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Abstract

We consider the problem of computing the Lebesgue volume of compact basic semi-
algebraic sets. In full generality, it can be approximated as closely as desired by a
converging hierarchy of upper bounds obtained by applying the Moment-SOS (sums
of squares) methodology to a certain infinite-dimensional linear program (LP). Ateach
step one solves a semidefinite relaxation of the LP which involves pseudo-moments up
to a certain degree. Its dual computes a polynomial of same degree which approximates
from above the discontinuous indicator function of the set, hence with a typical Gibbs
phenomenon which results in a slow convergence of the associated numerical scheme.
Drastic improvements have been observed by introducing in the initial LP additional
linear moment constraints obtained from a certain application of Stokes’ theorem
for integration on the set. However and so far there was no rationale to explain this
behavior. We provide a refined version of this extended LP formulation. When the
set is the smooth super-level set of a single polynomial, we show that the dual of
this refined LP has an optimal solution which is a continuous function. Therefore in
this dual one now approximates a continuous function by a polynomial, hence with
no Gibbs phenomenon, which explains and improves the already observed drastic
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acceleration of the convergence of the hierarchy. Interestingly, the technique of proof
involves recent results on Poisson’s partial differential equation (PDE).

Keywords Numerical methods for multivariate integration - Real algebraic
geometry - Convex optimization - Stokes’ theorem - Gibbs phenomenon
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1 Introduction

Consider the problem of computing the Lebesgue volume A(K) of a compact basic
semi-algebraic set K C R”. For simplicity of exposition we will restrict to the case
where K is the smooth super-level set {x : g(x) > 0} C R” of a single polynomial g.

If K is a convex body then several procedures are available; see e.g. exact determin-
istic methods for convex polytopes [1], or non deterministic Hit-and-Run methods [19,
24] and the more recent [2, 3]. Even approximating A (K) by deterministic methods is
still a hard problem as explained in e.g. [3] and references therein. In full generality
with no specific assumption on K such as convexity, the only general method avail-
able is Monte-Carlo, that is, one samples N points according to Lebesgue measure
A normalized on a simple set B (e.g. a box or an ellipsoid) that contains K. If py is
the proportion of points that fall into K then the random variable py A(B) provides
a good estimator of A(K) with convergence guarantees as N increases. However this
estimator is non deterministic and neither provides a lower bound nor an upper bound
on A(K).

When K is a compact basic semi-algebraic set, a deterministic numerical scheme
described in [8] provides a sequence (7x)reny C R of upper bounds that converges to
A(K) as k increases. Briefly,

AK) = inf {/pdk:pZ]IKonB}, (D
peR[x]

7 = inf {fpdk:pzﬂKonB}, 2)
PERIX]k

with x — 1g(x) = 1 if x € K and 0 otherwise. One can notice that minimizing
sequences for (1) and (2) also minimize the L' (B, A)-norm ||p — 1k ||| (with conver-
gence to O in the case (1)). As the upper bound 7 > A(K) is obtained by restricting
the search in (2) to polynomials of degree at most &, the infimum is attained and an
optimal solution can be obtained by solving a semidefinite program. Of course, the size
of the resulting semidefinite program increases with the degree k: this is the so-called
Moment-SOS hierarchy; for more details the interested reader is referred to [8].
Also focusing on compact semi-algebraic sets, [11] proposes a symbolic method
to compute the volume of K with absolute precision 277, in time O(p(log p)>*¢)
for any ¢ > 0 as p — oo. This is in sharp contrast with the approach considered
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here, which consists in approximating problem (1) with the sequence of problems (2)
indexed by k. Indeed,

e In [8], for any k € N, 7} is guaranteed to be a converging upper bound for A(K),
i.e., x — A(K) > 0, while [11] also guarantees convergence of the approximant
to A(K) but gives no information on the sign of the difference between the two
quantities.

e [11]uses symbolic computations that can achieve arbitrary precision, while [8] uses
numerical computations based on semidefinite programming, limited to floating-
point arithmetic precision.

e The approach of [11] can be used to approximate other quantities than the vol-
ume, namely real periods of algebraic surfaces. The approach of [8] was extended
to approximate sets relevant in systems control, such as regions of attraction or
maximal positively invariant sets (see e.g. [6]). In this context, the present contri-
bution can help improving the Moment-SOS hierarchy for assessing the stability
of polynomial differential systems.

When solving problem (2), clearly a Gibbs phenomenon! takes place as one tries to
approximate on B and from above, the discontinuous function 1k by a polynomial of
degree at most k. This makes the convergence of the upper bounds t; very slow (even
for modest dimension problems). A trick was used in [8] to accelerate this convergence
but at the price of loosing monotonicity of the resulting sequence.

In fact (1) is a dual of the following infinite-dimensional linear program (LP) on
measures

sup {(K) : u < A; n € M(K)4} 3)
"

(where M(K) is the space of finite Borel measures on K). Its optimal value is also
A(K) and is attained at the unique optimal solution u* := Ag = 1A (the restriction
of X to K).

A simple but key observation. As one knows the unique optimal solution pu* =
Ak of (3), any constraint satisfied by w* (in particular, linear constraints) can be
included as a constraint on @ in (3) without changing the optimal value and the
optimal solution. While these constraints provide additional restrictions in (3), they
translate into additional degrees of freedom in the dual (hence a relaxed version of (1)),
and therefore better approximations when passing to the finite-dimensional relaxed
version of (2). A first set of such linear constraints experimented in [14] and later
in [15], resulted in drastic improvements but with no clear rationale behind such
improvements.

