compared to the average maximal amplitude at all other locations

and during the whole acquisition (i.e., the maximum displacement at each location xa during

the acquisition period, Tacqui si t i on). This metric differs from the traditional contrast ratio Cr ,

where only the instant of the maximum peak is evaluated (Section 2.7.2). This modification

ensures that the localized peak is bigger than any other peaks during the reconstruction period

(i.e., the signal duration Ts). The modified contrast ratio, C ′
r , is presented in Eq. 4.2:

C ′
r =

upeak

1
nscan

∑xend
xa=xst ar t

max(u(xa))
, (4.2)

where nscan is the number of locations xa for the vibration scan, xst ar t = 0 mm, and xend = 248

mm. For this study, nscan = 125 (i.e., length of the bar l = 250 mm divided by Rscan = 2 mm).
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Localized Peak and Signal Comparison

As mentioned before, both the Time-reversed Impact (Tr Impact) and the Time-reversed IR (Tr

IR) signals can be used to obtain a localized peak. Nevertheless, it is essential to understand

the quality of the localized peak obtained for both signals and choose the most suitable signal.
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Figure 4.9: Time-reversed Impact and time-reversed IR in the time domain.

Fig. 4.9 presents the Tr Impact and the Tr IR signals. It is not very easy to compare them

in the time domain, but it is already possible to identify that the IR contains much higher

frequencies than the impact signal. Moreover, the IR provides more energy to the system from

the beginning of the driving period. Lastly, for the Tr Impact signal, it is possible to see that

the signal is not ending at exactly 20 ms but a couple of milliseconds before. The mechanical

system delays explain this difference (e.g., the delay between the actuation and displacement

of the LIG).

Comparing both signals in the frequency domain is easier. Fig. 4.10 presents the magnitude of

the FFT for both normalized signals. Note that the magnitude of the FFT is nondimensional

due to the signal normalization. As predicted, the Tr IR contains much more energy on the

higher frequencies. Most of its energy concentrates around the 42 kHz range, which was

identified as the resonant frequency of the electromechanical system in Chapter 2.

For the Tr Impact signal, the energy is concentrated in the lower frequencies, which can lead

to lower amplitudes of displacement on the localized peak. The limitations of the LIG can

explain the frequency content of the Tr Impact. In the LIG, the maximal speed and contact

duration are limited. As a consequence, the LIG is not able to stimulate the higher resonant
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modes of the beam. In contrast, the electrical signal has virtually no limitations, so it can

recreate an impulsive stimulus closer to a perfect impulse or at least stimulate the frequencies

within the limitations of the swept-sine input, Vpi ezo . i.e., the mechanical impact is not as

perfect as the electrically induced impulse.

The frequency spectrum of both signals has a similar shape between 2 kHz and 40 kHz. In this

range, the magnitude peaks appear at the same frequencies. These similarities are expected

because the IR and the mechanical impact are provided at the exact location. Thus, they

stimulate similar natural modes on the beam.
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Figure 4.10: Magnitude of the FFT for the time-reversed Impact and time-reversed IR.

The next step is to compare the properties of the localized peak for both signals. To do this,

the center line of the aluminum beam is scanned. Fig. 4.11 presents two localized peaks. Both

peaks are obtained when a time-reversed impact and an IR are used to drive the piezo actuator.

Both acquisitions are made independently.

The peak amplitude appears at the desired location for both signals, xpeak = 93 mm. As

expected, the Tr IR achieves a higher amplitude, approximately six times bigger than the Tr

Impact signal. Moreover, the peak for the TrIR appears at tpeak = 20 ms, precisely after the

whole signal has been reproduced. In contrast, the peak for the Tr Impact appears at tpeak =

19.81 ms. This is expected since the maximum peak of the voltage signals for the impact has a

delay. This delay can affect the control over the appearance of the localized peak, especially

when simultaneous peaks are desired at different locations over the surface.
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Figure 4.11: Displacement profile for two localized peaks. The peaks are created with a Tr
Impact and a Tr IR at location xa = 93 mm.

Simultaneous Peak Creation at Different Locations

To provide multi-touch feedback, one can create localized peaks in different locations by

combining the time-reversed signals for both locations. After adding both signals, the resulting

signal can be fed to the actuator. As a demonstration, the time-reversed signals for an impact

and an IR at location xa = 93 mm and xa = 208 mm are combined (respectively). Fig. 4.12

displays the displacement profile for the localized peaks that appear after a Tr IR is fed to the

piezo. It is observed that both peaks appear at the same instant of time, tpeak = 20.00 ms.

Fig. 4.13 displays the displacement profile after a vibration scan using the combined Tr Impact

signals. In this case, the peak at location xpeak = 208 mm appears 90 µs after the peak at

location xpeak = 93 mm is recreated. This time difference occurs because the Tr Impact signals

are not perfectly synchronized (i.e., with the Tr Impact, it is hard to control the instant when

the peaks appear because of mechanical delays on the LIG).

Tr-Signal Selection

In conclusion, acquiring a Tr IR signal is much simpler than acquiring a mechanical impact.

Electrical signals are easier to control and more repeatable than mechanical impacts. Besides,

when using a mechanical impact for the TRM, the whole system’s transfer function differs

during the acquisition and focusing steps (i.e., delays associated with different instruments).

In contrast, the piezo is used as an actuator for the Tr IR signal in both steps. This consistency
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Figure 4.12: Displacement profile for the center line of the beam after a vibration scan for the
combined Tr IR signal (xa = 93 mm and xa = 208 mm).

0 50 150 25093 208

Xbar [mm]

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

u
(x

,8
m

m
,t

p
ea

k
)

[µ
m

]

Displacement Profile at tpeak =19.81 ms

Displacement Profile at tpeak =19.90 ms

Figure 4.13: Displacement profile for the center line of the beam after a vibration scan for the
combined Tr Impact signal (xa = 93 mm and xa = 208 mm).
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can also justify why the IR has a better reconstruction quality and higher amplitude on the

localized peak. For these reasons, the Tr IR signal is preferred over the Tr Impact and will be

used in the rest of the thesis for localized peak creation.

4.3 Methodology: Localized Peak Optimization

The alternative approach to optimizing the localized peak is to train a Deep Neural Network

(DNN) to generate the time-reversed signal. The task of the DNN is to learn the one-to-one

mapping between a single input, xdesi r ed , and a higher dimensional output, Vpi ezo . Where,

xdesi r ed is the desired peak location (e.g., xdesi r ed = 114 mm) and Vpi ezo is the Time-reversed

IR (TrIR) signal that can generate a localized peak at that location. Since the model converts

a low-dimensional input into a higher-dimensional output, it can be called a decoder or

upsampling Neural Network.

Once the DNN is trained for this task, the vibration scanning experimental setup is integrated

into the training process to optimize the localized peak. The signal optimization is carried out

using the Reinforcement Learning framework which can explore different modifications to

the DNN to improve the properties of the peak. Since the experimental setup is part of the

training process, it will be called the Hardware-in-the-Loop (HiL) environment.

4.3.1 Reinforcement Learning (RL)

Reinforcement Learning (RL) [114] is an approach to train deep-learning models to map

situations of an environment to the actions of an agent aiming to maximize a numerical

reward. In this framework, the learner is not told which actions to take but must discover

which actions yield the highest reward by examining them (i.e., a trial-error approach).

The RL setup comprises two parts, an agent and an environment. The agent outputs an action

that is fed to the environment. The environment then returns a reward that is used to train

the agent. There are different types of agents, but generally, the agent is responsible for the

learning process. Its objective is to find a balance between exploration and exploitation. The

agent explores (discovers) new actions to learn new approaches and exploits (specializes or

fine-tunes) the knowledge it has to ensure that it reaches the desired objective.

The RL framework is usually trained during several episodes. An episode starts with the reset

function, followed by the step function that can be repeated once or several times until the

environment reaches the final goal.

RL Model Selection

The selection of the RL agent model is a crucial step since several algorithms are available

[116].
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The first criterion to consider is the action space. In the peak generation problem, the action

is a continuous signal composed of a series of continuous values. This action differs from

a discrete action in a video game, such as up, down, left or right. Considering this, one can

discard all the discrete models, such as Q-learning, Deep Q-learning, and SARSA, which are

designed for a finite and small number of actions.

The second criterion is the possibility to control and fine-tune the exploration of the model. On

the one hand, stochastic models tend to have a more aggressive exploration, which accelerates

the learning phase but can lead to noisy outputs. On the other hand, deterministic models

control the exploration/exploitation ratio, which allows for fine-tuning or optimizing the

agent’s actions. Deterministic models such as Deep Deterministic Policy Gradient (DDPG) or

more complex versions are preferred. In contrast, stochastic models such as Proximal Policy

Optimization and Policy gradient can be discarded.

The DDPG is the most straightforward deterministic agent with continuous action space,

which makes it a reasonable choice. In DDPG RL, the agent is composed of two independent

NN. The first one is the actor, the agent’s core part. The actor takes the desired target and

outputs the action used to actuate the environment. The second network is the critic, which

takes both the action and the target and predicts the expected reward. This network is used to

improve the actor’s learning capacity. One can think of it as a normalization function. The

critic outputs a mean reward or a baseline to reduce the variance of the reward during the

learning process.

Since this model is deterministic, the actor’s output is the actual signal, not the probabilities

of an action. This characteristic, and the separation between the actor and critic, allows us

to pre-train the actor using a supervised regression model (this step is explained later in this

chapter). This strategy dramatically accelerates the learning process because the goal is not to

learn the signals from scratch but to fine-tune the action. Seeing that, the possibility to freely

choose and control the exploration becomes much more important than letting a stochastic

model choose the randomness of its action. In conclusion, with this approach, exploitation is

preferred over exploration, which allows for fine-tuning existing and efficient Time-reversed

IR signals. Nonetheless, a controlled exploration is still required to let the model learn new

signals.

RL Exploration strategy

In DDPG, the new behavior is explored by adding white noise to the action. This noise has

zero mean and variance, σ2, which can be tuned.

A high σ2 value leads to a more aggressive exploration but leads to noisier signals, so it is not

possible to fine-tune an efficient signal. In contrast, the agent cannot discover new behaviors

if the σ2 value is too low.
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Chapter 4. Reinforcement Learning for Localized Peak Generation

RL for Localized Peak Optimization

In this thesis, the different RL elements are as follows. The actor is a NN that takes the desired

location for the peak as an input and provides the driving signal as an output. The environment

is the HiL experimental setup, composed of the aluminum beam and the automated scanning

system. In our case, there is only one step per episode because each time the Tr-signal is

sent into the HiL environment, it provides a reward. At each episode, the reset function

defines the target location for the localized peak. Then the step function gives this input to

the actor, which generates the driving signal. This signal is then sent into the aluminum bar

experiment, which is scanned to study the generated peak. After the vibration scan, the step

function calculates the reward function, which is fed back to the agent. During the different

experiments, the agent is trained through several episodes (at least 300).

4.3.2 Actor: Signal Generation Strategies

To create a localized peak, the actor must create a voltage signal that can drive the piezoelectric

actuator. As defined in Section 4.2.1, the TrIR signals from the dataset contain 4000 samples

(Ts = 20 ms sampled at 200 kHz). Thus, it is vital to determine an efficient strategy to generate

this signal since it has important repercussions on the number of actions and the complexity

of the RL model.

Time-domain Signal Generation

The most obvious solution is to train the actor to generate the time series directly. One can

implement a NN with as many output neurons as there are values in the desired signal. Then,

this actor can generate the signal in one forward pass. One can use transposed convolutions

layers to take advantage of the temporal continuity and relation with neighboring time samples.

Nonetheless, this implies a Reinforcement Learning episode with a high dimensional action

space (4000 actions). Then, although the reward immediately follows the choice of the action,

it is hard for the agent to progress efficiently during learning. By definition, the RL algorithm

is designed for long-term rewards and small action space, so this signal-generation strategy

should not be considered.

Frequency-domain Signal Generation

Based on the knowledge acquired in Chapter 3, the FFT transformation is a powerful yet

compact representation of the time-domain signal. One can consider working with the Fourier

transform. As a result, the action would be in the frequency domain. Then, the action can be

transformed back to the time domain before feeding it to the environment. The first approach

is to output several (unknown number) tuples of three elements: 1) a frequency value, 2) the

associated amplitude, and 3) the phase. There are several questions and considerations. How

many of these tuples are needed to generate an efficient time-domain signal? Is it possible
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4.3 Methodology: Localized Peak Optimization

to eliminate one of these three elements (frequency, amplitude, or phase)? In this sense, is

the phase not critical, or only some limited frequency values are enough to reconstruct the

time-domain signal?

To answer those questions, we propose to plot these quantities across different samples of the

TrIRDs dataset. To facilitate the computation and visualization, only 50 samples are studied

(approximately one sample for every 100 samples).
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Figure 4.14: FFT Phase for 50 TrIR signals at different locations on the aluminum beam.

Fig. 4.14 displays the phase for the FFT of multiple TrIR signals at 50 different locations. It can

be seen that the phase is very complex and hard to model. It behaves similarly to white noise

for more than half of the signal. In general, for impulsive signals like an impact, an impulse

response, or a drum sound recording, the phase is chaotic and tends to be random [83]. For

this reason, when frequency transformations are carried out, the phase is generally omitted or,

in some cases, replaced by a white-noise array [84]. Then, it seems reasonable to ignore this

parameter, which helps to reduce the action space.

Fig. 4.15 shows the magnitude of the Fourier transform for the same 50 TrIR signals. It even

seems smoother and easier to model than the time-domain signal, which is represented in

Fig. 4.16. Furthermore, most frequencies have a null (or very low) magnitude, and the ones

with the most significant magnitude are within the same frequency values. This behavior

confirms the relationship between the beam’s natural frequencies and the variation in the FFT

magnitude for different locations. This trend is significant: if we consider only the amplitude

of the FFT (instead of an unknown number of three-valued tuples), we can output a few

amplitude values at predefined frequencies. These frequencies can be chosen based on the
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Figure 4.15: FFT Magnitude for 50 TrIR signals at different locations on the aluminum beam.
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Figure 4.16: Time-domain TrIR signals at 50 different locations on the aluminum beam.

most relevant natural modes of the system.

86



4.4 Pre-train the Decoder NN

This approach has some limitations. Because the phase information is omitted, there is no

guarantee that the inverse FFT will adequately reconstruct the original time-domain signal.

Nevertheless, there are some alternatives to deal with this problem. In [117], the authors

demonstrate that by adding a delay and zero-padding at the end of the signal, it is possible to

reconstruct any time-domain signal from the real part of the discrete Fourier transform.

Based on this solution, one can zero-pad the time-domain signal with one value on the left

side (delay) and its original size on the right side. This trick allows for a good reconstruction.

Several peak localization experiments were carried out. The reconstructed signal was observed

to perform similarly to the original TrIR signal on the experimental setup (similar amplitude

and modified contrast ratio).

In order to choose the most relevant frequencies for the entire TrIRDs, a magnitude threshold

is defined. Any frequency component with a magnitude under that value is set to zero. The

reconstruction experiments determined that at least the 20 most relevant frequency compo-

nents are required to get similar performance on the peak generation. It was observed that the

main frequency values for the different locations could be slightly different (frequency vari-

ance of 20 Hz), and some components do not appear in all signals. Lastly, only the frequencies

that have a value higher than the threshold in at least one of the locations (xa) are chosen.

This selection strategy leads to 88 unique values. This signal generation method requires a

reliable dataset and is appropriate only to improve existing signals.

For this chapter, the frequency domain signal generation is preferred. This signal generation

strategy reduces the number of outputs on the agent (number of actions), simplifying the RL

process.

The complete RL methodology is summarized in Fig. 4.17. The proposed methodology has

two main stages. In the first stage, the actor NN is pre-trained in a supervised manner using

the Time-reversed Impulse Response Dataset (TrIRDs). Then the knowledge of this NN is

transferred into the RL framework. This knowledge transfer is done by integrating the Pre-

trained actor into the RL system. The second stage is the optimization of the actor using

the RL framework. For this stage, the RL system is coupled with the Hardware-in-the-Loop

experimental setup.

4.4 Pre-train the Decoder NN

An advantage of DDPG policy is its dual implementation using separate actor and critic neural

networks. This characteristic allows the implementation of the actor in an independent

Matlab script without taking care of the critic. Moreover, it allows training this actor in a

classic supervised learning approach, which speeds up the RL training process by avoiding

long exploration of the action space.
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(b) Reinforcement Learning (RL) Optimization
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Figure 4.17: Optimization methodology and Deep learning pipeline. a) Supervised pre-
training of the Decoder Neural Network and b) Reinforcement Learning (RL) optimization
with Hardware-in-the-Loop (HiL).
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4.4 Pre-train the Decoder NN

4.4.1 Supervised Training of the Actor

The Matlab supervised-regression framework is used to train a DNN using the TrIRDs. The

input of the Neural Network is the coordinate where the localized peak should appear, xdesi r ed ,

and the output is a vector containing the 88 values of the magnitude of the FFT. It is a simple

and fast process. The agent pre-train is treated as a regression problem. The DL pre-training

pipeline is presented in Fig. 4.17 a.

There are several considerations for the training. First, the network size is arbitrarily limited

to keep further optimization on the RL framework more efficient. Second, the weights of the

NN are initialized with Gaussian noise. This trick helps reduce the learning time and avoid

divergence during the NN training. The Gaussian noise has a standard deviation equal to
2p

I Ndi m+OU Tdi m
, where I Ndi m is the dimension of the input layer and OU Tdi m is the dimension

of the output layer. Third, the input is normalized. As the desired coordinate, xdesi r ed can go

from 63 mm to 240 mm, the mean value is equal to 155.5 mm, and the standard deviation is

130.8 mm. This normalization does not have an important effect on the supervised training

step, but it radically helps the learning in the RL setup.

There is one additional advantage of pre-training the agent NN. Since the supervised training

process takes less than 1 hour, it is possible to choose the best architecture of the NN by

experimentation. The quick learning process makes the performance comparison between

several models much faster than in classical reinforcement learning. For these reasons, the

architecture of the NN is chosen during this stage.

4.4.2 NN Architecture Selection

There are many options when deciding on the architecture, but the focus will be on two general

NN structures. The first agent is a fully-connected NN (commonly called Vanilla NN). This

NN is a simple model which can simplify the training process. The second agent is based on a

one-dimensional Convolutional Neural Network (1D CNN). This model has more parameters

but can exploit the existing relation between adjacent frequencies.

The architecture of both models is described in Section A.2 in Appendix A. The two agents use

the Rectified Linear Unit (ReLU) as the non-linear activation function. The final regression

layer is added to both models since the Matlab Deep-Reinforcement-Learning framework

requires it.

Both models were trained using the magnitude of the FFT for the TrIRDs (Simplified represen-

tation discussed in Section 4.3.2). The training dataset (TrIRDS) covers the entire work area,

i.e., all the locations from xa = 63 mm to xa = 240 mm with a one-millimeter step. The selected

loss function is the Root-Mean-Square Error (RMSE). Fig. 4.18 presents the RMSE along the

training iterations.

Actor 2, based on a 1D CNN, provides the lower RMSE. For this actor, the RMSE can go below
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Figure 4.18: Plot of the RMSE during the supervised pre-training of both actor NNs.

50 and continues with a descending trend. While actor 1, based on the Vanilla NN, stagnates

at an RMSE of 60. Following the same approach, different dimensions were evaluated for the

layers of both architectures. Increasing the network size does not increase the performance of

the generated signal. Nonetheless, a more extensive network is more complex and slower to

train. Therefore, the Actor 2 (1D CNN) architecture is used for the following experiments.

Fig. 4.19 presents a TrIR signal generated with the pre-trained actor 2 and the equivalent signal

from the TrIRDs. In the Fourier domain, the output of the supervised trained actor is very close

to the original signal from the database. In the time domain, the signals are different. The big

difference in the time domain comes from the fact that the original signal (Reference sample

from the TrIRDs) contains all the frequency components. In contrast, the reconstructed signal

only contains frequencies above the defined FFT Magnitude threshold.

At this stage, the resulting network brings no improvement compared to the peak generated

with a signal from the dataset. In fact, there are minor losses in the quality of the localized peak.

The performance of the generated signals (C ′
r ) is smaller than that of the Tr IR signals, and

xdesi r ed slightly differs from xpeak . These differences will be corrected by the RL optimization

in the next stage. The comparison of all results is presented in Section 4.6.

Once the actor NN is trained, the knowledge can be transferred into the reinforcement learning

setup. i.e., the pre-trained NN becomes the actor in the RL framework, and it is the starting

point to improve the signal.

