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Abstract

Modern power systems face significant operational challenges due to the accelerated and

much needed deployment of decentralized renewable generation. As a matter of fact, such

deployment has increased power imbalances leading to increased reserve requirements in

power transmission grids and is causing operational issues in power distribution grids associ-

ated with the delivered quality-of-service (especially concerning voltage quality) as well as

lines and transformers congestions. A potential solution to tackle these challenges is to define

efficient and scalable control frameworks in active distribution networks (ADNs) capable of: (i)

satisfying the local ADNs’ constraints and (ii) aggregating heterogeneous resources at different

timescales to provide ancillary services to the transmission network. In this context, this thesis

proposes methods for controlling and planning distributed energy resources (DERs) in ADNs.

In particular, the thesis deals with three main challenges: (i) developing and experimentally

validating grid-aware real-time control frameworks, (ii) estimating power grid’s models from

distributed measurements to be used for grid-aware control schemes, and (iii) wide-scale

planning of DERs in ADNs.

The first part of the thesis proposes real-time grid-aware control frameworks for ADNs hosting

heterogeneous, controllable, and stochastic DERs. In particular, it proposes a control and

scheduling framework that tracks a pre-defined power profile (dispatch plan) at the grid con-

nection point (GCP) of an ADN while ensuring that the grid states (i.e., the nodal voltages

and lines/transformer power/current flows) remain within the prescribed limits. However,

accounting for the exact grid constraints makes the control problem non-convex and com-

putationally expensive to solve (this category of problems is known as optimal power flows –

OPF). Due to this, OPF problems are often used for offline optimization schemes such as plan-

ning problems. In this context, this part of the thesis proposes, and experimentally validates,

computationally tractable OPF-based real-time control schemes. In particular, an accurate

and linear OPF (LOPF)-based real-time control scheme relying on power-flow sensitivity coef-

ficients is proposed to obtain a tractable and computationally efficient formulation. In this

respect, the work presents and compares different linearization policies for the LOPF. The

proposed schemes are applied to formulate suitable model predictive control (MPC) schemes

of DERs for tracking day-ahead dispatch plan at the GCP of an ADN. We use the Alternating

Direction Method of Multipliers (ADMM)-based distributed optimization scheme, enabling

the scalability of an original real-time MPC. Also for this case, the performance of different lin-

earization policies is assessed with particular reference to accuracy and computational speed.
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Abstract

Then, the dominant approach is identified and experimentally validated on a real-scale low

voltage microgrid hosted at the EPFL Distributed Electrical Systems Laboratory, representing

a replica of the 200kVA/0.4kV CIGRE microgrid benchmark system defined by the CIGRE Task

Force C6.04.02.

The above control scheme works well when the ADN is interfaced with sufficient flexible re-

sources. However, it might fail (i.e., resulting in poor control performance - high dispatch track-

ing error) when the network is interfaced with a high number of stochastic non-controllable

DERs. In such a case, the energy rating of flexible resources, for example battery energy storage

systems (BESSs), might not be sufficient and may suffer from early saturation of their State-

of-Charge (SOC), leading to unreliable dispatch tracking. This part of the thesis tackles this

problem with a two-layer MPC. The upper layer MPC, running at a slower timescale, optimizes

battery SOC trajectories while minimizing the tracking error considering the forecast of the

stochastic demand and generation for the whole day. Then, the lower layer MPC, running at a

faster timescale, takes battery SOC (from upper layer) trajectories as constraints while achiev-

ing a high-resolution tracking of the dispatch plan. The control scheme is experimentally

validated using a 1.5 MVA/2.5 MWh BESS connected to an actual 24-node medium voltage

(MV) ADN in Switzerland hosting uncontrollable 3.2 MWp distributed photovoltaic generation,

3.4 MVA hydro generations, and 2.8 MW of base demand.

The above control schemes assume that the grid models (topology and electrical line pa-

rameters) are known and, therefore, referred to as model-based control schemes. However,

distribution networks models might be unavailable, partially missing, or often incorrect. In

this context, the second part of the thesis develops the concept of model-less or measurement-

based control schemes where the network models are inferred from online measurements and

then used in the control frameworks. We investigate two approaches. First, the compound ad-

mittance matrix (Y) of an ADN is estimated, which is then used to compute relevant sensitivity

coefficients. It is referred to as the indirect estimation approach. The developed estimation

algorithm uses PMU synchrophasors measurements of voltage and current for the Y estima-

tion. The algorithm uses a linear estimation model that processes phasor measurements of

nodal voltages, injection currents, and branch currents. The estimation scheme is generic and

applicable to any unbalanced three-phase distribution network with shunt components and

generic topology (i.e., radial or meshed). The work proposes and analyses the performance

of a pre-processing strategy on the PMU’s raw measurements, which consists of grouping

the raw measurements in clusters and then using the averaged measurements from each

cluster. The proposed pre-processing step reduces the noise level, ultimately improving the

estimation quality of regression-based estimation methods such as least squares (LS) and

total least squares (TLS). The proposed approach is validated by numerical experiments for

different CIGRE and IEEE benchmark grids. Second, a direct measurement-based estimation of

the sensitivity coefficients is proposed using the nodal voltage and power measurements. The

direct and indirect approaches are then used to formulate a model-less/measurement-based

voltage control of the DERs in distribution networks. Finally, we compare them concerning

the uncertainty of the sensitivity coefficients estimates.

Since all the above control schemes rely on the flexibility offered by DERs and the amount of
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decentralized renewable energy resources (RERs) connected to the ADNs, the last part of the

thesis focuses on assessing and planning those DERs and RERs in the distribution networks of a

whole country. In particular, it focuses on (i) assessing the hosting capacity of ADNs concerning

Photovoltaic (PV) plants and (ii) planning controllable assets (e.g., BESS) as an alternative to

grid reinforcement. However, as the countrywide models of the distribution grids are generally

unavailable, this part first tackles the challenge of estimating realistic synthetic models of

power distribution networks using public data sets. It is done by developing an unsupervised

approach to infer the grid’s topology and characteristics starting from the publicly available

locations of the Extra High Voltage (EHV) substations and geo-referenced socio-economic

data such as population density and heat demand map. Then, it determines the PV hosting

capacity of distribution networks by formulating a grid-aware planning problem. The LOPF

models developed previously are used to account for the grid constraints. Then, an optimal

planning problem of BESSs in ADNs is proposed to increase the hosting capacity of the

distribution networks. Finally, we derive cost-optimal plans for the countrywide deployment

of PV generation and BESS considering the MV power distribution infrastructure’s technical

limitations. The method is applied to Switzerland as a case study.

Key words: Active distribution networks (ADNs), AC optimal power flow (AC-OPF), admit-

tance matrix estimation, alternating direction method of multipliers (ADMM), battery energy

storage system (BESS), congestion management, data-driven control, data-driven estimation,

dispatching, distributed control, grid-aware control, hosting capacity, inference, least-squares,

linear optimal power flow, measurement-based control, microgrids, model-less control, model

predictive control, optimal planning, optimal power flow, photovoltaic, recursive least squares,

robust voltage control, sensitivity coefficients, stochastic optimization, synthetic power net-

works.
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Résumé

Les réseaux électriques modernes sont confrontés à des défis opérationnels importants en

raison du déploiement accéléré et indispensable de la production renouvelable décentrali-

sée. En fait, ce déploiement augmente les déséquilibres de puissance, ce qui entraîne une

augmentation des besoins de réserve dans les réseaux de transport d’électricité et cause des

problèmes opérationnels dans les réseaux de distribution d’électricité associés à la qualité

du service fourni (en particulier concernant la qualité de la tension) ainsi qu’à la congestion

des lignes et des transformateurs. Une solution potentielle pour relever ces défis est de dé-

finir des environnements de contrôle efficaces et évolutifs dans les réseaux de distribution

actifs (ADNs) capables de : (i) satisfaire les contraintes locales des ADNs et (ii) agréger des

ressources hétérogènes à différentes échelles de temps pour fournir des services auxiliaires au

réseau de transmission. Dans ce contexte, cette thèse propose des méthodes de contrôle et de

planification des ressources énergétiques distribuées (DERs) dans les ADNs. En particulier, la

thèse aborde trois défis principaux : (i) le développement et la validation expérimentale de

environnements de contrôle en temps réel adaptés au réseau, (ii) l’estimation des modèles

du réseau électrique à partir de mesures distribuées à utiliser pour les schémas de contrôle

adaptés au réseau, et (iii) la planification à grande échelle des DERs dans les ADNs.

La première partie de la thèse propose des environnements de contrôle en temps réel pour

les ADNs hébergeant des DERs hétérogènes, contrôlables et stochastiques. En particulier,

elle propose un environnements de contrôle et de programmation qui suit un profil de puis-

sance prédéfini (plan de répartition) au point de connexion au réseau (GCP) d’un ADN tout

en garantissant que les états du réseau (c’est-à-dire les tensions nodales et les flux de puis-

sance/courant des lignes/transformateurs) restent dans les limites prescrites. Cependant, la

prise en compte des contraintes exactes du réseau rend le problème de contrôle non convexe

et coûteux à résoudre (cette catégorie de problèmes est connue sous le nom de répartition

optimale des puissances – OPF). Pour cette raison, les problèmes OPF sont souvent utilisés

pour des schémas d’optimisation hors ligne tels que les problèmes de planification. Dans

ce contexte, cette partie de la thèse propose, et valide expérimentalement, des schémas de

contrôle en temps réel basés sur les OPF. En particulier, un schéma de contrôle en temps réel

basé sur l’OPF linéaire et précis (LOPF) qui s’appuie sur les coefficients de sensibilité du flux

de puissance est proposé pour obtenir une formulation traçable et efficace en termes de calcul.

À cet égard, le travail présente et compare différentes politiques de linéarisation pour le LOPF.

Les schémas proposés sont appliqués pour formuler des schémas de contrôle prédictif de
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modèle (MPC) appropriés pour les DERs afin de suivre le plan de répartition du jour précédent

au GCP d’un ADN. Nous utilisons un schéma d’optimisation distribué basé sur la méthode

des multiplicateurs à direction alternée (ADMM), ce qui permet l’extensibilité d’un MPC

original en temps réel. Toujours pour ce cas, les performances de différentes politiques de

linéarisation sont évaluées, notamment en regard de précision et de vitesse de calcul. Ensuite,

l’approche dominante est identifiée et validée expérimentalement sur un micro-réseau basse

tension à échelle réelle hébergé au Laboratoire des systèmes électriques distribués de l’EPFL,

représentant une réplique du système de référence de micro-réseau CIGRE de 200kVA/0.4kV

défini par la Task Force C6.04.02 du CIGRE.

Le schéma de contrôle ci-dessus fonctionne bien lorsque l’ADN est interfacé avec des res-

sources flexibles suffisantes. Cependant, il peut échouer (c’est-à-dire entraîner une mauvaise

performance de contrôle - erreur de suivi de la répartition) lorsque le réseau est interfacé avec

un nombre élevé de DER stochastiques non contrôlables. Dans un tel cas, l’énergie nominale

des ressources flexibles, par exemple les systèmes de stockage d’énergie par batterie (BESSs),

peut ne pas être suffisante et peut souffrir d’une saturation précoce de leur état de charge

(SOC), conduisant à un suivi peu fiable du dispatching. Cette partie de la thèse aborde ce

problème avec un MPC à deux couches. Le MPC de la couche supérieure, fonctionnant à une

échelle de temps plus lente, optimise les trajectoires de l’état de charge des batteries tout en

minimisant l’erreur significative du suivi en considérant la prévision de la demande et de la

production stochastiques pour la journée entière. Ensuite, le MPC de la couche inférieure,

fonctionnant à une échelle de temps plus rapide, prend les trajectoires du SOC de la batterie

(de la couche supérieure) comme contraintes tout en réalisant un suivi à haute résolution

du plan de répartition. Le schéma de contrôle est validé expérimentalement en utilisant une

BESS de 1.5 MVA/2.5 MWh connectée à un ADN de moyenne tension (MV) de 24 nœuds en

Suisse, hébergeant une production photovoltaïque distribuée incontrôlable de 3.2 MWp, une

production hydroélectrique de 3.4 MVA, et une demande de base de 2.8 MW.

Les schémas de commande ci-dessus supposent que les modèles du réseau (topologie et

paramètres des lignes électriques) sont connus et sont donc appelés " schémas de commande

basés sur les modèles ". Cependant, les modèles des réseaux de distribution peuvent être

indisponibles, partiellement manquants, ou souvent incorrects. Dans ce contexte, la deuxième

partie de la thèse développe le concept de systèmes de contrôle sans modèle ou basés sur la

mesure où les modèles de réseau sont déduits des mesures en ligne et ensuite utilisés dans

les environnements de contrôle. Nous étudions deux approches. La première consiste à

estimer la matrice d’admittance composée (Y) d’un ADN, qui est ensuite utilisée pour calculer

les coefficients de sensibilité pertinents. C’est ce que l’on appelle l’approche estimation

indirecte. L’algorithme d’estimation développé utilise les mesures de tension et de courant des

synchrophaseurs des PMU pour l’estimation de Y. L’algorithme utilise un modèle d’estimation

linéaire qui traite les mesures des phasors des tensions nodales, des courants d’injection et

des courants de branche. Le schéma d’estimation est générique et applicable à tout réseau de

distribution triphasé déséquilibré avec des composants shuntés et une topologie générique

(c’est-à-dire radiale ou maillée). Le travail propose et analyse la performance d’une stratégie

de prétraitement des mesures brutes du PMU, qui consiste à regrouper les mesures brutes en
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clusters et ensuite à utiliser les mesures moyennes de chaque cluster. L’étape de prétraitement

proposée réduit le niveau de bruit, améliorant finalement la qualité d’estimation des méthodes

d’estimation basées sur la régression telles que les moindres carrés (LS) et les moindres carrés

totaux (TLS). L’approche proposée est validée par des expériences numériques pour différents

réseaux de référence CIGRE et IEEE. Deuxièmement, une estimation basée sur une estimation

direct des coefficients de sensibilité est proposée en utilisant les mesures de tension et de

puissance nodales. Les approches directe et indirecte sont ensuite utilisées pour formuler

un contrôle de la tension des DER dans les réseaux de distribution basé sur un modèle sans

mesure. Enfin, nous les comparons en ce qui concerne l’incertitude des estimations des

coefficients de sensibilité.

Puisque tous les schémas de contrôle ci-dessus reposent sur la flexibilité offerte par les DERs et

la quantité de ressources d’énergie renouvelable décentralisées (RERs) connectées aux ADNs,

la dernière partie de la thèse se concentre sur l’évaluation et la planification de ces DERs et

RERs dans les réseaux de distribution d’un pays entier. En particulier, elle se concentre sur

(i) l’évaluation de la capacité d’accueil des ADN concernant les centrales photovoltaïques

(PV) et (ii) la planification des source actifs contrôlables (par exemple, BESS) comme une

alternative au renforcement du réseau. Cependant, comme les modèles nationaux des ré-

seaux de distribution ne sont généralement pas disponibles, cette partie s’attaque d’abord

au défi d’estimer des modèles synthétiques réalistes des réseaux de distribution d’électricité

en utilisant des ensembles de données publiques. Pour ce faire, une approche non supervi-

sée est développée pour déduire la topologie et les caractéristiques du réseau à partir des

emplacements des sous-stations à très haute tension (THT) accessibles au public et des don-

nées socio-économiques géoréférencées telles que la densité de population et la carte de

demande de chaleur. Ensuite, il détermine la capacité d’accueil PV des réseaux de distribution

en formulant un problème de planification sensible au réseau. Les modèles LOPF développés

précédemment sont utilisés pour prendre en compte les contraintes du réseau. Ensuite, un

problème de planification optimale des BESSs dans les ADNs est proposé pour augmenter la

capacité d’accueil des réseaux de distribution. Enfin, nous dérivons des plans optimaux en

termes de coûts pour le déploiement à l’échelle nationale de la production PV et des BESS en

tenant compte des limitations techniques de l’infrastructure de distribution électrique MT. La

méthode est appliquée à la Suisse comme étude de cas.

Mots clés : Réseaux de distribution actifs (ADN), flux de puissance optimal (OPF) en cou-

rant alternatif, estimation de la matrice d’admittance, méthode des multiplicateurs dans

le sens alternatif (ADMM), système de stockage d’énergie par batterie (BESS), gestion de la

congestion, commande pilotée par les données, estimation pilotée par les données, réparti-

tion de l’énergie, commande distribuée, commande en fonction du réseau, capacité d’accueil

photovoltaïque, moindres carrés, flux de puissance optimal linéaire, basé sur la mesure, micro-

réseaux, contrôle sans modèle, contrôle prédictif de modèle, planification optimale, flux de

puissance optimal, photovoltaïque, moindres carrés récursifs, contrôle de tension robuste,

coefficients de sensibilité, optimisation stochastique, réseaux synthétiques.
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1 Introduction

Context and Motivations

Power distribution networks are undergoing substantial changes due to the accelerated de-

ployment of distributed energy resources (DERs) in the form of local generation plants such

as stochastic renewable energy resources (RERs), stochastic demands such as electric vehicle

(EV)-charging stations, and distributed battery energy storage systems (BESS). In contrast

to the conventional power system, where the power flows mainly in one direction from cen-

tralized generation units via transmission to distribution networks, modern power systems

are characterized by way more complex energy flows involving the whole infrastructure. This

is due to increased DERs integration, especially RERs, and their stochastic nature. On the

one hand this phenomenon has resulted in power imbalances leading to increased reserve re-

quirements in power transmission grids as reported by several transmission system operators

(TSOs) (e.g., Californian [1] and Australian system operators [2]), on the other hand it is at the

origin of operational issues in power distribution grids concerning the delivered quality-of-

service (mainly associated to voltage quality), as well as lines and transformers congestions

[3, 4]). As a matter of fact, the distribution system operators (DSOs) face significant chal-

lenges associated with grid reinforcements and the capability of being dispatched, while TSOs

are experiencing increasing needs for the allocation and deployment of adequate regulating

power reserves. These aspects pose severe challenges to the DSOs’ and TSOs’ conventional

planning and operational practices to accommodate the stochastic, partially controllable, and

semi-bidirectional nature of the DERs, defining the notion of Active Distribution Networks

(ADNs) [5, 6].

Within the context of ADNs, they are defined by CIGRE and IEEE Working Groups [7, 8] as

follows.

“ADNs have systems in place to control a combination of distributed energy resources, defined as

generators, loads and storage. DSOs have the possibility of managing the electricity flows using

a flexible network topology. DERs take some degree of responsibility for system support, which

will depend on a suitable regulatory environment and connection agreement.”
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Chapter 1. Introduction

These systems adopt advanced information and communication technologies (ICT) and

distributed metering units [9]. ADNs are likely to install a high number of low-cost distribution-

grade phasor measurement units (PMUs), and smart meters [10, 11, 12] and deploy real-time

state estimation (RTSE) algorithms. Such a situational aware infrastructure may serve as a

backbone for deploying advanced control schemes to optimally operate ADNs at different time

horizons with different objectives while maintaining nodal voltages, lines, and transformer

power-flows within safe operational bounds and utilizing the flexibility offered by the DERs

[13, 14].

As acknowledged by the technical literature, a major challenge in exploiting the flexibility of

DERs is to keep the local grid constraints (nodal voltages, lines, and transformers’ physical

limits) within safe operation limits. However, as widely known, any ADN optimal control

problem accounting for the exact grid constraints makes it non-convex (i.e., the so-called

optimal power flow – OPF problem), hence difficult to solve within a strict time deadline

as OPF problems are usually computationally expensive. Therefore, they are often used for

offline optimization schemes such as for ADNs’ planning purposes. In this respect, several

efficient techniques have been proposed in the literature. However, either they cannot meet

the strict time deadlines of real-time controls, or the assumptions do not hold for real-life

power networks. Another challenge to implement OPF-driven control of ADNs is that the

necessary parameters to model the grid constraints are not always available and/or may be

incorrect if available. Inaccurate information on the grid’s parameters leads to erroneous

models, causing inaccuracy in the estimates of grid analysis tools such as power flow, state

estimation, etc. To address this issue, the accurate and time-synchronised measurements

from PMUs could be used for the on-line estimation of grid models. In this respect, existing

methods in the literature either ignored the presence of shunt elements in the distribution

networks or made unrealistic assumptions about the measurements’ noise. Therefore, they

may not be applicable to real-life networks.

The above two challenges are addressed in this Thesis. The first is tackled by developing control

schemes using convex OPF models such as linearized power flow and relaxed OPF. The derived

control schemes have been used to showcase how to leverage heterogeneous DERs flexibility to

dispatch ADNs while satisfying the local operational constraints. The second challenge related

to the non-availability of grid models is addressed by developing measurement-based/data-

driven/model-less control schemes. In this respect, the Thesis presents original techniques

to estimate the compound admittance matrix and power-flow sensitivity coefficients of a

generic untransposed and unbalanced power network with a generic topology (i.e., either

radial or meshed). The estimated models are then used to formulate control schemes for ADNs.

The above control schemes are validated on real-life ADNs hosted at the EPFL Distributed

Electrical Systems Laboratory or operated by Swiss DSO.

Finally, to scale the results of the DER controls and study the impact of large-scale deployment

of RERs, such as in a country, the Thesis proposes a process for the countrywide estimation of

the ADNs’ hosting capacity of stochastic RERs (such as photovoltaic plants). The proposed
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process also computes the amount of BESSs necessary to increase RERs installation beyond

the ADNs’ hosting capacity.

Thesis Outline

The Thesis is organised as follows.

Chapter 2 presents a grid-aware control and scheduling algorithms for DERs in ADNs. The de-

veloped scheduling scheme, a stochastic-based optimization accounting for the uncertainty of

the generation and demand, is designed to compute day-ahead dispatch plans. The associated

real-time controller, based on model predictive control (MPC), tracks the day-ahead dispatch

plan during the day. Both the control and scheduling stages account for the grid operational

constraints (i.e., nodal voltages, lines, and transformer capacity) via the power-flow sensitivity

coefficient-based linearized OPF model. The Chapter also presents the experimental vali-

dation of the proposed framework on a real-scale microgrid hosted at the EPFL Distributed

Electrical Systems Laboratory, Switzerland.

In Chapter 3, we go a step further from the work in Chapter 2 by proposing a reliable dispatch-

ing framework in case the available BESS energy capacity is insufficient to cover the dispatch

error. This specific problem is addressed by developing a two-layer MPC scheme where the

first layer (acting at a slower pace) computes short-term schedule for the BESS utilization and

the second layer (acting at a faster pace) tracks the dispatch plan in real-time considering

constraint on BESS utilization imposed by the first layer. In this scheme, the control accounts

for the grid constraints via the augmented relaxed (AR)-OPF model [15], which provides the

exact solution of the OPF. The proposed framework is validated on a real-life medium voltage

network hosting 1.5 MW/2.5 MWh BESS, 3.2 MW PV, 3.4 MVA hydro generation and 2.8 MW of

base demand.

In Chapter 4, we present an estimation scheme for the measurement-based estimation of

the compound admittance matrix of an untransposed and unbalanced power network with a

generic topology. The estimated admittance matrix is used to compute the power-flow sensi-

tivity coefficients. A tool to quantify the uncertainty on the estimated sensitivity coefficient is

also presented. Furthermore, the Chapter presents another scheme for the estimation of the

sensitivity coefficient where only localized power and nodal voltage magnitude measurements

are required. The two methods are numerically validated and compared in terms of estimation

accuracy and variance of the estimates.

In Chapter 5, we present a data-driven/model-less control scheme where, first, the measure-

ments are used to estimate the power-flow sensitivity coefficients (using the method developed

in Chapter 4); then, they are used in a real-time control. Furthermore, the chapter presents a

robust voltage control scheme where the uncertainty of the estimated power-flow sensitivity

coefficients is accounted for. The proposed control scheme is experimentally validated on a

real-scale microgrid hosted at the EPFL Distributed Electrical Systems Laboratory.

3



Chapter 1. Introduction

In Chapter 6, we study the impact of a large amount of RERs deployment on the planning of

countrywide distribution networks. To do that, the Chapter presents a scheme to generate

synthetic distribution network models on a country scale. Then, the Chapter presents an

optimal planning process to compute the PV hosting capacity of the distribution networks.

It also presents a planning scheme for optimal sizing and siting of the BESS when the ADNs

exceed their PV hosting capacity. Furthermore, the Chapter presents an optimization scheme

for cost-optimal countrywide allocation of the PV-BESS units for a given PV installation target.

Finally, Chapter 7 summarizes the main findings of the Thesis and future perspectives.

It is worth noting that, in view of the large amount of subjects treated by the Thesis, the

literature survey is integrated at the beginning of each Chapter.

Contributions

The original contributions of each Chapter of this Thesis are listed below.

Chapter 2

• Formulation of a generic and computationally-efficient scheduling and control frame-

work to dispatch heterogeneous resources hosted in ADNs while accounting for grid

constraints via linearized power-flow grid models.

• Formulation of a distributed optimization-based real-time MPC scheme for DERs.

• First experimental validation of a rigorous distributed MPC-based framework on a

real-scale microgrid accounting for the grid constraints.

Chapter 3

• Formulation of a two-layer MPC scheme consisting of a farsighted MPC (acting on a

longer horizon till the end of the day) and a myopic MPC (acting on a shorter horizon of

5 minutes), to avoid BESS SOC saturation in dispatching ADNs.

• Formulation of a real-time control where the power grid is modeled by an exact convex

model of the AC-OPF, i.e., the AR-OPF. Thanks to its exactness, the AR-OPF guarantees

the feasible operation of the grid with respect to any possible grid state. Compared to

the SOCP-based AC-OPF models, it uses a network model that take into account shunt

elements resulting in a correct binding of the grid’s branch currents.

• We report the first real-scale experimental validation of a grid-aware AC-OPF-based

real-time MPC deployed on a real MV distribution network hosting uncontrollable 3.2

MWp of distributed photovoltaic generation, 3.4 MVA of hydro generations, and a 2.8
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MW base demand. A grid-connected 1.5 MVA/2.5 MWh BESS was the sole controllable

resource in this setup.

Chapter 4

• Formulation of a linear model for the estimation of the compound admittance matrix of

generic untransposed three-phase distribution networks with generic meshed/radial

topologies taking into account both branch and shunt admittance matrices of the grid

branches (i.e. with no approximation on the grid model).

• Development of a pre-processing strategy on the raw PMU measurements for improving

the performance of least squares (LS) and total least squares (TLS)-based admittance

estimation schemes. The pre-processing reduces the impact of measurements noise,

ultimately improving the estimation performance of both LS and TLS.

• Development of an error propagation tool to quantify the uncertainty on the estimated

sensitivity coefficients derived from the estimated compound admittance matrix.

• Recursive least square (RLS)-based estimation of power-flow sensitivity coefficients and

performance evaluation with different variants of RLS.

• Performance comparison of the above two estimation schemes of the power-flow sensi-

tivity coefficients with respect to estimation accuracy and variance.

Chapter 5

• Formulation of a robust voltage control problem using the measurement-based es-

timated sensitivity coefficients and their uncertainties. Performance comparison of

different estimation techniques of measurement-based estimations of sensitivity coeffi-

cients.

• Experimental validation of the proposed robust-voltage control scheme on a real-scale

microgrid.

Chapter 6

• Development of an unsupervised method to estimate synthetic models of medium

voltage distribution grids of a country using publicly available data.

• Development of a tractable convex OPF model to compute the PV hosting capacity of

ADNs, including cost-optimal BESSs siting and sizing. Use of the proposed convex opti-

mization problem to determine countrywide cost-efficient PV and BESS deployments

plans to accommodate a target PV generation level accounting for the capacity factor of

PV generation.
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• Assessment of the optimal deployment plan for PV systems and BESSs in Switzerland

to accommodate the PV generation target envisaged by the national energy strategy

accounting for the constraints of the distribution grids.
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Prelude

Controlling heterogeneous and stochastic energy resources connected to medium and low

voltage power distribution grids is crucial to displace centralized electricity generation in

favor of distributed renewable generation. This change of paradigm impacts the planning

and operational practices of both distribution system operators (DSOs) and transmission

system operators (TSOs). Indeed, DSOs may face significant issues associated with grid

reinforcements and the capability of being dispatched, while TSOs will experience increasing

needs for allocating and deploying regulating power.

Day-ahead and intra-day scheduling of distributed energy resources (DERs) and, in general,

heterogeneous DERs have been advocated in the literature to minimize the effect of uncertain-

ties. Such a scheduling determines before operations an expected power trajectory (dispatch

plan) at a particular time resolution that are followed during the real-time operation.

In this context, this part of the thesis presents two different real-time control schemes. The first,

in (Chapter 2), presents a model predictive control (MPC) scheme for tracking the dispatch

plan. MPC allows to optimize storage elements, such as battery energy storage systems (BESSs),

especially when the power injections are changing rapidly due to their stochastic nature. In

this work, a linearized grid model is used to obtain a tractable and linear formulation. The

linearized grid model uses power-flow sensitivity coefficients. The chapter also demonstrates

a distributed control using the alternating direction method of multiplier (ADMM). The

framework is validated on a real-life low-voltage microgrid hosted at the EPFL Distributed

Electrical Systems Laboratory. The second, in (Chapter 3), builds and improve upon the work

of Chapter 2. It is done by (i) developing a scheme to avoid early saturation of the controllable

resource during dispatching (for the cases when the grid is interfaced with high amount of

stochastic resources but not enough flexibility from the controllable resources) and (ii) using

a better optimal power flow (OPF) model by a relaxed AC-OPF formulation. This control

scheme is also experimentally validated using a 1.5 MVA/2.5 MWh BESS connected to an

actual Swiss DSO’s 24-node medium-voltage (MV) ADN hosting uncontrollable 3.2 MWp

distributed photovoltaic generation, 3.4 MVA hydro generations, and 2.8 MW base demand.
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2 Model-based Grid-aware Dispatching
of Active Distribution Networks

Accelerated displacement of conventional generation by renewable energy resources (RERs)

has increased the the stochasticity of electricity generation in the power transmission and

distribution grids. On the one hand, transmission grids are facing the challenge of sufficient

provision of ancillary services such as the scheduling and deployment of reserves. On the other

hand, power distribution grids are experiencing poor quality of service (QoS) and increased

events of congestion in existing lines and transformers. This Chapter tackles these challenges

by developing a scheduling and control framework for distributed energy resources (DERs)

in active distribution networks (ADNs). The framework consists of two algorithmic stages.

The first one (day-ahead scheduling) determines an aggregated dispatch plan based on the

forecasts of the stochastic demand and generations and controllable DERs’ flexibility. In the

second layer (real-time control), a model predictive control (MPC) is developed to optimize

the DERs’ active and reactive power set-points so that their aggregated contribution tracks the

dispatch plan while obeying DERs’ operational constraints as well as the grid’s ones. In both

the layers, the grid constraints are taken into account by a linearized optimal power flow (OPF)

model, to retain convexity and tractability, based on grids’ sensitivity coefficients. In view of

such a simplification applied to the grid constraints, the work investigates different linearized

OPF models and compares them with respect to grid modeling accuracy and computational

performance. The real-time MPC is formulated as a distributed optimization scheme using the

alternating direction method of multipliers (ADMM), enabling the scalability of the real-time

MPC. Finally, the proposed framework is experimentally validated on a real-scale microgrid

that reproduces the network specifications of the CIGRE microgrid benchmark system.

The Chapter includes results of publication [16, 17].

2.1 State-of-the-Art

Day-ahead and intra-day scheduling of DERs and, in general, heterogeneous DERs has been

advocated in the literature as a way to minimize the effect of uncertainties (e.g., [18, 19]) on the

bulk transmission system imbalances and, at the same time, solve local (regional) distribution
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grid operational issues. It consists in determining an average power trajectory (dispatch plan)

at a certain time resolution before operations that is then followed during real-time (RT)

operation. Different scheduling problems have been solved by existing works. For example,

works in [20, 21, 22, 23] aim at minimizing power imbalances and in [24] at maximizing

economic benefit. The work in [25] achieve load levelling and dispatch by controlling BESS.

During RT operation, the realized power profile deviates from the dispatch plan because of

forecast errors causing issues such as: power imbalances, lines/transformers congestions,

voltage outside bounds etc. To tackle these issues, several works proposed real-time controls

and energy management schemes [26, 27, 28, 29] with different objectives. The work in [26]

proposed a real-time control for voltage regulation, in [27] for congestion management, in

[28] for energy management and dispatch tracking, and in [29] for frequency regulation.

An extensive literature review on micro-grids controls and energy management schemes is

presented in [30]. However, the above works did not account for the grid constraints.

As known, accounting for the exact grid constraints makes the control problem non-convex

and computationally expensive to solve. In [31, 32], interior-point optimization schemes

are used to solve the non-convex OPF problem. However, they exhibit several drawback, for

example, they may converge to local solutions, are sensitive to initialization, and are generally

characterized by higher computational burden. To solve these issues, the convexification

of power flow equations are typically proposed by relaxing non-convex constraints or by

linearizing them (this last is usually adopted to increase the OPF tractability). [33] surveys

different relaxation schemes applied to the OPF problem. The works in [34] and [35] proposed

the use of semi-definite relaxation by using bus-injection model (BIM) and branch-flow model

(BFM). The works that proposed Second-Order-Cone-Program (SOCP) relaxation are applied

to the radial distribution network and may results in exact models when specific assumptions

are met. However, the solutions are not exact for networks characterized by branches with

shunt elements. The work in [15] proposed the so-called Augmented-Relaxed-OPF, which

provides exact solutions even for networks with a radial technology where branches’ shunt

elements are not neglected. It is achieved by adding extra constraints on the upper and lower

bounds of the nodal voltage magnitudes and currents. However, these schemes do not apply

to meshed networks. Another approach is based on the linearization of power flow equations,

for example, in [36, 37]. These schemes rely on the first (e.g.[36]) or multiple (e.g.[37]) order

Taylors series expansion of the power flow equations to express the nodal voltages, lines

current, and losses as a function of the power injections. A linearization method based on an

iterative approach is described in [38], and in [39] applied to distribution networks. However, it

can only be applied to networks without shunt elements. An alternative linearization method

that can be applied to both radial and meshed networks and accounts for shunt elements

too is using grids’ sensitivity coefficients [40] where these sensitivity coefficients (of nodal

voltages, lines currents and grid losses) are used to formulate an OPF problem.

In this work we use linearized OPF to achieve a computationally tractable real-time formu-

lation. Also, the linearized OPF using the sensitivity coefficients is applicable to a generic

network (i.e., meshed and radial with no approximations on branches models), in this work
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2.2 Problem Statement

we use this model to account for the grid constraints. In particular, we investigate different

approaches to compute the most accurate sensitivity coefficients for model predictive control

(MPC) of DERs in ADNs. The accuracy is defined by modeling accuracy of the grid states (i.e.,

nodal voltages) and line current flows against the true values, the latter obtained by solving

non-linear power flow, a posteriori. In this Chapter, first we describe different policies for

linearized OPF models. Then, we present the derived scheduling and control framework. The

real-time controls using different linearized OPF models are assessed with respect to modeling

accuracy and computational speed. Finally, the dominant scheme is used to carry out an

experimental validation of the proposed framework.

The main contributions of this work compared to the existing literature are the formulation

of a generic and computationally-efficient scheduling and control framework to dispatch

heterogeneous resources while accounting for grid constraints and its experimental validation

in a real-life setup. With respect to previous efforts of experimental validation in [20, 23, 28, 29]

and MPC-based control in [41, 42, 43, 44, 45, 46, 47], we report the first experimental validation

of a rigorous distributed MPC-based framework on a real-scale microgrid accounting for the

grid constraints.

2.2 Problem Statement

We consider a distribution grid with a generic topology (meshed or radial) interfacing hetero-

geneous controllable and uncontrollable DERs. The grid is dispatched at its grid connection

point (GCP) according to a pre-determined dispatch plan (to be determined the day before

operation). The dispatch action is achieved by coordinating the DERs operations while re-

specting their own constraints along with those of the grid. Inspired by the conventional

power system scheduling and operational approaches along with existing electricity market

design [48], the framework consists of two stages described below.

• Day-ahead scheduling: the grid operator computes a dispatch plan for the next day

based on the forecast of the stochastic generation and demand, the status of controllable

resources, and local grid constraints. The dispatch plan not only reflects the predictions

of the stochastic quantities but also ensures that DERs have a suitable level of flexibility

to track the dispatch plan in real-time. We assume that the dispatch plan has a 5-minutes

time resolution and is computed at 23:00 UTC the day before operations. This phase is

detailed in Sec. 2.4.

• Real-time operations: DERs are controlled in real-time, so to compensate for power

mismatches at the ADN’s GCP between the realization and dispatch plan. The control

problem is formulated as a distributed MPC. It accounts for future uncertainties along

the optimization horizon as well as DERs’ and grid’s constraints. The distributed for-

mulation decouples the DERs’ and the grid’s problems, which can be solved iteratively

until convergence. Real-time operations start at 00:00 UTC and end at 23:59:59 UTC.

13



Chapter 2. Model-based Grid-aware Dispatching of Active Distribution Networks

The formulation is detailed in Sec. 2.5.

In both stages, the grid constraints are represented by the so-called optimal power flow (OPF)

model, which is generally non-convex. Thus, one of the objective of this Chapter is to find a

suitable OPF model that is computationally tractable and meets the accuracy requirements of

real-time controls of ADNs. Then, the dominant grid model is used to formulate the scheduling

and control framework.

2.3 Linearized Power Flow Model

We consider a generic distribution network (meshed or radial) consisting of Nb nodes and

Nl branches. Let vectors v ∈C(Nb−1) and i ∈CNl represent nodal voltages and branch currents

phasors respectively. Their magnitudes are denoted by |v| ∈R(Nb−1) and |i| ∈RNl respectively.

The symbols p ∈R(Nb−1) and q ∈R(Nb−1) are the nodal active and reactive controllable injec-

tions for all nodes except the slack node. Scalars p l , q l ∈ R are the total active and reactive

transmission losses seen at the GCP. Let the index t denote the current time index, previous

and next time indices are denoted by t −1 and t +1 respectively. All the symbols for the time t

are denoted with subscript t . The symbol∆t be the time interval between the subsequent time

indices. Let p̂unc
t ∈R(Nb−1), and q̂unc

t ∈R(Nb−1) be the forecasts of the uncontrollable active and

reactive power nodal injections (for subsequent intervals t∆t ). The net active/reactive power

injection is the sum of controllable and uncontrollable active/reactive powers, i.e., punc
t +pt

and qunc
t +qt . Let the realized values in the previous time-steps be denoted by □̃ (for example,

p̃t−1 and p̃unc
t−1 for controllable and uncontrollable active power injections at timestep t −1).

We assume following hypothesis.

Hypothesis 2.1 The system is in steady-state and can be modeled by phasors, which is able to

track small power-dynamics and system state changes.

Hypothesis 2.2 The nodes are modelled as voltage-independent PQ injections.

Hypothesis 2.3 The grid’s compound admittance matrix is known with a high accuracy.

Hypothesis 2.4 The grid states are made available by a state estimation process.

Using the First Order Taylor’s approximation, the linearized equation for nodal voltages can

be expressed as

|vt | = |ṽt−1|+ ∂|v|
∂p

∣∣
ṽt−1,

p̃t−1 + p̃unc
t−1,

q̃t−1 + q̃unc
t−1

(pt + p̂unc
t − p̃t−1 − p̃unc

t−1)+ ∂|v|
∂q

∣∣
ṽt−1,

p̃t−1 + p̃unc
t−1,

q̃t−1 + q̃unc
t−1

(qt + q̂unc
t − q̃t−1 − q̃unc

t−1)

(2.1)
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where, ∂|v|∂p
∣∣

ṽt−1,
p̃t−1 + p̃unc

t−1,

q̃t−1 + q̃unc
t−1

∈R(Nb−1)×(Nb−1) and ∂|v|
∂q

∣∣
ṽt−1,

p̃t−1 + p̃unc
t−1,

q̃t−1 + q̃unc
t−1

∈R(Nb−1)×(Nb−1) are the partial derivatives

of the nodal voltage magnitudes (evaluated at operating point ṽt−1, p̃t−1 + p̃unc
t−1, q̃t−1 + q̃unc

t−1)

with respect to the nodal power injections, also referred to as voltage sensitivity coefficients.

Rearranging the terms in (2.1), the linearized model for nodal voltages can be expressed as:

|vt | = Av
t

[
pt

qt

]
+bv

t (2.2a)

where,

Av
t =

∂|v|∂p
∣∣

ṽt−1,
p̃t−1 + p̃unc

t−1,

q̃t−1 + q̃unc
t−1

∂|v|
∂q

∣∣
ṽt−1,

p̃t−1 + p̃unc
t−1,

q̃t−1 + q̃unc
t−1

 ∈R(Nb−1)×2(Nb−1) (2.2b)

and

bv
t = |ṽt−1|+Av

t

[
p̂unc

t − p̃t−1 − p̃unc
t−1

q̂unc
t − q̃t−1 − q̃unc

t−1

]
∈R(Nb−1) (2.2c)

A similar expression can be written for branches current magnitudes and grid losses as

|it | = Ai
t

[
pt

qt

]
+bi

t (2.2d)

[
p l

t

q l
t

]
= Al

t

[
pt

qt

]
+bl

t , (2.2e)

where Ai ∈RNl×2(Nb−1), Al ∈R2×2(Nb−1), bi ∈RNl and bl ∈R2 are linear transformation matrices,

and vectors respectively. Similar to the voltage sensitivity coefficient matrix, Av , the Ai and

Al are composed by sensitivity coefficients of lines currents and grid losses, respectively.

Hereafter, these parameters are called Linear Transformation Parameters (LTP). They are

computed using the grid states and the compound admittance matrix (assumed to be known

by Hypothesis 4.3-4.4). Several methods exist in the literature for the computation of the

sensitivity coefficients such as [40, 49, 50, 51, 52, 53, 54, 55]. In this work, we use the method

developed in [40, 55]. The method allows to uniquely compute the sensitivity coefficients as a

function of the grid topology and grid state. It has a unique solution for every operating point

when the load-flow Jacobian is locally invertible (refer to Theorem 8.1 in [56]).

2.3.1 Policies for Sensitivity Coefficients Computation

The linear model (2.2) is defined for a single time step, in the sense that the values of the

matrices at time t are computed based on the former knowledge of all the nodal injections
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Chapter 2. Model-based Grid-aware Dispatching of Active Distribution Networks

at time t . However, in practical applications, like real-time control and scheduling of ADNs,

which typically require to compute the control actions for future time intervals, determining

the LTPs entails the use of point predictions of the nodal injections with a look-ahead time

that depends on the length of the control horizon. From this standpoint, we can envisage

three policies to compute and update the LTPs.

1. The LTPs are computed using a single operating point and kept fixed throughout the

time-ahead control horizon. This corresponds to a case when the operator does not

have forecasts of the uncontrollable injections. Av
t+1 and bv

t+1 are computed based on

the last known operating point, i.e., the measurements at t −1, they are:

Av
t+1 =

∂|v|∂p
∣∣

ṽt−1,
p̃t−1 + p̃unc

t−1,

q̃t−1 + q̃unc
t−1

∂|v|
∂q

∣∣
ṽt−1,

p̃t−1 + p̃unc
t−1,

q̃t−1 + q̃unc
t−1

 (2.3)

bv
t+1 = |ṽt−1|+Av

t+1

[
p̂unc

t − p̃t−1 − p̃unc
t−1

q̂unc
t − q̃t−1 − q̃unc

t−1

]
(2.4)

2. The LTPs are estimated using the point forecasts of the uncontrollable load/generation

for each time interval. Based on the point forecasts, |v̂t| is obtained. The LTPs are

Av
t+1 =

∂|v|∂p
∣∣

v̂t ,
p̂unc

t ,

q̂unc
t

∂|v|
∂q

∣∣
v̂t ,

p̂unc
t ,

q̂unc
t

 (2.5)

bv
t+1 = |v̂t |+Av

t+1

[
p̂unc

t+1 − p̂unc
t

q̂unc
t+1 − q̂unc

t

]
(2.6)

3. The LTPs are computed based on optimized trajectory of the control action during

previous time interval. It applies to the case when the grid model is used to formulate a

MPC problem. The optimized voltages are denoted by |v̂t+1|, the optimized injections

from controllable resources are denoted by p̂t+1 and q̂t+1; the LTPs are

Av
t+1 =

∂|v|∂p
∣∣

v̂t ,
p̂t + p̂unc

t ,

q̂t + q̂unc
t

∂|v|
∂q

∣∣
v̂t ,

p̂t + p̂unc
t ,

q̂t + q̂unc
t

 (2.7)

bv
t+1 = |v̂t |+Av

t+1

[
p̂unc

t+1 − p̂t − p̂unc
t

q̂unc
t − q̂t − q̂unc

t

]
(2.8)

Later in this Chapter, we compare the above approaches for a real-time MPC problem in

Sec. 2.5, and we perform a detailed assessment of the corresponding performance in Sec. 2.7.
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2.4 Day-Ahead Dispatch Computation

2.4 Day-Ahead Dispatch Computation

The objective of the day-ahead scheduling is to compute the dispatch plan that is the active

power trajectory that the targeted ADN should follow at its GCP1 during operations. The

design requirements of the dispatch plan are:

• stochastic variations from the dispatch plan due to distributed generation and demand

should be compensated by the controllable resources while respecting their operational

constraints;

• the power regulation made by the controllable resources does not violate grid con-

straints;

• the power factor at the GCP is bounded by the values imposed by the grid operator.

The dispatch plan is computed with a stochastic optimization framework, where the stochastic

injections of distributed generation and demand are modelled through forecast scenarios as

described in the next section. Grid constraints are modelled with the linearized grid model

discussed in the previous section. Operational constraints of the controllable resources are

modelled accounting for the active-reactive power (PQ) capability of their power converters

and SOC constraints.

