
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Sparse Autoencoders for Speech Modeling and
Recognition

Selen Hande KABIL

Thèse n° 9669

2023

Présentée le 2 février 2023

Prof. A. Ijspeert, président du jury
Prof. H. Bourlard, directeur de thèse
Prof. H. Christensen, rapporteuse
Dr M. Cernak, rapporteur
Prof. J.-Ph. Thiran, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire de l’IDIAP
Programme doctoral en génie électrique

Our true mentor in life is science.

— Kemal Atatürk

To my parents. . .

Acknowledgements

I have been incredibly fortunate and honoured to be the last student of Prof. Hervé Bourlard.

Without his constant patience, encouragement and advices, this thesis would not have been

possible. I sincerely thank Hervé for this incredible journey.

I thank Swiss National Science Foundation (SNSF) for funding my work through the grant

200021-175589 for the SHISSM project. I kindly thank my thesis committee members Prof.

Auke Ijspeert, Prof. Jean-Philippe Thiran, Prof. Heidi Christensen, and Dr. Miloš Ćernak for

their insightful comments and questions.

I would also like to thank Dr. Mathew Magimai-Doss who introduced me to Idiap and speech

processing community. I was fortunate to complete my masters thesis under his supervision.

And, a special mention goes to Dr. Ina Kodrasi, who has been a mentor for me. Her hardwork,

dedication and consistency still amaze me.

The last 4.5 years was such an incredible journey. I learned a lot, about myself too. With all

these ups and downs, I am most grateful to have two friends: Aysu and Isinsu. We survived

through our PhDs together. Your existence created the little comfort zone in Lausanne that

was very much needed.

Idiap introduced me incredible friends, some of them I am happy to call as my second family.

I would like to thank Gülcan and PE for their support and resistance to my never-ending

nagging. I thank Florian for his crazy sense of humour and kind soul and, of course, for

random walks around windy Martignyland during which we questioned the life and stuff. I

thank Hakan for his sarcasm and constant opposition for almost every subject matter existed.

I thank Teja, Skanda and Reema for Friday night game events which were the highlight of my

busy weeks. I am grateful to get to know Hannah, Pavan, Sibo, Pranay, Dhannanjay, Leslie,

Bastian and Sophie in the early phases of my PhD. Their encouragement and insights really

helped me believing in the light at the end of the tunnel and persevere. I would like to thank

Eklavya for hosting the best parties in the history of Martigny, which were great help for getting

back to normal after pandemic. I also thank Apoorv, Sargam, Zohreh, Amir, Ravi, Fabio, Andrei,

i

Acknowledgements

Louise, Enno, Julian, Sandrine, Amrutha, François and Srikanth. And, of course, I want to

thank all past and current members of 303, the best office ever.

Finally, last but by no means least, I am grateful to my whole family, especially my parents for

their patience, support and guidance. I love you guys, kedigiller rocks!

Martigny, October 2022 Hande

ii

Abstract

Speech recognition based applications upon the advancements in artificial intelligence play

an essential role to transform most aspects of modern life. However, speech recognition in

real-life conditions (e.g., in the presence of overlapping speech, varying speaker character-

istics) remains to be a challenge. The current state of the research to achieve robust speech

recognition mostly depends on building systems driven by complex deep neural networks.

Nonetheless, speech production process enables low-dimensional subspaces which can carry

class-specific information in speech. In this thesis, we investigate the exploitation of this

low-dimensional multi-subspace structure of speech towards the goal of improving acoustic

modeling for automatic speech recognition (ASR).

This thesis mainly focuses on the sparse autoencoders for sparse modeling of speech, starting

from their often-overlooked connection with sparse coding. We hypothesize that whenever

speech signal is represented in a high-dimensional feature space, the true class information

(regarding the speech content) is embedded in low-dimensional subspaces. The analysis on

the high-dimensional sparse speech representations obtained from the sparse autoencoders

demonstrates their prominent capability of modeling the underlying (e.g., sub-phonetic)

components of speech. When used for recognition, the representations from sparse autoen-

coders yield performance improvements. Finally, we repurpose the aforementioned sparse

autoencoders for pathological speech recognition task in transfer learning framework.

In this context, the contribution of this thesis is twofold: (i) in speech modeling, proposing the

use of sparse autoencoders as a novel way of sparse modeling for extracting the class-specific

low-dimensional subspaces in speech features, and (ii) in speech recognition, demonstrating

the effectiveness of these autoencoders in the state-of-the-art ASR frameworks towards the

goal of improving robust ASR, in particular on far-field speech from AMI and pathological

speech from UA-Speech datasets.

Keywords: automatic speech recognition, deep neural network, sparse autoencoder, repre-

sentation learning, sparsity

iii

Résumé

Les applications basées sur la reconnaissance vocale avec les progrès de l’intelligence artifi-

cielle ont un rôle essentiel dans la transformation de la plupart des aspects de la vie moderne.

Cependant, la reconnaissance vocale dansles conditions réelles (par exemple, en présence de

discours qui se chevauchent, de caractéristiques différentes du locuteur) restent un défi. L’état

actuel de la recherche sur la parole robuste la reconnaissance dépend principalement de la

construction de systèmes pilotés par des réseaux complexes de neurones profonds. Néan-

moins, le processus de production de la parole permet des sous-espaces de faible dimension

qui peuvent transporter informations spécifiques à la classe dans le discours. Dans cette thèse,

nous étudions l’exploitation de cette structure multi-sous-espace de faible dimension de la

parole dans le but d’améliorer l’acoustique modélisation pour la reconnaissance automatique

de la parole (RAP).

Cette thèse se concentre principalement sur les autoencodeurs épars pour la modélisation de

la parole éparse, en partant de leur connexion souvent négligée avec le codage épars. Nous

faisons l’hypothèse que lorsque signal de parole est représenté dans un espace de caracté-

ristiques à haute dimension, la véritable information de classe (concernant le contenu de la

parole) est intégrée dans des sous-espaces à basse dimension. L’analyse des représentations

de la parole à haute dimension obtenues à partir des autoencodeurs sparse démontre leur

grande capacité à modéliser les composantes sous-jacentes (par exemple, subphonétiques)

de la parole. Lorsqu’elles sont utilisées pour la reconnaissance, les représentations obtenues

à partir des autoencodeurs sparse améliorent les performances. Enfin, nous ré-utilisons les

auto-codeurs clairsemés ci-dessus pour la reconnaissance de la parole pathologique dans un

cadre d’apprentissage par transfert.

Dans ce contexte, la contribution de cette thèse est double : (i) modélisation de la parole, nous

proposons l’utilisation d’auto-encodeurs épars comme une nouvelle approche de modélisa-

tion éparse, pour extraire les sous-espaces à faible dimension spécifiques à certaines classes

du signal de parole, et (ii) reconnaissance de la parole, nous démontrons l’efficacité de ces

auto-encodeurs sur des modèles de RAP de pointe avec comme objectif l’amélioration de la

reconnaissance vocale robuste, plus spécifiquement sur la reconnaissance vocale lointaine,

v

Résumé

sur la base de donnée AMI et sur la parole pathologique sur la base de données UA-Speech.

Mots-clés : reconnaissance automatique de la parole, réseau de neurones profonds, auto-

encodeur épars, apprentissage de la représentation, parcimonie

vi

Contents
Acknowledgements i

Abstract (English/Français) iii

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Motivation . 2

1.2 Contributions . 4

1.3 Thesis Outline . 6

2 Background on Automatic Speech Recognition 7

2.1 Key Components in the ASR Pipeline . 7

2.1.1 Acoustic Features . 8

2.1.2 Hidden Markov Model . 10

2.1.3 Mathematical Formulation of HMM-based ASR 11

2.1.4 Speech Units for Acoustic Modeling: Words, Phonemes, and Senones . . 12

2.1.5 DNN-HMM Hybrid Acoustic Models . 14

2.2 Lattice-Free MMI based ASR . 16

2.3 Datasets . 18

2.3.1 AMI . 18

2.3.2 UA-Speech . 19

2.4 Evaluation Metrics . 20

2.4.1 Word Error Rate . 20

2.4.2 Frame-level Phone Accuracy . 21

2.5 Baseline Systems . 21

2.6 Conclusion . 21

3 Background on Autoencoders 23

3.1 Autoencoders Reloaded . 23

3.1.1 Shallow Undercomplete Autoencoders . 24

vii

Contents

3.1.2 Going Deep or Going Overcomplete . 25

3.1.3 Regularized Autoencoders . 26

3.2 Sparse Autoencoders . 29

3.2.1 Sparsity . 31

3.2.2 Sparse Overcomplete Representations . 32

3.2.3 Sparse Distributed Representations . 34

3.2.4 Population Sparseness and Life-time Sparseness 35

3.2.5 Sparseness Measures . 37

3.3 Conclusion . 38

4 Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods 41

4.1 Introduction . 41

4.2 Our Approach . 43

4.2.1 Low-Rank Modeling of LF-MMI Log-Likelihoods 44

4.2.2 Sparse Modeling of LF-MMI Log-Likelihoods 46

4.3 Frame-level Phone Accuracy . 49

4.4 Analysis on High-dimensional Sparse Features 50

4.4.1 Sparsity of Activations . 50

4.4.2 Subspace Analysis . 54

4.5 Conclusion . 59

5 Low-Rank and Sparse Modeling of Acoustic Features 61

5.1 Introduction . 61

5.2 Our Approach . 62

5.2.1 Undercomplete Autoencoders to Enhance MFCCs 62

5.2.2 Sparse Overcomplete Autoencoders to Enhance MFCCs 65

5.3 Frame-level Phone Accuracy . 68

5.4 Analysis on High-dimensional Sparse Features 68

5.4.1 Sparsity of Activations . 69

5.4.2 Subspace Analysis . 70

5.5 Conclusion . 78

6 Implicitly Constrained Sparse Autoencoders 81

6.1 Introduction . 81

6.2 k-Sparse Autoencoders . 82

6.2.1 Architecture . 83

6.2.2 Recognition Performance . 84

6.2.3 Analysis on High-dimensional Sparse Features 85

6.3 Winner-Take-All Autoencoders (WTA) . 88

6.3.1 Architecture . 88

6.3.2 Recognition Performance . 90

6.3.3 Analysis on High-dimensional Sparse Features 91

6.4 Conclusion . 94

viii

Contents

7 Transfer Learning for Pathological Speech Recognition 95

7.1 Introduction . 96

7.2 Our Approach . 96

7.3 Experimental Results . 97

7.3.1 As-is . 98

7.3.2 Finetuning . 98

7.3.3 Training from Scratch . 99

7.4 Conclusion . 99

8 Conclusion and Directions for Future Work 101

8.1 Conclusions . 101

8.2 Directions for Future Research . 102

Bibliography 110

Curriculum Vitae 111

ix

List of Figures
1.1 Parsimonious hierarchical structure of human speech. 3

2.1 Key components of the ASR pipeline. 8

2.2 Example of the phoneme sequence for a word. 12

2.3 Example of a traditional 3-state triphone HMM and the senone decision tree. . 13

2.4 The model configuration for the baseline LF-MMI acoustic model. 17

3.1 Shallow undercomplete autoencoder. 25

3.2 Shallow overcomplete autoencoder. 26

3.3 Illustration of the conceptual effect of decreasing the matching threshold and

increasing dimensionality. 33

3.4 Illustration of sparse distributed representations for computing similarity rela-

tions among data points. 35

3.5 Illustration of population sparseness and life-time sparseness on hidden unit

activations. 36

4.1 Modeling class-specific low-dimensional subspaces in speech data using low-

rank vs sparse modeling approach. 42

4.2 Low-rank modeling of LF-MMI log-likelihoods by means of undercomplete

autoencoder. 44

4.3 Optimal bottleneck dimension for undercomplete AEs are determined by ob-

serving the elbow region (L-curve) on the development set. 45

4.4 Sparse modeling of LF-MMI log-likelihoods by means of sparse overcomplete

autoencoder. 47

4.5 Optimal sparsity penalty coefficients for sparse overcomplete autoencoders are

determined by observing the elbow region (L-curve) on development set. . . . 48

4.6 Sparseness measurement on the hidden unit activations for the chosen subset

of utterances from IHM development set. 52

4.7 Sparseness measurement on the hidden unit activations for the same chosen

subset of utterances from SDM development set. 53

4.8 Colormaps for visualizing the similarity analysis between the senone-specific

fingerprint vectors on close-field IHM data. 55

4.9 Colormaps for visualizing the similarity analysis between the senone-specific

fingerprint vectors on far-field SDM data. 56

xi

List of Figures

4.10 Articulatory parameters for English consonants in ARPAbet. 57

4.11 American English vowel space. 59

5.1 Low-rank modeling of MFCCs by means of undercomplete autoencoder. 63

5.2 Optimal bottleneck dimension for undercomplete autoencoders are determined

by observing the elbow region (L-curve) on development set. 64

5.3 Sparse modeling of MFCCs by means of sparse overcomplete autoencoder. . . 65

5.4 Optimal sparsity penalty coefficients for sparse overcomplete autoencoders are

determined by observing the elbow region (L-curve) on development set. . . . 67

5.5 Sparseness measurement on the hidden unit activations of randomly chosen

subset of utterances from IHM development set. 71

5.6 Sparseness measurement on the hidden unit activations of randomly chosen

subset of utterances from SDM development set. 72

5.7 Colormaps visualizing the impact of enforced sparsity in the similarity analysis

between the senone-specific fingerprint vectors on IHM, when MFCCs are taken

as feature set. 74

5.8 Colormaps visualizing the impact of enforced sparsity in the similarity analysis

between the senone-specific fingerprint vectors on SDM, when MFCCs are taken

as feature set. 75

5.9 Articulatory parameters for English consonants in ARPAbet. 76

5.10 American English Vowel Space. 77

7.1 Transfer learning framework for pathological speech recognition. 97

xii

List of Tables
2.1 Details of AMI database. The number of utterances (and duration in hours) in

AMI training, development and test set. 19

2.2 Details of UA-Speech database. The number of utterances (and duration in

hours) in UA-Speech training and test set with and without re-segment. 20

4.1 The recognition performance (in WER%) for baseline LF-MMI system and for

the low-rank modeling of LF-MMI log-likelihoods on IHM and SDM evaluation

sets. 46

4.2 The recognition performance (in WER%) for the baseline LF-MMI system and

for the sparse modeling of LF-MMI log-likelihoods on IHM and SDM evaluation

sets. 49

4.3 The frame-level phone classification accuracies on IHM and SDM evaluation

sets. 49

4.4 The sparsity of the hidden unit activations with ℓ0 and ℓϵ0 measures on chosen

subset of utterances from IHM development set. 51

4.5 The sparsity of the hidden unit activations with ℓ0 and ℓϵ0 measures on chosen

subset of utterances from SDM development set. 51

4.6 The analysis of the fingerprint matches obtained from the autoencoders trained

on IHM, with respect to the changes in matching threshold, λ, and data. 58

4.7 The analysis of the fingerprint matches obtained from the autoencoders trained

on SDM, with respect to the changes in matching threshold, λ, and data. 58

5.1 The recognition performance (in WER%) for baseline LF-MMI system and for

the low-rank modeling of MFCCs on IHM and SDM evaluation sets. 63

5.2 The recognition performance (in WER%) for baseline LF-MMI system and for

the sparse modeling of MFCCs on IHM and SDM evaluation sets. 66

5.3 The frame-level phone classification accuracies on IHM and SDM evaluation

sets. 68

5.4 The sparsity of the hidden unit activations with ℓ0 and ℓϵ0 measures on chosen

subset of utterances from IHM development set. 69

5.5 The sparsity of the hidden unit activations with ℓ0 and ℓϵ0 measures on chosen

subset of utterances from SDM development set. 69

xiii

List of Tables

5.6 The behavior of the matchings of the fingerprints computed with autoencoders

trained on IHM with respect to the changes in matching threshold, λ, and data. 77

5.7 The behavior of the matchings of the fingerprints computed with autoencoders

trained on SDM with respect to the changes in matching threshold, λ, and data. 78

6.1 The frame-level phone classification for the encodings obtained from k-Sparse

autoencoder. 84

6.2 The recognition performance (in WER%) for baseline LF-MMI system and for

the proposed approach with k-Sparse AE on IHM and SDM evaluation sets. . . 85

6.3 The sparsity of the hidden unit activations from k-Sparse autoencoder on subset

of utterances from IHM and SDM development sets with ℓ0 measure. 86

6.4 The sparsity of the hidden unit activations from sparse overcomplete autoen-

coder on subset of utterances from IHM and SDM development sets with ℓ0

measure. 86

6.5 The analysis of the matches among fingerprint vectors obtained from the au-

toencoders trained on IHM with respect to the changes in matching threshold,

AE model (i.e., Sparse AE with λ> 0 and k-Sparse AE), and data. 87

6.6 The analysis of the matches among fingerprint vectors obtained from the au-

toencoders trained on SDM with respect to the changes in matching threshold,

AE model (i.e., Sparse AE with λ> 0 and k-Sparse AE), and data. 87

6.7 The frame-level phone classification for the encodings obtained from winner-

take-all autoencoder (WTA AE). 90

6.8 The recognition performance (in WER%) for baseline LF-MMI system and for

the proposed approach with WTA AE on IHM and SDM evaluation sets. 90

6.9 The sparsity of the hidden unit activations from winner-take-all autoencoder on

subset of utterances from IHM and SDM development sets with ℓ0 measure. . . 91

6.10 The analysis of the matches among fingerprint vectors obtained from the au-

toencoders trained on IHM with respect to the changes in matching threshold,

AE model (i.e., Sparse AE with λ> 0 and WTA AE), and data. 92

6.11 The analysis of the matches among fingerprint vectors obtained from the au-

toencoders trained on SDM with respect to the changes in matching threshold,

AE model (i.e., Sparse AE with λ> 0 and WTA AE), and data. 93

7.1 The recognition performance (in WER%) for baseline LF-MMI acoustic models

trained on CTL and DYS portions of UA-Speech database. 98

7.2 The recognition performance (in WER%) for LF-MMI systems trained on CTL in

as-is scenario. 98

7.3 The recognition performance (in WER%) for LF-MMI systems trained on CTL in

finetuning scenario. 99

7.4 The recognition performance (in WER%) for LF-MMI systems trained on CTL in

training from scratch scenario. 99

xiv

List of Acronyms

AE Autoencoder

ASR Automatic Speech Recognition

CE Cross Entropy

DNN Deep Neural Network

HMM Hidden Markov Model

IHM Individual Headset Microphone condition in AMI dataset

KL Kullback-Leibler

LF-MMI Lattice-Free Maximum Mutual Information

MFCC Mel-Frequency Cepstral Coefficient

MMI Maximum Mutual Information

MSE Mean Square Error

PCA Principal Component Analysis

ReLU Rectified Linear Unit

SDM Single Dinstant Microphone condition in AMI dataset

SDR Sparse Distributed Representation

TDNN Time-Delay Neural Network

VAE Variational Autoencoder

WER Word Error Rate

xv

1 Introduction

With the advancements in artificial intelligence, including the revival of Deep Neural Networks

(DNNs) due to the availability of extensive data and computational resources [LeCun et al.

(2015); Bengio et al. (2021)], wide range of Automatic Speech Recognition (ASR) applications

have been developed. Some of the major applications of ASR include smart personal assistants

(e.g., Alexa, Google Assistant, and Siri), smart-home devices controlled with speech, systems

for transcribing meetings, automatic subtitle generation for news or movies, military, and

health care services.

As ASR field continues to advance, there is an increasing demand to enhance the existing

technology in order to continually deal with the open challenges. For instance, the aforemen-

tioned everyday life applications require ASR to be robust to full-range of real-world noise

and other acoustic distortions. However, recognizing unconstrained conversational speech,

possibly corrupted with overlapped speech, is still a very challenging task, and the current

state-of-the-art systems are still a long way from being able to reach human performance

levels. In addition, the distortions due to speaker characteristics (e.g., pathology) introduce

various challenges especially for health care applications. Hence, robustness remains to be an

important research direction.

State-of-the-art hybrid (pipeline-based) ASR techniques exploit the advances in deep learning

by employing a variety of complex DNNs for estimating the probability distribution over

speech data with a Hidden Markov Model (HMM) based back-end for sequence modeling of

speech. However, these state-of-the-art techniques still fail to exploit certain intrinsic proper-

ties of speech. Although not properly leveraged before, exploiting intrinsic structure in speech

holds the key for robust ASR and also provides a thorough understanding of speech modeling

for speech processing tasks in general. The research presented in this thesis addresses this

gap by proposing deterministic sparse autoencoders to learn informative, easier to interpret

speech representations, mainly towards improving ASR in mismatched conditions.

In this pursuit, we start from the basics and exploit the often-overlooked connection of au-

toencoders with Principal Component Analysis (PCA) and with sparse coding techniques.

1

Chapter 1. Introduction

Inspired by these two techniques, we develop autoencoders for low-rank and sparse modeling

of speech data, respectively. We observe performance improvements when the represen-

tations obtained from these autoencoders are used for recognition, especially from sparse

autoencoders for sparse modeling. In addition, the qualitative analysis of the learned high-

dimensional sparse speech representations shows that the sparse autoencoders are able to

model the low-level sub-phonetic components of speech. This helps to discover similarities

and to build correlations between observed and unobserved speech samples.

With an emphasis on notions of population and life-time sparseness, we anticipate further

improving sparse autoencoders with moderate computational cost. The speech representa-

tions obtained from such autoencoders are expected to be task-agnostic and hence, useful

in the transfer learning on mismatched speech. Thereby, the conclusion of this thesis is also

reinforced by the transfer learning framework for pathological speech recognition.

The rest of this chapter is organized as follows. Section 1.1 provides the general motivation

behind the approach proposed in this work. Section 1.2 summarizes the contributions of this

thesis. Finally, Section 1.3 presents the thesis outline.

1.1 Motivation

In this thesis, we focus on the sparse autoencoders for sparse modeling of speech, with the goal

of learning informative and interpretable speech representations, mainly towards improving

ASR in acoustically mismatched conditions. We hypothesize that modeling speech by utilizing

its intrinsic structure holds the key for robust ASR and also provides thorough understanding

of speech modeling for speech processing tasks in general. To play upon the intrinsic structure

of speech signal, we consult speech production knowledge.

Human speech production process driven by cognitive planning leads to parsimonious hi-

erarchical structure. Articulation is due to the coordination among the articulators such as

tongue, teeth, lips, palate etc. During articulation, sub-phonetic components are produced by

the specific realization of only a few highly constrained articulators at any given time. This

leads to parsimonious nature of speech. In addition, when we go higher in the compositional

hierarchy (Figure 1.1), to produce a word, we only use a few phonemes among ~40 phonemes

in English language. Similarly, we use one word (out of ~170,000 words in English language) at

a time to produce a sentence.

In other words, parsimony and hierarchy in the structure of speech go hand in hand, especially

for deciphering the representation space. As shown in Figure 1.1, the higher we go in the

hierarchy (i.e., from phonetic units to sentences), the higher-dimensional and sparser the

representation space becomes. This leads to thinning out of meaningful data components in

higher-dimensional representation space, resulting in so called class-specific low-dimensional

subspaces in speech features [Stevens (2000); Jansen and Niyogi (2006)].

2

1.1 Motivation

Figure 1.1: Parsimonious hierarchical structure of human speech. The higher we go in the hier-
archy (i.e., from subphonetic units to sentences), the higher dimensional and sparser represen-
tation space becomes. This parsimonious hierarchical structure of speech leads to class-specific
low-dimensional subspaces in speech features [Stevens (2000); Jansen and Niyogi (2006)]. In
this thesis, we aim to model and exploit these internal components by means of sparse autoen-
coders for various speech processing tasks. Figure has been reproduced from [Dighe (2019)] with
permission.

There exist studies that advantageously utilize the parsimonious hierarchical nature of speech.

For instance, to encapsulate these subspaces, sparse modeling is shown to be an efficient way

and has been found to be useful when performing noise robust speech recognition [Sainath

et al. (2011); Gemmeke et al. (2011)]. Similarly, [Dighe (2019)], which serves as the basis of the

research in this thesis, focuses on low-rank and sparse modeling of DNN based posterior fea-

tures. The study proposes to enhance DNN posteriors by projecting them onto the manifolds

of the underlying classes using PCA or sparse coding based dictionaries.

Besides the compliance to the nature of human speech (depicted in Figure 1.1), another moti-

vation for exploring sparse modeling in speech research is compliance to the human brain

functioning. Findings in neuroscience and psycho-acoustics suggest that the human brain ex-

ploits sparse coding and hierarchically analyzes the stimuli at the level of cognitive processing

and neural activities [Allen (1995); Olshausen and Field (1996)]. Integrating this knowledge can

therefore help unravel many phenomena observed in speech and design transparent models

3

Chapter 1. Introduction

that are robust to noise and other acoustically mismatched conditions [Deng et al. (1997);

Frankel and King (2001); King et al. (2007)]. Hence, in this thesis, given the parsimonious

hierarchical nature of speech, we devise sparse autoencoders for learning informative and

interpretable speech representations in unsupervised and computationally efficient manner

towards robust ASR.

1.2 Contributions

We examine the often-overlooked connection of autoencoders with PCA (Section 3.1.1) and

with sparse coding (Section 3.2) for low-rank and sparse modeling of speech data respectively,

with the motivation and the reference point (i.e., [Dighe (2019)]) presented in Section 1.1. Our

focus is mainly on sparse modeling by means of sparse autoencoders; yet, for the sake of com-

pleteness, we also investigate the low-rank modeling approach by means of undercomplete

autoencoders (Section 3.1.1).

In Chapter 4, we propose the use of sparse autoencoders (Section 3.2) for sparse modeling of

likelihoods from the acoustic model and observe improvements in recognition performance.

In addition, the analysis conducted on high-dimensional sparse features obtained from sparse

autoencoders demonstrate that these features are capable of modeling even phone-level

components in speech.

In Chapter 5, we examine the use of sparse autoencoders for sparse modeling of acoustic

features. Acoustic features (Section 2.1.1) are known to be less stable and less robust compared

to the likelihoods from the acoustic model. Sparse modeling of acoustic features by means

of sparse autoencoders results in better performance improvement on far-field speech data.

Therefore, in the rest of the thesis, we continue using acoustic features to train autoencoders.

However, the analysis on high-dimensional sparse features obtained from sparse autoencoders

are also shown to be less robust and less informative (Section 5.4), compared to their likelihood

counterparts (Section 4.4). This is due to the close-to-zero values in the sparse features to

obfuscate the findings from subspace analysis. Therefore, in the following chapter, we focus

on other sparse autoencoder configurations, capable of producing hard-zero encodings.

In Chapter 6, we propose the use of implicitly constrained sparse autoencoders (elaborated in

Section 3.2) with internal sparsity mechanisms, inspired from competitive learning studies [Sri-

vastava et al. (2013)]. These internal sparsity mechanisms set the predetermined portion of

the autoencoder activations to zero without introducing any additional regularizer term in

the autoencoder loss function (i.e., hence the name implicitly regularized). The analysis con-

ducted on high-dimensional sparse features obtained from sparse autoencoders demonstrates

that robust modeling of underlying speech components is possible, even in the presence of

additive noise. This mainly depends on the sparseness viewpoint (Section 3.2.4) adopted by

the sparse autoencoder.

In Chapter 7, we propose the use of best performing implicitly constrained sparse autoencoder

4

1.2 Contributions

model (from Chapter 6) for transfer learning on pathological speech. We anticipate the success

of this model for projecting the acoustic space of pathological speech closer to healthy control

acoustic space, given its capability for robust modeling of underlying speech components in

healthy speech. Consequently, we manage to obtain promising improvement for pathological

speech recognition performance with our proposed transfer learning framework, even though

the baseline acoustic model is finely-tuned and therefore very sensitive.

Hence, our contributions in this thesis are the following:

Autoencoders for low-rank and sparse modeling of speech : [Dighe (2019)] introduces novel

low-rank and sparse modeling approaches based on PCA and sparse coding for ASR. Follow-

ingly, we propose the use of a simple sparse autoencoder for sparse modeling of speech data

(e.g., likelihoods from the acoustic model in Chapter 4, acoustic features in Chapter 5) for

improving state-of-the-art recognition systems on close-talk and far-field speech. Compared

to [Dighe (2019)], our approach is unsupervised and computationally efficient, as it requires

less training steps. It also provides performance improvements over a more challenging state-

of-the-art recognition system. In addition, to present a complete overview, we investigate

the use of an autoencoder with a bottleneck layer for low-rank modeling of speech data (e.g.,

likelihoods from the acoustic model in Chapter 4, acoustic features in Chapter 5).

Analysis of the learned speech encodings : We model the global characteristics of the speech

through compact, low-rank representations by employing an autoencoder with a bottleneck

layer. Whereas, with sparse autoencoders, we can model different low-level (e.g., phone-

level, articulatory-level) components of the speech data. To test this, we perform the analysis

(Section 4.4 and Section 5.4) on the high-dimensional sparse features (i.e., embeddings,

representations, encodings, hidden layer activations) obtained from sparse autoencoders.

When these feature vectors are matched together based on a similarity score and a matching

threshold, they are observed to share similar articulatory configurations.

Implicitly constrained competitive sparse autoencoders : We observe the potential of simple

sparse autoencoders for producing meaningful representations which model underlying com-

ponents in speech data. To further exploit this potential, we investigate sparse autoencoder

models concerning different viewpoints to sparseness and sparsity mechanisms (Section 3.2.4).

Thorough investigation shows that there exist several ways for imposing sparsity to guide

the autoencoder. More precisely, an autoencoder can be guided in two ways; explicitly by

means of different penalty terms in the loss function (utilized in Chapter 4 and Chapter 5)

or implicitly by altering the internal model components (i.e, activations, weights). Implicitly

constrained sparse autoencoders have an internal sparsity mechanism, which may adopt dif-

ferent sparseness viewpoints such as population sparseness and life-time sparseness. Thanks

to this mechanism, the model can produce high-dimensional sparse features with hard-zero

values, which simplifies tracking the patterns in subspace analysis (Section 6.3.3). To the best

of our knowledge, such sparse autoencoders have not been exploited in speech processing

tasks before.