4.5 RL Experiments

The Matlab RL framework is used to optimize the localized peaks that can be generated with a

signal from the agent. In this stage, the pre-trained network is integrated into the RL loop. In

addition, the HiL experimental setup is integrated into the RL system to evaluate the quality of

the localized peak at each episode.
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Figure 4.19: IR from the dataset compared with the generated signal for the pre-trained actor
2.

The optimization goal is to improve the modified contrast ratio and the maximum amplitude

of the generated peak while respecting the desired location. For this purpose, the most critical

element of the RL framework is the reward function.

4.5.1 Reward Function

We proposed the reward function, R, which is composed by three metrics from the vibration

scan. R is defined in the following equation:

R = w1 ×C ′
r +w2 ×upeak −w3 ×

√
(xdesi r ed −xpeak )2, (4.3)

where wi is the weight for each metric, C ′
r is the modified contrast ratio, upeak is the amplitude

of the localized peak, and (xdesi r ed − xpeak )2 is the squared difference between the desired

location and the measured location of the peak.

Note that after the supervised pre-training of the actor, the desired peak location xdesi r ed and

the measured peak location xpeak already present a good matching (at some coordinates, the
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Chapter 4. Reinforcement Learning for Localized Peak Generation

location varies in the order of ± 2 mm). So it could be assumed that the third term of the

reward function is unnecessary. Nonetheless, RL algorithms tend to look for the easiest way to

optimize the reward [114].

In the different optimization experiments that were executed, it was observed that the model

prefers to increase the amplitude of the localized peak by concentrating the energy of the

signal in the main natural frequencies of the aluminum bar. As a consequence, the location

of the peak diverges from the desired position. Thus, if this portion of the reward function

is removed, xpeak becomes quite distant from the desired peak location. To counteract this

preferential behavior, a weight (wi ) is added to each term of the reward function and its value

is set accordingly. i.e., low values (between 0.5 to 2) are set for w2 (peak amplitude) and higher

values (between 5 and 10) are set for w1 (modified contrast) and w3 (location error).

The most exciting aspect of the optimization proposed in this chapter is that it is not necessary

to deal with sparse rewards. This advantage comes from the fact that it is possible to evaluate

the reward function in a single step.

4.5.2 RL Training

Initial RL Training Experiment

An initial optimization is carried out using the whole dataset. The model starts at location

xdesi r ed = 63 mm and increments the location in steps of 1 mm. xdesi r ed changes when

the reward is higher than a given threshold. This optimization aims to check that the pre-

trained actor can create a peak at all locations. This step was done without significant trouble.

Nevertheless, when a reward is too small (below 0), the agent does not improve, and sometimes

the reward goes down.

The training results are presented in Fig. 4.20. The performances are pretty constant, which

confirms that the pre-trained actor provides homogeneous results. The critic (who has not

been pre-trained) fits well and very quickly the expected reward. After evaluating the metrics

for different locations, the average of the modified contrast ratio is 1.5, and the max amplitude

is 0.33 µm. The upeak values are bigger than the TrIRDs performances, but the C ′
r continues

to be smaller. From the learning point of view, it just means that this set of parameters does

not make the networks diverge, which can quickly happen in RL.

Training on a Subset of the Beam Locations

After several RL experiments, it was found that the learning is still too slow even with the

reduced action space (FFT generation instead of time-domain generation). It means that if

the optimization was done over all the locations on the aluminum beam, it is likely that the

signals would not be significantly improved. Moreover, when exploring different locations, the

following position to optimize is chosen randomly, making it unlikely that the same location
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Episode Reward (Environment reward)
Average Reward (over 5 steps)
Episode Q0 (Critic reward prediciton)

Figure 4.20: Evolution of the reward for the initial RL optimization.

is chosen more than once in a limited time. This behavior is unsuitable for improving the

localized peak performance, as different locations may not improve by the same weight.

Since the goal is to improve the signals and not to develop a controller, the following step

concentrates on a small subset of locations over the aluminum beam. The RL model is run

over five coordinates spaced 5 mm from each other. The experiment starts at xdesi r ed = 100

mm and randomly moves through the other 4 locations.

Typically, over-fitting is an undesired effect in ML problems. However, in this case, the agent

NN will be optimized on a smaller portion of the beam (i.e., the DNN overfits those locations).

This strategy reduces the length of the RL experiments and allows us to study the improvement

that can be achieved on the localized peak.

It is preferred to choose five different locations and not only one, as it was observed that the

reward diverges when training is focused on only one coordinate.

Hyper-parameters: Noise Variance and Learning Rate

The last important element of RL optimization is to find the best hyper-parameters for the

optimization. In this case, the hyper-parameters are the noise variance, σ2, and the Learning

rate for the actor, Lr . The critic learning rate is kept constant at a value of 0.001.

To find the operating range for the hyper-parameters, several experiments were executed. At

each experiment, the RL framework was trained for 300 episodes (approximately 2.5 days on a

single Nvidia RTX2080Ti GPU). For illustration purposes, two extreme scenarios are presented.

93



Chapter 4. Reinforcement Learning for Localized Peak Generation

Fig. 4.21 presents the output of the agent for location xdesi r ed = 115 mm when low values for

the hyper-parameters are set during the training (σ2 = 0.5 and Lr = 1 ×10−5). And in Fig. 4.22

the hyper-parameters were fixed at higher values (σ2 = 20 and Lr = 1 ×10−2).

Signal comparison in the frequency and time domain
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Figure 4.21: Signal generated after an RL optimization with the lowest values for the hyper-
parameters. This signal is compared to a reference signal from the TrIRDs (xa = 115 mm).

In both cases, the Frequency-domain signal (the magnitude of the 88 frequencies) and the

time-domain signal are presented. In the first case (lowest values), the exploration was very

weak, and the performance of the generated peak was similar to the peak obtained with the

pre-trained actor. In the second case (highest values), σ2 and Lr were too high. The reward

decreased during learning, going from 16 down to 5. The performance of the generated peak

was deficient. The desired coordinate presented a difference of 7 mm, the modified contrast

ratio was 20% lower, and the maximal amplitude was 0.05 µm smaller when compared to the

signal from the pre-trained actor.

During the training, it was observed that the optimization starting point with the pre-trained

actor might be a strong local minimum. As a result, much exploration is required to get out of

the local solution. Thus, several episodes passed before the reward started to increase.

When exploring different values for Lr and σ2, it is observed that: With a small Lr and σ2, the

model tends to stagnate. For higher values, the model starts to diverge. This means that the

optimal value for the hyper-parameters is between these extreme values. For these reasons, the

following ranges are defined for the hyper-parameters: A σ2 between 2 and 10, a Lr between 5

×10−5 and 5 ×10−3. The critic stabilizes the learning process with its learning rate of 1 ×10−4.
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Figure 4.22: Signal generated after an RL optimization with the highest values for the hyper-
parameters. This signal is compared to a reference signal from the TrIRDs (xa = 115 mm).

RL Optimization Experiment

After several experiments, it was possible to find a very good set of parameters. The best

optimization results, in terms of peak properties and training stability, were obtained for the

following parameters: σ2 = 5, actor Lr = 5×10−4, critic Lr = 1×10−3. Using the optimal hyper-

parameters, the optimization is focused on coordinates xdesi r ed = [100, 105, 110, 115, 120]

mm. After running the RL model for nearly 500 episodes (Approximately four days of training

on a single RTX 2080Ti GPU system), it was possible to improve the agent and overcome

the performance from the localized peak obtained with the original IR signal. In a similar

manner, the RL model is trained for locations xdesi r ed = [158, 163, 168, 173, 178] mm, where

an interesting effect is observed in the optimization of the pre-trained actor. The results for

both optimizations are presented in the following section.

4.6 Results and Discussion

After the RL training is finished, the HiL is used for one final time. In this case, the goal is to

evaluate the quality of the localized peaks in two desired locations xdesi r ed = 115 mm and

xdesi r ed = 163 mm. For each position, three different signals are used: the IR from the dataset,

the signal from the pre-trained NN, and the signal from the optimized model (i.e., the output

of the agent at the end of the Reinforcement learning session).
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The complete vibration scan for the desired location, xdesi r ed = 163 mm, is presented as a

contour plot in Fig. 4.23.

Figure 4.23: Vibration scan using the experimental setup (HiL) to evaluate the quality of three
localized peaks at location xdesi r ed = 163 mm.

Moreover, the measured metrics for both locations are presented in the following tables

(Results for xdesi r ed = 115 mm in Table 4.1 and results for xdesi r ed = 163 mm in Table 4.2):

Table 4.1: Vibration scan results for the desired coordinate xdesi r ed = 115 mm.

Signal xpeak [mm] upeak [µm] C ′
r

TrIR 115 0.3333 1.7519
Pre-trained 116 0.3667 1.5617
RL optimized 115 0.4002 1.7838

Table 4.2: Vibration scan results for the desired coordinate xdesi r ed = 163 mm.

Signal xpeak [mm] upeak [µm] C ′
r

TrIR 164 0.2833 1.7812
Pre-trained 160 0.3001 1.4544
RL optimized 164 0.3167 1.5823

As expected, the most significant effect of the optimization occurs on the maximum peak am-

plitude (upeak ). Furthermore, the RL optimization ensures that the signal from the optimized

actor achieves a peak at the desired location. In some cases, the modified contrast ratio for

optimized signals was higher than for dataset signals. In general, the modified contrast ratio

increased compared to the C ′
r for the pre-trained actor.

For instance, the performances are better for the actor’s output at xdesi r ed = 115 mm. upeak

increased from 0.33 µm to 0.4 µm. Moreover, the C ′
r improved from 1.75 to 1.78 (2% increase
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compared to the traditional approach with the TrIR). These results are obtained for the same

driving voltage (the inverse FFT of the generated signal is normalized between -1 and 1, then

the signal is amplified to 50 Vpp).

At xdesi r ed = 163 mm, the optimized actor does not over-pass the performance of the original

TrIR signal. However, an interesting effect can be observed in the vibration scan. Fig. 4.23

presents the vibration scan for the three signals that are compared. The three evaluated signals

are the TrIR from the dataset, the signal from the pre-trained actor, and the signal from the

RL-optimized model. One can observe that the RL optimization reduces the amplitude of the

vibrations before the instant when the localized peak appears. This modification improves the

modified contrast ratio by concentrating the signal’s energy on the main peak.

An improvement of 2% might seem like an insignificant amount. Nevertheless, it is crucial

to consider that comparing the peak generated by the reference signal (TrIR) with the peak

generated by the signal from the optimized actor is not entirely fair. The signals are not equiv-

alent: the TrIR signal contains a broad frequency content. In contrast, the simplified signal

(from the agent) contains a limited number of resonant modes (maximum 88 frequencies).

One should also consider the information losses associated with the inverse FFT (due to the

lack of Phase information).

Then, the most important result is the improvement in the modified contrast ratio when

comparing the Pre-trained actor with the RL-optimized actor. In this case C ′
r improves by

14.22% for location xdesi r ed = 115 mm and by 8.79 % for location xdesi r ed = 163 mm. This

result depicts the effect of the RL optimization on the actor NN. It is important to remark

that the RL optimization was executed for a limited amount of episodes because of the long

duration of each episode. The bottleneck in the training is the vibration scan. Alternative

methods to evaluate the peak quality at each episode could allow for better optimizations.

The RL optimization is stopped at this point because the alternative path with deep-generative

models seems more interesting in terms of perceptual effects. Nonetheless, the study from

this chapter opens the doors to future optimizations. For instance, it would be interesting to

experiment with: alternative optimization strategies, different reward functions, and diverse

signal representations.

4.7 Conclusion

This chapter presents a new approach to learning and optimizing the Time-reversed Impulse

Response (TrIR) signals that can be used to obtain a localized peak on a rigid surface. Two

types of Time-reversed (Tr) signals are compared. The IR is preferred to the mechanical

impact due to the higher frequency content and the higher quality on the localized peak. A

Time-reversed Impulse Response Dataset (TrIRDs) is acquired using an experimental setup

with a single piezoelectric transducer. During the acquisition, a simplified strategy to calculate

the IR is proposed based on signal processing strategies. The TrIRDs is used to pre-train a
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decoder Neural Network. Later, the RL framework is used to optimize the pre-trained NN.

During the optimization, an experimental setup is included in the learning loop, and different

metrics are defined to evaluate the localized peak in every iteration.

Two desired peak locations are studied. The generated peaks are evaluated using the experi-

mental setup. The chosen metrics show that the most significant improvement appears in the

amplitude and localization of the peak. Nevertheless, studying the vibration scan makes it

possible to observe that the RL Optimization helps reduce the noise before the instant when

the localized peak occurs. Moreover, it was found that in some particular locations, the modi-

fied contrast ratio of the optimized NN was improved by 2% compared to the TrIR (traditional

approach) and by 14.22% compared to the pre-trained neural network. This improvement was

guided by the proposed metrics, especially C ′
r that was proposed to evaluate the amplitude of

the peak compared to the average maximum displacement at all other locations and during

the entire focusing period.

Given the long interval, it takes for one episode (8 min to scan the middle line of the bar) and

the ample action space, RL might not be the most efficient approach to optimize the localized

peak. Nonetheless, this method made it possible to improve the quality of the localized

peaks. Moreover, the proposed approach demonstrated that the TrIR is not the only solution

to the peak generation problem and that other combinations of natural modes can lead to

good-quality peaks.

This chapter confirmed that it is possible to exploit the FFT representation to simplify the

action space. Also, it was demonstrated that NN can learn to generate the TrIR signals and

that RL can optimize a pre-trained NN to ensure that the localized peaks appear at the desired

location.

In the future, alternative optimization models, signal representations, reward functions, and

NN architectures could be explored. In addition, it appears attractive to replace the physical

experimental setup with a simplified simulation environment. This modification could lead to

a shorter episode duration, allowing for a more efficient and practical optimization framework.
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5 Generative Adversarial Networks for
Vibrotactile Feedback

5.1 Introduction

As discussed in Chapter 2, the time-reversal method and other wave-focusing strategies have

been used to render vibrotactile feedback on rigid surfaces. The interaction between actuators

and surface response has also been studied extensively and successfully. Nevertheless, the

power consumption and the number of actuators needed to obtain a localized peak can still

be decreased.

The research questions for this chapter are "How can Deep-Generative Models be used to

generate time-reversed signals that can create a localized displacement peak?" and "What is

the effect of the diversity of GANs on the properties of the localized peaks?". The associated

hypothesis is that "Deep learning can capture the distribution of an Impulse Response (IR)

dataset and generate diverse signals that can have a positive effect on the human perception of

localized vibrations".

After showing that Deep Neural Networks (DNNs) are able to model a simplified version of the

Time-reversed Impulse Response (TrIR) signal and that this signal can generate a localized

peak with similar or slightly better quality compared to the original TrIR signal, it is interesting

to experiment with more advanced Deep-Generative models. Generative Adversarial Networks

(GANs) are chosen over other state-of-the-art generative models because they offer the highest

quality-to-diversity ratio. Nonetheless, they still provide some diversity, meaning that the

generated signal is not always the same.

We are considering profiting from the diversity GANs provide on the generated signals to

reduce the power consumption or the number of actuators. The main novelty of our approach

is that the localized vibrotactile feedback would be created with diverse signals that the GAN

generates in contrast with the traditional approach of repeating the same TrIR signal to obtain

a localized vibration. Thus, the expectation is that the peaks are not generated in the exact

same position but instead randomly distributed around the desired location, which could

better catch the user’s attention for smaller displacements.
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Chapter 5. Generative Adversarial Networks for Vibrotactile Feedback

This chapter studies how GANs can capture the distribution of a dataset containing time-

reversed impulse response signals in a Gaussian-like "latent space" (Section 2.9.3). Once the

model is trained, one can randomly generate signals to make the target point vibrate locally at

the desired rate.

The study is divided into two main stages. In the first stage, the ability of GANs to capture the

probabilistic distribution of the Time-reversed Impulse Response Dataset (TrIRDs) is studied.

After that, one can study the viability of generating new signals in real-time so that these

signals can be used to obtain a localized vibration. In the second stage, a condition will be

added to the GAN to decide which type of signal is synthesized, thus, where the localized peak

appears. Finally, the Hardware-in-the-Loop (HiL) experimental setup from Chapter 4 is used

to evaluate the generated peaks. This evaluation allows us to validate the effect of diversity on

the location and characteristics of the generated localized peak.

The potential effect of diversity on the human perception of the generated peaks is further

discussed at the end of this chapter. This effect is validated in Chapter 6.

5.2 Generative Adversarial Networks (GANs)

Before starting to experiment with the GANs, it is essential to introduce the different elements

and the working principle of the GAN framework. Furthermore, it is key to discuss the recent

GAN models that are being used for time-domain data and to motivate the selection of the

GAN architecture that is used in this chapter.

5.2.1 GAN Definition and Working Principle

The GAN framework is a deep learning strategy to train generative neural networks. It was

first introduced by Ian Goodfellow et al. in 2014 [78]. This framework allows training DNNs to

capture the probabilistic distribution of a given dataset and then generate new data points

that look like the ones in the dataset.

The GAN framework aims at simultaneously training two models, typically two multilayer

perceptrons (i.e., a "Vanilla" Neural Network), which interact in an adversarial manner. The

first model, defined as the generator G , learns to represent the distribution of a real dataset

pd at a . In essence, it learns how to up-sample from a lower-dimensional vector, z, that is drawn

from a Gaussian noise distribution, Z (z ∼ pZ ), into a higher-dimensional vector, Gout =G(z),

that looks like a real data sample. The second model, called the Discriminator, D, takes an

input Di n and estimates the probability that Di n comes from either the real data distribution

pd at a or from the Generator G(z). In other words, D learns to classify examples as either real

(from the dataset) or fake (from the generator).

Both models are trained simultaneously in a two-player minimax game. The parameters

of G are optimized to minimize the value function V (D,G), while the parameters of D are
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5.2 Generative Adversarial Networks (GANs)

optimized to maximize it:

V (D,G) = Ex∼pd at a [log D(x)]+ Ez∼pZ [log (1−D(G(z)))], (5.1)

where E represents the expectation of the equation, x is the real data sample drawn from the

probability distribution of the data set pd at a , and z represents the random noise vector drawn

from a Gaussian noise distribution pZ . D(x) indicates the probability that D discriminates x

as real data, and D(G(z)) indicates the probability that D determines the data generated by

G . The goal of D is to determine the data source correctly, so it wants D(G(z)) to approach 0,

while the goal of G is to bring it closer to 1.

As the learning progresses, the generator and the discriminator improve their performance. At

this stage, the generator can synthesize data samples Gout ∼ pG that become indistinguishable

from the dataset x ∼ pd at a in the view of the discriminator. Furthermore, new samples can

be continuously drawn from the model because G models pd at a by up-sampling from a

continuous latent space pz . Therefore, GANs can be trained in an unsupervised manner where

new data can be generated by inputting a latent vector z to the trained G(z). The general

approach to training the GAN is illustrated later in Fig. 5.1(a) (Section 5.3).

With the traditional GAN framework, there is no control over the type of sample generated.

Nevertheless, when a condition c is given at the input of G and D , and the model is trained in a

semi-supervised fashion, then it is possible to obtain a conditional generative model [78, 118].

For the conditional GAN (cGAN), the value function becomes:

V (D,G) = Ex∼pd at a [log D(x|c)]+ Ez∼pZ [log (1−D(G(z|c)))]. (5.2)

The conditional GAN allows us to decide the exact subset of the probability distribution that

has to be sampled. In other words, it is possible to control the generation process. For example,

with the cGAN trained on the TrIRDs, it is possible to determine the location (xa) where the

peak should appear.

5.2.2 GANs for Time-domain Signals and Model Selection

The GAN framework has become increasingly popular since it was presented in 2014. It has

been especially used for image processing applications where it yields a high resolution, and

high-quality results [119, 120, 121]. Gradually it has shown potential in the raw signal domain

[122]. In 2019, Donahue et al. first introduced the use of GANs for audio generation and

processing [82]. They proposed some adjustments to the Deep Convolutional GAN (DCGAN)

model [123] to capture the long-term and short-term relations present in raw audio signals,

where the main changes occur along the temporal axis. In [82], Donahue et al. presented

two approaches for capturing the unconditioned distribution of raw-audio data. The first
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approach, Spectrogram GAN (SpecGAN), uses the DCGAN capabilities to generate images.

The raw audio signals are represented as images in a pre-processing phase by converting the

time-domain signal into an amplitude spectrogram using the Short-Time Fourier Transform

(STFT). The inverse STFT is then applied to extract the time-domain signal after the generating

stage. The phase information is recovered using the iterative Griffin-Lim algorithm. The other

approach, called Waveform GAN (WaveGAN), works directly on the raw audio representation

by converting the 2D convolution from the DCGAN model into a 1D convolution. WaveGAN is

able to generate the time-domain audio signal without using an intermediate representation.

