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Abstract

Earth rotation around its axis imposes a 24-hours rhythmicity to all life on the

planet. Rather than passively responding to these periodic changes, nature has

given us an internal timekeeper, the circadian clock, to anticipate to our advantage

the fluctuations in the environment. The circadian clock is a cell-autonomous

pervasive molecular oscillator with a period of about a day. The core of the clock is

a transcriptional-transaltional negative feedback loop involving a few dozen genes.

This set of genes induces 24-hour rhythms in many downstream processes which

are responsible for the daily oscillations in behaviour and physiology. A functioning

timekeeper has been associated with well-being while disruptions of the clock have

been linked with a variety of diseases, including cancer.

To study the properties and behaviour of the circadian clock in mammals the field

has relied heavily on animal models and timed animal omics experiments, due to

the difficulty of performing relevant human experiments. However, there is a vast

set of human data coming from the clinic without a time stamp, so not directly

exploitable to study circadian oscillations. Many methods have been proposed

to assign time stamps to a set of omics snapshots; we take inspiration from their

strengths and flaws to develop a new probabilistic method of circadian phase

inference, CHIRAL.

The physiological impact of the circadian clock in humans is not fully characterised.

We exploited the Genotype-Tissue Expression project (GTEx), assigning time stamps

to the samples using CHIRAL. We used existing relationships among samples to

both robustly infer one time stamp per donor, and transfer time information from

robust clocks to weaker ones. This procedure allowed us to study human mRNA

rhythms in 46 tissues and compare circadian behaviour across sexes and ages.

Clock transcripts showed highly conserved phase and amplitude relationships

across tissues, and were tightly synchronised across the body. Tissue rhythmic

gene expression programs differed in breadth, covering global and tissue-specific

functions, including metabolic pathways and systemic responses. The circadian
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clock structure and amplitude was conserved across sexes and age groups. However,

overall gene expression rhythms were highly sex-dimorphic and more sustained

in females. Moreover, rhythmic programs dampened with age across the body.

Together, our stratified analysis unveiled a rich organization of sex- and age-specific

circadian gene expression rhythms in humans.

To study the clock we took advantage of its low dimensional structure. In fact,

projecting high dimensional biological data onto low dimensional manifolds is

a widespread technique in biology. In particular, it has proved very useful to ex-

ploit single cell transcriptome data. In the single cell framework the RNA velocity

technique arose. RNA velocity tackles the idea that cells move in the low dimen-

sional manifolds; it infers the future state of a cell combining current spliced and

unspliced RNA counts. However, it is still a very new technique, so not all of the

possible adjustments have been made. We develop an analytical framework to add

constrains to RNA velocity dynamical systems and differential geometry, allowing

for trajectory reconstruction and calculation of time distances on the low dimen-

sional manifold. We apply our method to the cell cycle and infer its period across

different brain regions in mouse.

Keywords

Circadian clock, chronobiology, chronopharmacology, human rhythmic sex dimor-

phism, human age dependent circadian rhythms, omics, circadian phase inference,

expectation-maximization, RNA velocity, cell cycle.
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Sommario

La rotazione della Terra intorno al suo asse impone una ritmicità di 24 ore a tutta la

vita sul pianeta. Invece di rispondere passivamente a questi cambiamenti periodici,

la natura ci ha fornito un cronometro interno, l’orologio circadiano, per anticipare a

nostro vantaggio le fluttuazioni dell’ambiente. L’orologio circadiano è un oscillatore

molecolare autonomo presente in quasi ogni cellula con un periodo di circa un

giorno. Il cuore dell’orologio è un ciclo con feedback negativo di trascrizione e

traduzione che coinvolge poche dozzine di geni. Questo insieme di geni induce

ritmi di 24 ore in molti processi a valle che sono responsabili delle oscillazioni

giornaliere nel comportamento e nella fisiologia. Un orologio funzionante è stato

associato al benessere, mentre le disfunzioni dell’orologio sono state collegate

a una serie di malattie, tra cui il cancro. Il ripristino dei ritmi circadiani è stato

recentemente tentato per trattare le malattie metaboliche e l’obesità, con risultati

promettenti.

Per studiare le proprietà e il comportamento dell’orologio circadiano nei mammi-

feri ci si è affidati in larga misura a modelli e esperimenti temporali su animali,

a causa della difficoltà di eseguire rilevanti esperimenti umani. Tuttavia, esiste

una vasta serie di dati umani provenienti dalla clinica senza timbro temporale,

quindi non direttamente sfruttabili per studiare le oscillazioni circadiane. Sono

stati proposti molti metodi per assegnare timbri temporali ad un insieme di misure

dell’abbondanza del trascrittoma; ci ispiriamo ai loro punti di forza e ai loro difetti

per sviluppare un nuovo metodo probabilistico di inferenza della fase circadiana,

CHIRAL.

L’impatto fisiologico dell’orologio circadiano negli umani non è completamente

caratterizzato. Abbiamo sfruttato il progetto Genotype-Tissue Expression (GTEx),

assegnando i timbri temporali ai campioni utilizzando CHIRAL. Abbiamo utilizzato

le relazioni esistenti tra i campioni per dedurre in modo robusto un solo timbro

temporale per donatore e trasferire le informazioni temporali da orologi robusti a

orologi più deboli. Questa procedura ci ha permesso di studiare i ritmi dell’mRNA
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Sommario

umano in 46 tessuti e di confrontare il comportamento circadiano tra i sessi e le

età. Il trascrittoma dell’orologio ha mostrato relazioni di fase e ampiezza altamente

conservate tra i tessuti e sono strettamente sincronizzati in tutto il corpo. I program-

mi di espressione genica ritmica dei tessuti differivano per ampiezza, coprendo

funzioni globali e specifiche dei tessuti, compresi i percorsi metabolici e le risposte

sistemiche. La struttura e l’ampiezza dell’orologio circadiano erano conservate nei

diversi sessi e gruppi di età. Tuttavia, i ritmi complessivi dell’espressione genica

sono risultati altamente più sostenuti nelle femmine. Inoltre, i programmi ritmici si

sono attenuati con l’età in tutto il corpo. Nel complesso, la nostra analisi stratifi-

cata ha svelato una ricca organizzazione di ritmi di espressione genica circadiana

specifici per sesso ed età negli umani.

L’orologio circadiano è un esempio di dati ad alta dimensionalità proiettati su una

varietà a bassa dimensionalità. L’uso di una rappresentazione a bassa dimensione

dei dati è utile in biologia, in particolare per i dati del trascrittoma di una singola

cellula. Nell’ambito delle singole cellule è nata la tecnica della velocità dell’RNA.

La velocità dell’RNA affronta l’idea che le cellule si muovano in varietà a bassa

dimensionalità; deduce lo stato futuro di una cellula combinando i conteggi attuali

di mRNA processato e non. Tuttavia, si tratta di una tecnica ancora molto recente,

per cui non sono stati apportati tutti i possibili aggiustamenti. Sviluppiamo una

descrizione analitica per aggiungere vincoli dinamici e geometrici alla velocità

dell’RNA, consentendo la ricostruzione della traiettoria e il calcolo delle distanze

temporali sulle varietà a bassa dimensionalità. Applichiamo il nostro metodo al

ciclo cellulare e ne deduciamo il periodo in diverse regioni cerebrali.

Parole chiave

Orologio circadiano, cronobiologia, cronofarmacologia, dimorfismo sessuale rit-

mico umano, ritmi circadiani umani dipendenti dall’età, omica, inferenza di fase

circadiana, massimizzazione delle aspettative, velocità dell’RNA, ciclo cellulare.
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1 Space, time, and velocity

1.1 The time of life

Time.

Everyone knows what time is, although to formulate the idea of time, clearly and

without ambiguity, is complex. It is such an intrinsic concept that rarely schools or

universities try to define it on a philosophical scale. We are taught how to measure

it, and the units of time permeate our life. But what is the fundamental unit of

time? The one that speaks to our core, as well as to the vast majority of life as we

know it. Due to the societal evolution of the western cultures our lives revolve

around hours. This starts especially in middle school, where every hour there is

a different subject and we have to adapt our minds to this new time unit. Hours

dictate our life until at least the end of university, all programs and schedules are

indeed based on this societal basic time unit. Even after that, even if our life is

now portioned in fractions longer than the hour, like the 9AM to 6PM working day,

still the hour has a central role for anything different from working time, such as

meetings, sports, events, and gatherings. Physics wholeheartedly disagrees with the

hours and adopted the second as the standard time unit [1]. This unit is unchanged

among a wide variety of branches of physics studying phenomena on our planet.

Yet life does not understand these measurements that humans came up with. Life

takes it a bit more slowly. The clear unit for the vast majority of life on our planet

is the day. The rotation of the earth around its axis drives the environment to vast

changes throughout the day, as encapsulated in figure 1.1. The day houses vast

oscillations in light and temperature which are a rudimentary clock for life to follow.

It is felt almost everywhere on our planet, and is short enough so that life, all life,

from creatures that live months to those that live centuries, need to adapt to it. But
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Chapter 1. Space, time, and velocity

Figure 1.1: Earth during summer solstice. Visualization of light differences in the
day-night cycle. Photo credit: NASA
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1.1 The time of life

a crucial question remains: do we only adapt our behaviours as a response to the

oscillations, or did nature create something better, something smarter? Indeed

nature found a way to encode the 24-hour rhythms in our DNA, so that we could

not only respond to the environmental changes, but anticipate them and use them

to our advantage. The circadian, from Latin “circa diem” (about a day), clock [2] is

the name we gave to our internal timekeeping system.

1.1.1 A molecular timekeeper

The idea that somehow the 24-hour periodicity is embedded in our behaviours

rather than being a mere response to the external variations had to wait until the

18th century to come to light. The french scientist De Mairan removed the daily

light oscillations from the environment of a mimosa and showed how the plant still

continued to open and close its leaves every 24 hours [3]. This first pioneer could

not see the impact of his observation; humanity had to wait two hundred years to

witness a great accomplishment of genetics: the identification of the molecular

mechanism driving these inner 24-hour rhythms in the fruit fly in 1971 [4]. Fifty

years have passed and our knowledge has expanded from plants and files and

we have been able to decode the network of genes responsible for the circadian

clock in mammals [5]. Now we know that the circadian clock is a molecular and

pervasive cell autonomous oscillator; it ticks in virtually all cells of our bodies [6].