5

Chapter 1. Introduction

Transfer learning on mismatched data : We select the best performing implicitly constrained

sparse autoencoder model (from Chapter 6) and repurpose it for transfer learning on patho-

logical speech in Chapter 7. The experiments are run for three scenarios: (1) as-is (with

fixed acoustic model) (2) finetuning the acoustic model using reconstructed pathological

speech features from sparse autoencoder (3) training the acoustic model from scratch on

reconstructed pathological speech features from sparse autoencoder. With the presented

transfer learning framework, we manage to obtain improvements on recognition performance,

despite the sensitivity of the finely-tuned baseline acoustic models. This indicates that sparse

autoencoder models can indeed be useful for learning meaningful and generalizable speech

features.

1.3 Thesis Outline

We present the organization of this thesis by briefly describing the main goal of each of its

constituent chapters.

Chapter 2, Background on automatic speech recognition, introduces the key components of

ASR pipeline with a particular focus on the state-of-the-art acoustic modeling. In addition, the

baseline system, datasets and evaluation metrics for the experiments in the following chapters

are described.

Chapter 3, Background on autoencoders, provides essential background information about

autoencoders with special emphasis on sparse autoencoders and sparsity.

Chapter 4, Low-rank and sparse modeling of LF-MMI log-likelihoods, revisits the prior work [Dighe

(2019)], its strengths and weaknesses in particular, to motivate the proposed approach of this

thesis. After the proposed framework is introduced, the experimental results for recogni-

tion performance and analysis of the learned high-dimensional sparse speech encodings are

presented.

Chapter 5, Low-rank and sparse modeling of acoustic features, presents the experimental

results for recognition performance and analysis of the learned high-dimensional sparse

speech encodings while the autoencoders are fed with acoustic features.

Chapter 6 Implicitly constrained sparse autoencoders, explores various sparse autoencoder ar-

chitectures from different sparsity viewpoints to enhance the speech representations towards

improving the recognition performance and generalization power.

Chapter 7 Transfer learning for pathological speech recognition, introduces the transfer learning

framework which repurposes the best performing sparse autoencoder model from Chapter 6

for pathological speech recognition.

Chapter 8 Conclusion and future work, derives the main conclusions of this thesis and provides

possible directions for future work.

6

2 Background on Automatic Speech
Recognition

In this chapter, we provide a brief background on Automatic Speech Recognition (ASR), with

special emphasis on the conventional Hidden Markov Model (HMM)-based ASR. Section 2.1

describes the key components in the ASR pipeline, providing details for the acoustic features,

DNN-based acoustic modeling and various hierarchical speech units that we exploit for

modeling in this thesis. In Section 2.2, we introduce the Lattice-Free Maximum Mutual

Likelihood (LF-MMI) ASR system which constitutes the configuration for the state-of-the-art

baseline systems. Finally, we give details of the databases, evaluation metrics and the baseline

systems in Section 2.3, Section 2.4 and Section 2.5, respectively.

2.1 Key Components in the ASR Pipeline

A conventional HMM based ASR system consists of individual components as shown in Fig-

ure 2.1. The speech signal is first passed through a signal processing and feature extraction

component. This component enhances the signal (i.e., reduces noise and distortions) and ex-

tracts multi-dimensional acoustic features. These features are then used for acoustic modeling.

The acoustic model computes the data-likelihoods given the input acoustic feature sequence

by integrating knowledge about acoustics and phonetics. These acoustic data likelihoods are

sent to the decoder component. A decoder can be conceptualized as an implementation of

an HMM which brings multiple hierarchies of speech together in a graph. Combining the

data likelihoods from the acoustic model and word sequence probabilities from the language

model, this component finds the most probable path (i.e., the least expensive path) in the

decoding graph to produce the hypothesized word sequence.

In this thesis, we mainly focus on the acoustic modeling component. Using different au-

toencoder models (elaborated in Chapter 3), we work toward learning better representation

alternatives for the acoustic data likelihoods (in Chapter 4) and acoustic features (in Chapter

5) with the end goal of improving ASR performance. In essence, an autoencoder is inserted in

the ASR pipeline as an additional component after the acoustic model in Chapter 4 and before

the acoustic model in Chapter 5. After exploring different sparse autoencoders for this repre-

7

Chapter 2. Background on Automatic Speech Recognition

Figure 2.1: Key components of the ASR pipeline. Figure has been reproduced from [Dighe (2019)]
with permission.

sentation learning problem in Chapter 6, we specifically focus on plugging the pre-trained,

off-the-shelf sparse autoencoder in different pipelines designed for different ASR tasks (i.e.,

pathological speech) in Chapter 7. We did not explore modifications or improvements on the

language modeling component in this thesis.

Before we proceed with the details of the DNN-HMM based acoustic model training, we

present some standard types of acoustic features, a short overview on the HMM, and speech

units relevant to this thesis. Moreover, we introduce the baseline systems, datasets and

evaluation metrics used in this thesis.

2.1.1 Acoustic Features

The most popular speech features used in ASR: spectrograms, Mel-filter banks, Mel-frequency

cepstral coefficients. Regardless of the feature type, most of these features share some

main principles, being computed by applying some specific operations. In general, they

are biologically-inspired, imitating the human sound perception system.

In this thesis, we employ Mel-Frequency Cepstral Coefficients (MFCCs). As the ASR pipeline

(Figure 2.1) we use for our experiments are implemented using Kaldi [Povey et al. (2011)]

speech processing toolkit, MFCCs are extracted with Kaldi feature extractor following the steps

below:

Sampling and pre-emphasis: Speech signal is captured at a fixed sampling rate, typically

8kHz or 16kHz. Sampling at a high-frequency rate can result in low-frequency components

of the signal having high energy while the high-frequency components might be subdued.

Hence, a pre-emphasis operation is done to the original signal s(t) as follows to amplify the

high-frequency components of the signal:

8

2.1 Key Components in the ASR Pipeline

s′(t) = s(t)−αs(t −1) (2.1)

where α, the first-order filter coefficient, is typically taken to be 0.97.

Windowing and FFT: In this step, the pre-emphasized time-domain signal is converted to the

frequency-domain to analyze the behavior of different frequency components over time. A

Fourier transform of the whole signal is not a suitable choice since the signal is not stationary

and a signal-level transform would result in losing the information about the evolution of the

frequency contours. To avoid these issues, the signal is analyzed in a sliding window fashion as

we can assume stationarity for very short durations of time. Therefore, we apply Fast Fourier

Transform (FFT) to one window at a time to get a frequency-domain representation of the

short duration signal in the window. FFT of each window results in one spectral feature frame

in frequency-domain. At the end, all the frames of spectral features are concatenated together

adjacently to form the spectrogram of the signal. Typically, window length is set as 25msec

which contains 400 samples of the pre-emphasized time-domain signal if the sampling rate is

16kHz. Before FFT, a Hamming window function is also applied to account for the fact that

FFT assumes the time-domain signal to be of infinite length. The spectrogram output from

FFT is converted to a power spectrum by taking square of the amplitudes in the spectrogram.

Filterbank analysis: In this step, Mel-scale filters are applied to the power spectrum to imitate

human auditory perception which is more discriminatory for the lower frequencies, compared

to the higher ones. There are typically 40 overlapping triangular filters whose centers are

placed evenly in the Mel-frequency domain. Finally, we compute the log of energy under each

Mel-filter. At this stage, each frame of the spectrum has 40 Mel-filterbank energies. These

features are called log Mel-filterbank energies (also known as Fbank).

Decorrelating with DCT: The dimensions of the Fbank energy features are highly correlated.

With decorrelation, we can use Gaussian modeling with diagonalized covariance and exclude

high-frequency components. To do so, we take the Discrete Cosine Transform (DCT) of the

Fbank features and pick the first few coefficients (usually 13) which are significant for ASR.

These coefficients are called Mel-frequency cepstral coefficients (MFCCs).

Depending on the configuration of the acoustic model for training (in Kaldi), the feature

extractor can produce low-resolution features (e.g., 13 MFCCs per frame to train Gaussian

Mixture Models (GMMs)) or high-resolution features (e.g., 40 Mel filter banks to train neural

network models).

9

Chapter 2. Background on Automatic Speech Recognition

2.1.2 Hidden Markov Model

Over the last several decades, Hidden Markov Models (HMMs) have served as the backbone of

almost all large-scale ASR systems, thanks to their success in sequence processing. Here, we

introduce the basics of HMMs.

A Hidden Markov Model is a Markov chain where each state generates an observable dis-

crete symbol or continuous-valued vector as per a state-conditional probability distribution

function. While the emitted observations are visible to an observer, the underlying Markov

process is hidden. The hidden state sequence is non-deterministic and can only be statisti-

cally estimated based on the observation sequence and the parameters (emission probability

density function) of the model. Here, we consider only continuous density HMMs which emit

real-valued multi-dimensional vectors as observations. The random variable denoting the

observed sequence is defined as X = 〈X1, X2, . . . , XT 〉.

Hence, HMM can be completely defined by the following components:

• Set of states, Q= {
q1, q2, . . . , qK

}
: Random variable Qt , denoting hidden state at time t ,

takes values from this set.

• Set of observations, Rm : Random variable X t , denoting the observation emitted at time

t , takes a value x t ∈Rm .

• Prior probabilities, π= {π1, . . . ,πK } where πk denotes the probability that the Markov

chain will start with particular qk state.

πk = P
(
Q1 = qk

)
s.t. πk ≥ 0 ∀k,

K∑
k=1

πk = 1 (2.2)

• Transition probabilities, ai , j denote the probability that the Markov chain will go from

one particular state (qi) to another (q j).

ai , j = P
(
Qt = q j |Qt−1 = qi

)
s.t. ai , j ≥ 0 ∀ j ,

K∑
j=1

ai , j = 1 (2.3)

• Emission probabilities, bk (x) denote the probability of an observation x ∈ Rm being

generated when the underlying hidden state is qk .

bk (x) = P
(
x | qk

)
(2.4)

An HMM based on a first-order Markov chain makes two important assumptions. The first

assumption is the first-order Markovian assumption. That is, the conditional probability

distribution of the future state is only dependent on the current state.

P
(
Qt |Q t−1

1

)= P (Qt |Qt−1)
)

(2.5)

10

2.1 Key Components in the ASR Pipeline

The second assumption, famously called HMM conditional-independence assumption, states

that the observation emitted at time t is dependent only on the hidden state at time t , and is

conditionally independent of the past hidden states as well as observations.

P
(
X t | X t−1

1 ,Q t
1

)= P (X t |Qt) (2.6)

Employing HMMs for any task usually leads to one or more of the following three standard

problems: (1) finding the likelihood of an observation sequence given the HMM parameters,

(2) finding the most likely hidden state sequence given an observation sequence and the HMM

parameters, and (3) finding the parameters of the HMM given a set of observation sequences.

To solve these three problems, famous HMM-based algorithms, namely Forward-backward

algorithm, Viterbi algorithm, and Baum-Welch algorithm are used, respectively. We refer the

reader to [Rabiner (1989)] for complete details of these algorithms.

2.1.3 Mathematical Formulation of HMM-based ASR

In a typical HMM based ASR framework, the hypothesized word sequence Ŵ is estimated

from the sequence of acoustic features X = {x1, x2, . . . , xT }, where xt is a standard acoustic

feature at time t , as

Ŵ = argmax
W

P (W | X)

= argmax
W

p(X | W)P (W)

p(X)
= argmax

W
p(X | W)P (W)

(2.7)

where p(W) is the probability of the word sequence W estimated from a language model

and p(X | W) is the likelihood of the acoustic sequence conditioned on the word sequence,

estimated from an acoustic model.

We ignore the denominator probability p(X), since it is independent of the word sequence W

in the maximization argument. Assuming that the observation sequence X is generated by a

HMM, the task at hand is to compute its probability by marginalizing all possible hidden state

sequences (i.e., using the Forward-Backward algorithm). Thus, p(X | W) is computed as

p(X | W) =∑
Q

p(X | Q,W)P (Q | W)

≈ max
Q

p(X | Q,W)P (Q | W)

=π(
qk1

) T∏
t=2

aqk t−1qkt

T∏
t=1

p
(
x t | qk t

) (2.8)

where Q̂ = 〈qk1 , . . . , qkt , . . . , qkT 〉 is the most probable state sequence obtained from the Viterbi

11

Chapter 2. Background on Automatic Speech Recognition

algorithm [Rabiner (1989)] for decoding and π
(
qk1

)
, aqk t−1qkt

and p
(
x t | qk t

)
have the usual

meanings described in Section 2.1.2 in the context of HMM. The marginalization over all

possible hidden state sequences is typically approximated just by using the most probable

hidden sequence.

For a more detailed reading on HMM, conventional HMM-based ASR, and the neural network

based hybrid connectionist approach to ASR, we refer the reader to the following resources: [Ra-

biner (1989); Jelinek (1998); Bourlard and Morgan (2012)].

2.1.4 Speech Units for Acoustic Modeling: Words, Phonemes, and Senones

Determining the degree of fineness (i.e., granularity) of the speech units for acoustic modeling

plays a critical role for ASR systems. For example, given that there is enough data available for

modeling each class of unit properly, speech units should be chosen in such a way that the

probability distributions of distinct classes (over acoustic features) are distinct. In addition,

the speech unit should be easily generalizable for the unseen new words in the test sentences.

Words

Modeling speech at the word level seems to be the most intuitive choice, considering they are

language specific units having different semantic meanings. As there should be enough data

available for modeling each word (i.e., each class of speech unit) properly, this unit selection re-

quires a significant amount of training data with many (context-dependent) variations of each

word. Therefore, learning robust and accurate word models with good generalization power

on new unseen words in the test data is not scalable and not feasible for Large-Vocabulary

Continuous Speech Recognition (LVCSR).

Figure 2.2: Example of the phoneme sequence for a word. Figure has been reproduced
from [Dighe (2019)] with permission.

Phonemes

Phonemes are linguistically distinct speech units without any semantic meaning. The phoneme

units are defined only with respect to the constituent sound, and are therefore not language-

dependent. That is, different languages might have different sets of phonemes while still

sharing some common ones.

Modeling speech at phoneme level is more logical and applicable than word-level. There

12

2.1 Key Components in the ASR Pipeline

are nearly 40 phonemes in English, compared to about 170,000 words. Hence, modeling

each phoneme properly does not require huge amounts of training data and does not pose

scalability issues for LVCSR. Actually, words can be modeled as sequences of phoneme models

concatenated together (as shown in Figure 2.2). A linguist can prepare a dictionary in which all

the words in the vocabulary are mapped to their phonetic sequences, allowing the phoneme-

based model to generalize on the unseen words in the data.

A typical phonetic model is based on a 3-state left-to-right HMM topology (Figure 2.3) where

each state can be modeled using a separate GMM. The states of the phone-HMM are sub-

phonetic units which model the beginning, middle, and end of the phone. In addition, a

similar HMM model is used to model the silence class.

In phone-based acoustic modeling, the acoustic features are typically modeled using distinct

probability distributions belonging to the phone-states. A shortcoming of this monophone

modeling approach is that we consider all the instances of a phoneme in the data to be acous-

tically similar, ignoring the impacts of the surrounding phoneme context and variations in the

coarticulation mechanism during phoneme’s acoustic realization. Therefore, the monophone

modeling tries to fit all instances of the phoneme under a common probability distribution

which results in possibly poor and inaccurate acoustic modeling. Conventionally, modeling of

phones is addressed by context-dependent sub-phonetic modeling described below.

Figure 2.3: Example of a traditional 3-state triphone HMM and the senone decision tree. Figure
has been reproduced from [Dighe (2019)] with permission.

13

Chapter 2. Background on Automatic Speech Recognition

Senones

To incorporate context-dependency in phoneme modeling, monophone HMMs are replaced

with triphone HMMs. A triphone has a unique left and right context phoneme around the

central phoneme. States of the triphone HMMs are clustered across different phonetic models

if the phonetic context is similar. This clustering (i.e., state tying) limits the number of different

models to be trained.

Acoustic data assigned to each triphone state is further split using a decision tree [Young

et al. (1994); Hwang et al. (1996)] such that each node asks a linguistic question to reduce

the entropy or increase the likelihood of the data after split. The leaves of the decision tree

are referred to as senones. A senone decision tree is illustrated in Figure 2.3. Senones are the

most commonly used units for acoustic modeling in LVCSR systems because they provide

significant improvement in ASR performance over the monophone acoustic models.

2.1.5 DNN-HMM Hybrid Acoustic Models

In a hybrid DNN-HMM ASR system [Bourlard and Morgan (2012)], DNN takes contextual (i.e.,

context-appended) acoustic feature vector as input and predicts the posterior probabilities

of all senone classes at the output layer; thus, the frame likelihood required in (2.8) has to be

indirectly estimated as follows:

p
(
x | qk

)∼ p
(
x | qk

)
p(x)

= P
(
qk | x

)
P

(
qk

) (2.9)

The state posterior probability P
(
qk | x

)
is at the output of the DNN acoustic model and P

(
qk

)
is the prior probability of the state qk computed from its frequency count in the training data,

yielding to an estimate of the scaled likelihood
p(x|qk)

p(x) .

Thanks to DNN, through multiple layers of non-linear transformations, the mapping from

the acoustic features to the state posterior probabilities is done. DNN acoustic model can

be a feedforward neural network or any other architecture like convolutional neural network

(CNN) [Golik et al. (2015)], time-delay neural network (TDNN) [Peddinti et al. (2015)] or

recurrent neural network (RNN) [Sak et al. (2014)].

DNN-HMM hybrid systems cannot be trained from scratch, without pre-existing frame-

level alignments. Typically, this is handled by an off-the-shelf GMM-HMM system which

force-aligns the senone sequences over the training utterances using their ground-truth

text transcript under Viterbi algorithm. DNNs are trained using the error backpropagation

algorithm [Rumelhart et al. (1985)] which utilizes the chain rule to compute the derivative

of the loss with respect to each trainable parameter and updates them accordingly to the

learning objective.

14

2.1 Key Components in the ASR Pipeline

DNN acoustic models can be trained either for minimizing the frame-level (i.e., frame-wise)

senone classification error, or for minimizing the sequence (i.e., sentence)-level error. Frame-

level training is usually done by minimizing a Cross Entropy (CE) loss function, whereas

sequence-level training is done with sequence-discriminative loss functions such as state-

level Minimum Bayes Risk (sMBR) [Veselỳ et al. (2013)] and Maximum Mutual Information

(MMI) [Povey et al. (2008)]. Here, we provide details for CE and MMI objectives only, as they

are related to the work presented in this thesis.

Cross Entropy Loss: On a training example, if the target posterior vector is t and the DNN

predicts a posterior vector o, then the CE loss is :

LC E =−
K∑
k

tk log(o)k (2.10)

where tk and ok are the k th components of DNN target and output vectors, respectively. By

minimizing the CE loss over the whole training examples, we minimize the Kullback-Leibler

(KL) distance between the target probability distribution and the DNN acoustic model output

distribution.

However, DNN acoustic models trained using CE criterion are suboptimal (in terms of word

recognition performance), as speech recognition is inherently a sequence classification prob-

lem. Sequence-level (i.e., sequence-discriminative) handles this issue, obtaining significant

performance improvements [Veselỳ et al. (2013)]. Traditionally, this is performed by retraining

a CE-trained model using one of the sequence-discriminative criteria (MMI, in our case).

Maximum-Mutual Information Criteria: As its name suggests, the aim is to maximize the

mutual information between the acoustic observation X and the word sequence W

LM M I = log
p(X ,W)

p(X)P (W)

= log
p(X | W)P (W)∑
Ŵ p(X | Ŵ)P (Ŵ)

− logP (W)
(2.11)

If the observation X and the word sequence W are completely independent according to the

model, the equation is equal to 0 implying that X and W are unrelated. Assuming P (W) is

independent of the model parameters θ, (2.11) can be simplified as:

LM M I = log
p(X | W ,θ)P (W)∑
Ŵ p(X | Ŵ ,θ)P (Ŵ)

(2.12)

Intuitively, MMI maximizes the probability of the ground-truth transcription, while minimiz-

ing the probability of all other transcriptions (hence, it is a sequence-discriminative objective).

15

Chapter 2. Background on Automatic Speech Recognition

Theoretically, the denominator sum should be computed over all possible word sequences.

However, to reduce the computation cost in Kaldi [Povey et al. (2011)], this sum is constrained

by decoding the lattice which contains the most probable hypothesis. Also, MMI training in

Kaldi is traditionally performed by re-training a CE-based acoustic model which has been

trained as the seed model to generate the decoded lattice. Thus, the denominator can be

approximated as:

∑
Ŵ

p(X | Ŵ ,θ)P (Ŵ) =∑
Ŵ

p
(
X |MŴ ,θ

)
≈ p (X |Mden ,θ)

(2.13)

where Mden (denominator graph) is, due to Kaldi convention, is an HMM-based graph that

includes all possible word sequences in the decoded lattices.

2.2 Lattice-Free MMI based ASR

Lattice-Free Maximum Mutual Information (LF-MMI) [Povey et al. (2016)] approach allows to

perform sequence discriminative training from scratch, without the CE-based pre-training

step. LF-MMI system has several computational advantages over traditional sequence discrim-

inative training approaches (e.g., sMBR, MMI) and it provides better recognition performance.

In this thesis, we deploy the state-of-the-art LF-MMI acoustic models as baseline systems

(Section 2.5). As these baseline systems mostly consist of Time-Delay Neural Network (TDNN)

based building blocks, we here elaborate the architectural properties with special emphasis

on TDNN models. The blueprint for the baseline LF-MMI acoustic model is illustrated in

Figure 2.4.

Similar to a convolutional network, the TDNN models temporal dependency in the time

domain. Compared to a recurrent network, TDNN can be parallelized easier and requires less

training time than feed-forward DNN. The input of each unit in TDNN layers is expanded out

spatially in few sequential units from the previous layer. Consequently, lower layers gain an

understanding of a narrow context while higher layers gain an understanding of a broader

temporal context.

To compress the network layers, a factored form of TDNN derived from singular value decom-

position (TDNN-F) is introduced as an improvement over TDNN. TDNN-F block comprises a

linear-affine sequence of operations that act like a bottleneck transforming the input vector

into an intermediary vector and then back into the output vector. In addition, each TDNN-F

block ends with a summation operation that adds the output of the current processing block

to the down-scaled output of the previous TDNN-F block. In this sense, the summation

operation resembles residual connections.

16

2.2 Lattice-Free MMI based ASR

Figure 2.4: The blueprint for the model configuration of the baseline LF-MMI acoustic model is
illustrated. While experimenting with different datasets (Section 2.3), except for small differences
such as the number of TDNN-F blocks (L), output vector dimensionality (P) etc., we stick to the
illustrated model configuration. Figure has been adapted from [Georgescu et al. (2019)].

17

Chapter 2. Background on Automatic Speech Recognition

Except for the first TDNN-F block, which processes only the input from the current time-frame,

all other TDNN-F blocks perform 1-D temporal convolution, processing input vectors at times

t-L, t, and t+R. The input vectors at times t-L and t are spliced together into the linear layer,

while the input vectors at times t and t+R are spliced together into the affine layer.

The LF-MMI models have two output blocks: the first branch is chain based (i.e., Output Chain

in Figure 2.4) and the second branch uses the CE criteria (i.e., Output Xent in Figure 2.4). Each

output branch is composed of affine, ReLU, batch normalization and affine layer again. The

primary difference between these two blocks comes from the presence (or absence) of the

final log-softmax operation. The output without softmax is used in inference, although both

blocks are used in the training process.

The output features of the LF-MMI system (i.e., the output from Output Chain) are called

pseudo-log-likelihoods. We will refer to them as LF-MMI log-likelihoods in the rest of the thesis.

The dimension of the output features (i.e., P in Figure 2.4) is equal to the number of senones

(Section 2.1.4), which is determined by Kaldi speech processing toolkit [Povey et al. (2011)].

2.3 Datasets

Details of all databases used in this thesis are given below.

The experiments based on low-rank and sparse modeling of LF-MMI senone log-likelihoods in

Chapter 4 and of MFCC acoustic features in Chapter 5 are conducted on AMI Meeting corpus

with parallely recorded clean and far-field conversational speech recordings.

The experiments for transferring the acoustic space knowledge from AMI Meeting corpus

(pre-learned in Chapter 6) to pathological speech in Chapter 7 are performed on UA-Speech

dataset.

2.3.1 AMI

The AMI corpus1 contains recordings of spontaneous conversations between a group of

participants in meeting scenarios. The meeting scenarios have been designed such that the

participants freely discuss and debate over some ideas. The meetings were recorded in English,

although the speakers were mostly non-native. AMI corpus provides audio recordings from

close-talk as well as far-field microphones. Due to the conversational style of speaking and the

speakers frequently overlapping and interrupting other speakers’ speech, the AMI corpus has

proved to be a challenging task in recent large vocabulary ASR research.

In this thesis, we focus on speech data recorded using close-talk and far-field microphones.

The close-talk microphone speech is termed as individual headset microphone (IHM) condi-

tion in AMI, whereas the far-field microphone speech is termed as the single distant micro-

1http://groups.inf.ed.ac.uk/ami/corpus/

18

2.3 Datasets

phone (SDM) condition. All meeting rooms had eight far-field microphones in a circular array

between the meeting participants. The first microphone (mic-id 1) is typically used as the

source of SDM data for far-field ASR. Both the close-talk and far-field speech streams have

been recorded parallelly. They are time synchronized, and the word transcripts are obtained

by force-aligning using a speech recognition system.

Data protocol

The dataset is available at 16kHz sampling rate with nearly 100 hours of meeting recordings

divided approximately as 81 hours train set, 9 hours development and 9 hours evaluation set.

We use the development set for tuning the hyper-parameters of our proposed models.

Table 2.1: Details of AMI database. The number of utterances (and duration in hours) in AMI
training, development and test set.

Detail Count (partition-wise)

Train Dev Test

Speech data (in hours, approx.) 81 9 9

Number of utterances 108,221 13,059 12,612

Running words 802,604 94,914 89,635

2.3.2 UA-Speech

The UA-Spech 2 database is intended to promote the development of user interface for speak-

ers with neuromotor disorders and spastic dysarthria.

The database includes 15 speakers with cerebral palsy (denoted as DYS) and 13 age-matched

healthy control speakers (denoted as CTL). Dysarthric speakers were selected based on self-

report of either speech pathology or cerebral palsy. However, before the data were included

in the dataset the diagnosis of dysarthria was informally confirmed by a certified speech-

language pathologist through audio recordings.

Speakers read isolated words including digits (10 words with 3 repetitions), letters (26 letters

of International Radio Alphabet with 3 repetitions), computer commands (19 word processing

commands with 3 repetitions), common words (the most common 100 words in the Brown

corpus [Francis and Kucera (1979)] with 3 repetitions), uncommon words (300 words selected

from Project Gutenberg novels using an algorithm that sought to maximize biphone diversity

(e.g., naturalization, faithfulness, frugality etc.) with 1 repetition).

2http://www.isle.illinois.edu/sst/data/UASpeech/

19

Chapter 2. Background on Automatic Speech Recognition

Data protocol

The database is available at 16 kHz sampling rate with 70 hours of recordings of the isolated

words (i.e., digits, letters, computer commands, common words, uncommon words). The

recordings were made with 7 microphones from 15 dysarthric speakers (about 40 hours in

total) and 13 age-matched healthy (i.e., without any speech impairment) control speakers

(about 30 hours in total).

In our experiments, we used the re-segmented version of the corpus from [Xiong et al. (2019)]

where excessive portions of silence if divided into three distinct blocks, two of which (Block

1 and 3 in Table 2.2) were commonly used as the training set, while models were evaluated

on Block 2. Each block consists of 10 digits, 26 letters, 19 computer commands, 100 common

words and 100 distinct uncommon words.

Table 2.2: Details of UA-Speech database. The number of utterances (and duration in hours) in
UA-Speech training and test set with and without re-segment.

Sets(Spk) Re-segment Block 1 & 3 Block 2

CTL 46410(22.7 h) 23205(11.1 h)

#13 ✓ 46403(19.8 h) 23205(9.7 h)

DYS 49204(44.3 h) 24731(21.7 h)

#15 ✓ 49204(27.3 h) 24727(13.4 h)

2.4 Evaluation Metrics

Details of the evaluation metrics used in this thesis are given below.

2.4.1 Word Error Rate

In this thesis, we mainly used Word Error Rate (WER) which is the most commonly used

metric for measuring the performance of an automatic speech recognition system. Given the

reference word sequences over some test data and the word sequences hypothesized by an

ASR system, the word error rate is defined as:

WER (in %) = 100× Substitutions + Deletions + Insertions

Number of words in the reference
(2.14)

where the numerator has a count of substitutions, deletions and insertions in the hypothesized

word sequences as compared to the reference sequences. WER is typically presented as a

percentage, and a lower WER signifies better performance in speech recognition (i.e., the

lower, the better).

20

2.5 Baseline Systems

2.4.2 Frame-level Phone Accuracy

In addition to WER, in this thesis, we used the frame-level phone accuracy for evaluating

the performance of various features (e.g., acoustic features, different encodings from autoen-

coders) in terms of their discriminative power when used for training a simple 2-layered

fully-connected classifier. Higher frame-level phone accuracy signifies better performance in

frame-level phone classification task (i.e., the higher, the better).

This accuracy is defined as follows:

Frame-level Phone Accuracy (in %) = 100× Number of correctly predicted phone frames

Total number of frames
(2.15)

2.5 Baseline Systems

In this thesis, while experimenting with different datasets (Section 2.3), we mainly sticked to

the LF-MMI acoustic model configuration illustrated in Figure 2.4, except for small differences

such as the number of TDNN-F blocks (L), output vector dimensionality (P) etc.