Alternative techniques employing state-of-the-art architectures and training algorithms have

been proposed, further improving the quality of raw audio generation. For instance, Dieleman

et al. developed the GANSynth model [124]. In this model, they adopt the Progressive Growing

Wasserstein GAN (PGGAN) and propose an alternative data representation. In essence, they

use the instantaneous frequency to capture the phase of signals, and the model produces

excellent results for highly harmonic signals (e.g., speech and musical instrument sounds).

Moreover, Nistal et al. [83, 84] proposed the DrumGAN model. In this case, they exploit the

same PGGAN architecture. However, they discover that for impact-like signals (drum beats)

where the phase is extremely chaotic, representations such as the waveform and FFT complex

representation yield the best results.

Both WaveGAN and DrumGAN have been successfully applied in modeling percussive instru-

ment recordings. There is a significant similarity between the nature of a time-reversed impact

signal and a drum-beat audio signal (i.e., Drum sound effects). The time-reversed impact

signals that have been used to create localized peaks on a rigid surface [51, 56], and a drum

beat are, in essence, the same phenomenon. In both cases, impulsive stimuli are applied to a

solid medium, initiating the wave propagation that will stimulate the resonant frequencies of

the object. From the acquisition point of view, the stress or pressure waves are recorded after

the stimulus is applied.

After several experiments with different GANs models and knowing that one of the goals of this

chapter is to evaluate the ability of GANs to model TrIR signals and real-time data generation,

the WaveGAN model from [82] is chosen. WaveGAN is the simplest model and provides the

best results for our dataset. The simplicity of its architecture allows for an easy transformation

into a conditional model. For these reasons, it is the base architecture for our experiments. In

future work, more complex models can be studied to improve the generated signals’ quality.

5.2.3 Generated Signal Evaluation Metrics

Among deep learning researchers, the quantitative and qualitative metrics used to evaluate

the quality of GAN-generated data are still in development. Typically, qualitative metrics are

evaluated by expert reviewers (i.e., human evaluators who are familiar with the data being

modeled). Recently, many quantitative metrics have been proposed [121, 125, 126], and they

have been compared with human perception. Some metrics involve statistical methods to
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measure the distance between the generated and real distribution (e.g., 2-Wasserstein or

Fréchet distance). An interesting metric is known as the "inception score" [127]. This metric

evaluates the accuracy and diversity of the generated data. Using a pre-trained classifier, the

inception score can penalize models that do not generate relevant data or lack diversity. In

other words, the inception score penalizes models that generate samples that are not easily

classified into a set of known categories (lack of accuracy) and models that generate samples

that belong to only a few known categories (lack of diversity).

Due to the absence of human expertise in evaluating time-reversed IR signals, it is crucial

to develop alternative methods and metrics. In this work, we propose low-level feature

evaluation metrics. The proposed metrics are defined on the foundation of specific domain

knowledge that was gathered in the previous chapters and using information acquired with

the experimental setup. The metrics are:

• The Location of the main peak after a vibration scan.

• The Contrast ratio (i.e., signal-to-noise ratio) of the peak after a vibration scan.

• The Frequency content related to the natural frequencies of the bar.

• The Cross-correlation between the generated signal and a reference signal from the

TrIRDs.

5.3 Experiments with GANs

5.3.1 Methodology

To validate the hypothesis and answer our research questions, this study is carried out in two

stages. The first stage concentrates on evaluating the ability of WaveGAN to capture the TrIRDs,

as well as the feasibility of real-time signal generation. The second stage focuses on developing

the conditional WaveGAN (cWaveGAN) and evaluating the accuracy of the generated peaks.

More importantly, it studies the effect of the diversity of the GAN on the localized peaks.

In both stages, the GAN is first trained, and then the generator is used to synthesize a signal.

Then, this signal is transferred to the HiL experimental setup to evaluate the obtained localized

peak. The general approach is illustrated in Fig. 5.1.

5.3.2 Stage 1: Unconditional GAN

For the first stage, an existing GAN architecture is trained using the TrIRDs. In this case, a

cropped version of the raw signal is used, i.e., the model is trained to create the voltage signals

that drive the piezoelectric actuator. At this point, the generation is unconditional, meaning

there is no control over the location where the peak will appear. For this reason, the generated

signals are sent to the HiL experimental setup to find the peak’s location and evaluate the

localized peak’s quality (contrast ratio). The generated signal is compared to a reference signal

from the TrIRDs that can obtain a peak in the exact location. This comparison is made in the
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Figure 5.1: General approach to train and evaluate the GAN model. (a) GAN model training
with the TrIRDs. (b) Signal generation and peak evaluation using the HiL experimental setup.

time and frequency domain. Furthermore, the characteristics (i.e., contrast ratio, amplitude,

and location ) of the localized peaks for both signals are compared.

Afterward, the experimental setup is used to validate that the trained model can generate, in

real-time, the signals to obtain a localized vibration within the human perception range (200

Hz - 300 Hz [30]). To do this, the total time that it takes to generate the signal, to transfer the

signal, and to output the voltage into the piezo is measured.

WaveGAN Architecture

The WaveGAN model is based on the DCGAN Architecture, which uses transposed convolu-

tions to upsample from a latent space into a realistic data sample (e.g., image, waveform).

The main differences between WaveGAN and DCGAN are: First, the 2D convolutions with

size [5×5] and stride [2×2] are flattened into 1D convolutions with length 25 and stride 4.

Second, the training of the GAN is done using the Adam optimizer [107] and the Wasserstein
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GAN with Gradient Penalty (WGAN-GP) loss function proposed by Gulrajani et al. [128]. The

main difference with the original GAN strategy is that in WGAN-GP, the discriminator is not

exactly classifying the samples as real or fake. Instead, it measures the Wasserstein-1 distance

between the dataset and a batch of generated samples probability distributions. This strategy

is more stable and was demonstrated to successfully train a variety of model configurations

where other GAN losses fail.

In addition, an operation called "phase shuffle" was added to permit fair competition be-

tween the G and D. This operation is needed because the generated signals present some

"artifacts" (i.e., unwanted patterns created by the upsampling convolution) in the pitch of

certain frequencies. This behavior is similar to the "checkerboard" effect (i.e., an artifact with

the appearance of a chess board) of GANs for image generation. The problem with these

artifacts is that the discriminator can easily detect them, so it would inhibit the optimization

during the adversarial training. The phase shuffle is only applied to the discriminator, and

it works by perturbing the phase of the signal inside the different convolutional layers. The

phase is perturbed by a factor of −nphase and nphase and the operator can be activated and

deactivated (i.e., nphase and the active or inactive status are training hyper-parameters).

The WaveGAN Generator starts with a latent vector, z, of dimension nz . These values are

passed to a fully connected layer and then re-shaped. Later, the re-shaped tensor is passed

through five upsampling-convolutional layers until an output, Gout with nGout = 16384 samples

is obtained (i.e., the output of G is a time-domain signal with ns = 16384 samples). The ReLU

activation function is used through all the convolutional layers of the model except for the last

one, where the Hyperbolic tangent (TanH) activation function is used.

The WaveGAN Discriminator is a mirror of G . The input of the model is a signal from G or a

signal (x) from the dataset with length ns = nGout . This data is passed through 5 downsampling-

convolutional layers with the Leaky ReLu (LReLu) activation function. Each layer contains the

phase shuffle operation with parameter nphase . Finally, the data is resized and passed through

a fully connected layer with a single output (i.e., the calculation of the Wasserstein distance).

The complete architecture of G and D for the WaveGAN model are described in Appendix A.

Data Preparation and WaveGAN Model Training

The TrIRDs, described in Section 4.2.1, is reused in this chapter. A total of 5310 Impulse

Response (IR) signals were acquired with a sampling rate of fs = 200 kHz. In this case, the

sampling period is Ts = 81.92 ms which is equivalent to a signal length, ns = 16384 samples for

each signal. The size ns is chosen to match the original output dimension of the WaveGAN

architecture (nGout ) [82].

Tensorflow [106] is used to implement and train the model. The training data is directly

supplied from the TrIRDs dataset folder. In this case, the data labels are not used (i.e., xa is not

used), so the samples are drawn randomly from the dataset in batches of 64 data examples
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(i.e., the batch size is nbatch = 64). The model is trained with a latent vector dimension, nz =

100, and the phase shuffle parameter, nphase = 2. The latent vector is drawn from a Gaussian

distribution with mean, µz = 0, and standard deviation, σz = 1. The complete list of hyper-

parameters is presented in Appendix A. The training goes through 250k iterations, which takes

about 4.5 days on a single GPU system. It should be mentioned that after 100k iterations (1.5

days), the model could produce signals with a similar waveform shape and frequency content

as the real dataset. The training stops when the losses for G and D are close to zero, and the

training error has been constant for several iterations.

WaveGAN Signal Generation

After the model is trained, one or n examples of time-reversed signals can be synthesized by

feeding an array of n latent vectors z drawn from the "continuous uniform distribution" (i.e.,

the same distribution that was used during training with the same µz and σz ). The generation

process was illustrated in Fig. 5.1(b). To provide an idea of the WaveGAN output, two signals

are randomly selected from a batch of 100 generated examples (WaveGAN S0 and S2). These

signals are compared with a reference signal from the TrIRDs and presented in Fig. 5.2.
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Figure 5.2: One reference signal from the TrIRDs (xa = 140 mm) and two randomly picked
signals (S0 and S2) from a batch generated by the WaveGAN model trained on the TrIRDs.

Note that all the signals are cropped to 80 ms (16000 Samples) to facilitate the visualization.

The first 384 time samples of the signal can be removed since their contributions to the peak

generation are negligible.
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The signal from the TrIRDs with peak location, xa = 140 mm, was chosen after carrying out a

vibration scan for signal S0 from the WaveGAN. This selection allows two relevant signals to

be compared and one different signal to be contrasted. This contrast permits the visualization

of the GAN’s diversity (i.e., to confirm that the GAN is not only generating one type of signal).

WaveGAN Generated Signal Evaluation

The signals appear to be very similar in the time domain (Fig. 5.2). Looking closely, one can

see that the signal from the TrIRDs and WaveGAN signal S0 match quite well, while WaveGAN

signal S2 is different. The differences between the signals are more notorious after t = 60 ms.

The temporal analysis is not enough to conclude the similarity of the two signals, but different

metrics can measure it.

In signal processing, the most common metric is cross-correlation: "the measure of similarity

between two series as a function of the displacement of one relative to the other." The cross-

correlation is calculated as the sum of the dot product between the two compared signals,

x(t ) and y(t ): cor r (x, y) =∑ns−1
i=0 x[i ]∗ y[i ], where, x[i ] and y[i ] are the i th sample of signals x

and y respectively. In cross-correlation, the higher the scalar value is, the higher the similarity

between the two compared signals.

Another interesting metric is the L2 norm. This metric calculates the distance of the vector

coordinate from the origin of the vector space and is generally related to the signal’s energy. The

L2 norm is calculated as the Square Root of the Sum of Squares (SRSS): L2(x) =
√∑ns−1

i=0 x[i ]2.

We propose to use the difference between the L2 norm of two signals to compare how close

they are to each other in the vector space. Table 5.1 presents the result for both metrics in the

three evaluated signals.

Table 5.1: Cross-correlation, L2 norm, and L2 norm difference for the reference signal from
the TrIRDs (xa = 140 mm) and WaveGAN signals S0 and S2.

Signal cor r (Ref,Signal) L2 norm L2 norm difference
Ref TrIR 72.06 8.49 - - -
WaveGAN S0 54.96 7.76 0.73
WaveGAN S2 -20.30 7.52 0.97

The L2 norm shows that the reference TrIR signal (Ref) and WaveGAN signal S0 are closer

in the vector space, compared to signal S2. Moreover, the cross-correlation between Ref

and S0 is higher than the cross-correlation between Ref and S2. These results confirm the

higher similarity between the reference TrIR signal (Ref) and WaveGAN signal S0 (the signals

correlate). The lower similarity between Ref and S2 is a good indicator of the difference (the

signal does not correlate).

The graphical comparison is easier in the frequency domain. The magnitude of the FFT for

the three compared signals are presented in Fig. 5.3.
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Figure 5.3: Magnitude of the FFT for the reference TrIR signal and WaveGAN-generated signals
S0 and S2. The red arrows highlight the prominent peaks of magnitude where the variation of
the FFT magnitude for the different signals is observed.

On the one hand, it is possible to observe that both the reference signal and WaveGAN S0

signals contain prominent peaks of magnitude at the same frequencies (red arrows highlight

the most relevant peaks). The magnitude values are similar but not the same. This difference

indicates that the GAN is not learning the exact same signal but is capturing the dataset’s

distribution. On the other hand, it can be seen that the magnitude values for the WaveGAN

S2 signal differ from the other two signals and some peaks appear at different frequencies.

Following the same approach as in the time domain, Table 5.2 presents the result for the

cross-correlation and L2 norm for the magnitude of the FFT of the three evaluated signals.

Table 5.2: Cross-correlation, L2 norm, and L2 norm difference for the FFT magnitude of the
reference signal from TrIRDs (xa = 140 mm), Ref, and WaveGAN signals S0 and S2.

FFT Magnitude cor r (FFTRef,FFTMag) L2 norm L2 norm difference
Ref TrIR 57.65 ×104 759.27 0.00
WaveGAN S0 49.99 ×104 694.10 65.17
WaveGAN S2 44.43 ×104 672.48 86.79

The results for the L2 norm and the cross-correlation in the frequency domain are very similar

to those in the time domain. The similarity of the Ref signal and WaveGAN S0 signals is higher

than Ref vs. S2. Nonetheless, the correlation of Ref vs. S2 in the frequency domain is higher

compared to the time domain, which makes sense because in the frequency domain is easier
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to see that all IR signals stimulate the natural modes of the bar. The cross-correlation of a

signal with itself is known as auto-correlation. The difference between the auto-correlation of

Ref and the cross-correlation of Ref with signals S0 and S2 is a good indicator to show that the

GAN model is not only generating one type of signal but is covering the whole dataset (i.e.,

there is no "mode collapse" during the training).

The next step is to compare the localized peaks obtained with the three signals. To do this,

the HiL experimental setup introduced in Chapter 4 is used to obtain the vibration scan.

Generation and evaluation procedures were illustrated in Fig. 5.1(b). The vibration scan is

carried out from xst ar t = 0 mm until xend = 250 mm, with a spatial resolution of Rscan = 2 mm.

After the vibration scan, the signals are superposed and analyzed in the time domain. The

maximal displacements (i.e., the main peak) are located, and the wave propagation on the

surface of the aluminum bar can be studied.

To evaluate the proposed metrics (Section 5.2.3), the data from the vibration scan is organized

as a 3D matrix Mt ,xa ,u where time (t), scanned location on the bar (xa) and displacement

amplitude u are the main axes. The measured peak location xpeak and the peak instant tpeak

can be located by projecting the maximal displacement across the t and xa axes.

The vibration scan for WaveGAN signal S0 is presented in Fig. 5.4. One can observe the

displacement at the middle-line of the aluminum bar over time. The sub-plot on the right

shows the vibration scan contour visualization (i.e., the top view of the displacement at every

scanned bar position over time). The maximum displacement (localized peak) is marked with

an X. The Upper-Left plot shows the normalized input signal, and two colored bars indicate

two different instants, t1 and tpeak . The two Lower-Left plots present the displacements

occurring in the aluminum bar at t1 and tpeak . The peak appears at location xpeak = 140 mm

right after the generated signal has been reproduced (tpeak = 79.98 ms).

Figure 5.4: Vibration scan for WaveGAN signal S0. The localized peak is displayed with a black
X.

109



Chapter 5. Generative Adversarial Networks for Vibrotactile Feedback

To validate the quality of the generated peak, the original contrast ratio, Cr , is used. As

discussed in Chapters 2 and 4, Cr is defined as the ratio between the maximum displacement

upeak and the Root Mean Square (RMS) displacement at all locations xa at instant tpeak . Cr is

calculated as follows:

Cr (t = tpeak ) = upeak√
1

nscan

∑xend
xa=xst ar t

(u(xa , t ))2
, (5.3)

where nscan is the number of locations xa for the vibration scan (for this study nscan = 125, i.e.,

the length of the bar, l = 250 mm divided by Rscan = 2 mm), xst ar t = 0 mm and xend = 248 mm.

The results for the metrics after the vibration scan are presented in Table 5.3. This table

contains the evaluated metrics for the reference signal from the TrIRDs and three signals from

the WaveGAN model (an additional WaveGAN signal is studied, signal S1).

Table 5.3: Vibration scan metrics for three signals from WaveGAN and the reference TrIR signal
(xa = 140 mm).

Signal xpeak [mm] upeak [µm] tpeak [ms] Cr

TrIRDs xa = 140 mm 140 0.5667 79.99 2.8585
WaveGAN S0 140 0.61667 79.98 2.7680
WaveGAN S1 148 0.55 79.99 2.8218
WaveGAN S2 220 0.51667 79.99 2.7511

The peak obtained with signal S0 is comparable to that obtained from the TrIRDs with xa

= 140 mm. These results confirm that the WaveGAN model can capture the distribution of

the TrIRDs and that the generated signals can be used to obtain a localized peak. The peak

amplitude for signal S0 is slightly higher (10 %), but the contrast ratio is reduced by 3.2 %.

In addition, the peak appears 10 µs earlier compared to the other signals, but this is not

very critical at this stage. In contrast, the vibration scan for the generated signal S1 and S2

present peaks with similar properties to the reference signal. However, they appear at different

locations, which confirms that the GAN is not constantly generating the same type of signal

(no "mode collapse").

Real-time Generation and Localized Vibration Feasibility

Up to this point, it has been demonstrated that GANs can capture the TrIRDs distribution

and generate time-reversed IR signals. When the generated signals are fed into the system,

localized peaks occur.

The next important step is to evaluate the potential of WaveGAN for real-time signal generation.

Furthermore, to validate the potential to generate localized vibrations within the range of

human perception thresholds (200 - 300 Hz [30]). In order to get a 200 Hz localized vibration,
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the Tr signal’s generation and reproduction should occur in less than 5 ms (i.e., one peak

should be obtained every 5 ms).

The experimental setup and the trained GAN model are used to validate this. A single signal

can be generated in 3.94 ms using the Trained Generator from Section 5.3.2. Then, the

reproduction time, i.e., the time it takes to transfer and play back the signal, takes slightly

less than 2 ms. Adding both periods results in a total time of 5.94 ms, slightly longer than the

desired 5 ms. An alternative is to generate the signals asynchronously. This alternative can

be done because generation with GANs is fully parallel [82](thanks to the parallelization of

GPU processing). Thus, generating a batch of signals is much faster than iteratively generating

them one by one. For the trained WaveGAN, it takes 340 ms to generate 1000 signals (i.e., 0.34

ms per sample). In this manner, obtaining a localized vibration in the desired frequency range

is possible.

Further improvements can be obtained in the future by optimizing the current evaluation

setup. For instance, the size and number of parameters of the GAN model can be reduced so

that the generation times can be shortened. Alternatively, it is possible to simplify the signals

by decreasing the signal length or by generating a "1-bit quantized" version as in [51] (1-bit

quantization is described in Chapter 6). Thirdly, signal generation hardware can be directly

integrated into the system where the generation takes place.

5.3.3 Stage 2: Conditional GAN

As observed in the previous section, one of the limitations of an unconditional GAN model is

that there is no control over the generated signal. Thus it is impossible to decide where the

peak will appear (i.e., G may generate a peak on any location within the modeled domain).

For this reason, the GAN model is modified for conditional generation in the second stage.

In this case, the desired location xdesi r ed is given as an additional input to the model. Once

the model is trained, several signals can be generated for a given location, and the effect of

diversity on the properties of the peaks can be evaluated.

Development of the Conditional WaveGAN

There are different strategies to control the data generated by the GAN. One option is to find

the relationship between points in the latent space (i.e., the different values of the input vector

z) and the generated signals. However, this relationship is complex and hard to map. Another

option is to present the Generator and Discriminator with a condition. This condition guides

the model to generate data samples in the desired domain (e.g., images of a given type [118],

sounds of a given nature [129] or TrIR signals for a given location). This condition is more

explicit than manipulating the latent space.

There are two primary motivations for using a condition in the GAN framework. The first and

most obvious one is to get control over the generation. The second one is to improve the GAN,
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thus the quality of the generated samples. Additional information correlated to the dataset

examples can help make the training more stable, reduce the training time, and get higher

quality on the generated samples.

