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Abstract

Multi-robot remote driving has traditionally been a dif-
ficult problem. Whenever an operator is often forced to
divide his limited resources (attention, decision making,
etc.) among multiple robots, control becomes complicated
and performance quickly deteriorates as a result. To rem-
edy this, we need to find ways to make command generation
and coordination efficient, so that human-robot interaction
is transparent and tasks are easy to perform. In this paper,
we discuss the use of collaboration, human-robot dialogue
and waypoint-based driving for vehicle teleoperation. We
then describe how these techniques can enable a single
operator to effectively control multiple mobile robots.

1 Introduction

1.1 Multi-robot remotedriving

The American military is currently developing mobile
robots to support future combat systems. These robots will
be used to perform reconnaissance, surveillance and target
acquisition. Because this work has traditionally required
significant human resources and risk taking, one of the pri-
mary areas of interest is determining how a small humber
of operators can use multiple mobile robots to perform
these tasks.

Vehicle teleoperation, however, is not easy to perform.
With manual control, performance is limited by the opera-
tor’'s motor skills and his ability to maintain situational
awareness. Fatigue, lack of concentration, and poor dis-
plays al contribute to reduced performance. Additionally,
humans have difficulty building mental models of remote
environments. Distance estimation, obstacle detection and
attitude judgement can also be difficult [11].

Moreover, task and environmental factors can further
complicate the problem. If multiple robots must be con-
trolled, the operator must divide his limited resources
among them. If arobot operatesin an unfamiliar setting or
in the presence of hazards, the operator has to dedicate sig-
nificant attention to assess the remote environment. If the
operator and robot are widely separated, communications
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may be affected by noise or transmission delay, both of
which can make direct control impractical or impossible.

In short, vehicle teleoperation is problematic. At amin-
imum, poor performance (imprecise control, slow driving,
etc.) will occur. In the worst case, vehicle failure (rollover
or collision) will result. Thus, to make multi-robot remote
driving effective and productive, we need to make it easier
for the operator to understand the remote environment, to
assess the situation, and to generate commands.

Our approach is to create techniques and tools which
improve human-robot interaction in vehicle teleoperation
[4]. Thus, we areinvestigating anew system model for tele-
operation and are developing techniques for efficient way-
point-based driving. Additionally, we are building operator
interfaces which are highly portable, easy to deploy and

easy to use.

1.2 Collaborative control

We believe there are clear benefits to be gained from
humans and robots working together. In particular, if we
can treat araobot not astool, but rather as a partner, we will
be able to accomplish more meaningful work and to
achieve better resultg[5].

To this end, we have developed collaborative control, a
system model in which a human and arobot collaborate to
perform tasks and to achieve common goals. Instead of a
supervisor dictating to a subordinate, the human and the
robot engage in dialogue to exchange ideas and resolve dif-
ferences. Hence, the robot is more equal and can treat the
human as a limited source of planning and information.

An important consequence is that the robot can decide
how to use human advice: to follow it when available and
to modify it when unsafe. Thisis not to say that the robot
becomes“ master”: it still follows high-level strategy set by
the human. However, with collaborative control, the robot
has more freedom in execution. Asaresult, teleoperationis
better able to accommodate varying levels of autonomy.

Perhaps the most significant benefit of collaborative
control is that it preserves the best aspects of supervisory
control (use of human perception and cognition) without
requiring time-critical or situation-critical response from
the human. If the human is available, then he can provide
direction or problem solving assistance. But, if the human
is unavailable, the system can still function.



2 Reéated Work
2.1 Human-Robot Collaboration

Humans and robots have been working together since
the 1940. At first, human-robot interaction was primarily
uni-directional: simple switches or controls for operating
manipul ator joints and remote vehicles. However, asrobots
have become more autonomous, this relationship has
changed to be more like the relationship between two
human beings. Asaresult, humans and robots now commu-
nicate and collaborate in a multitude of ways[14].

Personal service robots, for example, directly assist
people in daily living activities. Baltus et al. discuss the
development of mobile robots that provide arange of care-
taking services such as patient monitoring and medical data
collection[1]. Green et al. present a fetch-and-carry robot
which assists physically impaired office workerg 7]. Nour-
bakhsh et al. describe Sage, an educational mobile robot
that gives museum tours [12].