The clock gains its periodicity of almost 24 hours [7] from an as-yet incompletely

understood mechanism, which most likely involves a transcriptional–translational

negative feedback loop but probably also other regulatory layers [8, 9]. The full

molecular mechanism of the clock may remain yet hidden, but the effort to detail it

in the last 20 years has led to important advances. A series of key studies [6, 10–12]

has shown that the core oscillator of the circadian clock involves a fairly small set

(likely in the order of 20) of genes, called core clock genes. The interactions among

these core clock genes and some of their most important outputs are depicted in

figure 1.2. These genes in turn regulate the temporal expression of other genes,

which drive programs of 24 hour tissue-specific rhythms in gene expression and

physiology [15, 16]. The fact that only a handful of genes are able to control for

such distinct oscillations in physiology and behaviour should be taken as a food for

thought, even if we will not discuss the philosophical implications here. Under the

control of the circadian clock life has adapted to the oscillations in the environment

and has learned to thrive turning to its advantage the intrinsic variability in its

surroundings. Sadly, humans in the modern world are under societal constraints

(such as timing of social gathering and work schedule) which often interfere with the
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Figure 1.2: Circadian adaptation as a unifying model that integrates behaviour
and physiology. Caption continued on the next page
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1.1 The time of life

Figure 1.2: The circadian clock allows light-sensitive organisms to synchronize
their daily molecular oscillations, behavioural rhythms, physiological rhythms and
organismal cycles with the rotation of Earth on its axis. Core molecular pathways
dictate behavioural and physiological cycles. This core molecular clock in mam-
mals, expressed both in brain and peripheral metabolic tissues, comprises a series of
transcription–translation feedback loops that include opposing transcriptional ac-
tivators (CLOCK–BMAL1) and repressors (PER–CRY)[13]. The non-phosphorylated
PER–CRY complex represses CLOCK–BMAL1; phosphorylation, in turn, results in
the degradation of PER–CRY and the turnover of these repressors. In addition,
CLOCK–BMAL1 induces transcription of REV-ERB and of ROR, which regulate
BMAL1 expression. During the night, PER–CRY is degraded through the ubiquity-
lation of CRY by FBXL3. The circadian clock coordinates anabolic and catabolic
processes in peripheral tissues with the daily behavioural cycles of sleep–wake and
fasting–feeding. SCN, suprachiasmatic nucleus. Figure and caption fromCircadian
topology of metabolism [14]

natural oscillations of the clock [16, 17]. The vast majority of knowledge pertaining

to the clock has been obtained through animal experiments; the sacrifice of animals

should not be easily forgotten when discussing biomedical advancements.

1.1.2 Animal experiments around the clock, atlases, and benchmarks

To study the mammalian clock, many experiments spanning the full day have been

performed, mostly on mice. The general setup is to sacrifice mice every 2 to 6 hours

over 24 hours. Most of these experiments use highly controlled conditions. Notably,

the mice are typically of one genetic background and taken from the same gender;

moreover, environmental light or temperature conditions are tightly controlled,

as well as the feeding regimen and schedules. Although many experiments focus

on specific organs or conditions, some transcriptome analyses provide compre-

hensive views on temporal gene regulation across an entire organism. Five years

ago, the first atlas of gene expression around the clock was published [18]. In this

experiment, two mice were sacrificed every 2 hours, then 12 tissues were analysed

for their mRNA expression levels using RNA sequencing. This seminal dataset

has since then served as a benchmark for other around-the-clock experiments on

mice [19]. Given the strictly controlled experimental conditions typical of mice

experiments, this atlas minimises all the variation in gene expression due to factors

different from the circadian clock. More recently, an atlas on baboons [20] has been

published in an effort to close the gap between mice and humans. In this case, one

baboon was sacrificed every 2 hours and 64 tissues were collected and analysed. As

baboons are more similar to humans than mice, these data may in principle provide
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a better benchmark for future circadian studies in humans, especially considering

the genetic diversity of the sacrificed baboons. In particular, mice are nocturnal

animals and there are thus intrinsic differences in clock programs [21], though

these are not yet fully characterized. To reduce the animal burden of experiments

around the clock, some computational methods have been introduced to infer the

circadian phase of omics samples.

1.1.3 Methods of circadian phase inference

Given the abundance of data, computational assignment of circadian phase to

omics samples have been suggested. It is important to precise the definition of cir-

cadian phase: it is the molecular state of the clock with respect to its cycle. A variety

of approaches have been proposed, but the community has not yet recognised a

golden standard [15, 22–27]. The vast majority uses prior knowledge on clock gene

phase and amplitude to infer the phase of a new sample; this is a solid approach

although not necessarily general with respect to tissues or species considered. One

method has taken an "unsupervised" approach and has improved on principal

component analysis [28] to obtain a widely applicable method. We will discuss

more in details these methods and applications, their weaknesses and strengths

in chapter 2. The objective for all these methods is ultimately to reorder human

samples to have access to the human circadian clock. However, it is important to

keep in mind that the mammalian circadian clock has a non-trivial structure across

the body.

1.1.4 The clock across tissues

Up to now we only focused on the temporal aspect of the clock. The spatial lo-

cation of the circadian clock is an important part of the control of our 24-hour

rhythmic behaviour. With a vast number of organs (> 20), mammals require precise

coordination across the body to fully exploit the timing information given by the

circadian clock. In fact, the mammalian structure for time-keeping is hierarchical

[29]: a master clock [30] is hosted in the brain’s suprachiasmatic nuclei (SCN) and

peripheral clocks tick in virtually all of the other organs. The circadian clock’s free

running period is not exactly 24 hours. If not entrained1, the human clock will

drift from the environment, losing about 15 minutes a day [31]. However, under

normal physiological conditions where the organism is subject to external 24 hour

1Entrained in the circadian clock context means synchronised with the external 24h cycle.

8



1.1 The time of life

periodic cues (called Zeitgebers in the circadian field), the clock synchronises to

external time [32, 33]. The clock in the SCN responds to the external light intensity

cycle [34] and synchronises the body’s peripheral clocks [35]. Indeed it could be

argued that light oscillations are by far the best possible cues (Zeitgebers) for the

clock to entrain to. Nature has made sure that the main driver of our coupling

to the surrounding environment is the strongest one. The internal positioning

of an individual’s circadian timekeeper with respect to the external time varies

from individual to individual. This variability is an important consequence of the

difference between the free running period of the circadian clock and the period

of earth’s rotation on its axis. The precise position depends on the combination

of free running period and amplitude of that individual’s clock and, importantly,

the Zeitgeber strength such as the intensity of light. The difference (dephasing)

between the circadian phase (internal time) and external time is called chronotype

and varies in humans with a standard deviation of 2 hours [15, 36–39]. The other

interesting phase relationships to explore are the ones among tissues. Especially as

peripheral tissues are sensible to cues different than light [33] (figure 1.3) that might

contrast with the signals from the clock in the SCN [41]. One relevant example is

the clock in the liver: this peripheral clock is so responsive to feeding patterns that

it can switch its clock with respect to the brain if the feeding time is reversed [42].

Overall, the network of clocks across the body shapes and regulates our 24-hour

rhythmic physiology.

1.1.5 Circadian physiology

The interplay of the clock and our physiology is extensive and particularly relevant

for metabolic tissues, as shown in figure 1.4. However, circadian oscillations are

more relevant in some of these tissues than others. The liver plays a central role in

nutrient metabolism and its transcriptome is highly rhythmic. In entrained mice

the about 20% of the protein coding genes show circadian oscillations in the liver

[18, 43]. Lipid metabolism in the liver has been shown to be rhythmic, and its

oscillations are controlled at various steps [44–46]. The clock indirectly controls

lipogenesis and energy homeostasis in the liver; it regulates lipid absorption re-

ducing the risk of obesity and lipid accumulation [47–50]. In addition, circadian

oscillations are also present in the intestine, where the clock regulates packing of

triglyceride and macro-nutrient absorption [51, 52]. This timing ensures the best

use of energetic resources and avoids the utilisation of lipids while glucose is readily

available. The interplay of the liver circadian clock and glucose metabolism system

has largely been studied [53–57]. While each study focuses on a specific interaction
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Figure 1.3: Model of how external rhythmic cues entrain circadian rhythms across
tissue. The central clock, located in the suprachiasmatic nucleus of the hypotha-
lamus, takes light from the environment and synchronises clocks in peripheral
tissues by regulating locomotor activity and feeding rhythms as well as through
systemic signals such as hormones and metabolites. Peripheral tissues, such as the
kidneys, heart, and liver, orchestrate rhythms in tissue physiology, such as sodium
homeostasis, blood pressure, and carbohydrate metabolism, respectively. Figure
and caption adapted from Rhythms of the Genome: Circadian Dynamics from Chro-
matin Topology, Tissue-Specific Gene Expression, to Behavior [40]

between the clock and glucose metabolism pathways, a clear overall picture arises:

to ensure physiological optimality, glucose metabolism needs to be timed during

the active phase. On the other hand, if food availability is "unnatural" or unex-

pected from a circadian perspective the liver clock can adapt to these new rhythms.

Circadian glucose level control and homeostasis are particularly relevant for human

health, in particular to prevent the insurgence of diabetes [58]. Blood glucose levels

are controlled by changes in the secretory capability for insulin of the pancreas,

a process downstream of the circadian clock [59–61]. Another important system

under the direct control of the circadian clock is the cardiovascular one. The clock

is responsible for regulating amplitude and timing of the daily oscillations in blood

pressure ensuring a peak in the middle of the active phase [62, 63]. Also the blood

10



1.1 The time of life

Figure 1.4: Circadian physiology throughout the day. The clock partitions be-
havioural and metabolic processes according to time of day. The clock coordinates
appropriate metabolic responses within peripheral tissues with the light/dark cycle.
For example, the liver clock promotes gluconeogenesis and glycogenolysis during
the sleep/fasting period, whereas it promotes glycogen and cholesterol synthesis
during the wake/feeding period. Proper functioning of peripheral clocks keeps
metabolic processes in synchrony with the environment, which is critical for main-
taining health of the organism. Different tissues exhibit distinct clock controlled
properties; thus, ablation of the clock in certain tissues will cause opposing effects
on metabolic function as uncovered through dynamic challenges at different times
in the cycle under different nutrient conditions. Aging, diet, and environmen-
tal disruption such as shift work may also affect the integration of circadian and
metabolic systems. Figure and caption from Circadian Integration of Metabolism
and Energetics [14]
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pressure response to external stress is controlled by our circadian pacemaker [64].