Contribution. The main message and result of this paper is that there is an appropriate
set of additional linear constraints on  in (3) such that the resulting dual (a relaxed
version of (1)) has an explicit continuous optimal solution with value A(K). These
additional linear constraints (called Stokes constraints) come from an appropriate

! The Gibbs phenomenon appears at a jump discontinuity when one numerically approximates a piecewise
¢! function with a polynomial function, e.g. by its Fourier series; see e.g. [22, Chap. 9].
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modelling of Stokes’ theorem for integration over K, a refined version of that in
[14]. Therefore the optimal continuous solution can be approximated efficiently by
polynomials with no Gibbs phenomenon, by the hierarchy of semidefinite relaxations
defined in [8] (adapted to these new linear constraints). Interestingly, the technique
of proof and the construction of the optimal solution invoke results from the field of
elliptic partial differential equations (PDE), namely a recent extension of standard
Schauder estimates from Dirichlet problems to Neumann formulations.

Outline. In Sect. 2 we recall the primal-dual linear formulation of the volume prob-
lem, and we explain why the dual value is not attained, which results in a Gibbs
phenomenon. In Sect. 3 we revisit the acceleration strategy based on Stokes’ theorem,
with the aim of introducing in Sect. 4 a more general acceleration strategy and a new
primal-dual linear formulation of the volume problem. Our main result, attainment of
the dual value in this new formulation, is stated as Theorem 4.2 at the end of Sect. 4.
The drastic improvement in the convergence to A(K) is illustrated on various simple
examples.

2 Linear Reformulation of the Volume Problem

Consider a compact basic semi-algebraic set
K:={xeR":g(x) >0}

with g € R[x]. We suppose that K C B where B is a compact basic semi-algebraic

set for which we know the moments fB xK dx of the Lebesgue measure Ap, where
XK = (K ke
=4

that

. -xff" denotes a multivariate monomial of degree k € N"*. We assume

Q:={xeR":g(x) >0}
is a nonempty open set with closure”
=K,
and that its boundary

I =0K=K\®Q

is C! in the sense that it is locally the graph of a continuously differentiable func-
tion. We want to compute the Lebesgue volume of K, i.e., the mass of the Lebesgue

2 Whereas K is a rather standard notation for a compact semi-algebraic set in polynomial optimization, the
addition of the notation £ is motivated by the conventions used for open sets in the differential geometry
and PDE analysis literature. To account for both uses, we denote by €2 the interior of K.
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measure AgK:

M(K) :=/ dx:/ dAK (X).
K n

If X C R” is a compact set, denote by M (X) the space of signed Borel measures
on X, which identifies with the topological dual of C°(X), the space of continuous
functions on X. Denote by M (X) the convex cone of non-negative Borel measures
on X, and by C%(X). the convex cone of non-negative continuous functions on X.

In [8] a sequence of upper bounds converging to A(K) is obtained by applying the
Moment-SOS hierarchy [12] (a family of finite-dimensional convex relaxations) to
approximate as closely as desired the (primal) infinite-dimensional LP on measures:

max i (K)
a “4)
st. ue MK); and Ap—u e MB);+

whose optimal value is A(K), attained for u* := Ag. The LP (4) has an infinite-
dimensional LP dual on continuous functions which reads:

inf/ wdh
w g 5)
st. weC'B)y and wlk —1 € COK),.

Observe that (5) consists of approximating the discontinuous indicator function 1g
(equal to one on K and zero elsewhere) from above by continuous functions w, in
minimizing the L'(B)-norm ||w — 1k|l1. Clearly the infimum A (K) is not attained.

Since K is generated by a polynomial g, and measures on compact sets are uniquely
determined by their moments, one may apply the Moment-SOS hierarchy [12] for solv-
ing (4). The moment relaxation of (4) consists of replacing p by finitely many of its
moments y, say up to degree d € N. Then the cone of moments is relaxed by a lin-
ear slice of the semidefinite cone constructed from so-called moment and localizing
matrices indexed by d, as defined in e.g. [12], and which defines a semidefinite pro-
gram. Therefore the dual of this semidefinite program (i.e., the dual SOS-hierarchy)
is a strengthening of (5) where

(i) continuous functions w are replaced with polynomials of increasing degree d, and

(ii) nonnegativity constraints are replaced with Putinar’s SOS-based certificates of
positivity [18] which translate to semidefinite constraints on the coefficients of
polynomials; again the interested reader is referred to [8, 12] for more details.

For each fixed degree d, a valid upper bound on A(K) is computed by solving a
primal-dual pair of convex semidefinite programming problems (not described here).
As proved in [8] by combining Stone—Weierstrass’ theorem and Putinar’s Positivstel-
lensatz [18],

(1) thereisno duality gap between each primal semidefinite relaxation of the hierarchy
and its dual, and
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Fig. 1 Gibbs effect occurring when approximating from above with a polynomial of degree 10 (left red
curve) and 20 (right red curve) the indicator function of an interval (black curve)

(ii) the resulting sequence of upper bounds converges to A(K) as d increases.

The main drawback of this numerical scheme is its typical slow convergence, observed
already for very simple univariate examples, see e.g. [8, Figs. 4.1 and 4.5]. The best
available theoretical convergence speed estimates are also pessimistic, with an asymp-
toptic rate of loglogd [10]. Slow convergence is mostly due to the so-called Gibbs
phenomenon which is well known in numerical analysis [22, Chap. 9]. Indeed, as
already mentioned, solving (5) numerically amounts to approximating the discontin-
uous function 1k from above with polynomials of increasing degree, which generates
oscillations and overshoots and slows down the convergence, see e.g. [8, Figs. 4.2,
44,4.6,4.7,4.10, 4.12].

Example 1 Let K := [0, 1/2] € B := [—1, 1]. In Fig. 1 are displayed the degree-10
and degree-20 polynomials w obtained by solving the dual of SOS strengthenings of
problem (4). We can clearly see bumps, typical of a Gibbs phenomenon at points of
discontinuity.