All baseline LF-MMI acoustic models take 40 dimensional high-resolution MFCCs (extracted

from frames of 25 ms length and 10 ms shift) as input.

For AMI Meeting corpus (Section 2.3.1), baseline LF-MMI acoustic models contain 15 TDNN-F

blocks (i.e., L = 15 in Figure 2.4) with dimensionality of 2136 and bottleneck dimension of

210. In addition, the linear component dimensionality is 512. The number of senones (i.e., P

in Figure 2.4) is 176 for both close-field (IHM) and far-field (SDM) portions of the data. The

baseline WERs are 19.2% and 41.1% for IHM and SDM, respectively.

For UA-Speech database (Section 2.3.2), baseline LF-MMI acoustic model contains 13 TDNN-F

blocks (i.e., L = 13 in Figure 2.4) with dimensionality of 1024 and bottleneck dimension of

128. In addition, the linear component dimensionality is 192. The number of senones (i.e., P

in Figure 2.4) is 1696 and 1728 for healthy (CTL) and pathological (DYS) speech portions of

UA-Speech database. The baseline WERs are 18.5% and 38.9% for CTL and DYS, respectively.

2.6 Conclusion

In this chapter, we provided a brief background on automatic speech recognition (ASR), pre-

senting the key components in the ASR pipeline with special emphasis on acoustic modeling.

We introduced the LF-MMI recognition system (Figure 2.4) which stands for the state-of-the-

art acoustic model in the thesis. Finally, we gave details of the databases, evaluation metrics

and the configuration for the LF-MMI baseline systems.

21

Chapter 2. Background on Automatic Speech Recognition

In the thesis, we work with different sparse autoencoder models (elaborated in Chapter 3) for

learning informative and interpretable speech representations, mainly towards improving

ASR in acoustically mismatched conditions. In essence, autoencoder is inserted in the ASR

pipeline (Figure 2.1) as an additional component after the LF-MMI acoustic model as in

Chapter 4 or before the LF-MMI acoustic model component as in Chapter 5. In Chapter 6,

we further explore different sparse autoencoders for the representation learning problem to

improve the robust speech modeling. Finally, in Chapter 7, we specifically focus on plugging

the pre-trained, off-the-shelf sparse autoencoder (Chapter 6) in a different ASR pipeline which

is originally designed for pathological speech recognition.

22

3 Background on Autoencoders

In this chapter 1, we provide background information about autoencoders with a particular

focus on the sparse autoencoders. First, we briefly remind the reader the relation of autoen-

coders with Principal Component Analysis (PCA). Then, we highlight the importance and

the consequences of design choices (e.g., increasing depth or width, employing different

regularization constraints) in autoencoders. Finally, in the last section, we look into different

sparse autoencoder configurations and viewpoints on sparsity.

3.1 Autoencoders Reloaded

Autoencoders (AEs), previously called “auto-associative multilayer perceptrons”, are neural

networks whose goal is to reconstruct d-dimensional input (i.e., observation) vectors as d-

dimensional output vectors. AE consists of two main parts: encoder and decoder. When

d-dimensional input is passed through the encoder, code (i.e., encoding, embedding) is

extracted on the latent encoding layer. This code is then fed to the decoder to create the

reconstruction for the original input at the output layer of the autoencoder. In general, AE’s

objective is to minimize the Mean Square Error (MSE) between the original input and its

reconstruction.

Depending on the model configuration, autoencoders are named undercomplete, if the encod-

ing layer has lower dimensionality than the input, overcomplete, if the encoding layer has the

same or more units than the input, shallow, if there exists only one hidden layer, and deep, if

there exists more than one hidden layer in the model configuration.

The availability of large amounts of data across multiple disciplines associated with signifi-

cantly increased memory and computation resources has renewed the interest in Deep Neural

Networks (DNNs). In this context, autoencoders, which were initially utilized for linear bot-

tleneck feature extraction, are today also widely explored as a potentially strong nonlinear

1This chapter is partially based on the following publication:
Bourlard, H., and Kabil, S. H. (2022). Autoencoders reloaded. Biological Cybernetics, 116(4), 389-406.

23

Chapter 3. Background on Autoencoders

feature extraction model. This enables notably successful use of unsupervised deep learning

related to the autoencoders, including word embeddings [Mikolov et al. (2013)], a method

used to represent discrete variables as continuous vectors, and linear/nonlinear transformers,

mostly in use for speech and natural language field [Wolf et al. (2020)]. Consequently, DNN

applications have expanded from image processing to speech recognition, natural language

processing, time-series forecasting and neuroscience studies.

Our objective for this thesis is to devise sparse architectures in an unsupervised manner for

learning meaningful representations of speech which can also be utilized for different speech

tasks (e.g., speech recognition, pathological speech recognition and modeling). We address

this feature learning (i.e., representation learning) problem by means of autoencoders, as we

argue that they are the simplest (and most intuitive) neural network architectures for unsuper-

vised learning. Along this line, we first briefly present shallow undercomplete autoencoders,

then, we highlight the importance of keeping the modeling capacity of the autoencoder under

control with different regularization instruments, among which we specifically focus on spar-

sity constraint. Lastly, we review sparse autoencoders and the concept of sparsity for learning

meaningful representations.

3.1.1 Shallow Undercomplete Autoencoders

Shallow undercomplete autoencoder is an autoencoder with only one fully-connected hidden

layer which has lower dimensionality than the input. In [Bourlard and Kamp (1988)], it

was shown that a shallow undercomplete autoencoder, with linear decoder and MSE loss

function, learns the weights that span the same subspace as the one spanned by the principal

component vectors.

[Bourlard and Kamp (1988)] demonstrated that an autoencoder trained (with the usual error

back-propagation (EBP) algorithm [Rumelhart et al. (1985)]) to minimize MSE is equivalent

to linear PCA [Hotelling (1933); Jolliffe (1986)], or alternatively and equivalently, Singular

Value Decomposition (SVD) [Golub and Reinsch (1971)] of the input data matrix, even with

nonlinearities in the hidden layer. This has often been subjected to misperceptions, or ar-

gumentations from the neural network community. Yet, [Bourlard and Kabil (2022)] further

validated this conclusion by experimenting on larger datasets which were not available at that

time.

Hence, in the context of shallow undercomplete autoencoder topology (Figure 3.1), when

MSE (3.1) is used as loss function, PCA yields the optimal solution. However, it is likely that

non-optimal MSE solutions, corresponding to local minima or to constrained solutions, result

in higher-quality “features” (i.e., hidden layer activations, encodings, embeddings) as MSE

is not necessarily related to classification or regression performance (i.e., performance on a

downstream task).

24

3.1 Autoencoders Reloaded

<latexit sha1_base64="Yv9cWAaXRHxcav+XmAaamaJdTe8=">AAACGXicdZBNS1wxFIZzbf3o+DXWZTehg6CIQzKIzkYQBenSQkeFueOQmzlXg/m4JLnKeLl/w03/SjculNJlXflvmjtOQUVfCDy855wk500yKZwn5DGa+PBxcmp65lNtdm5+YbG+9PnImdxy6HAjjT1JmAMpNHS88BJOMgtMJRKOk4v9qn58CdYJo3/4YQY9xc60SAVnPlj9OjlYvV7DOzhOLeMFLQu6DqfFxnVZ4jiuFbFVmBuVGQ3aXwkHZb/eIE1CCW0RPIJ2a7sC0mqTTUwDVGqgsQ779b/xwPBchQu4ZM51Kcl8r2DWCy6hrMW5g4zxC3YG3YCaKXC9YrRZiVeCM8CpseFoj0fu84mCKeeGKgmdivlz97pWmW/VurlP271C6Cz3oPnTQ2kusTe4igkPhAXu5TAA41aEv2J+zkJGPoRZCyH83xS/D0etJt1q0u+bjd29cRwz6Av6ilYRRdtoF31Dh6iDOLpBv9Aduo9+RrfR7+jPU+tENJ5ZRi8UPfwDIKaf2g==</latexit>

F (z) =
1

1 + e�z

componentwise

<latexit sha1_base64="/R3nmGrnnlyFXkTVzWqsJRW45Eg=">AAAB8HicbVBNS8NAEJ3Urxq/qh69LBbBU0lEqseiF48V7Ie0oWy2m3bp7ibsboQS+iu8eFDEqz/Hm//GTZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Vtd2d3b/+gcnjU1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OZ+54kqzWL5YKYJDQQeSRYxgo2VHvthhDoD33UHlapX8+ZAq8QvSBUKNAeVr/4wJqmg0hCOte75XmKCDCvDCKczt59qmmAywSPas1RiQXWQzQ+eoTOrDFEUK1vSoLn6eyLDQuupCG2nwGasl71c/M/rpSa6DjImk9RQSRaLopQjE6P8ezRkihLDp5Zgopi9FZExVpgYm1Eegr/88ippX9T8es2/v6w2boo4ynACp3AOPlxBA+6gCS0gIOAZXuHNUc6L8+58LFpLTjFzDH/gfP4AzNiPGQ==</latexit>

W1
<latexit sha1_base64="RZwDRfvrzfLuq0mDOXJj1EFn+AU=">AAAB8HicbVBNS8NAEJ3Urxq/qh69LBbBU0mKqMeiF48V7Ie0oWy2m3bp7ibsboQS+iu8eFDEqz/Hm//GTZuDtj4YeLw3w8y8MOFMG8/7dkpr6xubW+Vtd2d3b/+gcnjU1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OZ+54kqzWL5YKYJDQQeSRYxgo2VHvthhDqDuusOKlWv5s2BVolfkCoUaA4qX/1hTFJBpSEca93zvcQEGVaGEU5nbj/VNMFkgke0Z6nEguogmx88Q2dWGaIoVrakQXP190SGhdZTEdpOgc1YL3u5+J/XS010HWRMJqmhkiwWRSlHJkb592jIFCWGTy3BRDF7KyJjrDAxNqM8BH/55VXSrtf8y5p/f1Ft3BRxlOEETuEcfLiCBtxBE1pAQMAzvMKbo5wX5935WLSWnGLmGP7A+fwBzl6PGg==</latexit>

W2

<latexit sha1_base64="NbjaMh0EBBmAcq4JnoY1I9+0yBg=">AAACWHicbZFRSxwxFIUzo1Zd27rax75cugizsCyTUmxfBFEoPokF1xV21iGTzTphM8mQ3BGXxT8p+KB/xRdnxpG26oXAyXfPJclJkivpMAzvPX9peeXD6tp6a+Pjp8+b7a3tM2cKy8WAG2XsecKcUFKLAUpU4jy3gmWJEsNkdlj1h1fCOmn0Kc5zMc7YpZZTyRmWKG6bNLiONXRhD34Hw5henEK974Heoz2I1MSg68ExRFFr5683SGMKQeN8MaXxrGZdeGFQwbwxQvcCW3G7E/bDuuCtoI3okKZO4vZtNDG8yIRGrphzIxrmOF4wi5IrcdOKCidyxmfsUoxKqVkm3HhRB3MDOyWZwNTYcmmEmv47sWCZc/MsKZ0Zw9S97lXwvd6owOmv8ULqvECh+fNB00IBGqhShom0gqOal4JxK8u7Ak+ZZRzLv6hCoK+f/Facfe/T3T7986Ozf9DEsUa+km8kIJT8JPvkiJyQAeHkjjx6y96K9+ATf9Vff7b6XjPzhfxX/vYTolmqEw==</latexit>

h(xn) = F (WT
1 xn), n = 1, . . . , N

<latexit sha1_base64="8B7OoLJK6kO9CnjtOS/fpTeB17Q=">AAACWHicbZFdS+QwFIbTrq46+zXrXnpzcBjowDA0Irt7I4gL4pUozBdMOyXNZGw0TUqSLg7FP7mwF+5f8ca2VvzaA4E3z3kPSd7EmeDG+v6t475bW3+/sbnV+vDx0+cv7a/bY6NyTdmIKqH0NCaGCS7ZyHIr2DTTjKSxYJP46lfVn/xm2nAlh3aVsTAlF5IvOSW2RFFbdRPvOpLQgwM49iYRng+h3vdBHuA+BGKhrOnDKQRB68nqJREGrzE+epLosmY9eGRQwawxQm8+bEXtjj/w64K3Ajeig5o6i9p/goWiecqkpYIYM8N+ZsOCaMupYDetIDcsI/SKXLBZKSVJmQmLOpgb6JZkAUulyyUt1PT5REFSY1ZpXDpTYhPzulfB//VmuV3+DAsus9wySR8OWuYCrIIqZVhwzagVq1IQqnl5V6AJ0YTa8i+qEPDrJ78V470B/j7A5/udw6Mmjk20g3aRhzD6gQ7RCTpDI0TRX3TnrDnrzj8XuRvu1oPVdZqZb+hFudv3aomp8g==</latexit>

h(xn) = (h1(xn), . . . , hj(xn), . . . , hp(xn))T

<latexit sha1_base64="0D65bndEYFfs1VEPMLYx9+q05O8=">AAACGHicbVBNS8MwGE79nPOr6tFLcAjzMtsh6kUYCuJxwrYOtlrSLNvC0rQkqWyU/Qwv/hUvHhTxupv/xqwropsPhDzv87wvyfv4EaNSWdaXsbS8srq2ntvIb25t7+yae/sNGcYCkzoOWSiaPpKEUU7qiipGmpEgKPAZcfzBzdR3HomQNOQ1NYqIG6Aep12KkdKSZ562+0glw7HH4RV0vPJDDfaLQ12d/NS3Rcez9Z2qnlmwSlYKuEjsjBRAhqpnTtqdEMcB4QozJGXLtiLlJkgoihkZ59uxJBHCA9QjLU05Coh0k3SxMTzWSgd2Q6EPVzBVf08kKJByFPi6M0CqL+e9qfif14pV99JNKI9iRTiePdSNGVQhnKYEO1QQrNhIE4QF1X+FuI8Ewkpnmdch2PMrL5JGuWSfl+z7s0LlOosjBw7BESgCG1yACrgDVVAHGDyBF/AG3o1n49X4MD5nrUtGNnMA/sCYfAMN+Jye</latexit>

x̂n = WT
2 h(xn) = WT

2 F (WT
1 xn)

<latexit sha1_base64="qyjO2pOsvzz1yHTK/NJyttvP6UE=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EiyCh1J2RdSLUPTisYL9gHYp2WzahmaTJckWytJ/4sWDIl79J978N6btHrT1wcDjvRlm5oUJZ9p43rdTWFvf2Nwqbpd2dvf2D9zDo6aWqSK0QSSXqh1iTTkTtGGY4bSdKIrjkNNWOLqf+a0xVZpJ8WQmCQ1iPBCszwg2Vuq5LkO3yK+gLo+k0RUU9dyyV/XmQKvEz0kZctR77lc3kiSNqTCEY607vpeYIMPKMMLptNRNNU0wGeEB7VgqcEx1kM0vn6Izq0SoL5UtYdBc/T2R4VjrSRzazhiboV72ZuJ/Xic1/ZsgYyJJDRVksaifcmQkmsWAIqYoMXxiCSaK2VsRGWKFibFhlWwI/vLLq6R5UfWvqv7jZbl2l8dRhBM4hXPw4Rpq8AB1aACBMTzDK7w5mfPivDsfi9aCk88cwx84nz/mGZHm</latexit>

i = 1, . . . , d
<latexit sha1_base64="qyjO2pOsvzz1yHTK/NJyttvP6UE=">AAAB+XicbVBNSwMxEJ2tX7V+rXr0EiyCh1J2RdSLUPTisYL9gHYp2WzahmaTJckWytJ/4sWDIl79J978N6btHrT1wcDjvRlm5oUJZ9p43rdTWFvf2Nwqbpd2dvf2D9zDo6aWqSK0QSSXqh1iTTkTtGGY4bSdKIrjkNNWOLqf+a0xVZpJ8WQmCQ1iPBCszwg2Vuq5LkO3yK+gLo+k0RUU9dyyV/XmQKvEz0kZctR77lc3kiSNqTCEY607vpeYIMPKMMLptNRNNU0wGeEB7VgqcEx1kM0vn6Izq0SoL5UtYdBc/T2R4VjrSRzazhiboV72ZuJ/Xic1/ZsgYyJJDRVksaifcmQkmsWAIqYoMXxiCSaK2VsRGWKFibFhlWwI/vLLq6R5UfWvqv7jZbl2l8dRhBM4hXPw4Rpq8AB1aACBMTzDK7w5mfPivDsfi9aCk88cwx84nz/mGZHm</latexit>

i = 1, . . . , d
<latexit sha1_base64="JoJzkWgy1Smn7xjgyjMxLiTiaYg=">AAAB+XicbVBNSwMxEM3Wr1q/Vj16CRbBQym7IupFKHrxWMF+QLuUbDZtY7PJkswWytJ/4sWDIl79J978N6btHrT6YODx3gwz88JEcAOe9+UUVlbX1jeKm6Wt7Z3dPXf/oGlUqilrUCWUbofEMMElawAHwdqJZiQOBWuFo9uZ3xozbbiSDzBJWBCTgeR9TglYqee6j/ga+xXcFZECU8FJzy17VW8O/Jf4OSmjHPWe+9mNFE1jJoEKYkzH9xIIMqKBU8GmpW5qWELoiAxYx1JJYmaCbH75FJ9YJcJ9pW1JwHP150RGYmMmcWg7YwJDs+zNxP+8Tgr9qyDjMkmBSbpY1E8FBoVnMeCIa0ZBTCwhVHN7K6ZDogkFG1bJhuAvv/yXNM+q/kXVvz8v127yOIroCB2jU+SjS1RDd6iOGoiiMXpCL+jVyZxn5815X7QWnHzmEP2C8/EN+dyR8w==</latexit>

j = 1, . . . , p

<latexit sha1_base64="OtKuS4yYGFboc6VKArsL1EjMuZI=">AAACGXicbVDLSsNAFJ34rPUVdelmsAgVSklE1I1QdOOyQl/QxjCZTNqhk0mYmUhL6G+48VfcuFDEpa78GydtFtp6YODcc+7lzj1ezKhUlvVtLC2vrK6tFzaKm1vbO7vm3n5LRonApIkjFomOhyRhlJOmooqRTiwICj1G2t7wJvPbD0RIGvGGGsfECVGf04BipLTkmtbI5fAKlkduyu1JBfaYHylZgVlN52p/cnLfcM2SVbWmgIvEzkkJ5Ki75mfPj3ASEq4wQ1J2bStWToqEopiRSbGXSBIjPER90tWUo5BIJ51eNoHHWvFhEAn9uIJT9fdEikIpx6GnO0OkBnLey8T/vG6igksnpTxOFOF4tihIGFQRzGKCPhUEKzbWBGFB9V8hHiCBsNJhFnUI9vzJi6R1WrXPq/bdWal2ncdRAIfgCJSBDS5ADdyCOmgCDB7BM3gFb8aT8WK8Gx+z1iUjnzkAf2B8/QBEEJ8/</latexit>

xn = (xn1, . . . , xni, . . . , xnd)
T

<latexit sha1_base64="MzKBy+pamsNoWfzk73Or8FOgohw=">AAACMXicbVDLSgMxFM34rPVVdekmWIQKUmZE1I1QdNNlhb6grSWTSdvQTGZI7ohlmF9y45+Imy4UcetPmD4UbXsg5OSce7m5xw0F12DbQ2tpeWV1bT21kd7c2t7ZzeztV3UQKcoqNBCBqrtEM8ElqwAHweqhYsR3Bau5/duRX3tgSvNAlmEQspZPupJ3OCVgpHam2OwRiB+TtsTXOPfziKWTnOKm8ALQ5v5V+ULVS07uy+1M1s7bY+B54kxJFk1Ramdeml5AI59JoIJo3XDsEFoxUcCpYEm6GWkWEtonXdYwVBKf6VY83jjBx0bxcCdQ5kjAY/VvR0x8rQe+ayp9Aj09643ERV4jgs5VK+YyjIBJOhnUiQSGAI/iwx5XjIIYGEKo4uavmPaIIhRMyGkTgjO78jypnuWdi7xzd54t3EzjSKFDdIRyyEGXqICKqIQqiKIn9Ire0Lv1bA2tD+tzUrpkTXsO0D9YX9+Osqpz</latexit>

x̂n = (x̂n1, . . . , x̂ni, . . . , x̂nd)
T

Figure 3.1: Shallow undercomplete autoencoder learns to span the same subspace as PCA under
certain conditions such as linear decoder (i.e., linear output layer), MSE as loss function and
real-valued input data. In addition, having a smaller code dimension than the input dimension
forces the autoencoder to learn the salient features as encodings from the training data.

3.1.2 Going Deep or Going Overcomplete

Shallow undercomplete autoencoder learns to span the same subspace as PCA under certain

conditions such as linear decoder (i.e., linear output layer), MSE as loss function and real-

valued input data. Having smaller code dimension than the input dimension (i.e., being

undercomplete) forces the autoencoder to learn the salient features as encodings from the

training data. Apart from this, of course, there exist other ways to design autoencoders.

While building neural networks, the key design decisions are usually choosing the depth of

the network and the width of each layer. Deeper networks are often able to use far fewer units

per layer and generally far fewer parameters; hence, frequently generalizing to the test data.

In addition, depth can exponentially reduce the computational cost of representing some

functions [Goodfellow et al. (2016)].

Apart from the shallow autoencoders (illustrated in Figure 3.1 and Figure 3.2), autoencoders

can also be deepened, consisting of several hidden layers in the encoder and decoder. However,

deep architectures can also tend to be harder to optimize [Bengio et al. (2007); Goodfellow et al.

(2016)]. One of the earliest strategies to train a deep autoencoder is to greedily pretrain the

25

Chapter 3. Background on Autoencoders

deep architecture by training a stack of shallow autoencoders. So, even when the end goal is to

train a deep autoencoder, shallow autoencoders remain useful [Bengio et al. (2007)]. Other

aspects to keep in mind while building an autoencoder are the use of nonlinear activations

in the encoder and decoder, the composition of different unit types (e.g., convolution layers,

recurrent layers), the higher dimensional encoding layer (i.e., being overcomplete) and the

depth of the encoder and decoder.

However, it is important to keep in mind that if the autoencoder is given too much modeling

power, it can simply learn the identity function (i.e., perfectly reconstructing the input data at

the output layer) between the input data and output reconstruction. This phenomenon is also

known as identity mapping. In this case, some form of constraint (e.g., sparsity, contraction,

noise) should be introduced during training to guide the autoencoder for learning meaningful

encodings.

<latexit sha1_base64="4btQWDF+S26TrMHDbh3S4qugF84=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00O57/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeO1nXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVa9W9e4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gDbU42F</latexit>

W1
<latexit sha1_base64="mO9vLl1v3JxoYI9JDnXjt7BHbAo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGC/YA2lM120i7d3YTdjVBC/4IXD4p49Q9589+YtDlo64OBx3szzMwLYsGNdd1vZ219Y3Nru7RT3t3bPzisHB23TZRohi0WiUh3A2pQcIUty63AbqyRykBgJ5jc5X7nCbXhkXq00xh9SUeKh5xRm0udQb08qFTdmjsHWSVeQapQoDmofPWHEUskKssENabnubH1U6otZwJn5X5iMKZsQkfYy6iiEo2fzm+dkfNMGZIw0lkpS+bq74mUSmOmMsg6JbVjs+zl4n9eL7HhjZ9yFScWFVssChNBbETyx8mQa2RWTDNCmebZrYSNqabMZvHkIXjLL6+Sdr3mXdW8h8tq47aIowSncAYX4ME1NOAemtACBmN4hld4c6Tz4rw7H4vWNaeYOYE/cD5/ABHejZo=</latexit>

W2

<latexit sha1_base64="dEDbeHvDHF8JpL/sM8hPpHkBKNQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDabSbt0swm7G6GU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGLZYIhLVCahGwSW2DDcCO6lCGgcC28HoJvfbT6g0T+SDGafox3QgecQZNVa6Dyv9as2tuzOQZeIVpAYFmv3qVy9MWBajNExQrbuemxp/QpXhTOC00ss0ppSN6AC7lkoao/Yns0un5MQqIYkSZUsaMlN/T0xorPU4DmxnTM1QL3q5+J/XzUx05U+4TDODks0XRZkgJiH52yTkCpkRY0soU9zeStiQKsqMDScPwVt8eZk8ntW9i7p3d15rXBdxlOEIjuEUPLiEBtxCE1rAIIJneIU3Z+S8OO/Ox7y15BQzh/AHzucP/lGNAg==</latexit>

d

<latexit sha1_base64="1cSZHAWCYNRM+IiPIaxSXDZ1mR0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLK6tr6RnmzsrW9s7tX3T941HGqGLZYLGLVCahGwSW2DDcCO4lCGgUC28H4JvfbT6g0j+WDmSToR3QoecgZNVa6Tyr9as2tuzOQZeIVpAYFmv3qV28QszRCaZigWnc9NzF+RpXhTOC00ks1JpSN6RC7lkoaofaz2aVTcmKVAQljZUsaMlN/T2Q00noSBbYzomakF71c/M/rpia88jMuk9SgZPNFYSqIiUn+NhlwhcyIiSWUKW5vJWxEFWXGhpOH4C2+vEwez+reRd27O681ros4ynAEx3AKHlxCA26hCS1gEMIzvMKbM3ZenHfnY95acoqZQ/gD5/MHEJyNDg==</latexit>p
<latexit sha1_base64="dEDbeHvDHF8JpL/sM8hPpHkBKNQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDabSbt0swm7G6GU/gMvHhTx6j/y5r9x0+agrQ8GHu/NMDMvSAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGLZYIhLVCahGwSW2DDcCO6lCGgcC28HoJvfbT6g0T+SDGafox3QgecQZNVa6Dyv9as2tuzOQZeIVpAYFmv3qVy9MWBajNExQrbuemxp/QpXhTOC00ss0ppSN6AC7lkoao/Yns0un5MQqIYkSZUsaMlN/T0xorPU4DmxnTM1QL3q5+J/XzUx05U+4TDODks0XRZkgJiH52yTkCpkRY0soU9zeStiQKsqMDScPwVt8eZk8ntW9i7p3d15rXBdxlOEIjuEUPLiEBtxCE1rAIIJneIU3Z+S8OO/Ox7y15BQzh/AHzucP/lGNAg==</latexit>

d

Figure 3.2: Shallow overcomplete autoencoder can easily overfit and do perfect reconstruction
(i.e., identity mapping) while learning meaningless encodings on its hidden layer. To avoid this
phenomenon, different regularization methods can be applied on the model.

3.1.3 Regularized Autoencoders

Autoencoders with constraints to restrict the modeling capacity are known as regularized

autoencoders. Modeling capacity denotes the complexity of the relationships in the data (i.e.,

patterns) that the model can express. The most common way to estimate the capacity of a

model is to count the number of parameters, as more parameters indicate higher capacity.

Hence, overcompleteness increases the modeling capacity of the autoencoder.

In other words, given the input data, if the autoencoder tends to overfit, it can simply end up

learning the identity function (i.e., reconstructing the input data at the output layer perfectly)

which is simply uninteresting. Thus, high modeling capacity is not always desired. To avoid

26

3.1 Autoencoders Reloaded

this trivial identity function, different forms of constraints are exploited.

These constraints are usually in the form of additional regularizer term(s) in the AE loss

function. More precisely, when the loss function for the autoencoder training (3.1) is written

as follows, with x̂n and xn being reconstructed and original data instance, respectively,

LAE = 1

N

N∑
n=1

(xn − x̂n)2 (3.1)

Then, the loss function for the regularized autoencoders can be merely stated as

LRAE = 1

N

N∑
n=1

(xn − x̂n)2 +λLreg (3.2)

where λ denotes the regularization weighting term, tuning the penalty term Lreg with respect

to the reconstruction loss (3.1).

Contractive autoencoders

Contractive Autoencoder (CAE) [Rifai et al. (2011)] uses an additional penalty term in the

loss function (3.3). The penalty is the squared Frobenius norm of the Jacobian matrix of the

encoder. In other words, the penalty term is the sum of the squares of all first-order partial

derivatives for all input vectors.

LCAE = LAE +λ
N∑

n=1

∥∥J f (xn)
∥∥2

F (3.3)

This Jacobian term promotes local invariance to displacements and alterations in many

directions around the training samples (i.e., training instances, training examples) so that

the model gets less sensitive to the small perturbations in the input data. The penalty term

forces the autoencoder to extract encodings whose all dimensions are contracted. However, at

the same time, the reconstruction error prevents the model from contracting the dimensions

along the (true) data manifold.

Denoising autoencoders

Denoising Autoencoder (DAE) [Vincent et al. (2008)] uses stochastic corruption of the (clean)

input data xn as regularizer during model training. The corruption of the input, resulting in x̃n ,

can be achieved through additive isotropic Gaussian noise, salt and pepper noise for gray-scale

images, and/or masking noise (i.e., setting some randomly chosen inputs to 0 independently

per instance).

Denoising autoencoder adopts a different criterion to evaluate the performance of the recon-

struction (3.4), where xn and g (x̃n) denote the original clean data instance and reconstruction

27

Chapter 3. Background on Autoencoders

for the associated corrupted data instance such that g (x̃n) = F (W2h(x̃n)), respectively.

LDAE = 1

N

N∑
n=1

(
xn − g (x̃n)

)2 (3.4)

In training, the model takes partially corrupted instances as input and tries to reconstruct the

original, clean instances. This forces the model to identify the true data manifold.

Variational Autoencoders

Variational Autoencoder (VAE) [Kingma and Welling (2019)] replaces the deterministic func-

tions in the autoencoder configuration by stochastic mappings. The encoder does not map

each instance to a single point in the latent embedding space, but to a distribution instead,

which is usually a normal distribution, defined by its mean and standard deviation. Then,

reconstruction is produced by sampling from that distribution and propagating the results

through the decoder network. Since VAE allows sampling from the learned distribution, its

applications usually involve generating new data instances [Dosovitskiy and Brox (2016)].