As mentioned in Chapter 2, the condition can have different natures. It can be a continuous or

a discrete label (e.g., peak desired location, xdesi r ed ), or it can be another signal or an image

(e.g., image-to-image translation).

The simplest conditioning method is the "class label" or "discrete condition". It implies select-

ing a discrete number, nl abel s , of desired locations, xdesi r ed , and using them as a condition

to get time-reversed signals of that type. In our case, a continuous condition would make

more sense than a discrete condition given that space is a continuous variable. Nonetheless, it

requires much more data; since the model needs to see as many samples on the continuous

range as possible (Several attempts were carried out with the continuous label, but the results

were not as successful as for the discrete label).

The best practice to include the class label in the GAN involves using an embedding layer

followed by a fully connected layer with a linear activation. This layer scales the embed-

ding dimension to the size of the target data sample. The scaled feature map can then be

concatenated to the model as an additional channel of the convolutional layer [130, 131].

Based on this conditional approach, we modified the original WaveGAN architecture to include

the class conditioning input.

For the generator, the peak desired location xdesi r ed is given as an additional input (i.e., the

conditioning label, c = xdesi r ed ). At this point, the NN for G has two parallel input branches

that will be merged before passing through the upsampling-convolutional layers. In the first

branch, the latent vector z is fed into a fully connected layer with an output of shape [nGout ,

1] ([16384, 1]) and then reshaped to size [16, nGout /16]([16, 1024]), same as in the WaveGAN

model. In the second branch, c is mapped into a one-hot encoder. A one-hot encoder is a

binary vector with a length equal to nl abel s = 177 (number of unique desired locations on

the aluminum bar), where one value of the vector is equal to 1 in the desired location and

0 elsewhere. This one-hot encoder is mapped to a higher dimensional vector with shape

[nl abel s ×20, 1] ([3540,1]) (i.e., embedding layer). Lastly, the obtained tensor is passed through

a fully connected layer and re-shaped to size [16, 1]. At this point, the second branch can be

merged into the first one, and the resulting output has a shape [16, 2049], which is passed to

the upsampling-convolutional layers. From this point on, the architecture remains the same

as in the original WaveGAN implementation.

For the discriminator, the integration of the label is much simpler. The conditioning label, c,

is mapped into a one-hot encoder. Then, it is mapped to a higher dimensional vector (i.e.,

embedding layer) and passed through a fully connected layer. Finally, this tensor is re-shaped

to size [nGout , 1] ([16384, 1]). The embedded condition is concatenated with the audio input,

which has a shape of [ns , 1] ([16384, 1]). From this point onward, the architecture remains
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the same as in the WaveGAN model. The detailed architecture for the conditional WaveGAN

(cWaveGAN) is presented in Appendix A.

Data Preparation and Conditional WaveGAN Training

The same dataset from the first stage is used to train the cWaveGAN model. Nonetheless,

the dataset is classified by desired peak location and reorganized in folders with xa as the

name. The model loads this data, and each folder’s name is fed to the GAN as c. Following

the same approach from Chapter 4, several experiments are executed to find the best hyper-

parameters. Some hyper-parameters were modified to ensure the stability of the GAN during

training and improve the quality of the generated samples (Compared with WaveGAN training).

First, the learning rate for the Adam optimizer on both G and D is set to Lr = 2.5 ×10−4 (On

WaveGAN Lr = 1 ×10−4). This change accelerates the training process and avoids getting

stuck in local minima during the optimization. Second, nbatch , is set to 128 samples (on

WaveGAN nbatch = 64). This change ensures that the model can see different signals during

each iteration. Third, the phase shuffle is removed, nphase = 0 (on WaveGAN nphase was 2).

The phase shuffle was deactivated because it was inducing noise in the signals. And fourth, the

batch normalization is activated, batchnor m = True (on WaveGAN was batchnor m = False).

The batch normalization helps to accelerate the training and to ensure stability. The rest of

the hyper-parameters remain constant. For reference, the complete list of hyper-parameters

is presented in Appendix A.

The model is trained for 30k iterations, which lasted for 1.5 days on a single GPU machine

(Nvidia RTX2080Ti GPU). As expected, thanks to the conditioning label, the training is much

faster than the WaveGAN model, which took 250k iterations and 4.5 days. Moreover, after

1000 iterations (around 1.5 h), the cWaveGAN model is already generating signals coherent

with the original dataset (similar waveform). This confirms the expected positive effect of the

condition, c, on the training of the GAN.

Generation with Conditional WaveGAN

Once the model is trained, it can synthesize one or many signals by feeding G with n latent

vectors z and the associated condition c . Something worth exploring is the standard deviation

of the latent vector, σz . The default value used during the cWaveGAN model training is σz =

1. When this value is changed, there is a higher probability of getting values farther from the

mean value (in this case, µz = 0), which provides higher diversity in the generated samples.

To provide an idea of the generated signals, a batch of 1000 samples is generated with the

condition c = xdesi r ed = 208 mm and σz = 1. The generation process for one signal takes

140 ms, while generating 1000 signals takes 1140 ms (i.e., 1.14 ms per signal). To illustrate

the generation quality, nine examples are randomly selected from the batch. These signals

are compared with one signal from the TrIRDs for the same location xa = 208 mm. This
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comparison is shown in Fig. 5.5. The signals are cropped to 25 ms (5000 samples length) to

facilitate comparing them. When cropping the signals, the first part of the signal is removed

(similar to Stage 1).
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Figure 5.5: The reference TrIR at location xa = 208 mm and and nine signals from the cWave-
GAN model when σz = 1 and c = 208 mm.

In the time domain, the generated and the TrIRDs signals appear to be very similar or even

the same. In this case, the graphical comparison is harder and the cross-correlation metric

becomes even more relevant. This metric is evaluated between the reference signal (Ref TrIR

for xa = 208 mm) and each of the samples from cWaveGAN [S0, S1, ..., S8]. The results are

displayed in Table 5.4. The scalar values are much closer to each other, compared to the

samples from WaveGAN. This result indicates that there is much more similarity among the

samples. Nonetheless, the results are not the same and some wanted diversity is still present.

The frequency-domain representation for the ten signals is presented in Fig. 5.6. In the

frequency domain, the signals present the main peaks of magnitude in the same frequencies.

The magnitude has slight variations among the different signals which is the expected effect of

the diversity of the GAN. The results for the frequency-domain cross-correlation are presented

in Table 5.5.

Like the time domain, the frequency-domain cross-correlation results confirm that the cWave-

GAN signals are much closer than the WaveGAN examples. This degree of similarity is an

expected effect of the condition on the generation. The results for the cross-correlation in

the frequency domain have the same trend as in the time domain, so only one of the two

evaluations is sufficient to study the similarity.
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Figure 5.6: Magnitude of the FFT for the reference TrIR at location xa = 208 mm and nine
signals from the cWaveGAN model when σz = 1 and c = 208 mm.

Table 5.4: Time-domain cross-correlation be-
tween the reference signal (Ref TrIR) and the
nine evaluated signals.

Signal cross-correlation
Ref TrIR 58.4773
WaveGAN S0 58.3998
WaveGAN S1 58.0038
WaveGAN S2 56.9311
WaveGAN S3 56.1964
WaveGAN S4 56.4638
WaveGAN S5 57.3905
WaveGAN S6 57.9665
WaveGAN S7 54.5053
WaveGAN S8 58.1150

Table 5.5: Frequency-domain cross-
correlation between the reference signal (Ref
TrIR) and the nine evaluated signals.

FFT magnitude cross-correlation
Ref TrIR 14.6193 ×104

WaveGAN S0 14.6213 ×104

WaveGAN S1 14.5203 ×104

WaveGAN S2 14.2622 ×104

WaveGAN S3 14.0699 ×104

WaveGAN S4 14.1375 ×104

WaveGAN S5 14.3668 ×104

WaveGAN S6 14.5142 ×104

WaveGAN S7 13.6714 ×104

WaveGAN S8 14.5491 ×104

Increasing the Diversity of the Generated Signals

The next step is to validate the effect of σz on the generated signals’ diversity. Fig. 5.7 presents

the reference signal from the TrIRDs and nine signals from the cWaveGAN generated with σz

= 3 and c = 208 mm. Fig. 5.8 presents the magnitude of the FFT for the same signals.

When the σz is increased there is more diversity in the generated signals compared to σz = 1.
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Figure 5.7: The reference TrIR at location xa = 208 mm and nine signals from the cWaveGAN
model when σz = 3 and c = 208 mm.
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The additional diversity can already be observed in the time domain, where it is possible to

see the variation of the waveform among the different signals. Nonetheless, in the frequency

domain, the difference is more clear. By analyzing the magnitude of the FFT for the 10 signals,

it is possible to observe that there is some energy going into frequencies outside of the main

magnitude peaks (resonant modes). Also, it can be noted that the signals are noisier. This

distortion is especially seen at the beginning of the signal. Finally, the cross-correlation is

calculated in the frequency domain and the results are presented in Table 5.6.

Table 5.6: Frequency-domain cross-correlation for the reference signal (Ref TrIR) and nine
signals generated by cWaveGAN when c = 208 mm and σz = 3.

FFT Magnitude cor r (FFTRef,FFTMag)
Ref TrIR 146.1933 ×103

WaveGAN S0 96.0245 ×103

WaveGAN S1 103.9179 ×103

WaveGAN S2 108.8389 ×103

WaveGAN S3 109.3159 ×103

WaveGAN S4 92.1663 ×103

WaveGAN S5 84.3247 ×103

WaveGAN S6 108.0308 ×103

WaveGAN S7 100.7355 ×103

WaveGAN S8 92.9399 ×103

When σz is increased, the generated signals have less similarity and more diversity when

compared to the signals from cWaveGAN where σz = 1. The effect of increasing the standard

deviation is confirmed.

5.3.4 GAN Diversity Effect on the Localized Peak

The HiL experimental setup is used to validate the effect of the diversity from the GAN on the

localized peak properties. A group of ten signals generated by the cWaveGAN model is studied.

The signals are generated by feeding ten latent vectors with σz = 1 and xdesi r ed = 208 mm as

the condition to the cWaveGAN model. All the signals are cropped to a length of Ts = 25 ms.

The vibration scan is acquired for each signal, and the results are presented in Fig. 5.9, and the

evaluated metrics are compiled in Table 5.7.

In the displacement profile, one can observe some variation among the samples. Most of the

differences occur in the amplitude of the peak which was already expected after Chapter 4

experiments. During the different reinforcement learning experiments, it was observed that

NNs tend to modify the u +peak before any other peak property. However, the most exciting

variation is the slight changes in the peak location. One can observe that the measured peak

location, xpeak , varies in the order of 0 to +2 mm around the target location. The contrast ratio

also has some variations, but this can be ignored for the moment.
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Figure 5.9: Displacement profile at the center-line of the aluminum bar after several vibration
Scans for ten signals generated by the cWaveGAN, when σz = 1 and c = 208 mm.

Table 5.7: Localized peak evaluation metrics for ten signals generated by the cWaveGAN, when
σz = 1 and c = 208 mm.

Signal xpeak [mm] upeak [µm] tpeak [ms] Cr

cWaveGAN S0 209 0.3167 25 3.02
cWaveGAN S1 208 0.3500 25 2.96
cWaveGAN S2 210 0.3667 25 2.86
cWaveGAN S3 210 0.3667 25 2.85
cWaveGAN S4 208 0.3667 25 2.87
cWaveGAN S5 208 0.3667 25 2.81
cWaveGAN S6 209 0.3833 25 2.86
cWaveGAN S7 209 0.3833 25 2.83
cWaveGAN S8 208 0.3833 25 2.81
cWaveGAN S9 209 0.3833 25 2.84

Repeatability of the Vibration Scan and Peak Localization

The repeatability of the acquisition process is evaluated to confirm that this variation is not

coming from the vibration scan. To do this, the reference signal (TrIRDs for xa = 208 mm) is

used in 4 repetitions. The signal is used to create a localized peak, and the HiL experimental

setup acquires the displacement profile for each repetition. The results are presented in Fig.

5.10 and the evaluated metrics are displayed in Table 5.8.
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Figure 5.10: Displacement profile at the center-line of the aluminum bar after several vibration
scans for the reference signal from the TrIRDs.

Table 5.8: Localized peak evaluation metrics after four vibration scan repetitions for the
reference signal from the TrIRDs.

Signal xpeak [mm] upeak [µm] tpeak [ms] Cr

TrIRDs xa = 208 mm Rep1 208 0.3667 25 2.88
TrIRDs xa = 208 mm Rep2 208 0.3667 25 2.93
TrIRDs xa = 208 mm Rep3 208 0.3667 25 2.76
TrIRDs xa = 208 mm Rep4 208 0.3667 25 2.97

As expected, the vibration scan and peak localization are very repeatable. The localized

peak appears in the same location with the same amplitude. The small variations in the

contrast ratio are negligible. This experiment confirms that this variability in the location and

amplitude comes from the diversity of the GAN.

5.3.5 Discussion: Diversity Perception Effect

The variation in the measured location of the peak is an exciting finding. This behavior

motivates a novel pattern of stimulation for vibrotactile feedback. The traditional approach

to time-reversal haptics is to repeat the localized peak at a given rate to create a vibration

sensation. What if, instead of constantly repeating the peak in the exact same location, the
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peaks are created at random locations around the target location?

As discussed in Chapter 2, the Pacinian channel is the main mechanoreceptor involved in

the human perception of vibration. One remarkable property of this channel is that it is

capable of spatial and temporal summation. This effect means that the contact area affects

the perception threshold, i.e., a more significant contact area lowers the detection threshold

or increases the perceived intensity. In this novel approach, the random location of the peak

affects a larger area than a single-location peak. Thus, instead of increasing the contact area,

the randomly localized peaks increase the area affected by the vibration.

The potential advantage of our novel approach is that, by affecting a larger area of the finger,

such random stimulation could activate more mechanoreceptors, thus leading to lower vibra-

tion detection thresholds. As a result, with lower amplitude requirements, one could render

lower peak amplitudes while obtaining the same perceptual effect on the user. This perceptual

hypothesis will be validated in the next chapter (Chapter 6).

5.4 Conclusion

In this chapter, the GAN framework is explained. Then, a state-of-the-art GAN model for

raw-audio generation was trained to run unconditional generation experiments. During these

experiments, it is shown that GANs can capture the statistical distribution of the TrIRDs. The

trained generator can synthesize signals that create localized peaks with similar properties to

the reference peaks with the Time-reversal method.

Real-time generation was validated by measuring the time it takes to generate and reproduce

a signal. It was shown that it is possible to synthesize signals to obtain a localized vibration

within the human vibrotactile range. Several ideas to optimize the generation are proposed,

including asynchronous generation. This idea is essential in the case of the conditional GAN,

where the generation takes more time than in the unconditional model.

A strategy to transform the WaveGAN model into a conditional model is presented. This

condition accelerates the training process, increases the quality of the generated signals, and

allows to control the location where the peaks occur.

Experiments with the standard deviation of the latent vector (σz ) show that increasing this

parameter augments the diversity of the signals in the time and frequency domain. Nonethe-

less, if this parameter is too high, the generated signals contain too much noise and become

distorted.

Several vibration scans were acquired for signals synthesized by the cWaveGAN with the default

σz = 1. The synthesized signals present some diversity on the generated peaks. The main effect

occurs in the amplitude of the peak. However, it was observed that the location of the peak

varies in the range of 0 to +2 mm with respect to the target location. This random variation in

the measured peak location (xpeak ) inspired us to develop a novel stimulation pattern. Instead
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of obtaining the localized vibration by repeating the same peak (i.e., driving the piezo with

the same TrIR at every period), we propose to create peaks at randomly-distributed locations

around the target. This novel stimulation pattern is expected to affect human perception of

vibration since it can stimulate a larger finger area. As a result, it can potentially be perceived

as a more alerting stimulus than a repeated localized peak. This effect will be validated in the

next chapter (Chapter 6).

In the future, studying alternative GAN conditioning strategies, such as a continuous label,

could be interesting. The continuous label could introduce more diversity into the generated

signals and ensure an even higher quality for the generated signals. In addition, it is worth

exploring the effect of interpolation in the conditions, an interesting approach that has already

been studied in the image domain. The interpolations on the generated data permit the

combination of two classes of data (e.g., two desired locations xdesi r ed ).

Lastly, it would be interesting to reduce the size of the network and generate a shorter signal.

This modification would drastically reduce the generation time and overhead of the GAN

model if it were to be implemented on an embedded device. Reducing the length of the Tr

Signal makes sense because only 1 ms of the TrIR Signal is required to obtain a localized

vibration at 250 Hz (The required Ts is explained in Chapter 6).
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6 Human Perception Experiments and
Time-reversal Haptics Demonstrator

6.1 Introduction

The previous experiments with Generative Adversarial Networks inspired us to develop a novel

stimulation pattern where the localized vibration is created with randomly-distributed (i.e.,

Uniform Distribution) peaks around the target location. The previous chapter hypothesized

that this stimulus could be perceived as more alerting than a repeated localized peak (which is

the traditional approach in time-reversal haptics). We consider a signal is more "alerting" if it

catches the attention of the user easier than another signal.

This last chapter focuses on developing a time-reversal haptic demonstrator to validate the

perceptual effect of the novel stimulation pattern. Moreover, this haptic demonstrator can

serve as the base for developing a haptic-featured Digital Musical Instrument (DMI).

The research question for this chapter is "What is the effect of randomly distributed peaks

on the human perception of localized vibrations?" The associated hypothesis is that "Diverse

signals in contrast to repeating the same time-reversed signal are perceived as more alerting and

can reduce the detection threshold for a localized vibration".

In the context of tactile letter recognition, different studies have found that dynamically

presented patterns and shapes are easier to perceive than static ones [132, 133, 134, 135,

136]. In general, the detection accuracy increments when the shape or pattern is presented

dynamically in contrast to a static presentation. Furthermore, in the context of visual and

auditory perception, it has been demonstrated that dynamic signals (e.g., a siren or a moving

object) are given more attention than static objects or sounds [137, 138]. i.e., our brain focuses

its attention on changing phenomena more than static ones. The fact that this effect exists

on similar types of feedback and in alternative human perception channels supports the

motivation to evaluate the effect of randomly-distributed peaks in the perception of localized

vibrational feedback.
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6.2 Methodology

To validate the hypothesis, a human perception experiment is designed and executed. The

main goal is to investigate the perceived differences between a vibration created with a single

peak (SINGLE stimulus) and a vibration created with randomly-distributed peaks around a

target point (RANDOM stimulus). The experiment aims to evaluate which of the two stimuli is

perceived as more alerting.

The perception study is an experimental survey research, where a group of voluntary par-

ticipants (in the range of 20-60 years old) are asked to touch a vibrating surface with their

fingers and answer questions about the perception of different vibration patterns. The main

experiment is a paired comparison test where participants assess which type of vibration is

more alerting. A pilot experiment is proposed to get an idea of the detection thresholds for

both types of stimulus as a function of the displacement amplitudes (in the range of 1-10 µm).

The human detection threshold should be considered when designing the experimental

setup for the perception experiments. As discussed in Chapter 2, the main mechanoreceptor

involved in the perception of vibrotactile feedback is the Pacinian channel. The Pacinian

corpuscles are mainly activated by higher frequencies (40 - 800 Hz [26]) and have shown that

the sensitivity threshold has an up-side down U-shape, with the highest sensitivity around 250

Hz [30]. At this frequency, the receptor can detect vibratory amplitudes down to 0.01 µm [31].

According to these findings, one should be able to perceive the localized peaks that are created

over the aluminum beam experimental setup, but they are not perceived. This can be explained

by the differences in the stimulus that is used. In the perception studies by Bolanowsky et.al.

[26, 139] and Verillo [30, 140], the stimulus is a continuous sinusoidal displacement. In

contrast, in time-reversal haptics, the localized vibration is created by repeating the localized

peak at a given rate (i.e., a train of pulses). The key aspect is that a localized peak has a limited

duration, which is determined by the temporal resolution Rt (e.g., 21.2 µs). For this reason,

the perception thresholds are different, in general, higher. Previous studies [57, 58] found that

the perception threshold for localized peaks obtained with a TrIR varies between 4 and 7 µm.

For this reason, it is necessary to develop an optimized setup where the amplitude can be

higher than the perception threshold. In addition, it is highly relevant to validate the SINGLE

vs. RANDOM hypothesis in two dimensions. This means having a randomly-localized peak

that not only varies in a single direction but can move around the target point. For this purpose,

a time-reversal haptics demonstrator is developed. The system is designed to generate peaks

of at least 1 to 10 µm that can be repeated at a rate of 100 to 500 Hz. The chosen material for

the surface is glass, which enables future integration with screens for multimodal interaction.