An idea to bypass this limitation consists of adding certain linear constraints to the
finite-dimensional semidefinite relaxations, to make their optimal values larger and so
closer to the optimal value A (K). Such linear constraints must be chosen appropriately:

(i) they must be redundant for the infinite-dimensional moment LP on measures (4),
and
(i1) become active for its finite-dimensional relaxations.

This is the heuristic proposed in [14] to accelerate the Moment-SOS hierarchy for
evaluating transcendental integrals on semi-algebraic sets. These additional linear
constraints on the moments y of p* are obtained from an application of Stokes’ the-
orem for integration on K, a classical result in differential geometry. It has been also
observed experimentally that this heuristic accelerates significantly the convergence
of the hierarchy in other applied contexts, e.g. in chance-constrained optimization
problems [23].
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3 Introducing Stokes Constraints
In this section we explain the heuristic introduced in [14] to accelerate convergence
of the Moment-SOS hierarchy by adding linear constraints on the moments of p*.

These linear constraints are obtained from a certain application of Stokes’ theorem
for integration on K.

3.1 Stokes’ Theorem and its Variants

Theorem 3.1 (Stokes’ theorem) Let @ C R” be a C' open ser® with closure K. For
any (n — 1)-differential form w on K, it holds

f a):fda).
R Q

Corollary 3.2 In particular, foru € C'(K)" and w(x) = u(x) - ng(x) do (x), where
the dot is the inner product, o is the surface or Hausdorff measure on 02 and ng is
the outward pointing normal to 9, we obtain the Gauss formula

/ u(x) - ng(x) do(x) :/ div u(x) dx. (6)
QR Q

With the choice u(x) := u(x)e; where u € C'(K) and e; is the vector of R" with one
at entry i and zeros elsewhere, fori = 1, ..., n, we obtain the dual Gauss formula

f u(x)ng(x)da(x)zf grad u(x) dx. (7)
R Q

Proof These are all particular cases of [9, Thm. 6.10.2]. O

3.2 Original Stokes Constraints

Associated to a sequence y = (yk)keNt € RN introduce the Riesz linear functional
Ly: R[x] — R which acts on a polynomial p := ), pexX e R[x] by Ly(p) =
>k Pxyk. Thus, if y is the sequence of moments of Ak, i.e., yk 1= fK xX dx for all
k € N, then Ly(p) = [ p(x) dx and by (7) with u(x) := x¥g(x):

Ly (grad(x*g)) = fK grad (x*g(x)) dx = fa Kng(X)nK(X) do(x) =0,

3 An open set is said to be clif its boundary is locally the graph of a C ! function (up to reordering
coordinates and changing orientation, see e.g. [5, Sect. C.1]).
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since by construction g vanishes on dK. Thus while in the infinite-dimensional LP (4)
one may add the linear constraints

/ grad(x*g)du =0 Vk e N*,
K

without changing its optimal value A(K), on the other hand inclusion of the linear
moment constraints

Ly(grad(x*g)) = 0, [k| =< 2d + 1 — deg(g) ®)
in the moment relaxation with pseudo-moments y of degree at most d, will decrease
the optimal value of the initial relaxation.

In practice, it was observed that adding constraints (8) dramatically speeds up the

convergence of the Moment-SOS hierarchy, see e.g. [14, 23]. One main goal of this
paper is to provide a qualitative mathematical rationale behind this phenomenon.

3.3 Infinite-Dimensional Stokes Constraints
In [21], Stokes constraints were formulated in the infinite-dimensional setting, and a

dual formulation was obtained in the context of the volume problem. Using (6) with
u = gv (which vanishes on dK) and v € C!(K)" arbitrary, yields:

/ (grad g(x) - v(x) 4+ g(x) div v(x)) dx = / gvng do =0,
K 9K
which can be written equivalently (in the sense of distributions) as
(grad g)Ak — grad(gAik) = 0.
This allows to rewrite problem (4) as
max i (K)

a ©)

st. pe€ MXK)y, Ap—peM®B)y, (gradg)p — grad(gn) =0,
without changing its optimal value A(K) attained at u* = Ag. Using infinite-

dimensional convex duality as in e.g. the proof of [6, Thm. 2], the dual of LP (9)
reads

inf/ wdA
v Jy (10)
st. ve CHK)Y', weC'B)y, wlk —div(gy) —1 € COK)4.

Crucial observation. Notice that w in (10) is not required to approximate 1 from
above anymore. Instead, it should approximate 1 + div(gv) on K and 0 outside K.
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Hence, provided that 1 4+ div(gv) = 0 on dK, w might be a continuous function for
some well-chosen v € C! (K)", and therefore an optimal solution of (10) (i.e., the
infimum is a minimum). As a result, the Gibbs phenomenon would disappear and
convergence would be faster.

The issue is then to determine whether the infimum in (10) is attained or not. And
if not, are there other special features of problem (10) that can be exploited to yield
more efficient semidefinite relaxations?

4 New Stokes Constraints and Main Result

In the previous section, the Stokes constraint

/ (v(x) - grad g(x) + g(x) div v(x)) dpu(x) = 0
K
or equivalently (in the sense of distributions)

(grad g)u — grad(gpn) =0 (11)

(with u € M(K)4 being the Lebesgue measure on K) was obtained as a particular
case of Stokes’ theorem with u = gv in (6). Instead, we can use a more general
version with u not in factored form, and also use the fact that for all x € JK, 0 #
grad g(x) = —|grad g(x)|nk (x) (here |y| := ,/y -y is the n-dimensional Euclidean
norm), to obtain

/ divux)du(x) = —/ u(x) - grad g(x) dv(x),
K 9K
or equivalently (in the sense of distributions)

grad u = (grad g)v, (12)

with u € M(K)4 being the Lebesgue measure on K and v € M (0K), being
the measure having density 1/|grad g(x)| with respect to the (n — 1)-dimensional
Hausdorff measure o on K. The same linear equation was used in [15] to compute
moments of the Hausdorff measure. In fact, (12) is a generalization of (11) in the
following sense.

