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A B S T R A C T

Remote sensing satellites capture the cyclic dynamics of our Planet in regular time intervals recorded in satellite
time series data. End-to-end trained deep learning models use this time series data to make predictions at a
large scale, for instance, to produce up-to-date crop cover maps. Most time series classification approaches
focus on the accuracy of predictions. However, the earliness of the prediction is also of great importance since
coming to an early decision can make a crucial difference in time-sensitive applications.

In this work, we present an End-to-End Learned Early Classification of Time Series (ELECTS) model that
estimates a classification score and a probability of whether sufficient data has been observed to come to
an early and still accurate decision. ELECTS is modular: any deep time series classification model can adopt
the ELECTS conceptual idea by adding a second prediction head that outputs a probability of stopping the
classification. The ELECTS loss function then optimizes the overall model on a balanced objective of earliness
and accuracy. Our experiments on four crop classification datasets from Europe and Africa show that ELECTS
allows reaching state-of-the-art accuracy while reducing the quantity of data massively to be downloaded,
stored, and processed. The source code is available at https://github.com/marccoru/elects.
1. Introduction

Efficient large-scale agricultural monitoring and crop type mapping
is a prime example of time series analysis in Earth observation: ana-
lyzing the temporal variation of vegetation during a growing season
is crucial for efficient and accurate predictions. Models and algorithms
trained from satellite time series can distinguish different crop types by
observing differences in their respective phenology (life cycles). Tra-
ditionally, NDVI-based temporal profiles (Wardlow and Egbert, 2008;
Jönsson and Eklundh, 2004) are used to extract a fixed set of hand-
defined features, such as the date of the green-up, or senescence
phases (Jönsson and Eklundh, 2004). Remote sensing experts often
manually choose the observation period in these approaches to capture
the entire vegetative period of the crops in a particular region. The final
classification is executed once at the end of this period to produce a
crop cover map. Early time series classification has been a steady topic
of interest in remote sensing but is often seen as an auxiliary objective.
In crop type classification, the terms in-season- or early crop type mapping
are commonly used. Several studies (McNairn et al., 2014; Vaudour
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et al., 2015; Inglada et al., 2016; Cai et al., 2018) found that a high clas-
sification accuracy for most crop types is achievable within the growing
season in a specific region. A common strategy for assessing which ac-
curacy is possible at what day of the year is incremental classification, as
termed by Inglada et al. (2016): a supervised classifier performs a clas-
sification every time a new image becomes available. The achievable
accuracy is then recorded and related to the length of the sequence.
This process involves re-fitting the classifier for different sub-sequences
and provides region-specific evidence across all crop types regarding
the date at which an accurate classification is possible. Recent works
have applied incremental classification for early crop type mapping
in Germany, Marszalek et al. (2020), Kondmann et al. (2022) and
South Africa (Maponya et al., 2020). Other approaches avoid re-fitting
the classifier by choosing sequence-length invariant features (Skakun
et al., 2017), employing a cluster-then-labeling strategy (Konduri et al.,
2020), or modeling simplified two-dimensional feature space in a gen-
erative way from historical data (Lin et al., 2022). These approaches
employ increasingly sophisticated heuristics to hand-define features
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Fig. 1. Overview of datasets used in this work. All datasets show a label imbalance, as
dominant crops are common in the respective areas. The European datasets BreizhCrops
(France) and BavarianCrops (Germany) provide large-scale data with several tens to
hundreds of thousands of time series samples. In contrast, the African datasets are
smaller and contain a few hundred to a few thousand crop parcels.

invariant to the sequence length. Crucially, these approaches yield a
rough general knowledge of achievable accuracy given a specific day
of the year for a single region across multiple crop types. Meanwhile,
end-to-end deep learning architectures based on recurrence (Rußwurm
and Körner, 2018), self-attention (Sainte Fare Garnot et al., 2020), or
convolution (Pelletier et al., 2019) can map a variable length series
into a fixed-length representation natively. These deep neural networks
learn class-discriminative features solely from a large dataset of labeled
samples in an end-to-end scheme by minimizing classification error as
the objective function. To our knowledge, no approach has explicitly
optimized a model for the objective of an early classification in remote
sensing.

In this work, we address this research gap by End-to-end Learned
Early Classification of Time Series (ELECTS). Our method provides
early and accurate predictions for each field parcel. To do so, we use
a neural network with a loss function optimizing for both objectives:
earliness and accuracy.

ELECTS augments and is compatible with recent advances in end-
to-end trainable deep time series classification models (Rußwurm and
Körner, 2018; Sainte Fare Garnot et al., 2020; Pelletier et al., 2019).
As these models produce a fixed-size vector from a variable-length se-
quence, it does not have to re-fit the classifier on shorter sub-sequences,
as earlier incremental classification approaches did (McNairn et al.,
2014; Vaudour et al., 2015; Inglada et al., 2016; Cai et al., 2018).
Optimizing on the joint loss objective of earliness and accuracy is
also conceptually more straightforward compared to the cluster-then-
labeling heuristic of Konduri et al. (2020) or modeling transitions with
two-dimensional distributions from historical data, as Lin et al. (2022).

2. Datasets

We evaluate ELECTS on four crop-type mapping datasets. Annota-
tions of two datasets originate from crop type statistics collected in
Europe and are available at a large scale with several tens of thousand
of samples. The annotations of the two datasets in Africa originate
from small-scale surveys and contain only hundreds to few thousand
annotated time series samples. Fig. 1 summarizes the crop-type datasets
used in this work. It shows the locations and the label distribution of
four crop datasets in Europe and Africa.