The development of the demonstrator is done in two steps:

First, a smaller prototype with a single piezo actuator is developed. This prototype is used

to evaluate two bonding methods to attach the piezoelectric actuator to the plate and three

fixing strategies to support the plate.
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Second, a full-scale demonstrator with multiple actuators is developed. The surface is charac-

terized using the engineering tradeoffs presented in Chapter 2. The resulting experimental

setup allows obtaining peaks within the human perception threshold.

The demonstrator is used for the perception experiments. The TrIR signals between all the

actuators and several locations in the center of the glass plate are acquired. These signals

allow the creation of localized peaks in pre-determined locations. The signal in the center of

the glass plate is used to create the single-point localized vibration ("SINGLE"). The randomly-

localized vibrations ("RANDOM") are created using a group of five signals around the center of

the plate. This pattern provides a simplified reproduction of the diversity brought by the GANs

(Chapter 5). This stimulus is created by randomly (Uniform distribution) moving through

the different locations, but only one location is actuated at a given time. The signals that are

included in this group can vary, and this variation is a parameter of the perception experiment.

6.2.1 Ethics Committee Approval (HREC)

The executed perceptual experiments respect all the ethical regulations. Before starting the

experimentation, the motivation and experimental protocol were submitted to the Human

Research Ethics Committee (HREC) at EPFL (Proposal No: 016-2022 approved on 25.04.2022).

6.3 Development of the Tr Haptics Demonstrator

The optimized time-reversal haptics demonstrator is developed following the engineering

tradeoffs presented in Chapter 2.

The first step is to select the glass material and the thickness of the plate (h). In Chapter 3, the

model from Kim et.al. [95] was used to calculate the effective bending moment as a function

of the piezo to plate thickness ratio (ρz ) for different materials. In Fig. 3.3, it is clear that the

AF32® glass presents the highest effective bending moment of all the analyzed glass structures.

For this reason, this material is chosen for the haptic demonstrators. AF32® glass has a mass

density, ρ = 2430 kg m-3, a Young’s modulus, E = 74.8 GPa, and a Poisson’s Ratio ν = 0.238.

Following that, the next parameter is h. Power consumption is one of the most important

aspects to consider for the time-reversal method. When analyzing Eq. 2.20 (In Section 2.7.2),

it is evident that h is the most influential parameter since it has a power of 3. Therefore it is

crucial to keep this parameter as low as possible to reduce energy consumption. An h = 400

µm is defined for the glass structure. This thickness is enough to resist finger pressing force of

up to 4 N and keep the energy requirements low.

One way to increase the localized peak amplitude is to optimize the interaction between the

piezoelectric actuator and the surface. With h defined, the next step is to find the optimal

piezo thickness. Based on the effective bending moment vs. thickness ratio analysis that

was made in Section 3.2.1 (Fig. 3.3), it can be found that the optimal ρz for the AF32® glass
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structures is 0.9. From this value, it can be inferred that the optimal thickness for the piezo is

tz = 0.45h. In [141], Kim’s model was validated experimentally, and it was found that a piezo

thickness that is slightly larger than the optimal value is preferred.

For this reason, the optimal piezo thickness range is defined between [0.45h and 0.55h]. Based

on this, an off-the-shelf piezoelectric actuator is chosen. The Murata 7BB-12-9, which was

presented in Fig. 2.18, has a diameter of Dpi ezo = 9 mm and a total thickness of 0.22 mm,

which respects the optimal thickness range.

Before continuing with the development of the haptics demonstrator, let us revisit the alu-

minum beam experimental setup that was used in the previous chapters.

6.3.1 Aluminum Beam Experimental Setup

After evaluating these initial tradeoffs, it is clear that the aluminum beam experimental setup

is not optimized for peak generation. The thickness of the plate is too high, which reduces

the peak amplitude or demands a higher amount of energy to reach a given amplitude. In

this setup, the maximum peak amplitude achieved for a driving voltage Vpi ezo = 50 Vpp is 0.7

µm. One alternative to increasing the peak amplitude is changing the diving signal strategy.

"One-bit quantization" is a signal processing strategy that can simplify the driving electronics

while increasing the peak amplitude.

One-Bit Piezo Driving Strategy

The impulse response is, by definition, an analog signal. Up to this point, an arbitrary wave-

form generator coupled to a broadband amplifier has generated the piezo driving signal. This

configuration is acceptable for the experimental study that was carried out. Nonetheless,

considering the potential applicability of this vibrotactile haptic feedback strategy in portable

devices, it is essential to consider a compact yet robust driving strategy. Furthermore, if a

higher number of piezo actuators are required, it is even more relevant to simplify the driving

signal. A piezoelectric transducer is mainly as a capacitive load, and different models have

been developed to represent its electrical characteristics (e.g., [56]). Driving capacitive loads

at high frequencies represents a big challenge, mainly because of the high transient current

requirements and the need for a bipolar source to reproduce the original signal.

The first simplification comes from the fact that the time-reversal process is insensitive to DC

components. Thus, the TrIR amplitude can be shifted by a constant offset to ensure that all the

signal is positive, eliminating the need for bipolar amplification. The second simplification

involves the one-bit quantization of the driving signal (i.e., only using the sign of the signal).

In [142], Derode et al. demonstrate the feasibility of one-bit time-reversal of elastic waves.

The most surprising discovery is that when the Tr signals are digitized by one bit, the focusing

quality is preserved while the peak amplitude is amplified. Moreover, both temporal and

spatial resolutions remain unchanged.
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This strategy was first exploited in [68] to simplify the piezo driving strategy while rendering

localized haptic feedback. However, it is demonstrated that the increase in amplitude comes

at the expense of added noise emission. This noise is explained by the fact that binary drive

signals excite all frequencies, therefore all the plate modes.

Several strategies to reduce noise emissions have been proposed. Some of them involve

oversampling and filtering [57], and others consider alternative quantization strategies (e.g.,

high-frequency class-D amplifiers coupled with low-pass filters) [58]. Nonetheless, the trade-

off between peak amplitude and audible noise is acceptable for this thesis. In the future,

alternative driving and signal-prepossessing strategies can be implemented.

The 1-bit quantization process is very simple and is summarized in one equation: Vpi ezo(t ) =
1
2Vdr i ve (1+ sg n(I R(Ts − t ))), where, sg n is the sign function (i.e., returns -1 when the signal is

negative and 1 when the signal is positive), I R(Ts − t ) is the time-reversed impulse response

signal of length Ts , and Vdr i ve is the desired peak-to-peak amplitude of the signal.

The HiL experimental setup is used to compare the displacement profile on the aluminum

beam for a TrIR signal and the 1-bit quantized version ("1-bit TrIR"). After the scan it can be

found that upeak for the TrIR signal is 0.41 µm, while upeak for the 1-bit TrIR signal is 2.1 µm.

The same driving voltage of 30 Vpp is used in both acquisitions. From this point on, the 1-bit

TrIR signal is the piezo-driving signal of choice and will be used for both haptic demonstrators.

Development of the Driving Electronics

Apart from the amplitude increase, the one-bit quantization strategy’s most exciting benefit

is the driving electronics’ simplification. Instead of using a bulk device to generate and

amplify a broadband analog signal, the signal can be created using a digital output from a

microcontroller or an FPGA. Then, a half-bridge driver can be used to amplify the signal to the

desired driving voltage, Vdr i ve . In this case, an FPGA with an 8-channel digital output module

(NI9045 Compact Rio + Ni9041 High-speed DI/O Module) is used to reproduce the 1-bit TrIR

signals.

A half-bridge driver with eight channels is designed and manufactured. The Printed Circuit

Board (PCB) gets the digital signal (0 V to 5 V) as an input and outputs the same binary

signal amplified to Vdr i ve . For each channel, a high-voltage half-bridge gate driver (Texas

Instruments LM5104) is used to control two N-channel MOSFET transistors (DiodesZetex

ZXMN10A08). The half-bridge driver is designed for a Vdr i ve from 12 V to 60 V.

A load resistor, RL , is connected in series with the piezo actuator to create an RC filter. RL is

very important to dampen the voltage spikes due to the piezo’s capacitive nature. The piezo

driver was developed in two stages. First, a single-channel driver was developed and tested.

Then this design was replicated to create the eight-piezo driver. The complete design and

development process is presented in Appendix B.
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The final piezo driver PCB is presented in Fig. 6.1. There are two connectors per side. On

the left side, the 2-pin connector (green) is the 12 V power supply for the gate drivers, and

the 16-pin connector (white) takes the digital inputs from the FPGA. On the right side, the

2-pin connector (green) is the Vdr i ve power supply for the high side of the half-bridge, and

the 16-pin connector (white) outputs the amplified digital signals to drive the piezoelectric

actuators. The RL resistors are placed close to each piezo actuator.

Figure 6.1: PCB for the eight-channel piezo driver.

6.3.2 Single-Piezo Glass Plate

Continuing with the development of the optimized Tr haptics demonstrator, the prototype

with a single piezo is developed. For this device an 82×41×0.4 mm3 AF32® glass plate is

used. The piezo and focusing location are defined as shown in Fig. 6.2. The objective of this

demonstrator is to determine the piezo bonding strategy (i.e., piezo/plate bonding) and the

plate fixing strategy (i.e., plate boundary conditions).

Piezo/Plate Bonding Experiments

Kim’s [95], and other recent studies [143] have shown that the effective bending moment that

is induced on the plate increases with a diminishing bonding layer thickness. In addition, it

has been shown that the effect of Young’s modulus and Poisson’s ratio of the bonding layer

becomes irrelevant when the bonding layer thickness tends to zero.

A fabrication simplification can come from alternative bonding strategies. In general, the

approach is to use glue (such as Epoxy) to fix the piezo to the actuated surface and ensure

that the thickness is as small as possible. In this section, two methods are compared. The

first method is to glue the piezo with instant glue (ULTRA Glue from the brand Pattex), which

is rigid and thin but more challenging to ensure a homogeneous application. The second

method is to use a thin (50 µm) double-sided tape (3M VHB). The tape is less rigid, but it
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Figure 6.2: Single-piezo glass plate experimental setup.

ensures a homogeneous bonding layer across multiple piezo or devices (i.e., the tape can be

pre-cut and easily applied on the surface).

The effect of both bonding strategies on the peak amplitude (upeak ) is compared experimen-

tally. For this purpose, two twin prototypes are manufactured, as shown in Fig. 6.2. In both

cases, the glass plate is mounted on a PMMA frame using a thick (1 mm) double-sided tape

(3M VHB Tape). The Impulse Response (IR) between the piezo actuator and the focusing spot

is acquired for both prototypes (same experimental setup and methodology from Section

4.2.1). The IR signal is time-reversed, cropped to Ts = 1 ms, and one-bit quantized. The

resulting signals are given to the HiL experimental setup to carry out a vibration scan on the

focusing spot.

To validate the sensitivity of the IR acquisition to the bonding layer properties, the IR from

both prototypes is used to create a localized peak on each device. Four vibration scans are

acquired (In all scans Vdr i ve = 30 V). Fig. 6.3, presents the displacement u(t ) measured at the

focusing spot for both prototypes (Fig. 6.3a presents u(t ) when the 1-bit TrIR from the "Glued

piezo" is used and Fig. 6.3b when the 1-bit TrIR from the "Taped piezo" is used).

The displacement values (upeak ) for each prototype are summarized in Table 6.1.

Table 6.1: (upeak ) for the two different piezo/plate bonding strategies.

Prototype
upeak [µm] for:
1-Bit TrIR Proto GLUE

upeak [µm] for:
1-Bit TrIR Proto TAPE

Glued Piezo 0.87 0.90
Taped Piezo 0.40 0.53

The peak amplitude (upeak ) for the "Glued piezo" is nearly two times higher than upeak for
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(a) u(t ) for both prototypes when the 1-Bit TrIR signal from the GLUE prototype is fed to the piezo.
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(b) u(t ) for both prototypes when the 1-Bit TrIR signal from the TAPE prototype is fed to the piezo.

Figure 6.3: Displacement u(t ) measured at two different prototypes with different piezo/plate
bonding strategies.

the "Taped piezo". Thus, the thickness of the tape is still too big to neglect the effects that

the bonding layer elastic properties have on the effective bending moment. For this reason,

the TAPE bonding strategy is discarded. An interesting observation is that the displacement

measured on the prototype GLUE is slightly larger when injecting the IR acquired on prototype

TAPE than the one acquired on itself. This result indicates that the bonding layer does not affect

the time-reversal process and that the learning phase (IR acquisition) could be performed

only once for similar devices.

Boundary Conditions Experiment

Boundary conditions are hard to model or reproduce in simulation. Furthermore, the fixing of

the plate has a significant influence on the maximum amplitude of the localized peak (upeak )

and the plate’s attenuation constant (τ). Three different fixing strategies are studied, where

the plate fixing has a width of 1 mm on all edges.

The first condition (GLUE) is to attach the glass plate to the frame using instant glue (ULTRA

Glue from the brand Pattex). This condition is a rigid constraint and permits reflections in the
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border of the glass plate. The second condition (VHB) is to fix the glass plate using thick (1

mm) double-sided tape (VHB from 3M). This condition dampens the reflections in the border

and allows for certain movement freedom because of the elasticity of the tape (silicon / PDMS).

The third condition (MECH) is a mechanical fixing, where the glass plate is constrained using

two plates of PMMA (top and bottom) and locked with screws. All the screws are tightened

at a uniform torque (0.02 Nm). The single-piezo glass plate prototypes for the three fixing

conditions are displayed in Fig. 6.4.

Tape Fixing
(VHB)

Glue Fixing
(GLUE)

Mechanical Fixing
(MECH)

Figure 6.4: Single-piezo glass plate prototypes to evaluate the effect of the fixing conditions
(Boundary conditions).

For this experiment, the focusing spot is located in the center of the plate (i.e., xa = 41 mm

and ya = 20.5 mm, with respect to the border of the glass plate).

Like in the piezo/plate bonding experiments, the IR is acquired for the three plates and is used

to create a localized peak in the focusing spot. In this case, the crossed effect of the IR from

the different prototypes is not evaluated because the plate fixing boundary condition changes

the natural modes of the system, thus the IR. Consequently, an impulse response for a plate

fixed with glue would not reconstruct a peak on a plate fixed with double-sided tape.

To understand the relation between upeak and the driving voltage for the different fixing

conditions, upeak is measured for different Vdr i ve values (i.e., Vdr i ve is increased from 30

V to 60 V in steps of 5 V). The results are presented in Fig. 6.5. The IR and displacement

measurements were acquired on the same day at constant temperature conditions. The

measured upeak values for the extreme Vdr i ve values are presented in Table 6.2.

The MECH fixing provides the most significant displacements, then the GLUE fixing, followed

by the flexible VHB fixing. These results indicate that the higher the stiffness in the fixing,

the higher upeak . A rigid fixing enables more reflections on the borders and reverberation

in the plate, which results in a better reconstruction of the localized peak. An interesting

finding is the linear relation between Vdr i ve and upeak , which is beneficial for the perception
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Figure 6.5: Displacement on the center of a single-piezo glass plate for different driving
voltages. Three fixing strategies are compared. For each condition, the 1-Bit quantized TrIR of
each prototype is used to create the peak.

experiments, where different peak amplitudes will be studied.

The increase in amplitude comes with an associated tradeoff. Measuring the attenuation

constant (τ) for the three fixing conditions is important. In time reversal, τ plays a vital role

because it limits the maximum repetition frequency ( fr ), the duration of the signal (Ts), and

the quality of the peak (Cr ). This constant is difficult to estimate by analytical means, mainly

due to the many mechanisms associated with it [144].

To estimate τ, a decreasing exponential, e
−t
τ , is fitted to each IR. Fig. 6.6 presents the estimation

τ for the glass plate with tape fixing. Since the signal is normalized, a reference line is drawn at

e−Vpeak , where Vpeak = 1 [-] is the peak amplitude of the signal. The intercept of this line with

the decaying exponential marks the value of τ. For the VHB fixing, τ= 0.75 ms.

Following the same procedure, the attenuation constant is estimated for the three plates. The

results are presented in Table 6.2.

Table 6.2: upeak (Vdr i ve ) and τ for the different plate fixing conditions.

Fixing Strategy upeak (30V ) [µm] upeak (60V ) [µm] τ [ms]
Plate fixing TAPE 0.90 1.92 0.75
Plate fixing GLUE 1.22 2.53 1.50
Plate fixing MECH 1.73 3.63 1.25
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Figure 6.6: attenuation constant estimation for the single-piezo glass plate fixed with double-
sided tape (3M VHB). A decreasing exponential with a time constant τ is fitted to the IR
between the piezo and the focusing spot.

As expected, the flexible tape fixing provides the shortest attenuation constant (τ = 0.75 ms).

An unexpected behavior occurs for the mechanical fixing, which allows for the biggest upeak

i.e., upeak MECH is 42 % bigger than upeak GLUE), while having a smaller τ compared to the

GLUE fixing (i.e., τMEC H is 20 % smaller than τGLU E ). In the future, it is worth exploring the

effect of the tightening torque on upeak and τ. It appears that the mechanical fixing is adding

some pre-load into the system that contributes to increasing upeak . An interesting idea for

future works is to combine the mechanical and tape fixing strategies.

For this thesis, the tape fixing strategy is preferred. Regardless of the lowest upeak value of

the three conditions, it provides the shortest attenuation constant. This characteristic allows

repeating the peaks at a higher rate. Moreover, it allows the energy from a peak to dissipate

before the next peak, which improves the Cr (i.e., better localized peak quality).

6.3.3 Eight-Piezo Glass Plate

Building on the knowledge from the single-piezo time-reversal demonstrator and the time-

reversal engineering tradeoffs (Chapter 2), the next step is to develop and characterize the

bigger demonstrator with multiple actuators. The time-reversal haptic demonstrator is pre-

sented in Fig. 6.7.

An AF32® Borosilicate glass plate with dimensions 125×125×0.4 mm3 (l ×w ×h) is selected.
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(a) Haptic demonstrator prototype. (b) Haptic demonstrator plate fixing.

Figure 6.7: Eight-piezo glass plate haptic demonstrator.

An active area of 80×80 mm2 is defined in the middle of the glass plate (green area Fig. 6.7a).

This space is the active area where the localized peaks are created (i.e., this is the interactive

area). The number of piezo actuators is arbitrarily set to Q = 8. The actuators are randomly

distributed in the 22.5 mm strip (red area Fig. 6.7a) avoiding symmetries. Each piezo is labeled

with a capital letter, from Piezo A to Piezo H. The glass plate is fixed on top of a PMMA frame

using thick (1 mm) double-sided tape (3M VHB) as illustrated in Fig. 6.7b.

With the defined mechanical properties, it is possible to calculate the time constant for the

plate (Eq. 2.12), for this plate Tc = 11.84 ms. This parameter is key because together with τ,

they guide the selection of the diving signal duration, Ts .

To calculate the attenuation constant, the eight-piezo glass plate is mounted on the CNC, and

the IR between each actuator and the center-point of the glass plate (xa = l /2 = 62.5 mm and

ya = w/2 = 62.5 mm) is acquired using the HiL experimental setup. Since the system remains

constant, all signals contain the same attenuation constant. Then, τ is calculated by fitting

a decaying exponential with a time constant τ to the Root-Mean-Square of the eight driving

signals. This estimation is represented in Fig. 6.8. In this case, τ = 1 ms.

As discussed in Section 2.7.2, to maximize the contrast ratio, the following conditions should

be met: τ≥ Ts and the maximum repetition frequency should respect fr ≤ (1/τ). Then, the

driving signal duration is fixed at Ts = 1 ms, and the maximum peak repetition frequency

should not exceed 1 kHz (well above the detection threshold). Note that a longer Ts can

increase upeak and Cr but makes the system more sensitive to temperature variations and

limits the maximum repetition frequency.

At this point, all the parameters for the eight-piezo haptic demonstrator have been defined.
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Figure 6.8: Time constant estimation for the eight-piezo glass plate fixed with double-sided
tape (3M VHB). A decreasing exponential with a time constant τ is fitted to the RMS of the
eight IR signals between each piezo and the center point.

The focalization capabilities of the demonstrator can be evaluated by creating a localized peak

in the center-point of the glass plate. The IR signals corresponding to each piezo are cropped

to Ts = 1 ms, time-reversed, and quantized in one bit.

HiL Experimental Setup Modifications

The HiL experimental setup is used to acquire the vibration scan. The signal generator and

broadband amplifier are replaced with an FPGA connected to the eight-channel piezo driver.