Lemma4.1 If v € M(9K)y is such that pn € M(K)4 satisfies (12), then u also
satisfies (11).

Proof Equation (12) means that [ div u(x) du(x) + [5, w(x) - grad g(x) dv(x) =0
for allu € C'(K)". In particular if u = gv for some v € C!(K)”" then (12) reads

/ (v®) - grad (%) + g(x) div V(X)) dja(x) = 0,
K
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which is precisely (11). O

Hence we can incorporate linear constraints (12) on u and v, to rewrite problem (4)
as

max u(K)
W,V

st. ue MK);, ve MOK);, Ap—u e M(@B)y, (13)
(gradg)v —gradu =0

without changing its optimal value A (K) attained at u* = Ak and v* = o/|grad g|.
Notice that LP (13) involves two measures p and v whereas LP (9) involves only one
measure p. Next, by convex duality as in e.g. the proof of [6, Thm. 2], the dual of (13)
reads

M/wﬁ

u,w B
st. ue C'K)", weC'B);, wk—diva—1eC’K);, (14)
—(u- grad g)|sk € C*(9K)..

Our main result states that the optimal value of the dual (14) is attained at some contin-
uous function (w, u) € C°(B)4 x C'(K)". Therefore, in contrast with problem (5),
there is no Gibbs phenomenon at an optimal solution of the (finite-dimensional)
semidefinite strengthening associated with (14).

Let 2;,i =1,..., N, denote the connected components of £, and let

1
me, (g) := m/ﬂ gdh.

Theorem 4.2 In dual LP (14) the infimum is a minimum, attained at

W () = g(x )Zm" ((’:) eB,

and u*(x) := grad u(x), where u solves the Poisson PDE

—Au(x) =1—w*x), xR,
onu(x) =0, x € 092.

Remark 1 The Moment-SOS hierarchy associated to LPs (13) and (14) yields upper
bounds for the volume. Theorem 4.2 is designed for these LPs but it has a straight-
forward counterpart for lower bound volume computation, obtained by replacing K
with B \ € in the previous developments, i.e., computing upper bounds of A(B \ ).
However, two additional technicalities should then be considered:
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e This work only deals with semi-algebraic sets defined by a single polynomial;
actually, it immediately generalizes to finite intersections of such semi-algebraic
sets, as long as their boundaries do not intersect (i.e., here K should be included
in the interior of B): the constraints on boundaries should just be split between the
boundaries of the intersected sets.

e This work heavily relies on the fact that the boundary of the considered set should
be smooth; for this reason, computing lower bounds of the volume implies that
one chooses a smooth bounding box B (typically a euclidean ball, ellipsoid or £7
ball), which rules out simple sets like the hypercube [—1, 1]".

Upon taking into account these technicalities, Theorem 4.2 still holds, allowing to
deterministically compute upper and lower bounds for the volume, with arbitrary
precision. Of course in practice, one is limited by the performance of state-of-art SDP
solvers.

5 Proof of Main Result

Theorem 4.2 is proved in several steps as follows:

e we show that the optimal dual solution satisfies a Poisson PDE;
e we study the Poisson PDE on a union of connected domains;
e we construct an explicit optimum for problem (14).

5.1 Equivalence to a Poisson PDE

Lemma 5.1 Problem (14) has an optimal solution iff there exist u € C'(K)" and
h € CO(K) solving

h=0 on 0%, (15a)
—divu=1-h in , (15b)
u-ng =0 on 0. (15¢)

Proof Let (u, h) solve (15). Using (15a), one can define

{h(x) ifx € K,
w(x) = .
0 ifxeB\K.

Then (u, w) is feasible for (14) and one has

/wdk:/ hdy 2 /(1+divu)d,\(2)\(sz)+f u-ngdo 2 w(@),
B Q Q 0

so that (u, w) is optimal.
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Conversely, let (u, w) be an optimal solution of problem (14). We know that
(u*,v*) = (Lg,o/|grad g|) is optimal for problem (13). Then, the KKT optimal-
ity conditions ensure complementary slackness:

/(w|9—divu—1)dk=0, (16a)
Q
grad g
/ u- ———do =0. (16b)
oe  Igradg|

Since w|g — div u — 1 is nonnegative, (16a) yields (15b) with i := w|g. Likewise,
since —(u - grad g)|sq is nonnegative, (16b) yields (15¢) and thus, using (6), it holds
Jg divudi = 0. Eventually, (16a) yields [ wdi = A(2) = [; w dX by optimality
of w, so that fB g wd = 0 and, since w is nonnegative, w|g\@ = 0. Continuity of
w finally allows to conclude that w = 0 on 92, which is exactly (15a). O

From Lemma 5.1, existence of an optimum for (14) is then equivalent to existence of a
solution to (15), which we rephrase as follows, defining f := 1—h andu = grad u with
u € C*(K), and where Au := div grad u is the Laplacian of u, and d,u := grad u -ng.

Lemma 5.2 If there exist u € C*(K)" and f € C°(K) solving

—Au=f in®, (17a)
I =0 on IR, (17b)
f<lin®, (17¢)
f=1 ondQ, (17d)

then problem (14) has an optimal solution.

This rephrasing is a Poisson PDE (17a) with Neumann boundary condition (17b),
whose source term f is a parameter subject to constraints (17¢) and (17d).

Remark 2 (loss of generality) Looking for u under the form u = grad u makes
us loose the equivalence. Indeed, while (14) and (15) are equivalent, existence of a
solution to (17) is only a sufficient condition for existence of an optimum for (14),
since (15) might have only solutions u that are not gradients.