In addition, heart rate and heart rate variability follow daily oscillatory patterns

[65–67]. All these factors could be linked with the uneven timing of a variety of

cardiovascular events [68]. Clocks all around the body contribute to the oscillations

in physiology and need to be well-timed to avoid negative interference [69]. A

putative mechanism to ensure such coherence is signalling from the master clock

via systemic cues such as hormones and glucocorticoids [70]. It might be of crucial

importance for medicine to understand the interplay of clocks in different tissues

[71]. It is believed that disruption of communication between the central clock and

the vast network of peripheral ones is able to destabilise periodic oscillations across

the body leading to a variety of metabolic diseases and neuropsychiatric disorders

[72].

1.1.6 Timed health

During the last 20 years, two questions were repeatedly addressed: what are the

most prominent effects on human health of a disrupted circadian clock, and what

are the main causes in today’s lifestyle that deteriorate our internal timing system?

Only fairly recently the role of the circadian clock in human health has earned

a more prevalent position in biomedical research, as ties have been discovered

with a wider variety of diseases across the body [73–78]. Faults in the circadian

clock have also been connected with the aberrant metabolism of cancerous cells

at the end of last century [79]. It has been hypothesised that this interplay is due

to reciprocal interactions with the cell-cycle, bestowing upon the circadian clock a

tumour suppressor function [80]. Since the first link between cancer and a broken

clock, more and more links between a disrupted circadian clock and cancerous

growths have been identified [81–89]. These studies have been possible also thanks

to the explosion in available data [90]. In addition, the synchrony both among all

the internal clocks in different organs and with the external cycle is responsible

for proper timing of downstream metabolic processes, thereby contributing to the

health of the organism; the interplay of the circadian and the metabolic networks

can be disrupted, especially in humans, by a variety of factors such as ageing, meal

timing, jet-lag, and shift work [14, 91, 92]. The idea to restore circadian clocks,

especially using time restricted feeding [93–95] to fight diseases where anomalous

metabolism is pervasive is gaining momentum [96–99] and is summarised in fig-

ure 1.5. In addition, pharmacological modulations of the circadian clock have

been introduced as a concept to fight cancer [77, 100]. To sum up, our current

understanding suggests that the lack of a functioning circadian clock contributes
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Figure 1.5: Chronic circadian rhythm disruption by erratic lifestyle whereas time-
restricted feeding can restore daily rhythms and improve health. The potential
mechanisms are largely based on rodent studies. Few observations have been made
in insects (∗) and in humans (#). IL, interleukin; TNF, tumor necrosis factor. Figure
and caption adapted from Circadian physiology of metabolism [92].
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to irregular and spread-out food intake and metabolic disorders, and may lead to

higher cancer rates and increased susceptibility to metabolic diseases. On the other

hand, restoring circadian patterns seems to improve health and alleviate metabolic

disorders. Many factors contribute to the weakening of the circadian rhythm; some

are due to our lifestyle, such as sleep disruption, shift work, and absence of 12 hour

fasting periods, and others are further from our control, such as ageing, chronic

diseases characterised by altered metabolism, and cancer. It should be mentioned

that, although promising in offering potential novel therapeutic avenues, complete

biochemical proofs of these notions are still lacking in many cases. Lastly, it is

important to remember that it is relevant, although often overlooked, to take into

account the possible effects of sex and age on the circadian clock.

1.1.7 Circadian sex-dimorphism

The notion that female mice have stronger and more robust behavioural circadian

oscillations is dominant in the field [101]; nonetheless still the vast majority of

circadian animal experiments only involves male mice. With the wider availabil-

ity of sequencing techniques a quantitative measurement of the differences in

rhythmicity was brought forward [102]. Although the majority of transcripts shared

rhythmic behaviour among the two sexes, 16% of transcripts was only rhythmic

in females while only 9% exhibited rhythmicity only in male mice. Stronger cir-

cadian oscillations in females has also been recapitulated in humans behavioural

rhythms [103, 104]. Indeed males had either higher night activity or lower day activ-

ity contributing to the erosion of circadian oscillations. Females also showed higher

circadian rhythmicity on cognitive tests while undergoing forced-desynchrony ex-

periments [105]. These experiments uncouple the natural oscillations from the

sleep wake cycle and control for circadian phase, prior sleep, and elapsed time

awake when interpreting cognitive test results. Lastly, the sleep hormone, mela-

tonin, shows earlier and higher circadian oscillations in females, inducing earlier

chronotypes and better compartmentalization of tasks [106]. Chronotype, the dif-

ference between the state of the internal clock and the external time, has been

shown again to be dependent on both age and sex [107].

1.1.8 Age-dependent rhythmic physiology

The population, especially in first world countries, is ageing and thus increasing

the risk and frequency of chronic diseases [108]. The influence of the clock on

behavioural and sleep rhythms is well known and has also been correlated to the
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ageing process [109, 110]. In fact, circadian rhythms in animal models shift in phase

and decrease in amplitude as a result of ageing [110, 111]. Animal studies have also

shown the decline of Zeitgebers reception as a result of ageing [112–115]. This in

turn diminishes the ability to adapt and anticipate environmental changes in aged

mice. High amplitude oscillatory rhythms are regarded as beneficial for animal

well-being and longevity[116–118]. In addition, if the coupling between the internal

and external cycles is not possible due to large differences in period, the expected

lifespan of mice is reduced by about 20% [119]. On the other hand, interventions to

restore circadian oscillations, like implanting fetal SCN into aged hamsters, increase

longevity [30, 120, 121]. Lastly, circadian disruption due to chronic jet lag2 has been

associated with cancer and reduced lifespan in mice [122, 123]. In humans precise

experiments on the interplay between the clock and ageing are complicated to

replicate. However, the set of data and experiments, many of which are reported

in section 1.1.6, suggests that a functioning clock increases health and longevity

and that therapeutics aiming to restore circadian rhythms can revert some effects

of ageing or disease.

Conclusions

We have encompassed the relevant aspect of the circadian clock, from its molecular

and hierarchical structure to its importance in health and disease, and how it has

been studied up to now. Now we will move on to describe how to approach highly

multidimensional omics data (becoming omnipresent in biology), such as those

introduced in section 1.1.2. The core idea to to study omics data is to project them

onto a suitable, known or inferred, low dimensional manifold that captures the

properties of the biological system.

2Imagine living a week in Paris then one in Tokyo for a year.
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1.2 The space of biological data

As humans progressed through history the knowledge we gained about the world

has become increasingly quantitative [124, 125]. Biology has been no exception,

especially in the last 100 years. The sheer amount and quality of data we have

been able to collect has grown astonishingly [126–128]. Many different quantities

have been measured more and more reliably as time and technology advanced,

spanning almost all the questions and scales of biological systems. Our focus is on

systems and molecular biology[129–131], the origin, almost at chemical level, of

the living world around us. To correctly characterise the state of systems or cells

we would, ideally, measure protein activity levels. This is not yet achievable at the

scale and cost that would allow protein activity measurements to be ubiquitous

and universal in biological studies, although we have been working tirelessly in this

direction for half a century [132–135]. After the advent of affordable technologies to

measure relative mRNA abundance [128, 130], the microarray technique [136–142]

first and RNA-seq [143–147] with its single cell counterpart [148–153] later, mRNA

abundance has often been used as a proxy for protein concentration. In this thesis

we developed our methods and conclusion on the backbone of genome-wide mRNA

abundance measurements and their relationship with protein activity. Each point in

the mRNA space of measurement is a highly multi-dimensional vector, with about

104 entries. All the currently available data lives in the high dimensional "gene

space", and if left there is of difficult interpretation. Therefore we need techniques

or assumptions on how to reduce the dimensionality of the data without distorting

the meaningful properties of the system of interest.

1.2.1 Low dimensional projections

A general assumption is that there exists a low dimensional manifold [154] M that

encapsulates the relevant properties of the high dimensional data. All the variance

induced in the data outside of M is either measurement or biological noise, or is

due to other processes. In order to be able to project the high dimensional data

onto M we can follow two distinct approaches. We can try to infer the best N

dimensional manifold IN and hope that there is a mapping3 from IN to M . On

the other hand we can assume to know beforehand the topological structure of

the low dimensional manifold. In this case the difficulty lies in finding the correct

projection of the data in order to capture the biological process we want to study

3By mapping we mean a continuous mapping with a continuous inverse, the very definition of
homeomorphism. We did not use the technical term in the text to facilitate reading.
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on the manifold.

Inferring low dimensional manifolds

The task of inferring a low dimensional manifold to reasonably represent high

dimensional data living in the gene space is not a trivial one. Efforts of almost a

century have brought today a variety of methods, which can be divided into two

categories depending on the conceptual approach to dimensionality reduction.

Some, especially older approaches, want to keep the overall distance structure of

the data[28, 155–158], the most famous being PCA [28]. Modern methods favour a

preservation of local geometry disregarding long distance relationships [159–164].

Among these there are the most commonly used in single cell biology, also due to

their ability of recapitulate important similarities and differences between cells,

T-SNE [163] and UMAP [164]. Although these [163, 164] methods often capture

crucial properties of datasets in their inferred low dimensional space, they fail in

some cases. This is especially important if we are studying a process which is not

the main driver of variance in our dataset. In such a case it would be useful to pre-

process the data to allow the process of interest to be the main source of variance

in the data. If we cannot remove the undesired variance it would be precious to

know, or at least hypothesise, how the low dimensional is shaped to ease the task of

projecting the data.

Known low dimensional manifolds

There are cases in which we know the structure of the low dimensional manifold.

For example cells switching from state A to state B can be represented by a segment

going from A to B. In the rare events where the topology of the low dimensional

manifold is known or can be assumed, the projection can be obtained in a more

controlled way. In addition, a more mathematical approach for the analysis of the

data can be put forward if we know the low dimensional manifold. However, it

is still not an easy task to correctly project high dimensional data onto a known

low dimensional manifold capturing the relevant variation induced by the process.

We are particularly keen on exploiting circular manifolds, homeomorphic to the

unit circle S1. Such manifolds also have a clear and convenient basis (Fourier) to

express functions. Crucial biological processes of great importance to us, such

as the circadian clock (described in section 1.1) and the cell cycle (described in

section 1.3.2), can be represented on the unit circle, S1. These two processes can

be studied simultaneously in a low dimensional manifold that is the cross product
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of two circles, a torus, and have been shown to be linked in single cells [165]. The

projection onto low dimensional manifolds also allows us to study new descriptions

of the system, like the statistical physics one.

Statistical physics on low dimensional manifolds

We assume we managed to have high dimensional data projected onto a low di-

mensional, and we want to study the statistical physics of the biological system. By

statistical physics we mean the description of a system, in terms of statistical me-

chanics of equilibrium, that has characteristics determined by the biological data.

To obtain such descriptions we can, for example, map the parameters of a known

system in statistical physics to a function of biological data (as we will do in section

3.5). The mapping between low dimensional representation of biological data and

known problems in statistical physics can provide insights on the behaviour of

emerging properties of the biological system, that might not be obtained otherwise.