2.1. BreizhCrops (France)

We use the BreizhCrops dataset (Rußwurm et al., 2020) to compare
the LSTM model of Section 3.1 with several other regular classification
models. BreizhCrops contains time series of 608 263 field parcels of the
year 2017 in Brittany, France. The time series contains all Sentinel-
446

2 images from January to December. Both datasets typically contain a
between 71 (every 5 days) and 147 (every 2.5 days) Sentinel-2 observa-
ions. The high acquisition frequency of 2.5 days and 147 observations
s possible for some fields in the overlap area of two acquisition stripes.
he BreizhCrops dataset (Rußwurm et al., 2020) is split regionally into
raining (FRH01, FRH02; 319 258 fields), validation (FRH03; 166 391
ields), and test (FRH04; 122 614) partitions, where FRH{1, 2, 3, 4} refers
o NUTS-3 administrative boundaries. The Nomenclature des unités ter-
itoriales statistiques (NUTS) system delineates Europe in administrative
oundaries at three levels: country, state, and province. BreizhCrops
ses the division at the provincial level NUTS-3. The dataset contains
ine crop classes: barley, wheat, rapeseed, corn, sunflower, orchards, nuts,
ermanent meadows, temporary meadows. They are selected to contain both
requent (barley, wheat) and rare classes (sunflower, nuts), as well as
emantically similar categories (permanent- and temporary meadows).

.2. BavarianCrops (Germany)

We performed ablation studies and the comparison to one method
rom the early time-series community (SR2-CF2 (Mori et al., 2018)
n Appendix B.1) on a crop type dataset near Hollfeld in Bavaria,
ermany, which is a subset of the dataset used in Rußwurm and Körner

2020). We chose to subset the original dataset for computational
easons in the initial development and to compare it with existing early
ime series classification approaches that are typically not designed for
arge-scale datasets. Our subset of BavarianCrops covers a 40 km×35 km
rea and contains 27 470 fields that are split into training (16 600),
alidation (3057), and test (7813) partitions, each one organized in
locks of 4.5 km×4.5 km with 500 meter margin between the blocks. All
arcels within one block are assigned to the same train-val-test partition
o avoid assigning neighboring fields to different partitions (Karasiak
t al., 2021). Sentinel-2 scenes with same frequency as Breizhcrops
longside associated labels are from January to December 2018 and
over the 7 common crops meadow, summer barley, corn, winter wheat,
inter barley, clover, triticale.

.3. Ghana and South Sudan

Rustowicz et al. (2019) compiled the datasets of Ghana, and South
udan that were incorporated in the SustainBench dataset (Yeh et al.,
021). They share a common processing history and are described
ogether in this section. In these middle- and low-income countries, a
ubstantial portion of the population directly depends on agriculture.
n early estimate of the expected crop yield is crucial to evaluate

he economic markets and uncover potential shortages. This dataset
rovides Sentinel-2, Sentinel-1, and PlanetScope images of size 64 by
4 pixels from the years 2016 and 2017 linearly interpolated to a
ime series of 365 days. We take the imagery and field boundaries
nd average all pixels belonging to each field to obtain a time series.
ollowing (Rustowicz et al., 2019), the ten Sentinel-2 bands (10 m
nd 20 m channels) and NDVI and green chlorophyll vegetation index
GCVI) features are combined with three Sentinel-1 bands (VV, VH,
nd their ratio) and four PlanetScope bands (RGB+NIR), which results
n a 19-dimensional feature vector for each field parcel. While the
raining and validation datasets were taken from 2016, the samples of
he test dataset were taken from the subsequent year 2017. The crop
ypes classified in Ghana are groundnut, maize, rice, and soy bean, while
nformation on sorghum, maize, rice, and groundnut are available in South
udan.

. Methodology

This section describes the details of the proposed method. It consists
f a deep learning feature extractor with two decision heads, detailed in
ection 3.1 and a loss function that optimizes for the dual objective of

ccuracy and earliness outlined in Section 3.2. Throughout this section,
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Fig. 2. Schematic illustration of model (blue) and losses (red) of this Section 3. Arrows indicate function inputs and outputs. Neural network components are denoted by 𝑓𝜃 . At
est time, with fixed weights, 𝜃, the model (blue) can process a time series up to any time 𝑡. At training time, losses are calculated on the complete time series until the last time
tep 𝑇 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝐿

w

𝐷

e denote vectors with bold-faced symbols, while matrices are bold-
aced and capitalized. In a time series, we use 𝑡 to indicate any time
tep, while 𝑇 refers specifically to the index of the last time step in
he sequence, i.e., the sequence length. Fig. 2 shows a schematic view
f the model and loss functions with the associated equations of this
ection.

.1. Model

We use a time series classification model that consists of i) a deep
eature extractor based on recursion, 𝑓𝜃 , that ingests time series data
ne observation at a time and ii) two output heads. This model can be
mplemented with different deep learning architectures, but we focus
n recurrent neural networks (RNNs) without loss of generality. RNNs
stimate a hidden representation 𝐡𝑡 at a given time 𝑡 from an input time
eries 𝐗→𝑡 = (𝐱1, 𝐱2,… , 𝐱𝑡) of observations 𝐱 up to the image acquisition
t time 𝑡. The model can process a variable number of samples and
ngest time series with different sequence lengths 𝑇 . A recurrent neural
etwork

𝑡 = 𝑓𝜃ℎ (𝐱𝑡,𝐡𝑡−1) (1)

updates its zero-initialized hidden representation 𝐡𝑡−1 to 𝐡𝑡 with each
ew observation 𝐱𝑡. It is a natural choice as a feature extractor, as it
rojects a variable-length input sequence to a fixed-size representation.
n practice, to avoid vanishing gradients (Hochreiter, 1998; Bengio
t al., 1994), we choose a Long Short-Term Memory (LSTM) (Hochreiter
nd Schmidhuber, 1997) recurrent neural network {𝐡𝑡, 𝐜𝑡} =

𝑓𝜃ℎ (𝐱𝑡, {𝐡𝑡−1, 𝐜𝑡−1}) that updates two hidden representations where we
use the cell output 𝐡𝑡 for two linear decision heads: one head produces
a classification probability for each class

𝐲̂𝑡 = softmax
(

𝑓𝜃𝑐 (𝐡𝑡)
)

(2)

and another one outputs a scalar probability of stopping

𝑑𝑡 = 𝜎
(

𝑓𝜃𝑑 (𝐡𝑡)
)