Remark 3 (invariant set for gradient flow) From a dynamical systems point of view,
the constraint in (14) which states that the inner product of u = grad u with grad g is
non-positive on d€2, means that we are looking for a velocity field or control u in the
form of the gradient of a potential # such that K is an invariant set for the solutions
t € R~ x(t) € R" of the Cauchy problem

x(t) = —gradu(x(t)), x(0) €B

after what we just have to define 4 := 1 + Au on .
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5.2 Regular Solutions to the Poisson PDE

It remains to prove existence of solutions to problem (17). First, notice that PDE (17a)
together with its boundary condition (17b) enforces an important constraint on the
source term f, namely its mean must vanish:

/ﬂ fdr=0. (18)

Indeed, if (f, u) solves (17), then

/fdk (7 —/ Aud)»(g) —f gradu - ng do (1 0.
Q Q a0

Moreover, the following holds.

Lemma 5.3 (existence and regularity on a connected domain) Suppose that  is
connected. Let the source term f be Lipschitz continuous on K and have zero mean
on Q. Then there exists u € C*(K) satisfying (17a) and (17b).

Proof This is a direct application of [17]: fora € (0, 1), since K is bounded (let R > 0
be such that K C {x € R" : ||x|| < R}) and f is Lipschitz (let L be its Lipschitz
constant on K), one has for x, y € K that

f) = FWI < Llx—yl < LIx =y “Ix —y|* < LR [Ix —y||*,
~———

<0

so that

fe CO%K) = {(p e C'YK) : sup —Icp(x) — ¢ < oo},
x,yeK Ix —yll*

and [17] yields a solution

T L E. L
x,yeK Ix —yl|*

to the Poisson PDE (17a) with Neumann boundary condition (17b), where H(¢) =
(82<p/3xi 0x;);,; is the Hessian matrix of ¢. O

Remark 4 Assuming that € is C™ instead of C! is actually without loss of generality
since R is a semi-algebraic set: as soon as € is locally the graph of a C! function, it
is smooth.

In Lemma 5.3, we assumed that 2 is connected, so that we could apply the results of
[17]. To tackle non-connected sets, we recall that €2 is a semi-algebraic set, hence it
has a finite number of connected components 21, ..., 2y. Moreover, the regularity
of 92 ensures that the 2; have disjoint closures, so that we can trivially compute a
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solution u; on each ; and glue the u; together into a solution u := ZZN=1 ]lﬁl_u,- on
the whole .

Remark 5 Tackling the non-connected case requires that f has zero mean on each
connected component of €2:

/ fdr=0, Vie{l,...,N}.
Q;

Remark 6 Lemma 5.3 automatically enforces —Au = 1 on 92, which is crucial for
the continuity of the optimization variable w.

5.3 Explicit Optimum for Volume Computation with Stokes Constraints

Our optimization problem does not feature only the Poisson PDE with Neumann con-
dition: it also includes constraints (17c) and (17d) on the source term. Consequently,
a Lipschitz continuous function f on K with zero integral over any connected com-
ponent of £ and satisfying (17c) and (17d) remains to be constructed. We keep the
notations of Sect. 5.2 and suggest as candidate

N

Lo, (x)
=1- —.
X > (%) g(X); e @

(19)

By definition, g = 0 on 9%2, so that (17d) automatically holds. Moreover, both g
and 1g, are nonnegative on K, so that (17c) also holds. In terms of regularity, f is
continuous and piecewise polynomial, so it is Lipschitz continuous on K. Eventually,
leti € {1,..., N} so that €; is a connected component of 2. Then, by definition,
0R; C 0L, and one has

N g (x) 1
ffdk:f <l—g(x)zﬂi—> dx = A(R) — —— | gx)dx =0,
Q; Q; i1

mﬂi (g) mSZl- (g) ﬂ,’

by definition of mg, (g). This, together with Lemmata 5.2 and 5.3, concludes the
proof of Theorem 4.2. Indeed, one can check that for the resulting w*(x) =

g(x) ZzN=1 19,‘ (X)/I’l’lgi (8,

N

1 N
*da = dir = A(R2;) = A(R) = L(K).
forar=Y oo [ s DM@ = k@) = 1)

m
=1 %

6 Examples

To illustrate how efficient can be the introduction of Stokes constraints for volume
computation, we consider the simple setting where K is a Euclidean ball included in
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B the unit Euclidean ball, as well as some basic variations around this case, where K
is a non-euclidean ball or a union of balls, or B a non-euclidean ball. Indeed drastic
improvements on the convergence are observed. All numerical examples were pro-
cessed on a standard laptop computer under the Matlab environment with the SOS
parser of YALMIP [16], the moment parser GloptiPoly [7] and the semidefinite pro-
gramming solver of MOSEK [4]. For an interested reader, the codes used to obtain
the results presented in this section are available online: https://homepages.laas.fr/
henrion/software/stokesvolume/

6.1 Practical Implementation

Following the Moment-SOS hierarchy methodology for volume computation as
described in [8], in the (finite-dimensional) degree d semidefinite strengthening of
dual problem (14) with unit euclidean ball as the bounding box B:

w € R[x]y and u € R[x]} are polynomials of degree at most d;
o the positivity constraint w € C°(B), is replaced with a Putinar certificate of
positivity on B, that is,

w(x) = o0(x) + o1 (X)(1 — [x|?), VxeR",

where oy (resp. o1) is an SOS polynomial of degree at most d (resp. d — 2);
e the positivity constraint w|g — diva — 1 € C%(K), is replaced with a Putinar
certificate of positivity on K, that is,

w(x) —divux) — 1 = ¢¥o(x) + ¥ (x)g(x), Vx € R",

where Y (resp. Y1) is an SOS polynomial of degree at most d (resp. d — deg(g));
e the positivity constraint (u - grad g)|sx € C°(dK) is replaced with a Putinar
certificate of positivity on dK, that is,

—u(x) - grad g(x) = no(x) + N1 (x)g(x), VxeR",

where 7ng is an SOS polynomial of degree at most d and 7 is a polynomial of
degree at most d — deg(g);

e the linear criterion fB w d A translates into a linear criterion on the vector of coef-
ficients of w, as fB x% dA is available in closed form.