Statistical physics is especially useful at determining and calculating changes in the

collective behaviour due only to local interactions, such as transitions from disor-

der to order, and has already contributed to the advancement of biology [166, 167].

However, there is more to biology than a static description. Biology describes life in

its essence, but life is ever-changing and deserves a dynamical description.

1.3 Dynamics in biology

Introducing the dynamical descriptions of biological data we address a crucial ques-

tion: how do systems move in the low dimensional space, thus how do they evolve

in the high dimensional (gene) space? The main difficulty is to correctly write the

equations of motion. We do not necessarily know the correct parametrization to

write a humanly interpretable set of equations that encompasses the key features

of the biological system we are studying. Physics can come to our aid suggesting

reasonable quantities to measure experimentally and match with the theoretical

predictions. However, no one guarantees that the quantities relevant in physics are

also the correct one to describe biology, and most probably they aren’t4. Physics has

guided the idea that cells as they differentiate descend a potential landscape, which

has been promoted more than fifty years ago [159, 168–170]. It was proposed that

cells should navigate a static landscape, this can’t account for biological systems

such as switches. Recently, this limitation has been addressed by a low dimensional

4This idea has been developed also through conversations with Prof. S. Rahi
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dynamical system encapsulating the behaviour of biological switches and transi-

tions between cell types [171]. Such mathematically detailed systems are of great

interest but do not cover many scenarios in biology. In fact, the variables governing

a vast portion of biological systems are still not clear. With the arrival of affordable

single cell technologies the question about the dynamics of single cells arose in a

vast number of distinct branches of biology.

1.3.1 The velocity of cells

With the advent of scRNA-seq [149] ten years ago a new resolution of measurements

was introduced in biology. The ability to measure genome-wide transcriptome in

single cells has allowed a more precise study of many biological processes, such as

the introduction of atlases for a variety of tissues and species [172–176]. However,

the temporal aspect is still complicated to investigate as systems do not survive an

RNA-seq measurement. So we are left with only a snapshot of cells at a defined time

point, which limits the possibility to infer and characterise their dynamics [177].

By dynamics of cells we mean the dynamics in the high dimensional gene space

or in a suitable low dimensional manifold where high dimensional data has been

projected (section 1.2.1). We want to understand how and why cells navigate the

transcriptional landscape. Thus, the velocity of cells is the velocity with which cells

move through the gene space or, depending on the situation, a low dimensional

manifold where biological properties of interest are conserved. The idea to use

unspliced mRNA as a proxy for mRNA abundance in the future (although not a

precise future), an approach already described for bulk measurements [178, 179],

was applied to single cells five years ago [180] with brilliant results and is recapitu-

lated in figure 1.6. This technique has been widely used in the so called "single-cell

temporal-omics approaches" [20, 176, 182–186] (summarised in figure 1.7), espe-

cially in developmental studies. Temporal-omics methods study development and

pathology by integrating temporal information existing in an omic snapshot with

the transcriptome data. RNA-velocity has also been upgraded [188] and expanded

to tentatively include proteins in the equation [189, 190]. An important remark on

all the formulations of RNA-velocity is that the arrows of the "velocity" actually

represent transitions probabilities. Longer arrows signify more probable transitions,

not faster ones. Also, the manifold chosen to represent the interesting variations in

the data is always an inferred one, with little to no external constraints, as described

in section 1.2.1. This choice is due to the complex architecture and yet unknown

topology of developmental manifolds. The general theory and applications of the

RNA-velocity technique are still open to improvement, especially with regards to dy-
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a b

Unspliced 
mRNA

Spliced
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Early
progenitors

Ratio    RNA velocity

Figure 1.6: Measuring dynamic changes in gene expression across complex tissues.
a, As messenger RNA matures, sections of the immature transcript are removed
— a process called splicing. When the expression of a gene increases, a transient
increase in the proportion of immature, unspliced transcripts compared with that of
mature, spliced transcripts is observed in the cell. By contrast, a higher proportion
of spliced transcripts is seen for a short time when expression of the gene decreases
(not shown). La Manno et al [180] measured the ratio of unspliced to spliced
transcripts for each gene in a single cell to calculate a quantity called the RNA
velocity, which reveals how gene expression is changing. b, By measuring RNA
velocity in thousands of cells in a tissue (here, in neurons in the developing mouse
brain), the authors could generate maps that show not only how closely related cells
are to one another (with closeness indicated by similar colours), but also which
cells they will become similar to in the future (indicated by arrows), according
to the gene-expression changes they are undergoing. RNA velocity successfully
tracks early progenitors (orange and yellow) that eventually give rise to a range of
differentiated cell types (blue dashed circles). (b adapted from Fig. 3c of [180]),
Figure and caption from Technique to measure the expression dynamics of each gene
in a single cell [181]
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Figure 1.7: Illustrative representation of single-cell temporal-omics approaches.
Given the snapshot obtained from single-cell RNA sequencing, data analyses enable
characterization and classification of the gene expression landscape in a hetero-
geneous population of cells. Recent methods further enable the extrapolation of
future gene expression states (right) and reconstruction of past cellular events (left).
Together, these approaches permit greater inference of the temporal changes within
a single cell while still relying on measurement from a single time point. Figure and
caption from The emergence and promise of single-cell temporal-omics approaches
[187]
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namical constraints (i.e. give the arrows in the velocity field the dynamical meaning

of actual velocity). The cell cycle is a perfect testing ground for RNA-velocity and its

derivatives as it is a system with an evident dynamic and a known low dimensional

manifold.

1.3.2 Cell cycle speed

Arguably the most ubiquitous process in nature, the cell cycle and has been studied

for almost two hundred years since its discovery in the middle of the nineteenth

century [191, 192]. The cell cycle is divided into four phases or better two active

phases and two gap phases [130, 193–196] summarised in figure 1.8. The active

phases are mitosis (M phase) and DNA synthesis (S phase); the cell after mitosis

undergoes G1 (gap 1) phase where it can exit or re-enter the cell cycle, then DNA

synthesis occurs followed by the second gap phase, G2 (gap 2), and finally mitosis

again. The reason why the cell cycle is viewed as a series of steps rather than a

continuous oscillation lies in the crucially different mechanism that separates the

cell cycle from the circadian clock. In fact, the cell cycle progresses through its

phases due to a timed degradation of relevant proteins that are otherwise expressed

in the cell [128, 130] in opposition to a negative feedback loop. Given the periodic

structure of the cell cycle, even if it is biologically divided into discrete phases, the

temptation of mapping it to the unit circle S1 is too great to resist. Indeed this

mapping could bring new insight on the cell cycle, especially if the discrete phases

are not a sufficient characterization. The FUCCI system was a turning point to

directly evaluate the cell cycle state (and phase) of a cell by comparing the intensity

of two fluorescent proteins in microscopy experiments [197]. These measurements

cannot be easily coupled with scRNA-seq to match transcriptome information with

cell cycle phase Although if combined, information about cell cycle phase and

transcriptome bring insights on how individual cells are able to shape their gene

expression dynamics [198]. Many computational approaches, generally lacking

generality and robustness have been attempted [199–203] but no golden standard

has been recognized by the community. Although the cell cycle has a clear periodic

structure [204] its period is highly variable across cells; even among renewing cells

10−100 hours can pass between two subsequent divisions [205]. This variability is

highly attributable to variation in the length of G1, as S and G2 last between 2 to 4

hours each and M phase lasts only 1−2 hours.
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Figure 1.8: The cell division cycle. The eukaryotic cell cycle is the process during
which a cell duplicates its entire cellular content during interphase, and through
division in M phase creates two genetically identical cells. The two main events,
DNA replication and the segregation of the replicated DNA, are separated during
the cell cycle. DNA replication happens during a distinct phase in interphase, called
‘S phase’, and DNA separation happens in mitosis (M phase). Segregation of the
cellular content happens during cytokinesis at the end of M phase to complete a
cell cycle, after which a cell can either exit the cell cycle or enter a new round of cell
division. During interphase, cell cycle progression is controlled before and after
S phase. Commitment to enter a new cell cycle (that is, S phase entry) is made
during a decision window preceding S phase. Similarly, during a decision window
following S phase, a cell can commit to mitotic entry. Commitment to mitotic exit
happens during M phase at the metaphase–anaphase transition. Cell cycle control
in cancer, Matthews et al. [196]

23



Chapter 1. Space, time, and velocity

Conclusions

We have now explored the setting of the various problems we want to address

and investigate. They range from methodological questions to biomedical ones,

spanning scales from human population to single cells. There is one thread to bring

them all and in this thesis bind them: their nature as high dimensional problems

that we study on opportune low dimensional manifolds. Now we formulate more

clearly the questions driving the work presented here.
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1.4 Direction and aims

Here we discuss the main aims that drove the research described in this thesis; not

all of the questions presented here will find an answer here.

1.4.1 Circadian phase inference

We want to reconstruct the circadian phase of biological omics samples. By circa-

dian phase we mean the molecular state of the circadian clock with respect to its

cycle. This is equivalent to finding the best projection of high dimensional data

living in the gene space on the unit circle that preserves the circadian clock and

its related processes. One of the main problems in the field is to find a method

to correctly infer the circadian phase given mRNA abundance measurements. We

want to achieve this in a conceptually different way from what has already been

done [15, 22–27]. Published methods are mainly supervised5; our aim is to create

a general, unsupervised5 method of phase reconstruction. We aim to find a ro-

bust and general way to reorder any given dataset in which the oscillations due to

the circadian clock exist. The key methodology is to develop a probability model,

which allows us to derive joint probability distribution on the quantities of interest

(phases). In a probabilistic framework this means to find the maximum, or ideally

the expected value, of P (circadian phases|mRNA abundance). To be biologically

useful our method must be robust and work well on real data. The bridge between

these two requirements is a computational framework, where we will need to im-

plement our calculations once analytic computation will become unfeasible. To

test the method we find, we will apply it to datasets in which the circadian phases

are known. Once a working method is found we will apply it to human data.

1.4.2 Circadian clock in humans

The main objective is to apply our method of circadian phase inference to human

data and learn new chronobiology. We want to understand the behaviour of the

circadian clock and gene expression rhythmicity in humans. Although many exper-

iments have been performed in mice, the human clock is still vastly understudied.