2.4.1 Forecasts of Stochastic Resources

The dispatch computation relies on power-injection forecasts (for each node of the network)

modeled by scenarios. Although beyond the scope of this work, a data-driven scheme is

developed for generating day-ahead scenarios of demand and PV and hydropower generation,2

the two sources of renewable generation of the experimental test site. We assume that the PV

generation is aggregated behind-the-meter (BTM) with the local loads, whereas the hydro-

power generation is from stand-alone distributed power plants. Most nodes in this network

hosts uncontrollable distributed renewable generation (e.g., PV) and demands (e.g., electrical

appliances in residential and commercial buildings). Generally, they are characterized by a

high degree of volatility due to the reduced smoothing effect given by the small number of

single load units. A survey of forecasting methods accounting for local effects is presented

in [58]. Based on these relatively standard approaches, we develop data-driven schemes for

stochastic demand and renewable generation forecasts. These schemes are described below.

1In this work, we only consider a single GCP, although the same approach can be adopted for the formulation of
dispatch plans for multiple GCPs e.g., [57].

2These two types of RERs are specifically considered as they are part of the experimental setup described in
Sec. 2.8 and 3.5.1.
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Demand Forecast

The developed demand forecast algorithm uses nodal historical data-sets updated on a rolling

horizon whenever new data is available. Algorithm 2.1 shows the key steps: the first one

refers to the disaggregation of the true demand from the aggregated nodal injections (denoted

by P l ), followed by the clustering and multivariate Gaussian fitting of the true demand. These

steps are described below.

Algorithm 2.1 Dayahead demand forecasting (3)

Require: Historical nodal power injections (P l ), GHI (G ), air temperature (T air), node index l ∈N =
{1, . . . , N }

1: for l = 1:|N | do
2: if node l contains a PV plant then
3: [P load

l , PV-config] = Dissaggregation(P l ,G ,T air)
4: else
5: P load

l =P l

6: end if
7: [P C1

l , . . . ,P
CNc
l ] = Clustering(P load

l , features)
8: end for
9: for c = 1 : Nc do

10: ∆P
Ci
l =P

Ci
l −mean(P Ci

l )

11: Ω
Ci
l = cov(∆P

Ci
l ) (multivariate Gaussian fitting)

12: ∆P̃
Ci
l = mvnrnd(ΩCi

l , Nsc )

13: P̃
Ci
l =∆P̃

Ci
l + mean(P Ci

l )
14: end for

• Disaggregation: scheme separates the true demand from the behind-the-meter (BTM)

PV generation. We use the unsupervised disaggregation (step 4 in Algorithm 2.1)

process proposed in [59]. In brief, the method relies on the net nodal power injections

(P l ), global horizontal irradiance (GHI) G , and air temperature T air from the same area.

It models the PV generation as a function of GHI, considering several tilt and azimuth

of PV panels, enabling the identification of the patterns of the PV generation in the

measured data set. As side result, it provides the disaggregated (or actual) demand that

is used to develop the corresponding day-ahead forecast model.

• Clustering: is applied on the estimated demand profiles (P load
l ) to group them into

Nc clusters based on features (such as day-types in step 8, Algorithm 2.1). We use

four clusters (Nc = 4): Mondays to Thursdays (C1) are into one day type, Fridays (C2),

Saturdays (C3) and Sundays (C4) into other three separate day type clusters.

• Multivariate-Gaussian-based scenario generation: each day type cluster is fitted to a

Multivariate-Gaussian model via the following steps: (i) computation of the zero mean

scenarios for the historical data set (step 10, Algorithm 2.1), (ii) computation of the time

3The functions mean, cov and mvnrnd are MATLAB functions to compute mean, correlations and generate
random scenarios (using the mean, covariance and the number of samples), respectively.
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cross-correlation matrix (step 11), (iii) sampling of Nsc number of scenarios4 using the

time-correlated multivariate Gaussian distribution model (step 12) and, finally, generate

the demand scenarios by adding the cluster mean (step 13).

PV Generation

It is modeled5 starting from the day-ahead GHI forecasts provided by a commercial forecasting

service, SoDA [60]. In the rest of the manuscript, we used this service for day-ahead GHI

forecasts. The SoDa service provides the forecasts for the present and the next day with a time

resolution of 15-minutes and updated every 6 hours. The method uses gradient boosting as

part of machine learning scheme and uses inputs such as historical data-sets of HelioClim-3

[61], McClear clear sky irradiance model [62], and Global Forecast Service (GFS) Numerical

Weather Prediction (NWP).6 It provides point predictions and 5% and 95% confidence intervals

that are fundamental to generate scenarios when computing the dispatch plan. The 15-

minutes forecasts are linearly interpolated to obtain estimates with 5-minutes time sampling.

To convert the GHI forecasts to power generation, we use a physics-based model tool-chain

[63] that takes air temperature (T air), tilt, and azimuth angles and nominal capacity of the PV

plant. These parameters are obtained from the PV-config output from step 4, Algorithm 2.1 as

the true configurations of the PV plants are not known a-priory.

2.4.2 Computation of the Dispatch Plan

Let r = 1, . . . ,R be the index of the controllable resources that can participate to the dispatch,

T = [t0, t0 +1. . . , tN ] the set of time indices of the scheduling horizon delimited by t0 and tN .

The set Ω collects the scenarios indexed by ω for stochastic uncontrollable generation and

demand. The active and reactive nodal power injections of controllable and uncontrollable

resources for scenario ω are denoted by pωt ,qωt and punc,ω
t , qunc,ω

t respectively, where those last

are from scenario forecasts. The nodal injections of the controllable resources are the decision

variables of the problem and are collected in the vector xr,ω
t = [pr,ω

t , qr,ω
t ]. Let sω0,t = pω

0,t + j qω0,t

be the complex power at the slack bus for time t and scenario ω. Let the complex number

sdisp
t = pdisp

t + j qdisp
t be the decision variable for the dispatch plan for time t , where pdisp

t and

qdisp
t refer to the active and reactive power respectively.

The main idea behind the proposed formulation is to determine a dispatch plan that can be

tracked for any of the forecast scenarios. The problem consists in determining the injections

of the controllable resources so as to minimize the deviation between the dispatch plan

sdisp and slack power for all the scenarios sω0 ,ω ∈Ω. Moreover, the cost function includes a

4The number of scenarios is chosen such that it covers the variability of power injections with a confidence
interval of 5-95 %. In other words, the realization should fall within the extremes of the predicted scenarios with a
probability of 90 %.

5PV generation is modeled independently of the demand forecast as they are generated by independent forecast
processes.

6www.ncei.noaa.gov/products/weather-climate-models/global-forecast.
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resource-specific term f D
r (pr,ω

t , qr,ω
t ) that reflects the willingness of each controllable resource

to provide regulating power (specific cost functions are described in Sec 2.6) and a coefficient

wr to weight them. Both the cost function and the coefficient can be designed by the modeller,

for instance, based on a combination of resource’s operating conditions (such as minimizing

wear and tear, power ramping, power variations etc.) or the monetary cost associated to its

operation. The cost function should be convex in order to keep the convexity of the overall

problem formulation. The impact of the term wr is investigated in Sec. 2.8.5. The problem

that we solve is:

ŝdisp = arg min

sdisp

∑
ω∈Ω

∑
t∈T

{
(sω0,t − sdisp

t )2 +
R∑

r=1
wr f D

r (pr,ω
t , qr,ω

t )
}

(2.9a)

subject to the power flow at the GCP as a function of the nodal injections and losses

pω
0,t =

R∑
r=1

pr,ω
t +1⊤punc,ω

t +p l ,ω
t ∀t ∈T ,ω ∈Ω, (2.9b)

qω0,t =
R∑

r=1
qr,ω

t +1⊤qunc,ω
t +q l ,ω

t ∀t ∈T ,ω ∈Ω, (2.9c)[
p l ,ω

t q l ,ω
t

]⊤ = Al ,ω
t

[
pωt qωt

]⊤+bl ,ω
t ∀t ∈T ,ω ∈Ω, (2.9d)

power factor constraint at the GCP imposed by cos(θ)min

|pω
0,t |/||sω0,t || ≥ cos(θ)min ∀t ∈T ,ω ∈Ω, (2.9e)

linear voltage and current constraints (vmin, vmax are voltage limits, and imax lines’ ampacities)

vmin ≤ Av,ω
t

[
pωt qωt

]⊤+bv,ω
t ≤ vmax ∀t ∈T ,ω ∈Ω, (2.9f)

0 ≤ Ai ,ω
t

[
pωt qωt

]⊤+bi ,ω
t ≤ imax ∀t ∈T ,ω ∈Ω, (2.9g)

and constraints for all controllable resources

ΦD
r (xr,ω

t ) ≤ 0 ∀t ∈T ,ω ∈Ω,r = 1, . . . ,R. (2.9h)

Once the problem in (2.9) is solved, the dispatch plan is the real part of its solution ŝdisp:

p̂disp =ℜ
{

ŝdisp
}

. (2.10)

Here, the coefficients Av,ω
t ,Ai ,ω

t ,Al ,ω
t ,bv,ω

t ,bi ,ω
t ,bl ,ω

t represent LTPs for time index t and scenario

ω, and they are computed by the second policy in Sec. 2.3.1 (as it is based on scenario forecasts)

using the day-ahead forecasts.
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Relaxation of the Non-Convex Power Factor Constraint

Eq. (2.9e) is non-convex and infeasible when the real power at the GCP is zero. As proposed in

[64], we express the active power at the GCP as

pω
0,t = p+,ω

0,t −p−,ω
0,t (2.11)

and replace Eq. (2.9e) with the following set of linear constraints:

p+,ω
0,t +p−,ω

0,t ≥ qω0,t tan(π/2−θm) (2.12)

p+,ω
0,t +p−,ω

0,t ≥−qω0,t tan(π/2−θm) (2.13)

p+,ω
0,t ≥ 0, p−,ω

0,t ≥ 0, (2.14)

for all t ∈T ,ω ∈Ω, where θm refers to the angle corresponding to cos(θ)min. The two terms of

(2.11) (p+,ω
0,t , p−,ω

0,t ) should be mutually exclusive (i.e., p+,ω
0,t and p−,ω

0,t can not be non-zero at the

same time). To this end, we augment the cost function (2.9a) with the following new term∑
ω∈Ω

∑
t∈T

ν
(
(p+,ω

0,t )2 + (p−,ω
0,t )2) (2.15)

that promotes p+,ω
0,t , p−,ω

0,t being mutually exclusive, where ν ≥ 0 weighs the significance of

obeying power factor constraints.

The above dispatch computation problem is convex thanks to linear constraints and quadratic

objective function, and hence it can be solved efficiently by any off-the-shelf solver.

2.5 Real-time Model Predictive Control (RT-MPC) for Dispatch track-

ing

In the following, we describe the real-time control problem for tracking the day-ahead dispatch

plan. Its objective is to determine the set-point for the controllable resources to track the

dispatch plan while respecting the grid and resources constraints. Since the problem requires

the knowledge of the state of the grid (i.e., nodal voltages and line currents), models of the

DERs, and power flow at the GCP, the problem is initially formulated as a centralized MPC.

We then acknowledge that the problem can be formulated as consensus among multiple

sub-problems as in [65, 66], and we derive a distributed formulation solved by means of the

ADMM technique.

2.5.1 Centralized Formulation

During real-time operations, the controllable resources are controlled so to track the dispatch

plan at the GCP. The decision variable for the active and reactive nodal injection for resources

r at time t is denoted by xr
t = [pr

t , qr
t ] and collected in xr = [xr

t , . . . , xr
tH

] for the length of
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the optimization horizon delimited by current time interval t and the control horizon tH .

Let fr (xr
t ) denote the actuation cost of a generic resource r (the specific cost functions are

described in Sec 2.6) and p̂disp
t the dispatch plan set-point at time t from (2.10). The real-time

control problem is formulated as MPC. The problem consists in minimizing the actuation

costs of the resources subject to their operational constraints, dispatch plan objective, local

grid constraints, and power factor limitations over the length of the optimization horizon. The

problem is:

min
x1,...,xR

R∑
r=1

tH∑
t=t+1

fr (xr
t ) (2.16a)

subject to the dispatch constraint

p̂disp
t =

R∑
r=1

pr
t +1⊤punc

t +p l
t t = t +1, . . . , tH (2.16b)

where punc
t is modeled by real-time forecasts p̂unc

t . Then, the power factor constraint at the

GCP, imposed by cos(θ)min

qgcp
t =

R∑
r=1

qr
t +1⊤qunc

t +q l
t t = t +1, . . . , tH (2.16c)

|qgcp
t | ≤ |p̂disp

t |
tan(π/2−θm)

t = t +1, . . . , tH (2.16d)

the constraints for all controllable resources

Φr (xr
t ) ≤ 0 r = 1, . . . ,R, t = t +1, . . . , tH (2.16e)

and the constraints of the grid

(2.9f), (2.9g) t = t +1, . . . , tH (2.16f)

(2.2e) t = t +1, . . . , tH . (2.16g)

The formulation in (2.16) is convex thanks to the quadratic objective of the resources (as

described later in Sec. 2.6) and linear constraints. For convenience in the following formu-

lation, we denote the inequality (2.16d), (2.16f) and equality (2.16c), (2.16g) constraints with

Ψineq(x1, . . . xR ) ≤ 0 andΨeq(x1, . . . xR ) = 0, respectively. The power balance equality constraint

in (2.16b) and (2.16c) can be relaxed by adding auxiliary variables associated to the dispatch

tracking error and minimize them in the objective (2.16a).

Solving the problem in (2.16) requires knowing the individual resource models and accessing

their state during real-time operations. It is, therefore, referred to as centralized. Due to the

privacy and security concerns for the resources’ owners, the centralized approach may be

impractical. For this reason, we resort to a distributed formulation that also assures better

scalability with respect to the number of controllable resources. The distributed formulation
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has the inherent potential to preserve privacy concerning models of the resources.

2.5.2 Distributed Formulation using ADMM

Following the method described in [28], we introduce a barrier function g with zero cost when

the tracking error (2.16b) is respected and infinity otherwise:

g (x1
t , . . . , xR

t ) =
0 (2.16b) is respected

∞ otherwise.
(2.17)

Let z r be the auxiliary variables to copy the behaviour of original variables xr , the so-called

copied variables. We can reformulate the optimization problem (2.16) as:

minimize
x1,...xR

z 1,...z R

T∑
t=t+1

{
R∑

r=1
fr (xr

t )+ g (z1
t , . . . , zR

t )

}
(2.18a)

subject to:

xr = z r r = 1, . . . ,R (2.18b)

Ψeq(z1, . . . , zR ) = 0 (2.18c)

Ψineq(z1, . . . , zR ) ≤ 0. (2.18d)

The problem in (2.18) is a standard sharing problem and separable in xr . It can be solved in a

distributed manner by each resources; then, the solutions from each resource can be sent to

the aggregator that accounts for the global constraints and objectives. The set of constraints

(2.18b) can be moved into the cost function by using a sequence of Lagrangian multipliers,

denoted by y r . The augmented Lagrangian can be written as:

Lρ =
T∑

t=t+1

{
R∑

r=1
fr (xr

t )+ g (z1
t , . . . , zR

t ))

}
+ ρ

2

R∑
r=1

(∣∣∣∣xr − z r
∣∣∣∣2

2

)
+

R∑
r=1

y r ⊤(xr − z r ). (2.19)

Let ur = y r /ρ be the scaled dual variable, ρ being the penalty parameter, the above problem

can be solved in following three iterative steps using the scaled-ADMM sharing problem [66]:

• Original variables update xr
k+1 :=

arg min
xr

{ tH∑
t=t+1

fr (xr
t )+ ρ

2

∣∣∣∣xr − z r
k +ur

k

∣∣∣∣2
2

}
(2.20a)

subject to

Φr (xr
t ) ≤ 0 t = t +1, . . . , tH . (2.20b)
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• Copied variables update [z1
k+1, . . . , zR

k+1] :=

arg min
z 1...z R

{
tH∑

t=t+1

{
g (z1

t , . . . , zR
t ))

}
+ ρ

2

R∑
r=1

∣∣∣∣xr
k+1 − z r +ur

k

∣∣∣∣2
2

}
(2.21a)

subject to

Ψeq(z1, . . . , zR ) = 0 (2.21b)

Ψineq(z1, . . . , zR ) ≤ 0. (2.21c)

• Dual variable updates

ur
k+1 = ur

k +xr
k+1 − z r

k+1 r = 1, . . . ,R. (2.22)

Here, ||.||2 refers to the euclidean-norm, k is the ADMM iteration index, and ρ being the

standard ADMM penalty parameter. The original variable updates (also referred to as resource

problems) (2.20) are computed in parallel for each resource, r = 1, . . . ,R, then the copied

variable update (grid aggregator problem) (2.21) solves an OPF accounting for the local solu-

tions from each resource, and finally dual variables are updated in (2.22). Then, the updated

solutions of the grid aggregator (copied and dual variables) are sent to the resources for next

iteration. Eq. (2.20), (2.21) and (2.22) are solved till convergence. The problem in (2.20)-(2.22)

is distributed because the resource problems (2.20) can be solved in parallel and indepen-

dently without requiring the knowledge of the model of other resources as well as those of

the grid. The resource problem requires just the updated solution from the grid (referred to

as copied variable) through a communication channel. The flow diagram of the distributed

computation is shown in Fig. 2.1.

The distributed algorithm converges when the primal residual norm r k = ||Xk −Zk ||2 and the

dual residual norm sk = ρ||Zk+1 −Zk ||2 are both smaller than a feasibility tolerance as in [66],

where X = [x1; . . . ; xR ], Z = [z1; . . . ; zR ]. For the penalty parameter ρ, we follow a self-adaptive

scheme [66, 67]:

ρk+1 :=


τincrρ

k r k >µsk

ρk /τdecr sk >µr k

ρk otherwise,

(2.23)

where τincr and τdecr apply an adjustment scheme to guide the primal and dual residual norms

to converge to zero. We fix µ = 10 and τincr = 2 and τdecr = 2 as reported in [67]. The ADMM

algorithm is initialized with ur = 0, z r = 0 and ρ = 10. In the first step, the resources problems

(2.20) are solved providing xr . Then, the grid problem (2.21) is solved to update z r and ur . The

penalty parameter is updated via (2.23). A sensitivity analysis on the algorithm convergence

with different initializations will be investigated in future works.
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2.6 Distributed Energy Resource Models

Figure 2.1: Distributed computation of the control set-points using the ADMM technique: the
resources solve their local problems in parallel and communicates the intermediate set-points
to an aggregator that solves the OPF problem associated to the microgrid dispatch. This
iterative procedure is followed until convergence.

2.5.3 Short-term Forecasts

The RT-MPC requires short-term forecasts of the uncontrollable demand and generation. In

view of the very short-horizon of the RT-MPC, we use the persistent predictor7 to obtain the

forecasts of current time-step using the last observations (i.e., p̂unc
t = p̃unc

t−1). The short term

forecasts are updated each 30 seconds.

2.6 Distributed Energy Resource Models

In this section, we describe the DERs optimization models which are used in the formulation

of the dispatch and real-time control problem. Since, the experimental setup include battery

storages and controllable PV plants, we report their models below.

2.6.1 BESS

The objective is to compute power set-points while obeying physical limits on the power

rating and reservoir size. We account for BESS losses by integrating its equivalent series

resistance into the network admittance matrix using the method described in [64]. The

approach integrates the equivalent resistance into the grid’s admittance matrix by adding a

extra line for a battery as shown in Fig. 2.2. It allows retaining the convexity of the control

problem without the need of any auxiliary variables. An alternative approach for modeling

battery losses is adopting two different charging and discharging efficiencies (this approach

7More advanced forecaster will be investigated in future works.
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is referred to as the efficiency model). However, this model requires introducing auxiliary

variables: one for discharging and the other for charging, along with an indicator function. In

this work, we opted to use an equivalent resistance model instead because it allows modeling

the total battery losses by a single lumped resistance integrating the converter, battery, and

switchgear losses, also embedding the quadratic dependency of the BESS losses with respect

to its power flows. This approach is extensively described in [64].

Ideal battery

virtual node real node

Figure 2.2: Equivalent circuit diagram of a BESS.

Let the series xbess
t = [pbess

t , qbess
t ] be the decision variables for active and reactive power, the

BESS decision problem is the following feasibility problem:

fbess(xbess
t ) = 1 (2.24a)

and the constraint setΦbess(xbess
t ) is

SOEt = SOEt−1 −pbess
t Ts (2.24b)

(pbess
t )2 + (qbess

t )2 ≤ (Sbess
max)2 (2.24c)

aE bess
max ≤ SOEt ≤ (1−a)E bess

max (2.24d)

where, SOEt is the BESS state-of-energy, Ts is the sampling time, Sbess
max , and E bess

max are the

power and reservoir capacities respectively, and 0 ≤ a < 0.5 is a fixed parameter to specify a

margin on SOE limits. The constraint (2.24c) is to restrict the battery’s apparent power within

its four-quadrant converter capability. They are approximated by a set of piece-wise linear

equations to make the control problem linear.

2.6.2 PV Power Plants

PV power plants can accept a control signal to curtail generation and implement a reactive

power set-point. However, the curtailment action should be kept at a minimum to avoid an

excessive impact on the PV capacity factor. The objective of this problem is determining active

and reactive power set-points xpv
t = [ppv

t , qpv
t ] so as to minimize the curtailment and operate

at near-unity power factor while subject to the apparent power limit Spv
max of the converter. As

PV generation is stochastic, the active power injection ppv
t is upper-bounded by the theoretical

maximum generation potential, that depends primarily on local irradiance conditions. We

denote the upper bound of ppv
t by p̂pv

t . It is derived from short-term point predictions of the
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irradiance for the horizon 30 sec-30 min by applying the same physical modelling tool-chain

described for the day-ahead stage. Short-term point predictions for the whole horizon are

from averaging measurements over the last 2 minutes interval. While doing this, we assume

irradiance persistence, that is often regarded to as the reference forecasting model for very-

short term look-ahead times [68]. In this work, we rely on short-term point predictions that

are continuously updated by leveraging real-time measurements. In the case of slower refresh

times of the control, one could implement prediction intervals to derive robust decisions

as in [69, 70, 71] to hedge against longer-term uncertainties. With reference to the resource

problem in (2.20), the PV cost function is

fpv(xpv
t ) = (ppv

t − p̂pv
t )2 + (qpv

t )2 (2.25a)

subject to the constraint setΦpv(xpv
t )

(ppv
t )2 + (qpv

t )2 ≤ (Spv
max)2 (2.25b)

0 ≤ ppv
t ≤ p̂pv

t (2.25c)

Equations (2.25b) and (2.25c) are the constraints on active and reactive power injections

that account for power converter’s capability and PV generation potential. The capability

constraint in (2.25b) are approximated by a set of piece-wise linear equations to make the

control problem linear.

2.7 Performance Comparison of Different Linearized OPF Policies

for RT-MPC

In this section, we present a performance comparison of linearized OPF models presented in

Sec. 2.3.1 for the application of RT-MPC in a distribution test network. The dominant scheme

from this comparative analysis will be used for the experimental validation in the next section

(Sec. 2.8).

2.7.1 Simulation Setup

Table 2.1: Nominal demands and controllable units

node Id Demand (kVA) pf Resource (rating)

1, 11, 16, 18 200, 15, 55, 47 0.95 –
15 52 0.95 PV (60 kWp)
17 35 0.95 BESS (500 kWh/300 kW)

The MPC scheme is simulated for the CIGRE low voltage benchmark network [5], i.e., a three-

phase balanced 0.4 kV/400 kVA, an 18-node system shown in Fig. 2.3. The nominal values of
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Figure 2.3: CIGRE low voltage benchmark network.

(a) Prosumption at the GCP for three days.

(b) Dispatch plan at the GCP for three days.

(c) MPP PV forecast for three days.

Figure 2.4: (a-c) refers to active power profiles of three days
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the uncontrollable nodal demands are shown in Table 2.1. We simulate for a weekend (day

1, and day 2), and a working day (day 3). The demand and PV data is from the experimental

measurements described in [72]. They refer to 4 buildings of EPFL. Fig. 2.4a shows the

prosumption at the GCP for the 3 days. The dispatch plan8 is computed using the procedure

described in Sec. 2.4, and it is shown in Fig. 2.4b. The PV forecast for three days is shown in

Fig. 2.4c.

2.7.2 Comparison of MPC with Different Linear Grid Models

Metrics: to measure the control performance of the linear grid models (defined in Sec. 2.3.1)

applied to the distributed MPC scheme are listed below.

• ADMM convergence speed: it is measured in time and number of iterations, both ex-

pressed in terms of their mean, max and min values;

• Tracking error of the dispatch signal: it is the error between the pre-defined dispatch

plan and the net prosumption after MPC. We show the RMSE (root mean square error),

mean and maximum tracking error;

• Error of the linear grid model: nodal voltages and branch currents are compared against

a posteriori AC power flow. We report the RMSE, mean and maximum error of voltage

and currents.

Table 2.2 and 2.3 report the results of the dispatching simulation for 3 days, where the MPC

operates at 5-minute resolution over a shrinking horizon of 24 hours. If ADMM does not

converge by the 5-minute deadline, a fallback control strategy is used. In such a case, we

re-implement the previous control setpoint. An alternative fall-back strategy would be to

project the solution obtained by the final ADMM iteration onto a pre-computed feasible set

using the procedure proposed in [73]. Such a strategy will be investigated and compared in

future works. The MPC scheme presented above is simulated using the linearized grid model

with three linearization policies (denoted by M1, M2, and M3) defined in Sec. 2.3.1, and the

fourth model denoted by M3*, uses M3, but with averaged sensitivity coefficients (averaged

with respect to next time interval). The max ADMM iterations was limited to 100 for above

simulations.

As it can be observed in Table 2.3, M3* is the fastest concerning the mean convergence speed.

If we compare the maximum simulation time, M3* is 1.1 – 2.8 times faster than others. All

the models perform equally on the tracking error performance. Regarding the voltage error,

M2 exhibits the highest error in all the days with a maximum error up to 4%. Also, the mean

voltage error is highest with M2. Concerning the current error, the M1, M2, and M3 have the

highest errors compared to the ground truth values; it has a maximum current error up to

8As this section focuses on finding the best linearized OPF policy for RT-MPC, we do not discuss the performance
of the proposed day-ahead dispatch computation scheme of Sec. 2.4. It will be discussed in detail in Sec. 2.8.5.
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Table 2.2: Performance comparison of distributed MPC control performance using different
linear grid models

Tracking error (kW) Voltage error (pu) Current error (pu)
Day Model RMSE Mean Max RMSE Mean Max RMSE Mean Max

1 M1 3.6 -0.33 21.4 6.1e-5 4.4e-9 7.4e-4 5.5e-3 -1.3e-3 6.0e-2
2 M1 1.68 -0.28 13.2 1.5e-4 -1.6e-7 1.8e-3 1.6e-2 -1e-2 0.24
3 M1 1.2 0.1 14.7 5e-5 -5e-8 5.9e-4 5.4e-3 -3.0e-2 0.1
1 M2 0.42 -0.21 2.4 6.3e-3 2.7e-4 4e-2 4e-2 -3e-2 0.18
2 M2 0.85 -6e-2 12.71 6e-3 -1.8e-4 5e-2 4e-2 -2.4e-2 0.18
3 M2 1.04 0.12 12.4 7.7e-3 -4.1e-3 5.4e-2 4.0e-2 -2.0e-2 0.23
1 M3 0.37 -6e-3 2 1.4e-5 -4.1e-6 3.2e-4 7.1e-4 -7.2e-3 3e-2
2 M3 1.2 -1.6e-3 13 9.8e-5 -3.3e-5 1.6e-3 8.2e-3 -1.3e-2 0.12
3 M3 2 0.14 14.4 1.9e-4 -4.2e-5 4.2e-3 1.4e-2 -2.6e-2 0.33
1 M3* 0.5 -0.3 2.4 4.8e-6 -3.3e-7 1.3e-4 5.2e-4 -8e-3 2.3e-2
2 M3* 0.72 -4.3e-2 2.37 3.1e-6 -1.8e-7 5.5e-5 3.7e-3 -1.4e-2 6.0e-2
3 M3* 0.43 -5.3e-2 1.77 1.7e-5 -6.0e-7 4.3e-4 3.1e-3 -3.0e-2 6.0e-2

Table 2.3: Performance comparison of distributed MPC computational performance using
different linear grid models

Time (sec) Iterations (#)
Day Model Min Mean Max Min Mean Max

1 M1 2 60 187 3 36.2 100
2 M1 3.9 118 265 7 79 100
3 M1 2.9 121 352 6 77 100
1 M2 1.7 54 242 3 34 100
2 M2 3.7 52 285 6 33 100
3 M2 4.6 80 292 8 53 100
1 M3 27 48 172 17 33 80
2 M3 1.7 123 289 2 81 100
3 M3 4.3 128 273 8 85 100
1 M3* 18.4 41.2 150 13 30.3 78
2 M3* 1.8 35 133 2 17 49
3 M3* 2.1 25.2 126.2 2 13 34

33%, which is putting the grid at the risk of physical damages. M3* is the best performing in

terms of the voltage, and current errors with maximum error percentage of 0.043%, and 6%.

respectively, and we select it for the next analysis. M3* accounts for probable variations in the

future sensitivity coefficients by averaging the current and next interval coefficients, and thus

models the grid constraints more accurately. This also avoids the re-iteration(s) for correcting

the sensitivity coefficients.

Sensitivity Analysis

To analyse the performance of the distributed MPC scheme with larger number of decision

variables, we perform a sensitivity analyses with respect to (1) increase of the MPC prediction

horizon length T∆t , and (2) number of controllable units in the MPC scheme.
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1. Sensitivity with respect to predictive horizon length: We simulated for shrinking horizon

lengths: 3, 6, and 12 hours. We used the same controllable units with equal ratings

as before. Table 2.4 and 2.5 compare the results with respect to MPC horizon lengths.

Results show that the mean convergence time is smaller for shorter horizon length

due to fewer decision variables. Also, the model is consistently accurate in terms of

modeling errors of the nodal voltages and lines currents. The tracking error performance

with horizon length will be investigated in future work with particular reference to the

possibility of bounding the error of the linearized load flow equalities.

2. Sensitivity with respect to the number of controllable units: Table 2.7 reports the compu-

tational performance (for day 3) when increasing the number of controllable units. We

simulate distributed BESSs with equal size among them and total energy capacity as the

case before, and placed at nodes 11, 13, 14, 16, and 17. From the table, we observe that

even if the number of BESS units is increased up to 5, the increase in convergence time

and the number of iterations is not significant, thus denoting good scalability property.

The voltage and current errors are consistently small as shown in Table 2.6.

Table 2.4: Sensitivity on control performance w.r.t. horizon length for the dominant model.

Horizon Tracking error (kW) Voltage error (pu) Current error (pu)
Day hours RMSE Mean Max RMSE Mean Max RMSE Mean Max

1 12 0.55 -0.23 4 2.7e-6 -2.1e-7 9.9e-5 4.2e-4 -8.1e-3 2.2e-2
1 6 1.28 -0.16 4 8.2e-6 -1.1e-6 1.9e-4 1.1e-3 -5.6e-3 4e-2
1 3 0.81 -0.11 6.4 1.0e-5 -1.3e-6 2.6e-4 1.1e-3 -4.4e-3 3.5e-2
2 12 0.77 -0.11 4.8 4e-6 -4.4e-7 6.2e-5 4e-3 -1.4e-2 6e-2
2 6 0.62 -1e-3 4 3.4e-6 -4.2e-7 5.1e-5 4e-3 -1.2e-2 5.7e-2
2 3 1.82 2.5e-2 6 6e-6 -9.8e-7 1.2e-4 3e-3 -1e-2 3e-2
3 12 0.98 -0.27 14 1.7e-5 -5.5e-7 4.3e-4 3.2e-3 -3e-2 6e-2
3 6 0.6 9.5e-2 7 1.64e-5 -5.5e-7 4.3e-4 3.1e-3 -3e-2 6e-2
3 3 0.98 -0.27 14.2 1.7e-5 -5.5e-7 4.3e-4 3.2e-3 -3e-2 6e-2

Table 2.5: Sensitivity on computational performance w.r.t. horizon length for the dominant
model.

Horizon Time (sec) Iterations (#)
Day hours Min Mean Max Min Mean Max

1 12 21.4 41 165 12 33 78
1 6 9.2 29 127 5 26 71
1 3 3.6 29 114 2 33 68
2 12 1.6 31 224 2 17 51
2 6 1.9 24.5 230 2 17.6 48
2 3 2 22 124 2 24 70
3 12 2 23 176 3 13.3 46
3 6 1.9 29 230 2 18 47
3 3 2 23 175 3 13.3 40
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Table 2.6: Sensitivity on control performance w.r.t. the number of controllable units for the
dominant model.

BESS Tracking error (kW) Voltage error (pu) Current error (pu)
# units kWh RMSE Mean Max RMSE Mean Max RMSE Mean Max

2 250 0.42 0.11 1.5 2.8e-5 -1.5e-6 7.4e-4 2.3e-3 -3.3e-2 4e-2
3 168 0.5 0.11 1.7 2.2e-6 -4.6e-8 6.4e-5 1e-3 -3e-2 3e-2
4 125 0.7 0.3 2.3 2.2e-6 -3.2e-8 6.6e-5 8.8e-4 -3.2e-2 3e-2
5 100 0.62 0.25 2.4 2.5e-6 -5e-8 7.9e-5 9e-4 -3e-2 3e-2

Table 2.7: Sensitivity on computational performance w.r.t. the number of controllable units for
the dominant model.

BESS Time (sec) Iterations (#)
# units kWh Min Mean Max Min Mean Max

2 250 3.6 25 254 7 11 72
3 168 7.3 32 121 6 7.3 25
4 125 6 43 132 4 8.4 23
5 100 5.2 51 149 4 9 22

2.7.3 Control Performance

Fig. 2.5 shows the simulation results of the MPC algorithm with the grid model M3* for day

1. In particular, Fig. 2.5a refers to the performance of the dispatch plan tracking: it can be

observed that the prosumption at the GCP highly differs from the dispatch plan due to the

incorrect forecast of the prosumption. The MPC is able to control the BESS and PV to achieve a

successful dispatch. Fig. 2.5b shows the BESS SOC evolution. Fig. 2.5c shows the active power

set-points of the PV resource: the curtailed PV is shown in shaded grey, and maximum possible

PV generation in dashed red. From Fig. 2.5c, it can be seen that the control scheme starts

curtailing PV generation from the beginning of the day till hour 16. This helps to (i) keep BESS

SOC within its operational limits as enforced by the constraints in Sec. 2.6.1, eq. (2.24c)-(2.24d),

and (ii) accurately track the dispatch plan. Finally, Figures 2.5d and 2.5e report the cumulative

distribution functions of the nodal voltage and branch current modelling errors w.r.t. the AC

power flow computations. They show that the voltage and current errors, for the 99% of the

estimations, are in the range [-7.2e-6 pu, 3.8e-7 pu] and [-3.9e-4 pu, 1e-3 pu] respectively.

2.8 Experimental Validation and Results

In this section, we present the experimental validation of the proposed control and scheduling

framework on a real-scale microgrid at EPFL Distributed Electrical Systems Laboratory. We

use the best performing grid model (M3*) from the previous analysis for the experimental

validation. The setup and the obtained experimental results are described below.
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(a) Dispatch plan (black), prosumption realization (shaded area), uncontrolled active power flow
at the GCP (dashed red).

(b) Battery power injection (upper panel), and battery SOC evolution and respective limits (bottom
panel).

(c) Curtailed PV (shaded area), and theoretical MPP PV (in dashed red)

(d) CDF plot of the voltage error (e) CDF plot of the current error

Figure 2.5: MPC operation using M3* on day 1.
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Figure 2.6: The microgrid setup used for the experimental validation. We consider three
controllable resources (a battery B at bus 5, and two curtailable PV plants PV1 and PV2 at bus
11 and 9) and a load emulator (L1 at bus 3).

2.8.1 Microgrid Setup

We validate our control and scheduling algorithms on the real-scale microgrid of the EPFL

Distributed Electrical Systems Laboratory. The setup of the microgrid is inspired by the CIGRE

low voltage benchmark microgrid [74]. The setup is shown in Fig. 2.6 that reports the grid

topology, the ampacity limits of the cables, locations of the DERs, and the locations of the

PMU-based monitoring equipment. The microgrid is operated at 400 V and is connected

to a 20 kV medium voltage feeder through a 630 kVA 20/0.4 kV transformer. The microgrid

interfaces a number of DERs. For this experimental validation, we consider a load emulator

to reproduce stochastic demand, a controllable battery, and two curtailable PV plants, with

specifications as reported in Table 2.8. They are shown in Fig 2.7. The resources are interfaced

with the microgrid by power electronics converters. The capability of each resource and

associated power converter defines the feasible active and reactive power that can be drawn

from each resource.

2.8.2 Controllable Distributed Energy Resources

In the experiments, in addition to single battery storage of 25 kW/25 kWh, we use two cur-

tailable PV units. They differ because they are interfaced to the grid with different power

converters. Especially, one of them cannot accept reactive power set-points, whereas the other

one can. Their capability curves are shown in Fig. 2.8(b) and 2.8(c), and are encoded in the
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Figure 2.7: Experimental setup: (a) Rooftop PV plants PV1 and PV2 (b) Load emulator and (c)
Lechlance battery enery storage system. The ratings are reported in Table 2.8.

Table 2.8: Nominal demands and controllable units

node Id Demand (kVA) pf Resource (rating)
B03 28 0.95 Load emulator (Zenone)
B05 – – BESS (25 kWh/25 kW)
B09 – – PV2 (13 kWp)
B11 – – PV1 (16 kWp)

constraint (2.25b) and (2.25c).

2.8.3 Monitoring and Actuation Layers

Time-deterministic Metering Infrastructure

As stated in the Hypothesis 2.4, the real-time control problem requires the knowledge of the

grid state at a fast pace (e.g. few seconds) to update the linear grid model in (2.2). Time-

synchronised and time-tagged phasor measurements are from PMUs, collected with the setup

described in [75, 76] that is capable to deliver the measurements at 50 frames per second. A
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Figure 2.8: Feasible PQ set for the available DERs: a) battery can be controlled to provide
both +/- active (P) and reactive powers (Q), b) PV1 can only provide + P (PV1 converter is not
designed to receive external reactive set-points), and c) PV2 can be controlled to provide + P
and +/- Q.

.

discrete sequential Kalman filter-based state estimator processes the measurements [77] and

provides the estimates of the voltage and current phasors of all the nodes and lines with a total

latency of less than 80 ms w.r.t. the UTC-GPS time tag of the PMU measurements.

Data Acquisition and Control System

Each controllable resource is equipped with a micro-controller (National Instruments CRIO

9068) as described in [75]. It is responsible for handling low-level communication tasks such

as collecting resource-specific measurements, implementing feasible set-points, and receive

set-points from an upper-level controller (i.e., our real-time controller). These functionalities

are implemented in National Instruments LabView.

Communication Infrastructure

The microgrid and its resources communicate over a dedicated IPv4 communication net-

work [75]. A centralized time series database based on InfluxDB9 facilitates the exchange of

information among the resources and the real-time distributed controllers.

2.8.4 Implementation of the Algorithms

Fig. 2.9 shows the sequence of operations and communication flow among of the day-ahead

scheduler and real-time controller. In the former phase (upper dashed rectangle), the dispatch

plan is computed and stored in the time series database. In the latter (lower dashed rectangle),

9https://www.influxdata.com
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Figure 2.9: Data flow: Dispatch plan computation starts at 23:00 UTC day-before operation,
using the PV and load forecasts, and is stored on the central data-server. Real-time operations
start at 00:00 UTC. SCADA and short-term forecasters store their outputs to the data server
each second, and ADMM computes power set-points and implements each 30 sec.

a real-time local Supervisory Control and Data Acquisition (SCADA), the short-term forecasters,

and controllable resources save their outputs in the same database (at 1 sec resolution). The

real-time controllers access this information to compute the control actions, which are then

sent to the controllable resources for actuation through User Datagram Protocol (UDP). The

set-points are sent continuously to minimize packet losses. The ADMM resource problems

are solved in parallel; the intermediate variables are also exchanged through UDP.

2.8.5 Experimental Results

We present the experimental results for two days of operations, Day 1 and Day 2, chosen as

they feature different PV generation patterns, being characterized by clear-sky and cloudy

conditions, respectively. We focus our analysis on the dispatch plan-tracking performance

and the operations of the controllable resources. Grid constraints on nodal voltages and line

ampacities are always respected during the experiments and, therefore, not shown. However,

they are compared in terms of accuracy with a posteriori AC power flow.

Day 1 (4th September 2019)

Day-ahead Operations: Fig. 2.10 shows the input and output information of the day-ahead

dispatch process. The scenarios of the net demand (i.e., aggregated stochastic demand minus

generation plus grid losses) at the GCP are shown in Fig. 2.10a which are inputs to the dispatch

plan. The dispatch plan determined by the algorithm is shown in Fig. 2.10b (in red) along with
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the active power profile scenarios at the GCP (in different colors). The dispatch plan is at a

30 sec resolution. The corresponding battery’s power and SOC are shown in Fig. 2.10c. As we

can see from Fig. 2.10b, the dispatch plan appears to be tracked in all the scenarios thanks to

the compensation action of the battery. Also, to avoid curtailing PV generation and saturating

the battery flexibility, the dispatch plan is negative in the central part of the day, denoting that

the microgrid exports active power to the upper-level grid. The initial SOC is 0.75, which is the

SOC of the battery before the start of the real-time operation.

(a) Day-ahead net demand scenarios (aggregated demand minus generation).

(b) Computed dispatch plan (in red) and scenarios at GCP.

(c) Battery active power injection and SOC for different day-ahead scenarios.

Figure 2.10: (a-c) Dispatch plan computation for day 1: 4th September 2019.

Real-time Operations: the real-time stage starts at 00:00 UTC. The active and reactive power

set-points of the controllable resources are computed with the distributed MPC algorithm

illustrated in Section 2.5. The dispatch plan is tracked at a 30 sec resolution. The control

actions are computed one interval in advance with respect to the actuation time (i.e., 30
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(a) Dispatch plan (in black), measured power at the GCP (in shaded gray) and power at the GCP
without distributed MPC (in red).

(b) Top: realised battery power injection, bottom: SOC and its limits.

(c) Realised generation for PV1 (shaded gray), realised generation for PV2 (shaded green), maxi-
mum power for PV1 and PV2 (dashed blue and red).

Figure 2.11: (a-c) The experimental results for real-time control using the distributed MPC on
day 1: 4th September 2019.

sec earlier) and then sent to the resources for being actuated at the designed time interval.

Fig. 2.11a shows the power at the GCP with and without the dispatch control action10 (in

shaded gray and solid red), and the dispatch plan (in black). As it can be seen, the dispatch

plan is tracked with very high fidelity. Fig. 2.11b shows in the upper panel the battery’s active

power injection, and SOC evolution in the lower panel. Fig. 2.11c shows the measured PV

production (in shaded gray and green) and their generation potentials (in dotted blue and

red). In this case, there is no curtailment as the battery action alone is sufficient to track the

10It is obtained by solving the power-flow equations without considering the actions of the controllable resources,
i.e., BESS does not provide any power regulation, and PV plants are operated at MPP.
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Table 2.9: Tracking error statistics with and without dispatch control (in (%) normalized by
mean of the dispatch plan).

Scenario Day 1 Day 2

RMSE Mean MAE RMSE Mean MAE

No dispatch 35.7 12.0 182.2 37.8 25.1 123.5

Dispatch 4.2 -1.77 23.8 4.3 -0.30 21.3

dispatch plan.

To evaluate the dispatch plan-tracking performance, we compute the root mean square error

(RMSE), mean, and maximum absolute error (MAE) of the difference between the achieved

power at the GCP and the dispatch plan, normalized by the mean of the dispatch plan, with

and without control. Results for day 1 are summarised in Table 2.9 and show that the control

action achieves way better scores than a simple dispatch plan purely based on forecasts. The

mean, max and standard deviations (SD) of the time and number of iterations to solve the

distributed MPC problem are shown in Table 2.10. As we can see, the mean and maximum

time are well within the 30 sec deadline for the control action actuation.

Day 2 (10th September 2019)

Day-ahead Operations: the scenario forecasts of the net demand at the GCP are shown in

Fig. 2.12a. Compared to day 1 that featured clear-sky conditions, day 2 is partly cloudy and

exhibits lower PV generation levels. As a consequence, the dispatch plan, shown in Fig. 2.12b,

is positive during all day. The corresponding battery’s power and SOC are shown in Fig. 2.12c.

Again, we can see that the dispatch plan is being tracked with high fidelity in all the scenarios

thanks to the compensation action of the battery.

Real-time Operations: Fig. 2.13a shows the power at the GCP with and without the dispatch

control action, and the dispatch plan. As visible, the dispatch plan overestimates the net

demand in the central part of the day and early afternoon.

To track the dispatch plan, the controller charges the battery, which approaches a situation of

depleted flexibility as it is near the upper SOC limit. As a consequence, the controller curtails

both PV power plants starting from 14h, as shown in Fig. 2.13c. The curtailment action is

paramount to follow the dispatch plan at the GCP, which is accurately tracked as visible in

Fig. 2.13a.

The tracking performance reported in Table 2.9 scores slightly worse RMSE than day 1 because

of the partly cloudy sky conditions which determine higher PV generation variability. Compu-

tation performance in Table 2.10 denotes that the control actions are successfully computed

within the 30 sec deadline.
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(a) Day-ahead net demand scenarios (aggregated demand minus generation).

(b) Computed dispatch plan (in red) and scenarios at GCP.

(c) Battery active power injections and SOC for different day-ahead scenarios.

Figure 2.12: (a-c) Dispatch plan computation for day 2: 10th September 2019.

2.8.6 Further Analysis

This section is devoted to the following analyses: i) we perform a sensitivity analysis on the

performance of the distributed approach by increasing the number of controllable elements

and ii) we compare the performance (i.e., optimality and computation time) of the centralized

vs the distributed formulations. The analysis is performed by considering the same conditions

as day 1.