(3)

the classification decision. The 𝜎 symbol denotes the sigmoid function
that rescales the outputs of the stopping head to a probability between
0 and 1. At test time, a hard stopping decision is sampled from this
stopping probability. As an example: with a stopping probability 𝑑𝑡 =
0.2, the classification is stopped with a 20% probability at this time. In
practice (see Fig. 3 in results), we observe that 𝑑𝑡 raises sharply from 0
447

to 1 within a few time points on a trained model.
3.2. ELECTS loss function

At each time 𝑡 ≤ 𝑇 , we compute the classification, earliness-
rewarded loss, 𝐿CER:

𝐿CER(𝐲̂𝑡, 𝐲) = 𝛼𝐿𝑐 (𝐲̂𝑡, 𝐲) − (1 − 𝛼)𝑅𝑒(𝐲̂𝑡, 𝐲, 𝑡). (4)

We weight both terms with an 𝛼 ∈ [0, 1] hyper-parameter that trades
off accuracy and earliness reward. The classification loss is the negative
log-likelihood or cross-entropy loss

𝐿𝑐 (𝐲̂𝑡, 𝐲) = −
𝐶
∑

𝑐=1
𝑦𝑐 log 𝑦̂𝑐,𝑡, (5)

while the earliness reward is

𝑅𝑒(𝐲̂𝑡, 𝐲, 𝑡) = 𝑦̂+𝑡
(𝑇 − 𝑡

𝑇

)

. (6)

As such, 𝑅𝑒 decreases linearly for later predictions when 𝑡 ap-
proaches 𝑇 . This term is scaled with the probability of the correct class
𝑦+𝑡 =

∑𝐶
𝑐=1 𝑦𝑐 𝑦̂𝑐,𝑡 with 𝐲 as one-hot vector of C classes. This term applies

the reward only if the probability of the correct class is large.
𝐿ELECTS is computed for each time 𝑡 in a training sample time series

of length 𝑇 to minimize a joint expression of accuracy (via 𝐿CER) and
explicit earliness (via 𝐷𝑡) as:

ELECTS(𝐝̂→𝑡, 𝐲̂𝑡, 𝐲) = 𝐷𝑡(𝐝̂→𝑡)𝐿CER(𝐲̂𝑡, 𝐲) (7)

here

(𝐝̂→𝑡) = 𝑑𝑡
𝑡−1
∏

𝑖=1
(1 − 𝑑𝑖) +

𝜀
𝑇

(8)

can be interpreted as the joint probability of making a decision 𝑑𝑡 at
time 𝑡 and not having made a decision before ∏𝑡−1

𝑖=1(1 − 𝑑𝑖). At the last
time step, we set 𝑑𝑇 = 1 irrespectively of the model output to make
sure that the model has taken a stopping decision in the interval [0, 𝑇 ].
In practice, we add a small constant offset 𝜀

𝑇 to each 𝑑𝑡, with 𝜀 as an
hyper-parameter. This offset makes 𝐷(𝐝̂→𝑡) non-zero for all 𝑡, which
encourages the model to make accurate classifications for all time steps
in Eq. (7). With 𝜀 = 0, only accurate classifications at the time steps
close to the stopping time, where 𝐷(𝐝̂→𝑡) is large, would be encouraged.
Without this offset, i.e., with 𝜀 = 0, we found experimentally (see
Appendix A) that a randomly-initialized model tended to fall in a local
minimum when optimizing Eq. (7) by predicting early at low accuracy.
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The learnable parameters 𝜃ℎ, 𝜃𝑑 , 𝜃𝑐 are determined by minimizing
the overall objective

argmin
𝜃ℎ ,𝜃𝑑 ,𝜃𝑐

∑

𝐗,𝐲

𝑇
∑

𝑡=1
𝐿ELECTS(𝑓 (𝐗; 𝜃ℎ, 𝜃𝑑 , 𝜃𝑐 )

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐝̂→𝑡 ,𝐲̂𝑡

, 𝐲) (9)

for each time 𝑡 over a dataset of labeled samples 𝐗, 𝐲.

3.3. Implementation details

For all results described in Section 4, we used a recurrent neural net-
work with the same hyperparameters for all datasets. An initial linear
layer (and layer normalization) projects the original input vector to a
learned 32-dimensional feature representation at each time, followed by
two mono-directional LSTM layers. We implement each decision head
as a linear layer with a sigmoid activation function for the stopping
decision and softmax for the classification scores, respectively. The
overall model has 67 108 trainable parameters, making this implemen-
tation light weighted and trainable in any desktop machine with a GPU
graphics card. As stated above, researchers can implement the ELECTS
loss on any neural network for time series making it adaptable for other
time series approaches. We used the Adam optimizer with a learning
rate of 0.001 and a dropout of 20%. We determined these hyperparam-
eters experimentally on the validation set of the BavarianCrops dataset
(described in the next section). With a batch size of 256, we trained

odels in a few minutes (BavarianCrops) or a few hours (BreizhCrops)
n a GeForce RTX 3090. For BavarianCrops and BreizhCrops, we ran-
omly choose sequences of 70 observations from the originally longer
omplete time series to obtain sequences of equal length for training in
atches. At test time, we can run inference on the complete variable-
ength time series. For the Ghana and South Sudan datasets, we train on
he interpolated 365-day sequences, similar to Rustowicz et al. (2019).

e used an 𝜀 = 10 offset parameter throughout the experiments with a
ixed sequence length of the respective training dataset.

.4. Model evaluation

We evaluate the model on the four different crop type mapping
atasets in Europe and Africa, described in Section 2. We train, val-
date, and evaluate the model for each dataset on spatially disjoint
raining, validation, and test regions. For BavarianCrops, training and
valuation fields were separated by blocks, while different administra-
ive boundaries were used in BreizhCrops. For Ghana and South Sudan,
448
we followed the split of Rustowicz et al. (2019). For each dataset, we re-
train the ELECTS-LSTM model from scratch on the respective training
dataset and evaluate the performance on the test set. We do not vary the
hyper-parameters (network layers, hidden dimensions, learning rates)
across the datasets in these experiments and keep the identical model
architecture throughout this work.