VAE assumes that a latent, unobserved random variable z exists, which by some random

process leads to the observation x. Its objective is thus to approximate the distribution of the

latent variable given the observations. The loss function of VAE can be decomposed into terms

of single data points. For the sake of simplicity, in (3.5), the loss function is for one datapoint

xn .

LVAE(θ,φ;xn) =
KL

(
qφ(z | xn)∥pθ(z)

)−Eqφ(z|xn)
[
log pθ(xn | z)

] (3.5)

where q is the distribution approximating the true latent distribution of z, and θ, φ are the

parameters of encoder and decoder distributions, respectively.

In (3.5), the first term acts as a regulariser between the encoder’s distribution and the standard

normal distribution. That is, if the latent representations z produced by the encoder are

different from those from normal distribution pθ(x), this term penalizes the loss. Whereas,

the second term in (3.5) is the reconstruction loss, promoting the decoder to reconstruct the

data xn . If the reconstruction does not comply with the input data well, it can be said that the

decoder parameterizes a distribution which fails to model the true distribution of the data.

To sum up, different constraints (e.g., sparsity, contraction, noise) restrict the modeling ca-

pacity, and hence guide the autoencoders (e.g., contractive AE, denoising AE) for learning

meaningful encodings. Sparse autoencoders are more prominent to exploit the intrinsic

properties of speech data (Section 1.1); hence, in the next section, we specifically focus on

sparsity as primary constraint, and the use of sparse autoencoders for learning meaningful

representation.

28

3.2 Sparse Autoencoders

3.2 Sparse Autoencoders

Different models have been referred to as sparse autoencoders (sparse AE), as there is a lack of

consensus in literature regarding the definition. Thus, in this section, we describe some of the

well-known autoencoders for learning sparse representations. In autoencoders, sparsity is

typically enforced by sparsifying the weights [Gupta and Majumdar (2016); Wan et al. (2013)]

and/or sparsifying the hidden unit activations (i.e., encodings). Here, we mainly categorize

the sparse AEs based on the explicit and implicit regularization features present in the model.

For the case of explicitly constrained sparse AE, penalty term is added to the loss function. A

simple sparse AE can, for example, be intuitively built using ℓ1 norm regularization on the hid-

den unit activations (3.6), motivated by the sparse coding and dictionary learning [Olshausen

and Field (1997)].

LSAE = LAE +λ
N∑

n=1
∥h(xn)∥1 (3.6)

The goal of the dictionary learning is to find a dictionary D ∈ Rd×p : D = [d1, . . . ,dP] which

is constrained with ∥di∥2 ≤ 1,∀i = 1, . . . , p and a representation H ∈ Rn×p : H = [h1, . . . ,hN],

given the input data X = [x1, . . . , xN] , xn ∈Rd , such that all ∥xn −Dhn∥2
2 are minimized and all

representations hn , where hn = DT xn = h(xn), are zero in most places. This can be formulated

as the following optimization problem:

min
D,hn

N∑
n=1

∥xn −Dhn∥2
2 +λ∥hn∥0 (3.7)

Analogous to Figure 3.2, in dictionary learning setup, dictionary D stands for the decoder

weights W2, while the encoder and decoder weights are tied W1 = DT . Since (3.7) is NP-

hard [Candès and Wakin (2008)], the ℓ0-norm ∥hn∥0 is relaxed to the ℓ1-norm ∥hn∥1. In

addition, different variants of ℓ1 regularized sparse AEs are introduced in [Zhang et al. (2018)]

whose aim is to smooth the regularization penalty.

Another commonly used regularization on the hidden unit activations is the Kullback-Leibler

(KL) divergence formulated in (3.9). Sparse AE with KL divergence [Ng et al. (2011)] applies KL

penalty to enforce sparsity on sigmoidal hidden unit activations (i.e., sigmoid function on the

hidden layer). KL divergence [Kullback and Leibler (1951)] estimates the distance between

predetermined desired average activation ρ and the average activation for the hidden units. p

in (3.8) denotes the number of hidden units, in accordance with Figure 3.2.

LSAE = LAE +λ
p∑

j=1
KL

(
ρ∥ρ̂ j

)
(3.8)

29

Chapter 3. Background on Autoencoders

KL
(
ρ∥ρ̂ j

)= ρ log
ρ

ρ̂ j
+ (1−ρ) log

1−ρ
1− ρ̂ j

(3.9)

The desired average activation ρ is set to a very small value (e.g., 0.002). When ρ̂ j (i.e., average

activation of hidden unit j over training data) is close to ρ, KL penalty is expected to be low.

However, in the opposite case, KL penalty grows rapidly, finally approaching to infinity when

ρ̂ j gets close to 1.

For the case of implicitly constrained sparse AE, the sparsity constraint is not reflected in

the loss function. Instead, it is maintained by altering the inner components of the model.

k-sparse AE [Makhzani and Frey (2013)] is the most well-known example in this category. The

model forces the hidden unit activations to be sparse by a pruning mechanism (i.e., top-k

selection). In the encoding layer, k hidden units with the highest activations are preserved

while the activations from the rest of the hidden units are set to zero. This top-k selection

introduces nonlinearity to the model, as it can also be seen as a variant of Rectified Linear

Unit (ReLU) in which the threshold is the k-th largest activation (instead of zero). However,

the performance is largely dependent on the hyperparameter k. It is observed that some of

the hidden units may never be selected among top-k units, and thus never get updated during

back propagation. This issue (i.e., dead atom problem in Section 3.2.3) is addressed with a

scheduler for k during training. However, at inference time, α∗k (where α> 1, generally 3-4)

is found to give the best result, indicating that the model is still not efficient at generalizing.

To rectify the aforementioned shortcomings in k-sparse AE, [Chen and Zaki (2017)] presents

k-competitive AE. The model benefits from the concept of competitive learning [Rumelhart

and Zipser (1985)] to boost the specialization of the hidden units. It uses hyperbolic tangent

activation function which produces positive and negative activations in [−1,1] range. k/2

units with the highest positive activation are selected as the positive winners (indicating high

interest and specialization for the given input pattern) and k/2 units with the lowest negative

activation are selected as the negative winners (indicating negative interest for the input

pattern). Unlike k-sparse AE, the activations from the rest of the hidden units (i.e., losers) are

summed, amplified by α and added onto positive and negative winners’ activations, before

being set to zero. In this way, the competition (and hence specialization) among hidden units

is sharpened so that the active units (i.e., winners) are given chance to react more confidently

to the input pattern while the inactive units are no longer in competition and can ensure

not to react to the pattern in the future. During back propagation, the gradients first flow

through the winner units in the hidden layer and then through the loser units thanks to α-

amplification connections. Hence, unlike k-sparse AE, the loser units are also given chance

to receive feedback. In addition, it is stated that there is no need to tune k in inference time,

suggesting that k-competitive AE is better at generalizing, compared to k-sparse AE.

Sparsity can also be enforced on weights. Sparsifying weights is reported to help detect

the meaningful relations while pruning the irrelevant ones. In sparsely connected autoen-

coders [Gupta and Majumdar (2016)], each unit is linked to only a limited number of units in

30

3.2 Sparse Autoencoders

the following layer. It is worth mentioning that sparsely connected autoencoders learn the

sparse connections deterministically, different from dropout [Srivastava et al. (2014)], and

dropconnect [Wan et al. (2013)].

Furthermore, sparsity can be introduced via the choice of activation functions. For instance,

ReLU function on hidden units, with its neuroscientific motivations, is intended to imitate the

following properties of biological neurons [Glorot et al. (2011)]: (1) being completely inactive,

for some inputs. (2) having output which is proportional to the input, for some inputs. (3)

being inactive state most of the time (i.e., producing sparse activations).

In this thesis, we seek biologically motivated, simple yet elegant way of learning meaningful

representations in an unsupervised and cost effective manner. For this reason, in the following

subsections, we devote our attention to sparsity for its definition and benefits for representa-

tion learning, sparse overcomplete representations, sparse distributed representations with

emphasis on population sparseness and life-time sparseness. And, finally we briefly touch on

the sparsity measures used for analysis purposes in this thesis.

3.2.1 Sparsity

Definition of the term sparse may differ based on the perspective in applications. Intuitively, a

sparse representation refers to the case where a relatively small number of coefficients carry a

large proportion of energy (i.e., information). In mathematics, the terms “sparse” and “dense”

usually denote the number of zero and non-zero elements in an array (e.g., vector or matrix).

In the context of neural networks, hidden unit activations (i.e., encodings, representations)

from a particular layer, the weights and the data can be described as sparse. For representation

learning, from a computational perspective, sparse representations are beneficial for the

following reasons [Glorot et al. (2011)]:

Information disentangling: Sparse representations are easier to manage for disentangling

the factors explaining the variations in the data. On the other hand, a dense representation is

highly entangled (i.e., intertwined, difficult to isolate the underlying components) because

almost any change in the input intractably modifies most of the entries in the dense represen-

tation vector. For example, if a representation is both sparse and robust (to small changes in

the data), the set of non-zero entries (i.e., features) is almost always distinct for the input. This

brings in the aspect of interpretability which is useful for selecting accurate representations

for different downstream tasks.

Linear separability: When the information is represented in a high-dimensional space, sparse

representations are more likely to be easily separable with minimal computational effort. This

point is further elaborated in Section 3.2.2.

Efficient variable-size representation: Sparsity allows the model to adjust the effective di-

mensionality of the representation for a given input. Different inputs may cover differing

amounts of information and hence can be more effectively expressed using variable-size

31

Chapter 3. Background on Autoencoders

representations. Thanks to sparsity, for a given input, only a subset of differing hidden units

are active (i.e., differing entries in the representation vector are non-zero). In this way, the

model can be conceptualized as consisting of an exponential number of linear models with

shared parameters [Nair and Hinton (2010)].

Distributed but sparse representation: With respect to space efficiency, sparse representa-

tions present a good trade-off between dense distributed representations and local codes [Ben-

gio (2009)]. More on this point is given in Section 3.2.3 with our motivation for reaching sparse

distributed representations in this thesis.

3.2.2 Sparse Overcomplete Representations

Apart from sparsity, overcompleteness is another property that should carefully be examined.

Intuitively, in the overcomplete scenario, the underlying latent components in the data are

given a chance to scatter in the high(er)-dimensional representation space. Further, with the

presence of sparsity, these components can be represented in a less aggregated manner. That

is, the information is distributed among the entries of the sparse overcomplete vector and

only a portion of its entries (i.e., dimensions) are critical and discriminative. Hence, when the

information is represented in high-dimensional space, sparse representations are more easily

separable and likely to be interpretable and informative.

Theoretically, [Kanerva (1988)] constitutes the pioneer study for understanding sparsity and

overcompleteness together while proposing the sparse distributed memory concept for model-

ing the highly sparse representations in the brain. To clarify our standpoint, we mainly focus

on two important properties from [Kanerva (1988)]: orthogonalization and smooth latent

space. Orthogonalization is referred to when the data is projected onto a high(er) dimensional

representation space, close data points in the original space are not necessarily mapped

closely together. This is what was meant by “scattering” in our intuitive statement above.

However, during this projection, a learning function should also exist so that similar (i.e.,

potentially relevant) data points (sharing similar characteristics and latent components) can

still be mapped relatively close. Hence, a data point and its (slightly) corrupted version are

aimed to be mapped closely. The representation space with such behavior is referred to as

smooth latent space in [Kanerva (1988)]. Smooth latent suggests that the latent components in

the data are distributed in the representation space and hence can be traced (i.e., informa-

tion disentangling). This is also referred to as “distribution of information” in our intuitive

statement above. It is evident that there is a trade-off between orthogonalization and smooth

latent spaces; thus, the balance should be maintained. Thus, sparse distributed memory can

be viewed as realization of locality-sensitive hashing.

Practically, given a similarity measure (e.g., cosine similarity in the vector space) and a match-

ing threshold, the impact of sparsity for robust matches among data points in the presence

of noise is investigated in [Ahmad and Scheinkman (2019)]. Figure 3.3 illustrates the setup,

32

3.2 Sparse Autoencoders

Figure 3.3: An illustration of the conceptual effect of decreasing the match threshold and
increasing dimensionality. The large gray circles denote the universe of possible patterns. Each
smaller circle represents the set of matches around one vector (data point). When threshold is
high (A), very few random vectors can match with these vectors (hence, small white circles). As
threshold is decreased (B), the set of potential matches increases (hence, larger white circles).
Then, if dimensionality of the representation space is increased (C), the universe of possible
patterns increases and the relative sizes of the white circles shrink rapidly. Figure adapted
from Ahmad and Scheinkman (2019).

the gray circles denote the universe of possible patterns to represent. Each smaller (white)

circle represents the set of matches around one vector (i.e., data point). When the (matching)

threshold is high (A in Figure 3.3), very few random vectors can match with the data vector

(hence, small white circles). As the threshold is decreased (B in Figure 3.3), the set of potential

matches expands (hence, larger white circles). Then, if dimensionality of the representation

space is increased (C in Figure 3.3), the universe of possible patterns expands and the relative

volume of the matching shrinks rapidly.

Accordingly, [Ahmad and Scheinkman (2019)] reports that for a fixed sparsity level on distorted

noisy environment, highly tolerant matches (i.e., with low(er) matching threshold) can be

maintained without the cost of false positives (i.e., without matches with semantically irrelevant,

random vectors). Whereas, for the dense scenario, the false matches are reported to be

relatively higher and unaffected by the dimensionality. This observation points out that

both sparseness and overcompleteness (i.e., higher dimensionality) are necessary for robust

matches and supports the insights from orthogonalization and smooth latent spaces.

33

Chapter 3. Background on Autoencoders

3.2.3 Sparse Distributed Representations

After making our point on the sparse overcomplete representations, we clarify different view-

points on sparsity. In [Ngiam et al. (2011)], these are reflected as follows:

High dispersal: In this scenario, no sparsity constraint is enforced, and dense representations

are produced. The modeling capacity (referred to as universe of possible patterns in Figure 3.3)

is very high and most of it is redundant. It is difficult to pinpoint which components are vital

for understanding data characteristics (i.e., information disentangling is difficult.).

Population sparseness: Sparsity is enforced in the representation space. For each data point,

the corresponding representation is indeed sparse. However, depending on the severity

of the constraint, some entries of the representation vector (laying on the representation

space) can always be zero. This phenomenon is known as the dead atom problem in sparse

coding [Olshausen and Field (1996)]. Clearly, this behaviour is not desired.

Life-time sparseness: Life-time sparseness aims to prevent the aforementioned dead atom

problem. Based on the data characteristics, only a small number of entries in the represen-

tation vector are desired to be active at any point in time. In other words, information is

distributed over the dimensions of the representation space (i.e., entries of the representa-

tion vector) and each dimension covers some component (e.g., pattern) in the data, which

indicates specialization. Hence, the overlaps of the contributing dimensions can reveal the

conceptual similarities between different data points.

It is worth mentioning that the population sparseness and life-time sparseness are not different

types of sparsity but different viewpoints to sparsity. Population sparseness focuses on the

overall behavior of the unit population. It does not pay attention to a single unit’s activation

behavior in time. Hence, some dead units (e.g., dead atoms in sparse coding) may occur.

Whereas, in the life-time sparseness, the same representation is inspected from a single unit

point of view. The focus is on the activation behavior of each single unit during its life-time

(e.g., training time for neural network) while still maintaining a sparse representation. In other

words, the units are restricted not to be active or inactive all times (e.g., over all training data

points), instead, they are forced to be more selective while making the decision to activate or

not. Therefore, life-time sparseness is more successful for preventing dead atom problems

and can more easily lead to Sparse Distributed Representations (SDRs), which are meaningful

and discriminative by nature.

When learning meaningful intermediate representations from sparse autoencoders, we want

these representations to be sparse, while still avoiding the dead atom problem. Therefore, we

aim for learning sparse distributed representations (from speech data) by means of sparse

autoencoders.

34

3.2 Sparse Autoencoders

1

cat dog cat \ dog

Figure 3.4: The illustration of sparse distributed representations for computing similarity rela-
tions among data points. Each red unit covers some underlying component which collectively
stands for the concept “cat”. The fact that overlaps exist and two of the units (shown in blue)
are shared by “cat” and “dog” implicitly points to a particular similarity in terms of underlying
components.

In SDR, only a small number of units (i.e., neurons in neural network terminology, or dimen-

sions in the representation space, or entries of the representation vector) from a much larger

total field of units are active (i.e., contributing to the representation) at any point in time.

Hence, the overlaps among active sets of units can point out the similarities between different

data points. As illustrated in Figure 3.4, different data points are represented in the same

representation space with only a few active (colored) units. For instance, each red unit covers

some underlying component which collectively stands for the concept “cat”.

The fact that overlaps exist and two of the units (shown in blue) are shared by “cat” and “dog”

implicitly points to a particular similarity in terms of underlying components. This is useful

not only for encoding unseen data points reasonably (i.e., out of distribution generalization),

but also for the classifier to reach higher accuracy while exploiting the correlations, similarities

between the representations in the supervised learning scenarios.

3.2.4 Population Sparseness and Life-time Sparseness

We aim for biologically motivated, simple sparse autoencoders for learning sparse distributed

representations. Here, we reiterate over some of the different sparse autoencoders based on

their viewpoint on sparsity (e.g., life-time sparseness, population sparseness).

As shown in Figure 3.5 illustrating the hidden unit activations over a batch of data points (i.e.,

data samples), x axis acts as operation axis for population sparseness; whereas, y axis acts as

operation axis for life-time sparseness. This way, we can roughly say that life-time sparseness

promotes temporal sparsity. Given that our research problem is based on speech, we put our

imperative focus on maintaining life-time sparseness. However, we note that totally ignoring

the population sparseness is not a good practice and in an ideal sparse autoencoder, these

two viewpoints should be balanced.

35

Chapter 3. Background on Autoencoders

Figure 3.5: Illustration of hidden unit activation matrix in Rd×p , where d and p stand for data
batch size and number of hidden units, respectively. The red arrow represents the operation
axis (i.e., x axis) for population sparseness. With population sparseness, some of the hidden
units may not be active at all (i.e., dead unit problem) and/or some of the units may be active at
all times (i.e., for all data samples). Hence, specialization of the hidden units is problematic.
Whereas, with life-time sparseness (whose operation axis is denoted as green arrow), each
hidden unit is desired to be active only a few times during its life-time (i.e., during training over
data samples). Therefore, life-time sparseness does not lead to dead unit problem and promotes
specialization. Given that our research problem is based on speech, we put out imperative focus
on maintaining life-time sparseness.

36

3.2 Sparse Autoencoders

Sparse AE with ℓ1-norm regularization on the hidden unit activations mostly maintain popula-

tion sparseness with tendency for extreme sparseness (i.e., dead units) and empirical effort to

tune λ. This is mostly due to the nature of ℓ1-norm which pulls all the hidden unit activations’

towards zero and is not interested in tracking or regularizing the individual hidden unit’s

activation(s) in time.

Sparse AE with KL penalty also fails to fully maintain life-time sparseness, as it operates on the

average hidden unit activations, rather than individual unit activations in time. Minimizing

the KL penalty leads the average of hidden unit activations (in time, over training samples)

to be close to ρ. To satisfy this constraint, the activations from a single unit (e.g., j-th unit in

(3.9)) may end up being constant and close to ρ so that their average ρ̂ j is also close to ρ. This

indicates that the model fails to boost the specialization of hidden units over the input data

characteristics; hence, does not fully maintain life-time sparseness. In addition, KL penalty is

only applicable to the autoencoders with sigmoid hidden unit activation.

It is desirable that each (hidden) unit is given equal chances to be active for learning robust

sparse distributed representations. In the context of k-sparse autoencoders, active unit means

unit being among top-k units. However, it also fails to maintain life-time sparseness with its

delicate, empirically tuned k-scheduler mechanism. Meanwhile, k-competitive autoencoders

have implicit mechanism based on the competitive learning insights, which can be taken as

improvement upon k-sparse AE. However, in that case, the competition scheme to boost the

specialization of hidden units and hence to maintain life-time sparseness is only applicable to

the models with hyperbolic tangent activation.

3.2.5 Sparseness Measures

Even though it was first studied in computational neuroscience in the context of sparse

coding in the mammal visual system [Olshausen and Field (1996)], sparsity has become a key

concept of fundamental importance for many fields including machine learning, statistics

and signal processing [Tibshirani (1996); Chen et al. (2001); Candès and Wakin (2008)]. Based

on the applications in different research fields, there exist several commonly-used sparsity

measures [Hurley and Rickard (2009)]. Here, we present the sparseness measures used for the

analysis purposes in the following chapters.

The ℓ0-norm measure is the traditional sparseness measure in many mathematical settings. It

simply calculates the number of non-zero entries in the representation vector v . However, the

presence of noise makes the ℓ0-norm measure completely inappropriate (since it relies on

hard zeros). Consequently, in noisy settings, the ℓ0-norm measure is sometimes altered to ℓϵ0,

where we are interested in the number of coefficients, vi that are greater than the threshold ϵ

[Rath et al. (2008)]. Evidently, the value of ϵ is crucial for ℓϵ0 to be effective.

Hoyer measure [Hoyer (2004)] is the normalized version of the ℓ2/ℓ1 measure. It generates

a score in [0−1], where 0 denotes the least sparse case (i.e., uniform distribution of energy

37

Chapter 3. Background on Autoencoders

among the coefficients) and 1 denotes the most sparse case (i.e., spiky distribution, almost

all energy is carried by only one coefficient). It is formulated in (3.10), with v denoting the

representation vector with dimension n.

sparseness(v) =
p

n − (
∑ |vi |)/

√∑
v2

ip
n −1

(3.10)

It is important to note that the increase in the sparsity based on Hoyer measure does not

necessarily mean that the coefficients vi (i.e., entries in the representation vector v) are

hard-zeros. In other words, sparse activity based on Hoyer measure does not imply sparse

coding.

3.3 Conclusion

In this chapter, we provided the background information about autoencoders, with special

emphasis on sparse autoencoders. There are different model configurations under the name

of sparse autoencoder due to the lack of consensus in literature regarding its definition. To

simplify, we categorized the sparse autoencoders whether they are explicitly or implicitly con-

strained. The penalty term is added to the loss function for the case of explicitly constrained

sparse autoencoders. Whereas, the sparsity on the model is maintained by internal sparsity

mechanisms for the case of implicitly constrained sparse autoencoders.

Shallow overcomplete sparse autoencoder with ℓ1 norm regularization on the hidden unit

activations (3.6) constitutes the most intuitive example for explicitly constrained sparse au-

toencoders, due to its often over-looked connection with sparse coding and dictionary learning

concepts. In Chapter 4 and Chapter 5, we use this sparse autoencoder configuration for sparse

modeling of speech data.

We observe the limitations of shallow overcomplete sparse autoencoder for speech modeling;

hence, we use implicitly constrained sparse autoencoders in Chapter 6. We use k-Sparse

autoencoder [Makhzani and Frey (2013)] which is the most well-known example for implicitly

constrained sparse autoencoders. However, k-Sparse autoencoder may suffer from dead atom

problems (Section 3.2.3).

As we seek biologically motivated, simple yet elegant way of learning meaningful represen-

tations in an unsupervised and cost effective manner, we studied the sparsity and different

viewpoints to sparsity (i.e., population sparseness, life-time sparseness) in Section 3.2.4.

We subsequently study Winner-Take-All (WTA) autoencoder [Makhzani and Frey (2015)] (in

Section 6.3), which adopts life-time sparseness (Figure 3.5) to avoid dead atom problem.

Thus, this model can more easily learn Sparse Distributed Representations (SDRs), that are

meaningful and discriminative by nature. This behavior is expected to be useful for encoding

38

3.3 Conclusion

unseen data points reasonably (i.e., out of distribution generalization). Furthermore, as shown

in Chapter 6, it is convenient for classifiers to reach higher accuracy while exploiting the

correlations between the representations in the supervised learning case.

Hence, in Chapter 7, we examine the generalization power of the best performing implicitly

constrained sparse autoencoder (trained on healthy speakers) from Chapter 6 in transfer

learning framework for pathological speech recognition.

39

4 Low-Rank and Sparse Modeling of
LF-MMI Log-Likelihoods

In this chapter 1, we introduce our proposed approach which makes use of undercomplete au-

toencoders for low-rank modeling and sparse overcomplete autoencoders for sparse modeling

of log-likelihoods from Lattice-Free Maximum Mutual Information (LF-MMI) based acoustic

model.

In summary, we insert an additional autoencoder component between the acoustic model

and decoder components in the ASR pipeline (Figure 2.1). Upon autoencoder training, the

reconstructed LF-MMI log-likelihoods are sent to the decoder for recognition. Our proposed

sparse modeling approach (with sparse overcomplete autoencoder) is observed to improve

the recognition performance for far-field speech.

Similarly, the sparse modeling approach yields better at representing speech data as a union

of low-dimensional subspaces, especially for far-field speech. The encodings learned by

the sparse autoencoders are used to train phone classifiers for frame-level phone classifica-

tion. As a result, we observe superior performance of encodings from sparse overcomplete

autoencoder for far-field data.

The analysis on high-dimensional sparse features (i.e., encodings from sparse overcomplete

autoencoder) verifies their sparseness based on the measures in Section 3.2.5, and demon-

strates the capability of robust modeling of senones and even phone subspaces, especially on

far-field speech with distorted nature.

4.1 Introduction

Given the underlying speech production mechanism, one can assume that speech can be

described as the union of low-dimensional subspaces. To model such phenomena, [Bengio

(2009)] outlines two forms of modeling, (1) as compressed low-rank representations for each

1This chapter is partially based on the following publications:
Kabil, S.H., and Bourlard, H. (2022). Speech modeling using sparse autoencoders.
Kabil, S.H., and Bourlard, H. (2022). Sparse autoencoders to enhance speech recognition.

41

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

Figure 4.1: Modeling class-specific low-dimensional subspaces in speech data using low-rank
vs sparse modeling approach in [Dighe (2019)]. Note that the low-rank modeling corresponds to
class-wise low-rank models, not a common low-rank model for the whole (multi-class) speech
data together. sk denotes k th subspace in the data. Figure reproduced from [Dighe (2019)] with
permission.

factor’s subspace individually, and (2) as a high-dimensional sparse representation where

all the factors reside together, but in different subspaces. Low-rank representations model

the subspaces in a compressed manner by eliminating irrelevant dimensions of the data,

whereas sparse representations achieve the same objective by projecting data in a high-

dimensional sparse space where the underlying structures are disentangled, and only the

relevant dimensions are non-zero (i.e., active).

To this end, [Dighe (2019)], which serves as the backbone of the research in this thesis, in-

vestigates the impact of low-rank and sparse modeling of DNN acoustic model outputs (i.e.,

posterior features) for speech recognition. Typically, DNN posteriors are high-dimensional

with only a few non-zero dimensions which correspond to different low-dimensional sub-

spaces covering underlying factors like acoustic events (i.e., realization of particular phonetic

sounds or pronunciation variations due to speaker characteristics). In [Dighe (2019)], it is

hypothesized that appropriate modeling of low-dimensional subspaces in DNN posteriors

can result in improvements in recognizing words, phonemes and sub-phonetic components.

For low-rank modeling, ground-truth based forced senone alignments are required. Poste-

rior vectors belonging to a particular senone are stacked together to form a senone-specific

posterior matrix. The principal components learned using Principal Component Analysis

(PCA) on these posterior matrices act as senone-specific (i.e., class-specific) undercomplete

dictionaries. As shown in Figure 4.1, when a posterior vector is projected on its corresponding

undercomplete dictionary, densely packed, class-wise low-dimensional representations are

42

4.2 Our Approach

extracted.

For sparse modeling, the undercomplete senone-specific dictionaries from low-rank mod-

eling approach are concatenated to form an initialization for the overcomplete dictionary,

which is later trained via online dictionary learning algorithm [Mairal et al. (2009)]. The

overcomplete dictionary is capable of modeling non-linear speech manifolds as a union of

low-dimensional spaces. Hence, when posterior features are projected over the overcom-

plete dictionary, senone-specific sparse representations manifest themselves on different

dimensions in the common high dimensional space, as shown in Figure 4.1.

Then, these intermediate representations (shown in red in Figure 4.1) extracted either by low

rank (PCA based) or sparse (dictionary learning based) modeling are projected back onto the

original dimensions of the DNN posterior space. The reconstructed enhanced DNN posteriors

are shown to be suitable targets for training better acoustic models, leading to improvements

in recognition performance.

As both above-mentioned approaches require senone alignments, for unseen test data (with-

out transcriptions and senone alignments), a completely new DNN acoustic model is trained

using acoustic features as input and enhanced DNN posteriors as soft targets. After training,

test data is fed to the new acoustic model to get posteriors for ASR decoding.

The experiments on the AMI database show that dictionary learning based soft targets are

observed to be better than their PCA counterparts for SDM (far-field) data, which is contrary

to their performance on IHM (close-field) data. The success of sparse soft targets for SDM

indicates that the nonlinear low-dimensional modeling of senone subspaces while suppressing

distortions is better handled by sparse modeling.

Accordingly, our primary focus in this thesis is sparse modeling (of speech data) in a generic

and unsupervised manner, by means of sparse autoencoders. Low rank modeling experiments

with undercomplete autoencoders are presented for the sake of consistency with previous

studies.

4.2 Our Approach

As illustrated in Figure 2.1, we aim here at inserting a separately trained autoencoder (AE)

between the acoustic model and the decoder components in the ASR pipeline. The low

rank and sparse modeling of (senone) log-likelihoods from the previously trained LF-MMI

baseline acoustic model (Section 2.5) are extracted by undercomplete (Figure 4.2) and sparse

overcomplete (Figure 4.4) autoencoders, respectively.