Analysis of the Algorithms Performance with respect to the Number of Controllable Units

This analysis is carried out by dedicated simulations with different number of distributed

BESSs. These resources are considered to have identical power rating and total energy ca-

pacity equal to the one of the BESS in the experimental validation. The largest number of
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(a) Dispatch plan (in black), measured power at the GCP (shaded gray) and power at the GCP
without control (red).

(b) Top: realised battery power injection, bottom: SOC and its limits.

(c) Realised generation for PV1 (shaded gray), realised generation for PV2 (shaded green), maxi-
mum power for PV1 and PV2 (dashed blue and red).

Figure 2.13: (a-c) The experimental results for real-time control using the distributed MPC on
day 2: 10th September 2019.

controllable BESS is 4 units. This is deemed to be a reasonable estimate as a larger number of

BESSs that could be installed in a low-voltage distribution network as the one that we have

considered. Indeed, a larger number of BESSs would result in excessively small BESS power

ratings (compared to the nominal power of the nodes) and would multiply grid connection

costs. The additional BESSs are placed at nodes 5, 6, 7, 8 respectively. Table 2.11 reports the

corresponding computational performance. Fig. 2.14 shows the boxplots of the computation

time taken by each resource and the grid for the distributed scheme (the figure refers to a daily

time horizon). The total computation time is given by the maximum among the resources

plus the grid time. As it can been seen, the average computation time for the BESS increases
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Table 2.10: Computation performance for real-time experiments

Day Time (sec) ADMM iterations

Mean SD Max Mean SD Max

1 8.10 5.34 18.56 9.34 6.60 19

2 5.90 4.13 13.70 7.03 5.29 17

with the number of units. However, it does not impact the total computation time significantly

as the units solve their own problem in parallel. Therefore, increasing the number of control-

lable BESSs does not influence the solvability of the problem given the real-life solution time

constraints.

Table 2.11: ADMM computation time with respect to increasing number of controllable units.

# BESS units Total time (sec)

Mean Max

1 5.6 11.8

2 5.6 21.3

4 4.7 12.6

Figure 2.14: Computation time with number of BESS units for Day 2 (Simulation).

Performance Comparison of the Centralised vs. the Decentralised Algorithms

Table 2.12 shows the results of the comparison in terms of dispatch tracking (measured by

RMSE, mean and MAE in % of the mean of the dispatch plan) and computation time per-

formance of the two proposed algorithms i.e., the centralized (Sec. 2.5.1) and distributed

(Sec. 2.5.2) RT-MPC. As visible from Table 2.12, the dispatching performance in both cases is

very similar. The computation time of the centralized algorithm is shorter than the distributed

one. This is to be expected because the distributed optimization formulation requires multiple

iterations of the optimization problems to converge to a solution, whereas the centralized

algorithm solves a single optimization problem. However, the latter needs to know the com-

plete models of PV and BESS resources, which might not be available in real-life especially
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Table 2.12: Performance comparison of the centralized vs distributed algorithms.

Method Dispatch error Time (sec)

RMSE Mean Max Mean Max

Centralized 1.6 -0.5 8.9 2.0 3.6

Distributed 3.18 -2.1 10.75 5.6 11.8

when resources belong to different owners. Another advantage of the distributed algorithm is

that it is solved by several computers usually characterised by low computing power, whereas

the centralized algorithm does require a single computer with larger computing power. Other

variants of the ADMM algorithm for improving convergence speed can be deployed in future

works as in [78].

Sensitivity of Dispatch Plan Quality with Weighing Coefficient

We vary the weighing coefficient wr over a range of values and recompute the dispatch plan.

To quantify the reliability of dispatch plan, we use the mean of RMSE (mRMSE) between each

prosumption scenario and the obtained dispatch plan. mRMSE is normalized and expressed

in % of the mean of the dispatch plan. As an example, Table 2.13 lists the mRMSE for different

wr for the dispatch computation on Day 2. It can be seen that the variation in the mRMSE for

different values of wr , expressed as percentage of the average dispatch plan, is small (less than

4 % for wr variation from 0.5e-5 to 0.5) and thus the performance of the proposed problem

formulation appears invariant with respect to the value of wr .

Table 2.13: Sensitivity of dispatch plan reliability

wr 0.5e-5 0.5-4 0.5e-2 0.5e-1 0.5
mRMSE 2.7 0.7 2.0 2.9 3.8

2.9 Discussion

This Chapter proposed and experimentally validated a scheduling and control framework

for DERs to track a dispatch plan at the GCP of a distribution network that interconnects

heterogeneous resources while respecting constraints on nodal voltages and lines ampacities

of the local grid. In the scheduling phase, we determine an aggregated dispatch plan at the

GCP by accounting for forecasts of stochastic generation and demand, the state of the control-

lable resources, and constraints of the grid. During real-time operations, a distributed MPC

adjusts the power injections of the controllable DERs to track the dispatch plan subject to the

grid’s and DERs’ operational constraints. We leverage a distributed formulation for improved

scalability and privacy-preserving properties (concerning sharing of DER and grid models).

To achieve a tractable formulation of the control problem, we used a linearized grid model
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based on sensitivity coefficients, computed considering point predictions in the scheduling

phase, and updated by using the most recent grid state during real-time operations. The grid

model (based on sensitivity coefficients) was updated according to different policies: once

per day considering static injections, once per day considering dynamic point predictions of

the injections, and dynamically updated during the day. The best performing linearization

policy is determined by comparing convergence speed, tracking error, and modeling errors.

The analysis showed that the model, where the linear transformation parameters are updated

dynamically using the averaged sensitivity coefficients, outperforms others in terms of con-

vergence speed and accuracy in modeling grid constraints. They show that the voltage and

current errors, for the 99% of the estimations, are in the range [-7.2e-6 pu, 3.8e-7 pu] and

[-3.9e-4 pu, 1e-3 pu], respectively.

The dominant framework is experimentally validated in a real-scale microgrid hosting het-

erogeneous controllable resources and monitored with PMUs. The dispatch plan, which is

at a 30 sec resolution, is computed the day before operations for the next calendar day. The

real-time control set-points are implemented every 30 sec for all day. Experimental results,

carried out on two distinct days characterized by different irradiance and PV generation pat-

terns, showed that the proposed framework achieves a reliable and accurate dispatch on a

30 sec basis, with RMS and mean tracking errors smaller than 5% and 2%, respectively while

respecting all grid constraints.

The methods proposed in this Chapter may not work well when the flexibility offered by DERs

is not enough to track the dispatch plan reliably. Also, the linearized grid model deployed for

accounting for the grid constraints might not rigorously guarantee the feasible operation of a

grid in any possible state. These issues are tackled in the next Chapter.
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Distribution Network using Batteries

Dispatching ADNs is an energy-intensive application that, if implemented via BESSs, can re-

quire a large capacity and number of these assets in order to fully balance the uncertainties

caused by the stochastic demand and generation. The insufficient capacity of the BESSs often

leads to their SOC saturation resulting in unreliable dispatch tracking. This Chapter proposes,

and experimentally validates, a real-time control scheme that achieves a highly-reliable dis-

patching of ADNs and ensures that the BESSs’ SOC is not saturated during the daily operation.

Our proposed scheme uses a two-layer MPC. The upper-layer MPC, running every 5 minutes,

optimizes the BESSs’ SOC trajectories while minimizing the tracking error, considering the pro-

sumption forecast of the whole day. Then, the lower layer MPC, running every 30 seconds, takes

the BESSs’ SOC trajectories from the upper-layer as constraints while achieving a high-resolution

tracking of the dispatch plan over the current 5-minute time horizon. Both layers account for

the grid constraints by using the AR-OPF model; an exact convex relaxation of the original

AC-OPF (for the first time in the literature for real-time control), in an exact model, to solve a

real-time constrained control problem for ADNs. Our proposed framework is experimentally

validated using a 1.5 MVA/2.5 MWh BESS connected to an actual 24-node medium-voltage

(MV) ADN in Aigle, Switzerland, hosting an uncontrollable 3.2 MWp distributed photovoltaic

generation, 3.4 MVA hydro generations, and 2.8 MW base demand.

The Chapter includes results of publication [79].

3.1 State-of-the-Art

As discussed in the previous chapter, dispatching power-distribution networks is proposed in

the existing literature as a way to tackle the problem of bulk transmission system imbalances at

the local scale and to solve local distribution grid operational issues (e.g., [18, 19]). This process

is achieved by controlling suitable DERs in order to indirectly regulate the power injections of

heterogeneous and stochastic resources, according to a pre-defined power trajectory called

dispatch plan established the day before operation [23, 80]. In these schemes, distribution

system operators (DSOs) can determine the day before operation their dispatch plan by taking
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into account uncertainties of stochastic power injections and can follow it during the day of

operation by controlling flexible resources such as BESSs. Different dispatching frameworks

have been proposed in the existing literature. For example, the work in [23] proposes and

validates a dispatching framework on a medium voltage (MV) feeder by using a utility-scale

BESS. The method proposed in the Chapter 2 validated a dispatching framework on a micro-

grid by using multiple controllable DERs. Both controls were formulated to track the dispatch

plan, over a short horizon (i.e., 5 minutes). This makes the control myopic, with respect to

prosumers’ uncertainties in the forthcoming timesteps. The consequence of such schemes

is that the early saturation of the flexibility offered by controllable resources (e.g., BESSs’

state-of-charge - SOC) can occur hence can interrupt the reliable tracking of the dispatch

plan. A way to solve the problem is proposed in Chapter 2 by optimally curtailing the excess of

power from renewable stochastic generation. However, curtailment is often not considered

an economical option. Another solution is to increase the time-ahead horizon period (e.g.,

[81]) in the real-time (RT) model predictive control (MPC) of the schemes proposed in [17, 23].

However, this approach increases the computation time (due to large number of variables) and

can exceed the RT actuation-time deadline of the MPC controller. Furthermore, most of the RT

controls proposed in the literature assume BESSs to have sufficient capacities. However, this

is not always true in real-life setups as different applications have different energy and power

requirements. For example, using a BESS for providing primary frequency regulation [82] is

a power-intensive application and does not necessarily require a large energy capacity. Two

other examples of power-intensive applications are voltage regulation [83], and congestion

management [84]. However, dispatching by a BESS (the main focus of this Chapter) is an

energy-intensive application, as it needs to compensate for the dispatch energy-errors that

occur during the day (or until a sufficient SOC is restored). The previous works in Chapter 2

and [17, 23] were validated with sufficiently sized BESSs. An insufficiently sized BESS, however,

results in an early saturation of its capacity and will discontinue the dispatching activity for

the rest of the day. Additionally, when the above schemes are implemented on a grid with rich

stochastic injections, a successful dispatch requires a large BESS capacity. This large capacity

might be challenging to procure by the DSOs, due to regulatory constraints and (sufficiently

low) payback times.

Furthermore, previous works did not account for the grid constraints (e.g., [23, 81]). The work

in Chapter 2 did consider the grid constraints via a linearized power flow model. Although the

linear power flow model in Chapter 2 stands correct for most of the cases, it cannot rigorously

guarantee the feasible operation of a generic power distribution grid in correspondence to

any possible state.11 In this respect, the full AC power-flow equations could be considered

to properly model the grid constraints. However, this leads to the well-known non-convex

optimal power-flow (OPF) problem [85, 86]. OPF problems are usually computationally ex-

pensive. Hence, they are often used for offline optimizations schemes such as for the planning

of grid reinforcements (e.g., [87]). Several OPF-based optimization schemes are presented

11A performance comparison between the linearized power flow and a convex AC power flow (AR-OPF) is
presented in Appendix A.
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in [88, 89, 90, 91]; however, either they are quite computationally expensive hence cannot

be used for real-time controls, or they are not exact (i.e, the OPF solution is not a solution

of the AC power-flow equations). To solve this issue, several convexification approaches

(for example [15, 17, 34, 35, 36, 37, 92]) are proposed in the literature. These approaches

improve the OPF computational performance for real-time controls. They can be broadly

categorized into two types. The first one is based on the OPF linearization, for example, in

[17, 36, 37, 92]. These schemes rely on the first (e.g.,[17, 36, 92]) or multiple (e.g.,[37]) order of

Taylor’s series expansion of the power-flow equations that are used to express, as a function

of the power injections, the nodal voltages, line currents, and the losses. In the works [17]

and [92], Authors implemented linearized OPFs-based real-time controllers for real-scale

ADNs (as also used in Chapter 2). The second approach relies on the adoption of a suitable

relaxation of the power-flow equations to obtain a convex formulation of the OPF [15, 34, 35].

Semi-definite relaxations as second-order-cone-program (SOCP) in a bus injection model

[34] and in a branch flow model [35] are the most adopted models. These relaxations are

referred to as relaxed-OPF (R-OPF) models. However, as shown in [15], R-OPF applies to a

subset of distribution networks. Furthermore, these methods ignore the presence of shunt

elements, which is not a realistic assumption for MV distribution networks with branches

composed by long coaxial cables. Due to inexactness of these methods, they have not been

used in actual networks in real-time controllers. To overcome these shortcomings, in [15],

the so-called augmented relaxed (AR)-OPF is proposed; this would account for the shunt

elements and provide an exact solution of the OPF if specific conditions are met. AR-OPF

is based on a SOCP relaxation of the original power-flow equations. Compared to the other

SOCP-based relaxations, the AR-OPF guarantees the exactness of the power-flow solutions,

given that some conditions (verifiable ex-ante) are met [15]. As it will be described later, the

exactness is achieved by including some additional constraints on the SOCP-based relaxation

of [35].

Given the above-listed issues, in this Chapter, we propose a real-time grid-aware MPC scheme

that: (i) achieves an accurate dispatch tracking of distribution grid while avoiding BESSs’

SOC saturation and (ii) integrates an AC-OPF-based grid-aware real-time control by using the

AR-OPF. The proposed scheme inherently restores adequate SOC levels for the subsequent

day. This is achieved by a proposed two-layer real-time MPC where the upper layer refines

the SOC trajectory of the BESS every 5 minutes, based on updated forecasts of prosumers

uncertainties for longer-time horizons. Then, the lower-layer MPC computes the BESS’s active

and reactive power setpoints by considering the SOC trajectory computed by the upper layer

as a constraint. The upper-layer MPC is periodically fed with the updated 5-minute forecasts

of the stochastic injections for a longer-time horizon (up to the end of the day of operation).

Regarding the forecasts, we adopted an integrated data-driven prediction of the prosumption

by relying on the day-ahead predicted scenarios, updated global horizontal-irradiance (GHI)

forecasts from a commercial service, and the latest power measurements. Our proposed

framework was experimentally validated on an actual 24-node medium voltage (MV) grid (in

Aigle, Switzerland), hosting an uncontrollable 3.2 MWp distributed photovoltaic generation,
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3.4 MVA hydro generations, and a 2.8 MW base demand. A grid-connected 1.5 MVA/2.5 MWh

BESS was the sole controllable resource in this setup. The grid was equipped with a state-

of-the-art metering and communication infrastructure to determine the grid state at a high

refresh rate (i.e., 50 estimations a second) by using 17 commercial distribution-level phasor-

measurement units (PMUs). In summary, our main contributions with respect to the existing

literature are the following.

• The formulation of a two-layer MPC scheme. Compared to the works in [23, 81], the

proposed two-layer MPC avoids BESS SOC saturation by solving a farsighted MPC

(considering a longer horizon till the end of the day), along with a myopic MPC (by a

shorter horizon of 5 minutes).

• The formulation accounts for the grid constraints by using an exact convex model of

AC-OPF, i.e., the AR-OPF. Compared to the linearized OPF model used in Chapter 2,11

the work presented in this Chapter goes a step further by using a SOCP-based convex

relaxation of the original AC OPF, the AR-OPF [15]. Due to its exactness, the AR-OPF

guarantees the feasible operation of the grid, with respect to any possible grid state.

Compared to the SOCP-based AC-OPF models of [35], it applies to network models that

take into account the shunt parameters.

• The experimental validation. To the best of our knowledge, this is the first real-scale

experimental validation of a grid-aware AC-OPF-based real-time MPC on a real MV dis-

tribution network. The control is assisted by a dedicated metering and communication

infrastructure.

3.2 Problem Statement

Let us consider a power distribution grid that hosts heterogeneous controllable and un-

controllable DERs. The uncontrollable resources comprise of stochastic renewable power

generators and demand, whereas the controllable resource is a grid-connected BESS. The grid

is dispatched at its grid-connection point (GCP) by controlling the BESS via a real-time (RT)

controller, to follow a pre-determined dispatch plan. The dispatch plan is computed based on

the forecasts of stochastic generation and demand, on the status of the controllable resource

(i.e., the BESS), and by taking into account the local grid constraints. The dispatch plan has a

5-minute time resolution and is computed at 23:30 local time the day before operation.

The RT operation begins at 00:00 local time. The purpose of the RT controller is to achieve

a fine tracking of the day-ahead dispatch plan and, during the rest of the daily operation, to

avoid the saturation of the BESS SOC. At the end of the day, the framework has to restore a

sufficient BESS SOC for dispatching the next day. Existing schemes in [17, 23] and Chapter 2

used a RT controller with an MPC look-ahead horizon of 5 minutes. However, this MPC is

myopic to the uncertainties of the injections, which eventually leads to BESS SOC saturation,
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3.3 Day-Ahead Dispatch Computation

as schematically shown in Fig. 3.1. In this work, we avoid the BESS SOC saturation by adding

a farsighted MPC layer that enforces a SOC budget. This feature is enabled by the proposed

two-layered MPC framework, where the upper layer (farsighted) avoids the SOC saturation of

the BESS; whereas, the lower layer (myopic) fine tracks the dispatch plan. To summarize,

Myopic single-
layer MPC

Farsighted 
two-layer MPC 
(realized)

Farsighted two-
layer MPC 
(predicted)

𝑆𝑂𝐶!

𝑆𝑂𝐶"#$

𝑆𝑂𝐶"%&

𝑘 Time index

BESS SOC 
saturation

24	ℎ

Figure 3.1: Schematic representation of the SOC evolution of the BESS with myopic single-
layer MPC and farsighted two-layer MPC.

• The upper-layer MPC computes the BESS energy-budget based on latest intra-day

forecasts and the current states of both the grid and the BESS. It runs every 5 minutes

and considers an MPC horizon till end of the day in a shrinking manner, i.e, horizon

length reduces as the day advances. At the beginning of each day, a new 24 hour horizon

starts.

• The lower-layer MPC optimizes the active and reactive power setpoints of the BESS and

considers the energy budget restrictions from the upper-layer MPC and grid constraints.

It runs every 30 seconds and considers an MPC horizon of 5 minutes, in a shrinking

manner.

The day-ahead and real-time dataflow is shown in Fig. 3.2.

Both the day-ahead and real-stage should account for the grid constraints. In this Chapter, we

use AR-OPF, a relaxation of non-linear AC-OPF that guarantees exact solution under certain

conditions which are verifiable post optimization.

3.3 Day-Ahead Dispatch Computation

The objective of the day-ahead scheduling is to compute the dispatch plan, specifically, the

active power-profile that the targeted distribution network should follow at its GCP at a

5-minute resolution, during the next day operation. The dispatch plan is denoted by the
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Day-ahead dispatch
computation

Day-ahead scenarios of nodal
demand and generaration

Intraday
forecast

Initial BESS SOC

BESS SOC

Grid state

Scheduling loop (Day before operation)

Active and reactive power setpoints
computation by lower-layer MPC

Energy budget computation by the
upper-layer MPC

Short-term
forecast

Control loop (During the day)

Every 30 seconds

Every 5 minutes

Once a day

Figure 3.2: Schematic dataflow of the proposed scheduling and control framework.

sequence P disp
y , y = 0,1, . . . , N −1, where index y is associated with 5-minute discrete intervals

of the day of operation, and where N = 288 is the number of time intervals in 24 hours. The

dispatch plan accounts for the stochastic variations of the distributed renewable generations

and for the demand by day-ahead scenarios produced according to forecasts.

3.3.1 Day-Ahead Load and Renewable Power Generation Forecast

We refer to Chapter 2, Section 2.4.1 for day-ahead forecasting of demand and PV generation.

Additionally, in our forecast model, the hydropower plants are operated at a given power

setpoint and do not have significant intra-day variation, so we model them as constant power

injection sources. A validation of the predicted scenarios using above forecasting methods are

presented in Sec 3.5.2.

3.3.2 Day-Ahead Problem Formulation

We use the dispatch computation algorithm12 from [64], a stochastic-based optimization

problem accounting for the uncertainty of the nodal powers (modeled by day-ahead scenarios)

and the grid constraints by co-dist-flow13 [64]. The problem minimizes the dispatch error

considering all the day-ahead scenarios and flexibility offered by the controllable resource.

The dispatch plan is computed such that the power regulation made by the controllable

resources (BESS in this case) does not violate the grid’s and its constraints, and the power

12Although, in this Chapter, day-ahead dispatch formulation is based on the work in [64], the linearized-OPF
based dispatch formulation of Chapter 2, Sec. 2.4 produces the same results.

13The co-dist-flow is an iterative scheme where the dispatch plan is first optimized by neglecting the losses, then
they are corrected by solving non-linear AC power flow which is accounted in the next iteration of the optimization.
The reader can refer to [64] for more information.
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factor at the GCP remains within a pre-defined range. Since the main contribution of this

Chapter is on a real-time control scheme, we omit presenting the dispatch formulation.

3.4 Real-time Operation via Two-layer Model Predictive Control

The purpose of real-time control is to track the day-ahead dispatch plan, during the day of

operation by using a BESS. As stated earlier, the real-time control scheme comprises two layers

operating at 5-minute and 30-second time resolutions. The control problems of both layers

are formulated as MPC and require forecasts of the nodal power injections. The upper layer

MPC uses forecasts of the nodal power-injections at 5-minute time resolutions, whereas the

lower layer MPC uses forecasts at 30-second time resolutions. We use data-driven schemes

for intra-day and short-term forecasting for upper and lower MPCs respectively. They are

described below.

3.4.1 Intra-day and Short-time Forecasting

A data-driven intra-day forecasting scheme has been developed to forecast nodal power

injections during the day using the latest measurements of power (pmeas
l ) during the day

of operation (provided by PMUs), updated GHI forecasts from SoDa [60] and day-ahead

scenarios. The scheme is described in Algorithm 3.1. Intra-day forecasts p̂load
l is obtained

as the weighted sum of the day-ahead scenarios of nodal injections (P̃ l from Algorithm 2.1).

The weights are derived and updated every 5-minutes based on recent realization from the

measurements. The weights are computed by finding the similarity (by norm-2) between the

realization (pmeas
l ) and day-ahead scenarios (P̃ l ) as in step 5, Algorithm 3.1. In step 7-12,

updated GHI and air temperature forecasts are obtained from SoDA service, then used to

compute PV generation (p̂pv
l ) using a PV model that consists in transposing the GHI data

and applying a physical model of PV generation accounting for the air temperature as in [68].

Intra-day forecasts are updated every 5 minutes.

Short-term forecasts are obtained by linearly interpolating the latest intra-day forecasts with

the time-resolution of 30 seconds and, then we use persistent predictorto correct the forecasts

of current timestep using the last observations. The short term forecasts are updated each 30

seconds. The scheme is described in Sec. 2.5.3.

3.4.2 Grid Model using the AR-OPF

Both the MPC layers account for the grid constraints using a convex OPF model. Compared

to the linearized OPF in Chapter 2, this work uses a SOCP-relaxation of the original AC OPF

model. It uses the AR-OPF model [15] that guarantees exact solution when specific condi-

tions14 are met (verifiable ex-ante) and can be applied to a network with shunt elements. A

14The conditions for exactness, feasibility and optimality of the AR-OPF formulation are described in [15].
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Algorithm 3.1 Intra-day forecasting

Require: Day-ahead load scenarios (P̃ l = [pload
l ,1 , . . . ,pload

l ,Nsc
]), PV-config (from Algorithm 2.1)

1: procedure INTRADAYFORECAST

2: for l = 1:|N | do
3: Retrieve realizations (pmeas

l ) till the last 5-minutes slot.

4: d = [d1, . . . ,di , . . . ,dNsc ] = ∥P̃ l −pmeas
l )∥2

5: Weights wi = 1/di /
∑Nsc

i (1/di )

6: Intra-day load forecast p̂load
l =∑

wi pload
l ,i

7: if node l contains a PV plant then
8: Get GHI, temperature (G ,T air) forecasts from SoDa
9: p̂pv

l = PVmodel(G ,T air, PV-config)
10: else
11: p̂pv

l = 0
12: end if
13: end for
14: end procedure

performance comparison between two OPFs (Linear OPF from chapter 2 and AR-OPF) pre-

sented in Appendix A confirms the superiority of the AR-OPF model for this specific control

application. Therefore, we use AR-OPF [15] in this work for the reliable modeling of the grid

constraints. The AR-OPF was originally developed in [15], it is presented below for the sake of

completeness of the real-time MPC scheme.

Figure 3.3: Illustration of the adopted nomenclature with respect to the generic two-portΠ
model of a transmission line.

To introduce the AR-OPF nomenclature, we refer to generic two-port equivalent Π−model

of the network branches shown Fig. 3.3. As anticipated before, we consider a radial grid

configuration. Let index 0 refer to the slack bus. Buses other than the slack are denoted by

1, . . . , Nl and are in the set L . The upstream and downstream buses to bus l are denoted by

symbol up(l ) and l respectively. The symbol H refers to adjacency matrix as defined in [15].

Let k be the time index in the set K = [1, . . . ,K ]. Let S t
l ,k = P t

l ,k + iQ t
l ,k and Sb

l ,k = P b
l ,k + iQb

l ,k
be the complex power that is entering the line l from top and bottom respectively; and fl be

the square of the current in line l flowing through zl (see Fig. 3.3). zl = rl + i xl and 2bl be the

longitudinal impedance and shunt capacitance of line l . z∗
l refer to complex conjugate of zl .

Let vl ,k be the voltage phasor, v⋄
l ,k the square of the voltage magnitude at bus l and v⋄,min

and v⋄,max the squares of the minimum and maximum of nodal voltages operational bounds.
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I max
l is the square of maximum current limits of the line l . Let sl ,k = pl ,k + i ql ,k be the power

absorbed at bus l . Let sbess
l ,k = pbess

l ,k + i qbess
l ,k be the injections from BESS. The uncontrollable

injections from demand, PV and hydro generation are modeled by their forecasts denoted

as p̂ load
l ,k , p̂pv

l ,k and p̂hydro
l ,k respectively. The nodal active and reactive injections are pl ,k =

pbess
l ,k + p̂pv

l ,k + p̂hydro
l ,k − p̂ load

l ,k and ql ,k =−qbess
l ,k − q̂ load

l ,k − q̂hydro
l ,k , respectively.

According to [15], the AR-OPF constraints are composed of the SOCP relaxation of power flow

equation (referred as relaxed (R)-OPF). The R-OPF equations are

S t
l ,k = sl ,k +

∑
m∈L

Hl ,mS t
m,k+zl fl ,k− j (v⋄

up(l ),k+v⋄
l ,k )bl , ∀l ∈L ,∀k ∈K , (3.1a)

Sb
l ,k = sl ,k +

∑
m∈L

Hl ,mS t
m,k , ∀l ∈L ,∀k ∈K , (3.1b)

v⋄
l ,k = v⋄

up(l ),k−2R

(
z∗

l

(
S t

l ,k+ j v⋄
up(l ),k bl

))
+|zl |2 fl ,k , ∀l ∈L ,∀k ∈K , (3.1c)

fl ,k ≥
|S t

l ,k + j v⋄
up(l ),k bl |2

v⋄
up(l ),k

, ∀l ∈L , ∀k ∈K , (3.1d)

For the exactness, the AR-OPF [15] introduces auxiliary variables to add security constraints

on upper bounds of the nodal voltage and current magnitudes. It is done such that this upper

bounds do not depend on original variable f rather an upper bound f̄ . Let symbols f̄ , Ŝ, S̄ are

auxiliary variables for lines of the grid and v̄⋄ for the buses. The AR-OPF equations are defined

as follows.

Ŝ t
l ,k = sl ,k+

∑
m∈L

Hl ,m Ŝ t
m,k− j (v̄⋄

up(l ),k+v̄⋄
l ,k )bl , ∀l ∈L ,∀k ∈K , (3.1e)

Ŝb
l ,k = sl ,k+

∑
m∈L

Hl ,m Ŝ t
m,k , ∀l ∈L ,∀k ∈K , (3.1f)

S̄ t
l ,k = sl ,k+

∑
m∈L

Hl ,m S̄ t
m,k+zl fl ,k− j (v⋄

up(l ),k+v⋄
l ,k )bl , ∀l ∈L ,∀k ∈K , (3.1g)

S̄b
l ,k = sl ,k+

∑
m∈L

Hl ,m S̄ t
m,k , ∀l ∈L ,∀k ∈K , (3.1h)

v̄⋄
l ,k = v̄⋄

up(l ),k−2R
(
z∗

l (Ŝ t
l ,k+ j v̄⋄

up(l ),k bl )
)
, ∀l ∈L ,∀k ∈K , (3.1i)

f̄l ,k v⋄
l ,k ≥ |max

{|Q̂b
l ,k− j v̄⋄

l ,k bl |, |Q̄b
l ,k− j v⋄

l ,k bl |
}|2+

|max
{|P̂ b

l ,k |, |P̄ b
l ,k |

}|2, ∀l ∈L ,∀k ∈K ,
(3.1j)

f̄l ,k v⋄
up(l ),k ≥ |max

{|Q̂ t
l ,k+ j v̄⋄

up(l ),k bl |, |Q̄ t
l ,k+ j v⋄

up(l ),k bl |
}|2+

|max
{|P̂ t

l ,k |, |P̄ t
l ,k |

}|2, ∀l ∈L ,∀k ∈K ,
(3.1k)

I max
l v⋄

up(l ),k ≥ |max
{|P̂ t

l ,k |, |P̄ t
l ,k |

}|2+|max
{|Q̂ t

l ,k |, |Q̄ t
l ,k |

}|2, ∀l ∈L ,∀k ∈K , (3.1l)

I max
l v⋄

l ,k ≥ |max
{|P̂ b

l ,k |, |P̄ b
l ,k |

}|2+|max
{|Q̂b

l ,k |, |Q̄b
l ,k |

}|2, ∀l ∈L ,∀k ∈K , (3.1m)

v⋄,min ≤ v⋄
l ,k , v̄⋄

l ,k ≤ v⋄,max, ∀l ∈L ,∀k ∈K , (3.1n)

P̄ t
l ,k ≤ P max

l , Q̄ t
l ,k ≤ Qmax

l , ∀l ∈L ,∀k ∈K , (3.1o)
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Eq. (3.1e)-(3.1f) express the lower bound on branch power flows at the sending and receiving

ends of the line l , whereas the eq. (3.1g) and (3.1h) express the upper bound for power flows.

Eq (3.1i) expresses the upper bound on the nodal voltages. These variables are then used in

upper and lower bounds on the square of longitudinal current in eq. (3.1j) and (3.1k). Eq. (3.1l)-

(3.1m) and eq. (3.1n) impose limits on the ampacity and nodal voltage respectively. Eq. (3.1o)

expresses upper bound on the active and reactive power flows in line l where P max
l /Qmax

l are

bounds on active/reactive power flows in line l .

3.4.3 Real-time Model Predictive Control (RT-MPC) of BESS

BESS Model

The BESS is controlled by an MPC to provide active and reactive power regulations to the

grid while respecting the capability of the BESS power converter. Let P bess
l and E bess

l be the

power and energy capacities of BESS connected at bus l . Typically, the converter capability is

represented by a circle ((pbess
l ,k )2 + (qbess

l ,k )2 ⩽ P bess
l

2
), but it is not true in practice as the power

capability of the converter depends on both the AC and DC voltages of the converter. An

example of capability curves with different combination of the AC and DC voltage are shown

in Fig. 3.4a, and they can be represented by piece-wise-linear functions as follows.

φ(vdc
t , v ac

t , pbess
l , qbess

l ,P bess
l ) ≤ 0. (3.2a)

Here, vdc is the DC bus voltage and v ac
t is the magnitude of the direct sequence voltage on the

AC side of the converter. They can be obtained from measurements.

We model the BESS losses by adding an equivalent resistance in the power flow equations as

proposed in [64]. The approach integrates the equivalent resistance into the grid’s admittance

matrix by adding a extra line (l ′) for each BESS. It allows retaining the convexity of the AR-OPF

problem without the need of any auxiliary variables. Fig. 3.4b shows the equivalent resistance

with an ideal voltage source and series resistance (Rbess
l ). Thanks to this simplification (i.e.,

adding equivalent resistance into the grid’s admittance matrix) the BESS state-of-energy (SOE)

(SOEl = SOCl E bess
l ) evolution with sampling time Ts is now expressed simply by

SOEl ,k+1 = SOEl ,k +Ts pbess
l ,k , ∀l ∈L ,∀k ∈K . (3.2b)

We constrain the SOE by safety margin of 0.1 per unit of the extremes saturation/depletion of

the battery. It is

0.1E bess
l ≤ SOEl ,k ≤ 0.9E bess

l , ∀l ∈L ,∀k ∈K , (3.2c)

Also, to account for the degradation of the BESS caused by its operation, we include the
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(a)

Ideal battery

virtual node real node

(b)

Figure 3.4: (a) BESS converter capability function φ in eq.3.2a with AC and DC voltage. (b)
Equivalent circuit diagram of BESS.

following constraint that limits the active power by a pre-defined threshold:

Ts

2×3600

∣∣∣pbess
l ,k

∣∣∣≤ Ne E bess
l , ∀l ∈L ,∀k ∈K (3.2d)

where Ne is rated number of cycles for the battery.

Model Predictive Control (MPC) Problem

As stated earlier, the real-time control scheme comprises two layers, both formulated as MPC

but with different horizon lengths. The upper layer considers intra-day prosumption forecast

along the whole day via subsequent shrinking horizon and computes successive BESS SOC

trajectories. The lower layer considers forecast of 5-minutes interval with a shrinking horizon

and computes power setpoints for the BESS while accounting for the SOC trajectory (provided

by the upper layer) as hard constraint. This two-layered structure enables full visibility of the

uncertainties during the real-time operation, therefore ensuring the BESS SOC to not saturate.

Fig. 3.5 explains the sequence of operations during real-time operation per time step. The

time intervals are divided into 5-minutes and 30-seconds slots corresponding to the sampling

of upper and lower level MPCs.

• The dispatch setpoint to track P disp
y is retrieved from the dispatch plan profile with

indices y = 0,1, . . . , N − 1 where N = 288 for 24 hours in a day. Intra-day forecasts

p̂ load
l ,y , q̂ load

l ,y , p̂pv
l ,y , p̂hydro

l ,y , are updated.

• The upper layer MPC computes BESS energy budget ∆SOEk , k = 0,1, . . . , N −1 every

5-minutes based on updated intra-day forecasts and current BESS SOE .
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Figure 3.5: Sequence of decisions computed during real-time operations.

• The dispatch setpoint to track by the lower MPC is denoted by P̄ disp
k = P disp

⌊ k
10 ⌋

, where ⌊.⌋
refers to the floor function. The first and the last 30-seconds index in current 5-minutes

interval are denoted by k and k̄ respectively, i.e., k = ⌊ k
10⌋×10 and k̄ = k +10−1. The

power measurements at the GCP denoted by P meas
0,k is obtained. Using P̄ disp

k ,P meas
0,k and

∆SOEk , it computes BESS setpoints pbess
k at time resolution of 30 seconds with indices

k = 0,1, . . . ,K −1 ∈K with K = 2880 for a 24 hours operation day.

Upper Layer MPC: the objective is to minimize the tracking error between the dispatch

plan P disp and power at the GCP P t
0. Note that P t

0 is a dependent variable related to the

uncontrollable power injections, the controllable BESS injections and the grid losses derived

from AR-OPF (Eq.(3.1)). The decisions variables are the BESS active and reactive powers to

compensate for the uncertainties in the nodal injections, the latter modeled by intraday point

forecasts. The objective function to minimize is the weighted15 sum of the tracking error for

the whole day and grid losses16:

p̂bess
l = arg min

∀S,v,sB

wp

N∑
j=y

∥P disp
j −P t

0, j∥2 +wl

N∑
j=y

∑
l∈L

rl fl j (3.3a)

subject to (3.1), (3.2) (3.3b)

A bound on the final SOE such that it is restored to a comfortable level by the day’s operation

is also added.

0.45E bess
l ≤ SOE l ,N ≤ 0.55E bess

l ∀l ∈L . (3.3c)

The budget ∆SOEl is computed using the first element of the BESS setpoint vector from

upper-layer MPC:

∆�SOE l = p̂bess
l ,1 × 300

3600
. (3.3d)

15The weights wp , wl and we may be derived from energy imbalance price in day-ahead electricity market.
16Grid losses are included to satisfy exactness conditions of the AR-OPF formulation as in [15]
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Lower Layer MPC: the problem is formulated as an MPC and its objective is to minimize

the energy error incurred over a 5 minutes horizon length with power set-points actuated

each 30 sec. The dispatch energy error at time k comprises of (i) uncovered energy error from

time index k to k −1, ϵ̂k =∑k−1
j=k (P̄ disp

j −P meas
0, j ) and (ii) the predicted error from k to k̄ given

as ϵk =∑k̄
j=k (P̄ disp

j −P t
0, j ). The MPC objective is a multi-objective function comprised of the

dispatch energy error incurred at the GCP (from current timestep to end of the 5-minute

period) and the grid losses:

minimize
∀S,v,sB

we (ϵk + ϵ̂k )+wl

k̄∑
j=k

∑
l∈L

rl fl ,k (3.4a)

subject to (3.1), (3.2). (3.4b)

Additionally, the energy budget from the upper layer MPC are added as constraint imposed on
the BESS SOE as:

SOEl ,k̄ ≥ SOEl ,k +∆�SOE l if ∆�SOE l ≥ 0, (3.4c)

SOEl ,k̄ ≤ SOEl ,k +∆�SOE l if ∆�SOE l ≤ 0. (3.4d)

The constraints in (3.4c) sets a threshold SOE to be attained by the end of current 5-minutes

duration. It ensures that the BESS is used judiciously by the lower MPC to avoid its saturation

and therefore restoring to comfortable SOE value by the end of the daily operation. Thanks to

the convex reformulation of the AC power flow equations using AR-OPF, the control problems

in (3.3) and (3.4) are convex and can be solved by standard solvers.

3.5 Experimental Validation

3.5.1 Experimental Setup

Medium Voltage Distribution Grid in Aigle, Switzerland

We validate the proposed control scheme on a real MV grid situated in Aigle, Switzerland, a

mixed rural/urban system operated by Romande Energie,17 one of the main Swiss DSOs. It

is a radial feeder composed by 24 nodes. The topology and locations of various connected

resources are shown in Fig. 3.6a-3.6b. It is a three-phase 21 kV/20 MVA balanced (seen in the

observations) system. The grid accommodates a peak power consumption (at the feeder)

of 4.2 MWp and 2.8 MWp during the winter and summer, respectively. It hosts aggregated

PV generation capacity of 3.2 MWp including a single plant of 1.8 MWp. The grid also hosts

distributed hydropower generation of 3.4 MVA allocated in 4 plants. The placement of these

generations are shown in Fig. 3.6a. The grid is connected with a 1.5 MW/2.5 MWh BESS at

node 11. Figure 3.6c shows exterior and interior of the BESS. The cells are Lithium-Nickel-

Manganese-Cobalt-Oxide (Li-NMCo) based and are rated for 4000 equivalent full cycles. It

17https://www.romande-energie.ch/.
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Figure 3.6: (a) Topology with locations of the PMUs, PV plants, hydro-power plants, (b)
Location of the substations and lines on the map, and (c) BESS and PV infrastructure: (1)
Satellite view of the centralized PV plant of capacity 1.8 MWp, (2) battery container and (3)
interior of the battery.

consists in 30 racks in parallel with 11 modules per rack in series (each module composed by

1p22s cell pack) connected to a four-quadrant power converter. The whole setup is installed

in a temperature controlled container as shown in Fig. 3.6c. The technical specifications of

the BESS and the converter are listed in the Table 3.1.

Metering and IT Infrastructure

Phasor Measurement Units (PMUs): The RT-MPC algorithm relies on the grid awareness

provided by a cluster of distributed metering units that provide up-to-date relevant measure-

ments such that they can be accounted as initial conditions, (in the OPF problem in (3.3) and

(3.4)) ensuring a safe and secure operation of the grid. In this respect, the MV-distribution
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Table 3.1: Technical specifications of the 1.5 MW/2.5 MWh BESS for the experimental setup.

Parameter Value
Nominal capacity 1.5 MVA/2.5 MWh

GCP Voltage 21 kV
DC bus voltage range 770-1000 V
PCS PQ controllability 4-quadrant operation

PCS efficiency 93 % for all the operating conditions
Total harmonic distortion < 3 %

CSC operation mode Compliant
VSC operation mode Compliant

Cell technology Lithium Nickel Manganese Cobalt Oxide (NMC)
Number of racks 30 in parallel

Number of modules per rack 11 in series
Cells configuration per module 1p22s

Total number of cells 7260
Cell nominal voltage 3.68 (limits 2.7 - 4.15 V)

Cell nominal capacity 94 Ah (343 Wh)
Battery cycle life 4000 equivalent cycle at 1C rate at 100 % DoD

with 80 % of the initial storage capacity available
at the end of life

12

3

4

(a)

1 2 3

4

1

5

(b)

Figure 3.7: (a) PMU installation at a monitored substation, 1) Zaphiro PMU box 2) GPS antenna,
(3) current sensor (4) cables and (b) GHI and temperature measurement box (meteobox) at a
PV plant: 1) pyranometer, (2) temperature sensor (3) antenna (4) power supply (5) NI Compact
RIO.

grid is equipped with the state-of-the-art monitoring solution SynchroGuard18 that provides

real-time situational awareness of the grid. The setup contains 17 PMUs distributed across the

grid, the locations are shown in Fig. 3.6a. Fig 3.7a shows an example of an installed PMU and

18https://zaphiro.ch/technology/.
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its components at a substation. The PMUs provide synchronised and time-tagged phasors

that are sent to a central server through a phasor data concentrator (PDC). As described later,

the PDC is hosted in a local server and is compliant with the IEEE Guide C37.244-2013 [93].

The PDC is responsible for the data aggregation and data pushing of the PMU measurements.

The measured characteristics of this setup, especially the network latency and packet losses,

are given in the Sec. 3.5.3. As shown in Fig. 3.18, the average and maximum latencies of most

PMUs are below 60 and 180 milliseconds, respectively; this is much lower than the control

actuation time of 30 seconds. We also show the packet losses in Table 3.5. As observed, the

mean packet losses are below 0.02%. Therefore, the installed measuring and communication

infrastructure can be considered reliable for the experimental validation of the RT-MPC [76].

It is worth noting that the metering system is also a source of historical data that is used to

obtain day-ahead scenarios, intra and short-term forecasts of the uncontrollable injections.

GHI and Temperature Measurement box: For the modelling of the PV generation, we use

the historical data of GHI and air temperature from the same region where the PV plants are

located. We installed GHI and temperature sensing boxes (Meteobox) to measure the GHI, air-

and PV-panel- temperatures. These meteoboxes are installed at three locations19 in the grid.

They provide in real-time measurements with sampling of 500 ms (including communication

latency). Fig 3.7b shows the installed meteobox at the site; each one consists of a pyranometer

to sense the GHI, two temperature sensors, and a power supply. They each also contain a

modem to stream the measured data, by using the public 4G network, to the local data server.

The meteobox code is implemented in National Instruments-Comapct-RIO.

Communication Infrastructure, Centralized Server and Data-logging: Fig. 3.8 shows the

schematic of the communication and server infrastructure that enables the day-ahead and

real-time control operations. A centralised local server hosts five virtual machines (VM1, . . .

VM5) to implement a PDC, RTSE, data-logging, day-ahead dispatch, real-time MPC, a BESS

setpoint actuator, and a router. PMU measurements are streamed to the VM1 through the

public network. In the VM1, a dedicated PDC is implemented. It is responsible for PMU data

aggregation and alignment. Once data aggregation is finished, it is sent to the real-time state

estimation (RTSE) (running on the same VM1). After the estimation is done, the measurements

and the estimated states are sent, and stored, in the local server database (hosted in VM2).

The real-time controls, day-ahead dispatcher and forecasting algorithms are implemented in

VM3. VM4 hosts the BESS actuator responsible to measure the BESS state and send actuation

messages (e.g., BESS setpoints). To facilitate communication among the VMs, BESS’s BMS and

its converter, PMUs and meteoboxes, we equip them with a dedicated IPv4 communication

network by using Ethernet cables, as shown in Fig. 3.8. The communication network links all

the monitoring units (PMUs and meteoboxes), the controllable resources (BESS’ BMS and its

19As distribution networks generally have limited geographical expansion and the substations are close to each
other, a few GHI sensors are sufficient to represent GHI variation over the whole distribution network.
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Figure 3.8: IT communication infrastructure for the experimental setup (vSwitch refer to
virtual switches).

converter), and the local server. The PMUs and the meteoboxes use public telecom networks

(4G), whereas the the BESS BMSs and converters use Ethernet cables. As shown in Fig. 3.8, all

the elements are connected to the local substation switch that is physically connected to a

DSO control centre by the DSO-owned optical-fibre network. The BESS operator connects to

the server, remotely through a secure VPN client provided by the DSO control centre.

Dataflow: Fig. 3.9 shows the sequence of the operations and communication flow of the

day-ahead and real-time stages. In the day-ahead scheduler (first step), the dispatch plan

is computed and stored in the database. The input to the day-ahead stage are the forecast

scenarios of the load and generation of different nodes (Sec. 3.3.1) and the estimated state

of the BESS. The day-ahead stage is run once a day at 23:30 local time. The real-time stage

(second step onwards in Fig. 3.9) shows the steps during real-time operations. In the beginning

of 5-minutes time interval, the energy budget is computed by the upper layer MPC based on

latest intraday forecasts and current SOC. Then, the lower layer MPC loops every 30 seconds

to compute BESS active and reactive setpoints based on short-term forecasts and BESS SOC.