4. Results

This section presents the results obtained with the ELECTS-trained
LSTM neural network described in Section 3. We structure this section
in three parts: First, Section 4.1 shows the prediction process on indi-
vidual field parcels qualitatively and quantitatively. Section 4.2 focuses
on the dates of stopped decisions and relates these to phenological
events. It provides interpretations of the model predictions on two crop
classes (rapeseed and barley). For these experiments, we used the large
BreizhCrops dataset in Sections 4.1 and 4.2. Finally, we expand the
scope in Section 4.3, where we train the ELECTS recurrent neural net-
work on multiple datasets in Europe (BreizhCrops, BavarianCrops) and
Africa (Ghana, South Sudan), as outlined in Section 2. Further model
comparisons developed in the time series community and ablations on
the loss design on the BavarianCrops dataset are reported in Appendix A
and Appendix B, respectively.

4.1. Accuracy evaluation

Sections 4.1.1 and 4.1.2 illustrate the prediction process, while
Section 4.1.3, analyzes the classification accuracy of the stopped fields
quantitatively throughout the year on all field parcels in the BreizhCrops
test set.

4.1.1. Single field prediction
Fig. 3 illustrates the prediction process with the ELECTS-trained

LSTM on a single time series sample from the BreizhCrops test set.
The time series of this temporary meadow field is represented on the
left as its NDVI profile. However, note that our model uses thirteen
spectral bands’ complete signal at each observation. This profile shows
that this field parcel is photosynthetically active (high NDVI) across the
year. These high-NDVI observations in this time series are interrupted
by negative outliers caused by cloud cover (low NDVI). The ELECTS-
trained LSTM neural network ingests this time series one-time step at
a time and estimates a probability for each crop class (top right) and
a probability of stopping (bottom right). The model estimates a high
probability for the class wheat (orange) during the first hundred days
Fig. 3. Prediction of the ELECTS-trained early classification model. The model ingests a time series (left) incrementally one element at a time. It estimates a probability for each
crop category (top right) alongside a probability of stopping (bottom right). As long as the probability of stopping remains low, more data is necessary to obtain an accurate
classification result.
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of the year. If the model stopped the classification decision this early,
it would incorrectly predict the class wheat. Further, during the first
hundred days, the probability of stopping remains low, indicating that
more data is necessary for a confident decision. From the day of year
100 onwards, the model assigns the highest classification probability to
the correct class temporary meadow. The probability of stopping remains
low until day-of-year 150 when a rapid increase indicates that the
model is sufficiently confident to stop the classification.

4.1.2. Classification of fields at different times
Fig. 4 shows a crop cover map of 250 field parcels from a 2.5 km ×

2.5 km area of interest within Brittany, France, from the BreizhCrops
test set. It illustrates the prediction process in the deployment setting
where the predictions of some fields are stopped at different times
compared to others in the same geographic area. The top row presents
RGB images from this area alongside the ground truth crop type. The
other rows show the model predictions at each date (second row), the
correct/incorrect predictions (third row, with blue being correct and
red incorrect), and the active (white) vs. stopped (black) status of each
parcel. The rightmost column shows the predictions after recombining
all predictions obtained at the respective stopping time (second and
third row) and a summary of the per parcel stopping date. For ELECTS,
only a stopped field (black) classification decision is relevant, as active
449
fields (shown in white) require more data. In rows two and three’s
prediction and correctness figures, we present parcels still active in the
decision process with transparent colors. The field parcels where the
model stopped the classification process are drawn with opaque colors
without transparency.

On April 12th (first column in Fig. 4), most parcels were covered ho-
mogeneously with green vegetation. The model predicted most fields as
temporary meadow and corn, among the dataset’s most frequent classes.
The overall accuracy for these parcels was 54%. These early, incorrect
classifications (red) are frequent, as not enough time series could be
observed this early in the year. The ELECTS-LSTM model did not stop
any fields at this point (no black fields in the bottom row). More time
steps are required for a confident classification decision. On May 22nd
(second column in Fig. 4), the overall accuracy has increased to 74%.
At this date, several parcels of corn (in red) and one of rapeseed (green)
were stopped and correctly classified. The model predictions did not
vary noticeably in June 21st (third row in Fig. 4) concerning April 12th.
However, the number of stopped parcels increased steadily, as shown in
the bottom row. The model classified most fields within the year’s first
half (shown in day-of-stopping; last row and column). However, single
fields were still classified later in the year, emphasizing the need for
a stopping decision for each field parcel, as the ELECTS-LSTM model
provides.
Fig. 4. The ELECTS prediction process is shown in a deployment setting for one year, where the model predicts class labels and stops the predictions of individual fields. It shows
early classification results in a 2.5 km × 2.5 km site in the Brittany test region (2.4052◦ West, 47.5328◦ North). The final results are shown in the right column. The previous
columns show three dates with associated predictions (second row), and a correct/incorrect map (third row, with blue being correct predictions and red incorrect). Transparency
is used for predictions in these rows to de-emphasize the fields where the prediction has stopped. The fourth row shows a binary score specifically to indicate which classifications
are still active (white) or have already been stopped (black). The bottom right image depicts the stopping day for all parcels. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The accuracy of the ELECTS model during the year was calculated on all
fields (orange) and only the stopped fields (blue). The ELECTS model only stops fields
from doy (day-of-year) 60 onwards in the early season. The stopped fields are classified
more accurately compared to all fields in the test region. A user can expect an accurate
prediction of a stopped field. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

4.1.3. Quantitative prediction accuracy
Fig. 5 shows the classification accuracy up to a specific day of the

year for all field parcels (orange) and only the stopped field parcels
(blue) in the test set of BreizhCrops in Brittany, France. The horizontal
axis represents the prediction date within the year until data is accessi-
ble to the classifier. The blue shaded area shows the number of stopped
fields at each respective date. The orange line shows the classification
accuracy calculated on all fields and represents the performance of
a regular accuracy-only time series model. The blue line shows the
classification accuracy only of the stopped fields, as provided by an
early classification approach, such as the ELECTS-LSTM model in this
work.