We are also keen on exploring the circadian difference between males and females

or during ageing. We are finally interested in the medical application of our findings,

5These words are borrowed from machine learning: with unlabelled we mean datasets where no
temporal information about the samples is known, with supervised we mean that we have a set of
labelled data to use, and with an unsupervised approach we do not have any
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in particular regarding age or sex related differences. These differences could give

crucial medical insights regarding treatment timing differences for the different

groups, explaining the different incidence of certain illnesses, or even suggest novel

treatments approaches. Using all our previously constructed methods, we aim to

investigate the state of the clock in diseased tissues. We want to study the behaviour

of the circadian clock in unhealthy samples, to more precisely link the clock with

various illnesses. In order to do this in a significant way, we need to introduce a

metric to evaluate the integrity of the clock. We would need to develop two different

metrics of clock integrity: one for a single sample, and one for a whole dataset.

1.4.3 Dynamically consistent RNA-velocity

As RNA velocity [180] is a very new technique, not all of the possible adjustments

have been made, although many have been tried. the inner consistency of the

velocity field should be exploited, both arising from differential geometry and

derived from a dynamical systems perspective. We want to be able to integrate the

velocity field through a trajectory and determine its duration. We start by using a

convenient system: the cell cycle.

Cell cycle properties

The cell cycle is an almost ubiquitous process in biology, so a more precise knowl-

edge of how exactly cells progress through it could be a great tool to better un-

derstand the steps of life. It would be relevant to infer a velocity field that can be

integrated along one cell cycle to calculate its period. This approach should be

validated using inhibitors[206, 207] or temperature [208, 209] to slow down the

cell cycle and compare the period of cell cycle measured with the FUCCI system

[197] to the one inferred computationally. Once this can be done, a much more

comparative and in depth study of the cell cycle can begin. We want to infer both

the period of the cell cycle and of the single phases in developmental atlases to

better understand the interplay of the cell cycle and differentiation. It would also

be interesting to compare the shape of the speed of cells undergoing the cell cycle

across cell types and species.
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2 How to tell time: advances in

decoding circadian phase from

omics snapshots
This section has been adapted from the review article How to tell time: advances in

decoding circadian phase from omics snapshots [210] written by Lorenzo Talamanca

and Felix Naef. The work was envisioned, supervised and checked by Felix Naef,

it was compiled, written, and illustrated by Lorenzo Talamanca. Sections of this

review have been incorporated in the introduction to improve the overall flow of

this thesis. What follows from section 2.3 is the core of the review modified as little

as possible from the original text. The abstract and introduction have been adjusted

to improve readability.

2.1 Abstract

The ability of organisms to keep track of external time is essential for health. This

ability is achieved through the circadian clock interacting with the environment.

The focus of this review is recent methods to detect the internal circadian time of

an omics sample. We analyze an important methodological question: how to infer

the circadian phase of unlabeled omics snapshot measurements. Answering this

question could both significantly increase our understanding of the circadian clock

and allow the use of this knowledge in biomedical applications. We review existing

methods following a historical trajectory, concentrating on the more recent ones.

We explain the basic concepts underlying the methods, as well as some crucial

technical aspects of each. We conclude by reporting how some of these methods

have, more or less effectively, enabled furthering our understanding of the clock

and given insights regarding potential biomedical applications.
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2.2 Introduction

The circadian clock is the celebrated evolutionary response to earth’s intrinsic

24-hour periodicity [4]. It is a cell-autonomous molecular oscillator driven by

transcriptional-translational negative feedback loop with a period of about 24

hours [7], due to only a few dozen genes [6]. It drives behaviour and physiology [16]

adapting them to the periodicity of the environment. Disruption of the circadian

clock have been associated with a variety of diseases [91]; time restricted feeding has

been used in recent years to rescue circadian oscillations and counteract metabolic

diseases [92]. However, due to the impossibility of performing experiments around

the clock on humans, we have often relied on mice data to infer properties of the

circadian clocks in mammals. On the other hand there is a vast availability of human

data, which often come without a time stamp. Thus a series of computational

methods, that we will here review, have been brought forward with the intent of

inferring the circadian phase, i.e. the molecular state of the circadian clock with

respect to its cycle, of omics samples, therefore allowing to study the clock in

humans.

2.3 Computational methods to infer circadian phase

Since the importance of circadian timing in human health was established, an

interesting question arose: how can we detect the internal time of a tissue sample

from its gene expression level? Answering this question might open up significant

novel medically relevant opportunities, especially for diagnosis, prognosis, and

potentially therapeutic strategies for a variety of illnesses, most importantly cancer

[211]. In addition, reliable methods to infer circadian phase would allow us to

further study the structure and effects of the clock by leveraging the vast quantity of

existing unlabeled RNA sequencing data on humans available in public databases.

We could gain important insights on clock biology in healthy and diseased human

tissues, notably useful for future biomedical applications. Although many out-

standing works have been recently published, how reliably and robustly this can be

achieved remains an open question. An array of methods is currently available. The

majority of algorithms available are supervised in the sense that the parameters

are trained on time-labelled data (the training set). A word of caution concerns

the intrinsic difference between the circadian phase and the external time, as ex-

plained above, which is generally not considered: circadian phase and the external

time are often taken as equal in labelled datasets. One natural method to assign

a circadian phase to unlabeled samples consists of applying the four-quadrant

30
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arc-tangent function to the two first principal components [212]; we will refer to

this unsupervised method as PCA. In 2004, a first significant step was made [213] by

developing a method, molecular timetable, to infer the circadian phase based on

the temporal and expression patterns of known clock-related marker genes in mice

livers. The core idea is shared with several other supervised methods that will follow

it. Namely, it consists of finding a suitable low-dimensional representation (also

called the low-dimensional manifold) and then, in this coordinate system, finding

the one-dimensional trajectory (termed here circadian trajectory) that best matches

the known labels of the samples in the training set. A graphical representation of

this core idea is shown in Figure 1. To find the phase of a new sample, it must be

suitably projected onto the circadian trajectory in the low-dimensional space. In

[213], the low-dimensional manifold consists of a set of standardised “time-telling”

marker genes for which a sinusoidal shape is assumed and the peak phase fitted

from the training set. The inferred circadian phase is obtained by minimising the

least square error across all the time-telling genes. Although simple, this method

deserves praise for the pioneering work, also considering the scarcity of sequencing

data available compared to modern day. For the next important contribution, we

have to wait more than 10 years. The availability of data and the increased interest

in the circadian clock attracted many researchers to this problem, which yielded

four new methods, each claiming to be better than the last, in less than 4 years.

The first was ZeitZeiger [23] in 2016. This method adds a supervised twist to PCA.

The low-dimensional space is a set of sparse principal components (SPCs), each

component being a sparse linear combination of genes. The linear combination

of each component and the non-linear mapping from the SPCs to the circadian

phase is optimized on the labeled training set, while the number of SPCs and the

maximum nonzero entries in each of them are optimized by cross validation. To

infer the phase of new samples, the algorithm linearly projects the gene expression

levels to the SPC space and then finds the phase at which the circadian trajectory is

closest to the projected gene expression levels. This method exhibits good perfor-

mance in inferring the circadian phase; in addition, because of its easy and clear

structure, it is able to identify which genes carry the most information about the

circadian oscillation in a labelled sample. A few months after, a machine learning

method was developed: BIO_CLOCK [15]. This method is made of a three-layer

dense neural network taking as input the normalised expression of 16 clock genes

and yielding as an output the sine and cosine of the circadian phase. This method

was trained and tested on mice microarray data from different organs with a 70−30

training-test split. Being a dense neural network, the training can be performed

via backpropagation. To infer the phase of a new standardised sample, one simply
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inputs the required gene expression levels and takes the four-quadrant arc-tangent

of the network’s output. Although this method uses a black box neural network,

its performance is on a par with ZeitZeiger. Finally, the need for an unsupervised

method (no labelled dataset is available) was recognized, and in 2017 CYCLOPS was

invented. This method uses a linear autoencoder with a circular node, constructed

with two coupled neurons, so the low-dimensional space is the two-dimensional

space of the code neurons and the circadian trajectory is the unit circle in the two-

dimensional space from which the circadian phase is extracted via the arc-tangent.

CYCLOPS does not need a training set to learn its governing parameters; however,

it cannot predict the phase of only one new sample. The general scheme of this

algorithm is as follows: project to a low-dimensional space, from this project to a

circadian trajectory, and from the circadian trajectory try to project back onto the

original space, making the smallest possible error across all samples. For CYCLOPS,

the low-dimensional representation is reached by linear projection onto two dimen-

sions and the circadian trajectory is simply the unit circle where all points of the

two-dimensional space are orthogonally projected; from the two-dimensional unit

circle, points are linearly projected back to try to match the measured gene expres-

sion levels. The difference between CYCLOPS and PCA is the non-linearity from the

two-dimensional space to the one-dimensional circadian trajectory included in the

autoencoder. CYCLOPS offers one crucial advantage over supervised methods: it

is more easily generalizable. This means that it can be directly applied to a much

wider range of datasets, even ones with biologically different periodic behaviours,

like the cell cycle, without the need for enough labelled data to retrain the algorithm.

However, one must note that to obtain the best results the input of CYCLOPS should

be restricted to a subset of genes, which have been previously implicated with time.

Still, in 2017, a new supervised method, PLSR [214], was published. The idea of this

method is to linearly project both the sequencing data and the two-dimensional

representation of the phase (its sine and cosine) onto a five-dimensional feature

space and maximise the correlation between the two. In this case, the projection

to the feature space is optimised on the training set and the dimensionality of

the feature space is selected via cross validation. This method was built, trained,

and tested on in-house blood sample measurements, which, unlike all the other

training sets, used the dim light melatonin onset (DLMO), the gold standard assay

to estimate circadian phase in humans, as the measure for circadian phase, not

the external time. Using the gold standard for circadian phase detection in the

training set gives this method a good advantage; however, it was never applied to

datasets not collected in the authors’ lab. Lastly, another supervised method to infer

circadian phase from blood RNA sequencing data was developed: TimeSignature
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[26]. This approach is reminiscent of [213], as the low-dimensional space consists of

a subset of genes, then, using the training set sinusoidal patterns are fitted for each

gene with a ridge and lasso penalization to control the amplitude of each gene and

reduce the number of genes kept. To infer a new phase, one must plug the gene ex-

pression level and determine the best fitted phase from the shapes of the reference

genes. This method is trained and tested on human blood, with external time as the

label. In addition, there is one disadvantage: each sample needs to be paired with

another one, from the same person, taken 10–14 hours apart; without this pairing,

the method cannot work, as the first step is a within-subject renormalization. This

renders the method inapplicable to most existing data and deeply constrains its

use in a medical context. The latest, still unpublished, method, TimeTeller, is a

supervised method that exploits the periodic expression and covariance of 10–15

key genes to infer external time from a single tissue sample [27]. A summary of the

main characteristics of each of these methods is presented in Figure 2. Although it

is generally required for methods of the same category (supervised, unsupervised)

to show that they perform better than their predecessor, this fact needs to be taken

with a pinch of salt. A common issue with comparisons between methods is that all

methods are built on different datasets and optimize a slightly different quantity

which further bias any comparison.