Additionally, some researchers have begun studying
how humans and robots can function as a unit, jointly par-
ticipating in planning and problem solving. Laengle, Hoe-
niger, and Zhu discuss human and robot working in
teams[9]. Bonasso addresses the use of mixed-initiative
and adjustable autonomy between humans and robots[2].

2.2 Waypoaint driving

Waypoint driving is one of the oldest methods of vehi-
cle navigation. In waypoint driving, the operator specifiesa
series of intermediate points which must be passed en route
to atarget position. A waypoint may be chosen for avariety
of reasons. It may refer to awell-known or easily identified
location. It may designate asafe areaor place of interest. Or
it may provide a position fix to bound localization error.

Waypoint driving has numerous advantages over direct
(rate or position) control. In particular, it requires less
motor skill, uses less bandwidth, and can tolerate signifi-
cant delay. Waypoint driving can be performed using either
maps or images. Map-based driving, however, requires
accurate localization and maps. Thus, for unexplored envi-
ronments, most remote-driving systems are image-based.

Wilcox, Cooper, and Sato (1986) describe “Computer
Aided Remote Driving (CARD)”, a stereo image based
method for interplanetary teleoperation of planetary rov-
ers[16]. Rahim discusses the “Feedback Limited Control
System (FELICS)”, a video system for real-time remote
driving[13]. Kay describes STRIPE, which uses still
images and continuous groundplane reprojection for low-
bandwidth driving over uneven terrain[8]. Matijevic dis-
cusses the “ Go to waypoint” command used to operate the
Sojourner rover on Marg[10].

3 Approach

During the past year, we have developed a collaborative
control system which includes a safeguarded teleoperation
controller, human-robot dialogue management, and a per-
sonal user interface [5][6]. We are using our collaborative
control system to remotely drive Pioneer mobile robots in
unknown, unstructured terrain. At present, we are using a
Pioneer-AT and a Pioneer2-AT, both of which are skid-
steered vehicles equipped with microprocessor-based servo
controller, on-board computing and a variety of sensors.

3.1 Dialogue

Dialogue is the process of communication between two
or more parties. Dialogueisajoint process: it requires shar-
ing of information (data, symbols, context) and of control.
Depending on the situation (task, environment, etc.), the
form or style of dialogue will vary. However, studies of
human conversation have revealed that many properties of
dialogue (e.g., initiative taking) are always present[5].

In our system, dia ogue arises from an exchange of mes-
sages between human and robot. Effective dialogue does
not require a full language, merely one which is pertinent
to the task at hand and which efficiently conveys informa-
tion. Thus, we do not use natural language and we limit
message content to vehicle mobility (navigation, obstacle
avoidance, etc) and task specific issues.

At present, we are using approximately thirty messages
to support vehicle teleoperation (Table 1). Robot com-
mands and information statements are uni-directional. A
query (to either the human or the robot) is expected to elicit
aresponse, though the response is not guaranteed and may
be delayed.

3.2 User Interface

Our current user interface (shown in Figure 1) is the
PdaDriver[4]. We designed PdaDriver to enable collabora-
tive control dialogue (i.e., the robot can query the user
through the interface) and human-to-human interaction
(audio and video). The current version supports simulta-
neous (independent) control of multiple mobile robots and
runs on WindowsCE Palm-size PC's.

Remotedriving in unstructured, unknown environments
requires flexible control. Because both the task and the
environment may vary (depending on situation, over time,
€tc.), no single command-generation method is optimal for
all conditions. For example, cross-country navigation and
precision maneuvering have considerably different charac-
teristics. Thus, PdaDriver provides a variety of control
modes including image-based waypoint, rate/position con-
trol, and map-based waypoint.



Table 1. Vehicle teleoperation dialogue

Category Messages

robot command position (pose, path)
(command for rate (translate, rotate)

the robot) stop

camera pose (pan, tilt, zoom)
camera config (exposure, itis)
sonar config (polling sequence)

user — robot

query-to-robot
(question from the usen

How are you?
Command progress?

response-from-user y/n
(query-to-user response) | value

info statement pose (x, y;, z, roll, pitch, yaw)
(information for rates (translate, rotate)

the user) message (event, status, query)
camera state (pan, tilt, zoom)
get new image

query-to-user
(question from
the robot)

Can | drive through (image)?
Is this a rock (image)? If you answer /, | will
stay here. [exploration]

The environment is very cluttered (map).
What is the fastest | should translate?