Early in the year, only a low accuracy between 30% and 50% on
all fields is possible before March 1st, the day-of-year (doy) 60. The
model can observe no fine-grained classification-relevant features this
early, as this period falls in the winter season. The stopping decision
of the early classification model reflects this by declaring no fields as
stopped before doy 60. From doy 60 onwards, an increasing number
of fields are declared as stopped, as indicated by the blue shaded area.
Notably, the few fields the model stopped in the early season between
March and June (doys 60 and 150) are predicted at high accuracy, as
shown by the blue line. Later during the year, the accuracy decreases
when the classification of the majority of fields is stopped. The high
accuracy of early-stopped fields reflects the intuition that the stopping
decision is related to the model’s confidence, as presumably easier-to-
classify fields are stopped first, leading to the high accuracy in the early
season. The more ambiguous and difficult fields are stopped in the late
season. Wrong classifications become more common, and the accuracy
drops to the same level as expected by an accuracy-only classifier.

From a practical deployment perspective, this result demonstrates
that a user can be confident that the predictions are accurate for
the stopped fields. This allows the user to make decisions for these
individual field parcels early in the season.

4.2. Earliness evaluation

Fig. 6 analyzes the dates in which the ELECTS model stopped the
classification from a phenological perspective concerning a local crop
calendar of France. Fig. 6(a) shows that stopping dates vary for indi-
vidual crop types where the classification of all crops has been stopped
in the agriculturally relevant period between planting and harvest.
The average classification time of most crops, i.e., wheat, rapeseed,
corn, sunflower, lies in the mid-season period. Notably, all crops except
barley (discussed later) were classified before the harvest period, which
domain experts often consider the end-of-series date for accuracy-only
classifiers when knowledge of local crop calendars is available.

Rapeseed parcels were classified particularly early: towards the end
of April until mid-May, two months before the harvest period. We an-
alyze these crop fields qualitatively in Fig. 6(b) where several rapeseed
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fields are highlighted by a white outline on images from April 22nd,
June 21st, and July 16th. Rapeseed fields blossom in a characteristic
yellow color, as visible in the image of April 22nd. This blossoming
period falls into the window where the classification of the majority
of rapeseed parcels has been stopped. Hence, we can deduce that the
model uses this blossoming event as a characteristic feature to classify
these parcels as rapeseed and stop the classification confidently. In
Fig. 6(a), barley was the only crop type where the model stopped the
prediction during the harvest period end of June. We analyze this
period qualitatively in the second row of Fig. 6(b) that shows barley
parcels outlined in white color. In particular, the effects of harvest are
visible on June 21st, where barley fields are the only field parcels that
were recently harvested. After that date, bare soil is observed in the
parcel, while all neighboring field parcels are covered by vegetation.
From this analysis, we can deduce that these harvest operations cause
the stopping decisions of the barley crops, as the stopping dates of
barley parcels fall narrowly into this period. This analysis shows that
the stopping times produced by the ELECTS-LSTM early classification
model fall into a meaningful phenological period for this region. The
interpretation of the crop calendar and explanation of the barley and
rapeseed parcels show that the model learned to utilize meaningful
features (e.g., the blossoming event of rapeseed) to come to the stopping
decision. Notably, this is learned without any direct temporal supervi-
sion as the model is optimized end-to-end solely on crop labels without
any labels on time or crop cycles for this area.

4.3. Applicability of ELECTS across datasets

The proposed model can be trained end-to-end on any time series
classification problem if sufficient class-labeled data is available. This
enables us to train models for different geographic areas without requir-
ing region-specific expert knowledge aside from the labeled samples in
the respective datasets. Hence, in this section, we test the applicability
of the ELECTS-LSTM model with identical hyper-parameters to different
datasets in Europe (France and Germany) in Fig. 7 and Africa (Ghana
and South Sudan) in Fig. 8.

We organize this section in two parts. First, we discuss the model
performance on large-scale European datasets where several ten to
hundred thousands of field annotations are available. Then, we train
and test the model on two African datasets where substantially less
training data is available for end-to-end optimization of this deep
learning model.

4.3.1. Large-scale datasets in europe
Fig. 7 shows the accuracy as a confusion matrix and the earliness as

a histogram of stopping times of field parcels in France (BreizhCrops)
and Germany (BavarianCrops). All crop classes within the Bavarian-
Crops dataset (Fig. 7(a)) were classified accurately with an overall
accuracy of 86%. Systematic confusions were present between wheat,
winter barley, and triticale, as these crops share biological ancestry
and clover and meadows which are cultivated in a similar way and cut
periodically throughout the year. Most notably, the model achieves this
accuracy with only 40% of the entire sequence length. While the entire
time series spans from January to December, most field parcels were
classified within a two-month window (65 days) around May 24th. This
highlights the potential of the ELECTS early classification approach to
come to early and still accurate classification decisions within the year.

In Fig. 7(b), we show the accuracy and earliness results on the
BreizhCrops with fields of Brittany, France. Here, all crops are classi-
fied with an overall accuracy (OA) of 80% with an average stopping
period of one month around June 7th. The ELECTS-LSTM model used
only 32% of the overall time series on average. Most notably, regu-
lar accuracy-only models, which make predictions at the end of the
entire time series, achieve comparable accuracies of 80% OA score,
as shown in Fig. B.11(a) of Appendix B.2. In terms of classifications,
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Fig. 6. Stopping times of individual crops classes related to the local crop calendar in Brittany, France and examples of barley and rapeseed fields that reveal that specific machining
and blossoming events cause early classifications of these crop categories.
systematic confusions are visible between permanent meadows and tem-
porary meadows. Infrequent classes, such as nuts and sunflowers are
not predicted correctly, as they have little effect on the overall loss
objective. This classification of very imbalanced class distributions falls
beyond the scope of this work. Overall, these results show that the
ELECTS-modified LSTM model matches the accuracy of regular non-
early classification models while predicting substantially earlier within
the season.