The 1-bit TrIR signals are stored on the FPGA, and this device is programmed to synchronously

output the digital signals when a trigger signal from the HiL host computer is received. A

two-channel programmable DC power supply (TTi CPX400 DP) is added to the experimental

setup. This device provides the power for the eight-channel piezo driver PCB, and the piezo

driving voltage (Vdr i ve ), which can be controlled from the host computer. Apart from these

modifications, the vibration scan procedure remains the same. The experimental setup is

presented in Fig. 6.9.

Localized Peak Evaluation

Two vibration scans are acquired. First, the entire active area is scanned while a localized peak

in the center-point is created.
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Figure 6.9: HiL experimental setup with the eight-piezo glass plate.

For this acquisition: xst ar t = 0 mm, xend = 80 mm, yst ar t = 0 mm, yend = 80 mm, and the scan

spatial resolution is set to Rscan = 5 mm, which leads to a number of points in the X direction,

N = 17 and a number of points in the Y direction, M = 17. The relative zero is located at the

lower-left corner of the active area. The second scan provides a finer spatial resolution (Rscan =

1 mm) on an 11×11 mm2 area at the center of the glass plate. This scan permits the evaluation

of the spatial resolution (Rs) of the localized peak. (During both scans Vdr i ve = 30 V).

The displacement of the glass surface at the instant of focalization (tpeak = 0.995 ms) is

displayed in Fig. 6.10a. The localized peak appears at the center of the glass plate, and

the peak amplitude is upeak = 5.6 µm. The measured contrast ratio, Cr meas , is calculated

by dividing upeak by the RMS displacement at all other locations. For this prototype, the

measured contrast ratio is Cr meas = 12.40. The higher resolution scan for the center-point is

presented in Fig. 6.10b, a reference plane is plotted at u = upeak /2 to help the visualization

of the spatial resolution of the peak. The measured spatial resolution is Rs = 9 mm, which

matches the diameter of the piezo actuators (Dpi ezo).

Lastly, the temporal resolution (Rt ) can be measured by studying the displacement of the

center-point of the glass plate over time, which is presented in Fig. 6.11, by finding the instants

when the displacement is equal to upeak /2. From the figure, it is found that Rt = 21.2 µs for

the eight-piezo glass plate.

The theoretical contrast ratio, Cr th , that can be reached is calculated using Eq. 2.11 and the

theoretical spatial and temporal resolutions are calculated using Eq. 2.16, Eq. 2.17, and Eq.

2.18. The theoretical and measured metrics are summarized in Table 6.3.
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(a) u(x, y, tpeak ) for the active area. The peak am-
plitude is upeak = 5.6 µm.

(b) High-resolution scan around the focus location,
a plane at upeak /2 highlights the spatial resolution.

Figure 6.10: Displacement (u(x, y, tpeak )) at the center-point of the eight-piezo glass plate.
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Figure 6.11: Temporal resolution (Rt ) estimation for the eight-piezo glass plate. Displacement
of the center-point over time (u(40 mm,40 mm, t ).

Table 6.3: Measured and theoretical metrics for the eight-piezo glass plate.

Cr Rs [mm] Rt [µs]
Measured 12.40 9 21.12
Theoretical 16.54 3.98 7.63

The difference between Cr th and Cr meas is partially explained by the incertitude of the signal

bandwidth (B in Eq. 2.11). The bandwidth for the driving signal (Vpi ezo) is not the same as
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in the original TrIR because the original signal has gone through the one-bit quantization,

and some noise is introduced after the amplification. To solve this, one can add a band-pass

filter (i.e., add an inductance, L, in parallel with the piezo, Cpi ezo , to create an RLC filter) at the

output of the half-bridge amplifier. This filter helps to ensure the desired bandwidth and get a

more realistic calculation of Cr th . An additional benefit is that the filter can be designed to

reduce audible noise by attenuating the frequencies in the audible range (below 20 kHz).

The diameter of the transducer (Dpi ezo) explains the difference between the theoretical and

measured resolutions. The measured Rs matches the diameter of the piezo disc (Dpi ezo),

which limits the smallest wavelength that can be created on the surface of the glass plate. Thus,

Dpi ezo sets the lowest spatial resolution and temporal resolution (as mentioned in Chapter

2, these two parameters are inherently linked). To reach minimal theoretical values, it is

necessary to reduce the dimension of the piezo actuator to ideally Dpi ezo ≤ Rs [57, p. 86].

Peak Amplitude Vs. Driving Voltage Vs. Number of piezo

Two parameters can control the amplitude of the localized peak. The first method is changing

the piezo’s driving voltage (Vdr i ve ). The second method is to decide the number of active piezo

actuators, Qa (i.e., which actuators are driven by the 1-bit TrIR Signal). Combining these two

alternatives makes it possible to achieve a broader range of variation, given that the voltage

range is limited [15 V to 60 V].

upeak is measured for the different scenarios, where Vdr i ve varies from 5 V to 60 V in steps of 5

V, while Qa is augmented from 1 to 8 in steps of 1 piezo. The results are displayed in Fig. 6.12.

The relation between upeak and Vdr i ve is linear. Furthermore, each curve has a constant

increment when Qa is increased. Based on this trend, the line equation (upeak = m×Vdr i ve +c ,

where m is the slope and c the intercept with the upeak axis) is fit to each condition of Qa .

When analyzing the variation of m and c across the different values of Qa , it can be observed

that they vary linearly with respect to Qa . Therefore, upeak can be modeled in terms of Vdr i ve

and Qa according to the following equation:

upeak (Vdr i ve ,Qa) = m(Qa)×Vdr i ve + c(Qa), (6.1)

where, m(Qa) and c(Qa) are the line equations that represent the linear relation between

the slopes and intercepts for the different conditions of Qa (i.e., interpolation between the

minimum number of active piezo, Qmi n , and the maximum number of active piezo Qmax ),

which are defined as follows:

m(Qa) = mm ×Qa + cm ,

c(Qa) = mc ×Qa + cc .
(6.2)
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Figure 6.12: Peak amplitude for different driving voltages(Vdr i ve ) and number of active actua-
tors (Qa).

In Eq. 6.2, the constants mm , cm , mc , cc are calculated from the experimental data as follows:

mm = [upeak (Vmi n ,Qmi n)−upeak (Vmax ,Qmi n)]− [upeak (Vmi n ,Qmax )−upeak (Vmax ,Qmax )]

(Qmi n −Qmax )× (Vmi n −Vmax )
,

cm = upeak (Vmi n ,Qmi n)−upeak (Vmax ,Qmi n)

Vmi n −Vmax
−mm ×Qmi n ,

mc =
[upeak (Vmi n ,Qmi n)−m(Qmi n)×Vmi n]− [upeak (Vmi n ,Qmax )−m(Qmax )×Vmi n]

Qmi n −Qmax
,

cc = [upeak (Vmi n ,Qmi n)−m(Qmi n)×Vmi n]−mc ×Qmi n ,

(6.3)

where, Vmi n , Qmi n , Vmax , Qmax are the minimum and maximum values for Vdr i ve and Qa

respectively. Let Vmi n = 15 V , Vmax = 60 V, Qmi n = 1 active piezo, Qmax = 7 active piezo. Then,

the model fitted to the experimental data becomes:

upeak (Vdr i ve ,Qa) = (0.02363×Qa +0.00028)×Vdr i ve −0.04333×Qa +0.01762. (6.4)

The fitted model can be used to estimate upeak (Vdr i ve ,Qa) for the complete range of the

experimental measurements (Qa [1 -8] and Vdr i ve [15 V to 60 V].
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The amplitude values estimated by the model (’+’ marker) and the measured upeak values (’x’

marker) are presented in a 3D plot in Fig. 6.13. The proposed model fits the experimental data

with an RMSE of 0.079 µm. Particularly, looking at data points that are outside of the range

of data that was used to fit the model (Qa = 8 and Vdr i ve [55 V, 60 V]), the RMSE between the

predicted and measured values is 0.12 µm. This result confirms that the model can accurately

(an RMSE error under 0.2 µm is acceptable for our requirements) model upeak in terms of

Vdr i ve and Qa .
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Figure 6.13: upeak (Vdr i ve ,Qa) model validation. The measured values are presented with an
’x’ marker and the predicted values with a ’+’ marker.

This model is used during the perception experiments to define the driver’s parameters to

obtain a desired peak amplitude. Furthermore, the experimental results permit us to obtain

the amplitude range for the eight-piezo Tr haptics demonstrator. The range for upeak is [0.33

µm to 11.20 µm], which is enough for the perception experiments where the desired range of

variation is [1 µm to 11 µm].

Discussion on the Achieved Characteristics

As discussed on the time-reversal engineering tradeoffs, the theoretical maximum achievable

Cr M AX can be increased by augmenting the bandwidth of the driving signal or by changing

Tc (increasing the surface area of the glass plate or changing the material). To get Cr as close

as possible to Cr M AX , the relation Q ×Ts > Tc should be satisfied. In this case, the amount of

piezo (Q = 8) is not enough to satisfy this condition, so it could be increased. Another option is

to increase Ts . Nevertheless, keeping it equal to τ is preferred to ensure that the wave field for
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a localized peak will completely dissipate before sending the next peak. Especially considering

that we are not using the traditional approach of repeating the same wave field, but we want

to send peaks at different locations.

The obtained parameters are good enough for the perception experiments where a variation

in the amplitude of [1 µm to 10 µm] is desired. Furthermore, a spatial resolution of 9 mm is

enough to validate a novel pattern with ± 5 mm variation in the random locations around the

desired spot.

IR Data Acquisition

The final step is to acquire a dataset of 1-Bit TrIR signals between the eight actuators and

several locations on the center of the glass plate. These signals can be stored on the FPGA to

obtain a localized peak at any point within the active area.

The HiL experimental setup is used once again, and the acquisition area is displayed in Fig.

6.14. The IR acquisition is made in 16 points along the X and Y directions with a spatial

resolution of Rscan = 5 mm. The Acquisition starts at location xa = 2.5 mm and ya = 2.5 mm

(with respect to the relative zero from the active area). A total of 256 IR signals are acquired.

All the signals are cropped to Ts = 1 ms, time-reversed, and quantized by one bit.

B

D

C

EF
G

H

A

Figure 6.14: Distribution of the focus locations to acquire the 1-Bit TrIR dataset for the eight-
piezo haptics demonstrator.

In the figure, the red circles represent the locations where the piezo actuators are fixed to the

glass plate, and each piezo has its name. The blue crosses represent the locations where the IR

signals are acquired. The red crosses represent a grid of nine locations whose corresponding

signals will be used in the perception experiments in the following section.
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6.4 Perception Experiments

With a haptic demonstrator that can create localized peaks within the human perception

threshold, it is the moment to validate the hypothesis on the perception of the randomly-

localized peaks vs. single-location peaks. This is done by conducting a survey research where

a group of voluntary participants is asked to evaluate the perception of two different vibration

patterns while one finger is in contact with a vibrating glass plate.

6.4.1 Single Vs Randomly-distributed Peak

The main experiment is a paired comparison test, where two vibration patterns are presented

(A and B). The participants are asked to classify which of the two patterns is felt more alerting

(i.e., more attention-catching), A or B, or if they feel the same, answer ’SAME’. For each

participant, 20 different trials are presented. Each trial contains two stimuli (A and then B).

One stimulus is the SINGLE pattern, and the other is the RANDOM pattern. Within the 20

trials, the stimuli are presented in balanced-randomized order (e.g., Trial 1: A - SINGLE then B

- RANDOM, Trial 2: A - RANDOM then B - SINGLE, . . . ). The 20 trials are repeated 4 times. Both

stimuli have the same duration, Tpat ter n [ms], and there is a pause Tpause between the two

stimuli within a trial. Tpat ter n has to be longer than 1000 ms to ensure the mechanoreceptor’s

temporal summation effect has stabilized [145, 146]. After each trial, the user reports which

pattern is felt as more alerting.

The ’SINGLE’ vibration pattern is created with a single localized peak in the center of the plate.

In contrast, the ’RANDOM’ pattern is created with peaks at a randomly chosen location within

five spots around the center. Each time, the location is chosen by drawing a number from a

white noise generator, which returns a uniformly distributed pseudo-random pattern. Both

vibration patterns can be reproduced at the desired frequency.

Experimental Parameters and Experimental Setup

During the perception experiments, several parameters must be defined and controlled. a)

the amplitude of the peak (upeak ) is controlled by changing the driving voltage of the piezo

(Vdr i ve ) or the number of piezo actuators that are used to recreate the peak (active piezo Qa).

b) The vibration frequency, fr is modified by changing a delay between each localized peak.

c) The duration of the stimulus (Tpat ter n) is controlled by setting the number of peaks to be

created. d) The pause between both stimuli (Tpause ) is determined by a delay between the

stimulus reproduction.

To obtain the stimuli, the 1-bit TrIR signals for the 9 locations highlighted in Fig. 6.14 are used

to create the localized peaks, which are repeated at an fr rate.

Two options are defined for the RANDOM pattern: an ’x’ configuration or a ’+’ configuration.

The selected option defines the group of five signals that are used during the experiment.

142



6.4 Perception Experiments

The spatial distribution of the SINGLE pattern and the two configurations for the RANDOM

pattern are presented in Fig. 6.15.

10 mm 10 mm

RANDOM
’+’

RANDOM
’x’

10 mm

SINGLE

Figure 6.15: Spatial distribution for the SINGLE pattern and the two configurations for the
RANDOM pattern.

The finger maximum contact size is displayed in a yellow ellipse, and the localized peak

locations are displayed with a red circle of diameter Rs . The ’+’ configuration has a higher

overlap between the localized peaks, and all the points are closer to the center. In contrast, the

’x’ configuration offers more separation between the points (i.e., more variation on the peak

location).

The finger pressing force, F , is crucial because it affects the effective contact area between the

finger and the surface, which is highly correlated with the vibrotactile perception threshold.

Hence, the pressing force must remain constant during the perception experiment.

To control this parameter, the haptic demonstrator is mounted on a PMMA frame attached

to one end of a load cell. The other end of the load cell is mounted on a rigid base. An

Arduino®-based DSP is used to acquire the pressing force, which is graphically presented to

the participant in real time. This information helps her/him keep a constant pressing force

throughout the experiment. This parameter remains fixed during the whole experiment. In

addition, an arm support is mounted on the base and extends over the glass surface without

touching it. The purpose of this support is to hold the arm and wrist and restrict the motion of

the finger. The user is able to decide the pressing force by moving the tip of the finger.

A small square is drawn in the center of the glass plate to guide the finger’s position. The human

subject is asked to cover this square during the experiment completely. The experimental

setup is presented in Fig. 6.16.

The experiment is controlled by a master PC running Labview. The Labview script controls

the power supply and the FPGA. The FPGA is configured to generate digital driving signals to

create the selected vibrational pattern.
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Figure 6.16: Experimental setup for the perception experiments.

Preliminary Experiments and Parameter Definition

Before running the final experiments, an extensive piloting phase was executed to test the

effect of each parameter on the differentiation of both patterns. One single parameter was

changed at a time. This phase aims to ensure the biggest difference possible so that the user

can concentrate on judging which pattern is more alerting during the perception experiment.

On a first pilot Vdr i ve is set to 30 V, Qa to 8 piezo, fr to 250 Hz, RANDOM pattern to ’+’,

Tpat ter n = Tpause = 1000 ms. Four participants were asked to compare the two vibrational

patterns presented in several trials (10 trials). On this initial pilot, the pressing force is changed

in the range of [0.3 N to 2.5 N]. For each occasion, a full set of trials is run, and the force is

constant throughout the trial. For a smaller pressing force, the difference between the stimuli

is less clear, and 3 out of 4 participants reported the highest differentiation at F = 2.0 N.

Following that, the contact area for F = 2 N is measured for eight different human subjects

(adults between [18 - 42] years old, including females and males). The mean contact area

is S f i ng er (2N ) = 207 mm2 and a standard deviation of 46.13 mm2. The displacement at the

focusing spot is also measured for an F = 2 N (using the CLV). It was found that upeak is

attenuated by 25 % compared to the finger-less measurements (Fig. 6.12).

For the second pilot, F remained constant. A pair of experiments were executed where Vdr i ve

is set to 40 V and 20 V. It was found that with a higher Vdr i ve , hence a bigger upeak , it is easier

to perceive the difference between the two stimuli, which was expected.

For the third pilot, fr was tested for 100 Hz, 250 Hz, and 500 Hz. In this case, it is clear that for

144



6.4 Perception Experiments

both patterns, the highest intensity is perceived at fr = 250 Hz (confirming the findings from

previous studies [30]).

After the three pilots were run, it was found that Tpause = 1000 ms was too long and that the

ability to compare the two patterns decreased. Then, this parameter is set at Tpause = 600 ms,

and Tpat ter n is set to 1200 ms to ensure the effect of temporal summation is not present.

In the fifth pilot, the RANDOM pattern ’x’ was found to provide a better differentiation between

the SINGLE and RANDOM patterns. It can be explained by the higher variation in the position

and lower overlapping with the center point. In many cases, the RANDOM pattern ’+’ was

perceived as SAME compared to the SINGLE pattern. Thus, RANDOM ’x’ is selected. An

interesting finding is that randomly changing the location of the peak at every peak repetition

(i.e., changing xa , ya 250 times per second) was too fast to be perceived, which masked the

effect of the randomness. Hence, an additional parameter is introduced to maximize the

differentiation between RANDOM and SINGLE. This parameter is the number of repetitions

before changing to the following random location, nr . The sweet spot was found for nr =

10 (i.e., the peak is repeated ten times at a given location before changing to the following

random location).

During the pilot phase, it was identified that the difference between the SINGLE and RANDOM

is clear but that telling which one is more alerting than the other is challenging and requires

much concentration. Furthermore, some differences in the evoked sensation were noted. One

pattern evoked a tickling sensation in the tip of the finger, while the other evoked a deeper

vibration inside the finger.

Experimental Protocol

The experiment is executed as follows: First, the protocol is explained to the participant, and

the explanation is always the same: "You will be presented with two vibrational stimuli, one

after the other. For both stimuli, the duration is the same. Your goal is to judge which one is

more alerting (Attention catching). Imagine you have a task to complete on a touch screen:

which vibration alerts you more that something happened? You have to answer A, B, or SAME

(If you feel the same or you can not decide for one)."

Second, the participant is trained to maintain a constant pressing force with the surface and

to keep the finger position constant during the experiment (2 min are given to get familiar

with the force control).

Third, the participant is presented with ten trials to get used to the sensation.

Forth, the perception experiment starts. The participant is presented with 20 trials, and the

answer (A, B, or SAME) is registered after each trial. After 20 trials, the participant is given a 2

minutes pause to rest the finger. The experiment is repeated three times more (for a total of 80

trials).
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Lastly, a qualitative assessment of the difference between the SINGLE and RANDOM patterns

is carried out. For this purpose, the participant is presented several times with a unique trial,

where pattern A is SINGLE, and pattern B is RANDOM. The question is "which stimulus is

more alerting, A or B?" and "what sensations were evoked by each stimulus?"

To avoid auditory biasing (due to the noise coming from the vibrating surface), the participant

wears noise-canceling headphones playing a continuous track of Pink noise during the whole

experiment. Pink noise is a random signal where the power spectral density is inversely

proportional to the frequency, thus carrying an equal amount of noise energy per octave

(halve or double the frequency). This noise spectrum was the most effective in masking the

sound emitted by the haptic demonstrator.

Experiments

For the main perception experiment, 12 voluntary participants (aged 26 - 52 years old) are

invited to evaluate the vibrational patterns. All the participants used their right-hand index

finger, and each experiment took 25 minutes on average. The experimental setup is mounted

on top of the vibration-dampening table. A screen is placed in front of the setup to display

the pressing force and indicate when stimulus A or B is being reproduced. The participants

are seated in front of the setup, and the experimental protocol is followed. The experimental

parameters are summarized in Table 6.4.

Table 6.4: Experimental parameters for the SINGLE Vs. RANDOM perception experiment.

Parameter
Tpat t er n

[ms]
Tpause

[ms]
F
[N]

fr

[Hz]
nr

[times]
RANDOM
Pattern

Vd r i ve

[V]
Qa

[piezo]
Defined
Value

1200 600 2.0 250 10 ’x’ 60 8

Note that Vdr i ve and Qa are set at the maximum value to ensure that the vibration is perceived

and to get a higher differentiation between the two patterns. The results for the 12 participants

are summarized in Table 6.5. The responses A and B are replaced with the label for the pattern

presented on the selected stimulus. The total amount answers per category are displayed for

each participant (e.g., the total number of times that RANDOM was chosen within all trials).

Table 6.5: SINGLE Vs. RANDOM perception experiment results for the 12 participants
(P1,...P12).