The above identities define linear constraints on the coefficients of all the unknown
polynomials. Next, stating that some of these polynomials must be SOS translates
into semidefinite constraints on their respective unknown Gram matrices. The result-
ing optimization problem is a semidefinite program, called the SOS strengthening
of problem (14), and is in lagrangian duality with the so-called moment relaxation
of problem (13). Using the strong duality property, we interchangeably use the SOS
strengthenings and moment relaxations, as they are equivalent; for more details the
interested reader is referred to e.g. [8].
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Fig. 2 Degree-16 polynomial approximations of the disk’s area obtained without Stokes constraints (left)
and with Stokes constraints (right)

6.2 Bivariate Disk

Let us first illustrate Theorem 4.2 for computing the area of the disk K := {x € R? :
g(x) = 1/4 — (x; — 1/2)> — x3 > 0} included in the unit disk B := {x € R? :
1-— xl2 — x% > 0}.

The degree d = 16 polynomial approximation w obtained by solving the SOS
strengthening of linear problem (5) is represented at the left of Fig. 2. We can see bumps
and ripples typical of a Gibbs phenomenon, since the polynomial should approximate
from above the discontinuous indicator function 1k as closely as possible. A rather
loose upper bound of 1.1626 is obtained on the volume A(K) = 7 /4 & 0.7854.

In comparison, the degree d = 16 polynomial approximation w obtained by solving
the SOS strengthening of linear problem (14) is represented at the right of Fig. 2.
As expected from the proof of Theorem 4.2, the polynomial should approximate
from above the continuous function glgA(K)/(/ gik). The resulting polynomial
approximation is smoother and yields a much improved upper bound of 0.7870.

6.3 Higher Dimensions

In Table 1 we report on the dramatic acceleration brought by Stokes constraints in the
case of the Euclidean ball K := {x € R : g(x) = (3/4)? — |x|> > 0} of dimension
n = 3included in the unit ball B. We specify the relative errors on the bounds obtained
by solving moment relaxations with and without Stokes constraints, together with the
computational times (in seconds), for a relaxation degree d ranging from 4 to 20. We
observe that tight bounds are obtained already at low degrees with Stokes constraints,
sharply contrasting with the loose bounds obtained without Stokes constraints. How-
ever, we see also that the inclusion of Stokes constraints has a computational price.
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Table1 Relative errors (%) and computational times (in brackets in seconds) for solving moment relaxations
of increasing degrees d approximating the volume of ball of dimension n = 3

n d Without Stokes With Stokes

3 4 88% (0.03s) 18% (0.04s)
3 8 57% (0.165s) 1.0% (0.44s)
3 12 47% (1.97s) 0.0% (4.63s)
3 16 43% (23.95) 0.0% (30.1s)
3 20 41% (1425) 0.0% (2065)

Table2 Relative errors (%) and computational times (in brackets in seconds) for solving the degree d = 10
and d = 4 moment relaxation approximating the volume of a ball of increasing dimensions n

n d Without Stokes With Stokes

1 10 17% (0.055s) 0.0% (0.03 s)
2 10 35% (0.095s) 0.2% (0.255s)
3 10 56% (0.525) 0.3% (1.195s)
4 10 72% (9.745) 0.4% (22.85)
5 10 79% (1505) 0.6% (6695s)
n d Without Stokes With Stokes

6 4 190% (0.255s) 45.1% (1.035s)
7 4 203% (0.32s) 60.0% (4.885)
8 4 221% (0.425) 78.6% (8.45s)
9 4 245% (1.155s) 102% (45.15)
10 4 278% (3.10s) 131% (1765)

In Table 2 we report the relative errors on the bounds obtained with and without
Stokes constraints, together with the computational times (in seconds), for a relax-
ation degree equal to d = 10 (left) resp. d = 4 (right) and for dimension n ranging
from 1 to 5 (left) resp. from 6 to 10 (right). When d = 10 and n = 5 the semidefi-
nite relaxation features 6006 pseudo-moments without Stokes constraints, and 12194
pseudo-moments with Stokes constraints. We see that introducing Stokes constraints
incurs a computational cost, to be compromised with the expected quality of the
bounds.

Higher dimensional problems can be addressed only if the problem description has
some sparsity structure, as explained in [21]. Also, depending on the geometry of the
problem, and for larger values of the relaxation degree, alternative polynomial bases
may be preferable numerically than the monomial basis which is used by default in
Moment and SOS parsers (see [8, Fig. 4.5]).

6.4 Changing the Bounding Box

Choosing the unit euclidean ball as our bounding box B is the easiest and most standard
choice, but one could wonder what happens if we take another set, for example an £7
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Table 3 Relative errors (%) and computational times (in brackets in seconds) for solving the degree d = 8
and d = 16 moment relaxations approximating the volume of ball of dimension n = 2 embedded in an ¢7
ball bounding box for p = 2, 4,6, 8, 10

d P Without Stokes With Stokes

8 2 39% (0.13s) 0.6% (0.145)
8 4 52% (0.13s) 1.2% (0.14s)
8 6 57% (0.13s) 1.7% (0.13s)
8 8 59% (0.13s) 2.0% (0.14s)
8 10 61% (0.13 ) 2.2% (0.145)
d P Without Stokes With Stokes