4.3.2. Small-scale datasets in africa
Fig. 8 shows confusion matrices and (class-wise) stopping times of

the ELECTS-LSTM model in Ghana and South Sudan. The model finds
accurate and early solutions on these datasets even though training a
deep learning model on dataset sizes of 3837 and 737 individual field
samples is inherently difficult. In South Sudan (Fig. 8(a)), an overall
accuracy of 83% is achieved with average predictions on the day of year
61 (March 2nd). These very early classifications are driven mainly by
rice and sorghum fields that can be classified in January and February in
this region. This overall accuracy is on a similar level to a convolutional
LSTM model with 82.6% overall accuracy reported by Rustowicz et al.
(2019). Note that their underlying classification model is advantaged:
the kernels in their convolutional LSTM model can make use of the
pixel-neighborhood. In comparison, the LSTM implementation, which
we modified for ELECTS, can only classify individual pixels separately
from each other. Note, however, that ELECTS can be modified to
incorporate spatio-temporal data by changing the feature extractor
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to the same classifier as Rustowicz et al. (2019). On a dataset of
this comparatively small size, both deep learning models performed
5.7% and 6.1% worse compared to a regular random forest classifier
(concatenates all time points to one large feature vector) with 88.7%
overall accuracy. Overall, the ELECTS-LSTM still compares well to the
accuracy-only models from Rustowicz et al. (2019) while only requiring
a fraction of the time series to come to an accurate and early decision. A
similar trend is visible in the Ghana dataset shown in Fig. 8(b) where
the ELECTS-LSTM model achieves an overall accuracy of 54% while
classifying the fields on average on day of year 78 (March 19th). This
accuracy is 7.1% and 5.9% worse compared to the random forest, and
convolutional LSTM model from Rustowicz et al. (2019) that achieve
61.1%, and 59.9% accuracy, respectively. These accuracy-only models,
however, can only predict after observing the entire time series, while
the ELECTS-LSTM model used only 20% of the overall time series with
an average stopping date of the 78th day of the year.

Overall, these results demonstrate that the ELECTS-LSTM model
converges to a meaningful solution without any region-specific tuning.
It produces early and still accurate predictions at a fraction of the
entire time series. While the early classification model matched the
accuracy of accuracy-only models on the large BreizhCrops dataset,
the model achieved a marginally lower accuracy on the substantially
smaller datasets in Africa. Still, early and accurate predictions have
been achieved without any region-specific parameter tuning with the
ELECTS-LSTM model, which demonstrates the applicability in unex-
plored areas where sufficient training data is available.
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Fig. 7. Class-wise accuracy and earliness of the predictions on the two large-scale European datasets, BavarianCrops (a) and BreizhCrops (b). The ELECTS model predicts most
classes accurately at a fraction of the required length of the time series in both datasets.

Fig. 8. Accuracy and Earliness on datasets in Africa from Rustowicz et al. (2019) that was recently integrated in the SustainBench dataset (Yeh et al., 2021). The trained
ELECTS-LSTM finds a generally accurate and early solution for both datasets without changing the training configuration even though the dataset sizes are substantially smaller
compared to the large-scale European datasets of France and Germany.
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5. Discussion

In this work, we demonstrated that a regular long short-term mem-
ory (LSTM) recurrent neural network can be effectively modified with
ELECTS for early and accurate classifications on various crop-type
datasets. On sufficiently large datasets, the performance is on par with
that of accuracy-only models with only a fraction of the sequence
length. The ELECTS-LSTM does not require refitting or predicting with
different sub-sequences, conversely to related work (Kondmann et al.,
2022; Marszalek et al., 2020; Maponya et al., 2020) based on incre-
mental classification. Other approaches (Lin et al., 2022; Konduri et al.,
2020) are often developed and targeted towards one specific deploy-
ment area, often focused on the continental US, while we demonstrated
the applicability of ELECTS on different continents. ELECTS inherits
the limitations of deep learning: predominantly, the requirements of
large annotated datasets for end-to-end optimization. This was evi-
dent in the predictions on small datasets (Ghana and South Sudan)
where the accuracy of the ELECTS-LSTM was marginally worse than
an accuracy-only model, while it matched the accuracy at the European
large-scale datasets. Sensitivity to label imbalance is a further limitation
where wrong classifications of infrequent classes are penalized less than
frequent ones.

Deploying an ELECTS model on applications beyond crop type
mapping would be a natural extension, as this model can be trained on
any class-annotated time series dataset. Extending ELECTS for spatio-
temporal data is feasible with little effort and can be done by modifying
the feature extractor, for instance, by adding 2D convolutional layers.

The implications of an automated end-to-end trainable model, such
as ELECTS, are manifold: acquiring predicted and accurate class labels
for a subset of stopped crop parcels has direct practical implications
for the control of European agricultural subsidies. In practice, sample
on-site inspections often control the European subsidy after a specific
pre-determined date. Field-wise, in-season predictions, as ELECTS pro-
vides, allow the start of this process weeks and months in advance.
Further, the potential to save computational and storage resources is
substantial: ELECTS provided accurate predictions using between 16%
(South Sudan) to 40% (BavarianCrops) of the overall time series. For
instance, when scaling the average earliness of predictions in Bavari-
anCrops to the 43TB of Sentinel-2 imagery acquired in Europe each
year, 26TB of downloading and processing satellite can be avoided.
While Sentinel-2 data is free of charge, an increasing amount of daily
high-resolution imagery is available today (Kondmann et al., 2022).
This data needs to be acquired at a substantial cost and motivates
the need to make confident decisions with data-efficient algorithms.
Training and deploying an ELECTS-LSTM model is not expensive in
terms of computational efforts. Deep learning models for 1D time series
are small compared to standard 2D convolutional models for images.
We trained the ELECTS-LSTM models within one hour on a single GPU
on BavarianCrops. A researcher can make predictions using the trained
ELECTS-LSTM model on a CPU with a regular notebook.