After the usual (unsupervised) AE training, the reconstructed (lower-rank) log-likelihood

vectors are fed to the decoder for recognition (illustrated with blue arrow in Figures 4.2

and 4.4). The resulting word recognition performance in Word Error Rate (WER) are presented

in Tables 4.1 and 4.2.

43

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

In addition, (again, after AE training), simple DNN phone classifier is trained on the hidden

unit activations (i.e., AE encodings, embeddings) to assess the representational capacity of

these intermediate features (illustrated with red arrow in Figures 4.2 and 4.4). The frame-level

phone accuracies are reported in Table 4.3.

4.2.1 Low-Rank Modeling of LF-MMI Log-Likelihoods

In Figure 4.2, x represents the (senone) log-likelihood vector with dimension 176 and x̃ rep-

resents its reconstructed version. As we use undercomplete AE, the encoding z is lower in

dimension than x.

Figure 4.2: Low-rank modeling of LF-MMI log-likelihoods by means of undercomplete AE.
The reconstructed log-likelihood vectors are sent to the decoder for word recognition. The
performance (in WER %) is presented in Table 4.1. In addition, simple DNN phone classifiers are
trained to assess the representation power of the AE encodings. The frame-level phone accuracies
are reported in Table 4.3.

To determine the optimal dimension of z in autoencoders (trained) on close-field IHM and

far-field SDM speech, we examine the elbow region on development sets (Figure 4.3). We set

the bottleneck dimension for z as 100 and 120 for undercomplete AE trained on IHM and SDM,

respectively.

The autoencoders are implemented in Pytorch [Paszke et al. (2017)]. Note that all other

components are implemented in Kaldi [Povey et al. (2011)] speech processing toolkit. For

reading and writing Kaldi data format (e.g., ark files), we use a pure Python module called

kaldiio 2.

The log-likelihoods are preprocessed by subtracting each frame with its largest value (i.e.,

mapping the log-likelihood frames to (− inf,0] region). We observe that this normalization

scheme helps with machine accuracy and autoencoder training. All autoencoders are trained

for (maximum of) 100 epochs with Adam optimizer and scheduler for early stopping with

patience of 5 epochs.

2https://github.com/nttcslab-sp/kaldiio

44

4.2 Our Approach

(a) IHM

(b) SDM

Figure 4.3: Optimal bottleneck dimension for undercomplete AEs are determined by observing
the elbow region (L-curve) on the development set. The bottleneck dimension is set 100 and 120
for undercomplete AE trained on IHM and SDM, respectively.

45

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

After AE training, the reconstructed log-likelihoods are sent to the Kaldi decoder for ASR

decoding. As we put our autoencoder component between the LF-MMI acoustic model and

the decoder, we can no longer use nnet3-latgen-faster command in Kaldi for decoding graph

generation. Instead, we use nnet3-compute | latgen-faster-mapped command sequence. In

any way, Kaldi decoder expects log-likelihood features as input. During experiments, we notice

that training the autoencoders with posterior features (i.e., applying exp() on log-likelihoods

from the acoustic model) and then mapping them back to the log domain before feeding the

Kaldi decoder, results in degradation on WER. Thus, we stick to the log-likelihoods as input

features to train the AEs in this chapter.

Table 4.1: The recognition performance (in WER%) for baseline LF-MMI system and the pro-
posed approach on IHM and SDM evaluation sets. Low-rank modeling setup with undercom-
plete AE works better for IHM than SDM. This trend is consistent with the findings presented
in [Dighe et al. (2019)].

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1

Undercomplete AE 19.1 41.4

In other words, instead of passing the log-likelihoods from the LF-MMI acoustic model directly

to the decoder (indicated as baseline in Tables 4.1 and 4.2), we send their reconstruction from

the undercomplete AE to the decoder (indicated as “Undercomplete AE” in Table 4.1). We

observe that low-rank modeling setup works better for IHM than SDM. This trend is consistent

with the findings from [Dighe et al. (2019)].

4.2.2 Sparse Modeling of LF-MMI Log-Likelihoods

As previously explained, our goal is to achieve sparse modeling of speech data in a generic and

unsupervised manner by means of sparse autoencoders. In [Dighe (2019)], sparse modeling

approach is observed to be better at modeling speech data as union of low-dimensional

subspaces, especially for SDM in far-field condition.

Revisiting the duality between dictionary learning [Mairal et al. (2009)] and sparse autoen-

coders, we implement shallow overcomplete sparse autoencoder with ℓ1 norm constraint on

hidden activations with loss function formulated as (3.6). In addition, to ensure full compli-

ance with dictionary learning (3.7), the encoder and decoder weights are tied (i.e., transpose

of each other), the encoder weights are normalized, and no bias parameter is used.

46

4.2 Our Approach

Figure 4.4: Sparse modeling of LF-MMI log-likelihoods by means of sparse overcomplete AEs.
The reconstructed log-likelihoods are sent to the decoder for recognition. The performances (in
WER%) are presented in Table 4.2. Furthermore, simple DNN phone classifiers are trained on AE
encodings to assess their representation power. The frame-level phone accuracies are reported in
Table 4.3.

Hence, we effectively convert the dictionary learning problem to a representation learning

problem. When the sparse AE is trained to solve (3.6), forward pass can be viewed as the

sparse coding step in dictionary learning, since we obtain high-dimensional sparse repre-

sentation (i.e., encoding) z on the hidden layer. Similarly, the backward pass is analogous to

the dictionary update step in dictionary learning, as decoder weights (akin to the overcom-

plete dictionary in dictionary learning setup) are updated based on the distance between the

original input x and reconstructed input x̃. In Figure 4.4, x represents the LF-MMI (senone)

log-likelihood vector with the dimension of 176, and z denotes the overcomplete encoding

vector with dimensionality of 1760 (i.e., 176 x 10, where 176 is the number of senones in Kaldi

AMI setup and the scalar 10 is empirically determined so that log-likelihoods are given chance

to scatter).

To determine the optimal λ (in 3.6) for weighting the sparsity penalty term, we follow the

L-curve on development sets, formed by sparsity penalty (i.e., unweighted ℓ1 sum) versus

reconstruction loss (i.e., MSE), as illustrated in Figure 4.5. The optimal λ coefficients for IHM

and SDM are 0.1 and 0.3, respectively.

In full accordance with the implementation details in Section 4.2.1, the autoencoders are

implemented in Pytorch, following the same preprocessing and training procedure. After

sparse AE training, reconstructed log-likelihoods are sent to the Kaldi decoder and nnet3-

compute | latgen-faster-mapped command series is used for generating lattices (and then for

decoding graph in Kaldi).

In other words, instead of passing the LF-MMI log-likelihoods from the LF-MMI acoustic

model directly to the decoder (indicated as baseline in Table 4.1 and 4.2), we pass the recon-

structed log-likelihoods from the shallow sparse overcomplete autoencoder to the decoder

(indicated as Sparse AE in Tables 4.2).

47

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

(a) IHM

(b) SDM

Figure 4.5: Optimal sparsity penalty coefficients for sparse overcomplete AEs are determined
by observing the elbow region (L-curve) on development set, formed by sparsity penalty (i.e.,
unweighted ℓ1 sum) versus reconstruction loss (i.e., MSE). The optimal λ coefficients for IHM(a)
and SDM(b) are set 0.1 and 0.3, respectively.

48

4.3 Frame-level Phone Accuracy

Table 4.2: The recognition performance (in WER%) for the baseline LF-MMI system and the
proposed approach on IHM and SDM evaluation sets. For the sake of completeness, the results
for Vanilla (λ=0) overcomplete AE are also reported. In line with the findings in [Dighe (2019)],
our proposed sparse modeling approach with sparse overcomplete autoencoder (denoted as
Sparse AE) works better for far-field SDM data than close field IHM.

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1

Overcomplete AE (λ= 0) 19.2 41.0

Sparse AE 19.2 40.9

For the sake of completeness, we also report the results for vanilla (i.e., λ= 0) overcomplete

AE. In line with findings in [Dighe (2019)], sparse modeling approach works better for far-field

SDM data (i.e., improvement on WER with overcompleteness and sparsity) than close-field

IHM, as shown in Table 4.2. However, it is worth to mention that our state-of-the-art baseline

system is more complex (in terms of number and composition of layers, MMI criterion etc.)

and challenging than the baseline system in [Dighe (2019)] with 3-5 fully-connected layers

trained with CE-criterion. Hence, it is very likely that our LF-MMI acoustic model produces

cleaner, more discriminative log-likelihoods on which we still try to further improve.

4.3 Frame-level Phone Accuracy

Apart from exploring the use of reconstructed log-likelihoods for speech recognition (Sec-

tion 4.2), we also examine the practical application of AE encodings (previously denoted as

z) in the same context. Nonetheless, aforementioned requirements imposed by the Kaldi

decoder restrict the use of these encodings for word recognition. Therefore, we train simple

DNN classifiers on these features for frame-level phone classification tasks.

To evaluate the efficiency of the features, but not the classifier, we keep the classifier con-

figuration basic with only fully connected layers. The classifiers are implemented using

Pytorch, and trained with cross-entropy (CE) criterion. We use ali-to-phones command with

–per-frame=true flag in Kaldi to extract the forced (frame-level) phone alignments. These

alignments are then used as labels for the classifier.

Table 4.3: The frame-level phone classification accuracies (in %) on IHM and SDM evaluation
sets. The encodings from sparse overcomplete AE (denoted as Sparse AE) obtain superior perfor-
mance for far-field SDM data, which is known to contain more distortion than close-field IHM
data.

Architecture I H Maccur ac y SDMaccur ac y

Baseline 82.7 61.0

Undercomplete AE 81.5 58.6

Overcomplete AE (λ= 0) 82.3 60.8

Sparse AE 82.5 63.7

49

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

We observe that encodings from sparse overcomplete AE provide superior performance for

far-field SDM data in frame-level phone classification task. This might indicate the repre-

sentational power of these high-dimensional sparse features in the presence of distortion.

Therefore, in the next section, we analyze whether they are indeed sparse and meaningful, as

expected.

4.4 Analysis on High-dimensional Sparse Features

As shown in Table 4.3, we observe that high-dimensional encodings from sparse AE yield

superior performance for frame-level phone classification, especially for far-field SDM data

which is known to have more distortions than close-field IHM.

In this section, we first examine if the ℓ1 norm sparsity constraint (imposed on sparse AE)

behaves as expected and guides the AE to produce high-dimensional sparse encodings. Along

this line, to evaluate the sparsity of hidden unit activations (i.e., encodings), we utilize ℓ0, ℓϵ0
and Hoyer measure (introduced in Section 3.2.5).

Then, in Section 4.4.2, we investigate if the encoding space (i.e., representation space) exhibits

orthogonalization or smooth latent space properties (Section 3.2.2) when cosine similarity is

used as similarity measure.

4.4.1 Sparsity of Activations

As previously explained in Section 3.2.1, the definition for sparseness may differ. Here, we

examine if the hidden unit activations (i.e., AE encodings) are indeed sparse, in the sense

that (1) they contain hard-zeros, or (2) only a few dimensions of the activation vector (i.e.,

encoding vector) carry most of the information content (while none of the dimensions are not

necessarily hard-zero).

In shallow sparse AE (3.6), we apply ℓ1 norm penalty on hidden unit activations, which pulls

all the dimensions (i.e., entries, coefficients) of the activation vector towards zero. Hence, for

(1), we utilize ℓ0 and ℓϵ0 measures (Section 3.2.5). Based on ℓ0 measure, we observe that we do

not obtain hard-zero activations (shown in Tables 4.4 and 4.5). On the other hand, ℓϵ0 with ϵ

set according to the value range on development sets, we see that sparsity constraint helps to

pull the activations towards zero, although fails to produce hard-zero activations as expected

(illustrated in Tables 4.4 and 4.5, second column).

Whereas, for (2), we utilize Hoyer measure [Hoyer (2004)], where in v with dimension n in

(3.10) stand for the hidden unit activation vector z in Figure 4.4, with dimension 1760, respec-

tively. It is important to note that sparseness based on Hoyer measure does not necessarily

mean that the entries (i.e., dimensions, coefficients) of the activation vector (i.e., encoding

vector, representation vector) are hard-zero. Hoyer measure generates a score in [0,1] where

0 denotes the least sparse case (i.e., uniform distribution of information among entries of

50

4.4 Analysis on High-dimensional Sparse Features

Table 4.4: The sparsity of the hidden unit activations based on the complements of ℓ0 and ℓϵ0
measures for a chosen subset of utterances from IHM development set. For simplicity, instead
of a total number of zero entries, we provide their percentage over all entries in the activation
vectors for (randomly chosen) subset of utterances. We observe that the sparsity constraint (λ >
0, optimally being 0.1 for IHM) pulls hidden unit activations towards zero, although fails to
generate hard-zero activations.

Architecture (ℓ0)c (in %) (ℓϵ0)c (in %)

IHM (λ= 0) 0 10
IHM (λ= 0.1) 0 20

Table 4.5: The sparsity of the hidden unit activations based on the complements of ℓ0 and ℓϵ0
measures on (a randomly chosen) subset of utterances from SDM development set. For simplicity,
instead of a total number of zero entries, we provide their percentage over all entries in the
activation vectors for (randomly chosen) subset of utterances. We observe that the sparsity
constraint (λ > 0, optimally being 0.3 for SDM) pulls hidden unit activations towards zero,
although fails to generate hard-zero activations.

Architecture (ℓ0)c (in %) (ℓϵ0)c (in %)

SDM (λ= 0) 0 13
SDM (λ= 0.3) 0 21

the hidden unit activation vector) and 1 denotes the most sparse case (i.e., spiky distribution,

almost all information is carried by only one coefficient).

Focusing on the same randomly chosen subset of utterance from development sets, we calcu-

late the sparseness of the hidden unit activations, with Hoyer measure. Figures 4.6 and 4.7 for

sparseness measurement of the hidden unit activation vectors for (a) Vanilla (λ=0) overcom-

plete and (b) Sparse overcomplete AE on IHM and SDM, respectively. x axis shows the Hoyer

score, y stands for the number of activation vectors. It is important to note that each (input)

log-likelihood vector (i.e., frame) has a corresponding activation vector revealed on the AE’s

encoding layer. Hence, histograms clearly depict the alteration in the characteristics of the

activations (i.e., encodings) in the presence of sparsity.

Table 4.4, Figure 4.6 (for IHM) and Table 4.5, Figure 4.7 (for SDM) are computed on the

same subset of utterances from development sets. Therefore, they present a complementary

view for the analysis of the sparsity of activations. In conclusion, we observe that ℓ1 norm

sparsity penalty (on hidden units) guides the autoencoder to force its hidden units to produce

close-to-zero activations. In addition, while the majority of the hidden units produce close-

to-zero activations, a small number of hidden units produce the majority of the activation

(i.e., information, energy), forming the rare spikes among many close-to-zero entries in the

activation vector.

In the rest of the analysis, we examine if these spiky hidden unit activations actually represent

meaningful patterns, modeling senone (or any other speech unit’s) subspaces.

51

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

(a) IHM λ=0

(b) IHM λ=0.1

Figure 4.6: Sparseness measurement on the hidden unit activations for randomly chosen subset
of utterances from IHM development set. Enforcing sparsity (λ > 0) is observed to change
the characteristics of the activations. For Vanilla (λ=0) overcomplete AE (a), majority of the
activation vectors have 0.2; whereas, for sparse overcomplete AE (b), majority of the activation
vectors have 0.7 as Hoyer sparseness score. On the scale of [0,1], 0 denotes the least sparse, 1
denotes the most sparse case.

52

4.4 Analysis on High-dimensional Sparse Features

(a) SDM λ=0

(b) SDM λ=0.3

Figure 4.7: Sparseness measurement on the hidden unit activations for randomly chosen subset
of utterances from SDM development set. Enforcing sparsity (λ > 0) is observed to change
the characteristics of the activations. For Vanilla (λ=0) overcomplete AE (a), majority of the
activation vectors have 0.21; whereas, for sparse overcomplete AE (b), majority of the activation
vectors have 0.63 as Hoyer sparseness score. On the scale of [0,1], 0 denotes the least sparse, 1
denotes the most sparse case.

53

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

4.4.2 Subspace Analysis

With our proposed approach for sparse modeling, we aim for individual subspaces to lie

in the common high dimensional representation space in a scattered manner (as shown in

Figure 4.1). Our hypothesis is that this behavior can induce the separability of senones (and

even phones).

Based on the findings in Section 4.4.1, we anticipate the hidden unit activation vectors for a

particular senone to have a distinctive pattern and to share a few common features with other

senones that have similar phonetic and articulatory characteristics. Note that senones are

formed by clustering the phones based on the decision tree questions regarding contextual

and phonetic properties. That is why, later in our analysis here, we take the phones as the

disentangled form of senones.

Hence, focusing on the same subset of utterances in Section 4.4.1 (with 419 utterances and

112386 frames), we average all activation vectors belonging to a particular senone id (i.e.,

class) and set the resulting vector as fingerprint for that particular senone. Inspired from

sparse distributed memory [Kanerva (1988)], we assume that fingerprint vectors lie in a vector

space (i.e., representation space) with cosine similarity (5.1) as similarity metric. Shortly, we

hypothesize that we observe smooth latent space properties (Section 3.2.2) to emerge on the

vector space where the fingerprint vectors (for all seen/observed senones in the subset) reside.

similarity = cos(θ) = A ·B

∥A∥∥B∥ =
∑n

i=1 Ai Bi√∑n
i=1 A2

i

√∑n
i=1 B 2

i

, (4.1)

Figures 4.8 and 4.9 illustrate the similarities between the observed senone classes in the subset

among overall 176 senones in the setup. Similarity scores are computed via cosine similarity

metric (4.1). Cosine similarity produces scores [−1,1], 1 denotes the highest similarity (shown

in red in figures).

Thanks to these colormaps, we make two important observations which motivate the further

analysis:

1. We observe that even Vanilla AEs (with λ = 0) are able to capture similarity patterns

among senones. In addition, the legends (of the colormaps) indicate the impact of

sparsity constraint. As shown in Tables 4.4 and 4.5, activation values are approaching

to zero (i.e., being small ϵ value); hence, their product during cosine similarity score

computation also converges to zero, shrinking the range of the colormap region.

2. As a result, we observe that senones with strongest similarity scores (shown in red)

become prominent for both IHM and SDM data (Figures 4.8(b), 4.9(b)).

54

4.4 Analysis on High-dimensional Sparse Features

(a) IHM λ=0

(b) IHM λ=0.1

Figure 4.8: Colormaps for visualizing the similarity analysis between the senone-specific finger-
print vectors. Note that not all 176 senones (in the setup) occur in the subset of utterances, which
is reflected as white regions in the colormaps above. The similarities between the (fingerprints
of) observed senones are computed with cosine similarity. We observe that in the presence of
sparsity (λ> 0), the similarity between senones with high cosine similarity (close to 1, shown in
red) becomes more prominent. This can also be traced in the shrinkage on the value range of the
colormap legends (i.e., [−0.4,1] for λ= 0, whereas [0,1] for λ= 0.1).

55

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

(a) SDM λ=0

(b) SDM λ=0.3

Figure 4.9: Colormaps for visualizing the similarity analysis between the senone-specific finger-
print vectors. Note that not all 176 senones (in the setup) occur in the subset of utterances, which
is reflected as white regions in the colormaps above. The similarities between the (fingerprints
of) observed senones are computed with cosine similarity. We observe that in the presence of
sparsity (λ> 0), the similarity between senones with high cosine similarity (close to 1, shown in
red) becomes more prominent. This can also be traced in the shrinkage on the value range of the
colormap legends (i.e., [−0.2,1] for λ= 0, whereas [0,1] for λ= 0.3).

56

4.4 Analysis on High-dimensional Sparse Features

Figure 4.10: Articulatory parameters for English consonants in ARPAbet [Vendetti (2002a)].
The matches between fingerprint vectors mapping to similar phone labels in terms of manner
and/or place of articulation are taken as robust match. The details of the analysis whose goal
is to investigate whether the representation space (where fingerprint vectors reside) exhibits
orthogonalization and/or smooth latent space properties (Section 3.2.2) can be found in Ta-
bles 4.6 and 4.7. The manifestation of these properties is important for understanding the
representation capacity of the AE encodings.

Based on our findings with colormaps, we extend our subspace analysis with fingerprint

vectors. Thanks to Kaldi’s ali-to-pdf, ali-to-phones, and show-transitions commands, we

manage to generate mappings between the senones (i.e., pdfs in Kaldi terminology) and

phones with positional encodings. We hypothesize that fingerprint vectors can also shed light

on the phone-level patterns which are in more human interpretable form.

Using Figures 4.10 and 4.11, we take the matches between fingerprint vectors, mapping to

similar phone labels in terms of manner and/or place of articulation, as robust match. For

instance, given cosine similarity as metric and a matching threshold, the match between the

fingerprints for /s/(fricative, alveolar) and /z/(fricative, alveolar) is robust. On the other hand,

the match between the fingerprints for /s/ and /m/(nasal, bilabial) is a false match (i.e., not

robust match); hence, not desired, especially when the matching threshold is decreased.

We examine the ratio of number of robust matches over total matches with respect to the

changes in the matching threshold, λ and data (i.e., on which fingerprint vectors are com-

puted). As shown in Tables 4.6 and 4.7, with the decrease in threshold, the number of total

matches increases faster than the number of robust matches (i.e., the ratio decreases). The

increase in λ amps up the ratio of robust matches over all matches.

57

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

Table 4.6: The ratio of number of robust matches over the total number of matches (in [0-1]
scale) with respect to the changes in the matching threshold, λ, and data. With decrease in
matching threshold, we expect this ratio to get closer to 0 (as the total number of matches is
expected to increase swiftly), unless the model has robust modeling power to stabilize the ratio
of robust matches over all matches. The changes on λ do not create any significant changes
for the number of robust matches on IHM data, compared to SDM data. Note that the robust
matches are determined based on the tables presented in Figures 4.10 and 4.11.

Threshold IHM (λ= 0) IHM (λ= 0.1) Data

1.0 1.0 1.0 IHM
1.0 1.0 SDM

0.95 1.0 1.0 IHM
0.88 0.79 SDM

0.90 0.99 1.0 IHM
0.58 0.66 SDM

Table 4.7: The ratio of number of robust matches over the number of all matches among finger-
prints computed with autoencoders trained on SDM with respect to the changes in matching
threshold, λ, and data. The matching trends shows that the sparse AE (λ= 0.3, trained on SDM)
outperforms all other models (including the ones in Table 4.6) on both IHM and SDM data. In
other words, even when the threshold is decreased, the ratio of the robust matches stay stable,
exhibiting smooth latent space properties. Note that the robust matches are determined based
on the tables presented in Figures 4.10 and 4.11.

Threshold SDM (λ= 0) SDM (λ= 0.3) Data

1.0 1.0 1.0 IHM
1.0 1.0 SDM

0.95 1.0 1.0 IHM
0.87 1.0 SDM

0.90 0.98 1.0 IHM
0.59 1.0 SDM

58

4.5 Conclusion

Figure 4.11: American English Vowel Space [Vendetti (2002b)].The matches between fingerprint
vectors mapping to similar phone labels in terms of manner and/or place of articulation are
taken as robust match. The details of the analysis whose goal is to investigate whether the
representation space (where fingerprint vectors reside) exhibits orthogonalization and/or smooth
latent space properties (Section 3.2.2) can be found in Tables 4.6 and 4.7. The manifestation of
these properties is important for understanding the representation capacity of the AE encodings.

Overall datasets and AE models, Sparse AE trained on SDM data (i.e., SDM λ= 0.3 in Table 4.7)

demonstrates the most robust performance, with respect to the changes in the threshold. This

supports our standpoint that SDM contains more distortion compared to IHM, and hence

applying sparsity on the models, which are trained on SDM (i.e., SDM(λ= 0.3), helps learning

robust and meaningful encodings (i.e., embeddings). The matching trends of the fingerprint

vectors computed with SDM λ= 0.3 model (demonstrated in Table 4.7) outperform all other

models (including the ones in Table 4.6) on both IHM and SDM data. In other words, even

when the threshold is decreased, for sparse AE on distorted data (i.e., SDM λ= 0.3), the ratio of

robust matches (over all matches) can stay stable, exhibiting smooth latent space properties.

4.5 Conclusion

In this chapter, we introduced our proposed approach for low-rank and sparse modeling of

LF-MMI log-likelihoods by means of undercomplete and sparse autoencoders, respectively.

We inserted an additional autoencoder component between the acoustic model and decoder

components in the ASR pipeline (Figure 2.1). Once the autoencoder was trained, we studied

the reconstructed log-likelihoods (from the autoencoder output layer) for word recognition.

With a strong state-of-the-art LF-MMI baseline system (Section 2.5), the log-likelihoods were

challenging to be further improved by means of our proposed sparse modeling approach.

Hence, we could only obtain promising improvement in terms of WER (Table 4.2) on far-field

speech.

59

Chapter 4. Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods

LF-MMI log-likelihoods are already robust, discriminative and task-driven (i.e., mostly con-

taining ASR-relevant components) due to the state-of-the-art acoustic model training. Hence,

in the following chapter, we will work on high-resolution MFCC features. Along this line, we

anticipate that:

1. Our proposed approach with autoencoders can actually be useful for learning more

useful representations out of MFCCs and consequently improve WER.

2. Going overcomplete (on the encoding layer) will be less computationally demanding

and greatly expand the modeling space for MFCC features. Provided that MFCCs are

lower in dimensionality (i.e., 176 dimensional LF-MMI log-likelihoods versus 40 dimen-

sional MFCCs), they will be given more space to scatter and satisfy smooth latent space

properties, even with the same encoding dimension.

The subspace analysis on high-dimensional sparse features demonstrated that sparsity and

overcompleteness (Section 3.2.2) especially help the models trained on far-field SDM data for

robust speech modeling (Table 4.7). This is mostly due to the SDM’s distorted nature compared

to close-field IHM. To be more precise, in the subspace analysis (Section 4.4.2), these features

are expected to reside in a vector space, given a similarity measure (i.e., cosine similarity)

and a matching threshold. And, we studied the impact of sparsity for robust matches among

feature vectors. Mainly, the content (based on phone-level and articulatory-level knowledge)

of the matches were meaningful (Table 4.7).

For further reading on our findings regarding speech modeling and speech recognition with

Sparse AE ℓ1 norm penalty, we refer reader to [Kabil and Bourlard (2022c)] and [Kabil and

Bourlard (2022b)], respectively.

60

5 Low-Rank and Sparse Modeling of
Acoustic Features

In this chapter 1, we apply our proposed approach which makes use of undercomplete autoen-

coders for low-rank modeling and sparse overcomplete autoencoders for sparse modeling of

acoustic features, namely Mel-Frequency Cepstral Coefficients (MFCCs).

In summary, we now insert an additional autoencoder component between the feature extrac-

tor and the acoustic model components in the ASR pipeline (Figure 2.1). The autoencoder

component is expected to generate new (i.e., reconstructed) and better features so that they

can lead to performance improvements when used for training the LF-MMI acoustic model

with the baseline acoustic model configuration (Section 2.5). Upon autoencoder training, the

reconstructed MFCCs are sent to the LF-MMI acoustic model. Next, once the acoustic model

is trained, LF-MMI log-likelihoods are sent to the decoder component for ASR decoding.

The proposed sparse modeling approach (with sparse overcomplete autoencoder) yields

improvement on recognizing far-field SDM data. However, the analysis on high-dimensional

sparse features (i.e., encodings from sparse overcomplete autoencoder) displays limitations

for modeling speech components, presenting less informative overview on speech subspaces

compared to its counterpart in Chapter 4.

5.1 Introduction

Due to the difficulties for improving WER in the previous chapter, we focus on acoustic features

(i.e., input features for the acoustic model), rather than LF-MMI log-likelihoods (i.e., output

features from the acoustic model). LF-MMI log-likelihoods are already discriminant and

task-driven, due to propagation through several layers in the DNN acoustic model whose

training objective is to model the relationship between the audio signal and the phonemes or

other linguistic units that constitute speech. Therefore, it was challenging to further improve

1This chapter is partially based on the following publications:
Kabil, S.H., and Bourlard, H. (2022). Speech modeling using sparse autoencoders.
Kabil, S.H., and Bourlard, H. (2022). Sparse autoencoders to enhance speech recognition.

61

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

these log-likelihoods.

As MFCCs lack propagation across the layers of DNN acoustic model, they are not as robust

or task-driven as log-likelihoods. Hence, we hypothesize that autoencoders can be useful for

modeling the inner underlying components of MFCCs, even though not all of these compo-

nents are strictly related to speech recognition and modeling tasks.

In addition, in the case of sparse overcomplete autoencoders, as the ratio between input

dimension and encoding layer dimension is higher, we present higher modeling capacity (i.e.,

larger representation space) for the underlying components to scatter, in a less computation-

ally demanding manner (compared to the models in Chapter 4). We expect this to be especially

beneficial for easier explanation of the analysis on high-dimensional sparse encodings.

Accordingly, since our primary focus in this thesis is sparse modeling (of speech data) in a

generic and unsupervised manner, by means of sparse autoencoders, we present the low rank

modeling experiments with undercomplete autoencoders, only for the sake of completeness.

5.2 Our Approach

We insert an Autoencoder (AE) between the feature extractor and the acoustic model com-

ponents in the ASR pipeline (Figure 2.1). The low-rank and sparse modeling of MFCCs are

handled by undercomplete (Figure 5.1) and sparse overcomplete (Figure 5.3) autoencoders,

respectively.

After unsupervised AE training, the reconstructed MFCCs are sent to the LF-MMI acoustic

model (Section 2.2) for training and then to the Kaldi decoder for ASR decoding, as illustrated

with blue arrow in Figures 5.1 and 5.3. The word recognition performances in WER are

presented in Tables 5.1 and 5.2.

In addition, (again, once AE training is finished), to assess the representation capacity of

AE encodings (i.e., hidden unit activations, embeddings), a simple DNN phone classifier is

trained on them (as illustrated with red arrow in Figures 5.1 and 5.3). The frame-level phone

accuracies are reported in Table 5.3.