This cycle is repeated till 23:59:30 local time.
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Retrieve dispatch plan P disp
k from the database (k = 0,

start of the real-time operation) at 00.00 local time. Ob-
tain intra-day 5-minutes forecast using Algorithm 3.1

Retrieve measurements (P meas
0,k ) for previous

time-steps in the current dispatch horizon

If start of the 5-minute dispatch horizon, update intra-day
5-minutes forecast using Algorithm 3.1, compute energy

budget ∆SoE by solving upper layer MPC problem eq. (3.3)

Compute the incurred dispatch error
ϵ̂k , short-term prediction of the sl ,k ,

read latest state of the BESS, i.e. SOEl ,k

Solve lower-layer MPC problem eq. (3.4), extract the first
elements of the control set-point and send it for BESS actuation

Wait for the next control step

k = k +1

Stop at 23:59:59.

Figure 3.9: Flow-chart showing real-time operation during 24 hours.

3.5.2 Experimental Results

This section presents the experimental results obtained by dispatching the MV grid described

in Sec. 3.5.1. First, we show results for two typical days representing different characteristics

in terms of power injection patterns. The first day is characterized by net imports into the

grid, whereas on the second day, the grid exports net power during the middle of the day,

thanks to generations from hydro and PV plants. Then, we show control performance for a

week-long experiment. The control performance of the proposed two-layer MPC scheme is

compared against other two cases: (i) Without control, where no compensation from BESS

is performed, and (ii) a Single-layer MPC, solving lower-layer MPC problem (eq. 3.4) but

without SOE budget from upper layer MPC. Since the experiments were performed with the

two-layer MPC, and the same experimental conditions can not be reproduced, we perform

numerical simulations with single-layer MPC with same conditions as the day of operation for

this comparison.

Day 1

It corresponds to a clear-sky and weekday, where the demand is relatively higher than the net

generations. The main source of uncertainty is the demand. The experimental results are

described below.
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Figure 3.10: Predicted day-ahead scenario set for day 1 (01-Mar-2022).

Day-ahead Operation: starts at 23:30 local time the day before. It computes the dispatch

plan based on predicted day-ahead scenarios; the number of scenarios, Nsc = 20 is used in

the following analysis. We show the predicted day-ahead scenarios20 (in gray area) and the

corresponding realization (in red lineplot) in Fig. 3.10. The scenarios are obtained using the

forecasting algorithm in Algorithm 2.1; we show the 5-95 % confidence intervals plots for the

day-ahead scenarios. As it can be observed, the realization shown in red color plot lies within

the day-ahead scenario set for most of the day. The resulting day-ahead scenarios (lineplots in

different colors) at the GCP21 is shown in Fig. 3.11a. The computed dispatch plan is shown

20For the sake of brevity, the day-ahead scenarios for all the nodes of the Aigle grid are not shown. We show the
ones with dominant power injections.

21The day ahead scenarios at the GCP is a by-product of the day-ahead scenarios at all the nodes accounting for
the grid losses.
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(a) Day-ahead aggregated prosumption scenarios (P̂0) at the GCP.

(b) Computed dispatch plan (in gray area) and scenarios at the GCP.

(c) Battery active power injection pbess (top) and SOC (bottom) for different day-ahead scenarios.

Figure 3.11: (a-c) Dispatch plan computation for day 1 (01-Mar.-2022). Each line-plot in
different color represents a different day-ahead scenario.

in Fig. 3.11b along with the power at the GCP with contribution from the BESS. As it can be

observed, the dispatch plan still have some uncovered error because of the insufficient size

of the BESS. The SOC plot shown in the Fig. 3.11c shows that BESS is reaching its saturation

limits with many scenarios. The initial SOC is 50 % which is also the SOC of the battery before

the start of the real-time operation.

Real-time Operation: starts at 00:00 hrs. Fig 3.12a shows the dispatch plan (in gray area),

power at the GCP for different control schemes. Fig. 3.12b shows the SOC evolution with

different control schemes. Fig 3.12c shows the plot of tracking error cumulative distribution
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(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Figure 3.12: (a-c) Real-time operation for day 1 (01-Mar.-2022).

function (CDF) as result of different real-time controls. As it can be observed, the single-layer

MPC lets the BESS saturate at around 8:00 hrs and it could not be used for the whole day;

hence failing the dispatch. In contrast, the two-layer MPC ensures the BESS to never saturate,

thanks to the energy budget constraints computed by the upper layer MPC. Also, by looking

at the CDF plot of the tracking error in Fig. 3.12c, it is clear that two-layer MPC, on the one

hand, achieves better tracking of the dispatch plan with a lower probability of high tracking

error. On the other hand, it keeps the BESS SOC within a flexible range. Table 3.2 reports the

maximum-absolute-error (MAE), net absolute-energy-error (AEE), root-mean-square-error

(RMSE) of the dispatch error using different controls concluding that the control based on

two-layer MPC performs the best. The two-layer MPC outperforms the single-layer MPC in

RMSE by 40%, MAE by 67% and AEE by 35% respectively.

Day 2

It corresponds to a day with higher variation in the power injection due to higher uncertainty

with next export due to high PV and hydro generations. The results are below.
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Table 3.2: Tracking error statistics with different control schemes.

MPC Day 1 Day 2
RMSE AEE MAE RMSE AEE MAE
(kW) (kWh) (kW) (kW) (kWh) (kW)

None 137 2.5e3 1e3 176 3.2e3 896
Single-layer 148 2.3e3 1e3 124 1.5e3 932
Two-layer 89 1.5e3 332 85 1.5e3 322

Figure 3.13: Predicted day-ahead scenario set for day 2 (22-Mar-2022).

Day-ahead Operation: Fig. 3.13 shows day-ahead forecast for day 2. Compared to day 1,

node 34 is producing due to generation from hydropower plants at node 34 and exhibit

higher uncertainty. Fig 3.14a shows the day ahead scenarios for day 2. As it can be seen,
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(a) Day-ahead aggregated prosumption scenarios (P̂0) at the GCP.

(b) Computed dispatch plan (in gray) and scenarios at GCP.

(c) Battery active power injection pbess (top) and SOC (bottom) for different day-ahead scenarios.

Figure 3.14: (a-c) Dispatch plan computation for day 2 (22-Mar.-2022). Each line-plot in
different color represents a different day-ahead scenario.

this day exhibit more variations in power injections resulting in higher uncertainty in the

day-ahead scenarios of the GCP. Also, during the middle of the day, the net power at the GCP is

negative (producing) as hydro power plants at node 34 are generating. Fig 3.14b shows the

computed dispatch plan and compressed scenarios of active powers at the GCP, thanks to

the compensations from the BESS. However, the BESS capacity is not enough to cover the

uncertainty of all the day-ahead scenarios resulting in spread of the optimized power at the

GCP even with contribution of the BESS. It is also evident from the BESS SOC plot in Fig. 3.14c

that the it saturates for several day-ahead scenarios. Comparing the dispatch plans for the

day 1 and day 2, the tracking is better during the day 1 (spread of the power at the GCP in
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(a) GCP power tracking the dispatch plan with different control schemes.

(b) SOC of the BESS with different control schemes.

(c) CDF plot of the dispatch tracking error with different control schemes.

Figure 3.15: (a-c) Real-time operation for day 2 (22-Mar.-2022).

Fig. 3.14b is much larger than Fig. 3.11b). This is due to larger uncertainty in the predicted day

ahead forecasts for the injection at the node 34 in Fig. 3.13.

Real-time Operation: Fig 3.15a shows the tracked dispatch plan using different control

schemes. Again, we show the BESS SOC, and the CDF of the dispatch tracking errors in

Fig. 3.15b and 3.15c respectively. As observed, the two-layer MPC achieves fine-tracking of

the dispatch plan compared to the other two cases. Moreover, the two-layer MPC restores

the BESS SOC to 47% at the end of the day’s operation, whereas the single-layer MPC lets the

BESS to saturate to the upper limit (90%) from 7.00 hrs to 14.00 hrs and again from 20.00 hrs

to 24.00 hrs; hence failing the dispatch during this period. The CDF plot in Fig. 3.15c shows

that two-layer MPC achieves lower tracking error with high probability. The metrics reported

in Table 3.2 show that the two-layer MPC scores better on RMSE and MAE by 31% and 65%

respectively than the single-layer MPC, however similar AEE.
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(a)

(b)

Figure 3.16: Dispatch tracking over a week (25-Feb.-2022, Friday to 03-Mar.-2022, Thursday):
(a) Power at the GCP and dispatch plan, (b) SOC evolution.

Week-long Experiment

To demonstrate the effectiveness of the dispatching scheme, we run uninterrupted control of

the BESS for a whole week. Fig 3.16a shows the dispatch plan, measured GCP power with and

without two-layer MPC scheme. In Fig. 3.16b, we show the SOC evolution during the week. It

can be observed that the power at the GCP follows the dispatch plan and the keeps the BESS

SOC within comfortable SOC so that dispatching is continued the next day.

3.5.3 Further Analysis

Validation of the Grid Model

We compare the modelled grid quantities by AR-OPF with the measurements to validate that

the grid constraints are accounted correctly with small error. Fig. 3.17 shows comparison in

form of CDFs for the difference between (modelled vs state estimated) the voltage, current

and losses. The CDF plots on voltages and currents correspond to a particular bus/line. It

can be seen that the modeled voltages and currents achieve high accuracy. The error on the

voltage and current modelling are less than 0.01 pu and on the losses less than 0.2 kW for 99 %

of the time. This comparison validates that the OPF model used to model the grid constraints

in real-time MPC are realistic.

Table 3.3: Computation time.

Control layers Min (sec.) Mean (sec.) Max(sec.)
Upper-layer MPC 4 9.9 19
Lower-layer MPC 0.15 0.2 0.4
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(a) (b) (c)

Figure 3.17: Validation of OPF model for real-time operation with PMU measurements: (a-c)
shows CDF of the incurred error on the modeling of voltage (in pu), current (in pu) and total
grid losses (in kW).

Computational Performance

As stated earlier, the RT-MPC stage is solved on VM3 (Fig. 3.8). VM3 is configured with the

Windows 10 operating system with specification 64-bit, 8 GB memory and 3.3 GHz CPU. It

uses the Mosek [94] solver to solve the real-time optimization problem. Using this setup, in

Table 3.3, we list the minimum, mean, and maximum computation times for to solving upper-

and lower-layer MPCs. As it can be seen, the computation time is within 30 seconds, the time

deadline of real-time actuation.

We also perform a sensitivity analysis of the RT-MPC computation time with multiple dis-

tributed BESS units. It provides insight into how the computational performance scales with

an increasing number of controllable variables. For this analysis, the BESS energy capaci-

ties are split equally at different locations, and power capacity remains the same (as in the

experimental setup). The additional BESS units are placed at nodes 1, 2, 5, 7, 9, 10, and 20,

respectively. The MPC was simulated for real-time operation of day 2. Table 3.4 reports the

corresponding computation times for both the upper and lower-layer MPCs. It shows the

minimum, average, and maximum time. As it can be observed, the computation time of the

upper- and lower-layer MPC scales linearly with an increase in the number of BESS. When

the computation time exceeds the actuation time-deadline of 30 seconds, the latter can be in-

creased to accommodate more controllable units (or adopt a more computational-performing

hardware).

Statistics on PDC Reporting Latency and Packet Losses

To verify the reliability of the communication infrastructure (mainly related to public internet

networks), we look at the time latency and packet losses by each PMU. We present statistics

on the delays and packet losses per PMUs. Boxplots show the latency of each PMU in Fig. 3.18,
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Table 3.4: MPC Computation time with increasing number of Controllable BESS.

BESS units Control layers Min Mean Max
# MWh per unit MPC Seconds

2 1.25
Upper 4.3 11.74 22
Lower 0.16 0.24 0.50

4 0.625
Upper 4.7 13.91 25.6
Lower 0.18 0.29 0.63

8 0.3125
Upper 5 16.5 29.7
Lower 0.20 0.34 0.77

and the packet-data loss is shown in Table 3.5. The statistics are shown for the experiments

conducted on day 2 (22-Mar-2022). As observed, the delays are in tens of milliseconds which

is significantly below the control actuation time deadline. Also, the packet losses are below

0.02 % (on average) and 1.67 % (with 99 % probability). The reported statistics coincide with

those reported in [76]. Therefore, we can rely on the developed communication infrastructure

for the experimental validation of the proposed RT-MPC.

Figure 3.18: PDC reporting latency comprising of PMU latency, network latency and PDC
latency.

Table 3.5: Data packet-losses.

PMU ID 1 2 5 7 8 9
Mean ( %) 0.038 0.009 0.007 0 0.006 0.007

99 % 1.67 0 0 0 0 0

PMU ID 10 11 12 13 19 20
Mean ( %) 0 0 0 0.001 0.021 0.003

99.99 % 0 0 0 0 1.67 0

PMU ID 24 25 27 29 30 –
Mean ( %) 0.006 0.019 0.001 0.007 0.001 –

99.99 % 0 1.67 0 0 0 –
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3.6 Discussion

This Chapter provided a solution to tackle the issue of BESS SOC saturation in dispatching

ADNs, where a day-ahead dispatch plan is tracked with the help of a controllable BESS during

the day’s operation. The solution relies on a two-layer real-time MPC scheme, where a slow

and farsighted MPC imposed an energy budget, every 5-minutes based on latest whole day

forecasts, on the real-time fast MPC running every 30-seconds. The two-layer scheme ensures

that the BESS SOC is not saturated during the day and restored to a comfortable SOC for the

next day’s dispatch operation. This is useful for reliable and continuous dispatching of ADNs

by BESS. The MPCs are fed by data-driven forecasts of the demand and generations. The

real-time control scheme accounted for the grid constraints using a convex AC-OPF model.

The optimization problem is formulated as convex, achieving optimality and enhanced level

tractability and efficient to solve.

The control framework is validated on a real MV grid located in Aigle Switzerland hosting

3.2 MWp of photovoltaic generation, 3.4 MVA hydro plant and 2.8 MW of base demand.

The MV grid is connected with 1.5 MVA/2.5 MWh BESS that is controlled by the real-time

controller, and monitored by 17 PMUs. The experimental results performed over a week

(including clear-sky, cloudy, weekday and weekend days) show that the proposed two-layer

MPC scheme always keeps the BESS SOC within flexible region as well as achieves better

tracking compared to myopic single-layer MPC scheme. The proposed two-layer MPC scheme

reduces the absolute energy tracking error and RMSE by half compared to the myopic single-

layer MPC scheme. We also validated the grid model by comparing the modeled vs estimated

states, concluding the error below 0.01 per unit in the nodal voltages/lines currents and below

0.2 kW in the grid losses.

This Part of the thesis (Chapters 2 and 3) developed control frameworks that assumed that

grid models, i.e., topology and electrical line parameters, are known and referred to as model-

based control schemes. However, the grid models might be unavailable, partially missing,

or often incorrect in real life. Part two (Chapters 4 and 5) focuses on developing model-less

or measurement-based control schemes where the network models are inferred from the

measurements and then used in the control frameworks.
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Prelude

In Part I, we proposed control schemes that rely on the availability of models of the distribution

network. They assume that the grid models (i.e., topology and electrical line parameters) are

known, hence they are referred to as model-based control schemes. However, in real-life, the

ADN models might be unavailable, partially missing, or often incorrect.

In this context, the second part of the thesis develops model-less or measurement-based control

schemes where the network models are inferred from measurements and then used by the

control framework.

In Chapter 4, we present two different measurement-based approaches for the estimation of

the admittance matrix and power-flow sensitivity coefficients. In Chapter 5, the estimated

models from the Chapter 4 are used to obtain measurement-based control schemes. The

model-less control is demonstrated for voltage regulation by controlling the distributed energy

resources in real-time. The proposed model-less/measurement-based control is validated on

an actual microgrid hosted at the EPFL Distributed Electrical Systems Laboratory.
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4 Data-driven Estimation of Compound
Admittance Matrix and Power-Flow
Sensitivity Coefficients

The control schemes illustrated in the previous chapters rely on the true models of the grid.

However, in real-life these models might not be easily available, often missing, or partially

incorrect. To tackle this challenge, the Chapter presents methods to estimate these models. In

particular, it presents schemes to estimate the power-flow sensitivity coefficients which can be

used for formulating the linearised grid-aware control as in Chapter 2. The Chapter presents

two estimation approaches. The first one estimates the compound admittance matrix of the

ADN, which is then used to compute the power-flow sensitivity coefficients. It is referred to as

the indirect estimation approach. For the estimation of the admittance matrix, we propose a

linear estimator that uses measurements of the voltage and current phasors. It also proposes a

pre-processing strategy to improve the estimation quality of regression-based methods such as

least squares (LS) and total least squares (TLS). The uncertainty on the estimated admittance

matrix and measurement noise on the grid states are propagated to the computed sensitivity

coefficients by a proposed analytical error propagation tool. Second, a direct estimation of the

sensitivity coefficients is proposed. It does a recursive estimation of the sensitivity coefficients

using the measurements of the nodal power injections and grid states magnitudes. The direct

estimation problem is solved in two stages: first a least square (LS)-based estimator obtains

a rough estimate of the sensitivity coefficients, then a recursive LS (RLS) is used periodically

to refine those LS estimates. Finally, both approaches are numerically validated for different

CIGRE and IEEE networks and their performances compared.

This Chapter includes results of publication [95, 96, 97].

4.1 Problem Statement

Let us consider a generic power distribution network equipped with measurement devices

capable of providing high throughput measurements of nodal voltage and current phasors

(e.g., phasor measurement units – PMUs). The objective is to estimate the grid’s sensitivity

coefficients concerning nodal voltages, lines currents and grid losses. The voltage magnitude
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sensitivity coefficient22 of the i−th node with respect to absorbed/injected power at node j is

defined as

K p
i j =

∂|vi |
∂p j

; K q
i j =

∂|vi |
∂q j

(4.1)

where, K p
i j K q

i j are the sensitivity coefficients of the i−th nodal voltage magnitudes (|vi |) with

respect to the active and reactive power injections p j , q j of node j .

As said, in this Chapter, we propose and develop two different methods to estimate the grid’s

sensitivity coefficients. Although the developed methods are generic for the estimation of all

types of sensitivity coefficients (such as lines current magnitudes, grid losses), for the sake

of brevity we demonstrate them only for the voltage sensitivity coefficients. The proposed

method workflows are described below.

Compound
Admittance Matrix

Estimation

Sensitivity coefficients
computation 

Sensitivity coefficient
estimation

Nodal voltage and
current phasor
measurements

Nodal voltage/current
and power 

measurements

Grid topology

First-order Taylors
approximation 

(a) Indirect estimation of sensitivity coefficients

(b) Direct estimation of sensitivity coefficients

Figure 4.1: Schematic flow diagram for indirect and direct estimation of the sensitivity coeffi-
cients.

• Indirect Method: first it estimates the compound admittance matrix (Y) of the grid

using nodal voltages and lines’ current phasor measurements. Then the estimated Y and

the grid state measurements are used to compute the grid’s sensitivity coefficients. The

sensitivity coefficients are estimated by existing methods in the literature, for example

[40]. The data-flow is shown in Fig. 4.1(a). Furthermore, to assess the uncertainty of the

computed sensitivity coefficients, the Section presents an analytical error propagation

tool that assess via uncertainty propagation the estimation error of Y and measurement

noise of grid states onto the sensitivity coefficients. Since the quality of the estimated

22Other sensitivity coefficients like those of branches currents magnitudes and grid losses can be obtained
similarly.
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coefficients directly depends on the estimation quality of Y, we also develop a tool to

improve the estimation of the Y matrix. We propose a linear estimation model that uses

phasor measurements of nodal voltages, injection currents, and branch currents. The

estimation scheme is generic and applicable to any unbalanced three-phase network

with shunt components. It also illustrates a pre-processing strategy to the PMU’s raw

measurements, which consists of grouping the raw measurements in clusters and using

the averaged measurements from each cluster for Y estimation. The proposed pre-

processing step reduces the noise level and discards similar measurements from each

cluster, ultimately improving the estimation quality of regression-based estimation

methods such as least squares (LS) and total least squares (TLS).

• Direct Method: this method estimates the grid’s sensitivity coefficients using nodal mea-

surements of the grid’s states (e.g., nodal voltage magnitudes) and active and reactive

power injections. It relies on a first-order Taylors’ approximation, allowing the deviation

of the nodal voltages to be expressed as a linear function of the deviation of nodal

power injections. The sensitivity coefficients (slope of the linear approximation between

the grid states and nodal injected powers) are obtained by solving a regression-based

estimation problem. The data flow is shown in Fig. 4.1(b).

The above two methods are different in terms of the required input data and estimates. The

indirect method requires nodal voltage and line currents phasor measurements, whereas the

direct method requires nodal voltage and power measurements. In addition to the sensitivity

coefficients, the indirect method also estimates the admittance matrix. Since the admittance

matrix does not change often, this estimation step could be performed once in a while. The

estimated admittance from the indirect method could also be used to formulate relaxed OPF

schemes (such as the AR-OPF). In contrast, the sensitivity coefficient from the direct method

is only limited to the use of the linearized power flow model.

4.2 State-of-the-Art

Several data-driven approaches have been proposed in the literature for measurement-based

estimation of the sensitivity coefficients. They consist of two main groups based on methods

proposed for the sensitivity coefficients estimation: direct and indirect estimation.

Direct Estimation of Sensitivity Coefficients

As defined, the direct methods refer to schemes which estimate the sensitivity coefficients

directly from the nodal power injections and grid’s measurements. These schemes rely on the

assumption that the deviation of grid states can be approximated as a linear function of nodal

power injection deviations using a first order Taylors’ Approximation. The works in [98, 99]

used weighted least squares (WLS) for the estimation of the voltage sensitivity coefficients. The

work in [98] introduced a pre-filtering strategy to improve the conditionality of the estimation
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problem. It also proposed to use a covariance matrix accounting for the correlation between

the subsequent time steps. However, these methods do not work well in the case of collinear

measurements (nodal injections with similar patterns at different nodes) as shown in [100].

The work in [101, 102] used ridge-regression and noise-assisted least-squares schemes to

counter the collinearity problem. It added a constant term (also called ridge regression) in the

LS gain matrix, equivalent to adding white Gaussian noise in the measurements. However, the

method in [101, 102] suffers from high estimation biases in case of high measurement noise

coming from real measuring instruments (whose noise are not necessarily white). The work in

[103] proposed a two-stage estimation scheme where rough estimates of the coefficients are

corrected by Recursive Least Squares (RLS) using recent measurements. However, the work

did not analyse different approaches to solve the known covariance windup problem.

In this context, in this Chapter, we develop a two-stage estimation scheme where the first stage

(offline LS) obtains rough estimates of the sensitivity coefficients. Then, in the second stage

(online RLS), the sensitivity coefficients are updated recursively using recent measurements.

The offline estimates from the first stage are used as initialization in the online estimation

stage. Also, we evaluate different strategies to solve the covariance windup problem of the RLS

scheme.

Indirect Estimation of Sensitivity Coefficients via Compound Admittance Matrix

The other approach is estimating the line parameters of the grid: first the compound admit-

tance matrix (Y) is estimated. Then an analytical approach (e.g., [40]) is used to compute the

sensitivity coefficients. This method is referred to as indirect estimation, as the sensitivity

coefficients are not estimated directly using the measurements, instead using an already

estimated quantity (Y). This scheme involves propagating the uncertainty of the estimated Y

to the sensitivity coefficients by using the principle of error propagation.

The admittance estimation problem has been addressed by several works in the literature, and

it can be broadly clustered into three categories focusing on different aspects of the estimation

process: (i) assumptions on the measurement noise model, (ii) solution techniques used for

the parameter estimation and (iii) approximations in the modelling of the grids. Estimating

the grid parameters with PMU measurements was initially proposed in [104, 105]. The works

in [106, 107, 108, 109, 110] proposed methods for line parameter estimation in transmission

networks. The work in [111] formulated the problem to identify the admittance matrix directly

from the synchronised measurements. However, it did not account for realistic noise model,

and the proposed model is sensitive with respect to the measurement noise. The work in

[112] formulated the problem for joint-estimation of line parameters and topology using a

weighted total least squares (WTLS) method. The formulation is non-convex and is solved

iteratively. The work assumes an unrealistic noise model by adding an offset noise from

historical data lacking physical significance. The works in [113, 114, 115] accounted for the

systematic error of the instrument transformers (ITs) in the parameter estimation problem

and used realistic measurement noise in polar coordinates. The work in [116] considered the
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noise in polar coordinates for three-phase systems and estimated an equivalent error model

for positive sequence components. The use of LS is proposed for estimating the parameters in

[106, 107, 108, 109, 111]. However, as shown in [117], it does not perform well when the mea-

surements are corrupted with realistic measurement noise (in polar coordinates) as LS ignores

noise in some variables. WLS-based parameter estimation was used in [113]. Some works

have proposed using error-in-variable (EIV) methods, such as the TLS [112]. The TLS solution

is equivalent to the maximum likelihood estimation (MLE) when the noise on the input and

output variables is approximated by white Gaussian distribution, and is i.i.d. (independent

and identically distributed). If these conditions are not met, the estimations can be worse

than LS, even if the TLS formulation is statistically more comprehensive than the LS [117] with

respect to appropriate noise models. It happens because TLS tries to estimate not only the

estimation variables but also the true and unobserved values of the measurements. Also, when

TLS is fed with a large number of measurements, its performance deteriorates due to the large

dimension of measurement being de-noised. However, it is widely known that estimation

methods achieve better performance when fed with inputs characterised by low measurement

noise. For example, the work in [109] proposed a moving window averaging on the raw data

for improving TLS-based line parameter estimation by reducing the noise level. The method

was proposed for the estimation of a transposed and balanced line and used measurements of

nodal powers along with currents and voltages. Although this work proposed an averaging

strategy of raw PMU measurements, it did not fully use the fact that this step preserves the

mathematical structure of the original formulation and improves the estimation performance.

Furthermore, in most existing works, it is often assumed that the power networks are balanced

and transposed three-phase systems (e.g., [106, 107, 108, 109, 110, 111, 112, 113]) with negligi-

ble shunt components. These assumptions do not hold at the same time for real distribution

grids. For example, low voltage distribution networks are often untransposed [5, 118] and

are characterised by negligible shunt parameters, whereas medium voltage systems have

non-negligible shunt parameters [5] (especially in the presence of long coaxial cables) and are

relatively transposed systems. The works in [119, 120, 121, 122] considered parameter estima-

tion for three-phase unbalanced and untransposed systems, but their analysis is limited to the

estimation of single line parameters instead of the whole compound admittance matrix and

neglect shunt admittances. Estimating the whole compound admittance matrix is a complex

problem as it requires to estimate all the branch parameters having different characteristics

(e.g., short and long lines) within the network. Also these methods rely on measurements

of line currents instead of injection currents which require twice the number of measuring

instruments.

In this context, to improve the estimation of the grid’s admittance matrix, this Chapter pro-

poses:

1. A pre-processing strategy on the raw PMU measurements for improving the estimation

performance of LS and TLS. The pre-processing consists of two main steps: first, the raw

measurements are grouped into different clusters and, then, the averaged measurements
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from each cluster are used for the admittance matrix estimation. This process reduces

the noise level of measurements, ultimately improving the estimation performance of

LS and TLS.

2. It proposes a PMU-based linear estimation model for estimating the whole admittance

matrix for untransposed three-phase distribution networks (i.e. the so-called compound

admittance matrix) taking into account both branch and shunt admittance matrices of

the grid components (i.e. with no approximation on the grid model).

Compared to [106, 107, 108, 109, 115, 119, 120, 121, 122], the proposed method has the follow-

ing features: (a) it estimates the whole compound admittance matrix including the presence of

shunt admittances, (b) it uses a pre-processing strategy for reducing the noise level ultimately

improving the estimation performance, and (c) it works with either injection or branch/line

current measurements, the former requires half the number of measurements. Compared

to [111, 112, 113], the proposed method can be applied to untransposed three-phase grids

accounting for the presence of shunt parameters. It is worth noting that this work does

not assume knowing the nominal values of the branch and shunt parameters compared to

[113, 114].

Finally, the estimated Y is used to compute the sensitivity coefficients. So, to calculate the

uncertainty on the computed sensitivity coefficients through Y, the Chapter also illustrates an

analytical tool following the principle of error propagation.

The estimation models adopt realistic noise in polar coordinates, reflecting the accuracy

class of ITs suitably projected onto the rectangular coordinates. The method is validated

by performing numerical experiments on different CIGRE and IEEE benchmark networks

for admittance estimation. Furthermore, we perform sensitivity analysis on the estimation

performance with different noise-levels on the measurement data on the pre-processing

strategy (cluster type and size) and availability of branch or injection currents measurements.

In the following, first we present the indirect approach to estimate the sensitivity coefficients

which involves estimation of the admittance matrix. Then, the direct method to estimate the

sensitivity coefficient is presented. Finally, two methods are compared.

4.3 Indirect Estimation of Sensitivity Coefficients via Estimation of

Compound Admittance Matrix

In the following, first, we present a scheme for estimating the compound admittance matrix.

Then, we show how the estimated admittance matrix is used to estimate the power-flow

sensitivity coefficients indirectly. Finally, we present a technique to propagate the uncertainty

of the estimated admittance matrix and grid state measurements to the power-flow sensitivity

coefficients.
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We consider the problem of estimating the parameters of the admittance matrix of a single-

and three-phase distribution network (assuming that the topology is known) using a set

of synchrophasor measurements that may include phase-to-ground nodal voltages, nodal

injection currents and branch currents per phase.

In the following, we describe the poly-phase grid model, which is then used to formulate

the parameter estimation problem for a generic transposed and untransposed three-phase

system. We use the same nomenclature and hypothesis as in [123].

4.3.1 Polyphase Grid Model

Consider the generic case of a ground-referenced23 unbalanced and untransposed24 polyphase

power network with G := {0} be the ground node, and P := {1, . . . , |P |} the phases, Nb buses

and Nl branches. The polyphase nodes, shunts and branch indices are collected in the sets

N := {1, . . . , Nb}, T := N ×G = N and L := {1, . . . , Nl } respectively. Figure 4.2 shows the

topology of compound electrical parameters of a polyphase electrical circuit of the grid. The

polyphase terminals and wires are bundled into a line for the sake of clarity. The compound

branch impedance and shunt admittance matrices are denoted by Zl (l ∈L ) and Yt (t ∈T )

respectively.

𝐙!!

𝐙!" 𝐙!#

𝐘"$

𝑚 ∈ 𝒩 𝑣 ∈ 𝒩𝑛 ∈ 𝒩

𝑢 ∈ 𝒩

𝑔 ∈ 𝒢

𝑙# = 𝑛,𝑣 ∈ ℒ𝑙$ = 𝑚,𝑛 ∈ ℒ

𝑙% = 𝑛, 𝑢 ∈ ℒ

𝑡& = 𝑛,𝑔 ∈ 𝒯

Figure 4.2: Compound electrical parameters of the overall electrical circuit of the grid: com-
pound branch impedance matrices Zl (l ∈L ) and shunt admittance matrices Yt (t ∈T ). The
polyphase terminals and wires are bundled into single line for the sake of clarity.

Hypothesis 4.1 The grid consists of electrical components which are passive and linear. The

coupling between the phases of the same component is significant, they can be represented by

polyphaseΠ-section or T-section equivalent circuits.

23We assume that there exists a reference node i.e., ground, used as a reference to measure the nodal phase-to-
ground voltages.

24Therefore, branch impedances and shunt admittance matrices are not necessarily circular-symmetric and
triplets of three-phase voltages and currents are unsymmetrical (i.e., their phase angle displacements are not
equal) and unbalanced (i.e., the sum of phase quantities are not null.).
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Hypothesis 4.2 The compound branch impedance matrices are symmetric (Zl = ZT
l ), invertible

(∃Yl = Z−1
l ), and lossy (ℜ{Zl }≽ 0), ∀l ∈L . The compound shunt admittance matrix Yt is also

symmetric25 (Yt = YT
t ), invertible (∃Zt = Y−1

t ). We assume that the shunts are lossless (ℜ{Yt } = 0),

∀t ∈T .

Let vn,p and in,p be the phasors of the nodal phase-to-ground voltage and the injected current

for the phase p ∈ P of the polyphase node n ∈ N . The quantities defined for a polyphase

node n ∈N as a whole are written as:

vn := colp∈P (vn,p ) (4.2)

in := colp∈P (in,p ) (4.3)

and for the grid as a whole as

v := coln∈N (vn) (4.4)

i := coln∈N (in) (4.5)

where the operator "col" constructs a column vector.

From Ohm’s law, the injection currents are related to the nodal voltage as:

i = Yv, (4.6)

where Y is the compound admittance matrix defined as:

Y = (A P )T YL A P +YT (4.7)

where,

YL = diagl∈L (Yl ) (4.8)

YT = diagt∈T (Yt ) (4.9)

are the primitive compound branch and the primitive compound shunt admittance matrices

respectively. The symbol A P denotes the polyphase incidence matrix and is defined as

A P =A ⊗diag(1|P |) (4.10)

where (1|P |) is a vector of ones with length |P |, ⊗ refers to the Kronecker product, and A is

the incidence matrix obtained from the graph comprising of network branches as in [123].

25It is worth pointing out that the symmetric property is a consequence of reciprocity of electromagnetism
imposed by Maxwell’s equation.
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Using (4.6) and (4.7), the injected current can be re-written as

i = ((A P )T YL A P +YT )v (4.11)

i = (A P )T iL + iT (4.12)

where iL and iT refer to the branch and shunt current which are defined analogously as in

(4.3) and (4.5).

In the following, we show how eqs. (4.2) - (4.12) can be used to derive linear models with

branch and shunt parameters for transposed and untransposed distribution grids, which will

be later used to estimate the compound admittance matrix.

Balanced and Transposed Three-Phase Case

A balanced and transposed system can be represented by a single-phase equivalent model, i.e

|P | = 1 or A P =A . Using the definitions (4.8) and (4.9) and (4.11) the injected current can

be re-written as

i =
(
A T diagl∈L (Yl )A +diagt∈T (Yt )

)
coln∈N (vn) (4.13)

or, i =A T diag(A v)coll∈L (Yl )+diagn∈N (vn)colt∈T (Yt ). (4.14)

Similarly, the branch current can be expressed as

iL = diag(A v)coll∈L (Yl ) (4.15)

Let us define the following matrices:

C = diag(Aℜ{v}) (4.16a)

D = diag(Aℑ{v}) (4.16b)

E = diag(ℑ{v}) (4.16c)

F = diag(ℜ{v}) (4.16d)

XG = coll∈L (ℜ{Yl }) (4.16e)

XB = coll∈L (ℑ{Yl }) (4.16f)

XT = colt∈T (ℑ{Yt }) (4.16g)

then, the injected and branch current can be re-written as

[
ℜ{i}

ℑ{i}

]
=

[
A T C −A T D −E

A T D A T C F

]XG

XB

XT

 , and (4.17)
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ℜ{iL }

ℑ{iL }

]
=

[
C −D

D C

][
XG

XB

]
(4.18)

respectively. Here, ℜ(.) and ℑ(.) refer to the real and imaginary part of a complex quantity.

Unbalanced and Untransposed Three-Phase Case

In this case, |P | = 3, the line and shunt parameters are matrices of dimension C3×3. To express

the line and shunt parameters in vector form, we propose transformations Λ and Ξ given

below.

The line and shunt admittance parameters, Yl and Yt are symmetric (Hypothesis 4.2), we

want to represent them by unique elements in a vector form. Let Y mn
l (m,n = 1,2,3) be the

unique elements of Yl , we propose the following transformation:

Ξ(Yl ) =Ξ
(Y 11

l Y 12
l Y 13

l
Y 12

l Y 22
l Y 23

l
Y 13

l Y 23
l Y 33

l

)
=



Y 11
l

Y 22
l

Y 33
l

Y 12
l

Y 23
l

Y 13
l


. (4.19)

The same can be written for the shunt admittance parameters. To be able to express the

branch and shunt parameters in vector form, the voltages need to be transformed as following:

fγ(vn) = fγ

(vn,1

vn,2

vn,3

)
=

vn,1 0 0 vn,2 0 vn,3

0 vn,2 0 vn,1 vn,3 0

0 0 vn,3 0 vn,2 vn,1

 . (4.20)

Similarly, this transformation is applied to all the nodes byΛ(v) = coln∈N ( fγ(vn)).

Using the above transformation on all phase voltages and branch and shunt parameters, eqs.

(4.17) and (4.18) can be written for a three-phase unbalanced and untransposed system with

the following definitions:

C = diagl∈L (A P
l ℜ{Λ(v)}) (4.21a)

D = diagl∈L (A P
l ℑ{Λ(v)}) (4.21b)

E = diagn∈N (ℑ{ fγ(vn)}) (4.21c)

F = diagn∈N (ℜ{ fγ(vn)}) (4.21d)

XG = coll∈L (ℜ{Ξ(Yl )}) (4.21e)

XB = coll∈L (ℑ{Ξ(Yl )}) (4.21f)

XT = colt∈T (ℑ{Ξ(Yt )}). (4.21g)
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Here, A P
l is incidence matrix for l-th line, i.e. rows ((l −1)|P |+1) to l |P | in A P .

The problem considered is as follows. We assume that the incidence matrix A P is known,

and we have a collection of complex current i and voltage v measurements, from which the

matrices C,D,E and F are immediately derived. The problem is then to estimate the unknown

line and shunt parameters XG,XB and XT by regression techniques in (4.17) and (4.18).

4.3.2 Estimation Model

Hypothesis 4.3 The line series impedances and shunt admittances are assumed to be constant

during the period when measurements were collected. The change in these parameters due to

temperature variations is neglected.

Hypothesis 4.4 We assume that the nodal voltage, current and branch current phasor mea-

surements are available at every node of the grid.

Using equations (4.17)-(4.18) and Hypotheses 4.3 and 4.4, the estimation problem can be

formulated and solved by using standard estimation techniques such as least squares (LS) and

total least squares (TLS). In case of null measurement noise, Eq. (4.17) can be written for a

time-index k as:

J (k) =H (k)X (4.22)

where H (k) =
[
A T C(k) −A T D(k) −E(k)

A T D(k) A T C(k) F(k)

]
, J (k) =

[
ℜ{i(k)}

ℑ{i(k)}

]
, and X =

XG

XB

XT

.

If we have K measurements of voltage and current phasors, (4.22) can be expressed for all the

K data-points to obtain an over-determined system of linear equations as,

J =H X (4.23)

where J = [J (1); . . . ;J (K )] and H = [H (1); . . . ;H (K )].

The equality in (4.23) holds in case of null noise, which is not the case for real measurements.

In presence of the measurement noise, the observations J and H are given as:

J = Ĵ +∆J , ∆J ∼N(0,QJ ) (4.24)

H = Ĥ +∆H , ∆H ∼N(0,QH ) (4.25)

where, Ĵ and Ĥ are the true (unobservable) values, ∆J and ∆H are the measurement

noises, and QJ and QH represent the noise covariance matrices for J and H respectively.
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It should be noted that the measurements on the branch currents (if available) can also be

embedded in the estimation model using Eq. (4.18) in a similar way. In eq. (4.23), X is the

unknown parameter to be estimated, whereas H and J are obtained using the voltage and

current measurements from PMUs. In the following section, we describe the estimation

techniques to provide an estimate of X in (4.23).

4.3.3 Estimation Techniques

In the following, we describe two estimation techniques which are used later to estimate the

network parameters.

Least Squares (LS)

The LS method assumes that noise ∆H is negligible and the noise ∆J is homoscedastic (i.e.

elements of diag(QJ ) are all equal). The LS solution is:

X ∗
LS = (H T H )−1H T J (4.26)

Total Least Squares (TLS)

In real measurement, H contains measurement noise, LS solution is no longer optimal statis-

tically. In [117], TLS was developed, trying to estimate the true (unobservable) Ĥ and Ĵ along

with X . This leads to a non-linear and non-convex problem and has too many unknowns to

determine. The work in [117] derived an analytical approach relying on the assumption that

noise terms ∆J ,∆H are Gaussian and i.i.d., using singular value decomposition (SVD). It is

briefly summarized below.

Let the SVD of [H |J ] be

[H |J ] =UΣV T (4.27)

where, V =
[
VH ,H VH ,J

VJ ,H VJ ,J

]
,Σ= diag(σ, . . . ,σ). (4.28)

The TLS solution is given as:

X ∗
T LS =−VH ,J V −1

J ,J . (4.29)

Eq. (4.29) can be simplified when J is vector, it is given as

X ∗
T LS = (H T H −σ2I )−1H T J (4.30)

where, σ refers to the smallest eigen value of [H |J ] [124, 125]. Eq. (4.30) can be interpreted
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as a method to remove the error covariance matrix (approximated by σ2I ).

When the TLS is fed with a large number of measurements (with non-negligible noise), it

attempts to estimate large amount of variables. In our case these are true unobserved value of

the measurements and admittance parameters. This results in poor estimates as reported in

[117]. To tackle this issue, we propose a pre-processing strategy on the raw measurements: a

linear transformation that reduces the dimension of the input measurements as well as the

noise level while preserving the original structure of the problem. Due to this pre-processing,

the TLS is now trying to estimate the average values of the measurements. This task is easier

than the original because there are fewer data points and reduced noise. The pre-processing

strategy is described as follows.

4.3.4 Measurement Pre-processing by Cluster Averaging

Measurement noise of PMUs and sensing instruments impacts H and J observation matrices.

Realistic instrument accuracy classes (e.g., 0.5 and 1.0) lead to poor estimation performance,

further aggravated by the nonlinear transposition from polar to rectangular coordinates, as

reported in [122]. We propose to pre-process the input measurements because, as it will be

shown later, it is helpful to improve the estimation performance. The pre-processing strategy

consists in, first grouping the raw measurements in a given number of clusters according to

similarity features. Then measurements within the same cluster are averaged and used in

the estimation process instead of the raw measurements. The considered similarity features

are: nodal voltage magnitudes, current magnitudes, and for unbalanced and untransposed

networks, sequence-domain voltage magnitudes and sequence-domain current magnitudes.

The first group of features helps to detect different operating conditions in the grid due to

large power variations and transient events (e.g., inrush currents), whereas the second, is more

suitable for unbalanced conditions. The use of combinations of these features is discussed in

the results section. Clustering and averaging the measurements achieve not only filtering out

measurement noise but also reduce the number of similar measurements in the estimation

process, improving the condition number of H and estimation performance of LS and TLS.

It is worth highlighting that since averaging is linear, it can be efficiently implemented by

applying a linear transformation to Eq. (4.23).

The cluster-averaging procedure is illustrated Algorithm 4.1. The kmeans algorithm is used

for clustering. Specifically, inputs to the kmeans are the raw voltage and current phasor

measurements {v, i}, features (defined above) and number of clusters Nc , and the outputs

are voltage and current phasor measurements grouped in different clusters [{v, i}1, . . . , {v, i}Nc ].

After creating the clusters, the algebraic mean is computed for all the elements in the same

cluster. We decide to use the kmeans as a clustering scheme as it is a widely used and effective

method in unsupervised learning applications. Specifically, we use MATLAB built-in function

which uses the kmeans++ algorithm [126] regarding the clustering initialisation.

The similarity features, such as the magnitudes of the nodal voltages and currents, are used in
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the kmeans algorithm to decide the basis of the grouping of the raw measurements. We choose

magnitudes of the voltages and currents as clustering features because (i) as illustrated in [127,

128], the distribution of measurement noise is truly white in polar coordinates, (ii) magnitudes

work well to identify the voltage and current imbalances in three-phase unbalanced systems

and (iii) it results in a linear estimation model, which is preserved by the averaging. Sec. 4.3.7

shows how the cluster-averaging process affects the grouping of the raw-measurements and

their characteristics. A naive averaging approach would be to perform block time-averaging

of the measurements (Algorithm 4.2). However, this naive method has the disadvantage

of losing important information associated to transients and unbalances contained in the

raw measurements by averaging blindly time-contiguous data blocks. The advantage of

cluster-averaging is that it groups and averages the data based on the similarity features and is

independent of time. In the results section, we compare the estimation performance of the

cluster-averaging vs the block-averaging method.

Algorithm 4.1 Cluster-averaging

1: procedure CLUSTERAVG

2: choose number of clusters = Nc

3: [{v, i}1, . . . , {v, i}Nc ] ← kmeans({v, i}, features, Nc )
4: for l = 1 : Nc do
5: {ṽ, ĩ}l = mean({v, i}l )
6: end for
7: end procedure

Algorithm 4.2 Block-averaging

1: procedure BLOCKAVG

2: choose block size = tm

3: number of blocks, Nblock = data-length/tm ,
4: Divide in Nblock blocks: [{v, i}1:tm , . . . , {v, i}((Nblock−1)tm+1):Nblocktm ] ← {v, i}1:T

5: for l = 1 : Nblock do
6: {ṽ, ĩ}l ← mean({v, i}(l−1)tm+1):l tm )
7: end for
8: end procedure

In summary, the measurement pre-processing is to obtain a proper grouping of the raw

measurements. After creating the clusters, the algebraic mean is computed for all the elements

(both the magnitudes and phases of the voltages and currents) in the same cluster. The

averaged values (both the magnitudes and phases) are then used in the admittance matrix

estimation.
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4.3.5 Computation of Sensitivity Coefficients using Estimated Admittance Matrix
and Error Propagation

As stated earlier in the Chapter, the estimated admittance matrix is used for the computation of

the sensitivity coefficients. The method is referred to as indirect, as the sensitivity coefficients

are not directly estimated using the measurements, instead utilizing an already estimated

quantity (Y). In the following, we recall a method from the literature for computing the

sensitivity coefficients. Then, we use it to develop an analytical approach to propagate the

uncertainty on the admittance estimates and grid state measurements to the sensitivity

coefficients.