2.4 Applications

Finally, we dedicate a few words to the impact that some of these methods had and

how they have been applied. As we have seen, ZeitZeiger is a supervised method

originally trained on various mouse tissues; in 2017, it was trained on existing

whole human blood microarray data and a small set of marker genes was found

to reliably reconstruct the circadian phase of each sample [24]. A year later, in

another study using blood samples, ZeitZeiger was trained on monocytes purified

from the blood to accurately obtain the circadian phases from single blood samples

[215]. The resulting improved accuracy can be explained by the fact that peripheral

blood mononuclear cells (PBMCs), which are used by most studies, consist of a

complex mixture of many cells including T and B cells, which together make up

more than 80% of the cells; however, the clock in T or B cells is weak. On the

other hand, monocytes host a high amplitude clock, which likely explains the

superior accuracy at predicting the DLMO. Other researchers focused on human

skin: in a first step, they applied CYCLOPS to reorder a large set of unlabeled

samples, then they applied ZeitZeiger to find a small subset of biomarkers for
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Figure 2.1: A summary of the steps followed by many phase reconstruction al-
gorithms. The first step is the bulk mRNA extraction and sequencing from omics
samples (A); thus, high-dimensional data are generated (B). The data are then pro-
jected in a low-dimensional representation and the circadian trajectory is identified
(C). Lastly, the data are projected onto the circadian trajectory and the internal time
(circadian time, CT) of each sample is identified (D).
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Figure 2.2: A summary of the most important characteristics of the existing
methods to decode circadian phase from omics samples. d, dimensional

circadian phase in human skin [216]. Application of these algorithms to data from

blood or skin samples is particularly relevant, as they are easily accessible and can

potentially be easily used in biomedical research. Of note, the different studies

listed differ by the type of readouts used (candidate genes vs. whole genome);

in the context of clinical applications, it appears that candidate gene approaches

such as NanoString assays [43] might have a clear advantage in terms of costs

and complexity. An interesting application of these methods was published in

2018. CYCLOPS was applied to temporally order human RNA sequencing data

from 13 different post-mortem tissues and used to perform a comparative rhythmic

analysis across them [217]. In particular, the authors focused on drug target genes

to propose improvements in the effectiveness of therapies by delivering drugs at the

optimal time of day. In conclusion, the discussed advances in biomedical circadian

biostatistics application promise to sprout important advances in around-the-clock

treatments, especially those concerning the maximisation of drug efficacy and the

minimization of their side effects [218].
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3 The CHIRAL algorithm

We follow an historical trajectory and firstly focus on our algorithm for circadian

phase inference, followed by its application on human data in the next chapter.

This chapter has been adapted as little as possible from the preprint appendix of

[219] written by Lorenzo Talamanca, Cedric Gobet and Felix Naef. The appendix

was envisioned, supervised and checked by Felix Naef, it was compiled, written,

calculated and implemented computationally by Lorenzo Talamanca. Although we

tried to modify this as little as we could, given the role of appendix in the submitted

version this chapter is the one with the most prominent changes.

3.1 Setting

Here we discuss the theory, mathematical steps, and approximations of our Circular

HIerarchical Reconstruction ALgorithm, CHIRAL. This algorithm takes as input an

ensemble of sets of measurements of quantities in a periodic system, like mRNA

expression levels of core clock transcripts from tissue samples across the 24h. Each

set of measurements represents a contemporary measurement of all the quantities

in our system; In this example the set of measurements is the set of mRNA expres-

sion levels (RNA-Seq) for all clock genes for one sample. The aim of the algorithm

is to assign to each set of samples in the ensemble a phase along the period of the

system; i.e. a phase between 0 and 24hs for the circadian clock. We will keep in

mind the circadian clock example throughout the calculations as that is our main

practical objective.
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3.2 Hypothesis

We start by clearly stating the hypothesis behind our method. The main hypothesis,

underlying all methods of (circadian) phase reconstruction, is a simil-ergodic as-

sumption. The ergodic hypothesis in general states that the average of a quantity

across an ensemble is the same as the average of the same quantity over time of

one single entity. In physics, generally, the ensemble is a set of particles and the

entity is a single particle. In our case the ensemble is the set of donors (or sacrificed

mice) from which we collected samples and the entity is one of them. This means

that we assume that the behaviour of the circadian clock in one donor across time

is the same as its behaviour across donors sampled at different points (conditions)

spanning the (quotient) space of interest.

3.3 Multivariate harmonic regression model

As a starting point, we consider a genes by conditions (samples) Ng ×Nc data matrix

E g
c . As we are considering a periodic system, we use the Fourier basis and consider

up to N f nonzero Fourier coefficients.

We model the data matrix as follows:

E g
c =αg

f ζ
f (ϕc )+εg

c =αg
f ζ

f
c +εg

c =
N f∑
f =0

α
g
f ζ

f
c +εg

c (3.1)

using the differential geometry notation where high indices only sum with low ones

and vice versa. In this equation theαs represent the Fourier coefficients of the genes

associated with the Fourier functions ζ f (ϕc ). The latent phases are denoted ϕc . In

this notation, the first 5 functions take the form (ζ0(ϕ),ζ1(ϕ),ζ2(ϕ),ζ3(ϕ),ζ4(ϕ)) =
(1,cos

(
ϕ

)
, sin

(
ϕ

)
,cos

(
2ϕ

)
, sin

(
2ϕ

)
). The aim of the model is to obtain the phases

{ϕc } from the data {Eg c }. For the moment the error has two indices, as its distri-

bution can depend both on the gene and on the condition. In addition we want

a model that is able to weigh rhythmic and non-rhythmic genes, only the latter

ones carrying information about the latent phases. In the notation of Eq.(3.1), the

difference lies in the prior over α, as for non-rhythmic genes only the flat (0th

harmonic) Fourier harmonic is considered non-zero.

Before proceeding, let us specify the relevant probability distributions. We will use

Gaussian error models and Gaussian priors on the Fourier coefficients of the genes.
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3.4 Approximations on the covariance matrices

We start with the distribution of random errors

P (ε) ∼ e
− 1

2 ε
g
c Scc′

g g ′ε
g ′
c′ , (3.2)

where the covariance matrix is a 4-dimensional tensor. Let us introduce here {s},

a discrete state for each gene indicating whether the gene is rhythmic, sg = 1, or

non-rhythmic, sg = 0. The probability on the {α} conditioned on the states {s} takes

the form:

P ({α}|{s}) ∼ e
− 1

2α
g
f A({s}) f f ′

g g ′α
g ′
f ′ , (3.3)

where the covariance matrix is written as A. While these covariance matrices

were kept arbitrary to show the most general formulation, we will make various

approximations to allow us to proceed with analytical calculations. The prior on

the {ϕc } is taken as uniform, i.e. P (ϕc ) ∼ 1, though this could be adapted easily,

e.g. when it is known that samples are non-uniformly sampled (hospital working

hours).

3.4 Approximations on the covariance matrices

Here we discuss approximations that will make calculations more tractable. We

start by simplifying the error covariance matrix:

(S−1)g g ′

cc ′ = δcc ′δg g ′
σ2 , (3.4)

and we truncate the Fourier expansion at the first harmonic; the full model can

then be rewritten as:

Eg c = νg +ε if s = 0,

Eg c =µg +ag cos
(
ϕc

)+bg sin
(
ϕc

)+εg c =α⊺
g ζc +ε if s = 1; (3.5)

with α⊺
g = (µg , ag ,bg ), and ζ⊺c = (1,cos

(
ϕc

)
, sin

(
ϕc

)
). We also simplify the prior on

the gene parameters depending on s:

P (α|s = 1) =
√

det
(
T −1

)
(2π)3 e−

1
2α

⊺T −1α (3.6)

P (νg |s = 0) = δ(νg −〈Eg c〉c ) (3.7)
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with

T =


u2 0 0

0 τ2 0

0 0 τ2

 . (3.8)

The error distribution is taken as:

P (ε) ∼∏
g c

e−
ε2

g c

2σ2 . (3.9)

For the moment we will consider all genes to have s = 1 (one state model), and we

will reintroduce the two state model with the Expectation-Maximization algorithm

in paragraph (3.9). From P (ε) we can write:

P (E |{ϕ}, {α}) ∼∏
g c

e−
(Eg c−αg ζc )2

2σ2 =∏
g

P (Eg |{ϕ},αg ) . (3.10)

After some algebra we obtain:

P (Eg |{ϕ},αg )P (αg ) ∼ e−
1

2σ2

(
α
⊺
g (M+σ2T −1)αg−2αg ·Wg

)
, (3.11)

with

M =∑
c
ζ
⊺
c ζc =: X ⊺X , Wg =∑

c
Eg cζc . (3.12)

As the goal is to identify the sample phases ϕc (ζc ), we can marginalize over the α’s.

After a multidimensional Gaussian integration we get:∫
P (Eg |{ϕ},αg )P (αg )dαg ∼ e

1
2σ2 W ⊺

g (M+σ2T −1)−1Wg . (3.13)

To obtain the set of ζ’s, we rewrite this as:

P (ϕ|E) ∼ e
∑

i j ζi Ki j ζ j ∼ e−βH [ϕ] (3.14)

with

Ki j = M−1
σ

∑
g

Eg i Eg j Mσ = M +σ2T −1 . (3.15)

Here, we introduced the physics notation where β is the inverse temperature and

H a Hamiltonian. We remind that each Ki j is a matrix, thus K is a 4-dimensional

tensor of the form K ab
i j .
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3.5 Rewriting the problem as a spin model

3.5 Rewriting the problem as a spin model

For the moment we wrote the problem in function of ζ⊺c = (1,cos
(
ϕc

)
, sin

(
ϕc

)
).

However we can define a new variable that still carries all the phase information:

η
⊺
c = (cos

(
ϕc

)
, sin

(
ϕc

)
). Doing this transformation will bring a more informative,

although slightly more complicated, Hamiltonian. We define the Ji j matrix as the

bottom right 2×2 matrix of Ki j , i.e. J ab
i j = K a+1,b+1

i , j with a,b ∈ {1,2}, and the h vector

as the last two elements of the first column of K , i.e. ha
i = K a+1,3

i with a ∈ {1,2}.