Alternative P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 TOTAL
RANDOM 36 29 11 36 30 38 37 35 28 33 20 33 366
SAME 29 19 3 31 28 23 15 20 12 5 23 40 286
SINGLE 15 32 6 13 22 19 28 25 40 42 37 7 248
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SINGLE vs. RANDOM Experimental Result Analysis

A descriptive analysis of the data shows that the RANDOM pattern was selected more often (41

% of the trials) than the SINGLE pattern (32 % of the trials). An important finding is that the

SAME category was chosen in 27 % of the trials, which confirms the task’s difficulty. 30% of all

participants perceived SINGLE as more alerting than RANDOM, which indicates that in some

cases, the perceived intensity or alertness is a relative metric that depends on the participant’s

perception.

The Box plot in Fig. 6.17 presents the distribution of the experimental data (median, min, max,

lower and upper quartiles).

RANDOM SAME SINGLE

Possible Answers

5

10

15

20

25

30

35

40

N
u

m
b

er
o

fO
cc

u
re

n
ci

es

Figure 6.17: SINGLE Vs. RANDOM perception experiment results in a Boxplot.

It can be observed that the data for the SINGLE and SAME categories are more dispersed than

the RANDOM pattern. It is hard to explain this behavior without further experiments. However,

it is possible to say that the RANDOM response appears more concise for the participants,

while the SINGLE response is often mixed with the SAME response.

To test the significance of the difference between the response categories, a "Multinomial

Logistic Regression" model, which is commonly used for categorical data with more than two

categories, was fit to the experimental data.

The fitted model estimates the following proportions for the response categories: RANDOM:

0.40667, SAME: 0.27556, and SINGLE: 0.31778. The difference between the RANDOM and

SAME categories was significant, with a P-value = 2.221 e-6, as well as the difference between

RANDOM and SINGLE, with a P-value = 0.0017 (i.e., in multinomial regression the P-values is
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the probability that the Null hypothesis is true, in general P-value below 0.05 confirms that the

effect is significant). This allows the conclusion that there are significantly more "RANDOM"

responses than "SINGLE" responses to the question "Which pattern is perceived as more

alerting?". These results confirm the hypothesis that a random-excitation signal is perceived

as more alerting than a single-excitation signal for the experimental parameters presented in

Table 6.4.

The qualitative assessment also shows some interesting results. On the one hand, most of the

participants (75 %) reported that the SINGLE pattern is felt more regular. They describe it as a

superficial sensation at the tip of the finger. On the other hand, most of the participants (66.6

%) perceived that the RANDOM pattern goes deeper in the finger and that they perceive it as

more dynamic. Several participants remarked that the RANDOM pattern provides a granular

sensation. All participants agree that determining which pattern is more alerting is difficult,

especially in the first round. Nevertheless, at the end of the experiment, they could determine

that there were two different patterns. The fact that a representative portion of the participants

(> 50 %) determined that the two patterns were perceived in different locations or depths of

the finger is quite interesting. This finding should be explored more in-depth because it can

inspire novel types of sensations when providing haptic feedback.

Discussion on Novel Pattern Applications

The most interesting fact from the randomly-localized stimulation pattern is that it is viable

for time-reversal haptics and can be implemented on other surface haptics techniques. For

instance, it can be easily implemented on pin arrays, soft pneumatic actuators, and other

vibrotactile interfaces. The alertness effect on devices with a higher spatial resolution could

be amplified.

The fact that the RANDOM pattern was perceived in different places of the finger, compared

to the SINGLE peak, shows that this pattern could be used as an alternative stimulation to

evoke other sensations in the user, not only increasing the alertness. Furthermore, alternative

patterns such as lateral sweeping or circular sequence were tested during the development

of the perception experiment. These patterns also evoked different sensations. Thus, further

exploring this approach is a field of study worth furthering in the future.

Perception Threshold Experiment Pilot

After validating the hypothesis that a vibration created with randomly-localized peaks is

perceived as more alerting than one created with a single location peak, the next step is to

quantify the difference in the perception. To do this, a pilot experiment is proposed to get an

idea of the perception threshold for each vibrational pattern (i.e., the minimum amplitude

where the vibration is perceived).
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Each stimulation pattern is evaluated in a separate experiment, where the vibrational pattern

is presented several times with increasing amplitude. The participant is asked to report

when she/he starts feeling a vibration and the respective upeak is registered. Each time,

the stimulation pattern is presented during Tpat ter n milliseconds, followed by a short pause

(Tpause ) before displaying the next stimulus with a higher upeak . Vdr i ve is kept constant during

Tpat ter n , and it is only changed during the pause. For the pilot, the threshold experiment is

repeated two times for each pattern. Before running the experiment, it is important to find

the amplitude range (i.e., the value for Qa) where the vibration is not felt for the lowest upeak

value, but it is perceived for the highest upeak value. Using the RANDOM pattern (F = 2N, the

RANDOM pattern ’x’, and nr = 10), it was found that the perception threshold for the haptic

demonstrator occurs for Qa = 2, where the amplitude range is [0.475 µm to 2.12 µm].

Four participants (male and female, aged 25 - 35 years old) are asked to touch the glass

plate with a constant pressing force. During the experiment, they are asked to wear noise-

canceling headphones with a continuous track of Pink noise. The experimental parameters

are summarized in Table 6.6.

Table 6.6: Experimental parameters for the threshold perception pilot.

Parameter
Tpat t er n

[ms]
Tpause

[ms]
F
[N]

fr

[Hz]
nr

[times]
RANDOM
Pattern

Vd r i ve

[V]
Qa

[piezo]
Defined
Value

1200 600 2.0 250 10 ’x’ [15 - 60] 2

In this experiment, ten amplitude levels are presented. To do this, Vdr i ve is incremented in

steps of 5 V (increments of 0.18 µm, Eq. 6.4) starting at 15 V and ending at 60 V. The results are

presented in Table 6.7.

Table 6.7: Threshold perception pilot results.

P1.1 P1.2 P2.1 P2.2 P3.1 P3.2 P4.1 P4.2
Threshold Level SINGLE [µm] 1.37 1.55 1.18 1.37 1.37 1.75 1.55 1.55
Threshold Level RANDOM [µm] 1.37 1.55 1.37 1.37 1.18 1.37 1.37 1.55

This pilot evaluates the threshold on a rough scale, and the exact detection threshold has

yet to be found. Nevertheless, an interesting trend was observed. Three out of eight times,

the RANDOM pattern threshold level was smaller than the SINGLE threshold. One out of

eight times, the opposite behavior is observed. Half of the time, both patterns have the same

threshold level. These results do not permit us to conclude a perception threshold yet, but they

motivate the hypothesis that the RANDOM pattern has a lower threshold than the SINGLE

pattern.
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6.4.2 Threshold Experiment Outlook

In future work, a more detailed threshold measurement is planned following standard methods

from signal detection theory [147, 148]. The experiment is designed based on the Method of

Constant Stimuli (MSC) [149], where the strategy is to present the participant with several

trials that contain stimuli ranging in intensity. The stimuli are presented in random order

The threshold is determined by finding the intensity at which the participant can detect the

stimulus in 50 percent of the trials.

The main challenge when designing an experiment with the MSC is determining the range

for the amplitude of the stimuli. To determine this range, a preliminary experiment is carried

out using a similar approach to our detection threshold pilot. i.e., the vibrational pattern is

presented several times with increasing amplitude, and the participant is asked to report when

she/he starts feeling the vibrations. Then, the opposite experiment is executed, the vibrational

pattern is presented several times with decreasing amplitude, and the participant is asked to

report when the vibration is not felt anymore. The threshold to start feeling the vibration is

expected to be higher than the threshold to stop feeling it. These two values are recorded and

determine the range for upeak that will be used for that participant during the main threshold

experiment (following the MSC).

6.5 Outlook on the Haptics Demonstrator as a DMI

The developed haptics demonstrator permits to obtain localized vibration over the surface of

a glass plate. This device has the potential to be transformed into a Digital Musical Instrument

(DMI). For this purpose, a three-dimensional touch sensing layer (i.e., 3D = X, Y: position of

the finger + Z: Force) must be integrated to capture the motion of the fingers. The TrIR dataset

and the driving electronics can be used to create localized peaks on the desired locations to

provide feedback to the user.

Figure 6.18: 3D touch sensing layer prototype.

Due to time constraints, it was impossible to finish the development of the 3D sensing layer for

the haptic demonstrator surface. The sensing layer is under development and will continue
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as future work. The concept uses a thin (100 µm) layer of silicon (PDMS) with transparent

electrodes on both sides. The electrodes are divided into a matrix to develop an array of capac-

itive sensors. The finger-pressing force deforms the silicone, which changes the capacitance

at a given location. When the capacitance is measured at a high rate, it is possible to detect

simultaneous contacts over the surface. The sensing layer prototype is presented in Fig. 6.18.

With this idea in mind, an experiment was carried out to validate the effect on upeak of adding

a sensing layer on top of the glass surface. The single-piezo haptic demonstrator (Section

6.3.2) was used. First, a silicon layer of 100 µm is laid on top of the glass plate. Then, the

amplitude of the localized peak is compared to the original displacement when there is no

silicon layer. The results are presented in Fig. 6.19.
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Figure 6.19: upeak for the single-piezo glass plate with and without a thin (100 µm) overlay of
silicon (PDMS).

It was found that the silicon layer reduces the peak amplitude by 11%. Furthermore, an

increasing delay can be observed. This delay should be considered since it indicates a change

in the plate’s attenuation constant, affecting the repetition rate ( fr ) and the optimal duration

of the driving signal (Ts).

6.6 Conclusion

In this chapter, the perceptual effect of the novel pattern is evaluated.

A time-reversal haptics demonstrator was developed guided by the Time-Reversal Method

(TRM) knowledge and the engineering tradeoffs introduced in Chapter 2. The development

was done in two phases. First, a demonstrator with a single actuator was built to compare two

different strategies to bond the piezoelectric actuators to the glass plate and three different

methods to fix the glass plate to a rigid frame. It was found that using glue to fix the piezo is

better than using thin (50 µm) double-sided tape and that using a thick (1 mm) tape to fix the

glass plate helps to reduce the attenuation constant (τ) which permits to repeat the localized

peaks at a higher rate. An interesting behavior was found for a mechanical fixing that increases

the peak amplitude (upeak ) while keeping τ smaller than other rigid fixing conditions. Second,
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a demonstrator with multiple actuators and an active area of 80×80 mm2 was developed. The

haptics demonstrator is characterized, and the key metrics are compared to the theoretical

values. It is possible to create localized peaks in the range of [0.33 to 11.20 µm] with a contrast

ratio of 12.4, a temporal resolution (Rt ) of 21.2 µs, and a spatial resolution (Rs) of 9 mm.

A paired-comparison experiment was executed to compare the vibration created with randomly-

localized peaks (RANDOM) with a vibration created with single-location peaks (SINGLE). The

haptics demonstrator was used to develop an experimental setup for the perception experi-

ments. The experimental parameters are described, and an extensive piloting phase is carried

out to find the parameters that provide the biggest differentiation between the SINGLE and

RANDOM patterns. The experimental protocol is described, and an experiment with 12 volun-

tary participants is carried out. The perception experiment shows that there are significantly

more "RANDOM" responses than "SINGLE" responses to the question "Which pattern is per-

ceived as more alerting?" Furthermore, the difference between the two categories is significant

[P-value = 0.0017 < 0.05]. These results confirm the hypothesis that a random-excitation signal

is perceived as more alerting than a single-excitation signal for the experimental parameters

presented in Table 6.4.

The results from a perception threshold pilot allow formulating the hypothesis that the RAN-

DOM pattern has a lower perception threshold than the SINGLE pattern. The experimental

protocol to validate this hypothesis is proposed.

The potential to use the haptic demonstrator to develop a digital musical instrument is

discussed, and the effect of adding a sensing layer on top of the glass plate on upeak is evaluated

with an experiment. A thin (100 µm) sensing layer only decreases the peak amplitude by 11 %.

In the future, the paired-comparison experiment could be expanded to include manipulating

the experimental parameters. This deeper study can provide information on which parameter

maximizes the perceptual difference between SINGLE and RANDOM. Moreover, the novel

pattern can evoke alternative sensations when providing haptic feedback, so it is interesting

to study the applications of these sensations and validate the effect of the randomly-localized

stimulation on alternative surface haptic feedback methodologies (e.g., pin array interfaces).

Publications related to this chapter :

• C. H. Mejia, J. Jayet, P. Germano, A. Thabuis, and Y. Perriard, “Linear Impact Generator

for Automated Dataset Acquisition of Elastic Waves in Haptic Surfaces,” in 2019 22nd

International Conference on Electrical Machines and Systems (ICEMS), pp. 1–5, Aug.

2019.

• C. Hernandez-Mejia, X. Ren, S. Papetti, H. Jarvelainen, T. Chavdarova, P. Germano, and

Y. Perriard,"GANs for Localized Vibrotactile Feedback in Haptic Surfaces: Single Vs

Randomly-distributed stimulation", in IEEE Transactions on Haptics (ToH). [Pending]
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7 General Conclusion

This exploratory work introduces state-of-the-art machine learning techniques into the time-

reversal haptics field of study and it shows the potential of these approaches to bring new

knowledge into the haptics research field. By studying different deep-learning methods to

generate the signals that are used to create a localized peak, it was possible to bring incremental

improvements to the quality of the peaks and to develop a novel vibrational pattern. The novel

pattern involves creating the vibration with randomly-localized peaks (RANDOM stimulus) in

contrast to the traditional approach of repeating a localized peak (SINGLE stimulus). A human

perception experiment proved that the RANDOM stimulus is perceived as more alerting

than the SINGLE stimulus. Furthermore, the randomly localized pattern can evoke different

sensations compared to the single peak pattern, which opens the door to developing new

vibrotactile feedback cues.

The scientific approach was to study the problem in separate building blocks. At each step, one

or several research questions were formulated, and the associated hypothesis was proposed.

The general conclusion is compiled by answering each of these questions:

"How can ML models represent the relevant features of the impact data?"

By developing a Machine Learning (ML) framework and choosing the right representation

of the signal, ML can be used to extract relevant features from impact data. In particular, a

novel impact position detection strategy was developed. ML models were trained to predict

the location where an impact occurred after receiving the impact signal as an input. The FFT

magnitude of the impact signals proved to be a compact yet powerful signal representation

that is associated with the natural modes of the surface. It was possible to determine that the

contact duration affects the precision of the impact source location task. In the future, this

feature should be considered as an input to the model to maintain high accuracy and make

the detection model more robust.

"How can Machine Learning (ML) and Deep Learning (DL) be used to represent the time-

reversed signals used to create a localized peak?" and "How can DL be used to optimize the

contrast ratio and ensure the desired location of the peak?"
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A deep neural network was pre-trained to learn the mapping between the desired location

of the peak and the time-reversed signal (TrIR signal) that can create a localized peak. Using

the FFT magnitude representation, it is possible to simplify the generated signal into a low-

dimensional vector containing the FFT Magnitude for 88 most relevant natural modes. This

simplification allowed Reinforcement Learning (RL) to optimize the pre-trained NN. The

RL framework modified the DNN in such a way that the generated signals had the same

performance as the full spectrum TrIR signal or even higher (The optimized model improves

the contrast ratio by 2 % compared to the traditional signals and by 14 % compared to the

pre-trained neural network)

"How can Deep-Generative Models be used to generate time-reversed signals that can create

a localized displacement peak?" and "What is the effect of the diversity from the GANs on

the properties of the localized peaks?"

An alternative generative method that learns the probabilistic distribution of a TrIR dataset is

studied. Using an existing GAN model (WaveGAN) it was validated that this deep-generative

model can accurately capture the distribution of the TRIrDS, and generate peaks with a similar

quality compared to the original dataset. By adding a conditioning label to the WaveGAn

model, it is possible to control the type of signals that are generated, thus the location where

the localized peak occurs. Including a condition increases the similarity of the generated signal

with the reference TrIR and the quality of the localized peak. Nevertheless, the generative

model still provides some diversity (i.e., the generated signals are not always the same, they

have slight variations with respect to the original TrIR) which affects the properties of the

peak. It was found that the generated signals create peaks with varying amplitude and a slight

variation in the location of the peak (0 to +2 mm around the target location). This variation

inspired the RANDOM stimulation pattern. This novel pattern can increase the user’s alertness,

potentially reducing the perception threshold. This reduces the peak amplitude requirements,

which reduces the amount of power consumed (lower driving voltage or lower number of

piezo).

"What is the effect of randomly distributed peaks on the human perception of localized

vibrations?"

A haptics demonstrator surface was developed based on the time-reversal method theory and

engineering tradeoffs. This device was used to build an experimental setup to validate the

perceptual effect of the novel pattern. With authorization from the EPFL ethics committee

(HREC), a paired comparison experiment is designed and executed with 12 voluntary partici-

pants. The results confirm the hypothesis that the randomly-localized peaks are perceived

as more alerting (or stronger by some users) than the single-location peaks. An important

finding is that the RANDOM stimulus is perceived deeper in the finger, while the SINGLE

stimulus is perceived more towards the tip of the finger (superficial). This finding can inspire

the development of novel vibrotactile feedback cues where alternative sensations are evoked.

Furthermore, a perception threshold pilot permitted the formulation of the hypothesis that

the novel pattern has a lower perception threshold.
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7.1 Original Contributions

• An iterative methodology to acquire data, evaluate the data transformation and train a

model to extract information from impact signals was developed. This methodology

was used to create a novel impact position detection strategy using a single piezoelectric

transducer and ML models.

• A compact representation of the impact signal was proposed based on the domain

knowledge of wave propagation. The FFT magnitude of the signal permits to enhance

the feature extraction and improves the impact position detection precision. This is

explained by the relation of the stimulated natural modes whit the location where the

peak occurred.

• A new approach to optimize the localized peaks that are obtained with time-reversed

impulse response signals was developed. A Deep Neural Network was trained to learn

the one-to-one mapping between the desired location of the peak and the TrIR signal

to generate the peak. The reinforcement learning framework was used to iteratively

optimize the NN and improve the peak’s quality (contrast ratio) while ensuring the right

location and maximizing the amplitude of the peak.

• A novel approach to storing and generating time-reversed signals was developed using

Generative Adversarial Networks (GANs). The conditional model generates peaks with

the same quality as the original signal, but the diversity involved in the GAN framework

inspired the development of a novel pattern of vibrotactile stimulation.

• A novel stimulation pattern that increases the user’s alertness compared to the continu-

ous vibration obtained with a single localized peak was proposed. This novel stimulus

can reduce power consumption when providing vibrational feedback to a user and

evoke alternative sensations.

• A haptic demonstrator was developed, and a perceptual experimental protocol was

proposed to evaluate the effect of different vibrotactile patterns. This demonstrator can

be used as the base for the development of a Digital Musical Instrument (DMI).

7.2 Outlook

This work explored the benefits of using Deep Learning strategies to optimize the localized

peaks obtained with the time-reversal method. As a Ph.D. student, one desires to study every

single aspect and continue digging further into the different explored approaches, but time

is limited. The following list presents some aspects that we consider worth exploring in the

future.

Regarding the proposed impact position detection strategy, developing an ML system with

multiple outputs is interesting. Beyond predicting the impact location, it is of high relevance
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to extract the impact force and the number of contacts (when there are several). If a limited

number of contacts is defined, the model can be designed to extract multiple contact locations

from the acquired impact signal.

Concerning the peak properties optimization, the RL optimization phase is strongly limited by

the time it takes to make the vibration scan (i.e., HiL experimental validation of the signal). It

is vital to reduce this step to enable a thorough exploration of alternative optimization models,

signal representations, reward functions, and NN architectures. To achieve this, one could

replace the HiL with a simplified simulation environment (i.e., using the wave propagation

equations) early in the optimization stages.

Proving that GANs can accurately model the time-reversed signals opens the doors to experi-

menting with modifications inside the generator that could help discover novel stimulation

patterns. For instance, one can explore the effect of interpolations on the discrete conditions

(i.e., providing two desired locations simultaneously to the generator). Moreover, one could

explore the effect of diversity when multiple piezo signals are generated (each piezo signal can

be considered as an additional channel for the GAN). Lastly, it is compelling to experiment

with additional conditioning parameters such as signal (e.g., the audio output of a digital

musical instrument), which can modulate the amplitude of the generated peaks.

Future work on the time-reversal haptics demonstrator should focus on further exploring the

effect of the boundary conditions on the amplitude of the localized peak and the attenuation

constant. The preliminary finding of the relation between the fixing of the glass plate (Section

6.3.2) and the peak amplitude is very interesting. It appears that the mechanical fixing is

adding some pre-load into the system that contributes to increasing peak amplitude. From the

driving electronics point of view, it is highly relevant to design the driver to recover the energy

of the piezo when discharging it. This could help to optimize energy usage when creating a

localized peak.