Estimated Admittance Matrix to the Sensitivity Coefficients Computation

For the computation of the sensitivity coefficients, we rely on the method developed in

[40, 55]. It uses the compound admittance matrix and grid states. The method computes the

sensitivities by solving a set of linear equations and guarantees a unique solution, given that

the Jacobian of the load flow solution is invertible [56]. The complex power26 at node i can be

expressed as

si = pi − j qi = v i

∑
j∈N

Yi j v j i ∈N (4.31)

where, Yi j refer to an element of Y. Following the approach in [40, 55], we differentiate the

equation in (4.31) with respect to active power and reactive power injections27 pl , l ∈N , we

obtain the following relation:

1{i=l } =
∂v i

∂pl

∑
j∈N

Yi j v j + v i

∑
j∈N

Yi j
∂v j

∂pl
, (4.32)

− j1{i=l } =
∂v i

∂ql

∑
j∈N

Yi j v j + v i

∑
j∈N

Yi j
∂v j

∂ql
. (4.33)

where ∂□
∂□ refers to the partial derivatives. Rearranging the rows and columns of the eq. (4.32)-

(4.33) for different nodes and stacking them, the set of linear equations can be written in

matrix form as

z = Hx (4.34)

where H ∈R2(Nb−1)×2(Nb−1) and z ∈R2(Nb−1)×(Nb−1). The elements of the matrix H and vector z

are obtained using [55]. Here, x ∈R2(Nb−1)×(Nb−1) is the vector of unknown sensitivities i.e., ∂vi
∂pl

26Conjugates of a complex number (e.g. z = |z|exp( jθ)) is denoted by underlined symbol (e.g. z).
27Although the method proposed in [55] is generic enough to apply to any kind of buses, we only consider voltage

independent and PQ buses in this work.
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and
∂v i
∂pl

, where i , l ∈N . The x can be obtained by

x = H−1z. (4.35)

Once ∂vi
∂pl

and
∂v i
∂pl

are obtained, the sensitivity coefficient of the voltage magnitude can be

obtained as

∂|vi |
∂pl

= 1

|vi |
ℜ

(
v i
∂vi

∂pl

)
(4.36)

It should be remarked that the expression in (4.35) depends on the value of the admittance

matrix of the nodal voltage phasors. As both the admittance matrix and grid states are uncer-

tain, we need to propagate the error into the computation of the sensitivity coefficients. This

is described in the next section.

Uncertainty Propagation: From Estimated Admittance Matrix to Sensitivity Coefficients

As mentioned earlier, the matrix H in eq. (4.35) is uncertain due to the noise introduced by

the measuring units and error on the estimates of the admittance matrix. To compute the

uncertainty on x in (4.35), the error on the Y and grid state v needs to be propagated.

Let [σH−1 ] be the variance of matrix H−1, [σH−1 ]i j be the variance of i j−th element of H−1,

[σx]i be the variance of i−th element of x, and [σz] j be the variance of j−th element of z.

Using the principle of error propagation, variance on x can be approximated as

[σx]2
i ≈ [H−1]2

i j [σz]2
j + [σH−1 ]2

i j [z]2
j . (4.37)

Since, z in (4.34) is constant (as shown later in Sec. 4.3.5), σz = 0, the expression in (4.37)

reduces to

[σx]2
i = [σH−1 ]2

i j [z]2
j . (4.38)

In (4.38), [σH−1 ] is unknown, it can be computed by propagating the variances of element of H

by following relation (as described in [129]): [σH−1 ]2
mn =

cov(H−1
mn ,H−1

mn) =∑
i

∑
j

[H−1]2
mi [σH]2

i j [H−1]2
j n (4.39)

cov(H−1
mn ,H−1

ab) =∑
i

∑
j

[H−1]mi H−1]ai [σH]2
i j [H−1] j nH−1] j b (4.40)

Eq. (4.39) and (4.40) refer to the self- and cross-correlations. It should be noted that the matrix

inversion is a non-linear operation and the elements of the inverse matrix (H−1) are statistically

correlated. Thus, variance of each element of the matrix H−1 is of size 2(Nb −1)×2(Nb −1)
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itself. Therefore, the size of σH is (4(Nb −1)2 ×4(Nb −1)2.

To understand error propagation from matrix to its inverse, we use a dummy example showing

error propagation from a matrix H to its inverse.

Example of a Random Two-Dimensional Matrix: let consider a random two-dimensional

matrix

H =
[
ϵ ζ

η ξ

]
(4.41)

with the matrix of respective variances as:

σ2
H =

[
σ2
ϵ σ2

ζ

σ2
η σ2

ξ

]
(4.42)

Using the expression in (4.39)-(4.40), the covariance matrices for the elements of [H−1] are
computed as

cov([H−1]11, [H−1]i j ) =
[
ϵ4σ2

ϵ +ϵ2ζ2σ2
η+ϵ2η2σ2

δ
+ζ2η2σ2

ξ
ϵ3ζσ2

ϵ +ξηϵ2σ2
δ
+ϵζ3σ2

η+ξηζ2σ2
ξ

ϵ3ησ2
ϵ +ζξϵ2σ2

η+ϵη3σ2
δ
+ζξη2σ2

ξ
ϵ2ζησ2

ϵ +ϵζ2ξσ2
η+ϵξη2σ2

δ
+ζξ2ησ2

ξ

]

cov([H−1]12, [H−1]i j ) =
[
ϵ3ζσ2

ϵ +ξηϵ2σ2
δ
+ϵζ3σ2

η+ξηζ2σ2
ξ

ϵ2ζ2σ2
ϵ +ϵ2ξ2σ2

δ
+ζ4σ2

η+ζ2ξ2σ2
ξ

ϵ2ζησ2
ϵ +ϵζ2ξσ2

η+ϵξη2σ2
δ
+ζξ2ησ2

ξ
ζ3ξσ2

η+ϵηζ2σ2
ϵ +ζξ3σ2

ξ
+ϵηξ2σ2

δ

]

cov([H−1]21, [H−1]i j ) =
[
ϵ3ησ2

ϵ +ζξϵ2σ2
η+ϵη3σ2

δ
+ζξη2σ2

ξ
ϵ2ζησ2

ϵ +ϵζ2ξσ2
η+ϵξη2σ2

δ
+ζξ2ησ2

ξ

ϵ2ξ2σ2
η+ϵ2η2σ2

ϵ +ξ2η2σ2
ξ
+η4σ2

δ
ξ3ησ2

ξ
+ϵζξ2σ2

η+ξη3σ2
δ
+ϵζη2σ2

ϵ

]

cov([H−1]22, [H−1]i j ) =
[
ϵ2ζησ2

ϵ +ϵζ2ξσ2
η+ϵξη2σ2

δ
+ζξ2ησ2

ξ
ζ3ξσ2

η+ϵηζ2σ2
ϵ +ζξ3σ2

ξ
+ϵηξ2σ2

δ

ξ3ησ2
ξ
+ϵζξ2σ2

η+ξη3σ2
δ
+ϵζη2σ2

ϵ ζ2ξ2σ2
η+ζ2η2σ2

ϵ +ξ4σ2
ξ
+ξ2η2σ2

δ

]

Example for a Three Node System: Furthermore, we present an example of error propagation

for a simple three node power system. Let Y r e
i j =ℜ(Yi j ), Y i m

i j =ℑ(Yi j ) and v r e
i =ℜ(vi ), v i m

i =
ℑ(vi ). Using the formulation in (4.32)-(4.33), the elements of H are given by

H11 = v r e
1 Y r e

21 − v i m
1 Y i m

21 − v i m
3 Y i m

32 − v r e
2 +2v r e

2 Y r e
22 + v r e

3 Y r e
32 , (4.43a)

H12 = v i m
2 Y i m

32 + v r e
2 Y r e

32 , (4.43b)

H13 = v i m
1 Y r e

21 +Y i m
21 v r e

1 +2v i m
2 Y r e

22 + v i m
3 Y r e

32 +Y i m
32 v r e

3 , (4.43c)

H14 = v i m
2 Y r e

32 −Y i m
32 v r e

2 , (4.43d)

H21 = v i m
3 Y i m

32 + v r e
3 Y r e

32 , (4.43e)

H22 = v r e
1 Y r e

31 − v i m
1 Y i m

31 − v i m
2 Y i m

32 − v r e
3 + v r e

2 Y r e
32 +2v r e

3 Y r e
33 , (4.43f)

H23 = v i m
3 Y r e

32 −Y i m
32 v r e

3 (4.43g)

H24 = v i m
1 Y r e

31 +Y i m
31 v r e

1 + v i m
2 Y r e

32 +Y i m
32 v r e

2 +2v i m
3 Y r e

33 , (4.43h)

H31 = v i m
1 Y r e

21 +Y i m
21 v r e

1 +2Y i m
22 v r e

2 + v i m
3 Y r e

32 +Y i m
32 v r e

3 , (4.43i)
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H32 = Y i m
32 v r e

2 − v i m
2 Y r e

32 (4.43j)

H33 = v i m
1 Y i m

21 +2v i m
2 Y i m

22 + v i m
3 Y i m

32 − v r e
1 Y r e

21 − v r e
3 Y r e

32 , (4.43k)

H34 = v i m
2 Y i m

32 + v r e
2 Y r e

32 , (4.43l)

H41 = Y i m
32 v r e

3 − v i m
3 Y r e

32 , (4.43m)

H42 = v i m
1 Y r e

31 +Y i m
31 v r e

1 + v i m
2 Y r e

32 +Y i m
32 v r e

2 +2Y i m
33 v r e

3 , (4.43n)

H43 = v i m
3 Y i m

32 + v r e
3 Y r e

32 , (4.43o)

H44 = v i m
1 Y i m

31 + v i m
2 Y i m

32 +2v i m
3 Y i m

33 − v r e
1 Y r e

31 − v r e
2 Y r e

32 . (4.43p)

And, the elements of z are

z =


1 0

0 1

0 0

0 0

 (4.44)

In (4.43), the variances of elements of Y and v are known,28 so to compute the variance

of elements of H, we use propagation of uncertainty for multiplicative and additive error

propagation rules. They are

σ(Θ+Φ)2 ≈σ2
Θ+σ2

Φ+2σΘΦ, (4.45a)

σ(Θ×Φ) ≈Θ2Φ2(σ2
Θ/Θ2 +σ2

Φ/Φ2 +2σΘΦ/ΘΦ). (4.45b)

Using these rules, the variances of the elements of H are

[σH]11 =σvr e
2

2 + v i m
1

2
Y i m

21
2

(σv i m
1

2/v i m
1

2 +σY
i m
21

2
/Y i m

21
2

)+ v i m
3

2
Y i m

32
2

(σv i m
3

2/v i m
3

2+

σY
i m
32

2
/Y i m

32
2

)+ v r e
1

2Y r e
21

2(σvr e
1

2/v r e
1

2 +σY
r e
21

2/Y r e
21

2)+4v r e
2

2Y r e
22

2(σvr e
2

2/v r e
2

2+
σY

r e
22

2/Y r e
22

2)+ v r e
3

2Y r e
32

2(σvr e
3

2/v r e
3

2 +σY
r e
32

2/Y r e
32

2),

(4.46a)

[σH]12 =v i m
2

2
Y i m

32
2

(σv i m
2

2/v i m
2

2 +σY
i m
32

2
/Y i m

32
2

)+ v r e
2

2Y r e
32

2(σvr e
2

2/v r e
2

2 +σY
r e
32

2/Y r e
32

2), (4.46b)

[σH]13 =v i m
1

2
Y r e

21
2(σY

r e
21

2/Y r e
21

2 +σv i m
1

2/v i m
1

2
)+Y i m

21
2

v r e
1

2(σvr e
1

2/v r e
1

2 +σY
i m
21

2
/Y i m

21
2

)+
4v i m

2
2

Y r e
22

2(σY
r e
22

2/Y r e
22

2 +σv i m
2

2/v i m
2

2
)+ v i m

3
2

Y r e
32

2(σY
r e
32

2/Y r e
32

2 +σv i m
3

2/v i m
3

2
)+

Y i m
32

2
v r e

3
2(σvr e

3

2/v r e
3

2 +σY
i m
32

2
/Y i m

32
2

),

(4.46c)

[σH]14 = v i m
2

2
Y r e

32
2(σY

r e
32

2/Y r e
32

2 +σv i m
2

2/v i m
2

2
)+Y i m

32
2

v r e
2

2(σvr e
2

2/v r e
2

2 +σY
i m
32

2
/Y i m

32
2

), (4.46d)

[σH]21 = v i m
3

2
Y i m

32
2

(σv i m
3

2/v i m
3

2 +σY
i m
32

2
/Y i m

32
2

)+ v r e
3

2Y r e
32

2(σvr e
3

2/v r e
3

2 +σY
r e
32

2/Y r e
32

2), (4.46e)

28Variance of Y is obtained by propagating the estimation error on estimated lines and branch impedances as
will be described later in (4.50). The variance of v is obtained from the measurement units specifications projected
to the rectangular coordinates.
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[σH]22 =σvr e
3

2 + v i m
1

2
Y i m

31
2

(σv i m
1

2/v i m
1

2 +σY
i m
31

2
/Y i m

31
2

)+ v i m
2

2
Y i m

32
2

(σv i m
2

2/v i m
2

2 +σY
i m
32

2
/Y i m

32
2

)+
v r e

1
2Y r e

31
2(σvr e

1

2/v r e
1

2 +σY
r e
31

2/Y r e
31

2)+ v r e
2

2Y r e
32

2(σvr e
2

2/v r e
2

2 +σY
r e
32

2/Y r e
32

2)+
4v r e

3
2Y r e

33
2(σvr e

3

2/v r e
3

2 +σY
r e
33

2/Y r e
33

2),

(4.46f)

[σH]23 = v i m
3

2
Y r e

32
2(σY

r e
32

2/Y r e
32

2 +σv i m
3

2/v i m
3

2
)+Y i m

32
2

v r e
3

2(σvr e
3

2/v r e
3

2 +σY
i m
32

2
/Y i m

32
2

), (4.46g)

[σH]24 =v i m
1

2
Y r e

31
2(σY

r e
31

2/Y r e
31

2 +σv i m
1

2/v i m
1

2
)+Y i m

31
2

v r e
1

2(σvr e
1

2/v r e
1

2 +σY
i m
31

2
/Y i m

31
2

)+
v i m

2
2

Y r e
32

2(σY
r e
32

2/Y r e
32

2 +σv i m
2

2/v i m
2

2
)+Y i m

32
2

v r e
2

2(σvr e
2

2/v r e
2

2 +σY
i m
32

2
/Y i m

32
2

)+
4v i m

3
2

Y r e
33

2(σY
r e
33

2/Y r e
33

2 +σv i m
3

2/v i m
3

2
),

(4.46h)

[σH]31 =v i m
1

2
Y r e

21
2(σY

r e
21

2/Y r e
21

2 +σv i m
1

2/v i m
1

2
)+Y i m

21
2

v r e
1

2(σvr e
1

2/v r e
1

2 +σY
i m
21

2
/Y i m

21
2

)+
4Y i m

22
2

v r e
2

2(σvr e
2

2/v r e
2

2 +σY
i m
22

2
/Y i m

22
2

)+ v i m
3

2
Y r e

32
2(σY

r e
32

2/Y r e
32

2 +σv i m
3

2/v i m
3

2
)+

Y i m
32

2
v r e

3
2(σvr e

3

2/v r e
3

2 +σY
i m
32

2
/Y i m

32
2

),

(4.46i)

[σH]32 = v i m
2

2
Y r e

32
2(σY

r e
32

2/Y r e
32

2 +σv i m
2

2/v i m
2

2
)+Y i m

32
2

v r e
2

2(σvr e
2

2/v r e
2

2 +σY
i m
32

2
/Y i m

32
2

), (4.46j)

[σH]33 =v i m
1

2
Y i m

21
2

(σv i m
1

2/v i m
1

2 +σY
i m
21

2
/Y i m

21
2

)+4v i m
2

2
Y i m

22
2

(σv i m
2

2/v i m
2

2 +σY
i m
22

2
/Y i m

22
2

)+
v i m

3
2

Y i m
32

2
(σv i m

3

2/v i m
3

2 +σY
i m
32

2
/Y i m

32
2

)+ v r e
1

2Y r e
21

2(σvr e
1

2/v r e
1

2 +σY
r e
21

2/Y r e
21

2)+
v r e

3
2Y r e

32
2(σvr e

3

2/v r e
3

2 +σY
r e
32

2/Y r e
32

2),

(4.46k)

[σH]34 = v i m
2

2
Y i m

32
2

(σv i m
2

2/v i m
2

2 +σY
i m
32

2
/Y i m

32
2

)+ v r e
2

2Y r e
32

2(σvr e
2

2/v r e
2

2 +σY
r e
32

2/Y r e
32

2), (4.46l)

[σH]41 = v i m
3

2
Y r e

32
2(σY

r e
32

2/Y r e
32

2 +σv i m
3

2/v i m
3

2
)+Y i m

32
2

v r e
3

2(σvr e
3

2/v r e
3

2 +σY
i m
32

2
/Y i m

32
2

), (4.46m)

[σH]42 =v i m
1

2
Y r e

31
2(σY

r e
31

2/Y r e
31

2 +σv i m
1

2/v i m
1

2
)+Y i m

31
2

v r e
1

2(σvr e
1

2/v r e
1

2 +σY
i m
31

2
/Y i m

31
2

)+
v i m

2
2

Y r e
32

2(σY
r e
32

2/Y r e
32

2 +σv i m
2

2/v i m
2

2
)+Y i m

32
2

v r e
2

2(σvr e
2

2/v r e
2

2 +σY
i m
32

2
/Y i m

32
2

)+
4Y i m

33
2

v r e
3

2(σvr e
3

2/v r e
3

2 +σY
i m
33

2
/Y i m

33
2

),

(4.46n)

[σH]43 = v i m
3

2
Y i m

32
2

(σv i m
3

2/v i m
3

2 +σY
i m
32

2
/Y i m

32
2

)+ v r e
3

2Y r e
32

2(σvr e
3

2/v r e
3

2 +σY
r e
32

2/Y r e
32

2), (4.46o)

[σH]44 =v i m
1

2
Y i m

31
2

(σv i m
1

2/v i m
1

2 +σY
i m
31

2
/Y i m

31
2

)+ v i m
2

2
Y i m

32
2

(σv i m
2

2/v i m
2

2 +σY
i m
32

2
/Y i m

32
2

)+
4v i m

3
2

Y i m
33

2
(σv i m

3

2/v i m
3

2 +σY
i m
33

2
/Y i m

33
2

)+ v r e
1

2Y r e
31

2(σvr e
1

2/v r e
1

2 +σY
r e
31

2/Y r e
31

2)+
v r e

2
2Y r e

32
2(σvr e

2

2/v r e
2

2 +σY
r e
32

2/Y r e
32

2).

(4.46p)

Here,σx refer to standard deviation of x. The developed error propagation in (4.46) is validated

in Appendix B using Monte Carlo simulations. It is used for computation of the uncertainty on

sensitivity coefficient using indirect method. The results for the uncertainty estimation using

above proposed approach are discussed in Sec. 4.5.
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4.3.6 Simulation Setup for the Admittance Matrix Estimation

Input data-set

To evaluate and compare the performance of the proposed methods, we estimate the admit-

tance parameters of selected power grid benchmarks starting from noisy phasor measure-

ments. First, load flows are solved to compute ground-truth values of voltage and current

phasors. Then, these are corrupted with i.i.d. zero-mean Gaussian noise to simulate noisy mea-

surements, as discussed in the next subsection. This procedure is described in Algorithm 4.3.

The nodal active and reactive power injections in the load flows are from the experimental set-

up of the EPFL Distributed Electrical Systems Laboratory [72] (peak consumption of 350 kW

with 95 kWp of PV generation). These measurements are rescaled according to the nominal

power of the respective node of the test network. The rescaling is performed by first dividing

the nodal demand/generation profiles of the original system in [72] by their nominal nodal

powers and, then multiplying by the nominal nodal powers of the test network.

Algorithm 4.3 Raw-data generation

Require: Admittance: Y, nodal power injections: p,q
1: procedure GENDATA

2: for k = 1 : K do
3: [v(k), i(k)] = LoadFlow(p(k),q(k), Y)
4: for λ= [v(k), i(k)] do
5: δm =N(0, σ

m

3 |λ|)
6: |λ| = |λ|+δm

7: δφ =N(0, σ
p

3 )
8: arg(λ) = arg(λ)+δφ
9: λ= |λ|exp( j arg(λ))

10: end for
11: end for
12: end procedure

Noise Model

The measurements of ITs are characterised by errors in polar coordinates (i.e., given in terms

of phasors and magnitudes), not in rectangular coordinates. Therefore, we introduce noise

in polar coordinates defined by the standard IEC IT class types [127, 128]. The voltage and

current measuring instruments are characterized by a phase and magnitude error, specified

by the manufactures in form of percentage σm for magnitudes and in radians σp for the phase

error. The values of σm and σp are listed in the Table 4.1 as defined by [127, 128].

Hypothesis 4.5 The ITs do not have a bias, and they behave according to standards; the mag-

nitude and phase angle error of the ITs are Gaussian. The noise introduced by the PMUs is

negligible compared to the one of the ITs (e.g. [130, 131]).
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Table 4.1: Errors specifications for different class of Instrument Transformers.

IT class Voltage transformers [128] Current transformers [127]
mag. error phase error mag. error phase error

(σm) [%] σp [rad.] (σm) [%] σp [rad.]
0.1 0.1 1.5e-3 0.1 1.5e-3
0.2 0.2 3e-3 0.2 3e-3
0.5 0.5 6e-3 0.5 9e-3
1 1 12e-3 1 18e-3

We add a Gaussian and i.i.d. unbiased noise (Hypothesis (4.5)) to the voltage and current mea-

surements in the polar coordinates, which is then projected onto the rectangular coordinates.

Although Gaussian property may not be preserved upon the transformation, the transformed

noise can be approximated as a Gaussian distribution for the IT classes29 of Table 4.1 as shown

in [122].

Performance Metrics for Admittance Estimation

We measure the performance of the estimation algorithm by the three following metrics.

• The Normalized Mean Square Error (NMSE) between the true (X̂) and the estimated (X∗)

quantities as:

E (X∗, X̂) = EX = ||X̂−X∗||2
||X̂||2

(4.47)

EX is a dimensionless quantity, the value EX = 0 indicates a perfect estimation.

• Comparison in terms of per unit (pu) of the estimated and original parameters; per unit

(pu) values are computed by dividing the parameter impedance/admittance by the base

impedance/admittance. The base impedance/admittance is computed using the base

power and base voltage of the system.

• Element-wise relative error of the estimated admittance. It is expressed for real and

imaginary parts of each element of the compound admittance matrix defined as

∆Y = Ŷ−Y∗ =ℜ(∆Y)+ jℑ(∆Y) (4.48)

where Ŷ and Y∗ are true and estimated admittance matrices, ∆Y is the element-wise

error on estimated admittance. We define the relative element-wise error of estimated

29According to [127, 128], the maximum measurement noise for a calibrated IT (i.e. without a bias) is associated
to the magnitude and phase errors reported in Table 4.1.
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admittance on real (∆ℜỸ) and imaginary (∆ℑỸ) elements as

∆ℜỸ =ℜ(∆Y)⊘ℜ(̂Y) (4.49a)

∆ℑỸ =ℑ(∆Y)⊘ℑ(̂Y) (4.49b)

where ⊘ refers to Hadamard division (i.e., element-wise division of a matrix). Later, we

show these relative component-wise errors on the real and imaginary part of the admit-

tance matrix in a heatmap plots for the different strategies. ∆ℜỸ,∆ℑỸ are dimensionless

as they are relative errors (these relative errors are zero for a perfect estimation).

• Uncertainty of the estimated parameters: is computed by their variances. The variances

of the estimates are given by

σX =
√

(σ2
r diag((HT H)−1)) (4.50)

where σr is estimated variance of the residuals in (4.23) post-estimation. We determine

the uncertainty corresponding to 99% confidence interval approximated by ±3 σX.

4.3.7 Results and Discussion

We use the data sets from simulated experiments on different benchmark distribution grids,

as described earlier, to estimate their admittance parameters. We compare the estimation

performances using: i) the raw measurements (denoted by “Raw-data"), ii) the pre-processed

data with block-averaging (denoted by “Block-averaging") and iii) the pre-processed data with

cluster-averaging (denoted by “Cluster-averaging"). Figure 4.3 summarizes the steps used

for the estimation using cluster-averaged data. Raw measurements are directly used for the

estimations in the “Raw-data" case. They are not subject to any pre-processing and all the

measurements are used once for the estimation of the parameters. The results are reported

for both LS and TLS techniques.

A sensitivity analysis with respect to different levels of measurement noise is presented. Then,

a performance comparison is presented against different clustering strategy (such as clus-

ter features, number of clusters). Finally, we compare the estimation performances with

availability of branch and injection currents measurements.

Estimation Performance on Benchmark Test Cases

We present a detailed estimation performance analysis applied to the IEEE 4-bus bench-

mark network. It is an unbalanced and untransposed three-phase distribution system with

artificially added shunt parameters. The details on the parameters, topologies and nomi-

nal demand can be found in [118]. The topology is shown in Fig. 4.4. The estimations are

performed with an estimation model comprising of both the injection and branch currents

measurements. We use a single day of simulated measurements of nodal voltages, branch, and
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Figure 4.3: Flow diagram for the admittance matrix estimation using cluster-averaged data.

injection currents (Algorithm 4.3) at a 1-second resolution. We first consider instrument type

of class 0.2 (Table 4.1). We compare the estimation performance when using directly the raw

measurements (from Algorithm 4.3), block-averaging (first Algorithm 4.3 then Algorithm 4.2)

and cluster-averaging (first Algorithm 4.3 then Algorithm 4.1). For the first one, we use all the

measurements for the admittance estimation. For the last two, the estimations are compared

using the same number of blocks as the number of clusters to have a fair comparison. We use

1-hour blocks in the block-averaging method of Algorithm 4.2 and 24 clusters (24 clusters

in a day according to block-averaging of 1-hour as blocks) in the cluster-averaging method

of Algorithm 4.1. The corresponding averaged values of each cluster or block are used for

the admittance matrix estimation. A sensitivity analysis with cluster size and features will be

discussed later in the Chapter.

Table 4.2 shows the estimation performance for IEEE 4-bus unbalanced and untransposed

three-phase network. It shows the NMSEs using LS and TLS techniques. The first, second and

Figure 4.4: Topology of the adopted IEEE 4-bus network.

the third rows show estimations when using raw, block-averaged and cluster-averaged data,

respectively. It shows the NMSEs for conductances, susceptances, shunts and compound

admittance matrices denoted by EXG , EXB , EXT and EY respectively (as defined in (4.47)).
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Table 4.2: Estimation performance for the IEEE 4-bus network.

Data Method EXG EXB EXT EY

Raw-data
LS 0.124 0.172 0.337 0.181

TLS 0.027 0.035 0.147 0.038
Block-averaging LS 0.191 0.145 0.016 0.163
(1-hour block) TLS 0.229 0.117 0.021 0.137

Cluster-averaging LS 0.008 0.002 0.014 0.003
(24 clusters) TLS 0.008 0.002 0.014 0.003

As it can be seen, the estimations are poor using the raw data, whereas they improve signifi-

cantly with cluster-averaged data and thus have better estimation of the admittance matrix.

With the cluster-averaging policy, the NMSEs decreases by 2-3 orders of magnitude compared

to the raw-data. The estimations using block-averaging are also poor compared to the cluster-

averaging and slightly better than the raw-data case. The block-averaging method performs

the worst with TLS.

Fig. 4.5 shows the plots of the true and estimated three-phase line and shunt parameters

for the LS using the raw-data, block-averaging, and cluster-averaging cases. We also show

the uncertainty of the estimates using error bars corresponding to 99 % confidence interval.

The upper, middle and the bottom plots show the comparison for the true and estimated

conductances, susceptances and shunts, respectively. The estimates are expressed in pu as

described in Sec. 4.3.6 (we use respectively the base power and voltage of 6 MVA and 4.16 kV

corresponding to a base admittance of 0.3467 S.) From the plots, it is clear that the estimation

model with cluster-averaging successfully estimates the longitudinal and shunts parameters

and has the least uncertainty of the parameter estimates, whereas the estimates using the

raw-data and block-averaging have high biases and uncertainties. Also, it can be observed that

the methods using the raw measurements and block-averaging fail to identify the parameters

which are zero (line L2 and shunts for all the lines are assumed to have zero off-diagonal

elements in the studied IEEE 4-bus test case). Indeed they are estimated to be non-zero,

whereas cluster-averaging correctly estimates it.

We also show the heatmaps of the element-wise relative error for the real and imaginary

part of the compound admittance matrix. Fig. 4.6(a-b), (c-d) and (e-f) shows the estimation

error for LS with raw-data, block-averaging and cluster-averaging strategies, respectively. The

heatmap plots have node indices of the network as x- and y- axes, whereas the color shows the

element-wise estimation error on non-zero elements of the admittance matrix using (4.49).

The heatmap has the dimension of 12 on x- and y-axis because we are dealing with a 3-phase

4 node system with an admittance matrix dimension of 12 × 12. The comparison shows that

the estimations with raw-data and block-averaging have high errors with maximum error upto

200 %. In contrast, we obtain near-perfect estimations by using the cluster-averaging strategy

with a maximum absolute element-wise error below 3 %.
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(a) Conductance estimation

(b) Susceptance estimation

(c) Shunt estimation

Figure 4.5: Estimation performance of the parameters (a) conductances (b) susceptance and (c)
shunts of the IEEE 4-bus untransposed and unbalanced test network with raw measurements,
block-averaged and with cluster-averaged data with LS. Error bars on top of each estimated
value shows the uncertainty of the estimates (99 % confidence interval) using (4.50). L1, L2,
L3 refer to different branches and a, b, c refer to different phases of the IEEE 4-bus system in
Fig. 4.4.

In view of the above, we can conclude that the pre-processing on raw-data by cluster-averaging

largely improves the estimation performance compared to using the raw-data directly or

simple block-averaging.

Other Test Cases

We also perform estimation on several other networks (BT = balanced and transposed, UU =

unbalanced and untransposed). The results are summarized in Table 4.3. We show the NMSEs

on admittance estimation (EY) for different publicly available test cases.

From the comparison, it can be seen that the proposed method gives good estimations for all
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Element-wise relative error computed via (4.49) on real (left) and imaginary (right)
part of the estimated compound admittance matrix for the IEEE 4-bus test network using the
raw data in (a-b), using the block-averaging in (c-d) and using the cluster-averaged in (e-f)
with LS.
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Table 4.3: NMSE on admittance estimation for different networks.

Test-networks Raw-data Cluster-averaging
LS TLS LS TLS

CIGRE MV (BT) 0.897 6.137 0.016 0.012
CIGRE LV (BT) 0.620 5.877 0.002 0.002
CIGRE LV (UU) 0.371 4.77 0.033 0.037

CIGRE microgrid (BT) 0.884 6.812 0.044 0.019
IEEE13 (UU) 0.585 2.961 0.060 0.056
IEEE123 (BT) 0.946 15.551 0.060 0.060

the tested networks. With TLS, we observe that the NMSEs are high in case of raw-data. This

happens because the TLS tries to compensate for the original measurement noise estimating

the true (unobservable) Ĥ and Ĵ along with the admittance parameters resulting in large

number of estimation variables compared to the LS. This is mitigated by the cluster-averaging

which reduces the noise level on the measurements and number of true measurements to be

estimated.

Sensitivity Analysis

Noise Level: we perform estimations using simulated experiments with noise of the IT classes

0.1, 0.2, 0.5 and 1 (Table 4.1) according to Algorithm 4.3. The results are reported for IEEE

4-bus network. We use the same clustering features and Nc as in Sec 4.3.7. Table 4.4 shows the

NMSEs on admittance estimation for LS and TLS with respect to noise level. As it can be seen,

the NMSEs obtained using cluster-averaging is 2-3 order of magnitude better compared to the

case without averaging, for all cases. The TLS method with cluster-averaging policy performs

the best.

Table 4.4: NMSE on admittance estimation (EY) with different noise levels for IEEE 4-bus
network.

IT class Raw-data Cluster-averaging
LS TLS LS TLS

0.1 0.064 0.012 0.002 0.002
0.2 0.181 0.038 0.003 0.003
0.5 0.404 0.148 0.010 0.009
1 0.548 9.171 0.018 0.014

Clustering Strategy: we investigated different clustering strategies for the cluster-averaging

policy. We vary the clustering features used in Algorithm 4.1 and use them for admittance
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estimation. The analysis is presented in terms of NMSEs on admittance estimation in Table 4.5

for IEEE 4-bus network with IT class 0.5. From the analysis, we conclude that the clustering

features comprising of the magnitudes of the nodal voltages and currents perform the best.

Table 4.5: NMSE on admittance estimation (EY) with clustering features.

Clustering features LS TLS
Voltage magnitude 0.036 0.024
Current magnitude 0.021 0.021

Voltage and current magnitude 0.010 0.009
Sequence voltage magnitude 0.066 0.432
Sequence current magnitude 0.054 0.056

Sequence voltage and current magnitude 0.019 0.018

We also analysed the sensitivity on the estimation performance with the number of clusters

in the cluster-averaging policy. The feature used for this simulation is the dominant feature

inferred from the last analysis, namely, the magnitudes of voltages and currents together. The

analysis is presented for the IEEE4 system with IT class of 0.5. We perform cluster averaging

on the raw data of 86,400 data points (corresponding to per second single day measurement)

with Nc = 25, 50, 100, 300, 500, 1000, 5000 and 10,000 (refer to Algorithm 4.1). The NMSEs

on estimated admittance matrix (EY) are plotted in Fig. 4.7 for LS and TLS techniques. As it

can be observed, the estimation performance improves with decrease in number of clusters.

This happens because the cluster-averaging scheme reduces the noise levels on the voltage

and current measurements, leading to improvement in estimation quality. The estimations

worsen slightly if we go below Nc = 100, this is because the number of input data points in the

estimation model becomes smaller or comparable to the number of variables to be estimated.

The optimal value of Nc is subject to future investigations as the NMSE metric is inaccessible

for practical cases.

Figure 4.7: NMSE (EY) as a function of the cluster size for IEEE 4-bus network.

Injection Current vs Branch Current Model vs Both: we here compare the performance of

the proposed estimation process when using: (i) injection currents and (ii) branch currents

106



4.3 Indirect Estimation of Sensitivity Coefficients via Estimation of Compound Admittance
Matrix

along with injection currents. The comparison is done for the IEEE 4-bus system with IT class

0.2 in Table 4.6. The analysis is presented for LS. We use the same settings for the block- and

cluster-averaging as in Sec 4.3.7. The comparison shows that the estimation using the cluster-

averaging method is not affected significantly even without branch currents information,

whereas the other two methods estimations deteriorate. It is worth noting that the use of the

branch current measurements improves the estimation performance significantly, especially

for the shunt admittances. This happens because the estimation variables are related to the

branch current (as in (4.15)) individually and can be estimated in a decoupled way, whereas the

estimation variables are interlinked to each other in the model relying on injection currents,

and so they are not decoupled.

Table 4.6: Estimation performance for the IEEE 4-bus network with availability of measure-
ments on injection current and branch currents.

Data Current EXG EXB EXT EY

Raw-data
Injection 0.138 0.213 2.392 0.221

Branch + Injection 0.124 0.172 0.337 0.181
Block-averaging Injection 0.381 0.201 0.101 0.239
(1-hour block) Branch + Injection 0.191 0.145 0.016 0.163

Cluster-averaging Injection 0.008 0.002 0.027 0.008
(24 clusters) Branch + Injection 0.008 0.002 0.014 0.003

Further Analysis

In this section, we show how the cluster-averaging method groups the raw-data in different

clusters. This analysis gives an insight on why cluster-averaging improves the parameter

estimation.

Effect of Cluster Averaging on the Raw Measurement Data: we show this analysis for the

IEEE 4-bus test network (Fig. 4.4). We use the same clustering features (voltage and current

magnitudes) and Nc as in Sec 4.3.7.

Fig. 4.8a shows the distribution of the 1-sec time-indices (86400-time steps) during the day

in the 24 clusters as a result of kmeans clustering. In Fig. 4.8b and Fig. 4.8c, we also show the

variation of the nodal voltage and current magnitudes respectively for the non-zero injection

nodes which were used for the clustering. Fig. 4.8a y-axis (left) shows the cluster number, and

the corresponding time-steps that fall into clusters are shown in black. In the same plot, we

also include the number of elements per cluster on the right y-axis of Fig. 7(a). As it can be

seen, the clustering does not group the data that is contiguous in time. Instead, data belonging

to a given cluster is distributed throughout the day. In particular, the clustering scheme groups

measurements with similar magnitudes (considering all the nodes and phases). For example,
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(a)

(b)

(c)

Figure 4.8: Distribution of the 86400 time steps during the day into 24 clusters as a result of
cluster averaging: (a) measurements assigned to different clusters with number of elements
(right) per cluster, (b) nodal voltage magnitudes (in pu) and (c) nodal current magnitudes (in
pu) for all the nodes and phases (except slack node) for 24 hrs.
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in cluster-6, most of the measurements are balanced among phases with voltage magnitudes

close to 1 pu and current injections below 0.05 pu. Similarly, in clusters-9, 19, and 21, the

measurements observing a sudden dip in the nodal voltages (caused by increased demand at

node 4 phase c) are clustered together. Another example is cluster-12 and 13, which capture

slight variation in the voltages due to a dip in demand at node 4 phase a. Clusters-2, 18, and

24 captures sharp generation peaks due to PV injections from node 2 (phase b) and node 3

(phase b).

Furthermore, to show the distribution of the data as a result of the averaging strategies, we

show zero and negative sequence normalized by positive sequence component for all the

nodes for each cluster in the bar plot of Fig. 4.9. They are defined as follows: Neg. seq. and

Zero seq. are defined as the percentage of the negative and zero sequence components with

respect to the positive sequence components, respectively. It is given as Neg. seq.

|vneg|
|vpos|

×100% (4.51)

and Zero seq.

|vzero|
|vpos|

×100% (4.52)

where vpos,vneg,vzero are positive, negative and zero sequence components respectively.

Fig 4.9(a) and 4.9(b) show the barplots corresponding to Neg. seq. and Zero seq., respectively

for block-averaged and cluster-averaged data. As seen from the figure, cluster-averaging

produces clusters where the positive and negative sequence components are higher than in

the block-averaging case.

Table 4.7 summarizes the mean and max of Neg. seq. and Zero seq. for all the clusters. In view

of the above comparisons, it can be seen that the cluster averaging provides higher values of

positive and negative sequence components compared to the ones obtained using the block

averaging. This feature helps to take into account the contribution of off-diagonal elements of

line impedance and shunt admittance matrices in the grid’s compound admittance matrix.

Table 4.7: Percentage of negative and zero sequence components with respect to positive
sequence components.

Method Neg. seq. (%) Zero seq. (%)
mean max mean max

Block-averaging 0.32 0.80 0.69 2.04
Cluster-averaging 0.49 1.71 1.15 4.05

In this section, we only presented the estimation performance of the proposed Y estimation

scheme. The results of sensitivity computation using the estimated Y (indirect approach) will

be shown later in Sec. 4.5 after describing other proposed schemes for estimating sensitivity
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(a)

(b)

Figure 4.9: Distribution of negative and zero sequence components normalised by the positive
sequence component after block-averaging and cluster averaging on raw-data.

coefficients, i.e., the direct estimation method. It allows a better performance comparison

between the two methods, i.e., the indirect and direct methods.

4.4 Direct Estimation of Sensitivity Coefficients

In this section, we present the method for direct estimation of the sensitivity coefficients. First,

we present an estimation model, then the proposed two-stage estimation scheme. Finally,

we present the estimation performance. The objective is to estimate the voltage sensitivity

coefficients and their uncertainties by using the measurements of nodal voltage magnitudes,

active and reactive powers. The method is described as follows.

4.4.1 Estimation Model

We assume the following hypothesis to hold true.

Hypothesis 4.6 The operator does not know the network parameters, the topology, and the

system state.

Hypothesis 4.7 The network is equipped with measurements units providing the user with the

measurements of voltage magnitudes, and active and reactive power injections at regular time

intervals. The metering devices are aligned with a network time protocol (e.g. NTP [132]). The

measurements are time-synchronised.
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Hypothesis 4.8 The system is in steady-state, and the power injection is subject to small dy-

namics that the first-order Taylor approximations can represent with sufficient accuracy [16, 17].

The sensitivity coefficients remain unchanged over a time window30 (5 minutes in this case)

which is used to collect adequate number of measurements in the estimation problem.

Using the coefficient definition in (4.1), Hypothesis 4.8 and Taylor’s first-order approximation,

the magnitude deviation of the nodal voltages at time tk for node i can be written as

|∆v |i ,tk︸ ︷︷ ︸
γtk

≈ [∆ptk ∆qtk ]︸ ︷︷ ︸
htk

[
Kp

i ,tk

Kq
i ,tk

]
︸ ︷︷ ︸

X

(4.53)

where |v |i ,tk
−|v |i ,tk−1

= |∆v |i ,tk ∈R is the deviation of nodal voltage magnitude of i−th node,

vectors ptk −ptk−1 = ∆ptk ,qtk −qtk−1 = ∆qtk ∈ RNb include deviations of active and reactive

powers of all the nodes from timestep tk−1 to tk . The vectors Kp
i ,tk

,Kq
i ,tk

∈RNb include voltage

sensitivity coefficients of i−th node with respect injections of nodes j ∈ N . It should be

noted that the approximation in (4.53) of the power-flow equations involves two errors: (i) the

linearization and (ii) the measurement noise. In this work, we assume that the linearization

error is negligible compared to the one due to the measurement noise. This assumption is

reasonable if the state of the system is slow varying and the control is acting in quasi real-time.

Assuming that we have measurements for time t = t1 . . . , tT and coefficients do not change for

T timesteps (Hypothesis 4.8), Eq. (4.53) can be written as

Γ≈ HX (4.54)

where, Γ ∈RT = [γt1γt2 . . .γtT ]⊤, H ∈RT×2Nb = [ht1 ht2 . . .htT ]⊤ and X ∈ R2Nb includes Kp
i ,tk

and

Kq
i ,tk

. Eq. (4.54) can be re-written assuming noise model to be white Gaussian (Hypothesis 4.5).

Γ= HX+W W ∈N(0,Σ), (4.55)

Σ refers to the noise covariance matrix.

4.4.2 Estimation Technique

The linear model in (4.55) is typically solved for X by minimizing the norm-2 difference of

the residual, known as Least-Squares (LS). However, the LS method does not perform well

in case of low excitation (nodal power injections are small) and suffers from the problem of

multicollinearity (power injections at different nodes are very similar) [102, 103]. Also because

the sensitivity coefficients vary as a function of network’s states, it is necessary to use the most

recent estimates during a real-time control. Thus, an online estimation scheme was used in

30We assume that there is no significant change in the network’s operating conditions, such as topology or step
change of the load/generation. If it happens, the fixed time window could be replaced by a variable time window
where sensitivity coefficients are re-estimated.
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[103, 133] that used recursive least square (RLS)-based estimation coupled with an offline LS.

Offline LS (once
a day)

Online RLS
(every 5-
minutes)

Historical data 
from previous day 

Measurements  
and estimates at tk  Estimates at tk+1 

InitializationXt0

Figure 4.10: Flow diagram for two-stage estimation of sensitivity coefficients.

In this work, we use this scheme to estimate the sensitivity coefficients. Figure 4.10 shows

the dataflow of the estimation process. First, the LS is used to get a rough estimate of the

coefficients. Then, the RLS is used to refine the LS estimates by using the latest information on

the voltage and power measurements. The LS is solved off-line using a large number of histori-

cal measurements. The RLS problem is solved at each time step using recent measurements

where the LS estimation is used to initialize the RLS. Both the processes are described next.

Offline LS

Offline LS problem is formulated as

X̂ = min
X

||Γ−HX||2 +λregXT X (4.56)

where λreg is a positive number that serves as a regularization parameter and is used to avoid

ill-conditioned information matrix (i.e., in case of multi-collinearity nodal injections). The

closed-form solution of (4.56) is obtained in view of its quadratic and unconstrained nature

as,

X̂t0 = (HT H+λregI)−1HTΓ= (Rt0 +λregI)HTΓ (4.57)

where I is the identity matrix. The covariance matrix is defined as inverse of the information

matrix, i.e. Pcov
t0

= R−1
t0

= (HT H)−1.

Online RLS

In this scheme, an online recursive estimation is performed using the most recent measure-

ments. It utilizes the estimates from the previous time step and measurements at the current

time step. RLS updates the estimates whenever the new data is available. LS solution (X̂t0 )

in (4.57) is used to initialize the RLS stage. The use of exponential forgetting factor applied

to the observations is advised to give less importance to previous measurements [134]. The
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forgetting factor 0 <µ≤ 1 is reflected in the covariance matrix update.

Rtk =µRtk−1 +hT
tk

htk (4.58)

This results in the following iterative updates.

etk = γtk −htk X̂tk−1 (4.59a)

X̂tk = X̂tk−1 +Gtk etk (4.59b)

Gtk =
Pcov

tk−1
hT

tk

µ+htk Pcov
tk−1

hT
tk

(4.59c)

Pcov
tk

= (I−Gtk htk )Pcov
tk−1

/µ (4.59d)

where, G is the estimated gain and e the residual. In the following, this scheme is referred to as

RLS-F.

As reported in [134, 135], the RLS-F scheme suffers from the windup problem of the covariance

matrix . It may lead to very large covariances resulting in large estimates variances. Multiple

schemes are proposed in the literature to solve this problem. They are briefly described next.

Constant-Trace Scheme (RLS-CT): in [136], it is discussed how to limit the windup problem

of the co-variance matrix by setting an upper bound on the trace sum of the covariance matrix

and adding an identity matrix I. The scheme uses two different factors c1 and c2 such that

c1/c2 = 10e3; htk hT
tk

c1 >> 1. The covariance matrix is modified as:

Pcov
tk

= c1Pcov
tk

/trace(Pcov
tk

)+ c2I (4.60)

Selective Forgetting (RLS-SF): in [134] it is proposed to use selective forgetting factor, i.e.,

to use different forgetting factors for different eigenvalues of the covariance matrix. These

forgetting factors are computed and updated iteratively to limit the windup problem of the

covariance matrix. The gain and covariance matrix are updated as follows.