6. Conclusion

We presented a training framework for End-to-end Learned Early
Classification of Time Series (ELECTS) that augments a regular deep
time series classification model by a second decision head informing
about prediction uncertainty and leading to early stopping. The core
contribution is a loss function that incorporates both model outputs
such that the two objectives of earliness and accuracy are balanced.
Thanks to the earliness objective, ELECTS provides indirect insight into
its decision process. We showed that the model linked the stopping
decision to the phenological events of the plants for two crop types.
Stopped classifications early in the season were also particularly ac-
curate, highlighting that the model connects the stopping decisions to
predictive confidence. ELECTS goes beyond crop types classification,
as it can be applied to potentially any data where temporally coarse
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labels are available that are not aligned with the events, e.g., one
label per year. In general, with satellites providing a constant stream
of data that is necessary to monitor time-dependent processes at the
surface (Camps-Valls et al., 2021), a variety of deployments are fea-
sible, from dynamically determining cloud categories (Mateo-García
et al., 2019) to the detection of deforested areas (Reiche et al., 2021)
in a time-sensitive manner. The source code to the models, the ELECTS
loss function, and to reproduce the experiments are available at https:
//github.com/marccoru/elects.
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Appendix A. Ablation experiments

A.1. Ablations on hyperparameters and loss design

In this group of experiments, we test the individual model compo-
nents. In Appendix A.1.1, we vary the trade-off between accuracy and
earliness while we focus in Appendix A.1.2 on the offset parameter 𝜀.

A.1.1. Controlling earliness versus accuracy
In this experiment, we study the effect of 𝛼 of Eq. (4) on both

the BavarianCrops and BreizhCrops datasets. For the BavarianCrops
dataset, we observed some variance when training models from dif-
ferent weight initializations. Hence, we report the mean and standard
deviation of 3 model runs in Table A.1. For BreizhCrops, a similar
accuracy level between 80% and 85% was achieved for a wide range of
𝛼 values while the earliness decreased from 0.6 to 0.07. The accuracy-
only (𝛼 = 1) runs did not achieve the best accuracy (83%) compared
to 85% with 𝛼 = 0.6. This result indicates that an earlier classification,

Table A.1
Varying the weighting factor 𝛼 that trades-off classification loss and
earliness reward. An 𝛼 = 1 corresponds to a high weight on earliness,
while 𝛼 = 0 switches off the earliness reward. Results for BavarianCrops
are averaged over three runs. Standard deviations of earliness refer to
stopping times of single fields.
𝛼 Accuracy 𝜅 Earliness

0.0 0.25 ± 0.22 0.12 ± 0.19 0.90 ± 0.17
0.2 0.81 ± 0.03 0.71 ± 0.04 0.60 ± 0.02
0.4 0.80 ± 0.09 0.71 ± 0.10 0.53 ± 0.03
0.6 0.85 ± 0.02 0.77 ± 0.03 0.12 ± 0.07
0.8 0.84 ± 0.01 0.76 ± 0.02 0.07 ± 0.05
1.0 0.83 ± 0.03 0.75 ± 0.04 0.00 ± 0.00

(a) BavarianCrops.

𝛼 Accuracy 𝜅 Earliness

0.0 0.31 0.00 1.00 ± 0.00
0.2 0.80 0.74 0.73 ± 0.07
0.4 0.80 0.74 0.69 ± 0.07
0.6 0.81 0.75 0.66 ± 0.09
0.8 0.80 0.74 0.60 ± 0.12
1.0 0.81 0.75 0.00 ± 0.00

(b) BreizhCrops.

https://github.com/marccoru/elects
https://github.com/marccoru/elects
https://github.com/marccoru/elects
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Fig. A.9. We show normal training behavior (a) compared to two failure cases (b, c) we observed in some training runs with 𝜀 = 0. In failure case 1 (b), the model only optimized
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emporally closer to the classification-relevant features, may have also
een beneficial for the achieved accuracy.

These observations are mirrored in the BreizhCrops dataset in Ta-
le A.1. Consistent accuracy of 80 − 81% is achieved for all 𝛼 > 0.2.
imilarly, larger weights on earliness reward with larger 𝛼 values
ead to slightly earlier classifications of 13% of the overall sequence
ength. Comparing BreizhCrops and BavarianCrops, we observe that the
ccuracies in BreizhCrops were more consistent throughout the entire
-range, which we associate with the 20-times larger training set size.
his larger quantity in labeled samples helps the model to find the
ptimum classification-relevant features in a certain time regardless of
he model initialization and 𝛼-weights.

.1.2. Effect of the offset parameter 𝜀
We trained ELECTS-LSTM 40 times for 100 epochs on the Bavari-

nCrops dataset in this experiment. In 20 training runs, we set 𝜀 = 0
eading to no offset in Eq. (8). In the second set of 20 runs, we set 𝜀 = 10.
n 37 of 40 runs, we observed a normal training behavior, as shown
n Fig. A.9(a) where classification accuracy and earliness increased
hroughout the training. All 20 training runs with 𝜀 = 10 showed this
ormal training behavior, while in 20 runs with 𝜀 = 0, we experienced
wo rare failure cases. Two of twenty runs experienced failure case 1, as
hown in Fig. A.9(b). In these runs, the earliness increased to 1 early in
he training leading to classification at the beginning of the sequence.
he accuracy did not improve upon the initial epoch at 50%, which

ies between the accuracy of a random predictor of 16% and predicting
nly the most frequent class (meadow) at an accuracy of 57%. Here, the
odel fell in a local optimum where it solely minimized the earliness

eward. In Fig. A.9(c), we show a second failure case that appeared
ne of twenty times on the runs with 𝜀 = 0. The accuracy increased
teadily, but the predictions remained at the end of the sequence with
n earliness of 0. In this case, the model minimized the classification
oss but did not improve upon the earliness objective. None of these
ailure cases were observed in the runs of 𝜀 = 10 leading to a more
table convergence to an early and accurate solution with this offset
arameter.
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ppendix B. Model comparison

In parallel, early classification has been discussed in the time series
lassification community, as summarized in the review of Gupta et al.
2020). Here, early time series classification approaches are tested on a
et of benchmark datasets in the UCR Archive (Dau et al., 2018). While
hese datasets cover a diverse range of applications, their small size of
t most a few thousand examples favors shallow learning solutions. In
his application space, several approaches introduced the idea to explic-
tly model the maximization of earliness in the optimization objective
unction (Dachraoui et al., 2015; Tavenard and Malinowski, 2016). In
articular, Mori et al. (2018) also consider explicitly optimizing the
rade-off between earliness and accuracy. Their SR2-CF2 model variant
irst independently trains a Gaussian Process Classifier for each sub-
equence length. It then uses a genetic algorithm to find the parameter
or a stopping rule that takes prediction confidence for each class into
ccount.