16 2 27% (0.47s) 0.0% (0.70s)
16 4 33% (0.415s) 0.0% (0.525)
16 6 36% (0.33 ) 0.0% (0.50s)
16 8 37% (0.30) 0.0% (0.53s)
16 10 38% (0.355s) 0.0% (0.495)

ball for p > 2. Let B;’, = {x e R*: ||x||§ =y IxlP < 1} denote the unit £7
ball in dimension n. We now compute the area of the bivariate disk K = {x € R? :
(3/4)*—x{—x3 > O} included in the unit £7 ball B = B2, for p = 2, 4, 6, 8, 10.To that
end, we use the closed formula for the Lebesgue moments on Bi (see Appendix A):

/xkdx:O, vk e N*\ 2N)*, and
B

2
¥4
2 14+2k 142k
/ K gy — B( + L + 2)7
B2 I+ 1kDp p p

where I'(x) = [;“e™"*"'dr and B(x,y) := T'(x)['(y)/T(x + y) are Euler’s
Gamma and Beta functions, so that in particular one has I'(1 4+ x) = xI"(x). We then
perform the computations using Matlab’s beta or gamma commands. Our numerical
results are reported in Table 3.

Unsurprisingly, as in the case of the euclidean bounding box, Stokes constraints
drastically improve the accuracy of the moment relaxations. However, the number p
has an influence on both accuracy (decreasing with p) and computational time (global
tendency to slightly decrease with p) in the original as well as Stokes-augmented
hierarchies. This can be explained by analyzing the influence of p on the SOS strength-
enings described in Sect. 6.1: indeed, the only change is that 1 — |x|? is replaced with
1 - ||x||£ in the SOS representation of constraint w € C(B), so that o1 now has
degree at most d — p instead of d — 2. Consequently, with increasing p, the size of the
Gram matrix of o1 becomes smaller, slightly reducing the size of the corresponding
SDP problem, which can result in a reduction of the computational time (although
other factors impact the computational time, hence a non monotonic function of p).
Conversely, as the degree of o1 is more limited, this brings less freedom in the search
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for an optimal solution, hence reducing the accuracy of the SOS strengthening for a
fixed degree d.

In terms of the efficiency of Stokes constraints when the bounding box is an £7 ball,
we highlight the fact that the loss in accuracy is less important in the Stokes-augmented
hierarchy than in the standard formulation: Stokes constraints are somewhat more
robust to the increase in the degree of the polynomial describing the bounding box.
Regarding computational times, when they decrease with p, we observe that this
decrease is more important with Stokes constraints than without: here again, Stokes
constraints lead to a better behaved hierarchy.

6.5 Other Sets

So far we only computed the volume of euclidean balls. In order to further explore
the influence of the input polynomials on the efficiency of Stokes constraints as well
as the Moment-SOS hierarchy in general, we now switch to computing the volume of
more sophisticated semi-algebraic sets in two dimensions: first, we proceed from the
euclidean ball to generic €7 balls, as we did with the bounding box; second, we test the
limits of the scheme by approximating the volume of a non-convex, non-connected
double disk.

6.5.1 £ Disk

As discussed in Sect. 6.4, the degree of the polynomials involved in the Moment-SOS
hierarchy has a direct influence on its accuracy, as a higher input degree means, for a
fixed degree of the hierarchy, less degrees of freedom to optimize over. We now show
on one example what the practical influence of the degree over our scheme’s accuracy
is, by computing the approximate volume of the £+ disk:

25\*
K:= {xeRzz(ﬁ) —x‘l‘—xgzO}.

It is clear that one has A(K) = (25 /72)2A(Bi) with, using formula (21) from
Appendix A, A(B3) = T'(1/4)?/(24/7) so that A(K) ~ 0.4471. We implement the
degree-16 SOS strengthenings corresponding to the standard and Stokes-augmented
problems, and plot the resulting w in Fig. 3.

Again, the original SOS strengthening is flawed by a strong Gibbs phenomenon
that introduces a large error in the volume approximation (we get a bound of 0.8511,
i.e., a relative error of 90%), characterized by wide oscillations on the boundary of
the ¢* disk K. The Stokes-augmented version gives a tighter bound of 0.4653 (relative
error 4%, still more than for the euclidean disk, but much less than without Stokes
constraints). Moreover, an interesting feature appears here that was not visible on
Fig. 2 in the case of the euclidean disk: we observe small oscillations of w around 0
on B\ K. This can be expected as w is a non-zero polynomial, so it cannot vanish on a
set of positive Lebe sgue measure. These observations confirm our predictions that the
lower the degree of the involved polynomials, the more accurate the SDP relaxations.
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Xy 4 A X2 4 A

Fig.3 Degree-16 polynomial approximations of the area of the £4 disk obtained without Stokes constraints
(left) and with Stokes constraints (right)

However, we are now going to show that some other parameters should be considered
when discussing the accuracy of the Moment-SOS hierarchy for volume computation,
such as the geometry of the considered set K.

6.5.2 Disconnected Double Disk

We finally test our numerical scheme on a non-convex, non-connected semi-algebraic
set:

K:={xeR>: i— X —lz—x2 x+12+x2—i >0
= : 16 1 B 2 1 ) 2 16 = .

As usual, in Fig. 4 we observe a Gibbs phenomenon in the standard volume approx-
imation scheme (with a bound of 0.8551 instead of 7/8 =~ 0.3927, i.e., a relative
error of 118%), as well as wide oscillations near the boundary of K. As for the
Stokes-augmented scheme, again we get a better bound of 0.4671 (relative error 19%,
interestingly higher than in all the previous cases with Stokes constraints, but still
much more accurate than without Stokes constraints). More striking here, even in
the Stokes-augmented SOS strengthening, w is seen clearly oscillating. However, this
should not be mistaken for a consequence of the Gibbs phenomenon, as in this new
formulation w is proved to approximate a Lipschitz continuous function. As a con-
sequence to the Stone—Weierstrass theorem, those remaining oscillations are bound
to ultimately vanish as the degree d goes to infinity, while in the case of the Gibbs
phenomenon, the oscillations do not ultimately disappear (only their contribution to
J w d ultimately vanishes).