We notice how K1,1 just contributes to a constant 1 that will be included in the

normalisation of the probability which we are ignoring for the moment. So we have:

P (ϕ|E) ∼ e−βH [ϕ] (3.16)

with

H [ϕ] =−
(

Nc∑
i j=1

ηi Ji jη j +
Nc∑

i=1
hiηi

)
, β= 1 (3.17)

with J and h defined above. Here we observe two canonical contributions to an

XY spin model. The first term in the Hamiltonian is an all-to-all spin interaction

term with couplings Ji j . Due to the nature of the Ji j matrix, with both positive and

negative entries of different magnitudes this Hamiltonian appears at a first glance

as the one of a spin glass system [220–224]. Then we have a site-dependent external

field term hi that attempts to align all spins to an external local field.

3.6 Mean field approximation

Here we will derive a mean field approximation that allows us to calculate the

unknown sample phases from a simple recursion relation. First, we take a closer

look a the M matrix, which can be written as:

M =


1 ·1 1 ·C 1 ·S

C ·1 C ·C C ·S

S ·1 S ·C S ·S

 A ·B =∑
c

Ac Bc , (3.18)

with C = (cos
(
ϕ1

)
, . . . ,cos

(
ϕNc

)
), S = (sin

(
ϕ1

)
, . . . , sin

(
ϕNc

)
). The problem greatly

simplifies when the samples are fairly uniformly distributed around the 24h cycle,

1A constant shift in energy in a system is generally regarded as useless to study the behaviour of
the system and especially its ground state.
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Chapter 3. The CHIRAL algorithm

which leads to the approximation that

C ·1 = S ·1 =C ·S = 0, C ·C = S ·S = Nc /2 (3.19)

Then, M , and also Mσ become diagonal, and thus the above matrix inversion

(Eq.3.15) will be much easier.

Since hi = 0 we obtain:

P (ϕ|E) ∼ e−βH [ϕ] (3.20)

with

H [ϕ] =−∑
i j
ηi Ji jη j , (3.21)

as from (3.19) we have h = 0 and Ji j defined as before. In addition we can now write

precisely all the terms involved in the probability of interest, as some of them have

changed slightly compared to (3.17): where

Ji j = 1

Nc Ng

∑
g

Eg i Eg j , β= Ng

σ2

(Ncτ
2)

(τ2Nc +2σ2)
. (3.22)

The two normalizations on Ji j are only due to the physics of spin systems: they are

there to keep the energy of the system finite regardless of its size. This is at first sight

an Heisenberg spin-glass system. Fortunately, it will not be in the end a spin-glass,

but only a spin system; this is due to the consistency present in the J matrix due

to the E structure [225, 226], as we are basically measuring the angle between two

spins (phases).

We now can find a first solution, a first approximation to the energy minimum of

our system that should give us some ordering of our samples. The approximation

we will exploit is one of the most versatile and is widely used in physics: the mean

field [227–232]. We now derive the mean field approximation to obtain the expected

phases contained in 〈ηi 〉 (as ηi = ηi (ϕi )).

We remind for clarity:

P (η|E) ∼ eβ
∑

i j ηi Ji jη j (3.23)

We start from the set of coupled equations:

〈ηi 〉 = 1

Z

∫
dϕi eβ

∑
j Ji jηiη jηi (ϕ) (3.24)
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which then reduces using the mean-field for η j in the exponent to:

〈ηi 〉 =
∫

dϕi eβηi
∑

j Ji j 〈η j 〉ηi∫
dϕi eβηi ·∑ j Ji j 〈η j 〉 . (3.25)

Since
ηi

∑
j

Ji j 〈η j 〉 =Wi cos
(
ϕi − ϕ̄i

)
with W⃗i ≡Wi Ŵi ≡Wi

(
cos

(
ϕ̄i

)
sin

(
ϕ̄i

)) :=∑
j

Ji j 〈η j 〉 ,

(3.26)

where we have decomposed the vector W⃗i into the product of a unit vector Ŵi and

a modulus Wi . Eq.(3.25) can be solved easily using Bessel functions, in particular:

〈ηi 〉 = I1(βWi )

I0(βWi )
Ŵi . (3.27)

We can solve equation (3.27) recursively starting from a random initial condition.

Doing so we rapidly approach the minimum of the energy of our system and obtain

a first circadian phase assignment for the samples in our dataset.

3.7 The emergence of a phase transition

This section is not present in the original appendix, however it contains interesting

insights cut for length constraints. The recursive solution we found from equation

(3.27) sheds a clear light on the existence of a phase transition inβ. In the disordered

phase our samples do not have a proper circadian phase so it is impossible for us to

infer it; there simply isn’t enough information in the system to order the samples.

While in the low temperature (high β) phase the state that minimizes the energy

is a good proxy for the actual state of the system. Thus, we can reliably infer the

circadian phases of our samples if β becomes big enough. The existence of the

phase transition can be easily seen with a high temperature expansion. Namely we

take the first order in β:

〈ηi 〉 = 1

2
βWi Ŵi = β

2
W⃗i = β

2

∑
j

Ji j 〈η j 〉. (3.28)

Which is nothing more than

η⃗= β

2
J η⃗ (3.29)

with

η⃗ := (
η1 . . .ηi . . .ηNc

)⊺ . (3.30)
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Chapter 3. The CHIRAL algorithm

This shows us how the first non trivial solution appears at a finite temperature βc :

βc = 2

λ1
(3.31)

with λi the eigenvalues of the J matrix, ordered in a decreasing order. The existence

of a phase transition signifies the need for a high enough β in order to have an

ordered solution. Given the meaning of β this means that, as we expect, a signal

to noise ratio too low doesn’t allow for a re-ordering of our samples. However, the

mean-field solution plays a crucial role as we use it to seed a much more accurate

algorithm, which we now describe.

3.8 The two-state model

While the phases inferred in by this XY mean-field model are typically ordered

properly when tested in datasets with known time stamps (e.g. we used [22]), the

actual values are not sufficiently accurate. In the model below, we will relax the

assumption that phases are homogeneously along the 24h (Eq.3.19).

3.9 The EM algorithm

To develop a more precise method to infer latent phases we will proceed with and

Expectation Maximisation[233, 234] approach [235]. In the following calculations

we have mean centered our data matrix E by rows. However, this does not mean that

µg is zero in this model (Eq. 3.5) since the density of phases may not be constant

along the cycle while it imposes νg = 0 ∀g . We will no longer assume that the

phases are uniformly distributed around the cycle, nor the genes are all in state

one (s = 1) and consider a mixture model for states s ∈ {0,1}. The rationale for the

mixture model is to allow that some genes may not carry phase information in all

the sets of samples, for example if one gene is less expressed or noisy in a given

tissue. In the iterative EM scheme, we will denote the new objects at any given step

of the algorithm with a prime (′). We will also drop the gene index and the vector

notation, as now the objects in play should be clear. The so called "Q-function" in

the EM algorithm takes the form:

Q(θ|ϕ) = 〈log(P (E ,α, s|θ))〉P (α,s|E ,ϕ) . (3.32)

44



3.9 The EM algorithm

In particular, the phases at the next step are:

ϕ′ = argmax
θ

(Q(θ|ϕ)) . (3.33)

From now on we will abuse our notation and generally substitute θ with ϕ′ so that

(3.32) becomes:

Q(ϕ′|ϕ) = 〈log(P (E ,α, s|ϕ′))〉P (α,s|E ,ϕ) (3.34)

and (3.33)

ϕ′ = argmax
ϕ′

(Q(ϕ′|ϕ)) . (3.35)

As our aim is to maximise Q which involves taking a logarithm we can forget about

some normalisation and we can write from now on:

P (E ,α, s|ϕ′) =P (E |α, s,ϕ′)P (α, s|ϕ′) =P (E |α, s,ϕ′)P (α|s)P (s) . (3.36)

Our prior on the gene parameters is, depending on the state:

P (αg |s = 1,ϕ) =
√

det
(
T −1

)
(2π)3 e−

1
2α

⊺
g T −1αg , (3.37)

or

P (νg |s = 0,ϕ) = δ(
νg

)
. (3.38)

As

log(P (E ,α|ϕ′)) = log(
∏
g

P (E ,α|ϕ′)g ) =∑
g

log(P (E ,α|ϕ′)g ) , (3.39)

taking into account (3.36), we have for each gene (considering only what we will

need for the maximization):

Q(ϕ′|ϕ) =
∫

dα (E −X ′α)2e
1

2σ2 (α−α̂)⊺Mσ(α−α̂)
P (s = s1|E ,ϕ) , (3.40)

where X ′ is the same as implicitly defined in (3.12) and we defined tg := P (sg =
s1|E ,ϕ).

Solving the integral and putting everything together yields for the part that will be

relevant for the maximisation of Q:

Q(ϕ′|ϕ) =−∑
g

tg (E⊺
g Eg −2E⊺

g X ′α̂g + α̂g M ′α̂g )−Tr(σ2M−1
σ M ′) (3.41)

So all we need to do is calculate the tg weights, which are equal to the probability
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Chapter 3. The CHIRAL algorithm

that each gene is rhythmic (s = 1). To do so we need to apply Bayes theorem:

P (s|E ,ϕ) = P (E |s,ϕ)P (s)∑
s P (E |s,ϕ)P (s)

, (3.42)

where:

P (E |s,ϕ) =
∫

dαP (E |α, s,ϕ)P (α|s,ϕ), (3.43)

and where we have used that the prior P (s|ϕ) = P (s). We also need to correctly

normalise all the probabilities in play:

∫
P (E |α, s = 1,ϕ)

∏
dE =

∫
e
− (E−αζ)2

2σ2
1 dE = (2πσ2

1)m/2 = Z 1
E (3.44)

with m the number of entries of the E matrix. For state zero (s = 0) we find∫
P (E |α, s = 0,ϕ)

∏
dE =

∫
e
− E2

2σ2
0 dE = (2πσ2

0)m/2 = Z 0
E . (3.45)

We now do all the calculations omitting the gene index, as it only burdens the

notation. Marginalising the α yields

P (E |s = 1,ϕ) = ∫
dαP (E |α, s = 1,ϕ)P (α|s = 1,ϕ)

= 1
Z 1

E

√
det(T −1)

det(Mσ/σ2
1) e

1
2σ2

1
(E⊺X M−1

σ X ⊺E−E⊺E)
. (3.46)

In addition, we can also easily calculate the other probability (s = 0):

P (E |s = 0,ϕ) = 1

Z 0
E

e
− E⊺E

2σ2
0 . (3.47)

Finally we obtain the gene weight

t = γqe
1

2σ2 (E⊺X M−1
σ X ⊺E)

1−q +γqe
1

2σ2 (E⊺X M−1
σ X ⊺E)

, (3.48)

with

γ=
(
σ2

0

σ2
1

)M/2
√√√√ det

(
T −1

)
det

(
Mσ/σ2

)e
E⊺E

2

(
1
σ2

0
− 1
σ2

1

)
. (3.49)

The final expression for Q and its derivatives reads:

Q(ϕ′|ϕ) =−∑
g

tg

(
E⊺

g Eg −2E⊺
g X ′α̂g + α̂g M ′α̂g −Tr(σg

2M−1
σg

M ′)
)

(3.50)
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3.9 The EM algorithm

0 = ∂Q(ζ′|ζ)

∂C ′
i

=∑
g

tg
(
âg (−Eg i + µ̂g + âg Ci + b̂g Si )+ (M−1

σ )2,1 + (M−1
σ )2,2Ci + (M−1

σ )2,3Si
)= 0

(3.51)

0 = ∂Q(ζ′|ζ)

∂S′
i

=∑
g

tg
(
b̂g (−Eg i + µ̂g + âg Ci + b̂g Si )+ (M−1

σ )3,1 + (M−1
σ )3,2Ci + (M−1

σ )3,3Si
)= 0.