Gtk =
Pcov

tk−1
hT

tk

1+htk Pcov
tk−1

hT
tk

(4.61a)

Pcov
tk

=
2Nb∑
i=1

τi ,tk

µi
uT

i ,tk
ui ,tk . (4.61b)
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Here, ui ,tk denotes the eigenvectors of Pcov
tk

in Eq. (4.59d) and τi ,tk the corresponding eigenval-

ues. It proposed to limit τi ,tk by a function f SF that keeps it within bounds [τmin τmax]:

τi ,tk = f SF(τi ,tk−1 ) (4.61c)

f SF(x) =
x, x > τmax

τmin + (1−τmin/τmax)x x ≤ τmin

(4.61d)

More information on the tuning of RLS-SF is in [134] and [136].

Directional Forgetting (RLS-DF): in [137, 138], a directional forgetting algorithm is proposed

where the matrix R is decomposed into two parts: the first part is fully propagated to the next

time step, whereas the second part is propagated with a forgetting factor, µ. This method

was first proposed in [137] and termed as “directional forgetting" as the two parts of the gain

matrix are orthogonal to each other. Theoretical development supporting this algorithm is in

[138]. The iterative updates of RLS-DF are

Gtk = Pcov
tk

hT
tk

(4.62a)

P̄cov
tk−1

= Pcov
tk−1

+ 1−µ
µ

hT
tk

htk

htk Rtk hT
tk

(4.62b)

Pcov
tk

= P̄cov
tk−1

−
P̄cov

tk−1
hT

tk
htk P̄cov

tk−1

1+htk P̄cov
tk−1

hT
tk

(4.62c)

Rtk = [I−Mtk ]Rtk−1 +hT
tk

htk (4.62d)

Mtk = (1−µ)
Rtk−1 hT

tk
htk

htk Rtk−1 hT
tk

(4.62e)

The updates strategies for the covariance matrix directly affects the estimates and their un-

certainties. The numerical performance of these schemes (i.e. RLS-F, RLS-CT, RLS-SF and

RLS-DF) are assessed in the results section.

Estimation of Uncertainties on Sensitivity Coefficients

In this work, we propose to account for the uncertainties of the estimated sensitivity coeffi-

cients to robustify the voltage control. The uncertainties are computed using the co-variance

matrix given by

σX =σr

√
diag(Pcov) (4.63)

where σr is the estimated standard deviation of residuals inferred post-estimation. They are

continuously updated during the RLS estimation stage. The uncertainty on the estimated

coefficients are estimated to be ±3σX corresponding to the 99 % confidence interval.
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4.4.3 Simulation and Results

Test-case and Input data

For the validation of the proposed estimation scheme and the corresponding performance

evaluation, we consider an IEEE4 benchmark network (where lines are transposed) [118]. The

line parameters for the network are listed in Table 4.8. The network is 24.9/4.16 kV, 6 MVA

3-phase operating in balanced configuration as shown in Fig. 4.11. The nominal demands and

the PV generation sites and sizes are also shown in Table 4.8. This network has been selected

because of its short lines that result in a stiff response of nodal voltage variations with respect

to the nodal injections making the sensitivity coefficient estimation particularly challenging.

Figure 4.11: IEEE4 balanced system

Table 4.8: Line data and nodal injections for IEEE4 system in Fig. 4.11.

Line data Load data PV
Line R X B Length node Active Reactive MPP

(to −− from) (Ω/km) (Ω/km) (µS) (km) # (kW) (kVAr) (kW)
1 −− 2 0.4013 1.4133 76 1 2 300 150 480
2 −− 3 0.4576 1.078 76 0.38 3 300 150 600
3 −− 4 0.4576 1.078 76 0.475 4 300 150 –

Figure 4.12a and 4.12b shows the nodal active and reactive power injections for 2 days sampled

at 1-second resolution. To obtain the ground-truth measurements of the voltage magnitudes

and power injections, we carry out simulated experiments performing load-flows by knowing

the true admittance matrix of the grid. The resulting nodal voltage magnitudes are shown in

Fig 4.12c. Then, the currents and voltages are corrupted with measurement noise characterized

by the IT’s uncertainty characteristics described in [127, 128]. This process is described in

Algorithm 4.4. The algorithm introduces noise in polar coordinates (i.e., magnitudes and

phase noise) on the voltage and currents, which is then used to compute the corrupted nodal

active (p̃) and reactive (q̃) power magnitudes. The specifications of the ITs are listed in Table 4.1.

4.4.4 Performance Metrics for Sensitivity Coefficient Estimation

This section defines the metrics used in the performance assessment. The first metric is the
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(a)

(b)

(c)

Figure 4.12: (a) Nodal active (in kW), (b) reactive (in kVar) power injections and (c) nodal
voltage magnitudes for non-zero injection nodes.

root-mean-square-error (RMSE), defined as

RMSE(X̂) = ||Xtrue − X̂||2
||Xtrue||2

. (4.64)

where, Xtrue, X̂ are the true and estimated values of a (generic quantities a scaler or vector).

For the performance comparison on the estimation of the uncertainty intervals, we use metrics

inspired by [139]: the first is the prediction interval coverage probability (PICP) that counts the

number of instances realization falling within the uncertainty bounds for a given confidence
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Algorithm 4.4 Raw-data generation

Require: Admittance: Y, nodal power injections: p,q
1: procedure GENDATA

2: for tk = t1 : tN do
3: [v(tk ), i(tk )] = LoadFlow(p(tk ),q(tk ), Y)
4: [ṽ(tk ), ĩ(tk )] =
5: for β= [v(tk ), i(tk )] do
6: δm =N(0,σm |β|/3)
7: |β| = |β|+δm

8: δp =N(0,σp /3)
9: arg(β) = arg(β)+δm

10: β= |β|exp( j arg(β))
11: end for
12: p̃(tk )+ j q̃(tk ) = ṽ(tk )ĩ(tk )∗

13: end for
14: end procedure

interval (CI). It is

PICP = 1

T

tT∑
tk=t1

btk (4.65)

btk =
1 K̂ p

i j ,tk
−∆K p

i j ,tk
≤ K̂ p

i j ,tk
≤ K p

i j ,tk
+∆K p

i j ,tk

0 otherwise.
(4.66)

The second is the prediction interval normalized average width (PINAW):

PINAW = 1

T (K p
i j ,max)

tT∑
tk=t1

(2∆K p
i j ,tk

). (4.67)

Here, K p
i j ,max being the maximum value of the coefficient in the series. The final metric is the

coverage width-based criterion (CWC), which quantifies the trade-off between high PICP and

small PINAW.

CWC = PINAW(1+η(PICP)e−(ν(PICP−CI)) (4.68)

η=
0, PICP ≤ CI

1, otherwise
(4.69)

The parameter ν can be set based on a tradeoff between the interval width penalization. We

chose it to be ν= 50. The considered confidence CI is 99%.

117



Chapter 4. Data-driven Estimation of Compound Admittance Matrix and Power-Flow
Sensitivity Coefficients

4.4.5 Estimation Results

We estimate Kp ,Kq for the nodes where the controllable units (i.e., PV generation units) are

connected, as these assets could be potentially used in grid-aware control applications, i.e.,

K p
2,2,K p

2,3,K q
2,2, K q

2,3. The estimations plots are shown for IT measurements class of 0.5. The

estimated coefficients are shown for the second day; the first day measurements are used to

obtain initial LS estimates. For performance comparison among different estimation schemes,

we report the estimations for LS, RLS-F, RLS-CT, RLS-SF, and RLS-DF as defined in Sec. 4.4.2.

“LS" solves the LS algorithm and uses the measurements from last 5 minutes (sampled at

1-second, i.e., 300 samples) to estimate the sensitivity coefficients. For the methods based

on the RLS, the first-day measurements (0 - 24 hours) are used to compute initial estimates

(offline-LS). Then, they are updated each 5-minutes with the last timestep measurements in a

recursive way. The forgetting factor µ= 0.95 is used in the simulations.

Figures 4.13 - 4.17 shows the estimations and prediction intervals with confidence interval

coverage of 99%. The estimated coefficients, K p
2,2,K p

2,3,K q
2,2, K q

2,3 are shown in Fig 4.13 - 4.17 (a),

(b), (c) and (d) respectively. The plots in red show the estimated coefficients, and the grey area

their corresponding uncertainty. The black line shows the true coefficients.

(a) K
p
2,2 (b) K

p
2,3

(c) K
q
2,2 (d) K

q
2,3

Figure 4.13: Coefficients estimates and their uncertainty using the LS.

As observed from the plot in Fig. 4.13, LS fails in reliably estimating the coefficients and

suffers from biases and large variances. The RLS-F (Fig. 4.14) exhibits large uncertainty on

the estimates. This is due to the windup problem in the covariance matrix, as reported in

[134]. RLS-CT (Fig. 4.15), RLS-SF (Fig. 4.16), and RLS-DF (Fig. 4.17) do fix the windup problem

using the strategies described in Sec. 4.4.2. However, the RLS-CT fails to reliably estimate

for all the coeffients. RLS-SF and RLS-DF show similar performances. However, the former

shows higher coverage width compared to the latter. To have a proper comparison, we

report the RMSE and the PICP-PINAW-CWC for each of the coefficients K p
2,2,K p

2,3,K q
2,2, K q

2,3 in
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(a) K
p
2,2 (b) K

p
2,3

(c) K
q
2,2 (d) K

q
2,3

Figure 4.14: Coefficients estimates and their uncertainty using the RLS-F.

(a) K
p
2,2 (b) K

p
2,3

(c) K
q
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q
2,3

Figure 4.15: Coefficients estimates and their uncertainty using the RLS-CT.

Table 4.9: Performance comparison of different estimation techniques for K p
2,2 with different

IT classes.

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC

LS 0.97 0.93-4.21-7.81 2.58 0.93-9.73-18.04 8.78 0.69-17.07-28.19
RLS-F 0.31 0.99-5.08-5.08 1.03 0.99-7.49-7.49 1.98 1-13.71-13.71

RLS-CT 1.11 0.89-4.45-8.11 2.1 0.89-11.23-20.41 5.61 0.85-20.1-35.83
RLS-SF 0.2 0.99-2.39-2.39 0.69 0.99-5.74-5.74 1.55 1-10.78-10.78
RLS-DF 0.12 0.99-0.94-0.94 0.37 0.99-2.25-2.25 0.46 1-3.16-3.16

Table 4.9, 4.10, 4.11 and 4.12, respectively. It compares these metrics for different methods

and with measurements characterized by other IT classes. From such a comparison, it can
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Figure 4.16: Coefficients estimates and their uncertainty using the RLS-SF.
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Figure 4.17: Coefficients estimates and their uncertainty using the RLS-DF.

Table 4.10: Performance comparison of different estimation techniques for K p
2,3 with different

IT classes.

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC

LS 0.8 0.97-4.69-4.69 1.68 0.98-10.86-10.86 3.44 0.97-18.98-18.98
RLS-F 0.21 1-3.54-3.54 0.53 1-5.15-5.15 1.27 1-9.34-9.34

RLS-CT 0.73 0.94-3.43-6.37 1.82 0.91-8.72-16 2.15 0.92-15.7-28.94
RLS-SF 0.14 1-1.73-1.73 0.38 1-4.16-4.16 0.85 1-7.76-7.76
RLS-DF 0.12 1-0.77-0.77 0.37 1-1.85-1.85 0.29 1-2.62-2.62

be observed that the RLS-DF performs the best with respect to all the metrics, i.e., it has the

lowest RMSE and good coverage. As expected, the RMSE increases with the increasing of the
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Table 4.11: Performance comparison of different estimation techniques for K q
2,2 with different

IT classes.

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC

LS 0.8 0.97-3.39-3.39 1.74 0.96-6.64-6.64 4.18 0.73-9.36-15.71
RLS-F 0.53 1-4.83-4.83 1.09 1-6.77-6.77 2.26 1-12.09-12.09

RLS-CT 0.37 0.85-1.95-3.47 1.1 0.86-4.87-8.71 1.38 0.88-8.73-15.82
RLS-SF 0.23 1-1.07-1.07 0.36 1-2.56-2.56 0.73 1-4.82-4.82
RLS-DF 0.16 1-0.65-0.65 0.22 1-1.54-1.54 0.48 1-2.05-2.05

Table 4.12: Performance comparison of different estimation techniques for K q
2,3 with different

IT classes.

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC

LS 0.78 0.99-4.97-4.97 1.05 1-8.49-8.49 1.93 0.99-10.76-10.76
RLS-F 0.29 0.99-3.23-3.23 0.46 0.99-4.69-4.69 0.98 0.99-8.32-8.32

RLS-CT 0.29 0.93-1.74-3.22 0.44 0.95-4.39-4.39 1.4 0.85-7.87-14.06
RLS-SF 0.15 0.98-1-1 0.24 0.99-2.4-2.4 0.61 0.99-4.52-4.52
RLS-DF 0.16 0.97-0.41-0.41 0.17 0.99-0.95-0.95 0.37 0.95-1.31-1.31

measurement noise. However, in all the cases related to this specific network, RLS-DF is the

dominant estimation method.

4.5 Performance Comparison of Direct and Indirect Methods for the

Estimation of Sensitivity Coefficients

This section presents the performance comparison of sensitivity coefficients estimated using

the indirect method (Sec. 4.3.5) and direct method (Sec. 4.4). The comparison is shown against

the performance metrics defined in Sec. 4.3.6. For the indirect method, the admittance matrix

is estimated using the method presented in Sec. 4.3; we consider both the raw and cluster-

averaging (Sec. 4.3.4). For the direct method, we consider the dominant estimation scheme

RLS-DF (recursive least squares with directional forgetting).

4.5.1 Simulation Setup

The comparison is shown for two different test cases. For the first one, we consider the four-

node system of the previous analysis (shown in Fig. 4.11) with line and load parameters of

Table 4.8. For the second, we consider a modified IEEE4 system by artificially increasing

the line length in Table 4.8 by a factor of 6. As expected, a longer line length create weaker

networks proportionally to the increase of longitudinal branches impedances. It is to study

the performance for a weaker network. The same power profiles from Fig. 4.12a-4.12b are

used for simulate the grid state measurements then, measurement noise is added using

Algorithm 4.3 and 4.4. For the indirect method, the first-day measurements are used to
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estimate the compound admittance matrix. Then the second day is used for the sensitivity

coefficient estimation. For the direct method, the first-day measurements are used for first-

stage LS estimates. Then the second day is used by RLS for online estimation of the sensitivity

coefficients.

4.5.2 Performance Comparison

IEEE4 System

Indirect (Using Raw-data vs. Cluster-averaged data): first, we compare the estimation quality

among two variants of indirect estimation methods, where the first raw-data is used for the

admittance estimation and the second uses cluster-averaged data. We show the estimated co-

efficients, K p
2,2,K p

2,3,K q
2,2, K q

2,3. Fig. 4.18 and 4.19 shows the estimated coefficient, and the 99 %

confidence interval (CI) uncertainty using indirect method using directly the raw-data and

cluster-averaged data with 24 clusters. By comparing Fig. 4.18 and 4.19, it can be observed that

the cluster-averaged based estimations exhibit smaller RMSE and narrower coverage widths.

Using cluster-averaging, the true coefficient always lies within the confidence uncertainty of

the estimates, whereas it is not true in the case of estimations with raw measurements. We also

compare the RMSE and PICP-CWC-PINAW in Table 4.13 for coefficient K p
2,3. These metrics

are reported with measurement noise of IT 0.2, 0.5 and 1.0 classes. As seen from the compari-

son, the RMSE increases for higher measurement noises. However, for the cluster-averaged

method, the coverage PICP always remains higher than 1 (i.e., achieving 100% coverage). The

cluster averaging largely reduces the CWC. In the case of raw measurements, it shows PICP less

than 1 (sometimes 0), meaning that the actual sensitivity coefficients are not fully covered by

the computed uncertainties. In contrast, cluster-averaging achieves the best RMSE, and PICP

close to 1. The coverage (quantified by CWC) increases with an increase in the measurement

noise due to the increase in noise variance from the measuring instrument.

Indirect (Cluster-averaged data) vs. Direct (RLS-DF): now, we compare the estimates with

the direct method. We only compare with RLS-DF (dominant method from the last analysis

in Sec. 4.4.5). By comparing the estimations of the indirect scheme with those presented

in Sec. 4.4.5 for the direct method, it can be concluded that the dominant indirect method

(with cluster averaging) performs better than the corresponding dominant direct method

(RLS-DF). By looking at the grey area around estimations in Fig. 4.19 and 4.17, it can be seen

that the RLS-DF has higher CWC (higher variance). The same can be concluded by comparing

the metrics in Table 4.13. The indirect method (with cluster averaging) performs almost 10

times better on RMSE. Although, they perform similarly on PICP, the CWC is almost twice for

the case of the direct method. Therefore, the indirect method (with cluster averaging) is the

best-performing estimation scheme for this specific test case.
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Figure 4.18: Coefficients estimates and their uncertainty using the indirect method with raw-
data for IT 0.5.
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Figure 4.19: Coefficients estimates and their uncertainty using the indirect method with cluster-
averaging for IT 0.5.

Table 4.13: Performance comparison of indirect and direct method for IEEE4 system (the
coefficient K p

2,3).

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC
Indirect 0.18 0.01-0.19-0.19 0.56 0-0.52-0.52 0.93 0-1.03-1.03

(Raw data)
Indirect (Cluster- 0.01 1-0.1-0.1 0.03 1-0.29-0.29 0.06 1-0.59-0.59

averaging)
Direct (RLS-DF) 0.12 1-0.77-0.77 0.37 1-1.85-1.85 0.29 1-2.62-2.62
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Modified IEEE4 System (Artificially Elongated Line-length)

Furthermore, we perform the same analysis for a network with long line parameters by ar-

tificially increasing the line length of the IEEE4 network in Table. 4.8 by a factor of 6. The

comparison is shown in Table 4.14. Contrary to the previous test case, the uncertainty of the

estimates using the indirect method is quite high as seen in the CWC values. It is due to the

high variance of the Y estimates as the elements of Y are quite small in the case of a network

with long line lengths. In contrast, the direct estimation scheme has a smaller estimation

variance. However, in terms of RMSE, the indirect method is still better than the direct method.

Table 4.14: Performance comparison of indirect and direct method for modified IEEE4 system
(the coefficient K p

2,3).

IT 0.2 IT 0.5 IT 1.0
Method RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC RMSE PICP-PINAW-CWC
Indirect 0.22 1-5.46-5.46 0.65 1-12.69-12.69 1.1 1-20.73-20.73

(Raw data)
Indirect (Cluster- 0.01 1-3.42-3.42 0.02 1-9.3-9.3 0.05 1-19.25-19.25

averaging)
Direct (RLS-DF) 0.22 0.99-1.91-1.91 0.31 0.99-2.54-2.54 0.98 1-3.46-3.46

4.6 Discussion

This Chapter proposed two different schemes for the measurement-based estimation of the

grid’s sensitivity coefficients. The first relies on the estimation of the compound admittance

matrix, which is then used to compute the sensitivity coefficients. The quality of the estimated

sensitivity coefficients directly depends on the accuracy of the admittance matrix. So, we

propose a pre-processing scheme on the raw measurements to improve the admittance

estimation performance. The pre-processing scheme clusters the raw data by kmeans and

averages them, before using them for the admittance estimation. Furthermore, we developed

an error propagation tool to estimate the uncertainty from the estimated admittance matrix to

the computed sensitivity coefficients. The second scheme estimates the sensitivity coefficients

directly, using the nodal power and grid state measurements. In this scheme, an RLS-based

estimator is used to refine previous estimates by the most recent measurements, whereas an

offline-LS estimate is used as initialization to the RLS. The above two schemes are compared

in terms of their inaccuracies and the uncertainty of the estimates.

The methods were validated by simulated experiments on various benchmark networks. From

the comparison of the above two methods, it can be concluded that the pre-processing of

data using cluster-averaging improves the admittance estimation performance by 2-3 orders

of magnitude. Consequently, the sensitivity coefficients estimated using pre-processing

strategies have the best performance in terms of RMSE and PICP-CWC-PINAW. Compared

to directly using the raw measurements, this scheme achieves almost 10 times better RMSE.
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For direct methods, the RLS-based scheme performs better than the offline LS. The windup

problem of RLS is tackled best by the directional forgetting (RLS-DF) algorithm.

Finally, we compared the direct and indirect estimation methods for two different test cases.

For the benchmark IEEE4 network, the indirect scheme attained better RMSE and PICP-CWC-

PINAW, whereas, for the case with longer lines (still used in the IEEE4 network), the direct

scheme outperforms the indirect method in terms of PICP-CWC-PINAW. However, in terms of

RMSE, the indirect method is still better than the direct method. Therefore, we can conclude

that the dominant estimation is grid-dependent.

Furthermore, a potential drawback of the indirect method is that it requires measuring in-

struments at all the nodes in the network, which might not be a feasible setup, especially in

power distribution systems. In contrast, the direct method requires measurement instruments

only at a few locations (preferable at the nodes with high sensitivity to the grid states, and

where controllable resources are located). In this context, although the direct methods exhibit

worse RMSE and coverage width, they might be economically feasible to implement in real

distribution networks.

In the following chapter, we use the above-estimated sensitivity coefficients using the direct-

method (RLS-DF) for measurement-based control of a distribution network.
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5 Model-less Robust Control of ADNs
using Measurements-based Estimated
Sensitivity Coefficients

Measurement-rich power distribution networks may enable distribution system operators

(DSOs) to adopt model-less and measurement-based monitoring and control of distributed en-

ergy resources (DERs) for mitigating grid issues such as over/under voltages and lines congestion.

However, measurement-based monitoring and control applications may lead to inaccurate

control decisions due to error in the estimated models caused by measurement noise. In par-

ticular, estimation models relying on regression-based schemes result in significant errors in

the estimates (e.g., nodal voltages) especially for measurement devices with high Instrument

Transformer (IT) classes. The consequences are detrimental to control performance since this

may lead to infeasible decisions. This work proposes a model-less robust voltage control ac-

counting for the uncertainties of measurement-based estimated voltage sensitivity coefficients.

The coefficients and their uncertainties are obtained using the estimation scheme as described in

Chapter 4. This control formulation is applied to control distributed controllable photovoltaic

(PV) generation as active power curtailment and reactive power regulation in a distribution

network to restrict the voltage within prescribed limits. The proposed scheme is experimentally

validated for controlling two PV inverters connected to a real microgrid, an exact replica of

CIGRE benchmark microgrid network, at the EPFL Distributed Electrical Systems Laboratory.

The Chapter includes results of publication [96, 140].

5.1 State-of-the-Art

Voltage control is one of the widely acknowledged control schemes to be adopted and im-

proved in power distribution networks. Conventional voltage controls are based on volt-var

schemes, where only the reactive power is controlled to regulate nodal voltages. However, as

shown in [141], the sole reactive power control might not be enough especially for grids with

high R/X ratio of branches longitudinal impedances, the control of both active and reactive

powers may be needed. In the literature, this type of control can be broadly categorized into
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two kinds. The first relies on the network model (network topology, branch, and shunt param-

eters). These methods are also referred to as model-based methods. For example, in [17, 142],

it is proposed a distributed control of PV inverters for regulating the nodal voltage magnitudes

in a distribution grid where the grid constraints are modeled using the admittance matrix of

the network. However, in many cases, the network parameters are either unavailable, partially

missing, or outdated. Thanks to the increasing adoption of monitoring systems such as smart

meters in present distribution networks, measurement-based/data-driven/model-less control

schemes can be an alternative. This leads to the second kind of voltage control scheme often

referred to as measurement-based schemes [99, 103, 133, 141, 143]. These schemes are used

for real-time voltage control where the network model is inferred from the measurements

(e.g. [95]). However, in all the reported model-less and measurement-based methods, the

control or the estimation problem does not consider uncertainty on the estimated grid models

(e.g., estimated sensitivity coefficients) and may result in wrong control decisions. The uncer-

tainty on the measurement-based estimated model comes from the measurement noise of the

instrument transformers (ITs). As reported in [101, 102], the estimated sensitivity coefficients

suffer high biases due to measurement noise and fluctuating values due to collinearity in the

measured data set.

In this context, this Chapter proposes a model-less robust voltage control that accounts for

the uncertainty on the measurement-based estimated sensitivity coefficients ensuring safe

and reliable operation of the distribution grid. The work comprises the estimation of the

sensitivity coefficients and their uncertainties and use them to provide robustness against

the inaccuracies of measurement-based estimated grid models [144]. The proposed voltage

control problem consists of two stages: in the first stage, an estimation problem is solved

to estimate the voltage sensitivity coefficients and their uncertainties. In the second stage,

we solve a robust voltage control problem accounting for the uncertainties on the estimated

coefficients.

First, the performance assessment is carried out by performing numerical experiments using

the CIGRE LV [5] network interfacing multiple controllable PV units. To show the effectiveness

of the proposed robust formulation, we compare it with a non-robust voltage control case

when uncertainties are not considered. The performance is also bench-marked against model-

based control. Then, we perform experimental validation of the control scheme on a real

microgrid hosted at the EPFL Distributed Electrical Systems Laboratory (the same grid as

described in Sec. 2.8). The microgrid is a low voltage distribution network which is an exact

replica of the CIGRE microgrid benchmark network. It hosts two controllable PV inverters of

capacities 13 kW and 16 kW respectively which are controlled by the proposed control scheme

for voltage regulation.
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5.2 Problem Statement

Let us consider a power distribution network equipped with measurement devices capable of

providing high throughput measurements on nodal voltage magnitudes and active/reactive

powers. Let Nb be the number of non-slack buses and the set N = {1, . . . , Nb} defining the bus

indices. The distribution network hosts multiple DERs (for example, PV generation units) that

can be controlled to provide active and reactive power support to the grid. The objective is to

control DERs in real-time (or quasi-real-time) such that grid constraints are always satisfied.

The parameters and topology of the network are not known, so model-based controls could

not be implemented. The control scheme solely relies on a model-less scheme, where the

grid constraints (such as nodal voltages, lines, and transformer power flows) are accounted by

models estimated from measurements. Although the model-less framework is generic and

can be applied for various control schemes, this work focuses on the voltage control problem

where the DERs are controlled in real-time to avoid or mitigate voltage problems. The key

features of the proposed voltage control scheme are listed below.

• The control is formulated as a robust problem by accounting for the error on the esti-

mated grid models (i.e., voltage sensitivity coefficients in this specific case).

• The control relies on both the active and reactive power control of the flexible resources

(in contrast to volt-var controls).

• A performance comparison of different estimation techniques of measurement-based

estimations of sensitivity coefficients for the proposed robust control is presented.

Estimation of voltage
sensitivity coefficients

with uncertainties

 Measurements (1-sec resolution) 

Real-time robust
voltage control 

Stage 1: Estimation Stage 2: Control

t1,...,tN 

every 5-minutes

Figure 5.1: Flow-chart of the model-less/measurement-based robust voltage control frame-
work.

Figure 5.1 shows the flow diagram illustrating the proposed two-stage scheme for the robust

model-less control framework. The first stage (on the left) is composed of a measurement-

based estimation loop that stores nodal voltage magnitudes, active and reactive power mea-

surements and estimates the voltage sensitivity coefficients and their uncertainties. The

estimation stage was described in Chapter 4. Then, the block on the right solves the con-

strained optimization problem for controlling distributed energy resources (DERs) to mitigate

the voltage problems in the network. It is described as follows.
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5.3 Problem Formulation

In the following, first we introduce the non-robust voltage control problem (i.e., the uncertainty

on the coefficients estimates are not accounted), then we present its robust counterpart.

5.3.1 Voltage Control Problem without Considering Uncertainty on the Estimates
(Non-robust)

Let us consider a distribution network connected with controllable PV generation units

such that their active and reactive power injections can be controlled. Let the set Npv in-

cludes indices of the PV units. The objective is to control active/reactive power injections

(ppv
j ,tk

, qpv
j ,tk

, j ∈Npv) such that the nodal voltages are within the statutory bounds. Additionally,

the local objective of the PV units is to minimize the curtailment of their active power genera-

tion and provide reactive power support, latter constrained by imposed power factor limits.

The problem we solve at time tk is to minimize curtailments of PV plants:

minimize
ppv

j ,tk
,qpv

j ,tk
,∀ j∈N

∑
j∈Npv

{
(ppv

j ,tk
− p̂pv

j ,tk
)2 + (qpv

j ,tk
)2

}
(5.1a)

subject to the constraint on the PV generation limited by short-term MPP forecast p̂pv
j ,tk

,

0 ≤ ppv
j ,tk

≤ p̂pv
j ,tk

j ∈Npv (5.1b)

the capability constraint of the converter rating Spv
j ,max (assumed to be AC and DC voltages

independent),

0 ≤ (ppv
j ,tk

)2 + (qpv
j ,tk

)2 ≤ (Spv
j ,max)2 j ∈Npv, (5.1c)

and the minimum power factor constraint

qpv
j ,tk

≤ ppv
j ,tk
ζ j ∈Npv (5.1d)

−qpv
j ,tk

≤ ppv
j ,tk
ζ j ∈Npv. (5.1e)

Here, ζ =
√

(1−PF2
min)/PF2

min, PFmin being the minimum power-factor allowed for the PV

operation of each PV plant. The final constraints are on the voltage magnitudes, which are

bounded by [vmin, vmax]. The voltage magnitudes (|vi ,tk |) are modeled by the estimated voltage

sensitivity coefficients as

vmin ≤ |vi ,tk−1 |+K̂p
i ,tk−1

∆ptk + K̂q
i ,tk−1

∆qtk ≤ vmax ∀i ∈N (5.1f)

Here, ptk −ptk−1 = ∆ptk ,qtk −qtk−1 = ∆qtk are deviations of nodal active and reactive power

injections. The voltage sensitivity coefficients, K̂p
i ,tk−1

, K̂q
i ,tk−1

, are estimated online using one of

the estimation scheme described in Sec. 4.4.2 utilizing latest measurements on voltages and
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power magnitudes.

As described earlier, the non-robust problem in (5.1) does not account for the uncertainty on

the estimates caused by measurement noise which might result in inaccurate control decisions

leading to voltage violations.

5.3.2 Robust Voltage Control Problem

We here illustrate the robust voltage control by accounting for the uncertainty on the measure-

ment-based estimated voltage sensitivity coefficients. The robust counterpart of (5.1) can be

formulated by adding following constraints to (5.1)

Kp
i ,tk

∈ [K̂p
i ,tk

−∆Kp
i ,tk

, K̂p
i ,tk

+∆Kp
i ,tk

] ∀i ∈N (5.1g)

Kq
i ,tk

∈ [K̂q
i ,tk

−∆Kq
i ,tk

, K̂q
i ,tk

+∆Kq
i ,tk

] ∀i ∈N . (5.1h)

The respective voltage constraint in (6.10b) becomes

vmin ≤ |vi ,tk−1 |+Kp
i ,tk−1

∆ptk +Kq
i ,tk−1

∆qtk ≤ vmax ∀i ∈N (5.1i)

Here, ∆Kp
i ,tk

,∆Kq
i ,tk

be the estimated uncertainty on K̂p
i ,tk

,K̂q
i ,tk

. As known, accounting for the

interval constraints of (5.1g) and (5.1h) makes the problem non-tractable in its original form.

Thus, it is reformulated using the technique proposed in [145, 146] summarized hereafter.

We introduce auxiliary variables zi , gi j , y p
j , y q

j , j ∈Npv, i ∈N . We also introduce a parameter

ξi ∈ [0, |Npv|] which provides a trade-off between the robustness and conservativeness of the

solution as described in [145]. Considering these auxiliary variables and following the robust

quadratic program with linear constraints in [146], the robust counterpart of the problem can

be formulated as

minimize
ppv

j ,tk
,qpv

j ,tk
,∀ j∈N

∑
j∈Npv

{
(ppv

j ,tk
− p̂pv

j ,tk
)2 + (qpv

j ,tk
)2

}
(5.2a)

subject to:

(5.1b), (5.1c), (5.1d), (5.1e). (5.2b)

With the help of the auxiliary variables, the constraints on the nodal voltages (5.1i) are refor-

mulated as follows.

|vi ,tk−1 |+K̂p
i ,tk−1

∆ptk + K̂q
i ,tk−1

∆qtk + ziξi +
∑

j∈Npv

gi j ≤ vmax ∀i ∈N (5.2c)

|vi ,tk−1 |+K̂p
i ,tk−1

∆ptk + K̂q
i ,tk−1

∆qtk − ziξi −
∑

j∈Npv

gi j ≥ vmin ∀i ∈N (5.2d)
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− y p
j ≤∆ppv

j ,tk
≤ y p

j ∀ j ∈Npv (5.2e)

− y q
j ≤∆qpv

j ,tk
≤ y q

j ∀ j ∈Npv (5.2f)

zi + gi j ≥∆K p
i j ,tk

y p
j i ∈N , j ∈Npv (5.2g)

zi + gi j ≥∆K q
i j ,tk

y p
j i ∈N , j ∈Npv (5.2h)

y p
j , y q

j , zi , gi j ≥ 0 i ∈N , j ∈Npv. (5.2i)

The robust problem in (5.2) has a quadratic objective and linear constraints, hence it is convex

and can be efficiently solved with any off-the-shelf solver.

5.4 Simulation and Results

To compare the performance of the above two control schemes, first, we perform numerical

experiments for voltage control in a distribution network by controlling multiple PV units.

Then, the dominant scheme from this analysis is used for the experimental validation in the

next section.

5.4.1 Test-case and Input Data

For the performance evaluation, we consider a CIGRE benchmark low-voltage network [5].

The network is 20 kV/0.4 V, 400 kVA 3-phase balanced system as shown in Fig. 5.2. The

PV

PV

PV

158 A

1 2
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4 5
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87 9
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11 16
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15

17

398 A

398 A

398 A 398 A

398 A

398 A 398 A 398 A

398 A

158 A

158 A

158 A
18

158 A
20/0.4kV, 
400kVA

158 A

158 A

158 A

32 kWp

40 kWp

24 kWp

45 kW/15 kVar

34 kW/11 kVar

53 kW/18 kVar

50 kW/17 kVar

15 kW/5 kVar

190 kW/63 kVar

Figure 5.2: Topology of the CIGRE low-voltage system with distributed PV units.

nominal demands and the PV generation sites and sizes are also shown in the figure. In

this case study, we assume a reduced load scenario such that the PV generation is causing

over-voltages during the middle of the day.
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(a)

(b)

Figure 5.3: (a) Nodal active (in kW) and (b) reactive (in kVar) power injections for non-zero
injection nodes.

Figure 5.3(a-b) shows the nodal active and reactive power injections. To obtain the ground-

truth measurements of the voltage magnitudes and power injections, we carry simulated

experiments performing load-flows by knowing the true admittance matrix of the grid. Then,

the currents and voltages are corrupted with measurement noises characterized by the IT’s

specification described in [127, 128]. This process is described in Algorithm 4.4. The algorithm

introduces noise in polar coordinates (i.e., magnitudes and phase noise) on the voltage and

currents, which is then used to compute the corrupted nodal active (p̃) and reactive (q̃) power

magnitudes. The specifications of the ITs are listed in Table 4.1.

5.4.2 Estimation Results

The sensitivity coefficients and their uncertainties are estimated via the RLS-based estimation

technique proposed in Sec. 4.4. The analysis presented in Sec. 4.4.5 showed that RLS-DF

and RLS-SF were the two top performing schemes among others. Here, we report sensitivity

estimation for these two schemes in this section, and they will be used for the numerical and

experimental validation of the proposed model-less control schemes.

Figs. 5.4a, 5.4b and 5.4c show the estimation of the sensitivity coefficients K p
15,15, K p

14,8 and

K q
15,18 (nodes corresponding to PV plants locations) using RLS-SF and the plots in Figs. 5.5a,

5.5b and 5.5c using RLS-DF respectively. The estimated coefficients are shown for the 2nd
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day with peak PV production during 32–42 h (potentially causing over-voltages). It shows the

estimates in red and the uncertainty in the shaded grey area. The estimations are compared

against the true sensitivity coefficients shown in black. As it can be seen, the true coefficient

lies within the estimated uncertainty for both the RLS-SF and RLS-DF, so they can be reliably

used for the control. Although, the RLS-DF shows better performance than RLS-SF in covering

the true sensitivity coefficients by estimated uncertainty bounds.

(a) K
p
15,15 (b) K

p
14,8

(c) K
q
15,18

Figure 5.4: Coefficients estimates and their uncertainty using the RLS-SF.

(a) K
p
15,15 (b) K

p
14,8

(c) K
q
15,18

Figure 5.5: Coefficients estimates and their uncertainty using the RLS-DF.
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5.4.3 Control Results

In the following, we present the voltage control results. We control all three PV plants using the

robust and non-robust approaches described in Sec. 5.3. The objective is to restrict the voltage

magnitudes within the bounds 0.97 - 1.03 pu. We show the results only using the dominant

estimation schemes i.e., RLS-SF and RLS-DF from the last analysis. In this setup, the previous

day measurements (0-24 hrs) are used to compute initial estimates (offline-LS) for the RLS.

Then, the online-RLS refines these estimates every 5 minutes using the last measurements.

The latest estimated coefficients and their uncertainties are then used for the voltage control.

To compare the voltage violations produced by the different control schemes, the power set-

points from these control schemes are fed to the non-linear AC power flow equations to obtain

the actual nodal voltages.

Non-robust Voltage Control: Fig. 5.6a compares the daily boxplot post-control nodal voltage

magnitudes for all the nodes using the non-robust control. The performance is also compared

against model-based method, i.e., when the true sensitivity coefficients are known. As clear

from the comparison, the non-robust control fails to restrict the voltage magnitudes of nodes

14 and 15 within imposed bounds by a large margin, irrespective of the estimation techniques.

It should be noted that even the dominant estimation method (i.e., RLS-DF) fails to respect

the upper voltage constraint in non-robust control.

(a)

(b)

Figure 5.6: Distribution of daily nodal voltage magnitudes using (a) non-robust and (b) robust
voltage control.
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(a)

(b)

(c)

Figure 5.7: Control results using RLS-DF for robust, non-robust and model-based controls: (a)
voltage magnitude, (b) active power and (c) reactive power for node 15.

Robust Voltage Control: Figure 5.6b compares the daily boxplot post-control nodal voltage

magnitudes for all the nodes using the robust voltage control. As it can be seen, robust voltage

control succeeds in reducing voltage violations. Robust voltage control using estimates from

RLS-SF and RLS-DF perform similarly to the model-based controls (i.e., the maximum voltage

magnitude is near the upper bound).

Figure 5.7 shows the control results for the RLS-DF, comparing model-less robust and non-

robust methods against model-based control. Fig. 5.7a shows the voltage of node 15 under

different control schemes. It can be observed that model-less robust control keeps the voltage

within the imposed upper bound and close to the model-based approach, whereas the non-

robust method has higher voltage violations. Fig. 5.7b shows the curtailed PV generation for
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node 15, and it can be seen that model-less controls curtail more than model-based control.

The model-based control curtails 86.5 kWh out of the total 210 kWh PV generation, whereas

model-less non-robust and robust schemes curtail 106 and 104 kWh respectively. This is

because they compute a more conservative solution to avoid voltage violations. Although

the non-robust scheme curtails more, it fails to satisfy the voltage bounds due to inaccurate

reactive power actuation. Finally, Fig. 5.7c shows the reactive power injections in three cases.

Model-based and robust control follow a similar pattern, whereas non-robust provides less

reactive power during the middle of the day.

Table 5.1: Performance comparison of different voltage control methods: maximum nodal
voltage magnitude.

IT 0.2 IT 0.5 IT 1.0
Method non-Robust Robust non-Robust Robust non-Robust Robust

Model-based 1.031
RLS-SF (model-less) 1.041 1.032 1.043 1.032 1.059 1.034
RLS-DF (model-less) 1.036 1.031 1.043 1.034 1.045 1.034

Performance with Measurement Noise: we also present a performance comparison when

robust or non-robust control is subjected to different estimation techniques for different IT

classes. The results are summarised in Table 5.1 that shows the maximum voltage magnitude

violations resulting in different and the following observations: (i) non-robust control always

results in voltage violations, even when the measurement noise is minimum; in contrast,

robust control achieves negligible violations; (ii) RLS-SF and RLS-DF-based robust control

performed the best with respect to maximum voltage violations, irrespective of the IT class.

5.5 Experimental Validation

The dominant scheme from the previous analysis (RLS-DF for the estimation, and robust

voltage control) is used for experimental validation on a real micro-grid. It is described below.

5.5.1 Experimental Setup

We validate the proposed control scheme on a real microgrid at the Distributed Electrical Sys-

tems Laboratory at EPFL. The setup is similar to the one described in Sec. 2.8. For this control

validation, we control two PV resources of nominal rating 13 kWp and 16 kWp capacities. Both

can be controlled to curtail active power injection for voltage regulation by the developed

robust voltage control scheme.

As was described in Sec. 2.8, the microgrid is equipped with 7 phasor measurement units

(PMUs) which provide the measurements of nodal voltages and lines currents. Although the

measurements are available at time sampling of 100 ms, we down-sample it to 1 second to

demonstrate that the proposed model-less scheme doesn’t require measurements at fast time
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sampling. Since the estimation using the direct approach (Sec. 4.4) requires power measure-

ments, we compute the nodal powers using the voltage and current measurements from PMUs.

The nodal voltages and currents are sensed by commercial LEM voltage transducer CV 3-1000

[147] and current transducer LF 205-S/SP3 [148] corresponding to IT measurement classes of

0.2 and 0.5 respectively.

In this setup, the control aims to keep the voltage within 0.96 - 1.04 per unit (pu) of the

base voltage. The PV inverters are controlled with a time resolution of 30 seconds. This time

resolution is chosen based on the time taken to execute the estimation, obtain a recent forecast

of the PV production, and solve the robust control problem.

Start experiments at 00.00

Retrieve measurements of the grid for the previous day

Offline estimation of the sensitiv-

ity coefficients using Least-squares

Start of the real-time operation at 00.00.30

Read raw grid measurements of last 5-minutes

Online estimation of sensitivity coeffi-

cients using the Recursive Least Squares

Update short-term MPP forecast of PV potential

Solve the robust voltage control problem

k = k+1

Send power setpoints to the PV inverters

Wait for the next actuation time

Stop experiments at 23.59.30

Figure 5.8: Flow-chart showing real-time operation during 24 hours.

The data flow during the real-time operation is shown in Fig. 5.8. The real-time operation

starts at midnight 00.00 UTC. For the sensitivity coefficient estimation, we use the direct

method (Sec. 4.4). It consist in obtaining offline estimation of the sensitivity coefficients by LS

using the previous day measurements. Once these estimates are obtained, the real-time stage

starts at 00.00.30. Using the recent 5-minutes measurements (sampled per second), it updates

the estimation of the sensitivity coefficients. In the next step, we update the MPP (maximum

power potential) forecasts of the PV generation using measurements on the solar irradiances

and air temperature (using the weather-box as described in Sec. 3.5.1) and PV model from
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[68]. Using the updated sensitivity coefficients estimates and the MPP forecast, the robust

voltage control problem is solved. The power setpoints from the controller is then sent to the

PV inverters. Their cycles are repeated every 30 seconds till end of the day’s operation.

5.5.2 Experimental Results

We present the experimental results for two days of different types. The first corresponds to

a weekend day (Saturday), whereas the second corresponds to a weekday (Monday). Both

days are characterised by show clear sky irradiance patterns. In the following, we show the

estimation and control results for these two days of experiments.

Day 1: Saturday (16 - July - 2022)

Estimation Results: the estimation results are shown in Fig. 5.9. We show the estimation

results for nodes with controllable PV plant (node 9 and 11), i.e., K p
11,11, K p

11,3, K p
9,9, and K p

9,3.

The estimates are shown in red, and the uncertainty on the estimates are shown in shaded

grey. They are compared against the true values (in black) those are obtained by model-based

computation of the sensitivity coefficients [40]. As, it can be seen that the true coefficients fall

within the estimated uncertainty bounds, therefore it can be used reliably for the real-time

voltage control. The key metrics on the RMSE, and PICP-CWC-PINAW (defined earlier in

Sec. 4.4.4) are shown in Table. 5.2.

(a) K
p
9,3 (b) K

p
9,9

(c) K
p
11,3 (d) K

p
11,11

Figure 5.9: Coefficients estimates and their uncertainty for day 1.

Control Results: are shown in Fig. 5.10. The plot on top panel (Fig. 5.10a) shows the voltage

measurements of different nodes: line plots show the voltage magnitude with the robust
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Table 5.2: Estimation performance on day 1.

Coefficients RMSE PICP-CWC-PINAW
K p

9,3 0.34 1 - 11.27- 11.27

K p
9,9 0.38 1 - 3.48 - 3.48

K p
11,3 1.12 1 - 8.47- 8.47

K p
11,11 0.03 1 - 0.74 - 0.74

control. We also show the plots when the robust control is removed31; it is shown in the

shaded grey area. From the plots, it can be observed that the nodal voltage magnitudes of

all the nodes are kept within the imposed limit of 1.04 pu using the proposed robust control

scheme. In contrast, the voltage goes beyond the limit when there isn’t any control. The control

curtails PV generation from the two PV plants to keep the voltage within the imposed limit.

Fig 5.10b and 5.10c shows the curtailed PV and the estimated maximum power potential (MPP)

of each of the PV plant; MPP is estimated using the measurements of the solar irradiance, air

temperature and the PV generation model from [68]. Fig. 5.10d and 5.10e shows the active and

reactive power injections of the uncontrollable nodes. By looking at the experimental results,

following observation can be made

• The curtailment on the PV plant at node 11 is higher compared to the PV plant at node

9, as the former is hosted at the end of the feeder and causes overvoltage across all the

nodes with its excess PV generation.