A possible explanation for this oscillatory phenomenon is that, despite the regularity
of the optimizer in the infinite dimensional problem (14), the SOS strengthenings are
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X 4 A X 4 A

Fig.4 Degree-16 polynomial approximations of the area of the double disk obtained without Stokes con-
straints (left) and with Stokes constraints (right)

still very demanding for the polynomial w: indeed, it is requested to be as close to 0
as possible outside K while being sufficiently large in K so that its integral is bigger
than A (K). In the case of a non-connected K, w is thus literally requested to oscillate.

To conclude on this example, we highlight the fact that, in addition to the degree of
the polynomial g defining K, the geometry of K (typically: its number of connected
components and how they are distributed in the bounding box B) plays a key role
in the accuracy of the Moment-SOS hierarchy for computing its volume, both in the
original and Stokes-augmented versions. Indeed, it is this geometry that is likely to
generate (or, on the contrary, prevent) an oscillatory behavior in the approximating
polynomial w, when one gets rid of the Gibbs phenomenon by complementing the
hierarchy with Stokes constraints. This is particularly visible when comparing our
examples in Sects. 6.5.1 and 6.5.2, where K is described by degree-4 polynomials, but
the schemes are far more accurate in the convex case than in the disconnected case,
especially when one adds Stokes constraints.

7 Conclusion

In this paper we proposed a new primal-dual infinite-dimensional linear formulation
of the problem of computing the volume of a smooth semi-algebraic set generated by a
single polynomial, generalizing the approach of [8] while still allowing the application
of the Moment-SOS hierarchy. The new dual formulation contains redundant linear
constraints arising from Stokes’ theorem, generalizing the heuristic of [14]. A striking
property of this new formulation is that the dual value is attained, contrary to the
original formulation. As a consequence, the corresponding dual SOS hierarchy does
not suffer from the Gibbs phenomenon, thereby accelerating the convergence.
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Numerical experiments (not reported here) reveal that the values obtained with the
new Stokes constraints (with a general vector field) are closely matching the values
obtained with the original Stokes constraints of [14] (with the generating polynomial
factoring the vector field). It may be then expected that the original and new Stokes
constraints are equivalent. However at this stage we have not been able to prove
equivalence.

The proof of dual attainment builds upon classical tools from linear PDE analysis,
thereby building up a new bridge between infinite-dimensional convex duality and PDE
theory, in the context of the Moment-SOS hierarchy. We expect that these ideas can
be exploited to prove regularity properties of linear reformulations of other problems
in data science, beyond volume approximation. For example, it would be desirable to
design Stokes constraints tailored to the infinite-dimensional linear reformulation of
the region of attraction problem [6] or its sparse version [20].

In terms of practical implementation, while still observed with Stokes constraints,
the dependence on the degree of the input polynomials, already discussed in [8], seems
to be of less importance. However, the dependence in the geometry of K now seems
to prevail, as Stokes constraints add information on this geometry; more precisely,
the simpler the geometry, the more efficient the constraints: the smooth and convex
case leads to the best increase in accuracy, but the dual attainment still holds even on
disconnected smooth sets. Also, experiments carried out in [14, 21] show that even
in the non-smooth case, Stokes constraints drastically improve the accuracy of the
volume computing scheme.
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Appendix A. Moments of the Lebesgue Measure on an ¢ Ball
For our numerical experiments, we use closed formulae for the moments of the

Lebesgue measure on an £7 ball. These formulae can be derived in a quite straight-
forward fashion using [13, Thm. 2.2].

Definition A.1 (positively homogeneous functions) Ford € R, h: R" — R issaid
to be positively homogeneous of degree d if for all x € R” \ {0}, A > 0, one has
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h(x) = AR (x).
Lemma A.2 (Lebesgue moments, positively homogeneous functions [13, Thm. 2.2])

Let h: R" — R be a positively homogeneous function of degree d € R \ {0}. Let
B, ;= {x € R": h(x) < 1} be such that \(Bj,) < oc. Then, for allk € N",

Kk —1
/ xKdx = r<1 s | ') / xKe "M gx. (20)
B, d .

From this we deduce the following closed formula for moments of the Lebesgue
measure on an £7 ball:

Lemma A.3 (Lebesgue moments on the unit £7 ball) Let p > 1. The even moments
of the Lebesgue measure on B’;, are given, fork = (ky, ..., k) € 2QN)", by

" KN\ L1+ K
/xkdx:—n[‘<l+n+| |> ]‘[F(L> @1
B p

P i=1 P
The odd moments are fB" xK dx = Ofork e N*\ 2N)".
)4

1
P

Proof Let k € N". Since x ||X||§ is positively homogeneous of degree p, we can
use Lemma 1:
J

Then, Fubini’s theorem ensures that

k 14 - +oo ki p
/ xke~ Xl gx = l_[/ xite il dy;. (b)
! i=177%

kI !
xKdx = 1"<1 + ntl |) / xke~ X7 gx . (a)
p n

n
P

Then, if one of the k; is odd, then the corresponding x; +> xf ie~lil” is an odd
function, so that its integral over R is 0. Thus, this yields that an xKdx = 0. Finally,
P

we compute for k € 2N:

+oo , 1+k\ [!
/ xke K17 gy A2 F(l + L)/ xFdx (c)
—00 p -1
1 2 2 1
:r(1+ +k> _ ‘J/ifkr< —i—k)’
14 k+1 k+T p 14

where we used the factorial property I'(1 + x) = xI'(x). (21) is then obtained by
combining (a), (b), and (c). O
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