5.2.1 Undercomplete Autoencoders to Enhance MFCCs

In Figure 5.1, x represents 40 dimensional high-resolution MFCC feature vector and x̃ denotes

its reconstructed version. In undercomplete AE, the encoding z is lower in dimension than x.

To determine the optimal dimension for z in autoencoders on close-field IHM and far-field

SDM speech, we examine the elbow region on the development sets (Figure 5.2). We set the

bottleneck dimension for z as 30 for both undercomplete AEs trained on IHM and SDM.

62

5.2 Our Approach

Figure 5.1: Low-rank modeling of MFCCs by means of undercomplete AE. The reconstructed
MFCCs are sent to the LF-MMI acoustic model and then to the decoder for word recognition.
In addition, AE encodings are sent to a simple DNN phone classifier for frame-level phone
classification.

The autoencoders are implemented in Pytorch [Paszke et al. (2017)]. Note that all other

components are implemented in Kaldi [Povey et al. (2011)] speech processing toolkit. For

reading and writing Kaldi data format (e.g., ark files), we use a pure Python module called

kaldiio 2.

The MFCCs are preprocessed by mean-normalization via Kaldi’s apply-cmvn command. We

observe that this normalization scheme is helpful for faster convergence with autoencoders.

All autoencoders are trained for (maximum of) 100 epochs with Adam optimizer and scheduler

for early stopping with patience of 5 epochs.

After AE training, the reconstructed MFCCs are fed to the LF-MMI acoustic model for training.

After acoustic model training is done, LF-MMI log-likelihoods (i.e., LF-MMI acoustic model

outputs) are sent to the Kaldi decoder. This time, unlike Chapter 4, Kaldi’s nnet3-latgen-faster

command can be used for decoding graph generation.

In other words, instead of passing the MFCCs (from the feature extractor) directly to the LF-

MMI acoustic model (indicated as baseline in Tables 5.1 and 5.2), we send their reconstruction

from undercomplete AE to the acoustic model (indicated as Undercomplete AE in Table 5.1).

We observe that low-rank modeling setup results in degradation for SDM.

Table 5.1: The recognition performance (in WER%) for LF-MMI system and the proposed
approach on IHM and SDM evaluation sets. Low-rank modeling leads to degradation in WER
for far-field SDM data.

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1

Undercomplete AE 19.3 42.3

2https://github.com/nttcslab-sp/kaldiio

63

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

(a) IHM

(b) SDM

Figure 5.2: Optimal bottleneck dimension for undercomplete AEs are determined by observing
the elbow region (L-curve) on development set. The bottleneck dimension is set 30 for both
undercomplete AEs trained on IHM and SDM accordingly.

64

5.2 Our Approach

5.2.2 Sparse Overcomplete Autoencoders to Enhance MFCCs

As stated in Chapter 4, our goal is to achieve sparse modeling of speech data in a generic

and unsupervised manner by means of sparse autoencoders. In [Dighe (2019)], sparse mod-

eling approach is shown to be better at modeling speech data as union of low-dimensional

subspaces, especially for far-field SDM data.

Revisiting the duality between dictionary learning [Mairal et al. (2009)] and sparse autoen-

coders, we implement shallow overcomplete sparse autoencoder with ℓ1 norm constraint

on hidden unit activations with loss function formulated as (3.6). In addition, to ensure full

compliance with dictionary learning (3.7), the encoder and decoder weights are tied (i.e.,

transpose of each other), the encoder weights are normalized, and no bias parameter is used.

Figure 5.3: Sparse modeling of MFCCs by means of sparse overcomplete AE. The reconstructed
MFCCs are sent to the acoustic model and then to the decoder. The recognition performances
are presented in Table 5.2. Furthermore, once AE training is finished, simple DNN based phone
classifier is trained on AE encodings to assess their representation power. The frame-level phone
accuracies are reported in Table 5.3.

Thus, we transform the dictionary learning problem to a representation learning problem by

means of sparse autoencoders. When sparse AE is trained to solve (3.6), forward pass can be

viewed as the sparse coding step in dictionary learning, since we obtain high-dimensional

sparse representation (i.e., encoding) z on the hidden layer. Similarly, the backward pass is

analogous to the dictionary update step in dictionary learning, as decoder weights (akin to

the overcomplete dictionary in dictionary learning setup) are updated based on the distance

between the original input x and reconstructed input x̃. In Figure 5.3, x represents the 40

dimensional MFCC vector, and z stands for the overcomplete (i.e., higher-dimensional) en-

coding vector with dimensionality of 1760. To be consistent with the models in Chapter 4, we

keep the AE encoding dimensionality as 1760, which is 176×10, where 176 is the number of

senones in our Kaldi setup for AMI database and the scalar 10 is empirically decided so that

MFCCs can scatter in the encoding space.

65

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

To determine the optimal λ in (3.6) for weighting the sparsity penalty term, we follow the

L-curve on development sets, formed by sparsity penalty (i.e., unweighted ℓ1 sum) versus

reconstruction loss (i.e., MSE), as illustrated in Figure 5.4. The optimal λ coefficients for IHM

and SDM are found as 0.0001 and 0.0005, respectively.

In full accordance with the implementation details in Section 5.2.1, the autoencoders are

implemented in Pytorch [Paszke et al. (2017)], following the same preprocessing and training

procedures.

In other words, instead of passing the MFCCs from the feature extractor directly to the LF-MMI

acoustic model (indicated as baseline in Tables 5.1 and 5.2), we send their reconstruction from

shallow overcomplete sparse AE to the acoustic model (indicated as Sparse AE in Table 5.2).

As anticipated, the sparse modeling approach by means of sparse AE works better for far-field

SDM data.

For the sake of completeness, we also report the results for vanilla (λ= 0) overcomplete AE. In

line with findings in [Dighe (2019)], sparse modeling approach works better for far-field SDM

data (i.e., improvement on WER with overcompleteness and sparsity) than close-field IHM, as

shown in Table 5.2.

Table 5.2: The recognition performance (in WER%) for baseline LF-MMI system and the pro-
posed approach on IHM and SDM evaluation sets. To present the full picture, the results for
Vanilla (λ= 0) overcomplete AE are also reported. As anticipated, the proposed sparse modeling
approach (denoted as Sparse AE) works better for far-field SDM data.

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1

Overcomplete AE (λ= 0) 19.4 40.6

Sparse AE 19.7 40.5

66

5.2 Our Approach

(a) IHM

(b) SDM

Figure 5.4: Optimal sparsity penalty coefficients for sparse overcomplete AEs are determined
by observing the elbow region (L-curve) on development set, formed by sparsity penalty (i.e.,
unweighted ℓ1 sum) versus reconstruction loss (i.e., MSE). The optimal λ coefficients for (a)IHM
and (b)SDM are 0.0001 and 0.0005, respectively.

67

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

5.3 Frame-level Phone Accuracy

Apart from exploring the use of reconstructed MFCCs for speech recognition (Section 5.2),

we also examine the practical application of AE encodings in the same context. Following

the same reasoning stated in Section 4.3, we train simple classifier neural networks on these

encodings for frame-level phone classification task.

In full accordance with the implementation details in Section 4.3, the classifiers are imple-

mented using Pytorch, and trained with cross-entropy (CE) criterion. We use ali-to-phones

command with –per-frame=true flag in Kaldi to extract the forced (frame-level) phone align-

ments. These alignments are then used as labels for the classifier.

Table 5.3: The frame-level phone classification accuracies (in %) on IHM and SDM evaluation
sets. The encodings from sparse overcomplete AE obtain better performance for far-field SDM
than close-field IHM. The fact that MFCCs are not as task-driven as log-likelihoods and the
DNN phone classifiers are indeed simple leads to the performance gap presented in Tables 4.3
and 5.3.

Architecture I H Maccur ac y SDMaccur ac y

Baseline 39.2 33.7
Undercomplete AE 39.0 33.0
Overcomplete AE (λ= 0) 38.6 33.3
Sparse AE 38.0 33.5

We observe that encodings from sparse overcomplete AE provide better representation power

on far-field SDM (i.e., 0.2% below the performance of the classifier trained on MFCCs), com-

pared to close-field IHM (i.e., more than 1% under the performance of the phone classifier

trained on MFCCs). This performance gap might be resulted from the fact that MFCCs are

not task-driven (i.e., also contain components that are not necessarily helpful for recognition

tasks) and encodings are learned based on reconstruction objective. It is important to note

that better reconstruction loss does not necessarily mean learning better and/or meaningful

features.

Finally, as for the performance gap between Tables 4.3 and 5.3, it results from the fact that

MFCCs are less task-driven and thus less discriminative (compared to senone log-likelihoods),

while phone classifiers are indeed really simple to disentangle the underlying components of

MFCCs in a discriminative manner. In the next section, we analyze whether these encodings

are indeed sparse and meaningful.

5.4 Analysis on High-dimensional Sparse Features

As shown in Table 5.3, we observe that high-dimensional encodings from sparse AE obtain

promising performance for frame-level phone classification, especially for far-field SDM data,

which is known to have more distortions than close-field IHM.

68

5.4 Analysis on High-dimensional Sparse Features

In this section, we first examine if the ℓ1 norm sparsity constraint (imposed on Sparse AE)

behaves as expected and hence guides the AE to produce high-dimensional sparse encodings.

Along this line, to evaluate the sparsity of hidden unit activations (i.e., encodings), we utilize

ℓ0, ℓϵ0 and Hoyer measure (introduced in Section 3.2.5).

Then, in Section 5.4.2, we investigate if the encodings space (i.e., representation space) exhibits

orthogonalization or smooth latent space properties (Section 3.2.2) when cosine similarity is

used as similarity measure.

5.4.1 Sparsity of Activations

As previously explained in Section 3.2.1, the definition for sparseness can differ. Here, we

examine if the hidden unit activations (i.e., AE encodings) are indeed sparse, in the sense

that (1) they contain hard-zeros, or (2) only a few dimensions of the activation vector (i.e.,

encoding vector) carry most of the information content (while none of the dimensions are not

necessarily hard-zero).

Regarding hard-zeros (1), we utilize ℓ0 and ℓϵ0 measures (Section 3.2.5). Based on ℓ0 measure,

we observe that we do not obtain hard-zero activations (shown in Tables 5.4 and 5.5). On

the other hand, ℓϵ0 with ϵ set according to the value range on development sets, we see that

sparsity constraint helps to pull the activations towards zero, although fails to produce hard-

zero activations as expected (illustrated in Tables 5.4 and 5.5, second column).

Table 5.4: The sparsity of the hidden unit activations based on the complements of ℓ0 and
ℓϵ0 measures for (a randomly chosen) subset of utterances from IHM development set. For
simplicity, instead of total number of zero entries, we provide their percentage over all entries in
the activation vectors for (randomly chosen) subset of utterances. We observe that the sparsity
constraint (λ > 0, optimally being 0.0001 for IHM) pulls hidden unit activations towards zero,
although fails to generate hard-zeros.

Architecture (ℓ0)c (in %) (ℓϵ0)c (in %)

IHM (λ= 0) 0 5

IHM (λ= 0.0001) 0 9

Table 5.5: The sparsity of the hidden unit activations based on the complements of ℓ0 and
ℓϵ0 measures for (a randomly chosen) subset of utterances from SDM development set. For
simplicity, instead of total number of zero entries, we provide their percentage over all entries in
the activation vectors for (randomly chosen) subset of utterances. We observe that the sparsity
constraint (λ > 0, optimally being 0.0005 for SDM) pulls hidden unit activations towards zero,
although fails to generate hard-zeros.

Architecture (ℓ0)c (in %) (ℓϵ0)c (in %)

SDM (λ= 0) 0 2

SDM (λ= 0.0005) 0 6

69

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

Regarding information carried by active units (2), we utilize Hoyer measure [Hoyer (2004)],

where v with dimension n in (3.10) stand for the hidden unit activation vector z in Figure 5.3,

with dimension 1760, respectively. It is important to note that sparseness based on Hoyer

measure does not necessarily mean that the entries (i.e., dimensions, coefficients) of the

activation vector (i.e., encoding vector, representation vector) are hard-zero. Hoyer measure

generates scores in [0,1] range where 0 denotes the least sparse case (i.e., uniform distribution

of information among entries of the hidden unit activation vector) and 1 denotes the most

sparse case (i.e., spiky distribution, almost all information is carried by only one coefficient).

Focusing on the same randomly chosen subset of utterances from development sets (previ-

ously used in Chapter 4.4), we calculate the sparseness of the hidden unit activations, with

Hoyer measure. Figures 5.5 and 5.6 for sparseness measurement of the hidden unit activation

vectors for (a) Vanilla λ= 0 overcomplete and (b) Sparse overcomplete AE on IHM and SDM,

respectively. x axis shows the Hoyer score, y stands for the number of activation vectors. It is

important to note that each (input) MFCC vector (i.e., frame) has a corresponding activation

vector revealed on the AE’s encoding layer. Hence, histograms clearly depict the alteration in

the characteristics of the activations (i.e., encodings) in the presence of sparsity.

Table 5.4, Figure 5.5 (for IHM) and Table 5.5, Figure 5.6 (for SDM) are computed on the same

(randomly chosen) subset of utterances from development sets. Therefore, they present a

complementary view for the analysis of the sparsity of activations. In conclusion, we observe

that ℓ1 norm sparsity penalty (on hidden units) guides the AE to force its hidden units to

produce close-to-zero activations. In addition, while the majority of the hidden units produce

close-to-zero activations, a small number of hidden units produce the majority of the activa-

tion (i.e., information, energy), forming the rare spikes among many close-to-zero entries in

the activation vector.

In the rest of the analysis, we examine if these spiky hidden unit activations actually represent

meaningful patterns, modeling senone (or any other speech unit’s) subspaces.

5.4.2 Subspace Analysis

With our proposed approach for sparse modeling, we aim for individual subspaces to lie

in the common high dimensional representation space in a scattered manner (as shown in

Figure 4.1). Our hypothesis is that this behavior can induce the separability of senones (and

even phones).

Based on the findings in Section 5.4.1, we anticipate the hidden unit activation vectors for a

particular senone to have a distinctive pattern and to share a few common features with other

senones that have similar phonetic and articulatory characteristics. Note that senones are

formed by clustering the phones based on the decision tree questions regarding contextual

and phonetic properties. That is why, later in our analysis here, we take the phones as the

disentangled form of senones.

70

5.4 Analysis on High-dimensional Sparse Features

(a) IHM λ=0

(b) IHM λ=0.0001

Figure 5.5: Sparseness measurement on the hidden unit activations of randomly chosen subset
of utterances from IHM development set. Enforcing sparsity λ> 0 is observed to change the char-
acteristics of the activations. For Vanilla λ= 0 overcomplete AE (a), majority of the activation
vectors have 0.19; whereas, for sparse overcomplete AE (b), majority of the activation vectors
have 0.69 as Hoyer sparseness score. On the scale of [0,1], 0 denotes the least sparse, 1 denotes
the most sparse case.

71

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

(a) SDM λ=0

(b) SDM λ=0.0005

Figure 5.6: Sparseness measurement on the hidden unit activations of randomly chosen subset
of utterances from SDM development set. Enforcing sparsity λ > 0 is observed to change the
characteristics of the activations. For Vanilla λ= 0 overcomplete AE (a), majority of the acti-
vation vectors have 0.18; whereas, for sparse overcomplete AE (b), majority of the activation
vectors have 0.77 as Hoyer sparseness score. On the scale of [0,1], 0 denotes the least sparse, 1
denotes the most sparse case.

72

5.4 Analysis on High-dimensional Sparse Features

Hence, focusing on the same randomly chosen subset of utterances in Section 5.4.1 (with 419

utterances and 112386 frames), we average all activation vectors belonging to a particular

senone id (i.e., class) and set the resulting vector as fingerprint for that particular senone.

Similar to Section 4.4.2, inspired from sparse distributed memory [Kanerva (1988)], we assume

all fingerprint vectors lie in a vector space (i.e., representation space) with cosine similar-

ity (5.1) as similarity metric. Shortly, we hypothesize that we observe smooth latent space

properties (Section 3.2.2) to emerge on the vector space where the fingerprint vectors reside.

Figures 5.7 and 5.8 illustrate the similarities between the observed senone classes in the subset

among overall 176 senones in the setup. Similarity scores are computed via cosine similarity

metric (5.1). Cosine similarity produces scores [−1,1], 1 denotes the highest similarity (shown

in red in figures).

similarity = cos(θ) = A ·B

∥A∥∥B∥ =
∑n

i=1 Ai Bi√∑n
i=1 A2

i

√∑n
i=1 B 2

i

, (5.1)

We observe that AE encodings are indeed sparse, especially with respect to Hoyer measure.

Compared to Tables 4.4 and 4.5, ℓϵ0 does not produce high percentages of zero activations.

Hence, the product of fingerprint vectors (during cosine similarity computation) does not

converge to zero at all, which is reflected on the colormaps in Figures 5.7 and 5.8 and their

legends (i.e., value range of the colormap legends). The colormaps are dominated by red color;

hence, they indicate high similarity and provide little information, compared to Figures 4.8

and 4.9. This is probably due to MFCCs being less task-driven (i.e., more entangled) and

less robust, compared to senone log-likelihoods (from Chapter 4). We therefore hypothesize

that this will impact the total number of matches and the ratio of robust matches badly for

phone-level subspace analysis, compared to the one presented in Chapter 4.

Nevertheless, based on our findings with colormaps, we extend our subspace analysis with

fingerprint vectors. Thanks to Kaldi’s show-transitions, ali-to-pdf and ali-to-phones com-

mands, we manage to generate mappings between the senones (i.e., pdfs in Kaldi terminology)

and phones with positional encodings. We anticipate that fingerprint vectors might be more

informative on the phone-level patterns which are in more human interpretable form.

Using Figures 5.9 and 5.10, we take the matches between fingerprint vectors, mapping to

similar phone labels in terms of manner and/or place of articulation, as robust match. For

instance, given cosine similarity as metric and a matching threshold, the match between the

fingerprints for /s/(fricative, alveolar) and /z/(fricative, alveolar) is robust. On the other hand,

the match between the fingerprints for /s/ and /m/(nasal, bilabial) is a false match (i.e., not

robust match); hence, not desired, especially when the matching threshold is decreased.

73

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

(a) IHM λ=0

(b) IHM λ=0.0001

Figure 5.7: Colormaps for visualizing the similarity analysis between the senone-specific finger-
print vectors. Note that not all 176 senones (in the setup) occur in the subset of utterances, which
is reflected as white regions in the colormaps above. The similarities between the (fingerprints
of) observed senones are computed with cosine similarity. We observe that in the colormaps
are dominated by red color; hence, indicate high similarity which can also be traced in the
shrinkage on the value range of the colormap legends (i.e., [0.4,1] for λ= 0, whereas [0.75,1] for
λ= 0.0001). Hence, compared to Figures 4.8 and 4.9, these colormaps provide little information.
This is probably due to MFCCs being less task-driven (i.e., more entangled) and less robust,
compared to senone log-likelihoods..

74

5.4 Analysis on High-dimensional Sparse Features

(a) SDM λ=0

(b) SDM λ=0.0005

Figure 5.8: Colormaps for visualizing the similarity analysis between the senone-specific finger-
print vectors. Note that not all 176 senones (in the setup) occur in the subset of utterances, which
is reflected as white regions in the colormaps above. The similarities between the (fingerprints
of) observed senones are computed with cosine similarity. We observe that in the colormaps are
dominated by red color; hence, indicate high similarity (even in the presence of sparsity) which
can also be traced in the shrinkage on the value range of the colormap legends (i.e., [0.6,1] for
λ= 0, whereas [0.83,1] for λ= 0.0005). Hence, compared to Figures 4.8 and 4.9, these colormaps
provide little information. This is probably due to MFCCs being less task-driven (i.e., more
entangled) and less robust, compared to senone log-likelihoods.

75

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

We examine the ratio of number of robust matches over total matches with respect to the

changes in the matching threshold, λ and data (i.e., on which fingerprint vectors are com-

puted). As shown in Tables 5.6 and 5.7, with the decrease in threshold, the number of total

matches increases faster than the number of robust matches (i.e., the ratio decreases). The

increase in λ degrades the ratio of robust matches over all matches.

Figure 5.9: Articulatory parameters for English consonants in ARPAbet [Vendetti (2002a)]. The
matches between fingerprint vectors mapping to similar phone labels in terms of manner and/or
place of articulation are taken as robust match. The details of the analysis whose goal is to
investigate whether the representation space (where fingerprint vectors reside) exhibits orthog-
onalization and/or smooth latent space properties (Section 3.2.2) can be found in Tables 5.6
and 5.7. The manifestation of these properties is important for understanding the representation
capacity of the AE encodings.

76

5.4 Analysis on High-dimensional Sparse Features

Figure 5.10: American English Vowel Space [Vendetti (2002b)].The matches between fingerprint
vectors mapping to similar phone labels in terms of manner and/or place of articulation are
taken as robust match. The details of the analysis whose goal is to investigate whether the
representation space (where fingerprint vectors reside) exhibits orthogonalization and/or smooth
latent space properties (Section 3.2.2) can be found in Tables 5.6 and 5.7. The manifestation of
these properties is important for understanding the representation capacity of the AE encodings.

Table 5.6: The ratio of number of robust matches over the total number of matches (in [0-1]
scale) with respect to the changes in the matching threshold, λ, and data. With decrease in
matching threshold, we expect this ratio to get closer to 0 (as the total number of matches is
expected to increase swiftly), unless the model has robust modeling capacity to stabilize the
ratio of robust matches over all matches. The increase on λ degrades the performance for IHM
models, especially in the case of SDM data. Note that the robust matches are determined based
on the tables presented in Figure 5.9 and Figure 5.10.

Threshold IHM (λ= 0) IHM (λ= 0.0001) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

0.99 1.0 0.91 IHM

1.0 0.36 SDM

0.98 1.0 0.45 IHM

1.0 0.44 SDM

77

Chapter 5. Low-Rank and Sparse Modeling of Acoustic Features

Table 5.7: The ratio of number of robust matches over the total number of matches (in [0-1]
scale) with respect to the changes in the matching threshold, λ, and data. With decrease in
matching threshold, we expect this ratio to get closer to 0 (as the total number of matches is
expected to increase swiftly), unless the model has robust modeling capacity to stabilize the ratio
of robust matches over all matches. In this manner, SDM sparse AE (λ= 0.0005, trained on SDM)
outperforms IHM sparse AE (λ = 0.0001, trained on IHM) in Table 5.6. In other words, even
when the threshold is decreased, the ratio of the robust matches stay stable, exhibiting smooth
latent space properties. However, the increase on λ degrades the robust modeling capacity of the
SDM sparse AE. This implies that SDM data might not be as distorted as we anticipate. Note
that the robust matches are determined based on the tables presented in Figures 5.9 and 5.10.

Threshold SDM (λ= 0) SDM (λ= 0.0005) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

0.99 1.0 1.0 IHM

1.0 0.86 SDM

0.98 1.0 0.91 IHM

1.0 0.57 SDM

Overall datasets and Sparse AE models, Sparse AE trained on SDM data (i.e., SDM λ= 0.0005

in Table 5.7) demonstrates the most robust performance, with respect to the changes in the

threshold. We reach the similar conclusion in Chapter 4, even though, here the decrease in the

matching threshold results in higher number of total matches and more false positives (i.e.,

non-robust matches), mainly due to the lack of close-to-zero or hard-zero activation values in

AE encodings.

5.5 Conclusion

In this chapter, we applied our proposed approach for low-rank and sparse modeling of MFCCs

by means of undercomplete and sparse autoencoders, respectively.

More specifically, we inserted an additional autoencoder component between the feature

extractor and the acoustic model components in the ASR pipeline (Figure 2.1). Upon autoen-

coder training, we sent the reconstructed MFCCs to the acoustic model. Followingly, once the

acoustic model was trained, we passed the LF-MMI log-likelihoods to the decoder for ASR

decoding.

LF-MMI log-likelihoods are already robust and discriminant (i.e., task-driven, covering mostly

ASR-relevant components) due to the state-of-the-art LF-MMI acoustic model training. In

Chapter 4, we observed that this phenomena constitutes a challenge to further improve the

log-likelihoods and consequently the word recognition performance. In this chapter, we

worked on the input acoustic features for the LF-MMI acoustic model component. MFCCs

are known to be less robust and can contain components that are not necessarily relevant or

78

5.5 Conclusion

discriminant for speech recognition (i.e., MFCCs are less task-driven).

We expected the autoencoder component to generate new (i.e., reconstructed) and easier-

to-discriminate acoustic features so that they can lead to performance improvements when

used for training the LF-MMI acoustic model with the baseline acoustic model configuration

(Section 2.5). With our experiments and analysis on high-dimensional sparse speech features,

1. We obtained performance improvement on far-field via proposed sparse modeling

approach with sparse overcomplete autoencoders (Table 5.2).

2. We observed limitations in speech in subspace analysis. Compared to their counterparts

learned upon LF-MMI log-likelihoods in Chapter 4.4, these high-dimensional sparse

speech encodings were really sensitive to the changes in the matching threshold and

were not withstanding to maintain robust matches among each other. This is mostly

due to the nature of MFCC features.

Based on our findings in this chapter, in upcoming Chapter 6, we will:

1. Continue working on MFCC features for training autoencoders.

2. Explore implicitly constrained sparse autoencoders with internal sparsity mechanism

to learn encodings with hard-zeros, primarily for the sake of interpretability of the

subspace analysis.

79

6 Implicitly Constrained Sparse Autoen-
coders

In the previous chapter (Chapter 5), we obtained improvements in WER, which encouraged us

to use MFCCs as feature set in the rest of the thesis. The MFCCs, however, made it difficult

(compared to Chapter 4) for us to detect patterns in the senone (and even phone) subspaces,

since they are less task-driven, more entangled, and harder for shallow overcomplete sparse

autoencoders with ℓ1 norm penalty to produce encodings close to zero.

Hence, in this chapter, we consider sparse autoencoders with internal sparsity mechanisms,

mainly k-Sparse autoencoders [Makhzani and Frey (2013)], and Winner-Take-All autoencoders

(WTA AE) [Makhzani and Frey (2015)]. As a result of their biologically inspired internal sparsity

mechanisms (Section 3.2.3), we anticipate that these models promote hard-zero embeddings

in the encoding layer, which is important for interpreting the subspace analysis with cosine

similarity.

We observe that WTA AE trained on SDM data yields the most robust performance in speech

modeling, with slight increase in false matches, even in the presence of additive noise. How-

ever, we do not obtain improvement on WERs, probably due to the distortion in the value

range of the reconstructed MFCCs, because of the internal sparsity mechanism (i.e., top-k

selection) on the hidden layer activations.

6.1 Introduction

In Chapter 4 and Chapter 5, we use sparse autoencoders with ℓ1 norm sparsity penalty on

hidden unit activations. This configuration is likely to be the most intuitive (among the models

introduced under “sparse autoencoder” name, as stated in Section 3.2), tracing back to the

sparse coding studies [Olshausen and Field (1997)] and dictionary learning [Candès and Wakin

(2008)].

Our findings show that the sparse autoencoders with ℓ1 norm penalty do not produce ac-

tivations with hard zeros. This is the expected behavior, as ℓ1 norm penalty only pulls the

activations towards zero. Activations with hard zeros are expected to be more useful for steady

81

Chapter 6. Implicitly Constrained Sparse Autoencoders

analysis of the representation space with a determined similarity measure (e.g., cosine similar-

ity). In addition, we observe that MFCCs constitute a more convenient feature set when WER

is the concern. Therefore, in this chapter, we further explore different sparse autoencoder

configurations with MFCCs as input features for learning meaningful and generalizable speech

representations.

As previously explained in Section 3.2, there exist many different autoencoder configurations

proposed under the name “sparse autoencoder” in literature. Given our objective and findings

so far, in this chapter, we focus on sparse autoencoders with internal pruning mechanism,

such as k-Sparse Autoencoder (k-Sparse AE) [Makhzani and Frey (2013)], Winner-Take-All

Autoencoder (WTA AE) [Makhzani and Frey (2015)].

k-Sparse AE (Section 6.2) is implicitly sparse, capable of producing hard zero activations,

thanks to its internal top-k selection (i.e., pruning) mechanism. For every data sample, this

model keeps only the highest k activations while setting the rest of the activations to zero.

Therefore, model performance is largely dependent on the hyper-parameter k. k-Sparse

AE boosts population sparseness (Section 3.2.3), just like Sparse AE with ℓ1 norm penalty.

Therefore, it is likely to struggle with dead unit problem (Section 3.2.3), which is one of the main

obstacles for learning meaningful representations (e.g., sparse distributed representations).

Winner-Take-All AE (Section 6.3) approaches the dead unit problem with the insights from

competitive learning. With winner-take-all concept [Srivastava et al. (2013)] in this model,

hidden units are encouraged to compete with each other for activation; hence, be more

selective for being responsive (i.e., active) for the input data samples. Its internal pruning

mechanism guides the hidden units not to be constantly active or constantly inactive (i.e., dead,

zero activation) during their lifetime (i.e., during training). Therefore, this model proposes a

solution for the dead unit problem by promoting life-time sparseness (Section 3.2.3).

6.2 k-Sparse Autoencoders

k-Sparse Autoencoder (k-Sparse AE) [Makhzani and Frey (2013)] performs top-k selection (i.e.,

pruning) on the hidden unit activations. The performance of the model is sensitive to the

choice of hyperparameter k. To overcome this weakness, in [Makhzani and Frey (2013)], an

empirically determined scheduling scheme for k (during training) is introduced.