.1. Comparison to SR2-CF2

In this first comparison, we use the BavarianCrops dataset. The
ource code of SR2-CF2 was explicitly designed for uni-variate and
lass-balanced data in the UCR Time Series archive (Dau et al., 2018).
e extended it to multi-variate time series in the modified source

ode1. We could not successfully run SR2-CF2 on the complete Bavari-
nCrops dataset and sampled sub-datasets of 50, 100, 250, 500, 750,
000, 2500, 5000, 7500, and 10 000 samples where we successfully

ran SR2-CF2 on subsets up to 1000 samples. Results are presented in
Fig. B.10(a) where the SR2-CF2 method struggled to converge to a
good solution. It predicted the most common class very late (small

1 The extended source code to multi-variate time series of Mori et al. (2018)
s available as fork https://github.com/marccoru/earlyclassification.

https://github.com/marccoru/earlyclassification


ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 445–456M. Rußwurm et al.

o
p

e
p
d
b
o
s
2
S
w
E
c
2
b

Fig. B.10. This figure shows the evaluation of ELECTS (ours) and SR2-CF2 performance on class-balanced subsets of the BavarianCrops dataset. The 𝑥-axis refers to the size of
the training data to train both models. We can observe that SR2-CF2 does not converge to a meaningful solution on imbalanced data (a) where it predicts at the beginning of the
sequence (earliness = 0) at a low accuracy (as it could not observe any classification-relevant features that early). We needed to artificially balance the dataset in (b) for SR2-CF2
to predict early and accurately. In comparison, the ELECTS-LSTM converges to a meaningful solution in both cases and is computationally more efficient. With 5000 training time
series in the balanced case, it required four minutes to train, while SR2-CF2 required 104 h.
Fig. B.11. Comparison of the ELECTS-LSTM model with other accuracy-only methods. ELECTS-LSTM matched the accuracy of the other models (a) while predicting at an earliness
f 0.68 ± 0.07, meaning that only 32%± 7% of the time series was necessary. The average time of stopping is June 7th ± 28 days (earliness 0.68 ± 0.07) which lies in the greenup
eriod in Brittany (b), as indicated by the four highlighted dates which correspond to the images (and analysis) in Fig. 4.
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arliness) throughout differently-sized subsets of the crop type map-
ing dataset. We connect this to the class imbalance present in the
ataset. To alleviate this class imbalance, we sampled a second class-
alanced dataset by undersampling frequent classes (e.g., meadow) and
versampling rare ones (e.g., triticale). We created differently sized
ubsets of this balanced variant with 50, 75, 100, 250, 500, 750, 1000,
500, 5000 samples and show the results in Fig. B.10(b). Here, the
R2-CF2 model achieved accurate and early classifications consistent
ith results reported on the UCR archives (Dau et al., 2018). The
LECTS-trained model provided accurate but late (small earliness)
lassifications for datasets smaller than 2500 samples. For datasets with
500 training series or more, ELECTS and SR2-CF2 achieve compara-
le earliness, whereas the ELECTS-trained LSTM model predicted the
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s

lasses more accurately. While accuracy and earliness were generally
omparable for datasets with more than 2500 samples, the difference
n runtime, as shown in the last column, became a substantial factor.
he computational complexity of SR2-CF2 is (𝑁2𝑇 2) where 𝑁 refers
o the number of samples in the dataset and 𝑇 to the sequence length.
he ELECTS-trained LSTM model relies on vanilla gradient descent that
an utilize modern automatic differentiation libraries with a complexity
f (𝑛epochs𝑁𝑇 ). In total, with a 5000 sample-sized dataset, ELECTS
equired 4 minutes while SR2-CF2 104 hours.

.2. Comparison to non-early classification models on BreizhCrops

In this section, we compare the ELECTS-trained LSTM model with
everal models from the literature, optimizing for accuracy (Random
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Forest, TempCNN (Pelletier et al., 2019), MS-ResNet (Wang et al.,
2018), Inceptiontime (Fawaz et al., 2020), accuracy-only LSTM (Hochre-
iter and Schmidhuber, 1997), Transformer (Vaswani et al., 2017)). For
such a comparison, we focus on the BreizhCrops benchmark. The results
are shown in Fig. B.11(a). The accuracy and kappa score measure the
classification performance. In contrast, earliness 1 − 𝑡

𝑇 measures how
much data from the original T-length sequence was not needed to
come to a prediction. The accuracy-only comparison models are always
classified at the end of the sequence (𝑡 = 𝑇 ), which corresponds to a
hard-coded earliness of 0. From Fig. B.11(a), we see that the ELECTS-
trained LSTM model matches the accuracies of the comparison models
while predicting before the end of the sequence. But additionally to
matching accuracy, ELECTS allows for earlier predictions (and the
related savings in data download, storage, and processing time): in
BreizhCrops, ELECTS achieves an earliness of 0.68 ± 0.07, meaning that
only 32% ± 7% of the time series was necessary for the classification.
This also means that the classification was stable (and stopped on June
7th ±28 days rather than on December 28 for the other methods, which
need the entire time series.

Given that the evaluated earliness is early, we investigated the
nature of the stopping period in greater detail in Fig. B.11(b). Here, we
show the frequency of stopped dates of the ELECTS-LSTM model. We
see that no classifications have been stopped before March (the 60th
day of the year), which lies in the non-informative winter period. Most
classifications have been made between the end of May and early June.
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