My motors are stalled. Can you come help?
Motion detected. Is this an intruder? If you
answer ‘, | will follow him [surveillance]
Motion control is currently turned off. Shall |
enable it?

Safeguards are currently turned off. Shall |
enable it?

Stopped due to collision danger. Disable
safeguards?

Stopped due to high temperature. What
should the safety level be?

Stopped due to low power. What should the
safety level be?

Stopped due to rollover danger. Can you
come over and help?

robot — user

response-from-robot
(query-to-robot response)

How are you? — bargraphs
(health, rollover, collision)

Command progress? — stripchart
(progress over time)

aaaaa

0

aaaaaa

aaaaaaa o

Figure 1. PdaDriver and control modes. image (top center),
direct (top right), map (bottom center), sensor (bottomright)

4 Waypoint Driving
4.1 Image-based

Remote driving is an inherently visual task, especially
for unstructured or unknown terrain. Thus, we have devel-
oped a method for waypoint driving using still images. Our
method was inspired by [8], but has two significant differ-
ences. First, we use a cameramodel which corrects for first-
order radial distortion. This allows us to use wide-angle
lenses. Second, instead of continuous groundplane reprojec-
tion, we use a flat-earth projection model. This simplifies
computation, yet works well over short distances.

PdaDriver’s “image mode” (Figure 1, top center) dis-
playsimages from arobot camera. Horizontal lines overlaid
on the image indicate the projected horizon line and the
robot width at different depths. The user is able to position
(pan and tilt) the cameraby clicking in the lower-|€eft control
area. The user drives the robot by clicking a series of way-
points on the image and then pressing the go button.

Camera model

To aid the operator’s perception of the remote environ-
ment, we are using color CCD cameras with wide-angle
lenses. To correct for the optical distortion inherent with
these lenses and to obtain a precise estimate of focal length,
we use the camera model and calibration technique
described by Tsai [15]. Tsai’smodel isbased on pinhole per-
spective projection and incorporates five intrinsic and six
extrinsic camera parameters.

Our Pioneer-AT is equipped with a forward-mounted
Supercircuits PC17 (2.8 mm focal length, 60 deg HFOV).
Our Pioneer2-AT hasatop-mounted Sony EV1-D30 pan-tilt-
zoom (3.2-38.9 mm focal length, 6.7-70 deg HFOV). Since
both units have the same size CCD and because we digitize
thevideo signal (Square NTSC, 640x480 pixels) using iden-
tical framegrabbers, the only camera parameters which dif-
fer between the two robots are focal length and first-order
radial distortion coefficient.

Flat-earth projection model

To transform image points to world points (and vice
versa), we use perspective projection based on a pinhole
camera model. We assume that the ground plane is locally
flat and that it is parallel to the camera central axis (for zero
cameratilt). We perform the forward projection as:

1. compute undistorted coordinates (Tsai dewarp)

2. transform from image to CCD sensor plane

3. project from sensor plane to camera frame

4. transform from camera frame to world frame

Although this procedure computes 3D world points, we
only use 2D coordinates (i.e., ground points) for driving.



Designation error

There are many factors that affect the precision of way-
point designation, and consequently, driving accuracy. Some
of these factors, such as camera calibration, have relatively
minor influences on the resulting projection and will not be
discussed here. See [8] for adetailed discussion.

For PdaDriver, stylus input has a considerable impact.
Unlike mouse-based interfaces, PDA’s do not show a cursor
to provide position feedback to the operator. Point selection
(screen tap) is, therefore, essentially open loop. Addition-
ally, stylus calibration can only partially compensate for
touchscreen misalignment and irregularities. Thus, pointing
precision may vary considerably across the display.
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Figure 2. Projection uncertainty for zero cameratilt
(downrange error due to pixel position)

The most significant factor, however, is the projection
uncertainty caused by limited image resolution. Because
PdaDriver is constrained by display hardware to |ow-resolu-
tion (208H x 156V) images, each pixel projects to alarge
ground-plane area. Moreover, with perspective projection
and low-mounted cameras with low tilt, image points may
be transformed to 3D points with high uncertainty. For
example, Figure 2 shows how downrange projection uncer-
tainty varies with vertical pixel position when there is no
camerartilt. We can see from this graph that pixels near the
image center may cause large driving errors.