• PV plant starts curtailing at 8.00hrs due to a sudden rise in the voltage imposed at the

slack node. Then, when the voltage goes down, PV starts increasing its generation.

• At around 11.00 hrs, 14 hrs, and 15 hrs there is generation at node 5 (shown in Fig. 5.10d),

which leads to curtailments in PV generation at those intervals.

• An increase in demand at node 3 at around 11 hrs, and 13 hrs leads to an increase in the

PV generations.

Day 2: Monday (18 - July - 2022)

Similar to the day 1, the offline estimates are obtained by solving offline LS using previous day

measurements. The estimation results and control results during the real-time operations are

reported below.

Estimation Results: The estimations for day 2 are shown in Fig. 5.11. Again, the true sensitivi-

ties shown in black are covered by the estimation uncertainty i.e., by the shaded grey region.

31The plot is obtained by simulating AC load flow by imposing the maximum power potential of the PV plants as
the same experiment can not be repeated.
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(a) Nodal voltage magnitudes with control (line plot) and without control (shaded grey).

(b) PV plant at node 11: curtailed generation (line plot) and MPP (shaded grey).

(c) PV plant at node 9: curtailed generation (line plot) and MPP (shaded grey).

(d) Uncontrollable active power injections.

(e) Uncontrollable reactive power injections.

Figure 5.10: Experimental validation results for day 1: (a) voltage magnitude, (b) PV at node 11
(c) PV at node 9 and uncontrollable (d) active power (e) reactive powers at other nodes.
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The metrics listed in Table 5.3 show that, for all the coefficients, 100 % coverage is obtained.

However, the coverage width in all cases is very high.

(a) K
p
9,3 (b) K

p
9,9

(c) K
p
11,3 (d) K

p
11,11

Figure 5.11: Coefficients estimates and their uncertainty for day 2.

Table 5.3: Estimation performance on day 2.

Coefficients RMSE PICP-CWC-PINAW
K p

9,3 0.88 1 - 11.75- 11.75

K p
9,9 0.37 1 - 3.60 - 3.60

K p
11,3 0.95 1 - 11.03-11.03

K p
11,11 0.13 0.9 - 0.78 - 1.44

Control Results: as seen from the nodal voltage plots in Fig. 5.12, it can be concluded that

the control scheme manages to keep the nodal voltage within the imposed limit, thanks to

the curtailment of the PV generation in two PV plants. Again, most of the curtailments have

happened on the PV plant at node 11. Day 2 experienced higher curtailments compared to

day 1. It is because the voltage imposed by the upstream network is higher (on average) on

day 2 compared to day 1. By looking at these plots, the following observation can be made:

• PV plant starts curtailing slowly from 9 hrs to 11 hrs due to an increase in the nodal

voltage at the slack (imposed by the upstream medium voltage network).

• PV production rises sharply at 11 hrs and after 14 hrs due to a sudden drop in the voltage

at the slack (node 1). This might be due to a tap change on the primary side of the

transformer connecting the upstream medium voltage network.

• PV generation is curtailed again just before 12 hrs due to an increase in the voltage at

the slack.
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5.5 Experimental Validation

(a) Nodal voltage magnitudes with control (line plot) and without control (shaded grey).

(b) PV plant at node 11: curtailed generation (line plot) and MPP (shaded grey).

(c) PV plant at node 9: curtailed generation (line plot) and MPP (shaded grey).

(d) Uncontrollable active power injections.

(e) Uncontrollable reactive power injections.

Figure 5.12: Experimental validation results for day 2: (a) voltage magnitude, (b) PV at node 11
(c) PV at node 9 and uncontrollable (d) active power (e) reactive powers at other nodes.
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Chapter 5. Model-less Robust Control of ADNs using Measurements-based Estimated
Sensitivity Coefficients

Computation Time

Table 5.4 lists statistics on computation time lapsed for estimation, forecasting and solving

robust control problem. It shows the average and maximum computation time. As seen, they

are below the control actuation time of 30 seconds.

Table 5.4: Computation time

Mean (seconds) Max (seconds)
Day 1 14.7 24.8
Day 2 12.8 25.6

5.6 Discussion

This chapter proposed a model-less robust voltage control scheme accounting for the uncer-

tainty on the sensitivity coefficients which are estimated from measurements. The robust

control scheme relies on measurement-based estimated voltage sensitivity coefficients and

their uncertainties. The voltage sensitivity coefficients are estimated using a recursive estima-

tion algorithm, the dominant measurement-based estimation method from Chapter 4.

First, the scheme is validated numerically for controlling active/reactive power injections from

distributed PV generation units connected to the CIGRE low-voltage benchmark network. The

results show that the non-robust voltage controls fail to satisfy the voltage constraint (i.e.,

when uncertainty on the estimated coefficients are not accounted for). The proposed robust

control scheme always satisfies the voltage control limits even for the highest instrument

class producing the largest measurement noise. The performance comparison with respect

to different estimation schemes shows that an online estimation scheme with directional

forgetting performs the best.

Finally, the proposed control scheme is experimentally validated on a real microgrid which

is a replica of the CIGRE benchmark micro-grid at the EPFL Distributed Electrical Systems

Laboratory. The control results are shown for two different days of experiments where the PV

inverters were controlled each 30 seconds. The results show that the proposed robust control

scheme succeeds to keep the nodal voltage magnitudes within the imposed limits thanks

to the curtailment action on the PV plants given by the proposed model-less robust voltage

control scheme.
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Prelude

In parts I and II of this thesis, we presented control and scheduling frameworks for ADNs. The

control algorithms were formulated to tackle the problem of local network constraint violations

(such as nodal voltage violations and line and transformer congestion) and to provide ancillary

support (such as dispatching) to the upper-level transmission grid. All the proposed control

schemes rely on the availability of flexible distributed energy resources (DERs). As a matter of fact,

the performance of such control schemes directly depends on the quantity of (i) the controllable

(or flexible) resources and (ii) uncontrollable stochastic resources hosted by the ADN. Therefore,

it is essential to compute the hosting capacity of the distribution networks, i.e., the amount of

local stochastic generation (e.g., PV plants) that can be connected to the distribution system

before reaching the violation of the grid operational constraints. Furthermore, it is worthwhile

to investigate how much controllable flexibility is required when PV installation exceeds the

grids’ hosting capacity.

In this context, in this part III of this thesis we propose a countrywide planning scheme to assess

the potential of PV and controllable resources, e.g., battery energy storage system (BESS) when

the whole grid is forced to host PV plants beyond its hosting capacity. In particular, we develop a

method to (i) assess the hosting capacity of ADNs concerning PV plants and ii) plan controllable

assets as an alternative to the grid reinforcement. The analysis is carried out on a country

scale. However, since countrywide models of the distribution grids are generally unavailable,

we estimate realistic synthetic models of power distribution networks using public data sets.

We focus mainly on medium voltage distribution networks because, in general, they account

for the most significant part of the total grid upgrade costs associated to large PV generation

deployment. Then, we propose a convex grid-aware planning problem to evaluate the PV

hosting capacity of the estimated MV distribution networks. PV hosting of the whole country is

determined by running the PV hosting capacity problem for all the inferred synthetic models of

the distribution networks. Furthermore, we develop an optimal planning problem of BESSs for

the distribution networks to increase their hosting capacity. As a final contribution, we derive

cost-optimal plans for the countrywide deployment of PV generation and BESS considering

the MV power distribution infrastructure’s technical limitations. The method is applied to

Switzerland as a case study.
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6 Countrywide Synthetic Network Esti-
mation, Computation of PV Hosting
Capacity and Battery Energy Storage
Requirements for Power Distribution
Networks

Renewable energy resources (RERs) such as Photovoltaic (PV) plants are typically connected

to power distribution networks. Historically, these networks are not designed to host large

stochastic electricity generation. Given the prominent role of RERs in energy transition path-

ways, modelling the power distribution infrastructure’s constraints is critical for its reliable

techno-economical analysis and planning. However, power distribution grid data are gener-

ally confidential due to distribution system operators (DSOs) concerns and security. Publicly

available test networks are minimal and can not applied to analyse a large region such as a

whole country. In this context, this Chapter presents a method to estimate grid topologies and

characteristics from public data sets. In particular, an unsupervised approach is proposed to

infer the grid’s topology and characteristics starting from publicly available locations of the

Extra High Voltage (EHV) substations and geo-referenced socio-economic data such as popu-

lation density maps and heat demand maps. The proposed method is applied to model the

medium voltage distribution network of the whole Switzerland, and is made publicly available.

Using the estimated synthetic power distribution networks, the Chapter presents a method to

estimate the PV hosting capacity of those networks along with the cost-optimal sizing of battery

energy storage systems (BESSs) for different levels of PV deployment. In particular, we develop

an optimal planning schemes to size PV and BESS units in distribution grids. The formulation

uses the linearized optimal power flow model (from Chapter 2) to model the grid constraints.

Finally, we derive cost-optimal plans for countrywide deployment of PV generation and energy

storage systems considering the MV power distribution infrastructure’s technical limitations.

The distributed PV generation potential is modeled with high-spatially resolved capacity factors,

and the analysis is carried out countrywide using Switzerland as a case study.

The Chapter includes results of publication [149].
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6.1 Problem Statement

We consider a geographical area for which we are interested in evaluating the renewable energy

resources (RERs) hosting capacity. Since RERs are typically connected to power distribution

networks, the evaluation requires networks’ realistic models. However, these data are often

not publicly available. In this context, the objective is to generate realistic synthetic models

of power distribution networks in a given geographical area. In this Chapter, we propose an

unsupervised method to infer the most likely grid topology and characteristics from publicly

available information, i.e., locations of the Extra High Voltage (EHV) substations and geo-

referenced energy demand data at high spatial resolution. The method uses the locations of

the EHV substations to approximate their region of operation, referred to as EHV areas. Then,

each EHV area uses the spatial distribution of the electricity demand to locate high voltage

(HV) substations. The same process is applied to the HV substation location to approximate

the areas and locations of the medium voltage (MV) substations. Finally, we use a routing

scheme (based on common DSO practices) to estimate the topology and line parameters of

the MV grids.

Once the network models are estimated, the Chapter presents a method to compute their

PV hosting capacities, i.e., the amount of PV generation which can be connected to each

distribution network without creating any grid violations such as min/max nodal voltages, max

line ampacities, and max transformer power flows. Then, it also presents a scheme to optimize

the sizes and sites of energy storage systems (BESSs) when the grid hosts PV generation higher

than the estimated capacity. The problem accounts for the investment costs for the BESSs

and PV plants. Grid constraints (i.e., nodal voltages, lines, and substation transformer limits)

are modeled by linearized power flow equations (Chapter 2) to keep the problem formulation

tractable. Finally, we derive cost-optimal plans for countrywide deployment of PV generation

and BESSs considering the MV power distribution infrastructure’s technical limitations. The

distributed PV generation potential is modelled with high-spatially resolved capacity factors,

and the analysis is carried out countrywide using Switzerland as a case study.

6.2 State-of-the-Art

Assessing the generation potential of distributed PV has attracted significant attention in the

recent literature. For example, [150] proposes a rule-based estimations and [151] a geographic

information system (GIS) approach to assess PV deployment potential for a large part of Europe

considering the land availability. The considered spatial scales go from city to subcontinental

levels, as in [152, 153, 154, 155, 156, 157] and [158], respectively. The works above mentioned

focus on estimating the PV generation potential without considering the impact on the power

distribution systems. Distributed PV generation, such as rooftop PV plants installed either on

urban industry or rural environments, are typically connected to distribution grids, which,

however, are designed to primarily deliver power to consumers and, as a matter of fact, can

interface a limited amount of power generation. The main limitation is due to the DSO’s
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requirements to satisfy the physical constraints of the power grid assets (other limiting factors

are associated to protections adoption and dispatching of DSO grids). The amount of PV

generation that a distribution grid can connect without violations of the grid constraints is

called PV hosting capacity. Power distribution systems are an important asset of the electrical

infrastructure and upgrade costs to increase their generation hosting capacity are substantial

[159]. Therefore, a reliable techno-economical assessment of the distributed PV generation

potential should be done in conjunction with an accurate assessment of the PV hosting

capacity of the existing distribution grids. The PV hosting capacity of distribution grids is

typically assessed for MV and LV distribution systems with probabilistic load flows applying

the Monte Carlo method [160, 161, 162, 163], or by less computationally intensive variations

[164], or OPF models [165, 166]. Load flow- and OPF-based approaches require the knowledge

of the grid topology, lines characteristics (length, physical parameters, buried/aerial type), and

demand and PV generation profiles. Due to the large diversity of distribution grids in terms of

topology and demand patterns, it is generally not possible to extend the results from a few

known networks to the level of a country, which, depending on its size, might have thousands

of MV distribution grids with different features.

Concerning synthetic network data generation, different methods have been proposed de-

pending on the availability of public data sets. Broadly, these methods can be categorized in

two different types: (i) supervised and (ii) unsupervised methods. The supervised methods use

data from existing grid models to estimate information of unobserved grids [167, 168, 169, 170,

171]. The work in [167] use statistical properties such as topological characteristics (sparsity),

nodal degree distribution (number of outgoing and incoming nodes from a parent node) and

line impedances derived from known power grids. The work in [168] proposes a random

growth model for power grids based on parameters such as degree distribution and average

shortest path length derived from existing power network models. The work in [169] uses

Gaussian Mixture Model (GMM) to estimate the density of the node positions and generates

a set of nodes with a similar spatial distribution. It also uses average path length, clustering

coefficient, degree of distribution of the nodes, and length of the lines as extra features. The

work in [170] presents a set of validation criteria based on data from existing power grids.

These structural properties include connectivity of the nodes, Delaunay triangulation overlap

[172], DC power flow analysis, and geographic intersection rates [170]. It proposes a scheme

to locate and connect the power substations to match the above-listed structural properties.

Unsupervised methods use socio-economic data, like population density maps and electricity

demand to generate distribution network models without prior knowledge of the power grids

characteristics [173, 174, 175, 176]. The work in [173] uses population density data to cluster

geographical regions into rural and urban areas and further classified into small, medium,

and large areas based on the size of the population. The method uses a heuristic approach

to locate and route the medium and low-voltage substations. The work in [174] proposed an

open-source tool named DIstribution Network GeneratOr (DINGO) that uses available GIS-

referenced demand data from OpenEnergy Platform (OEM) [177] which also partitions areas

into medium-voltage and low-voltage grid districts. The scheme in [174] uses the Capacitated
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Vehicle Routing Problem (CVRP) for the routing of these load areas. [175] uses OSM data for

modeling the sub-transmission high voltage power grids of the state of Schleswig-Holstein in

Germany. The work in [176] used a similar approach as [174] but for the HV and EHV grid of

Germany. [171] contains a survey of different modeling approaches using publicly available

data from OpenStreetMap (OSM) in conjugation with other open-source software tools. [178]

developed the tool SciGRID which used OSM power data, filters them, and connects them

by standard lines impedances from benchmark networks. A similar approach was adopted

in osmTGmod [179]. All the above works require a database of existing power networks to

derive some structural properties from being used in the generation model. Also, most of

these studies are focused on modeling transmission systems and can not be used to infer

detailed power distribution network models.

Given the above discussed limitations of existing literature, and due to the lack of availability of

a large public dataset on existing power networks, in this Chapter, we propose an unsupervised

approach to generate the synthetic power distribution networks. With respect to existing

unsupervised methods in [173, 174, 175, 176] described above, our approach relies on less

information, requiring only the location of the EHV substations and the spatial distribution of

the demand. After the synthetic networks are obtained, we estimate the PV hosting capacity

of each network with a tractable OPF based on linearized grid models, including also how to

optimally deploy BESSs to increase the grids’ PV hosting capacity. Finally, we determine the

countrywide cost-optimal deployment of PV generation and BESSs to achieve a target level

of PV installed capacity accounting for the spatial information on the capacity factor of PV

generation. In summary, the main contributions of this Chapter are listed below.

• Propose an unsupervised method to estimate MV grids synthetic models starting from

publicly available information.

• Formulate a tractable convex OPF-based tool to estimate the PV hosting capacity and

optimal planning of BESS in distribution grids.

• Propose a tractable convex optimization problem to determine countrywide cost-

efficient PV and BESS deployments plans to accommodate a target PV generation level

accounting for the capacity factor of PV generation.

Compared to the works in [150, 180] that report country-specific analyses of the PV potential

and works in [156, 157, 181, 182, 183] that specifically refer to Switzerland, we estimate, for

the first time in the literature, the PV generation potential for a whole country subject to

the limitations of the existing distribution networks infrastructure. Compared to the works

in [160, 161, 162, 163] that evaluates the PV hosting capacity of small systems, we propose

a method that can be extended to large areas, that estimates grid data and includes the

deployment of BESSs to increase the PV hosting capacity.
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6.3 Estimation of Countrywide Models of Medium Voltage Power Distribution Networks:
the Case of Switzerland

6.3 Estimation of Countrywide Models of Medium Voltage Power

Distribution Networks: the Case of Switzerland

In this section, we describe the procedure to estimate the countrywide models of MV distribu-

tion grids. The procedure is graphically represented in Fig. 6.1 and summarized next. Starting

from the locations of the EHV substations, we approximate the geographical region that each

substation serves by partitioning the country with Voronoi diagrams [184] (as described in

subsection 6.3.1). We call these partitions EHV areas. Then, for each EHV area, we process the

geographical distribution of the electricity demand to infer the position of the HV substations

(subsection 6.3.2). By re-applying these two steps using the HV substation positions as input,

we first identify the areas served by each HV substation, called HV areas. Finally, we find the

locations of the MV substations (subsection 6.3.3). Once the location of the MV nodes are

known, a routing scheme is used to estimate the topology and cable parameters of the relevant

MV grids (subsection 6.3.4).
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Figure 6.1: Flow chart for the estimation of countrywide models of medium voltage power
distribution networks.

In order to exemplify the description of the proposed algorithms, in the following of this

Chapter we specifically refer to the case of Switzerland.

6.3.1 Identification of EHV Areas

EHV/HV substations adapt the power grid voltage level from a value suitable for transmission

over long distances to a more practical value for short-distance transmission and more suitable

to be transformed by primary and secondary substations to the final level at which electricity

is consumed. As opposed to the substations at the distribution level, the locations of the

primary substation are available in public databases (e.g. [185]). We use them as the first step

to infer the rest of the network.

In total, we consider 148 georeferenced EHV substations. The locations of the EHV nodes
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are from the dataset [186], that is derived from ENTSOE information. These locations were

verified by visual inspection from satellite images and it was found that not all the locations

from [186] correspond to real ones (as also acknowledged on the ENTSOE website32). The

inaccurate locations were corrected, when possible, by considering the locations reported

in the collaborative dataset,33 which were found accurate after being verified one by one on

aerial images. The locations of the EHV nodes are shown in Fig. 6.2a.

Starting from the locations of the EHV substations, we apply Voronoi diagrams to approximate

the region that each EHV node serves. Given an image and a collection of coordinates within

that image, a Voronoi diagram (one per set of coordinates) is the closest (in terms of geograph-

ical distance) locus of points to those coordinates. The adoption of the Voronoi diagrams is

justified as we may reasonably assume that the electrical demand in a certain area is served

by the closest substation. This modeling choice is also proposed in [174, 187, 188, 189]. The

result of the Voronoi partitioning is shown in Fig. 6.2b.

(a) (b)

Figure 6.2: Identification of EHV areas: (a) locations of the considered 148 EHVs substations in
Switzerland and (b) approximated regions served by each substation after Voronoi partitioning.

6.3.2 Identification of HV/MV Primary Substation: Locations and Characteristics

Distribution of the Electrical Demand

Power distribution systems were designed to deliver electricity to end customers. Therefore,

we expect their topology and power ratings to reflect the geographical distribution of the

demand for electricity. We leverage this notion and start from the distribution of the electricity

demand over the country to infer the topology of distribution systems. First we estimate the

low-level geographical distribution of the electricity demand as described next.

32https://www.entsoe.eu/data/map/
33https://en.wikipedia-on-ipfs.org/wiki/List_of_EHV-substations_in_Switzerland
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6.3 Estimation of Countrywide Models of Medium Voltage Power Distribution Networks:
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The work in [190] reports the statistics of the sectorial (industrial, commercial and residential)

electricity consumption for each canton in Switzerland. This information gives already a com-

prehensive overview of the countrywide distribution of the electricity demand. However, since

power distribution systems extend far deep into local regions, higher spatially resolved data

are needed to estimate their topology. The Swiss Federal Office for Topography34 has mapped

the heat demand for space heating and cooling for industrial, commercial, and residential

buildings with a resolution of 100x100 meters. Since the heat demand follows the building

distribution and that buildings are also large consumer of electricity (due to various electrical

equipment, besides the obvious case of electric space heating [191, 192], that reinforces the

correlation among the two), we assume that the electricity and heat demands follow the same

spatial distribution. With this assumption, we model the electricity demand map by rescaling

heat demand map by appropriate coefficients. These coefficients are computed separately for

the residential, commercial and industrial demands using the values of electricity consump-

tion (Table 6.1). The estimated countrywide electricity demand map is shown in Fig. 6.3a.

Fig. 6.3b is an illustrative example of the electrical demand distribution within a single Voronoi

cell. The geographical area each Voronoi cell is supplied by the substation corresponding to

that cell.

Table 6.1: Composition of electricity demand in different sectors for Switzerland for 2014.

Sector Electricity demand (GWh)

Residential 18’333

Commercial 17’531

Industrial 19’028

Identification of the HV/MV Primary Substations

The location of the HV/MV primary substation is determined by analyzing the electrical

demand map within each EHV area according to the following procedure.

1. Identify clusters with contiguous demand. To do so, we first derive a binary image

from the electrical demand map, where boolean true pixels denote non-zero electrical

demand, and vice-versa. Then, to identify clusters with contiguous demand, we apply

binary image segmentation, that partitions the input binary map into clusters containing

pixels of the same kind (true or false) only. For the binary image segmentation, we use

the bwboundaries Matlab function [193]. The result of this process for the example

EHV area of Fig. 6.3b) is shown in Fig. 6.4a;

2. On the one hand, clusters with total demand exceeding a pre-established threshold are

recursively partitioned into smaller clusters using Algorithm 6.1. On the other hand,

neighbour small clusters are aggregated until their total power demand reaches the

34http://map.geo.admin.ch/

155



Chapter 6. Countrywide Synthetic Network Estimation, Computation of PV Hosting
Capacity and Battery Energy Storage Requirements for Power Distribution Networks

(a)

(b)

Figure 6.3: Estimated electricity demand map of: (a) Switzerland and (b) a single EHV area.
The blue polygon refers to an EHV area obtained using Voronoi partition.

threshold and so as to justify the presence of a secondary substation. The result of this

step is illustrated in Fig. 6.4b. Threshold L in Algorithm 6.1 is an informed estimated

computed as

average power demand

number of EHV substation ·5
= 63 TWh/8760 h

148 ·5
≈ 10 MW, (6.1)
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where 63 TWh is the total electricity demand in Switzerland in 2015 [194] and 5 is the

estimated average number of HV/MV nodes served by each EHV/HV substation.

3. The location of each secondary substation is chosen at the geographical center of

the convex-envelope35 encompassing the respective aggregated cluster, as shown in

Fig. 6.4c.

(a) (b) (c)

Figure 6.4: Identification of the substations locations: (a) the EHV area is divided into clusters,
(b) large clusters are divided into smaller ones, (c) convex hull of the aggregated clusters (in
red) and final locations of the HV substations (in blue).

Algorithm 6.1 Partition cluster

Require: Polycluster:= original cluster, Lc := cluster’s total demand, demand threshold L, µ :=
Divide factor (36)

1: if
(
Lc > L

)
then

2: n = ceil(L/L/µ), nx = ciel(
p

n), ny = ciel(n/nx ), ñ = nx ny

3: Find the bounding box of Polycluster defined
by (Polybbox = {(x, y) : x ≤ x ≤ x, y ≤ y ≤ y})

4: Partition: obtain [Poly1
div, . . . , Polyñ

div]
5: for (i = 1, . . . ,nx ) do

6: ai = x + (i−1)(x−x)
nx

, c i = x + (i )(x−x)
nx

,

7: for
(

j = 1, . . . ,ny
)

do

8: b j = y + ( j−1)(y−y)

ny
, d j = y + ( j )(y−y)

ny

9: Polyk
div = {(x, y) : ai ≤ x ≤ c i ,b j ≤ y ≤ d j }

10: Polyk
div =← Polycluster ∩ Polyk

div ▷ Intersection
11: k +1 ← k
12: end for
13: end for
14: Compute the demand of each small polygon: [L1

div, . . . , Lñ
div]

15: Save [Poly1
div, . . . , Polyñ

div], [L1
div, . . . , Lñ

div]
16: end if

35The convex envelope allows efficient computation of its centroid and distance with other convex-envelopes.
36Divide factor is chosen appropriately (≤ 0.5) to obtain polygons with demands smaller than Lthres.

157



Chapter 6. Countrywide Synthetic Network Estimation, Computation of PV Hosting
Capacity and Battery Energy Storage Requirements for Power Distribution Networks

Fig. 6.5a shows the cumulative distribution function (CDF) of the demand interfaced by the

various primary substations, and the first row of Table 6.2 reports its mean and maximum

value. It can be observed that, even if a static threshold of 10 MW is used to generate the

clusters, the demand within each cluster is finally spread around this value. On the one

hand, larger values of the total demand happen because when merging multiple clusters,

their aggregated demand might exceed the threshold. On the other hand, smaller values are

because certain areas have low demand.

6.3.3 Identification of MV/LV Secondary Substation: Location and Characteristics

Once the locations of the primary substations are found, we apply the Voronoi partioning and

cluster-aggregation procedures of subsections 6.3.1 and 6.3.2 to identify the HV areas and the

MV/LV secondary substations. For the latter step, we use a threshold value for the total power

within each cluster of 400 kW. This value has been chosen because it is the average power rating

of the nodes of the CIGRE benchmark grid for MV european systems [5]. The distribution of

the demand interfaced by the secondary substation and its statistics are reported in Fig. 6.5b

and Table 6.2. Similarly to the previous case, the demand within each cluster is spread around

the static threshold.

Table 6.2: Statistics on HV and MV substations

Type Number Mean Demand Max Demand

HV substations 776 9.3 MW 24.7 MW

MV substations 17,844 0.41 MW 0.97 MW

(a) (b)

Figure 6.5: Probability density function (PDF) plots of estimated electricity demands for (a)
HV and (b) MV substations.

Fig. 6.6a shows the identified locations of the substations for the example EHV area of Fig. 6.3b,

where 5 HV/MV and 142 MV/LV substations were identified. This process is repeated for all
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EHV areas so as to estimate the locations of HV/MV and MV/LV substations for the whole

country. For Switzerland, the model estimated 776 HV/MV nodes and 17’844 MV/LV, whose

locations are shown in Fig 6.6b.

(a)

(b)

Figure 6.6: Identified HV/MV and MV/LV substations for (a) the example EHV area (5 and 142,
respectively) and (b) Switzerland (776 and 17’844)
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6.3.4 Power Networks Routing

Routing Algorithm

Once the locations of the MV substations are identified, we use a routing scheme to determine

the connections and topologies of the corresponding grids. Several routing methods were

proposed in the literature, as discussed in the review paper [195]. For example, the work in

[196] uses a genetic algorithm and minimum spanning tree, works in [197, 198, 199] apply

evolutionary algorithms such as simulated annealing and ant-colony. The work in [200, 201]

proposes the branch-exchange method, and the work in [202] applies dynamic programming.

In this Chapter, we use the routing scheme based on the steepest gradient descent proposed

in [203, 204] because of the faster convergence and increased tractability compared to the

above-listed methods. The method accounts for the grid operational constraints on voltage

magnitudes and lines ampacities. It enforces the radiality of the final system because the MV

networks are generally operated radially (as opposed to HV systems, that are typically meshed

and operated as such). Although some MV network might have a meshed configuration

(useful, e.g., for networks temporary operations in case of outages), they are usually operated

radially to enable the effective operations of protection systems [205]. The method works by

finding the grid topology that minimizes the invested capital cost into the grid, given by the

investment cost for the power cables. In the routing scheme, we require voltage deviations

to be up to ±3% of the nominal voltage according to Swiss grid code [206]) and line currents

below 80% of the respective cable ampacity, to reproduce a realistic scenario where grids

operate with a safety margin from physical limits. The electrical characteristics of the lines

and transformer used for the routing procedure are given in Tables 6.3 and 6.4, respectively.

The rating of transformer is assumed 150 % of the total nominal demand to reflect the typical

planning scenario where operators allow equipments to operate with a safety margin from

their maximum ratings.

The routing scheme starts from a base topology where each substation node is connected

to the 6 nearest ones (a value taken from the work in [167] to define an upper bound on the

connections to/from a node in a typical power grid). Then, the following steps are performed:

1. run the routing scheme in Algorithm 6.2 by selecting high-ampacity type-4 cables (from

Table 6.3) for all the lines;

2. replace the type-4 cables (since they are most expensive ones according to their am-

pacity) with ones with lower ampacity according to the criterion reported in Table 6.5.

For example, if the maximum line current in the first-stage routing is less than 10 % of

the type-4 cable’s ampacity, it is replaced with a type-1 cable. Once each single cable is

replaced, we perform a load flow to verify voltage and current conditions and, if they are

not satisfied, the original cable is restored.

Figure 6.7 shows the step-by-step routing results for an example EHV area. Fig. 6.7b shows the

160



6.3 Estimation of Countrywide Models of Medium Voltage Power Distribution Networks:
the Case of Switzerland

Table 6.3: Cable ratings from a commercial source.

Cable Section Resistance Reactance Capacitance Ampacity

Type [mm2] [Ohm/km] [Ohm/km] [µF/km] [A]

1 50 0.495 0.13 0.19 228

2 70 0.344 0.13 0.21 284

3 95 0.248 0.12 0.23 346

4 120 0.198 0.12 0.25 399

Table 6.4: Transformer rating.

HV MV Short-circuit Power

voltage [kV] voltage [kV] impedance [Ohms] rating [MVA]

110 20 0.016 + j1.92 25

Algorithm 6.2 Routing

Require: Base topology, line parameters, lines set
1: while Routing is successful (the network is connected and feasible) do
2: Remove the most expensive line (by length) from the lines set
3: Proceed to step 4 if connected else go to step 7
4: Compute admittance matrix, perform load flow, proceed to step 5 if

converged else go to step 7
5: Proceed to step 6 if the voltage and currents are within bounds else

go to 7
6: Save the network, update the lines set and go to step 2
7: Keep the previous network, remove this line from the lines set, go to

step 2.
8: end while

Table 6.5: Replacement scheme for lines.

Current range (pu) Cable type

0 < 0.1 1

0.1 ≤ 0.2 2

0.2 ≤ 0.4 3

initial routing, which is obtained by connecting each node with the nearest 6 nodes. Fig 6.7c

shows an intermediate stage of the routing, where some of the redundant lines have been

removed. The final topology is shown in Fig. 6.7d, where the color of the lines denotes their

ampacities. Algorithm 6.2 works by iteratively removing the expensive (i.e., long) lines to

minimize the cost of grid routing. The routing cost, expressed in terms of the total lines length,

is shown in Fig. 6.7e for an example grid. It features a decreasing value before reaching a

steady value after 300 iterations. In this example, the initial and final iterations correspond to

67 km and 10.5 km, respectively, of deployed lines.
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(a) (b)

(c) (d)

(e)

Figure 6.7: Routing procedure:(a) example EHV area with HV and MV substations, (b) highly-
connected base topology, (c) meshed grid topology at an intermediate stage of the procedure,
(d) final topology highlighting the current levels in the cables, and (e) total capital cost (ex-
pressed in km for length of cables used) as a function of the iteration.

Re-routing Unsuccessful Networks

In certain cases, the routing by Algorithm 6.2 might fail. This happens when a subset of the

nodes in the given region is very distant in space to the rest of the nodes requiring very long
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cables. It either results in violations on voltage and currents or convergence issues while

solving load-flows or requires a meshed topology with single or multiple rings to be feasible.

These networks are labelled as unsuccessful networks. To solve this issue, we propose a re-

routing procedure, where we divide the region further using a clustering method. The steps

are described in Algorithm 6.3. An example is shown in Fig. 6.8, where on the left figure, we

see a meshed network to enable it to be routed due to current and voltage violations, whereas

the right figure shows that the network is divided into two separate radial networks.

Algorithm 6.3 Re-routing

Require: Substations’ geographical locations
1: while The network is connected and feasible do
2: Split the unsuccessful networks into two areas using k-means

clustering with locations as features
3: Place HV substations at the centroid of two areas, re-route both

the areas using algorithm 6.2
4: Proceed to step 5 if network routing is successful else go to 2
5: Save the networks.
6: end while

(a) (b)

Figure 6.8: Re-routing: (a) routed network using algorithm 6.2 resulting in a meshed network,
(b) routed network using algorithm 6.3 which divides it into two radial networks.

The final routing results for the example EHV region is shown in Fig. 6.9. Statistics on the routed

networks for the whole Switzerland are listed in the Table 6.6. The distributions of the nodal

voltages and the lines currents are shown in Fig. 6.10 and denote that design requirements are

met. More discussion on the validation of the estimated MV networks is presented in Sec. 6.6.2.
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Figure 6.9: Routed MV networks for the example EHV area.

Table 6.6: Number of identified grid components.

Equipment Number of elements
HV-MV transformers 776
MV-LV transformers 17’844 x 2 (for redundancy)

MV cables and overhead lines 1342.2 km

(a) (b)

Figure 6.10: CDF plots (a) nodal voltages and (b) lines currents of estimated networks shown
in different colors.

6.4 PV hosting Capacity and Energy Storage Requirements for Power

Distribution Networks

The PV hosting capacity of a distribution grid is the maximum amount of PV generation that

the grid can accommodate without violations of the its operational constraints. In this section,

we describe the PV hosting capacity problem for distribution grids and, then, how to increase

it with distributed energy storage systems [207]. Finally, we discuss the optimal deployment

of PV power plants and BESSs to achieve the largest production at the minimum cost for the
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whole country. We first discuss the input data that are used in the problem formulation.

6.4.1 Input Data

Capacity Factor of PV Production

PV capacity factors (total actual generation to the total generation at the nominal plant

capacity over one year) for all locations across the country are used to compare the suitability

for hosting PV generation. Capacity factors are from the PVGIS database [208] considering

optimal panel locations (south-facing and 38◦ tilt for the case of Switzerland). They are are

based on satellite information at a 3x3 km (at Nadir) resolution and are corrected for the

shading induced by topographical features on the horizon. We query this information for

the whole Switzerland with a resolution of 1.5x1.5 km. Figure 6.11a shows the distribution of

the capacity factors across the country. The capacity factor varies from 0.06 to 0.16 showing

variation that can vary up to a factor of 3.

Land-use Constraints for PV generation

We evaluate land allocation to identify suitable locations for PV power plants. We use a 100x100

m resolution land-use map37 from the Swiss Federal Office for Topography, shown in Fig. 6.12,

reporting settlement (residential, commercial, industrial and recreational) and agricultural

areas. For the area corresponding to each MV grid, we consider that 10% of the settlement areas

can host PV generation, for a total surface of 210 km2 for the whole country. Considering this

available surface, the yearly capacity factors from PVGIS [208], and an average PV conversion

efficiency of 15 % in standard conditions [209], the yearly total PV generation for Switzerland

with these assumption is of 33 TWh. Both the available area for PV deployment and total

generation are in-line with the estimates reported in the existing literature [181, 182, 183, 210]

as summarized in Table 6.7. Differences among the various estimations (more remarkably for

PV generation) can be explained by different input data sets and methods, however they all

seem to agree on the same order of magnitude. Fig. 6.11b shows the distribution of the PV

installed capacity potential (solely based on land availability) across all the MV grids of the

country. Its mean and maximum values are 2 and 13.1 MW. The total PV installed capacity

potential with the above assumptions is of 30 GW. It is worth noting that larger capacity values

are possible with higher usage of available land and PV conversion efficiency.

Time Series of the PV Generation and Demand

Solving the PV hosting capacity problem does require time series of PV generation and demand

to model the loading conditions of the grid. We consider a scenario with high PV generation

and low demand to reproduce cases where excess PV generation might cause violations of

37https://map.geo.admin.ch/?layers=ch.bfs.arealstatistik-hintergrund&lang=en&topic=ech&bgLayer=ch.
swisstopo.pixelkarte-farbe
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(a) (b)

Figure 6.11: Distribution of (a) capacity factor and (b) maximum PV capacity per MV node
due to land constraint.

Figure 6.12: Simplified land-use map of Switzerland.

Table 6.7: A comparison of the PV generation potential.

Reference Area [km2] Estimated PV generation [TWh]

[181] 328 17.86

[182] 252 16.29

[210] 485 41.32

[183] 267 24 ± 9

This work 210 33
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the grid constraints. In this respect, PV generation is modelled considering uniform clear-sky

conditions over the whole power distribution network and considering the day of the year

with the largest PV generation. We use a clear-sky model to compute the global-horizontal

irradiance (GHI) as a function of the location, that we denote by n. The plane-of-array (POA)

irradiance Gt ,n (kW/m2) is determined by transposing the GHI as a function of the plant tilt

and azimuth, and time of the day. The POA irradiance is finally converted to PV generation

(p̂pv
t ,n) for a plant with P pv capacity (in kW) with the following model g pv(t ,n,P pv):

p̂pv
t ,n = g pv(t ,n,P pv) =Gt ,n

(
1+η1(T air

t ,n +η2Gt ,n −25)
)

P pv (6.2)

where T air
t is the air temperature (◦C ), η1 = −0.0043 and η2 = 0.038 are empirical parameters

as in [68] for open-rack PV plants.

Demand profiles are obtained by scaling the residential, commercial and industrial demand

profiles specified in the CIGRE benchmark grid for MV systems [5], shown in Fig. 6.13a, for

the coefficients extracted from the demand map computed in subsection 6.3.2. To reproduce

a scenarios with dominant PV generation over the demand, we halve the nominal demand

profile to reflect a day with low electricity consumption. We assume ideal correlation among

the loads. As the focus of the Chapter on modeling the impact of PV generation on the grid

hosting capacity, modeling spatial diversity of the loads is not of special interest. We consider

voltage- and frequency-independent loads. Figure 6.13b shows the PV and the load profiles

considered for the PV and battery sizing.

(a) (b)

Figure 6.13: Demand and PV scenarios: (a) standard load profiles for different sector, (b)
scenario considered for the PV and battery sizing problem.

6.4.2 The PV Hosting Capacity Problem

The objective of this problem is determining the maximum PV installed capacity that a grid can

host at its nodes without violations of grid constraints. We consider a generic distribution grid

167



Chapter 6. Countrywide Synthetic Network Estimation, Computation of PV Hosting
Capacity and Battery Energy Storage Requirements for Power Distribution Networks

with Nb nodes and Nl lines with index n ∈N = {1, . . . , Nb} and l ∈L = {1, . . . , Nl }, respectively.

The installed PV capacity at node n, that is an unknown of the problem, is denoted by P pv
n (38).

As discussed in Section 6.4.1, the installed capacity is limited by the land availability, so we say

that P pv
n ≤ P pv

n , where the right-hand-side upper-bound is derived from the land availability

map.

Grid Model

Active and reactive nodal injections at the various nodes of the grid are collected in vectors39

pt ,qt given by the variable injections, i.e., nodal PV generation ppv
t ,qpv

t since they are decision

variables in the planning problem.

pt =−ppv
t t ∈T (6.3)

qt =−ppv
t t ∈T (6.4)

We assume that PV plants operate at unitary power factor, as this is typical for small/medium

size PV plants, i.e.,

qpv
t = 0 t ∈T (6.5)

PV generation is computed by applying the model g pv(·) in (6.2). We impose load pload
t and

qload
t as uncontrollable injections.

Let |v|t ∈RNb−1 and |i|t ∈RNl the vector of magnitudes of the nodal voltage and line current,

respectively. The symbols p l
t and q l

t are the active and reactive grid losses. Using the power-

flow sensitivity coefficients-based linear model from Sec. 2.3, Chapter 2, the |vt |, |it |, p l
t and

q l
t are expressed as linear function of nodal power injections pt ,qt . The linearized models are

|vt | = Av
t

[
pt

qt

]
+bv

t (6.6)

|it | = Ai
t

[
pt

qt

]
+bi

t (6.7)[
p l

t

q l
t

]
= Al

t

[
pt

qt

]
+bl

t (6.8)

where A and b are the linear mapping parameters defined in Chapter 2. They are iteratively

updated with newly sized battery and PV injections. An accuracy analysis of the modeled

linear power flow is included in 6.6.1.

38For generality, if a node cannot host PV generation, we can add in the following formulation a constraint of the
kind P

pv
n = 0.

39The bold-typeface notation refers to vectors.
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The symbols pgcp
t , qgcp

t denotes the active and reactive power at the GCP expressed as

pgcp
t = 1⊤pt +p l

t +1⊤pload
t t ∈T (6.9a)

qgcp
t = 1⊤qt +q l

t +1⊤qload
t t ∈T . (6.9b)

Optimization Problem

The problem consists in maximizing the installed capacity of PV generation while subject to

grid constraints. To foster the deployment of the PV plants in nodes with the highest irradiance

availability, the installed capacity is weighted by the local capacity factor γn(40), estimated

previously in Sec. 6.4.1. The problem formulation is:

maximize
{P pv

n ∈R+,n∈N }

{ ∑
n∈N

γnP pv
n

}
(6.10a)

subject to nodal injections model and grid constraints

vmin ≤ Av
t

[
pt

qt

]
+bv

t ≤ vmax t ∈T (6.10b)

0 ≤ Ai
t

[
pt

qt

]
+bi

t ≤ imax t ∈T , (6.10c)

0 ≤ (pgcp
t )2 + (qgcp

t )2 ≤ S
2

t ∈T , (6.10d)

where nodal voltage magnitudes and line currents limits are denoted by vmin, vmax, and line

ampacities imax, respectively. Similarly, the apparent power at the substation transformer

should be less than the substation’s transformer rating S. The constraint (6.10d) is approxi-

mated by piece-wise linear functions to keep the optimization problem linear.

Other constraints include PV generation model and land-availability constraint P pv
n :

p̂pv
n,t = g pv(t ,n,P pv

n ) t ∈T ,n ∈N (6.10e)

P pv
n ≤ P pv

n n ∈N . (6.10f)

40We include the capacity factor because, even if derived from satellite estimations with coarser resolution than
that of the grid nodes, the topographical shading is at a higher resolution and could impact on the suitability of
certain nodes.
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6.4.3 Increasing the PV Hosting Capacity with BESSs

Problem Formulation

The objective of this problem is to determine the optimal location of PV plants to host a target

level of total PV generation capacity, that we denote by P⋆. However, values of P⋆ above the

grid’s PV hosting capacity cannot be accommodated because they would lead to violations of

grid constraints. For this reason, this problem also determines an optimal configuration of

BESSs (location, converter power ratings, and energy capacities) to relieve grid constraints

and enabling the further integration of PV generation in the grid. The results of this process

are discussed at the end of this section.

It is worth highlighting that, even if we consider BESSs, the formulation can be extended to

other forms of energy storage systems or other resources capable of providing grid support, like

flexible demand [211, 212]. It is also worth highlighting the parallel with PV self-consumption

strategies, which can indirectly mitigate the impact of excess PV generation on grid constraints

by promoting the direct consumption of locally generated electricity, see e.g. [213, 214]. PV

self-consumption is typically provided on a best-effort basis by end consumers and is typically

unaware of global grid conditions, thus does not offer reliable performance guarantees. Com-

pared to PV self-consumption, we provide robust guarantees on grid control performance and

optimized energy storage requirements considering the whole grid and not a single consumer.

BESSs Model: We use similar model as defined in Chapter 2. BESSs’ active power is denoted

by pbess
n,t , and reactive by qbess

n,t . We model the evolution of the BESS state-of-energy (SOE) with

SOEn,t = SOEn,t−1 −pbess
n,t ∆t , (6.11)

where ∆t is the sampling time. Charging and discharging efficiency is accounted for by

integrating the BESS equivalent resistance in the load flow problem as proposed in [215]. If

load flow equations are linearized, this modeling choice retains the convexity of the problem

without requiring the use of additional variables as, for example, in [216]. Since battery sizes

are the decision variables, the optimization problem is solved multiple times taking account

the updated equivalent resistances in proportion to their converter ratings. To implement a

safety margin from zero-SOE and full charge, we implement the following constraint

aE bess
n ≤ SOEn,t ≤ (1−a)E bess

n (6.12)

where 0 ≤ a ≤ 0.5 is a design parameter (chosen as 0.1) and E bess
n is the BESS energy capacity.

BESS injections should respect the capability curve of its four quadrant power converter (the

constraint is approximated by piece-wise linear functions). This reads as:

0 ≤ (pbess
n,t )2 + (qbess

n,t )2 ≤ (P bess
n )2. (6.13)
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Capital Investment for BESSs and PV Plants: the capital investment for installing a PV plant

with generation capacity P pv, and a BESS with energy capacity E bess
n and power rating P bess

n at

node n is:

J
(
P pv

n ,P bess
n ,E bess

n

)
=C pvP pv

n +C bess
P P bess

n +C bess
E E bess

n , (6.14)

where C pv, C bess
P , and C bess

E are the unitary costs for PV, power converter rating, and energy

capacity, respectively. Costs are reported in Table 6.8. They are derived from current market

figures.

Table 6.8: Costs of PV and BESSs.