Top-k pruning operates on x axis (Figure 3.5), promoting the population sparseness (Sec-

tion 3.2.3). Sparse AE with ℓ1 norm penalty (on hidden unit activations) also enforces pop-

ulation sparseness, while placing importance on tuning the hyperparameter λ to avoid the

dead unit problem. But, unlike k-Sparse AE, this model has an external sparsity constraint

which is reflected on its loss function (3.6) as an additional penalty term. Whereas, k-Sparse

AE is an implicitly sparse model with its internal pruning mechanism (i.e., only preserving

the top-k activations, and setting the rest of the hidden unit activations to zero) for enforcing

sparsity. In other words, its loss function does not include any additional regularization or

82

6.2 k-Sparse Autoencoders

penalty term, while the model pursues its reconstruction objective.

6.2.1 Architecture

For our experiments with k-Sparse AE, following the model configuration in [Makhzani and

Frey (2013)], we use shallow, overcomplete, linear autoencoders with tied weights. Top-k

selection introduces nonlinearity to the model, as it can also be seen as a variant of ReLU in

which the threshold is the k-th largest activation (instead of zero).

As in previous chapters, all other components in the ASR pipeline (Figure 2.1), except for

the k-Sparse AE, are implemented in Kaldi [Povey et al. (2011)]. k-Sparse AE is placed be-

tween the feature extractor and the acoustic model components, and is implemented using

Pytorch [Paszke et al. (2017)] in full accordance with the training details in Section 5.2.2.

Following the proposed pipeline illustrated in Figure 5.3, we use 40 dimensional high-resolution

MFCC features as input for the k-Sparse AE. To be consistent with the models in previous

chapters, we set the number of hidden units in the encoding layer (denoted by z) as 1760 (i.e.,

176×10, where 176 is the number of senones in the Kaldi AMI setup).

High-resolution MFCCs are normalized (via apply-cmvn command in Kaldi) before being fed

to k-Sparse AE. Top-k selection on the encoding layer activations (i.e., encodings) is handled

by Pytorch’s torch.topk operation. When the activations from the hidden units outside the

top-k support set (i.e., activations below the k-th largest activation) are set to zero, these units

do not receive any feedback during backpropagation. However, thanks to Pytorch’s torch.topk

being a differentiable operation, backpropagation can be conducted without a problem (i.e.,

the entire computation graph is differentiable).

Unlike [Makhzani and Frey (2013)] that tunes k empirically with a scheduler, we hypothesize

that batch size bsi ze (i.e., number of data samples in a mini-batch, or number of MFCC frames

in our case) plays important role for setting hyperparameter k and for setting the upper limit

for the number of hidden units nhu , such that nhu ≤ k ×bsi ze . This is to accommodate the

extreme case where for each data sample in the batch, different sets of k hidden units are

active. In addition, k ≤ nhu constitutes the upper limit for k.

k ≤ nhu ≤ k ×bsi ze (6.1)

So, for a given data sample, k, the number of units with non-zero activations among all hid-

den units in the encoding layer, can actually be reformulated as k = nhu × cpopulation , where

cpopulation denotes the population sparseness coefficient in [0,1] interval. For instance, given

nhu = 1760 and cpopulation = 0.1, then k = 176 (i.e., 176 units in 1760 dimensional encoding

layer produce non-zero activation for any given input data sample). Based on this, reformulat-

ing (6.1),

83

Chapter 6. Implicitly Constrained Sparse Autoencoders

nhu × cpopulation ≤ nhu ≤ nhu × cpopulation ×bsi ze (6.2)

1

cpopulation
≤ bsi ze (6.3)

Therefore, in our case, for batch size of 100, minimum population sparseness coefficient

(cpopulation) is 0.01 and k therefore should be minimum 18 (k = 1760× cpopulation). To set k, we

conduct grid search on cpopulation ∈ {0.05,0.1,0.3,0.5}, which is equivalent to k ∈ {88,176,528,880}

for neural network training, respectively. The optimal k values are determined based on the k-

Sparse encodings’ performance for the frame-level phone classification task on development

sets. Accordingly, the k is tuned as 176 (cpopulation = 0.1) and 528 (cpopulation = 0.3) for IHM and

SDM, respectively.

6.2.2 Recognition Performance

Once k-Sparse AE is trained, the reconstructed MFCCs are fed to the LF-MMI acoustic model

for training, and later, LF-MMI log-likelihoods from the acoustic model are sent to the Kaldi

decoder for decoding. The word recognition performances are presented in Table 6.2. In

addition, to assess the representative power of AE encodings, simple neural network based

phone classifiers are trained, in full accordance with the implementation details presented in

Section 5.3. The frame-level phone classification accuracies are reported in Table 6.1.

We hypothesize that hard-zeros in AE encodings (denoted as k-Sparse features in Table 6.1)

enable the simple classifier to discriminate (i.e., track, distinguish) the patterns in the data

with ease; hence, attaining better frame-level phone classification accuracies. In addition, the

best performing k-Sparse AE model with respect to accuracies on the development sets are

chosen to determine the optimal values for hyperparameter k. k-Sparse features in Table 6.1

and k-Sparse AE in Table 6.2 are based on the optimal model with k = 176 and k = 528 for IHM

and SDM, respectively.

Table 6.1: The frame-level phone classification for accuracies (in %) on IHM and SDM eval-
uation sets. The encodings from k-Sparse AE obtain the best performance on both close-field
IHM and far-field SDM data. To present the full picture, we also report the performance for the
encodings from shallow overcomplete sparse AEs in Chapter 5.

Architecture I H Maccur ac y SDMaccur ac y

Baseline 39.2 33.7
Sparse AE (λ> 0) 38.0 33.5
k-Sparse AE 40.7 34.3

Indeed, k-Sparse features help the simple phone classifier to classify the patterns with greater

success. For instance, their phone classification accuracy is greater than the case of the original

84

6.2 k-Sparse Autoencoders

MFCC features as input (denoted as Baseline) for training the simple phone classifiers.

Table 6.2: The recognition performance (in WER%) for baseline LF-MMI system and the pro-
posed approach with k-Sparse AE on IHM and SDM evaluation sets. To present a comparative
view, we also report the performance of shallow overcomplete sparse AEs from Chapter 5 (de-
noted as Sparse AE (λ> 0)).

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1
Sparse AE (λ> 0) 19.7 40.5
k-Sparse AE 19.9 44.3

The improvement on phone classification accuracy does not reflect on the word recognition

performance (Table 6.2). Given our findings in [Kabil and Bourlard (2022a)], this is due to the

LF-MMI acoustic model’s sensitivity to the distortion in the value range of the reconstructed

MFCCs introduced by the internal sparsity mechanism (i.e., top-k selection in k-Sparse AE).

6.2.3 Analysis on High-dimensional Sparse Features

In this section, we first examine if k-Sparse AE behaves as expected and produces hard-

zeroed activations. Along this line, to evaluate the sparsity of the hidden unit activations

(i.e., encodings), we utilize ℓ0 and ℓϵ0 (introduced in Section 3.2.5). We then investigate if the

encoding space (i.e., representation space) exhibits orthogonalization and/or smooth latent

space properties (Section 3.2.5).

Note that we here follow the same methodology for evaluating the sparsity of activations (i.e.,

with same sparseness measures on the same randomly chosen subset) in Section 5.4.1 and

for analyzing the senone subspaces (i.e., same fingerprint extraction protocol, same subset of

utterances) in Section 5.4.2.

Sparsity of Activations

Using ℓ0, ℓϵ0, and the same randomly chosen subset of utterances from the development sets

(used also in Chapters 4 and 5), we measure the sparsity of the hidden unit activations (i.e.,

AE encodings) and examine if k-Sparse AEs are indeed capable of producing hard-zeroed

activations.

The comparison of Tables 6.3 and 6.4 clearly shows that k-Sparse AEs indeed produce hard-

zeroed and sparser encodings.

85

Chapter 6. Implicitly Constrained Sparse Autoencoders

Table 6.3: The sparsity of the hidden unit activations based on the complement of ℓ0 measure
for a subset of utterances from IHM and SDM development sets. For full comparison, we also
present the sparsity of the hidden unit activations with ℓϵ0 measure for Sparse AE with λ> 0 on
the same subsets from IHM and SDM in Table 6.4.

Architecture IHM (k = 176) SDM (k = 528)

(ℓ0)c (in %) 90 70

Table 6.4: The sparsity of the hidden unit activations from Sparse AE with λ> 0 via the com-
plement of ℓ0 measure for a subset of utterances from IHM and SDM development sets. For
simplicity, instead of a total number of zero entries, we provide their percentage over all entries
in the activation vectors.

IHM (λ= 0.0001) SDM (λ= 0.0005)

(ℓϵ0)c (in %) 9 6

Subspace Analysis

With our proposed approach for sparse modeling (here, by means of k-Sparse AE), we aim

for individual subspaces to lie in the common high dimensional representation space in a

scattered manner (as shown in Figure 4.1). Our hypothesis is that this behavior can induce

the separability of senones (or other speech units with different granularity, described in

Section 2.1.4).

Based on our findings with colormaps in Chapters 4 and 5, we state that the hidden unit acti-

vation vectors for each particular senone has a distinctive pattern and shares a few common

features with other senones that have similar phonetic and articulatory characteristics. There-

fore, we here conduct phone-level analysis of hidden unit activations, which is anticipated to

be more interpretable by humans.

Hence, focusing on the same subset of utterance from development sets (with 419 utterances

and 112386 frames) and using Figure 5.9 and Figure 5.10, we examine the ratio of robust

matches (over all matches) with respect to the changes in the threshold, the AE model and

data on which fingerprint vectors are computed. The robust match indicates that matched

fingerprint vectors map to similar phone labels in terms of manner and/or place of articulation.

For the case of desired robust modeling, we expect the ratio of number of robust matches over

all matches to be stable (in [0-1] scale), as the matching threshold decreases.

Sparse AE models with λ> 0 are previously reported in Tables 5.6 and 5.7 and presented once

again in Tables 6.5 and 6.6 for completeness.

86

6.2 k-Sparse Autoencoders

Table 6.5: Behavior of the matchings of the fingerprints computed with autoencoders trained
on IHM with respect to the changes in matching threshold, AE model (i.e., Sparse AE with λ> 0
and k-Sparse AE), and data. The cross-database analysis in Chapter 5 (i.e., IHM model-SDM
data or vice versa) implies that SDM data might not be as distorted (e.g., reverberant) as we
initially anticipated. Therefore, we conduct an additional round of analysis on noisy SDM
data (i.e., SDM data with additive 5dB babble noise from Noisex dataset [Varga and Steeneken
(1993)]. Note that the robust matches are determined based on the tables presented in Figures 5.9
and 5.10.

Threshold IHM (λ= 0.0001) IHM (k = 176) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

1.0 1.0 SDM+babble noise(SNR=5dB)

0.99 0.91 0.74 IHM

0.36 0.43 SDM

0.41 0.35 SDM+babble noise(SNR=5dB)

0.98 0.45 0.41 IHM

0.44 0.35 SDM

0.38 0.32 SDM+babble noise(SNR=5dB)

Table 6.6: The behavior of the matchings of the fingerprints computed with autoencoders
trained on SDM with respect to the changes in matching threshold, AE model (i.e., Sparse AE
with λ> 0 and k-Sparse AE), and data. The cross-database analysis in Chapter 5 (i.e., IHM data-
SDM model or vice versa) implies that SDM data might not be as distorted (e.g., reverberant) as
we initially anticipated. Therefore, we conduct an additional round of analysis on noisy SDM
data (i.e., SDM data with additive 5dB babble noise from Noisex dataset [Varga and Steeneken
(1993)]. Note that the robust matches are determined based on the tables presented in Figures 5.9
and 5.10.

Threshold SDM (λ= 0.0005) SDM (k = 528) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

1.0 1.0 SDM+babble noise(SNR=5dB)

0.99 1.0 0.82 IHM

0.86 0.56 SDM

0.59 0.53 SDM+babble noise(SNR=5dB)

0.98 0.91 0.52 IHM

0.57 0.42 SDM

0.51 0.48 SDM+babble noise(SNR=5dB)

87

Chapter 6. Implicitly Constrained Sparse Autoencoders

As depicted in Tables 6.5 and 6.6, we observe that:

1. The AE models trained on SDM data are more robust when the matching threshold is

decreased.

2. Compared to k-Sparse AEs, Sparse AE models (with λ> 0) demonstrate robust charac-

teristics with higher robust match ratio, especially in low(er) threshold cases.

3. Among all datasets and models, Sparse AEs trained on SDM data (i.e, SDM λ= 0.0005

in Table 6.6 obtains the most robust performance, with higher robust match ratio

throughout decreasing trend of matching threshold.

4. The cross-database analysis (i.e., IHM data-SDM model or vice versa) implies that SDM

data might not be as distorted (e.g., reverberant) as we initially anticipated. This is

also in line with the findings presented in [Tang et al. (2018)] and [Kabil and Bourlard

(2022a)].

6.3 Winner-Take-All Autoencoders (WTA)

Winner-Take-All (WTA) [Makhzani and Frey (2015)] is a computational principle utilized in

neural networks so that the neurons (in the same network layer) compete with each other for

activation [Srivastava et al. (2013)]. WTA networks are commonly used in the computational

models of the brain, particularly for distributed decision making and action selection in the

cortex [Carpenter and Grossberg (1987), Riesenhuber and Poggio (1999), Hawkins et al. (2017)].

Being biologically inspired models, Winner-Take-All autoencoders (WTA AEs) [Makhzani and

Frey (2015)] use mini-batch statistics to maintain life-time sparseness on the hidden unit

activations.

Just like k-Sparse AE (Section 6.2), WTA AE takes advantage of the computational principles in

competitive learning. However, unlike k-Sparse AE, in high sparsity conditions, WTA AE does

not suffer from the dead unit problem. Instead, it simply enforces life-time sparseness over the

hidden units (Figure 3.5). That is, WTA AE focuses on the activation pattern of each individual

hidden unit during its life-time (e.g., during neural network training) while still maintaining

sparse representations. In other words, the hidden units (i.e., neurons in the encoding layer)

are restricted from being active or inactive (e.g., on or off) all times. This simply encourages

the hidden units to specialize, representing certain characteristics in the training data.

6.3.1 Architecture

For our experiments, following [Makhzani and Frey (2015)], we use shallow overcomplete

WTA AE with untied weights and ReLU activation on the hidden units. In addition, we impose

life-time sparseness by keeping the k largest activation of each individual hidden unit across

the data samples in the mini-batch, and setting the rest of the activations to zero.

88

6.3 Winner-Take-All Autoencoders (WTA)

As in previous chapters, all other components in the ASR pipeline (Figure 2.1), except for the

WTA AE, are implemented in Kaldi [Povey et al. (2011)]. WTA AE is placed between the feature

extractor and the acoustic model components, and is implemented using Pytorch [Paszke

et al. (2017)] in full accordance with the training details in Section 5.2.2.

Following the proposed pipeline illustrated in Figure 5.3, we use 40 dimensional high-resolution

MFCC features as input to the WTA AEs. To be consistent with the models in previous chapters,

we set the number of hidden units in the encoding layer as 1760 (i.e., 176×10, where 176 is the

number of senones in the Kaldi AMI setup).

High-resolution MFCCs (produced by the feature extractor) are normalized (via apply-cmvn

command in Kaldi) before being sent to WTA AEs. Top-k selection on the encoding layer acti-

vations (i.e., encodings) is handled by Pytorch’s torch.topk operation. In the backpropagation

phase, we only propagate the error through the units with non-zero activations, thanks to

Pytorch’s differentiable topk operation torch.topk(), with dim=1.

Hyper-parameter k plays a crucial role for WTA AE performance. As the pruning (i.e., top

k operation on activations) actually relies on the mini-batch statistics, we hypothesize that

batch size bsi ze can point the implicit relations between the number of hidden units nhu

in the encoding layer and hyper-parameter k, such that bsi ze ≤ k ×nhu . This is due to the

realization of the extreme case where each hidden unit is active for different data samples in

the mini-batch (i.e., active in absolutely non-overlapping manner). In addition, for obvious

reasons, k ≤ bsi ze .

k ≤ bsi ze ≤ nhu ×k (6.4)

So, given the data samples in the mini-batch, k denotes the number of times a hidden unit is

active. It can actually be reformulated as k = bsi ze × clifetime , where clifetime denotes life-time

sparseness coefficient in [0,1] interval. For instance, given bsi ze = 100 and clifetime = 0.1, k = 10

(i.e., each individual hidden unit is active for 10 out of 100 times, or 10 data sample out of

mini-batch with 100 data samples). Based on this, (6.4) can be restated as,

bsi ze × clifetime ≤ bsi ze ≤ bsi ze × clifetime ×nhu (6.5)

1

clifetime
≤ nhu (6.6)

Therefore, in our case, given nhu = 1760, the minimum lifetime sparseness coefficient (clifetime)

is 0.0006, regardless of the batch size. To set k, we conduct search on clifetime ∈ {0.001,0.01,0.05,

0.1,0.3,0.5}, which is equivalent to k as {1,5,10,30,50} for neural network training, respectively.

The optimal k values are determined based on the WTA encodings’ performance for the frame-

89

Chapter 6. Implicitly Constrained Sparse Autoencoders

level phone classification task on development sets. Accordingly, the k is tuned as 10, for both

IHM and SDM.

6.3.2 Recognition Performance

Once WTA AE training is finished, the reconstructed MFCCs are sent to the LF-MMI acoustic

model for training, and later senone log-likelihoods from the acoustic model are sent to the

Kaldi decoder for decoding. The word recognition performances are presented in Table 6.8. In

addition, to assess the representative power of AE encodings, simple neural network based

phone classifiers are trained, in full accordance with the implementation details presented in

Section 5.3. The frame-level phone classification accuracies are reported in Table 6.7.

We hypothesize that hard-zeros in AE encodings (denoted as WTA features in Table 6.7) is to

enable the simple classifier to discriminate (i.e., track, distinguish) the patterns in the data in

ease; hence, reaching to better frame-level phone classification accuracies. In addition, the

best performing WTA AE model with respect to the accuracies on the development sets are

chosen to determine the optimal values for hyper-parameter k. WTA features in Table 6.1 and

WTA AE in Table 6.2 are based on the optimal model with k = 10 for both IHM and SDM.

Table 6.7: The frame-level phone classification accuracy (in %) on IHM and SDM evaluation sets.
The encodings from WTA AE obtain the best performance on far-field SDM data. For the sake
of completeness, we also report the performance for the encodings from shallow overcomplete
sparse AEs from Chapter 5.

Architecture I H Maccur ac y SDMaccur ac y

Baseline 39.2 33.7

Sparse AE (λ> 0) 38.0 33.5

WTA AE 38.4 35.2

Indeed, encodings from WTA AE help the simple phone classifier to classify the patterns

with greater success for far-field SDM case. The phone classification accuracy is greater than

the case of the original MFCC features (denoted as Baseline) as input of the simple phone

classifier.

Table 6.8: The recognition performance (in WER%) for baseline LF-MMI system and the pro-
posed approach with WTA AE on IHM and SDM evaluation sets. To present a comparative view,
we also report the performance of shallow overcomplete sparse AEs from Chapter 5 (denoted as
Sparse AE (λ> 0)).

Architecture I H MW ER SDMW ER

Baseline 19.2 41.1

Sparse AE (λ> 0) 19.7 40.5

WTA AE 19.8 42.1

90

6.3 Winner-Take-All Autoencoders (WTA)

The improvement on phone classification accuracy does not reflect on the word recognition

performance (Table 6.8). Given our findings in [Kabil and Bourlard (2022a)], this is due to the

LF-MMI acoustic model’s sensitivity to the distortion in the value range of the reconstructed

MFCCs introduced by the internal sparsity mechanism. However, in terms of word recognition,

WTA AE outperforms k-Sparse AE, which boosts the population sparseness (Section 3.2.4), as

expected.

6.3.3 Analysis on High-dimensional Sparse Features

In this section, we first examine if WTA AE behaves as expected and produces hard-zeroed acti-

vations. Along this line, to evaluate the sparsity of the hidden unit activations (i.e., encodings),

we utilize ℓ0 and ℓϵ0 (introduced in Section 3.2.5). We then investigate if the encoding space

(i.e., representation space) exhibits orthogonalization and/or smooth latent space properties

(Section 3.2.5).

Note that we here follow the same methodology for evaluating the sparsity of activations (i.e.,

with same sparseness measures on the same randomly chosen subset) in Section 5.4.1 and

for analyzing the senone subspaces (i.e., same fingerprint extraction protocol, same subset of

utterances) in Section 5.4.2.

Sparsity of Activations

Using ℓ0 and ℓϵ0, and focusing on the same randomly chosen subset of utterances from the

development sets (used also in Chapters 4 and 5), we measure the sparsity of the hidden unit

activations (i.e., AE encodings) and examine if WTA AEs are indeed capable of producing

hard-zeroed activations.

The comparison of Tables 6.4 and 6.9 clearly shows that WTA AEs indeed produce hard-zeroed

and sparser encodings.

Table 6.9: The sparsity of the hidden unit activations based on the complement of ℓ0 measure
on subset of utterances from IHM and SDM development sets. For simplicity, instead of a total
number of zero entries, we provide their percentage over all entries in the activation vectors for
(randomly chosen) subset of utterances. For full comparison, we also present the sparsity of the
hidden unit activations with ℓϵ0 measure for Sparse AE with λ> 0 on the same subsets from IHM
and SDM in Table 6.4.

Architecture IHM (k = 10) SDM (k = 10)

(ℓ0)c (in %) 90 90

91

Chapter 6. Implicitly Constrained Sparse Autoencoders

Subspace Analysis

With our proposed approach for sparse modeling (here, by means of WTA AE), we aim for indi-

vidual subspaces to lie in the common high dimensional representation space in a scattered

manner (as shown in Figure 4.1). Our hypothesis is that this behavior can induce the separa-

bility of senones (or other speech units with different granularity, described in Section 2.1.4).

Based on our findings with colormaps in Chapters 4 and 5, we state that the hidden unit acti-

vation vectors for each particular senone has a distinctive pattern and shares a few common

features with other senones that have similar phonetic and articulatory characteristics. There-

fore, we here conduct phone-level analysis of hidden unit activations, which is anticipated to

be more interpretable for humans.

Hence, focusing on the same randomly chosen subset of utterance from development sets

with 419 utterances and 112386 frames) and using Figures 5.9 and 5.10, we examine the ratio of

robust matches with respect to the changes in the threshold, the AE model and data on which

fingerprint vectors are computed. With the decrease in threshold (i.e., matching condition

is weakened), the number of matches and number of false matches increase, as expected.

However, our expectation with robust modeling is to avoid non-robust false matches as much

as possible, especially under low(er) matching thresholds.

Sparse AE models with λ> 0 are previously reported in Tables 5.6 and 5.7 and presented once

again in Tables 6.10 and 6.11 for a complete overview.

Table 6.10: The behavior of the matchings (of the fingerprints computed with autoencoders
trained on IHM) with respect to the changes in matching threshold, AE model (i.e., Sparse AE
with λ> 0 and WTA AE), and data. The cross-database analysis (i.e., IHM model-SDM data or
vice versa) in Chapter 5 implies that SDM data might not be as distorted (e.g., reverberant) as
we initially anticipated. Therefore, we conduct an additional round of analysis on noisy SDM
data (i.e., SDM data with additive 5dB babble noise from Noisex dataset [Varga and Steeneken
(1993)]. Note that the robust matches are determined based on the tables presented in Figures 5.9
and 5.10.

Threshold IHM (λ= 0.0001) IHM (k = 10) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

1.0 1.0 SDM + babble noise (SNR=5dB)

0.99 0.91 1.0 IHM

0.36 1.0 SDM

0.41 0.95 SDM+babble noise(SNR=5dB)

0.98 0.45 0.97 IHM

0.44 0.96 SDM

0.38 0.93 SDM+babble noise(SNR=5dB)

92

6.3 Winner-Take-All Autoencoders (WTA)

Table 6.11: The behavior of the matchings (of the fingerprints computed with autoencoders
trained on SDM) with respect to the changes in matching threshold, AE model (i.e., Sparse AE
with λ> 0 and WTA AE), and data. The cross-database analysis (i.e., IHM data-SDM model or
vice versa) in Chapter 5 implies that SDM data might not be as distorted (e.g., reverberant) as
we initially anticipated. Therefore, we conduct an additional round of analysis on noisy SDM
data (i.e., SDM data with additive 5dB babble noise from Noisex dataset [Varga and Steeneken
(1993)]. Note that the robust matches are determined based on the tables presented in Figures 5.9
and 5.10.

Threshold SDM (λ= 0.0005) SDM (k = 10) Data

1.0 1.0 1.0 IHM

1.0 1.0 SDM

1.0 1.0 SDM+babble noise(SNR=5dB)

0.99 1.0 1.0 IHM

0.86 1.0 SDM

0.59 1.0 SDM+babble noise(SNR=5dB)

0.98 0.91 0.98 IHM

0.57 0.95 SDM

0.51 0.94 SDM+babble noise(SNR=5dB)

From Tables 6.5, 6.10 and Tables 6.6, 6.11, we observe that:

1. The AE models trained on SDM data are more robust when the matching threshold is

decreased.

2. Compared to k-Sparse AEs and Sparse AE models (with λ> 0), WTA AE models demon-

strate the better modeling characteristics with higher robust match ratios, especially in

low(er) threshold cases in the presence of additive noise.

3. Among all datasets and AE models, WTA AE trained on SDM data (i.e, SDM k = 10 in

Table 6.11) obtains the most robust performance.

4. The cross-database analysis (i.e., IHM data-SDM model or vice versa) implies that SDM

data might not be as distorted (e.g., reverberant) as we initially anticipated. This is

also in line with the findings presented in [Tang et al. (2018)] and [Kabil and Bourlard

(2022a)].

93

Chapter 6. Implicitly Constrained Sparse Autoencoders

6.4 Conclusion

In the previous chapter (Chapter 5), with our experiment and analysis on high-dimensional

AE encodings, we obtained improvements on WER, which encouraged us to use MFCCs as

feature set in the rest of the thesis. However, we also observed that with MFCCs, it was more

challenging to detect patterns in senone (and even phone) subspaces (compared to Chapter 4),

as MFCCs are less task-driven, more entangled and harder for shallow overcomplete sparse

autoencoders with ℓ1 norm penalty to process and produce close-to-zero encodings.

Therefore, in this chapter, we further explored sparse autoencoders with MFCCs as input

features for speech recognition and modeling. We focused on sparse autoencoders with

internal sparsity mechanisms, essentially k-Sparse autoencoders and Winner-Take-All autoen-

coders. Owing to their biologically inspired internal sparsity mechanisms, we found that these

models promote hard-zeroed embeddings in the encoding layer, especially for the sake of

interpretability of the subspace analysis of fingerprint vectors computed on high-dimensional

encodings.

With our experiments and analysis on high-dimensional AE encodings,

1. We obtained improvement on phone classification accuracy when hard-zeroed encod-

ings from k-Sparse AE and WTA AE are used for frame-level phone classification for

distorted far-field speech. This indicates that these encodings help the simple phone

classifier to classify the patterns in the data.

2. We could not obtain improvement on WERs, due to the distortion in the value range

of the reconstructed MFCCs, probably because of the internal sparsity mechanism

operating on hidden layer activations.

3. We observed that among all dataset and AE models, WTA AE trained on SDM data

obtains the most robust performance, even in the presence of additive noise, especially

when the matching threshold is decreased.

4. The cross-database analysis (i.e., IHM data-SDM model or vice versa) underlined that

SDM data might not be as distorted (e.g., reverberant) as initially anticipated. This is

also stated in [Tang et al. (2018)] and [Kabil and Bourlard (2022a)].

Therefore, in the next chapter, we investigate the generalization power of WTA AE models

(trained on SDM data) while exploiting the model in the transfer learning scenarios for patho-

logical speech recognition.

94

7 Transfer Learning for Pathological
Speech Recognition

In this chapter 1, we repurpose the best performing implicitly constrained sparse autoencoder

model from Chapter 6 in the transfer learning framework for pathological speech recognition.

Winner-Take-All (WTA) autoencoder trained on far-field SDM data is the best performing

model in Chapter 6 based on its robust speech modeling capacity and recognition perfor-

mance. We will refer to this model as WTA model in the rest of this chapter.

In summary, we insert the WTA model between the feature extractor and the acoustic model

components in the ASR pipeline which is built for pathological speech recognition task. For

all transfer learning experiments, WTA model is kept fixed (i.e., frozen). We expect the fixed

off-the-shelf WTA model to project the pathological acoustic features closer to the healthy

control acoustic feature space. The projected acoustic features obtained from the WTA model

are then sent to the acoustic model.

Based on acoustic model state, transfer learning experiments are conducted in three scenarios.

• In as-is scenario, projected acoustic features are sent the fixed LF-MMI acoustic model

which is initially trained on healthy control speech.

• In finetuning scenario, the projected acoustic features are used for finetuning the LF-

MMI acoustic model which is initially trained on healthy control speech.

• In training from scratch scenario, the projected acoustic features are used for training a

brand new LF-MMI acoustic model with the same model configuration for the baseline

acoustic model for healthy control speech.

Despite LF-MMI being sensitive to the changes in the value range of the input data, we

obtained promising improvement in pathological speech recognition. Overall, our findings

1This chapter is partially based on :
Kabil, S.H., and Bourlard, H. (2022). From undercomplete to sparse overcomplete autoencoders to improve lf-mmi
speech recognition. In Proceedings of Interspeech Conference.

95

Chapter 7. Transfer Learning for Pathological Speech Recognition

point to WTA autoencoder’s potential for generating features which can also be beneficial for

other downstream tasks.

7.1 Introduction

One of the goals in our thesis was to learn meaningful and invariant speech representations

(e.g., sparse distributed representations Section 3.2.3) by means of sparse autoencoders for

different tasks ranging from speech modeling to recognition. Along this line, we repurpose

the best performing implicitly constrained sparse autoencoder model from Chapter 6 in

transfer learning framework for pathological speech recognition. In other words, in this

chapter, we examine if these implicitly constrained sparse autoencoder models are capable of

producing meaningful representations which can also be beneficial for downstream tasks like

pathological speech recognition.