From the perception point of view, it is highly interesting to evaluate the perceptual effect of

randomly changing the amplitude of the peaks. This stimulation could also catch the user’s

attention and help reduce the perception threshold. A more extended paired-comparison

experiment could be developed to experiment with different pressing forces, peak amplitudes,

pattern frequencies, and random patterns. This deeper study can provide information on

the effect of each parameter on perceived alertness which allows finding which parameter

maximizes this perceptual difference. Moreover, the novel pattern shows some potential

to evoke different types of feelings when providing haptic feedback. Thus, it is relevant to

study the effect of the randomly-localized stimulation on alternative surface haptic feedback

methodologies (e.g., pin array interfaces and other direct actuation methods).
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A Neural Network Architectures

This Appendix presents the architectures for the different Neural Networks (NN) that are used

in this thesis.

A.1 Impact Position Detection NN Architectures

A.1.1 Fully Connected NN

The architecture of the fully connected NN (Vanilla NN) that was used for impact position

detection is displayed in the following table:

Table A.1: Impact position detection fully connected NN architecture.

Operation Layer Size
Input Layer 1
Fully Connected Layer 1024
ReLU Layer –
Batch Normalization –
Gaussian Noise (0.5) –
Fully Connected Layer 128
ReLU Layer –
Batch Normalization –
Gaussian Noise (0.3) –
Fully Connected Layer 64
ReLU Layer –
Batch Normalization –
Gaussian Noise (0.2) –
Fully Connected Layer 32
ReLU Layer –
Batch Normalization –
Gaussian Noise (0.1) –
RegressionLayer output size: 1
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The fully connected NN was trained using the MAE loss function, and the weights of the

network are updated using the Adam optimizer [107]. The batch size is 32. The model was

trained for 900 epochs (iterations) with a learning rate of lr = 0.001. Then, for another 900

iterations with a lr = 0.00001.

A.1.2 2D Convolutional NN (2DCNN) Architecture

The architecture of the 2D CNN that was used for impact position detection is displayed in the

following table:

Table A.2: Impact position detection 2DCNN architecture.

Operation kernel Size
Number of filters
or Layer Size

Stride

Input Layer input size : 234 × 128 or 260 × 128
Conv2D [3 3] Number of Filters: 32 [2 2]
ReLU Layer
Batch Normalization
DropOut (0.5)
Conv2D [3 3] Number of Filters: 32 [2 2]
ReLU Layer
Batch Normalization
DropOut (0.5)
Conv2D [3 3] Number of Filters: 64 [2 2]
ReLU Layer
Batch Normalization
DropOut (0.5)
Conv2D [3 3] Number of Filters: 64 [2 2]
ReLU Layer
Batch Normalization
DropOut (0.5)
Flatten
Fully Connected Layer Layer Size: 256 [2 2]
ReLU Layer
Batch Normalization
DropOut (0.5)
RegressionLayer output size : 1

The 2DCNN was trained using the MAE loss function and the weights of the network are

updated using the Adam optimizer [107]. The batch size is 32. The model was trained for 1000

epochs (iterations) with a learning rate of lr = 0.001. Then, for another 1000 iterations with a

learning rate of lr = 0.0001.
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A.2 RL Actor NN Architectures

A.2.1 RL Actor 1: Fully Connected NN Architecture

The architecture of the fully connected NN actor (Actor 1) is presented in the following table:

Table A.3: RL actor 1: fully connected NN architecture.

Operation Layer Size
Input Layer input size : 1
Fully Connected Layer Layer size : 256
ReLU Layer
Fully Connected Layer 600
ReLU Layer
Fully Connected Layer 600
ReLU Layer
Fully Connected Layer 600
ReLU Layer
Fully Connected Layer 88
RegressionLayer output size: 88

A.2.2 RL Actor 2: 1D Convolutional Neural Network (1DCNN) Architecture

The architecture of the 1D Convolutional NN actor (Actor 2) is presented in the following table:

Table A.4: RL actor 2: 1DCNN architecture.

Operation kernel Size
Number of filters
or Layer Size

Stride

Input Layer input size : 1
Fully Connected Layer Layer size : 256
ReLU Layer
TransposedConv2dLayer [5 1] 128 [4 1]
ReLU Layer
TransposedConv2dLayer [5 1] 128 [3 1]
ReLU Layer
TransposedConv2dLayer [3 1] 64 [4 1]
ReLU Layer
TransposedConv2dLayer [3 1] 64 [2 1]
ReLU Layer
TransposedConv2dLayer [3 1] 32 [1 1]
ReLU Layer
TransposedConv2dLayer [3 1] 32 [1 1]
ReLU Layer
TransposedConv2dLayer [1 1] 1 [1 1]
RegressionLayer output size : 88
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A.3 GAN Architectures

A.3.1 WaveGAN

The architecture for the WaveGAN model [82] is defined in terms of three parameters. 1) The

number of channels, c, 2) the batch size b = nbatch , and 3) the dimensionality of the model d .

For our experiments, we only use one piezo, thus c = 1, and the model size is fixed to d = 64.

The WaveGAN model was trained using the WGAN-GP [128] loss function (where WGAN-GP λ

= 10) and the weights of the network are updated using the Adam optimizer [107]. The latent

vector size is nz = 100. The batch size (nbatch) is 64. The batch normalization was deactivated

(batchnor m = False). The number of channels is, c = 1 (Note that for our application the

number of channels is equal to the number of piezo). The model dimensionality is d = 64.

The phase shuffle was set to 2 (nphase = 2). The discriminator was trained 5 times per each

training of the generator (D updates per G updates = 5). The model was trained for 250

k epochs (iterations) with a learning rate of lr = α = 0.0001, a β1 = 0.5 βs = 0.9. Original

hyper-parameters from [82].

The architecture of the WaveGAN generator (G) is presented in the following table:

Table A.5: WaveGAN generator (G) architecture.

Operation kernel Size Output Shape Stride
Input z ∼ Uniform(-1,1) (n, 100)
Fully Connected Layer [100, 256d ] (n, 256d)
Reshape (n, 16, 16d)
ReLU Layer (n, 16, 16d)
TransposedConv1DLayer [25, 16d , 8d ] (n, 64, 8d) 4
ReLU Layer (n, 64, 8d)
TransposedConv1DLayer [25, 8d , 4d ] (n, 256, 4d) 4
ReLU Layer (n, 256, 4d)
TransposedConv1DLayer [25, 4d , 2d ] (n, 1024, 2d) 4
ReLU Layer (n, 1024, 2d)
TransposedConv1DLayer [25, 2d , d ] (n, 4096, d) 4
ReLU Layer (n, 4096, d)
TransposedConv1DLayer [25, d , c] (n, 16384, c) 4
Tanh Layer (n, 16384, c)
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The architecture of the WaveGAN discriminator (D) is presented in the following table:

Table A.6: WaveGAN Discriminator (D) architecture.

Operation kernel Size Output Shape Stride
Input x or G(z) (n, 16384, c)
TransposedConv1DLayer [25, c, d ] (n, 4096, d) 4
LeakyReLU Layer (α =2) (n, 4096, d)
Phase Shuffle (nphase ) (n, 4096, d)
TransposedConv1DLayer [25, d , 2d ] (n, 1024, 2d) 4
LeakyReLU Layer (α =2) (n, 1024, 2d)
Phase Shuffle (nphase ) (n, 1024, d)
TransposedConv1DLayer [25, 2d , 4d ] (n, 256, 4d) 4
LeakyReLU Layer (α =2) (n, 256, 4d)
Phase Shuffle (nphase ) (n, 256, d)
TransposedConv1DLayer [25, 4d , 8d ] (n, 64, 8d) 4
LeakyReLU Layer (α =2) (n, 64, 8d)
Phase Shuffle (nphase ) (n, 64, d)
TransposedConv1DLayer [25, 8d , 16d ] (n, 16, 16d) 4
LeakyReLU Layer (α =2) (n, 16, 16d)
Reshape (n, 256d)
Fully Connected Layer [256d , 1] (n, 1)

A.3.2 Contitional WaveGAN (cWaveGAN)

The architecture for the cWaveGAN model is defined in terms of four parameters. 1) The

number of channels, c, 2) the batch size b = nbatch , 3) the dimensionality of the model d . An

additional parameter is defined, 4) the number of labels, j = nl abel s . For our experiments, we

only use one piezo, thus c = 1, and the model size is fixed to d = 64. The number of labels is

j = nl abel s = 177 (As explained in Section 5.3.3).

The cWaveGAN model was trained using the WGAN-GP [128] loss function (where WGAN-GP

λ = 10) and the weights of the network are updated using the Adam optimizer [107]. The latent

vector size is nz = 100. The batch size (nbatch) is 128. The batch normalization was activated

(batchnor m = True). The phase shuffle was deactivated (nphase = 0). The discriminator was

trained 5 times per each training of the generator (D updates per G updates = 5). The model

was trained for 30 k epochs (iterations) with a learning rate of lr = α = 0.00025, a β1 = 0.5 βs =

0.9.

NOTE: For both WaveGAN and cWaveGAN, all layers include biases.
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In the conditional WaveGAN, the condition c is taken as a parallel input. (i.e., for G , parallel to

the latent vector z. For D , parallel to either the dataset sample x or generated sample G(z)). c

is transformed using an embedding NN. Then, it is concatenated with the input of G and D

right before the convolutional layers.

The architecture of the conditional generator G is presented in the following two tables:

Table A.7: Label Embedding for generator G .

Operation Output Shape
Input c (n, 1)
Embedding (nl abel s = j ) (n, j , 20 j )
Fully connected (n, 16)
Reshape (Out is Gl abel ) (n, 16, 1)

Table A.8: cWaveGAN generator (G) architecture.

Operation kernel Size Output Shape Stride
Input z ∼ Uniform(-1,1) (n, 100)
Fully Connected Layer [100, 256d ] (n, 256d)
Reshape (n, 16, 16d)
Batch Normalization (n, 16, 16d)
ReLU Layer (n, 16, 16d)
Concatenate with Gl abel (n, 16, 16d + 1)
TransposedConv1DLayer [25, 16d , 8d ] (n, 64, 8d) 4
ReLU Layer (n, 64, 8d)
Batch Normalization (if batchnor m) (n, 64, 8d)
TransposedConv1DLayer [25, 8d , 4d ] (n, 256, 4d) 4
ReLU Layer (n, 256, 4d)
Batch Normalization (if batchnor m) (n, 256, 4d)
TransposedConv1DLayer [25, 4d , 2d ] (n, 1024, 2d) 4
ReLU Layer (n, 1024, 2d)
Batch Normalization (if batchnor m) (n, 1024, 2d)
TransposedConv1DLayer [25, 2d , d ] (n, 4096, d) 4
ReLU Layer (n, 4096, d)
Batch Normalization (if batchnor m) (n, 4096, d)
TransposedConv1DLayer [25, d , c] (n, 16384, c) 4
Tanh Layer (n, 16384, c)
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The architecture of the conditional discriminator D is presented in the following two tables:

Table A.9: Label Embedding for discriminator D .

Operation Output Shape
Input c (n, 1)
Embedding (nl abel s = j ) (n, j , 20 j )
Fully connected (n, 16384)
Reshape (Out is Dl abel ) (n, 16384, 1)

Table A.10: cWaveGAN discriminator (D) architecture.

Operation kernel Size Output Shape Stride
Input x or G(z) (n, 16384, c)
Concatenate with Dl abel (n, 16384, c + 1)
TransposedConv1DLayer [25, c, d ] (n, 4096, d) 4
LeakyReLU Layer (α =2) (n, 4096, d)
Phase Shuffle (nphase ) (n, 4096, d)
TransposedConv1DLayer [25, d , 2d ] (n, 1024, 2d) 4
LeakyReLU Layer (α =2) (n, 1024, 2d)
Phase Shuffle (nphase ) (n, 1024, d)
TransposedConv1DLayer [25, 2d , 4d ] (n, 256, 4d) 4
LeakyReLU Layer (α =2) (n, 256, 4d)
Phase Shuffle (nphase ) (n, 256, d)
TransposedConv1DLayer [25, 4d , 8d ] (n, 64, 8d) 4
LeakyReLU Layer (α =2) (n, 64, 8d)
Phase Shuffle (nphase ) (n, 64, d)
TransposedConv1DLayer [25, 8d , 16d ] (n, 16, 16d) 4
LeakyReLU Layer (α =2) (n, 16, 16d)
Reshape (n, 256d)
Fully Connected Layer [256d , 1] (n, 1)
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B One-Bit Piezo Driving Electronics
Development

The Printed Circuit Board (PCB) is designed to drive eight piezo actuators independently. The

input VI N is a digital signal (0 V to 5 V) which is generated by an FPGA (NI9045 Compact Rio +

Ni9041 High-speed DI/O Module). The output signals going to the piezo actuators, Vpi ezo are

binary signals and range from 0 V to the supply voltage Vdr i ve . The PCB is designed to receive

a supply voltage of up to 60 V. Each output is driven by two N-channel MOSFET transistors

(DiodesZetex ZXMN10A08) placed in a half-bridge configuration and their gate are controlled

by a high-voltage half-bridge gate driver (Texas Instruments LM5104).

B.1 Single-piezo Diver

This version is meant to validate the single piezo driver’s design before manufacturing the

eight-channel PCB.

B.1.1 Components Layout

The typical application schematic for the LM5104 Gate Driver Data-sheet is presented in Fig.

B.1. The external recovery diode is not necessary as the LM5104 Driver already has an internal

diode which is sufficient for that purpose. The two gate diodes are also not necessary, the 100

Ω gate resistors are sufficient to discharge the MOSFETs’ gate quickly enough, even at driving

frequencies up to 200 kHz.

The electrical components arrangement on the PCB is inspired by the hints given in the

LM5104 Gate Driver Data-sheet (Chapter 10.1: Layout Guidelines). The actual PCB design

is shown on Fig. B.2. The LM5104 (U 1) is placed as close as possible to the MOSFETs (Q1

and Q2) allowing the tracks that contain the two gate resistors (R2 and R3) to be as short as

possible. The Bootstrap capacitor (C 2) is also placed as close as possible to the LM5104.

The P1 connector is the driving signal input VI N . Connectors J1, J2, and J3 are respectively

the 12 V power supply for the LM5104 Driver, the Vdr i ve power supply for the half-bridge
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Appendix B. One-Bit Piezo Driving Electronics Development

Figure B.1: Electric schematics of the recommended components built around the LM5104,
from the LM5104 Gate Driver Data-sheet (p.11).

high-side, and the voltage output to the piezo actuator (Vpi ezo . The RT resistor (R1) is used

to set the switching delays of the two MOSFETs and C 1 is a decoupling capacitor for the J1

power supply. Vias that link both top and bottom ground planes have been added near all the

tracks in order to provide short paths for current leaks to flow to the ground. The aim is to

minimize noise perturbations from the high-power side of the PCB on the control side.

Figure B.2: Single piezo driver PCB design (Altium Designer).
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B.1 Single-piezo Diver

B.1.2 Components Calculation

The most important component of the driver is the bootstrap capacitor. It shall be able to

provide enough charge to the high-side MOSFET’s gate at each switching cycle while keeping

its voltage stable. In addition, it has to be small enough to keep its charging time low. The

necessary calculations to choose the correct capacitance are given in the LM5104 Gate Driver

Data-sheet (Chapter 8.2.2: Detailed Design Procedure). The total charge to provide to the

MOSFET’s gate is calculated as follows:

Qtot al =Qg max + IHBO × Dmax

FSW
= 7.7 nC+3 mA× 0.5

200 kHz
= 15.2 nC (B.1)

This charge has to be provided at a voltage of:

∆VHB =VDD −VD H −VHBL = 12 V−1.1 V− (7.1 V−0.4 V) = 4.2 V (B.2)

Which gives the total capacitance:

Cboot str ap ≥ Qtot al

∆VHB
= 15.2 nC

4.2 V
= 3.6 nF (B.3)

The Bootstrap capacitor must be larger than 3,6 nF, a standard value of 6,8 nF was been chosen.

The MOSEFTs’ switching delay is set by the RT resistor, a value of 10 kΩ has been chosen and

sets a delay of about 85 ns reading from Fig. B.3 (this value is small compared to the 2500 ns

half-period of a 200 kHz square signal).

Figure B.3: Turn On Delay vs RT Resistor Value, LM5104 Gate Driver Data-sheet (p.13).

Once the PCB has been manufactured, a test was carried out using a 200 kHz square signal as

VI N and a Vdr i ve = 30 V for the piezo actuator. Fig. B.4 shows the voltage measurements on

the PCB (VI N , Vpi ezo , and the MOSFETs gates voltage (high-side, VHO , and low-side, VLO).
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Appendix B. One-Bit Piezo Driving Electronics Development

Figure B.4: Input signal (VI N green trace), differential voltage measurement of the high-side
and low-side gates (VHO blue and VLO yellow traces respectively) and output voltage (Vpi ezo

pink trace) on which the piezo actuator is connected, on the single driver PCB.

The duty cycle of VI N (green trace) is set to 0.5 but one can notice that Vpi ezo (pink trace) stays

longer at 30 V than 0 V, setting a different duty cycle than the input signal (above 0.5). This

effect can be a problem during the focusing process as the time-reversed IR signal in the piezo

could be distorted. Fortunately, this delay is the same on each circuit of the PCB described in

Section B.2, thus signal synchronization is still guaranteed.

A load resistor, RL , is added in series with the piezo actuator. Its objective is to filter the

voltage spikes on the output voltage, which are generated by the capacitive nature of the piezo

actuator. The resulting circuit is presented in Fig. B.5. The selected value for RL is 39Ω, which

provides sufficient dampening without increasing the piezo charging time (i.e., the rising edge

of the pink trace on Fig. B.4).

−

+

Vi n(t )

i (t ) RL

Cpi ezo

Figure B.5: Output circuit composed of a load resistor RL of 39 Ω and the piezo actuator’s
capacitance Cpi ezo of 8 nF.
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B.2 Eight-channel Piezo Driver

The load resistor is subject to high currents as the Vi n(t) voltage can go up to 60 V. The RC

circuit is modeled by a simple transfer function, where C =Cpi ezo and R = RL :

I (s)

Vi n(s)
= Cs

1+RC s
(B.4)

Using this transfer function one can simulate the current going through the resistor. Fig. B.6a

presents the simulated values for ipi ezo(t ) when Vi n(t ) is a square signal at 200 kHz.

(a) (b)

Figure B.6: (a) Current passing through the circuit when Vi n(t) is a 200 kHz square signal in
Vi n (b) RMS values of the current and power through the load resistor RL in function of the
square signal’s frequency.

Considering a square signal with an amplitude of 0 V to 60 V as Vi n(t) and calculating the

power dissipated into the resistor with PRL (t ) = RL × i 2(t ) one can then obtain the Root Mean

Square (RMS) power dissipated in the resistor on a duration of n periods T :

PRMS =
√

1

nT

∫ nT

0
P 2

RL
(t )d t (B.5)

Fig. B.6b is obtained after calculating the RMS power for a range of driving frequencies. The

power dissipated in the resistor is significant and thus a high-power resistor shall be used

for high driving frequencies. It has been noted that when using the setup for its nominal use

(localized peak repetition at 250 Hz) a 1/2 W resistor is sufficient.

B.2 Eight-channel Piezo Driver

The eight-channel piezo driver is composed of an array of eight single piezo drivers. Each driver

can independently amplify the driving signal for one piezo actuator. The PCB is presented in

Fig. B.7).
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Figure B.7: PCB for the eight-channel piezo driver.

There are two connectors per side. On the left side, the 2-pin connector (green) is the 12 V

power supply for the gate drivers, and the 16-pin connector (white) takes the digital inputs

from the FPGA. On the right side, the 2-pin connector (green) is the Vdr i ve power supply for

the high side of the half-bridge, and the 16-pin connector (white) outputs the amplified digital

signals to drive the piezoelectric actuators. The RL resistors are placed close to each piezo

actuator. As mentioned before, the current that is drained by the piezo actuators is significant,

thus the 60 V power supply track distributing the voltage to the high-side of the half-bridge

has been designed with a width of 1 mm, compared to the standard width of 0.5 mm for all

other tracks.

Each independent circuit of this PCB has been tested following the same process as the single

piezo driver. Fig. B.8 displays the test for one channel, it is observed that the output voltage

width is consistent with the input width although a delay is present.

Figure B.8: Input signal (VI N green trace) and output voltage (Vpi ezo yellow trace) for on one
channel of the eight-channel piezo driver PCB.
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