41 Map-based

Although image-based driving is an efficient command
mechanism, it may fail to provide sufficient contextua cues
for good situational awareness. Maps can remedy this by
providing reference to environmental features, explored
regions and traversed path.

In PdaDriver's “map mode” (Figure 1, bottom center),
the operator defines a series of waypoints by clicking points
on a map. We build maps from range data (sonar, stereo, or
ladar) using a 2D histogram occupancy grid. Our method is
inspired by Borenstein and Koren’s HIMM method, but dif-
fersin several respectd3].

Asin HIMM, we use a 2D Cartesian histogram grid to
map the environment. Each grid cell contains a certainty
value cv that indicates the confidence of an obstacle (or free
space) inthe cell. Unlike HIMM, we use asigned 8-bit inte-
ger to represent certainty values (-127=clear, 0=unknown,
127=obstacle). Thiswider range improves map appearance.

Instead of HIMM's large, world-fixed grid, we use a
small grid (200x200 with 10 cm x 10 cm cells) whichis peri-
odically relocated in response to robot motion. Specifically,
whenever approaches aborder, we perform agrid shift oper-
ation (discarding cells which are pushed over the grid
boundary) to keep the robot on the map. In this way, we are
able to construct useful “global” maps (i.e., up to 20x20 m)
while bounding computation and memory usage.

The major difference between HIMM and our approach
is how we update the histogram grid. In HIMM, and its suc-
cessors (VFH and VFH+), sonar ranges are used only while
the robot is moving. This reduces the impact of spurious
readings due to multiple reflections and sensor noise. How-
ever, this also makes HIMM perform poorly when dynamic
obstacles are present: if the robot is stopped, the map does
not reflect moving objects. To address this shortcoming, we
update the grid whenever arange reading is avail able. How-
ever, if the robot is stopped, we only use the reading if it
indicates clear (i.e., no return or alarge range).

In addition to range processing, we update the grid to
account for localization error. We do this so that the map
reflects how certain we are about the robot’s pose, especialy
with respect to mapped features of the environment. Thus,
whenever localization error increases, we globally incre-
ment/decrement all certainty values towards zero. As acon-
sequence, local (recently mapped) areas appear “crisp” and
distant (long-ago mapped) regions become fuzzy.

As an example, consider the localization of a skid-
steered vehicle using only odometry. With skid-steering,
rotation (e.g., in-place turning) produces larger dead-reck-
oning errors than trandation. We can use this fact to com-
pute confidence value change Acv due to vehicle motion:

Acv = (KAt) + (K Ar) (N}

where At and Ar are position and orientation changes since
the last grid update. The two constants, K, and K, , provide
an estimate of error growth. The grid update is then:

for each cell ingrid do
if cv>0thencv=cv- Acv
eseif cv< Othencv=cv+Acv
end

Because this update is computationally expensive (i.e., it
reguires modifying every cell), we only perform the opera-
tion when there is considerable change in localization error.



5 Remotedriving tests

We are now studying how collaborative control, human-
robot dialogue, and waypoint-based driving can improve
multi-robot remote driving. Our goal isto understand how to
create effective human-robot teams for performing tasks in
unknown and unstructured environments.

Figure 3. Indoor surveillance with two robots
left: PioneerAT (far) and Pioneer2-AT (near)
right: PdaDriver PioneerAT (top), Pioneer2-AT (bottom)

We recently conducted two testsinvolving a single oper-
ator and two mobilerobots. In thefirst test, the operator used
both robots to conduct surveillance in an unknown indoor
environment (Figure 3). The primary tasks were to map the
environment and to track intruders. To assist the human in
these tasks, each robot was equipped with a motion detec-
tion module. This module detects motion by acquiring cam-
eraimages and computing interframe differences whenever
the robot is stationary. If the robot detects a moving object,
it notifies the human and asks what to do.

Question from p2at

o |[Mation detected. Is this an intruder? If
“a |[you answeer ', Twill followe hirm,

Figure4. Human-robot interaction during surveillance

Figure 4 shows an example of this interaction occurring
during the test. One of the robots has detected motion and
has generated a question for the human: “Motion detected. Is
this an intruder? If you answer ‘y’, | will follow him.”