In Chapter 6, based on robust speech modeling capacity and recognition performance, Winner-

Take-All (WTA) autoencoder trained on far-field SDM data is the best performing model. We

will refer to this model as WTA model in the rest of the present chapter. In addition, our

findings presented in Chapter 6 demonstrate that the SDM dataset is not as reverberant as

we initially anticipated. In fact, its distortion is probably not due to the reverberation, but to

some other factors, such as cross-talking [Tang et al. (2018)]. Furthermore, we observe that the

models trained on SDM data have better generalization power, implying that SDM contains

more acoustic variation compared to close-field IHM data. This is also in line with our findings

in [Kabil and Bourlard (2022a)].

Proposed transfer learning framework with pre-trained WTA model can really be useful for

improving the recognition performance. Actually, the use of autoencoders in transfer learning

setup for speech processing tasks, such as speech recognition [Feng et al. (2014), Grozdić

and Jovičić (2017)], feature enhancement [Ishii et al. (2013), Tang et al. (2018)] and speaker

recognition [Plchot et al. (2016), Shon et al. (2017)] have been extensively explored in literature

before. And, accordingly we hypothesize that the WTA model can reconstruct pathological

data in such a way that its subspace components become more convenient for the LF-MMI

acoustic model, which is trained on healthy speech, to process or to be trained.

7.2 Our Approach

Pathological speech constitutes several challenges. It is largely distorted (i.e., acoustically

mismatched) and hard to access, mainly due to legal and ethical requirements. Therefore,

there does not exist numerous pathological speech datasets. As anticipated, the acoustic

models trained on pathological speech lack generalization power, due to the small amount of

available pathological data. Whereas, the acoustic models trained on easy-to-access healthy

control speech do not provide improvement on WER, when used for pathological speech

recognition, mainly due to the mismatches between healthy and pathological speech acoustic

96

7.3 Experimental Results

spaces.

To overcome this challenge, we here present our transfer learning framework. We insert an

off-the-shelf WTA model between the feature extractor and the acoustic model components

in the ASR pipeline (Figure 2.1). We expect the fixed, off-the-shelf WTA model to project

the pathological acoustic space closer to healthy control acoustic space. In other words, the

healthy acoustic space knowledge learned by the WTA model in Chapter 6 is transferred. This

is expected to improve the pathological speech recognition performance, especially when the

acoustic models trained on healthy control speech are used for decoding pathological speech.

With this pipeline, based on the state of the acoustic model, transfer learning experiments are

conducted in three scenarios. Note that during all experiments, the WTA model is kept fixed.

Figure 7.1: Transfer learning framework for pathological speech recognition.

In as-is scenario, we pass the pathological MFCCs to the fixed WTA model and obtain the

reconstructed features. These reconstructed MFCCs are then sent to the fixed LF-MMI acoustic

model initially trained on healthy control speech.

In finetuning scenario, we feed frozen WTA model with the pathological MFCCs to get re-

constructions for for finetuning the LF-MMI acoustic model which is previously trained on

healthy control speech.

In training from scratch scenario, we use the reconstructed pathological MFCCs from the

WTA model for training a brand-new LF-MMI acoustic model.

7.3 Experimental Results

We insert an off-the-shelf WTA model between the feature extractor and the acoustic model

components in the ASR pipeline (Figure 2.1). We expect this off-the-shelf WTA model to project

the pathological speech closer to healthy speech so that easy-to-access acoustic models trained

on healthy speech can actually be useful for recognition and reach better WER for pathological

speech recognition.

97

Chapter 7. Transfer Learning for Pathological Speech Recognition

In all transfer learning scenarios, the same model configuration (Section 2.5) is used for LF-

MMI acoustic models. We use DYS and CTL subsets from the UA-Speech dataset (Section 2.3.2)

for pathological speech and healthy control speech, respectively.

Following the model configuration used in [Hermann and Doss (2020)] and described in

Section 2.5, the baseline WERs (i.e., without the involvement of WTA model in ASR pipeline) is

reported in Table 7.1.

Table 7.1: The recognition performance (in WER%) for baseline LF-MMI acoustic models trained
on CTL and DYS portions of UA-Speech database. Mainly, because of the acoustic mismatch
between the healthy control speech (denoted as CTL) and pathological speech (denoted as DYS),
the LF-MMI acoustic model trained on CTL performs poorly for DYS recognition.

Train on Decode on WER

CTL CTL 18.5

DYS DYS 38.9

CTL DYS 62.5

With our proposed framework, we expect to improve the baseline WER (62.5%) reported in

Table 7.1. In addition, to evaluate the impact of involvement of the LF-MMI acoustic model in

the proposed transfer learning framework, we devise three cases.

7.3.1 As-is

In as-is case (case 1 in Figure 7.1), we feed the pathological MFCCs to the WTA model and

obtain the reconstructed features. These reconstructed MFCCs are then fed to the frozen

LF-MMI acoustic model which is initially trained on healthy control speech. The fact that we

manage to improve the baseline WER slightly (i.e., close to 2% absolute improvement) implies

that our hypothesis for transferring the healthy acoustic knowledge is promising.

Table 7.2: The recognition performance (in WER%) for LF-MMI systems trained on CTL in as-is
scenario.

Model WER

Baseline 62.5

Case 1: with frozen CTL acoustic model 61.0

7.3.2 Finetuning

In finetuning case (case 2 in Figure 7.1), we feed the pathological MFCCs to WTA model and

use the reconstructed features for finetuning (i.e., further train) the LF-MMI acoustic model

which is previously trained on healthy control speech. We observe slight degradation in the

performance, which is in line with our findings in [Kabil and Bourlard (2022a)]. Exploring the

98

7.4 Conclusion

hyperparameter space (e.g., number of epochs, batch size) plays crucial role in finetuning

when adapting LF-MMI acoustic model on projected features.

Table 7.3: The recognition performance (in WER%) for LF-MMI systems trained on CTL in
finetuning scenario.

Model WER

Baseline 62.5

Case 2: finetuning CTL acoustic model 63.0

7.3.3 Training from Scratch

In training from scratch case (case 3 in Figure 7.1), we get the reconstructed pathological

MFCCs from the WTA model. We then use these features for training a brand-new LF-MMI

acoustic model from scratch with the same model configuration as the baseline acoustic

model for healthy control speech. Along the same line with our findings in [Kabil and Bourlard

(2022a)], we observe that exploring hyperparameter space has an impact on the recognition

performance. Despite our inability for proper exploration of the search space because of time

limitations, we still manage to improve the WER (i.e., close to 3%).

Table 7.4: The recognition performance (in WER%) for LF-MMI systems trained on CTL in
training from scratch scenario.

Model WER

Baseline 62.5

Case 3: training new acoustic model 59.7

7.4 Conclusion

In this chapter, we repurposed the best performing implicitly constrained sparse autoencoder

model from Chapter 6 in the transfer learning framework for pathological speech recognition.

Basically, we inserted off-the-shelf WTA model between the feature extractor and the acoustic

model components in the ASR pipeline (Figure 2.1). Our goal was to project pathological

(DYS) acoustic space close to the healthy control (CTL) acoustic space so that easier-to-access

acoustic models trained on healthy control speech can actually be useful for pathological

speech recognition.

Keeping the off-the-shelf WTA model from Chapter 6 fixed, based on the state of the acoustic

model, we devised three scenarios for transfer learning experiments. In as-is scenario, pro-

jected pathological acoustic features were sent the fixed LF-MMI acoustic model which was

initially trained on healthy control speech. In finetuning scenario, the projected pathological

acoustic features were used for finetuning the LF-MMI acoustic model which was initially

99

Chapter 7. Transfer Learning for Pathological Speech Recognition

trained on healthy control speech. In training from scratch scenario, the projected patho-

logical acoustic features (i.e., reconstructions from fixed WTA model) were used for training

a brand new LF-MMI acoustic model with the same model configuration for the baseline

acoustic model for healthy control speech.

With the presented transfer learning framework, easy-to-access CTL acoustic models became

applicable for decoding pathological DYS speech. We managed to obtain performance im-

provements on WER, despite the sensitivity of the finely-tuned LF-MMI acoustic models. This

implies that WTA autoencoder models are promising for learning generalizable features.

100

8 Conclusion and Directions for Future
Work

In this chapter, Section 8.1 summarizes the conclusions of this thesis and Section 8.2 discusses

the directions for future research.

8.1 Conclusions

In this thesis, we addressed the problem of learning informative, interpretable and gener-

alizable speech representations using deterministic sparse autoencoders. Based on speech

production knowledge, we hypothesize that informative speech components live in class-

specific low-dimensional subspaces whereas random unstructured noise is scattered in high

dimensions. In this regard, we identified shallow overcomplete sparse autoencoders as excel-

lent networks for modeling the class-specific low-dimensional subspaces of speech, holding

the key for robust ASR and thorough understanding for speech modeling.

Taking [Dighe (2019)] as our reference point, we proposed the use of shallow overcomplete

sparse autoencoders for sparse modeling of speech data. For speech recognition, we inspected

the reconstructed features obtained from the output layer of the autoencoder. Sparsity con-

straint was enforced on the autoencoder model. Hence, we expected the reconstructions

from the output of the model to be better features for acoustic model training, compared

to their original counterparts. For speech modeling, we examined the high-dimensional

sparse features obtained from the encoding layer of the autoencoder. We expected that high-

dimensional sparse encoding space to satisfy the smooth latent space properties. In addition,

with different sparsity constraints, we aimed to learn sparse distributed representations that

are task-agnostic and therefore useful for different speech tasks.

First, we exploited duality between the dictionary learning [Candès and Wakin (2008)] and

shallow overcomplete sparse autoencoders with ℓ1 norm penalty on hidden unit activations.

In other words, we effectively transformed the dictionary learning problem to representation

learning problem. For speech recognition experiments, we observed that acoustic features

(i.e., MFCCs) constitute a more convenient feature set for improvements in terms of WER,

101

Chapter 8. Conclusion and Directions for Future Work

compared to acoustic model output features (i.e., LF-MMI log-likelihoods).

For speech modeling, we modeled the representation space where each sparse encoding

resides in a similar manner to the feature vectors in vector space models used in information

retrieval and natural language processing. In the vector space model, cosine similarity is

generally used as metric. We showed that encodings which were matched together based on

cosine similarity, shared similar articulatory configurations.

We then explored implicitly constrained sparse autoencoders for better speech modeling

and learning sparse distributed representations, which are expected to be task-agnostic and

therefore, could be useful for different speech tasks. With k-Sparse autoencoders [Makhzani

and Frey (2013)] and Winner-Take-All (WTA) autoencoders [Makhzani and Frey (2015)], we

studied the impact of adopting different viewpoints to sparsity in the model configuration.

We observed that WTA autoencoders were the best performing models in terms of robust

modeling of speech units, even under the presence of additive noise.

Finally, we repurposed the pre-trained WTA autoencoder to benefit its generalization power in

the transfer learning framework for pathological speech recognition task. Mainly, we desired

to exploit the acoustic knowledge, which WTA autoencoder learned on far-field speech, to

project the pathological acoustic space closer to the healthy control acoustic space. With this,

easy-to-access healthy control acoustic models became applicable on pathological speech

data, and we could obtain promising improvements on the pathological speech recognition

performance.

8.2 Directions for Future Research

The research presented in this thesis can be further extended along the following lines, includ-

ing:

• As explained in Chapters 4 and 5, Kaldi introduced some challenges while building

the ASR pipeline with additional AE component. Using another toolkit with flexibility

(e.g., SpeechBrain toolkit [Ravanelli et al. (2021)]), the exploration of joint training of the

acoustic model and AEs or multi-task learning across different speech tasks are doable.

• Inspired by the self-supervised learning [Liu et al. (2022)], the proposed approach in

Chapter 4 can also be performed using different loss functions (e.g., triplet loss [Jansen

et al. (2018)]) in the sparse autoencoder configuration.

• In this thesis, we only focused on deterministic sparse autoencoders. However, the

same research can also be conducted on different sparse autoencoder configurations.

For instance, deep WTA AE would be beneficial for understanding the impact of spar-

sity in different layers of the network. To understand the impact of contextual data,

sequence-to-sequence autoencoders [Amiriparian et al. (2017)] or CNN-based autoen-

coders [Masci et al. (2011)] with sparsity constraints can be explored. In addition, as

102

8.2 Directions for Future Research

alternative to deterministic models, variational sparse autoencoders [Asperti (2018)]

can also be adopted.

• The downstream tasks for transfer learning study in Chapter 7 can also be diversified. For

instance, in the case of accented speech, transformation of the accented acoustic space

to native acoustic space may lead to improvements for accented speech recognition

task. In addition, at this point, it is important to keep in mind that dataset choice can

play a decisive role for the performance.

103

Bibliography

Ahmad, S. and Scheinkman, L. (2019). How can we be so dense? the benefits of using highly

sparse representations. Technical report, Numenta Inc.

Allen, J. B. (1995). How do humans process and recognize speech? In Modern methods of

speech processing. Springer.

Amiriparian, S., Freitag, M., Cummins, N., and Schuller, B. (2017). Sequence to sequence

autoencoders for unsupervised representation learning from audio. In DCASE.

Asperti, A. (2018). Sparsity in variational autoencoders. arXiv preprint arXiv:1812.07238.

Bengio, Y. (2009). Learning deep architectures for AI. Now Publishers Inc.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-wise training of

deep networks. In Advances in neural information processing systems.

Bengio, Y., Lecun, Y., and Hinton, G. (2021). Deep learning for ai. Communications of the ACM.

Bourlard, H. and Kabil, S. H. (2022). Autoencoders reloaded. Biological cybernetics.

Bourlard, H. and Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular

value decomposition. Biological cybernetics.

Bourlard, H. and Morgan, N. (2012). Connectionist speech recognition: a hybrid approach,

volume 247. Springer Science & Business Media.

Candès, E. and Wakin, M. (2008). An introduction to compressive sampling. IEEE signal

processing magazine.

Carpenter, G. A. and Grossberg, S. (1987). A massively parallel architecture for a self-organizing

neural pattern recognition machine. Computer vision, graphics, and image processing.

Chen, S., Donoho, D., and Saunders, M. (2001). Atomic decomposition by basis pursuit. SIAM

Journal on Scientific Computing.

Chen, Y. and Zaki, M. J. (2017). Kate: K-competitive autoencoder for text. In Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

105

Bibliography

Deng, L., Ramsay, G., and Sun, D. (1997). Production models as a structural basis for automatic

speech recognition. Speech Communication.

Dighe, P. (2019). Sparse and Low-rank Modeling for Automatic Speech Recognition. PhD thesis.

Dighe, P., Asaei, A., and Bourlard, H. (2019). Low-rank and sparse subspace modeling of speech

for dnn based acoustic modeling. Speech Communication.

Dosovitskiy, A. and Brox, T. (2016). Generating images with perceptual similarity metrics based

on deep networks. Advances in neural information processing systems.

Feng, X., Zhang, Y., and Glass, J. (2014). Speech feature denoising and dereverberation via deep

autoencoders for noisy reverberant speech recognition. In IEEE international conference on

acoustics, speech and signal processing (ICASSP).

Francis, W. N. and Kucera, H. (1979). Brown corpus manual. Letters to the Editor.

Frankel, J. and King, S. (2001). Asr-articulatory speech recognition.

Gemmeke, J. F., Virtanen, T., and Hurmalainen, A. (2011). Exemplar-based sparse representa-

tions for noise robust automatic speech recognition. IEEE Transactions on Audio, Speech,

and Language Processing.

Georgescu, A.-L., Cucu, H., and Burileanu, C. (2019). Kaldi-based dnn architectures for speech

recognition in romanian. In 2019 International Conference on Speech Technology and

Human-Computer Dialogue (SpeD). IEEE.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural networks. In Proceed-

ings of the fourteenth international conference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings.

Golik, P., Tüske, Z., Schlüter, R., and Ney, H. (2015). Convolutional neural networks for acoustic

modeling of raw time signal in lvcsr. In Sixteenth annual conference of the international

speech communication association.

Golub, G. and Reinsch, C. (1971). Linear Algebra, Singular value decomposition and least

squares solutions. Springer.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Grozdić, Ð. T. and Jovičić, S. T. (2017). Whispered speech recognition using deep denoising

autoencoder and inverse filtering. IEEE Transactions on Audio, Speech, and Language

Processing.

Gupta, K. and Majumdar, A. (2016). Sparsely connected autoencoder. In 2016 International

Joint Conference on Neural Networks (IJCNN).

Hawkins, J., Ahmad, S., and Cui, Y. (2017). A theory of how columns in the neocortex enable

learning the structure of the world. Frontiers in neural circuits.

106

Bibliography

Hermann, E. and Doss, M. M. (2020). Dysarthric speech recognition with lattice-free mmi. In

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology.

Hoyer, P. O. (2004). Non-negative matrix factorization with sparseness constraints. Journal of

machine learning research.

Hurley, N. and Rickard, S. (2009). Comparing measures of sparsity. IEEE Transactions on

Information Theory.

Hwang, M.-Y., Huang, X., and Alleva, F. A. (1996). Predicting unseen triphones with senones.

IEEE Transactions on speech and audio processing.

Ishii, T., Komiyama, H., Shinozaki, T., Horiuchi, Y., and Kuroiwa, S. (2013). Reverberant speech

recognition based on denoising autoencoder. In Interspeech.

Jansen, A. and Niyogi, P. (2006). Intrinsic fourier analysis on the manifold of speech sounds.

In IEEE International Conference on Acoustics Speech and Signal Processing Proceedings

(ICASSP).

Jansen, A., Plakal, M., Pandya, R., Ellis, D. P., Hershey, S., Liu, J., Moore, R. C., and Saurous,

R. A. (2018). Unsupervised learning of semantic audio representations. In EEE international

conference on acoustics, speech and signal processing (ICASSP).

Jelinek, F. (1998). Statistical methods for speech recognition. MIT press.

Jolliffe, I. (1986). Principal Component Analysis, Springer Series in Statistics (2nd edition).

Springer-Verlag New York.

Kabil, S. H. and Bourlard, H. (2022a). From undercomplete to sparse overcomplete autoen-

coders to improve lf-mmi speech recognition. In Interspeech.

Kabil, S. H. and Bourlard, H. (2022b). Sparse autoencoders to enhance speech recognition.

Idiap technical report.

Kabil, S. H. and Bourlard, H. (2022c). Speech modeling using sparse autoencoders. Idiap

technical report.

Kanerva, P. (1988). Sparse distributed memory. MIT press.

King, S., Frankel, J., Livescu, K., McDermott, E., Richmond, K., and Wester, M. (2007). Speech

production knowledge in automatic speech recognition. The Journal of the Acoustical

Society of America.

Kingma, D. P. and Welling, M. (2019). An introduction to variational autoencoders. arXiv

preprint arXiv:1906.02691.

107

Bibliography

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The annals of mathe-

matical statistics.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature.

Liu, S., Mallol-Ragolta, A., Parada-Cabeleiro, E., Qian, K., Jing, X., Kathan, A., Hu, B.,

and Schuller, B. W. (2022). Audio self-supervised learning: A survey. arXiv preprint

arXiv:2203.01205.

Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2009). Online dictionary learning for sparse coding.

In International Conference on Machine Learning (ICML).

Makhzani, A. and Frey, B. (2013). K-sparse autoencoders. arXiv preprint arXiv:1312.5663.

Makhzani, A. and Frey, B. J. (2015). Winner-take-all autoencoders. Advances in neural infor-

mation processing systems.

Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked convolutional auto-

encoders for hierarchical feature extraction. In International conference on artificial neural

networks.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representa-

tions in vector space. arXiv preprint arXiv:1301.3781.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.

In International Conference on Machine Learning.

Ng, A. et al. (2011). Sparse autoencoder. CS294A Lecture notes.

Ngiam, J., Chen, Z., Bhaskar, S. A., Koh, P. W., and Ng, A. Y. (2011). Sparse filtering. In Advances

in Neural Information Processing Systems.

Olshausen, B. A. and Field, D. J. (1996). Emergence of simple-cell receptive field properties by

learning a sparse code for natural images. Nature.

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A

strategy employed by v1? Vision research.

Paszke, A., Gross, S., Chintala, S., and Chanan, G. (2017). Pytorch: Tensors and dynamic neural

networks in python with strong gpu acceleration.

Peddinti, V., Povey, D., and Khudanpur, S. (2015). A time delay neural network architecture

for efficient modeling of long temporal contexts. In Sixteenth annual conference of the

international speech communication association.

Plchot, O., Burget, L., Aronowitz, H., and Matejka, P. (2016). Audio enhancing with dnn

autoencoder for speaker recognition. In IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP).

108

Bibliography

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M.,

Motlicek, P., Qian, Y., Schwarz, P., et al. (2011). The kaldi speech recognition toolkit. In

Proceedings of the IEEE 2011 workshop on automatic speech recognition and understanding.

Povey, D., Kanevsky, D., Kingsbury, B., Ramabhadran, B., Saon, G., and Visweswariah, K. (2008).

Boosted mmi for model and feature-space discriminative training. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP).

Povey, D., Peddinti, V., Galvez, D., Ghahremani, P., Manohar, V., Na, X., Wang, Y., and Khudan-

pur, S. (2016). Purely sequence-trained neural networks for asr based on lattice-free mmi.

In Interspeech.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE.

Rath, G., Guillemot, C., and Fuchs, J.-J. (2008). Sparse approximations for joint source-channel

coding. In 2008 IEEE 10th Workshop on Multimedia Signal Processing.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Subakan, C.,

Dawalatabad, N., Heba, A., Zhong, J., et al. (2021). Speechbrain: A general-purpose speech

toolkit. arXiv preprint arXiv:2106.04624.

Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex.

Nature neuroscience.

Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011). Higher

order contractive auto-encoder. In Joint European conference on machine learning and

knowledge discovery in databases. Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Rumelhart, D. E. and Zipser, D. (1985). Feature discovery by competitive learning. Cognitive

science.

Sainath, T. N., Ramabhadran, B., Picheny, M., Nahamoo, D., and Kanevsky, D. (2011). Exemplar-

based sparse representation features: From timit to lvcsr. IEEE Transactions on Audio,

Speech, and Language Processing.

Sak, H., Senior, A. W., and Beaufays, F. (2014). Long short-term memory recurrent neural

network architectures for large scale acoustic modeling.

Shon, S., Mun, S., Kim, W., and Ko, H. (2017). Autoencoder based domain adapta-

tion for speaker recognition under insufficient channel information. arXiv preprint

arXiv:1708.01227.

109

Bibliography

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:

a simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research.

Srivastava, R. K., Masci, J., Kazerounian, S., Gomez, F., and Schmidhuber, J. (2013). Compete

to compute. Advances in neural information processing systems.

Stevens, K. N. (2000). Acoustic phonetics. MIT press.

Tang, H., Hsu, W.-N., Grondin, F., and Glass, J. (2018). A study of enhancement, augmentation,

and autoencoder methods for domain adaptation in distant speech recognition. arXiv

preprint arXiv:1806.04841.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological).

Varga, A. and Steeneken, H. J. (1993). Assessment for automatic speech recognition noisex-92:

A database and an experiment to study the effect of additive noise on speech recognition

systems. Speech communication.

Vendetti, J. (2002a). Lecture notes in phonetic transcription. CS4705 Lecture notes.

Vendetti, J. (2002b). Lecture notes in phonetic transcription. CS4705 Lecture notes.

Veselỳ, K., Ghoshal, A., Burget, L., and Povey, D. (2013). Sequence-discriminative training of

deep neural networks. In Interspeech.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing

robust features with denoising autoencoders. In Proceedings of the 25th international

conference on Machine learning.

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R. (2013). Regularization of neural

networks using dropconnect. In International Conference on Machine Learning (ICML).

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,

Funtowicz, M., et al. (2020). Transformers: State-of-the-art natural language processing. In

Proceedings of the 2020 conference on empirical methods in natural language processing:

system demonstrations.

Xiong, F., Barker, J., and Christensen, H. (2019). Phonetic analysis of dysarthric speech tempo

and applications to robust personalised dysarthric speech recognition. In IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP).

Young, S. J., Odell, J. J., and Woodland, P. C. (1994). Tree-based state tying for high accuracy

modelling.

Zhang, L., Lu, Y., Wang, B., Li, F., and Zhang, Z. (2018). Sparse auto-encoder with smoothed l 1

regularization. Neural Processing Letters.

110

Selen Hande Kabil
hande.kabil@gmail.com • ð hande-kabil

Education

École Polytechnique Fédérale de Lausanne (EPFL) 2018 - 2022
Doctoral Student in Electrical Engineering

École Polytechnique Fédérale de Lausanne (EPFL) 2015 - 2018
Masters in Computer Science

Middle East Technical University (METU), Turkey 2010 - 2015
Bachelors in Computer Engineering

Work Experience

○
Idiap Research Institute Switzerland
Research Assistant in Speech & Audio Processing Group May 2018 – Oct. 2022

Supervisor: Prof. Hervé Bourlard
Thesis title: Sparse Autoencoders for Speech Modeling and Recognition

- Designed various sparse autoencoder models for sparse modeling of speech

- Improved performance over strong chain model baseline system for robust speech recognition on far-field speech

- Repurposed sparse models in transfer learning framework for pathological speech recognition

○
Idiap Research Institute Switzerland
Research Intern in Speech & Audio Processing Group Sept. 2017 – Feb. 2018

Supervisor: Dr. Mathew Magimai-Doss
Thesis title: Understanding End-to-End Acoustic Modeling for Speech Recognition: A Case Study on Children Speech

- Implemented end-to-end CNN-based acoustic models for children speech

○
Katia SA Switzerland
Summer Intern July 2017 – Sept. 2017

- Developed spam call filter with n-gram language models and fusion of classifiers

○
Idiap Research Institute Switzerland
Project Student Feb. 2017 – June 2017

Supervisor: Dr. Mathew Magimai-Doss

- Implemented CNN-based gender classifier, which jointly handles feature extraction and classification given the raw
speech signal

○
Hacettepe University Vision Lab Turkey
Research Assistant July 2014 – June 2015

Supervisor: Dr. Ruken Çakici

- Built a Turkish caption generation tool for images using n-gram language models

○
METU Turkey
Project Student Sept. 2014 – Jan. 2015

- Developed an aspect-based opinion mining module for an integrated hotel management system as my senior design
project

Computer Skills

○ Programming Languages: Python, C++, Bash

○ Toolkits: Kaldi, Pytorch, numpy, matplotlib, scikit-learn, NLTK, pandas

○ Software Engineering: Agile, Scrum, Version Control, Requirements Analysis

Publications

○ Bourlard, H., and Kabil, S.H. Autoencoders reloaded. Biological Cybernetics, 2022

○ Kabil, S.H., and Bourlard, H. From Undercomplete to Sparse Overcomplete Autoencoders to Improve
LF-MMI Speech Recognition. Interspeech 2022

○ Dubagunta, S.P., Kabil, S.H. and Magimai-Doss M. Improving Children Speech Recognition through
Feature Learning from Raw Speech Signal. ICASSP 2019

○ Kabil, S.H., Muckenhirn H. and Magimai-Doss M. On Learning to Classify Genders from Raw Speech
Signal. Interspeech 2018

Research Reports

○ Kabil, S.H., and Bourlard, H. Speech Modeling using Sparse Autoencoders. Idiap technical report. 2022

○ Kabil, S.H., and Bourlard, H. Sparse Autoencoders to Enhance Speech Recognition. Idiap technical
report. 2022

Languages

○ English: Fluent

○ German: Intermediate

○ French: Basic

○ Turkish: Native

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background on Automatic Speech Recognition
	Key Components in the ASR Pipeline
	Acoustic Features
	Hidden Markov Model
	Mathematical Formulation of HMM-based ASR
	Speech Units for Acoustic Modeling: Words, Phonemes, and Senones
	DNN-HMM Hybrid Acoustic Models

	Lattice-Free MMI based ASR
	Datasets
	AMI
	UA-Speech

	Evaluation Metrics
	Word Error Rate
	Frame-level Phone Accuracy

	Baseline Systems
	Conclusion

	Background on Autoencoders
	Autoencoders Reloaded
	Shallow Undercomplete Autoencoders
	Going Deep or Going Overcomplete
	Regularized Autoencoders

	Sparse Autoencoders
	Sparsity
	Sparse Overcomplete Representations
	Sparse Distributed Representations
	Population Sparseness and Life-time Sparseness
	Sparseness Measures

	Conclusion

	Low-Rank and Sparse Modeling of LF-MMI Log-Likelihoods
	Introduction
	Our Approach
	Low-Rank Modeling of LF-MMI Log-Likelihoods
	Sparse Modeling of LF-MMI Log-Likelihoods

	Frame-level Phone Accuracy
	Analysis on High-dimensional Sparse Features
	Sparsity of Activations
	Subspace Analysis

	Conclusion

	Low-Rank and Sparse Modeling of Acoustic Features
	Introduction
	Our Approach
	Undercomplete Autoencoders to Enhance MFCCs
	Sparse Overcomplete Autoencoders to Enhance MFCCs

	Frame-level Phone Accuracy
	Analysis on High-dimensional Sparse Features
	Sparsity of Activations
	Subspace Analysis

	Conclusion

	Implicitly Constrained Sparse Autoencoders
	Introduction
	k-Sparse Autoencoders
	Architecture
	Recognition Performance
	Analysis on High-dimensional Sparse Features

	Winner-Take-All Autoencoders (WTA)
	Architecture
	Recognition Performance
	Analysis on High-dimensional Sparse Features

	Conclusion

	Transfer Learning for Pathological Speech Recognition
	Introduction
	Our Approach
	Experimental Results
	As-is
	Finetuning
	Training from Scratch

	Conclusion

	Conclusion and Directions for Future Work
	Conclusions
	Directions for Future Research

	Bibliography
	Curriculum Vitae