Component Unit Value
Turn-key PV system (C pv) USD($)/kWp 1020

BESS converter rating (C bess
P ) USD($)/kVA 200

BESS energy capacity (C bess
E ) USD($)/kWh 300

Formulation of the Decision Problem: the decision variables of the problem are the installed

PV capacity, the BESS power rating and the BESS energy capacity at all the nodes of the grid,

which we collect in the set χ = {
P pv

n ,P bess
n ,E bess

n ∈R+,∀n ∈N
}
. Without losing generality,

nodes that cannot host PV generation or BESS can be excluded by properly subsetting the

nodes index. The problem consists in locating and sizing BESS to accommodate a target level

P⋆ of installed PV generation capacity while minimizing the total capital investment (6.14)

for all the nodes of the grid. The BESSs’ optimal location is determined by the battery nodal

injections that are different than zeros at certain nodes. Similarly to before, to favour the

locations with large PV capacity factors, we weight the installed PV capacity at each node with

the factor γ/γn , where γ is the average among all the capacity factors γn ,n ∈N in the network.

Finally, the problem is:

minimize
χ

{ ∑
n∈N

J
(
γ/γn ·P pv

n ,P bess
n ,E bess

n

)}
(6.15a)

subject to nodal injections (now with BESSs demand too) and grid constraints

pt =−ppv
t +pbess

t t ∈T (6.15b)

qt =−ppv
t +qbess

t t ∈T (6.15c)

(6.9), (6.10b)− (6.10d), (6.15d)

BESS model and constraints

SOEn,t = SOEn,t−1 −pbess
n,t ∆t t ∈T ,n ∈N (6.15e)

0 ≤ (pbess
n,t )2 + (qbess

n,t )2 ≤ (P bess
n )2 t ∈T ,n ∈N (6.15f)

aE bess
n ≤ SOEn,t ≤ (1−a)E bess

n t ∈T ,n ∈N (6.15g)
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and PV model and target PV capacity P⋆ to install in the grid:

(6.10e)− (6.10f) (6.15h)∑
n∈N

P pv
n = P⋆. (6.15i)

Results on BESS Sizing

For each estimated MV grid, first, we solve the PV problem (6.10) to obtain the PV hosting

capacity, then, we solve the BESS sizing problem (6.15) by varying P⋆ in (6.15i) from 25% to

300% (with increments of 25%) of the grid PV hosting capacity. It should be noted that both

the problems (6.10) and (6.15) are solved multiple times to correct the grid linearization (by

updating the injections of newly sized PV and battery installations) and updating battery

equivalent resistances (for the battery loss model as previously mentioned). With this proce-

dure, we determine the BESSs requirements for PV configurations below (25-100%) and above

(125-300%) the grid hosting capacity. The results of this process for are shown in Fig. 6.14

and are now discussed. Figures 6.14a and 6.14b show the cost curves for 10 randomly chosen

distribution networks, whereas Figures 6.14c and 6.14d show the distribution along the grids

with symmetric quantiles. Figure 6.14a shows the total investment for PV systems and BESSs

as a function of the installed PV generation capacity. We can make two key observations:

1. Networks reach a different level of maximum PV installed capacity. This is due to the

different values of land availability.

2. The total investment grows at two different rates because the investment below the

hosting capacity is given by PV units only, whereas above by BESSs and PVs plants

together.

Figure 6.14b shows the marginal cost of increasing the level of installed PV generation capacity.

We define the marginal cost of each grid as the total cost of the PV-BESS system over the total

PV yearly production accounting for the capacity factor as:

Marginal cost = ∑
n∈N

J
(
P̂ pv

n , P̂ bess
n , Ê bess

n

)
P̂ pv

n ·365 ·24 ·γn
, (6.16)

where P̂ pv
n , P̂ bess

n , Ê bess
n denote the solution of problem (6.15). It can be seen from Fig. 6.14a and

6.14b that, below the hosting capacity, the marginal cost is constant because it corresponds

to the unitary cost of PV, whereas above, it increases because progressively larger BESSs are

required. Figure 6.14c and 6.14d shows the density plot of the cost curves derived for all

estimated MV networks in Switzerland. They show the distribution of the total and marginal

costs among different networks. As it can be seen in Fig. 6.14a and 6.14b, different networks

have different PV hosting capacities, therefore the marginal costs of the various systems have

different patterns.
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(a) (b)

(c) (d)

Figure 6.14: Investments to achieve a target level of installed PV generation capacity: (a, c)
total cost, and (b, d) marginal cost. Top: for randomly chosen 10 MV networks, bottom: for all
estimated MV networks in Switzerland (distribution with symmetric quantiles).

6.4.4 Optimal Allocation of PV and BESSs

In the former subsection, we have discussed a method to determine the optimal deployment

of PV installations and BESSs within a network to accommodate a target level of installed PV

capacity. We have applied it to all identified grids of Sec. 6.3 and derived, for each of them,

marginal costs for installing increasing levels of installed PV capacity. The estimated marginal

costs are key results as they allow us to compare the costs of installing PV generation in various

networks across the country, and they will be the fundamental input of the problem discussed

in this section. The objective of this problem is to determine the installed PV capacity in

each network in order to achieve a countrywide objective for total PV generation at the lowest

capital cost.

We denote the curves of Fig. 6.14b with the function ζm(P⋆
m), where m ∈ M = {1, . . . , M } is
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the index for the identified MV networks and P⋆
m is the installed capacity in grid m. We

approximate the curves ζm with a piece-wise linear function. The domain of ζm is [P⋆
m ,P

⋆
m],

derived from Fig. 6.14b. The problem consists in finding the variables P⋆
1 , . . . ,P⋆

M at the

minimum total cost and such that the total installed capacity equals the countrywide PV

installation target P target. The problem is:

minimize
{P⋆

m∈R+,m∈M }

{ ∑
m∈M

P⋆
mζm(P⋆

m)

}
(6.17a)

subject to the domains of the variables and the PV installation target:

P⋆
m ≤ P⋆

m ≤ P
⋆
m m ∈M (6.17b)∑

m∈M

P⋆
m = P target. (6.17c)

The results are discussed in the next section.

6.5 Results and Discussion

6.5.1 Case Study

In the previous sections, we have presented a modeling toolchain that determines an eco-

nomically optimal deployment of PV plants and BESSs to achieve a target level of installed

PV generation while accounting for the capacity factor spatial distribution, grids constraints

and how they can be relieved by BESSs (as an alternative to the grid reinforcement) when the

PV generation capacity exceeds the grid’s PV hosting capacity. It is worth highlighting that

the problem’s essence is not only about achieving an optimal deployment of PV generation

based on its countrywide potential but also extending with distributed energy storage the PV

hosting capacity of grids with large PV generation potential if this leads to more economically

convenient configurations. For example, as shown in this section, it is more convenient to

invest in BESSs to extend the hosting capacity of a grid with a large generation potential and

installing here additional PV generation rather than in grids with lower generation potential.

In this section, we compare this approach (that we call Case 1) against the case where the

same level of installed PV generation capacity is deployed uniformly in the distribution grids

(Case 0). For an illustrative comparison between Case 0 and 1, we refer to Fig. 6.14d: for a

given value of total PV generation capacity, Case 0 involves selecting, for each network, an

installed PV generation capacity (x-axis) that is proportional to the grid area and regardless of

its cost (y-axis). Case 1 involves placing PV generation starting from the grid with the lowest

cost (y-axis), and saturating its potential (sweeping the x-axis) before moving to the second

cheapest grid.
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6.5.2 Deployment of PV Plants

Figure 6.15 shows the distribution of installed PV generation capacity across Switzerland for

increasing (from top to bottom) levels of total installed capacity and for Case 0 (left column)

and Case 1 (right). The difference between the two deployment policies is evident by com-

paring the plots in the first row: in the left plot (Case 0), PV plants are installed uniformly in

the grids,41 whereas in the right plot (Case 1) PV is installed prioritizing regions with higher

irradiance availability, which appear to be Ticino, Leman and Neuchatel regions, and west

Valais. For increasing values of installed PV capacity (second and third rows of Fig. 6.15), it

can be observed that Case 0 and Case 1 feature increasingly similar geographical distribution

patterns. This is due to land-use limitations, and the activation of the associated constraint

in (6.10f). In other words, once Case 1 saturates the available locations for PV deployment in

regions with high irradiance potential, it starts installing PV generation in second-choice grids.

The distribution of the BESS follows the same pattern as of PV.

6.5.3 Deployment of PV Plants and BESSs for Case 0 and Case 1

Table 6.9 shows the PV installed capacity, the yearly production, the BESS power rating and

energy capacity, and the total cost (i.e., investments for PV plants and BESSs) for 10 scenarios

(A-J) of PV generation deployment for Case 0 and Case 1. Scenarios A, B, C to J correspond

to allocating PV generation in 5, 10, 20 to 90% (with increments of 10%), respectively, of the

available surface. We remind that the available surface for PV is 10% of the settlement areas,

as discussed in section 6.4.1. The energy transition scenario for Switzerland reported in [217]

estimates a yearly PV production potential from roof-top PV around 25 TWh, that corresponds

to our scenarios H-J.

From Table 6.9 we can make the following observations.

• Case 1/Scenario A achieves a 0.21 TWh increase in yearly production compared to the

same scenario of Case 0 thanks to installing PV generation in distribution grids with

larger PV generation potential first. For increasing values of installed capacity (scenarios

from B to J), the yearly production of the two cases converges to the same values due to

land-use limitations, as discussed in 6.5.2;

• Case 0 requires BESSs starting from Scenario C, whereas Case 1 has mild needs in

Scenario B already. This denotes that it is more cost effective to invest in BESS to increase

the hosting capacity of high PV-generation-potential grids rather than connecting that

same PV capacity in other grids with less PV generation potential.

• Connecting PV generation above Scenario C in Case 0 requires progressively larger

values of energy storage capacity and power rating. For example, doubling its installed

41Non-uniform spatial distribution over the country of PV generation is because grids are not uniformly dis-
tributed.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15: Installed PV generation capacity (in MW) across Switzerland for scenario A in
(a) and (b), scenario B in (c) and (d), and scenario C in (e) and (f), for Case 0 and Case 1,
respectively. Scenarios refer to the installed capacity of PV generation and are defined in Table
6.9.

capacity (from 6.85 to 13.70 GW) requires nearly 40 times the energy storage capacity

(from 0.14 to 5.73 GWh). It is worth noting that the needs for BESSs increases sharper

for Case 0 than Case 1. This is because the latter problem optimizes the locations of
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BESSs and PV across all the grids attaining a minimum costs, whereas Case 0 scales PV

capacity regardless of grid properties and irradiance potential. Costs are discussed next.

Table 6.9: Deployment of PV and BESS in the two cases.

Scenario

PV installed PV production BESS Power BESS Capacity Total cost

capacity (TWh/y) (GW) (GWh) Billions $

(GWp) Case 0 Case 1 Case 0 Case 1 Case 0 Case 1 Case 0 Case 1

A 1.71 1.90 2.11 0.00 0.00 0.00 0.00 1.76 1.77

B 3.43 3.81 4.09 0.00 0.00 0.00 0.01 3.53 3.53

C 6.85 7.62 7.87 0.03 0.01 0.14 0.01 7.11 7.07

D 10.28 11.42 11.46 0.46 0.04 1.31 0.05 11.07 10.61

E 13.70 15.23 15.25 1.74 0.51 5.73 0.68 16.18 14.42

F 17.02 18.92 18.99 3.64 3.08 14.74 7.88 22.68 20.51

G 20.11 22.36 22.43 5.87 5.67 26.83 21.26 29.94 28.23

H 22.89 25.44 25.46 8.10 7.94 39.90 36.20 37.17 36.03

I 25.42 28.24 28.25 10.18 10.08 53.41 51.00 44.25 43.50

J 27.57 30.61 30.61 12.07 12.00 65.87 65.04 50.57 50.31

6.5.4 Cost Comparison

Figure 6.16 compares the marginal cost (i.e., total cost divided by the PV yearly production

for the respective scenarios) of the two cases using results from Table 6.9. Case 1 (optimal

Figure 6.16: Cost per TWh of PV energy production for the two cases.

allocation) always achieves a lower unitary cost compared to Case 0. This is because the

optimal allocation problem places the PV plants at locations with the higher irradiance poten-

tial first, whereas Case 0 (uniform PV allocation) places the PV plants proportionally to the

available area. This shows the effectiveness of the optimal allocation algorithm. However, for

higher values of installed PV generation capacity, the costs converge to the same value due to

land-use limitations in most PV-favourable grids.

Fig. 6.17a shows the BESS energy capacity and power rating requirements for the optimal case

as a function of the installed PV generation capacity using the results from Table 6.9. The

177



Chapter 6. Countrywide Synthetic Network Estimation, Computation of PV Hosting
Capacity and Battery Energy Storage Requirements for Power Distribution Networks

energy storage requirements are mild, before increasing sharply after 14 GW(42). It can be

noted that mitigating with BESSs the impact of excess PV generation on distribution grids is

an energy-intensive application, with power-rating-to-energy-capacity ratios (i.e., C-rates)

around 1/5. As current BESSs technologies can safely operate up to 2-3C, the spare power

rating can be conveniently used to provide additional ancillary services, such as primary

frequency control and grid synchronization services, that are mostly power-intensive [29].

Fig. 6.17b shows the corresponding system cost and cost breakdown and shows that the cost

of the PV panels is largely dominant.

(a) (b)

Figure 6.17: (a) BESS cost and size: (a) BESSs power rating and energy capacity and (b) system
cost breakdown for Case 1 for different levels of installed PV generation capacity.

6.6 Further Analysis

6.6.1 Verification of Optimal Power Flow Results

We compare the voltage and current magnitudes computed by the linearized OPF model of

Sec. 6.4.2 and 6.4.3 against ground-truth values from an AC load flow. The analysis is done

for one of the synthetically generated network for which, the topology (with line parameters)

and the nominal injections are shown in Fig. 6.18 and Table 6.10 respectively. As mentioned

in Sec 6.4.3, the OPFs are solved by successively linearizing the model accounting for the

updated BESS and PV injections to correct the linearization error until the cost of the problem

converges. Fig. 6.19a and Fig. 6.19b show the power and energy ratings and the respective

costs determined by the OPF of Sec. 6.4.3, respectively. Results settle in 7 iterations. After

convergence is reached, we check the accuracy of the linear grid model against non-linear

AC power flow using the BESS and PV injections from OPF problem. Fig. 6.20 shows the CDF

plots of error of the nodal voltage magnitude and currents modeled by the linear OPF and the

42This value of hosting capacity is in-line with the countrywide hosting capacity obtained by solving the problem
in Section 6.4.2.
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AC power flow. Table 6.11 shows the maximum, absolute mean and mean error for the voltage

and current modeling. They show that the voltage and current modeling errors are below 0.5 %

and 1.75 % respectively. This proves that the voltage and current constraints modeling using

sensitivity-based linear grid model is close to the non-linear AC power flow.
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Figure 6.18: One of synthetically generated network as test case for the verification of linear
grid model.

Table 6.10: Nominal Load and PV per node

Node Load [MW] PV [MWp] Node Load [MW] PV [MWp]

N1 - - N14 0.17 -

N2 - 1.05 N15 0.18 0.35

N3 0.22 - N16 0.19 -

N4 0.15 - N17 0.17 0.44

N5 0.14 - N18 0.20 -

N6 0.21 1.75 N19 0.21 -

N7 0.17 1.90 N20 0.22 -

N8 0.19 0.87 N21 0.16 -

N9 0.20 1.16 N22 0.18 1.00

N10 0.19 0.70 N23 0.26 1.81

N11 0.14 - N24 0.23 1.17

N12 0.17 - N25 0.02 -

N13 0.17 -

Table 6.11: Accuracy of the linear power flow.

Max SD Mean

Nodal voltage error 4.2e-3 1.8e-3 1.1e-3

Lines currents error 1.75e-2 4.1e-3 4.8e-4
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(a) (b)

Figure 6.19: Plots showing convergence of the BESS sizes and the objective by correcting the
linear power flow coefficients with newest battery injections from previous iteration: (a) BESS
power and energy size and (b) Cost of the PV-BESS system.

(a) (b)

Figure 6.20: CDF plots (a) nodal voltages error and (b) branch current error.

6.6.2 Validation of Synthetically Generated MV Networks

We compare two estimated grids from our model with a real distribution network in Aigle,

Switzerland, for which it was possible to access the topology and grid data. It is a three-phase

21 kV/6 MVA, a 55-bus network. The two synthetically generated networks are picked from a

region near Aigle. The validation refers to comparing the “loadability” of the network, namely

evaluating the CDFs of the voltage and line current magnitudes at different load conditions.

For the comparison, we use the load profiles shown in Fig. 6.13a. Fig. 6.21 shows the CDFs of

the voltage and current magnitudes of the original and estimated networks. The maximum,

mean and the minimum values are reported in the Table 6.12. The numerical comparison and

the CDFs show a good match among the networks. In particular, it emerges that the voltage

and current magnitudes of the estimated networks fall in the same ranges as the one of the
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real grid.

(a) (b)

Figure 6.21: CDF plots: (a) nodal voltages and (b) lines currents of original network and the
estimated networks shown in different colors.

Table 6.12: Comparison of actual and estimated networks.

Networks Nodal voltage magnitudes Lines current magnitudes

Max SD Mean Max SD Mean

Actual 1.0006 0.0025 0.9978 0.3974 0.0420 0.0237

Estimated case 1 1.0000 0.0013 0.9985 0.3181 0.0570 0.0593

Estimated case 2 1.0000 0.0022 0.9970 0.4346 0.0782 0.0732

6.7 Discussion

PV generation will be key in achieving the energy transition targets, in Switzerland and other

countries. As PV plants are connected to the power distribution system, it is important to

consider the generation hosting capacity of existing distribution grids, which is typically

limited due to grid operators’ requirements to keep voltage levels within statutory limits,

respect the lines ampacities and rating of the substation transformer.

The main obstacle to analyzing the PV hosting capacity of existing distribution grids is that

their topology and line characteristics are confidential information owned by different DSOs.

For this reason, we have first developed a method to estimate likely distribution grids starting

from publicly available georeferenced data. Relying on the fact that existing distribution grids

interface electrical demand, we use the countrywide geographical distribution of the electrical

demand to infer the HV and MV electrical nodes’ locations and connect them with a routing

procedure from the existing literature. We then present a computationally tractable method

based on a linearized OPF problem to compute the PV hosting capacity of distribution grids,
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including how to host PV generation beyond prescribed limits with adequately located and

sized distributed energy storage systems for relieving grid constraints violations.

Finally, we propose a specific planning problem that determines a cost-efficient allocation of

PV power across the whole country, accounting for the technical limitations of the distribution

grids (including adding energy storage, if conducive to lower system costs) and the distributed

potential of PV generation, modeled with highly resolved PV capacity factors from the PVGIS

database. We also consider land-use constraints to identify the sites where it is possible to

install PV generation. The “cost-efficiency” notion for installing PV and energy storage systems

includes two factors. First, cost efficiency is higher when installing PV plants where their

capacity factor is larger. Second, it may be more cost-efficient to invest in distributed energy

storage to extend the PV hosting capacity of highly insulated distribution grids rather than

installing PV plants where their capacity factor is low.

The impact of this Chapter is twofold. On the one hand, it provides to distribution system

operator a mathematically tractable and interpretable method to assess the PV generation

hosting capacity of distribution grids, including how to cost optimally extend it with battery

energy storage systems as an alternative to the grid reinforcement. On the other hand, de-

veloped methods provide actionable indications to national policymakers on the level of PV

generation that a country can host and, on its techno-economical optimal deployment.
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7 Conclusion

In this Thesis, we proposed, developed, and experimentally validated different methods for the

grid-aware operation and the planning of active distribution networks (ADNs). In particular,

the Thesis developed reliable grid-aware real-time controls and planning schemes that can be

deployed in real-life ADNs. The key features of the developed methods are here summarized:

(i) accounting for different kinds of uncertainties in ADNs operation and planning stages, (ii)

accounting for the grid operational constraints (i.e., limits on the nodal voltages, branches,

and transformer capacities) by convex optimal power flow models, (iii) leverage extensive

experimental validations on real-life ADNs hosting large amount of stochastic generations and

(iv) assessing the impact of a large scale deployment of stochastic renewable energy resources

on the planning of ADNs.

First, the Thesis presented a control and scheduling framework for dispatching heterogeneous

DERs in ADNs. The framework consisted of two stages. First, a day-ahead stage solves a

stochastic optimization problem to compute the dispatch plan where the uncertainties of

the prosumption are modeled by scenarios. Second, a real-time stage solves a MPC problem

to optimally control flexible DERs, i.e., BESS, curtailable PV plants, in order to track the day-

ahead dispatch plan, in real-time, with high accuracy. The control and scheduling stages were

grid-aware, i.e., they both account for the grid operational constraints. To make these schemes

computationally tractable, we investigated two different OPF approximations in view of real-

time actuation deadlines. The first one linearizes the non-linear power-flow equations via

well-known power-flow sensitivity coefficients. In this respect, we investigated and compared

different approaches to update the sensitivity coefficients for the real-time control scheme.

The second formulation uses the AR-OPF: an exact convex relaxation of the AC-OPF. We also

compared the linearized OPF and AR-OPF with respect to their accuracy and computational

performance. The control schemes associated to the above two OPF approximations were

deployed and bench-marked on real-life ADNs hosting a large amount of stochastic generation.

The ADNs were equipped with state-of-the-art monitoring and communication infrastructures
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along with a state estimator process. Numerical and experimental validations, carried out with

a single controllable BESS with time sampling of 30 seconds and MPC optimization horizon

of 5 minutes, showed that the proposed scheme using AR-OPF attains better accuracy than

the linearized OPF regarding the computation of the grid state variables. More specifically,

the linearized OPF has a RMSE of voltage magnitudes/branch currents of 3.8e-5 %/0.38% in

comparison to 2e-3%/0.14% achieved by the AR-OPF. The linearized- and the AR-OPF-based

real-time controls required average/max computation time of 1.32/2.49 and 1.39/2.56 seconds

respectively.

Furthermore, for the cases when the installed controllable resource was insufficient to cover

the uncertainties caused by the RERs’ stochastic injections, the Thesis proposed a two-layer

MPC scheme by adding an extra MPC layer to the existing real-time control. In the pro-

posed two-layer MPC, the upper-layer (acting at a slower pace) leverages a forecast of the

prosumption along the whole day to optimize the use of the controllable resources used by the

lower-layer (acting at a faster pace). This scheme was experimentally validated on a real-life

MV ADN hosting 3.2 MWp of photovoltaic generation, 3.4 MVA hydro-power generation, and

2.8 MW of base demand. The MV grid monitored by 17 PMUs was connected with a 1.5

MVA/2.5 MWh BESS controlled by the proposed two-layer MPC. An extensive experimental

campaign has been carried out to assess the performance of the proposed control scheme

with respect to different types of solar irradiations (and associated uncertainties). These

conditions included: clear-sky, cloudy, weekday, and weekend days. The results showed that

the proposed two-layer MPC scheme always kept the BESS SOC within an adequate range of

operation and achieved better dispatch tracking compared to the single-layer MPC scheme. In

particular, the proposed two-layer MPC scheme reduced by half the absolute-energy tracking

error, maximum absolute error, and the RMSE, compared to the single-layer MPC scheme.

Second, to deploy the above control schemes on an ADN whose network model (line parame-

ters) was unknown, the Thesis presented a set of model-less/measurement-based data-driven

estimation and control schemes. Using PMU measurements on nodal voltages and branch cur-

rents, a linear estimator was developed to reliably estimate the parameters of the compound

admittance matrix. The Thesis also developed a pre-processing strategy on the measured

data set to improve the performance of LS and TLS-based admittance estimators. The nu-

merical validation carried out on CIGRE and IEEE distribution test feeders showed that the

pre-processing step improved estimation results by two to three orders of magnitude. The

sensitivity analysis with measurements’ noise levels showed that the pre-processing method

works even with a low accuracy class of IT (i.e., class 1.0). Then, estimated admittance ma-

trix was used to calculate the power flow-sensitivity coefficients, referred to as the indirect

approach. The Thesis presented a tool to quantify the uncertainty of the computed sensitivity

coefficients derived from the estimated admittance matrix. Still on the same topic, the Thesis

investigated an alternative method for the estimation of the sensitivity coefficients, referred

to as the direct scheme relying on nodal voltages and power measurements. We investigated

the use of recursive-LS (RLS) techniques to estimate the sensitivity coefficients and compared

different approaches to solve the usual covariance windup problem. The proposed estimation
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scheme worked even with collinear power injections (i.e., when the power injections at dif-

ferent nodes are correlated). The numerical validation performed on the CIGRE benchmark

network confirmed that the windup problem of RLS is tackled by the directional forgetting

(RLS-DF) algorithm that exhibited the best RMSE and the least variance. The performance

comparison between the direct and indirect schemes was carried out on two versions of the

IEEE-4 network characterized by actual parameters and artificially modified ones correspond-

ing to longer lines. This performance comparison allowed to conclude that the dominant

method for the measurement-based estimation of sensitivity coefficients depends on the

grid parameters. In particular, for a stiff network (shorter lines), the indirect method showed

the least RMSE and variance, whereas, for a weak network (longer lines), the direct scheme

showed the least estimation variance (even if it showed a higher RMSE).

The estimated sensitivity coefficients were then used for developing a model-less robust

voltage control scheme accounting for the uncertainty of the sensitivity coefficients. The

numerical validation on the CIGRE benchmark network showed that the non-robust volt-

age control failed to satisfy the voltage constraint (i.e., when uncertainty on the estimated

coefficients is not accounted for). The proposed robust control scheme always satisfied the

operational limits of the nodal voltages even for the highest IT class producing the largest

measurement noise. The control scheme was experimentally validated on an actual microgrid

that is a replica of the CIGRE benchmark microgrid at the EPFL Distributed Electrical Systems

Laboratory. The experiments showed that the proposed robust control scheme kept the nodal

voltage magnitudes within the imposed limits thanks to the optimally determined curtailment

on the PV plants.

Finally, the Thesis presented a planning tool to analyze the impact of large-scale integration

of stochastic renewable resources on the planning of countrywide ADNs. In this respect, the

Thesis presented a tool to generate countrywide synthetic power distribution networks based

on publicly available geo-referenced data on electricity demand and locations of the power

grid extra high voltage substations, and made publicly available. Then, via a proposed linear-

OPF-based planning approach, we computed the PV hosting capacity of the MV distribution

grids of the whole country. We also computed sizes of BESS when the PV installations are above

the ADN’s hosting capacity. Also, a specific planning scheme was developed for cost-efficient

allocation of PV power plants across the whole country, accounting for the technical limitations

of the distribution grids (including adding BESS units, in case this option produces lower

system costs) and the distributed potential of PV generation, modeled with highly resolved

PV capacity factors from the PVGIS database. Based on our simulations, we concluded that

investing in distributed BESS units may be more cost-efficient to increase the PV hosting

capacity of distribution grids located in regions with high GHI rather than installing PV plants

where their capacity factor is low. This developed tool could provide DSO and decision makers

with a mathematically tractable and interpretable method to assess the distribution grid’s PV

hosting capacity, including how to cost optimally extend it with BESS units.
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Future works

As demonstrated by the experimental validation on real-life ADNs, the methods developed

in this Thesis can be directly deployed in real-life power distribution networks. However,

more research is required to extend the results to generic networks. The following points are

suggested for further investigations.

• Validation of the proposed control schemes on unbalanced and untransposed systems.

• Formulation of grid-aware control problem for multiple provision of ancillary services

such as dispatching, primary/secondary frequency control, voltage support to the

upstream transmission grid etc.

• Better methods for forecasting the stochastic resources from intra-day to the day-ahead.

• Optimal planning scheme for grid reinforcement competing with BESS installation in

ADNs.

• Validation of the measurement-based control scheme demonstrating lines’ current

congestion management along with voltage regulation.

• Development of distributed optimization schemes considering communication delays.

• Deriving fallback strategies in case of non-convergence of distributed schemes.

• Optimal planning of distributed energy resources with different operational objectives

such as dispatching, peak-shaving etc.
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A Performance Comparison of RT-MPC
using Linearized vs. AR-OPF

To find the dominant OPF model, we compare the performance of RT-MPC using the two

models: (i) Linear OPF (used in Chapter 2) and ii) AR-OPF (used in Chapter 3), concerning

their accuracy and computational speed. In the following, they are referred to as L-OPF-MPC

and AR-OPF-MPC respectively. For the sake of simplicity, the comparison is performed using

Single-layer MPC, i.e., solving the lower-layer MPC problem (eq. 3.4) but without SOE budget

from upper layer MPC. The comparison is performed against the true quantities obtained

by solving the non-linear load flow a posteriori. The results are compared by looking at the

root-mean-square-error (RMSE) and maximum absolute error (MAE) in the voltage, current

magnitudes, and grid losses.

A.1 Accuracy of the Grid Model:

Here, we compare the grid states, i.e., nodal voltages, lines currents, and losses computed by

the L-OPF and AR-OPF models. They are compared against true values by solving non-linear

AC power flow using the setpoint of BESS. Fig. A.1a and A.1b show the nodal voltages using

L-OPF and AR-OPF, respectively. The plot in the upper panel shows the voltage computed by

the OPF models, whereas the lower panel shows error (in %) against true voltage. Similarly,

Figs. A.1c and A.1d show the lines’ current magnitudes (upper panel) and corresponding

error (lower panel) using L-OPF and AR-OPF, respectively. Finally, Figs A.1e and A.1f show the

net grid losses (upper panel) and corresponding error (lower panel) with L-OPF and AR-OPF,

respectively. Fig. A.1g compares the CDF of the error in nodal voltages, lines currents, and grid

losses using L-OPF and AR-OPF. Table A.1 compares the two models in terms of maximum

absolute error (MAE) and RMSE errors of the nodal voltages, lines currents and grid losses. The

comparisons show that the AR-OPF model performs better on the lines’ current magnitude

and grid losses by 87% and 90% on MAE. The error on the voltage magnitudes is slightly higher

for AR-OPF; however, below 5.5e-3% on maximum magnitude error.
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Appendix A. Performance Comparison of RT-MPC using Linearized vs. AR-OPF

(a) Voltage computed using L-OPF. (b) Voltage computed using AR-OPF.

(c) Current computed using L-OPF. (d) Current computed using AR-OPF.
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(e) Losses computed using L-OPF.
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(f) Losses computed using AR-OPF.
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(g) CDF Errors of Voltage magnitude error (left), current magnitude error (middle) and grid
losses (right).

Figure A.1: Performance comparison of MPC using L-OPF and AR-OPF as grid models.

A.2 Computational Performance:

We also compare the computation time using the two schemes. The comparison is shown in

Table in terms of mean, and maximum computation time. The MPCs were run on a MacBook
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A.3 Control Performance:

Table A.1: Error on the modeled voltage, currents and grid losses.

MPC Voltage error Current error Losses error
RMSE (%) MAE (%) RMSE (%) MAE (%) RMSE (kW) MAE (kW)

L-OPF-MPC 3.8e-5 2.2e-4 0.38 3.31 0.11 0.62
AR-OPF-MPC 2e-3 5.5e-3 0.14 0.45 0.04 0.06

Pro with a 2.7 GHz Quad-Core Intel Core i7 and 16 GB of Memory. Both the schemes achieve

computation time below 30 seconds which is the time resolution of the MPC.

Table A.2: Computation time

MPC Mean time (sec) Max time (sec)
L-OPF-MPC 1.32 2.49

AR-OPF-MPC 1.39 2.56

A.3 Control Performance:

In this section, we compare the dispatch tracking performance of the L-OPF-MPC and AR-

OPF-MPC schemes. Fig. A.2a shows dispatch plan, realization with and without MPC. Fig. A.2b

shows the BESS active power and its state of charge (SOC) evolution for the two cases. Fig A.2c

shows the CDF of the dispatch error for the two cases. As it can be seen, the dispatch plan

tracking via both MPCs (L-OPF-MPC and AR-OPF) are similar. The same can be deduced from

the comparison in Table A.3. It reports the maximum-absolute-error (MAE), absolute-energy-

error (AEE), and root-mean-square-error (RMSE) of the dispatch error using different controls,

concluding that both grid models perform similarly in terms of the control performance. The

MPC schemes reduce the tracking error in RMSE and AEE by 35% and 60 %, respectively.

Table A.3: Dispatch tracking error

MPC Dispatch error
MAE (kW) RMSE (kW) AEE (kWh)

Without MPC 1.2e3 190 3.6e3
L-OPF-MPC 1.2e3 125 1.4e3

AR-OPF-MPC 1.2e3 125 1.4e3
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Appendix A. Performance Comparison of RT-MPC using Linearized vs. AR-OPF
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(c) CDF plot of the dispatch tracking error with different control schemes.

Figure A.2: (a-c) Dispatch plan computation for day 1 (22-Mar.-2022).

The above performance comparison shows that the AR-OPF models attain better accuracy

than the Linearized OPF. The AR-OPF achieves higher accuracy in modeling the lines’ currents

and grid losses. Both the AR-OPF and L-OPF-based MPCs performed similarly on the control

performance metrics.
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B Validation of Error Propagation using
Monte-Carlo Simulations

The error propagation scheme developed in Sec. 4.3.5 is numerically validated by performing

Monte-Carlo (MC) simulations. For this, we use the IEEE 4-bus system as shown in Fig. 4.11.

The parameters of the branches are shown in Table 4.8. The nominal nodal injections are also

listed in Table 4.8. To perform MC simulation, we assume different variances on the admittance

matrix (to mimic uncertainty arising from the estimation process) and measurement noises of

different classes according to IT standards [128]. The steps for MC simulation are described

below.

1. Random noise is introduced on the voltage magnitudes and phase angles using IT class

specifications as described in Table 4.1. The noise is then projected to rectangular

coordinates using the approach described in [122].

2. Random error is introduced on the elements of the admittance matrix.

3. Compute matrix H using the equations in (4.43). Compute its inverse H−1.

4. Compute the sensitivity coefficients x using (4.35).

5. Repeat steps 1 – 4 Nmc times, store the estimated sensitivity coefficients in X (k) = x

6. Compute variance of each element of x.

The variances computed using the analytical approach of (4.38) is compared with the ones

computed using the MC scheme. The comparison is shown in Table B.1. We present this

comparison for different values of Nmc. Here, we consider IT class 0.5 for the measurement

noise on voltage phasors and 1 % error on the admittance matrix. For the sake of brevity, the

comparisons are only shown for six different coefficients, as listed in Table B.1. As it can be

observed, for the simulations with Nmc higher than 100, the standard deviation computed

by the analytical approach and MC simulation matches. Hence, it can be concluded that the

proposed analytical approach for error propagation works properly.

193



Appendix B. Validation of Error Propagation using Monte-Carlo Simulations

Table B.1: Performance comparison with number of samples in Monte-Carlo simulations.

ℜ( ∂v3
∂p2

) ℜ( ∂v3
∂p4

) ℜ( ∂v4
∂p4

) ℑ( ∂v3
∂p2

) ℑ( ∂v3
∂p3

) ℑ( ∂v4
∂p4

)

Nominal value 0.0071 0.0152 0.0239 0.0077 0.0176 0.0288
Variance (Analytical) 0.0006 0.0012 0.0018 0.0006 0.0011 0.0016

Variance

Nmc

10 0.0009 0.0016 0.0021 0.0006 0.0012 0.0018
100 0.0007 0.0013 0.0020 0.0007 0.0013 0.0019

(Monte-Carlo) 1000 0.0007 0.0014 0.0020 0.0007 0.0013 0.0019
10000 0.0007 0.0014 0.0020 0.0007 0.0013 0.0019

Furthermore, we vary the error of the admittance matrix from 0.5 %, 1 %, and 2 %, respectively,

to determine the corresponding standard deviations. From the comparison shown in Table B.2,

it is concluded that the error propagation works well for the 0.5 % and 1 %. However, it differs

slightly for case of 2 % error; the difference can be explained due to assumptions made on

error propagation in Sec. 4.3.5 might not hold well for high standard deviations.

Table B.2: Performance comparison with respect to uncertainty on the admittance matrix.

ℜ( ∂v3
∂p2

) ℜ( ∂v3
∂p4

) ℜ( ∂v4
∂p4

) ℑ( ∂v3
∂p2

) ℑ( ∂v3
∂p3

) ℑ( ∂v4
∂p4

)

σY

(% of Y) Nominal value 0.0071 0.0152 0.0239 0.0077 0.0176 0.0288

0.5
Variance (Monte-Carlo) 0.337e-3 0.666e-3 0.986e-3 0.338e-3 0.659e-3 0.938e-3

Variance (Analytical) 0.334e-3 0.662e-3 0.991e-3 0.316e-3 0.628e-3 0.900e-3

1
Variance (Monte-Carlo) 0.0007 0.0014 0.0020 0.0007 0.0013 0.0019

Variance (Analytical) 0.0006 0.0012 0.0018 0.0006 0.0011 0.0016

2
Variance (Monte-Carlo) 0.0015 0.0030 0.0044 0.0014 0.0028 0.0040

Variance (Analytical) 0.0013 0.0026 0.0033 0.0010 0.0021 0.0030
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[76] A. Derviškadić, P. Romano, M. Pignati, and M. Paolone, “Architecture and experimental

validation of a low-latency phasor data concentrator,” IEEE Transactions on Smart Grid,

vol. 9, no. 4, pp. 2885–2893, 2016.

[77] A. M. e. a. Kettner, “Sequential discrete kalman filter for real-time state estimation

in power distribution systems: Theory and implementation,” IEEE Trans. Inst. Meas.,

vol. 66, no. 9, pp. 2358–2370, 2017.

[78] R. Gupta, V. Sovljanski, F. Sossan, and M. Paolone, “Performance comparison of alternat-

ing direction optimization methods for linear-opf based real-time predictive control,”

in 2021 IEEE Madrid PowerTech. IEEE, 2021, pp. 1–6.

[79] R. Gupta, A. Zecchino, J.-H. Yi, and M. Paolone, “Reliable dispatch of active distribution

networks via a two-layer grid-aware model predictive control: Theory and experimental

validation,” IEEE Open Access Journal of Power and Energy, 2022.

[80] M. Bozorg et al., “Influencing the bulk power system reserve by dispatching power

distribution networks using local energy storage,” Electric Power System Research, vol.

163, pp. 270–279, 2018.

[81] T. G. Paul et al., “A quadratic programming based optimal power and battery dispatch

for grid-connected microgrid,” IEEE Trans. Ind. App., vol. 54, no. 2, pp. 1793–1805, 2017.

[82] F. Arrigo, E. Bompard, M. Merlo, and F. Milano, “Assessment of primary frequency control

through battery energy storage systems,” IJEPES, vol. 115, p. 105428, 2020.

[83] M. Zeraati et al., “Distributed control of battery energy storage systems for voltage

regulation in distribution networks with high pv penetration,” IEEE Trans. Smart Grid,

vol. 9, no. 4, pp. 3582–3593, 2016.

[84] C. Straub et al., “Congestion management within a multi-service scheduling coordina-

tion scheme for large battery storage systems,” in 2019 IEEE Milan PowerTech. IEEE,

2019, pp. 1–6.

[85] H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE Trans. Power App.

Syst., no. 10, pp. 1866–1876, 1968.

201



Bibliography

[86] M. Huneault and F. D. Galiana, “A survey of the optimal power flow literature,” IEEE

Trans. Power Syst., vol. 6, no. 2, pp. 762–770, 1991.

[87] S. P. Torres and C. A. Castro, “Expansion planning for smart transmission grids using ac

model and shunt compensation,” IET Generation, Transmission & Distribution, vol. 8,

no. 5, pp. 966–975, 2014.

[88] E. Mohagheghi, M. Alramlawi, A. Gabash, and P. Li, “A survey of real-time optimal power

flow,” Energies, vol. 11, no. 11, p. 3142, 2018.

[89] Y. Tang, K. Dvijotham, and S. Low, “Real-time optimal power flow,” IEEE Transactions on

Smart Grid, vol. 8, no. 6, pp. 2963–2973, 2017.

[90] Y. Liu et al., “Distributed real-time optimal power flow control in smart grid,” IEEE Trans.

Power Syst., vol. 32, no. 5, pp. 3403–3414, 2016.

[91] J. G. Robertson, G. P. Harrison, and A. R. Wallace, “Opf techniques for real-time active

management of distribution networks,” IEEE Transactions on power systems, vol. 32,

no. 5, pp. 3529–3537, 2016.

[92] L. E. R. Chamorro, Real-time control framework for active distribution networks theoreti-

cal definition and experimental validation, 2016.

[93] Guide for phasor data concentrator requirements for power system protection, control,

and monitoring.

[94] M. ApS, “Mosek optimization toolbox for matlab,” User’s Guide and Reference Manual,

Version, vol. 4, 2019.

[95] R. K. Gupta, F. Sossan, J.-Y. Le Boudec, and M. Paolone, “Compound admittance matrix

estimation of three-phase untransposed power distribution grids using synchrophasor

measurements,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp.

1–13, 2021.

[96] R. Gupta, F. Sossan, and M. Paolone, “Model-less robust voltage control in active

distribution networks using sensitivity coefficients estimated from measurements,”

Electric Power Systems Research, vol. 212, p. 108547, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0378779622006277

[97] R. Gupta, “Quantifying uncertainty on the power-flow sensitivity coefficients from

uncertain branches parameters and noisy grid-state measurements,” In preparation,

2022.

[98] C. Mugnier, K. Christakou, J. Jaton, M. De Vivo, M. Carpita, and M. Paolone, “Model-

less/measurement-based computation of voltage sensitivities in unbalanced electrical

distribution networks,” in 2016 PSCC. IEEE, 2016, pp. 1–7.

202

https://www.sciencedirect.com/science/article/pii/S0378779622006277


Bibliography

[99] M. Carpita, A. Dassatti, M. Bozorg, J. Jaton, S. Reynaud, and O. Mousavi, “Low voltage

grid monitoring and control enhancement: The grideye solution,” in 2019 ICCEP. IEEE,

2019, pp. 94–99.

[100] G. Valverde, T. Zufferey, S. Karagiannopoulos, and G. Hug, “Estimation of voltage sensi-

tivities to power injections using smart meter data,” in 2018 ENERGYCON. IEEE, 2018,

pp. 1–6.

[101] J. Zhang, Z. Wang, X. Zheng, L. Guan, and C. Chung, “Locally weighted ridge regression

for power system online sensitivity identification considering data collinearity,” IEEE

Trans. Power Syst., vol. 33, no. 2, pp. 1624–1634, 2017.

[102] J. Zhang, C. Chung, and L. Guan, “Noise effect and noise-assisted ensemble regression

in power system online sensitivity identification,” IEEE Trans. Ind. Info., vol. 13, no. 5,

pp. 2302–2310, 2017.

[103] E. L. da Silva, A. M. N. Lima, M. B. de Rossiter Corrêa, M. A. Vitorino, and L. T. Barbosa,

“Data-driven sensitivity coefficients estimation for cooperative control of pv inverters,”

IEEE Transactions on Power Delivery, vol. 35, no. 1, pp. 278–287, 2019.

[104] R. P. Schulz, L. S. VanSlyck, and S. H. Horowitz, “Applications of fast phasor measure-

ments on utility systems,” in Conference Papers Power Industry Computer Application

Conference. IEEE, 1989, pp. 49–55.

[105] I. W. Slutsker, S. Mokhtari, and K. A. Clements, “Real time recursive parameter estimation

in energy management systems,” IEEE Transactions on power systems, vol. 11, no. 3, pp.

1393–1399, 1996.

[106] I.-D. Kim and R. K. Aggarwal, “A study on the on-line measurement of transmission line

impedances for improved relaying protection,” Int. J. Elect. Power & Energy Syst., vol. 28,

no. 6, pp. 359–366, 2006.

[107] C. Indulkar and K. Ramalingam, “Estimation of transmission line parameters from

measurements,” International Journal of Electrical Power & Energy Systems, vol. 30,

no. 5, pp. 337–342, 2008.

[108] D. Shi, D. J. Tylavsky, K. M. Koellner, N. Logic, and D. E. Wheeler, “Transmission line pa-

rameter identification using pmu measurements,” European Transactions on Electrical

Power, vol. 21, no. 4, pp. 1574–1588, 2011.

[109] L. Ding, T. Bi, and D. Zhang, “Transmission line parameters identification based on

moving-window tls and pmu data,” in Int. Conf. APAP, vol. 3. IEEE, 2011, pp. 2187–2191.

[110] H. Zhang, Z. Diao, and Y. Cui, “Identification of Power Network Branch Parameters

Based on State Space Transformation,” IEEE Access, vol. 7, pp. 91 720–91 730, 2019.

[111] Y. Yuan, O. Ardakanian, S. Low, and C. Tomlin, “On the inverse power flow problem,”

arXiv preprint arXiv:1610.06631, 2016.

203



Bibliography

[112] J. Yu, Y. Weng, and R. Rajagopal, “Patopa: A data-driven parameter and topology joint

estimation framework in distribution grids,” IEEE Transactions on Power Systems, vol. 33,

no. 4, pp. 4335–4347, 2018.

[113] P. A. Pegoraro, K. Brady, P. Castello, C. Muscas, and A. von Meier, “Line impedance

estimation based on synchrophasor measurements for power distribution systems,”

IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 4, pp. 1002–1013,

2018.

[114] P. A. Pegoraro et al., “Compensation of systematic measurement errors in a pmu-based

monitoring system for electric distribution grids,” IEEE Transactions on Instrumentation

and Measurement, vol. 68, no. 10, pp. 3871–3882, 2019.

[115] H. Goklani, G. Gajjar, and S. Soman, “Instrument transformer calibration and robust es-

timation of transmission line parameters using pmu measurements,” IEEE Transactions

on Power Systems, 2020.

[116] C. Wang, V. A. Centeno, K. D. Jones, and D. Yang, “Transmission lines positive sequence

parameters estimation and instrument transformers calibration based on pmu mea-

surement error model,” IEEE Access, vol. 7, pp. 145 104–145 117, 2019.

[117] G. H. Golub and C. F. Van Loan, “An analysis of the total least squares problem,” SIAM

journal on numerical analysis, vol. 17, no. 6, pp. 883–893, 1980.

[118] W. H. Kersting, “Radial distribution test feeders,” in 2001 IEEE Power Engineering Society

Winter Meeting. Conference Proceedings, vol. 2. IEEE, 2001, pp. 908–912.
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