PdaDriver presents this question to the user and displays an
image showing the motion area (marked with a bounding
box). At this point, the human has the opportunity to decide
whether or not an intruder is present.

In the second test, the operator remotely drove the two
robots through an unfamiliar outdoor environment. The
objective for this test was to perform reconnaissance in the
presence of dynamic (moving) and static hazards. Because
the environment had not been previously explored, the oper-
ator was forced to rely on waypoint driving and on-robot
safeguarding to conduct the task.

Figure 5. Cross-country driving with two robots

Figure 5 shows human-robot interaction during the sec-
ond test. Since the human can only focus his attention on one
robot at a time, we use collaborative control to unify and
coordinate the dialogue. Specifically, we arbitrate among the
questions from the robot so that the human is always pre-
sented with the one which is most urgent (in terms of safety,
task priority, etc.) This alows us to maximize the human’s
effectiveness at performing simultaneous, paralel control.
In addition, because each robot is aware that the human may
not be able to respond (i.e., because he is busy or unavail-
able), it isfree to attempt to resolve the problem on its own.

6 Discussion
6.1 Human-robot collaboration

In our testing, we found that are two key factors for
achieving effective human-robot collaboration. First, roles
and responsibilities must be assigned according to the capa-
bilities of both the human and the robot. In other words, for
any given task, the work needs to be partitioned and given to
whomever isbest equipped to handleit. Although this might
seem easy to do, in practice it is not. In particular, vehicle
teleoperation tasks, such asidentifying obstaclesin an unfa-
miliar environment, can be highly situation dependent.
Thus, even if the robot has previously accomplished a task



by itself, it may not be able to the next time without some
amount of human assistance.

In the case of multi-robot remote driving by a single
operator, the human usually constrains performance because
he has limited sensorimotor and cognitive resources to
share. Thus, we need to reduce, as much as possible, the
level of attention and control the operator must dedicate to
each robot. This is true whether the human controls the
robots individually or as a group (in formation, as a task
team, etc.). Moreover, even if one or more robots work
together (i.e., robot-robot collaboration), we must till find
waysto direct the human’s attention to whereit is needed, so
that he can help solve problems.

Oneway to achievethisisfor the human to focus on glo-
bal strategy and task planning (e.g., where to go) and to
allow the robots to handle the low-level details (i.e., how to
get there safely). Then, whenever arobot completesatask or
encounters a problem, it notifies the operator. If multiple
robots, working individually or as a team, encounter prob-
lems at the same time, we arbitrate among the requests to
identify the most urgent one for the human to address.

Given this approach, the second factor is clear: we must
make it easy for the human to effect control and to rapidly
assess the situation. In other words, we need to make the
human-robot interface as efficient and as capable as possi-
ble. In our system, therefore, we designed PdaDriver to
facilitate quick (single-touch) command generation, situa-
tional awareness, and human-robot dialogue.

Dialogue is particularly important when the human is
operating multiple robots. Dialogue allows the operator to
review what has happened, to understand problems each
robot has encountered, and to be notified when his assistance
is needed. Dialogue also improves context switching:
enabling the human to quickly change his attention from
robot to robot, directing and answering questions as needed.

6.2 Benefits of collabor ative control

By enabling humans and robots to work as partners, we
have found that collaborative control provides significant
benefits to multi-robot remote driving. First, it allows task
allocation to adapt to the situation at hand. Unlike other
forms of teleoperation, in which the division of labor is
defined a priori, collaborative control allows human-robot
interaction and autonomy to vary as needed. If the robot is
capable of handling a task autonomously, it can do so. But,
if it cannot, the human can help.

Second, we have observed that collaborative control
reduces the impact of operator limitations and variation on
system performance. Because allows the robot to treat the
operator as a limited source of planning and information,
collaborative control allows use of human perception and
cognition without requiring continuous or time-critical

response. Hence, if the human is unavailable because he is
performing other tasks, the system will still function.
Finally, we have seen that dial ogue allows the human to
be highly effective. By focusing attention on whereit ismost
needed, dialogue helps to coordinate and direct problem
solving. In particular, we have found that in situations where
the robot does not know what to do, or in whichitisworking
poorly, asimple human answer (a single bit of information)
isoften all that is required to get the robot out of trouble.
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