(3.52)

This set of equation can be compactly rewritten as:

K ζi =O , (3.53)

with the evident definitions.

However, since we want to keep the constraint that |ζ|2 = 1 we need to introduce

Lagrange multipliers. As a reminder: In general, we want to maximise f (x) where

x satisfies g (x) = 0. To do this, we can maximise h(x,λ) = f (x)+λg (x). If there is

more than one constraint, we need to introduce one multiplier for each constraint.

In our case:

h(ζ′,λ) =Q(ζ′|ζ)+∑
i
λi (C 2

i +S2
i −1) . (3.54)

So, as before, if we consider sample i we have:

(K +λI )ζi =O (3.55)

and

C 2
i +S2

i = 1 . (3.56)

So we need to find the λ such that∣∣∣(K +λI )−1O
∣∣∣2 = 1 . (3.57)

To solve (3.57) we calculate explicitly the fourth order polynomial in λ and numeri-

cally find its roots. Among these roots there are the local maxima and minima of

the Q function. Although not trivial, we can find the exact solution for this problem.

If we write:

O =
(
α

β

)
K =

(
A B

C D

)
, (3.58)
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we find

λ4 +λ3(2A+2D)+λ2(D2 + A2 +4AD −α2 −β2 −2BC )+ (3.59)

+λ(2AD(A+D)−2BC (A+D)−2Dα2 −2Aβ2 +2αβ(B +C ))+
+B 2C 2 + A2D2 −α2(D2 +C 2)−β2(A2 +B 2)+2αβ(AB +C D)−2ABC D = 0 .

Solving this numerically provides us with 2 or 4 different possible values of ϕ′. In

order to find which ϕ′ gives rise to the max of Q we simply evaluate the Q function

in all the points. This can be done separately for each condition as the derivatives

become independent from one another. With this we have solved the minimization

process and have found our ϕ′ thus we have concluded an iteration of the EM

algorithm.

3.10 An interesting equivalence

This section is not present in the original appendix, however it contains a curious

equivalence which some might like to read. The normalisation factor of (3.46) could

be also obtained in a direct way. In fact, we could simply integrate:

∫
e

1
2σ2

1
(E⊺X M−1

σ X ⊺E−E⊺E)
dE =

√√√√ (2πσ2
1)M

det
(
1−X M−1

σ X ⊺
) (3.60)

Thus our new γ as defined by direct integration above would be:

γ=
(
σ2

0

σ2
1

)M/2 √
det

(
1−X M−1

σ X ⊺
)
e

E⊺E
2

(
1
σ2

0
− 1
σ2

1

)
(3.61)

Although not completely intuitive for multidimensional case the two normalization

factors are, as they should be, identical:

det
(
T −1

)
det

(
Mσ/σ2

) ≡ det
(
1−X M−1

σ X ⊺) . (3.62)

3.11 CHIRAL performance

We benchmarked our algorithm using time-labelled samples from 12 mice tissues

collected around the clock applying CHIRAL in a tissue-by-tissue manner [18]. Our

first approach was to try CHIRAL without the use of seed clock genes. We can see

in figure 3.1 that the reconstruction is suboptimal for tissue with weak rhythmic
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Figure 3.1: CHIRAL reconstruction on top 10000 expressed genes. Samples from
tissues with strong clocks are correctly ordered, while weaker clocks do not carry
dominant information. The names are abbreviated as: Adr (adrenal gland), Cere
(cerebellum), BFAT (brown fat), Hypo (hypotalamus), Mus (skeletal muscle), BS
(brainstem), WFAT (white fat) [18].

behaviour such as brain tissues. However, for some metabolic tissues (Liver, Lung)

the Median Absolute Error (MAE) is comparable or better than what is reported in

the literature [15, 22–26, 213].
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Figure 3.2: CHIRAL reconstruction using clock reference genes. Samples from all
tissues are well-ordered.The names are abbreviated as: Adr (adrenal gland), Cere
(cerebellum), BFAT (brown fat), Hypo (hypothalamus), Mus (skeletal muscle), BS
(brainstem), WFAT (white fat) [18].

This re-assures us that our method has some merit. To decisively outperform the

only unsupervised counterpart, CYCLOPS [25], we will reduce the set of genes to

ones that we know from literature carry temporal information. With this update in

seed genes we can see in figure 3.2 the increased performance of CHIRAL on the

12 mice tissues used previously. Our objective is to use CHIRAL on human data

RNA-seq, so mice microarray data might not be the best testing bench. For this we

exploited one of the few labelled human dataset comprising 54 samples for human

muscle biopsies around the 24 hours [236].

50
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Figure 3.3: Comparison of CHIRAL and CYCLOPS on human muscle biopsies. The
reconstructed phase of CHIRAL is generally more representative of the true phase
at which the measurement was taken. Some differences can be due to chronotype
and inflammatory response. X and y axes are hours.

We also applied CYCLOPS to this dataset and compared the two algorithm to ensure

that our procedure is the best currently available; the results of both inferences are

shown in figure 3.3 and some relevant metrics calculated for both algorithms are

summarised in table 3.1. The results clearly confirm that CHIRLAL is the better

choice of phase inference algorithm.
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Table 3.1: CHIRAL validation on human muscle biopsies. Important metrics for
phase reconstruction algorithms shown for CHIRAL and CYCLOPS show the better
performance of CHIRAL.

CHIRAL CYCLOPS

Circular Correlation 0.76 0.53
Mean absolute error [h] 1.49 2.16

Median absolute error [h] 0.92 1.14
Root of square mean error [h] 1.94 3.16

3.12 Practicalities

Up to now we have considered the set of all genes in the given set of mRNA mea-

surements. However, given the completely unsupervised nature of this algorithm

we cannot, a priori, be sure of which oscillatory process will be picked up (e.g. cell

cycle or circadian clock). To be sure that we are capturing the circadian time as a

source of variation we can apply our algorithm to a subset of genes. In particular, in

this case, we selected the 12 clock reference genes (CRGs): DBP, PER3, TEF, NR1D2,

PER1, PER2, NPAS2, ARNTL, NR1D1, CRY1, CRY2, CIART. Also, we found that the

prior on the αs needs to be tightly controlled as it "competes" against the experi-

mental data and we know that genes do not have oscillation of more than 10−20

log2 units. So for the prior we pick u2 = 0.2, τ2 = 4/(24+n) where n is the number

of samples.
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4 Sex-dimorphic and age-

dependent organization of 24-

hour gene expression rhythms in

human

Now we will go into the applications of CHIRAL to human post-mortem bulk RNA-

seq data. This chapter has been adapted as little as possible from the preprint of

[219] written by Lorenzo Talamanca, Cedric Gobet and Felix Naef. This work has

at present been accepted for publication in Science. The research was developed

along the way by interactions of the three; the original research question envisioned

by Felix Naef has been answered in chapter 3.

This work in its entirety had been supervised and checked by Felix Naef; the analysis,

coding, writing and illustrations were made by Lorenzo Talamanca and Cedric

Gobet in equal parts.

4.1 Abstract

The circadian clock modulates human physiology. However, the organization of

tissue-specific gene expression rhythms and how these depend on age and sex

is not defined in humans. We leveraged the Genotype-Tissue Expression project

(GTEx) with an algorithm that assigns circadian phases to 914 donors, by integrating

temporal information from multiple tissues in each individual, to identify mRNA

rhythms in 46 tissues. Clock transcripts showed conserved timing relationships

and tight synchrony across the body. mRNA rhythms varied in breadth, covering

global and tissue-specific functions, including metabolic pathways and systemic re-

sponses. The circadian clock was conserved across sexes and age groups. However,
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rhythms in human

overall gene expression rhythms were highly sex-dimorphic and more sustained in

females. Rhythmic programs generally dampened with age across the body.

4.2 Introduction

The circadian clock allows evolutionary adaptation of life to the 24-hour periodicity

of earth rotation. The clock synchronizes internal body rhythms in behavior and

physiology with 24-hour environmental, societal or feeding cues [29, 237, 238].

Perturbations of the clock, as caused by sleep disruption and shift work can lead

to pathologies [218]. Sexual dimorphism exists in gene expression across the body

[239] and many complex phenotypes, including diseases, exhibit sex-dependent

characteristics [240]. However, interactions between sexual dimorphism and cir-

cadian rhythms in humans are unexplored [101]. Likewise, the effects of aging on

human physiology are well studied [241], but the interplay between circadian oscil-

lations and aging processes are still poorly understood [242]. We combined GTEx

transcriptomes [243] with an algorithm that assigns circadian times to individuals

and tissues [25, 236] to obtain a whole organism view of 24-hour gene expression

rhythms in 46 human tissues. A stratification by sex and age revealed rich picture

of group-specific rhythms, especially in metabolic and cardiovascular tissues that

may provide insights into differential disease incidence rates.

4.3 Comprehensive 24h gene expression rhythms in humans

To study the breadth of rhythmic mRNA programs across the human body, we

leveraged 16k human RNA-seq experiments from 914 donors in the Genotype-

Tissue Expression (GTEx) collection, and computed one circadian reference phase

for each donor. This phase corresponds to the expected circadian phase in skeletal

muscle, hereafter named the donor internal phase (DIP). The algorithm exploits

that the circadian phases of tissue samples (typically 10 to 20 per individual) from

the same donor are correlated, and makes the assumption that relative circadian

phases of tissues are conserved across donors. Time of death (TOD) (available from

GTEx) may not reflect circadian phase due to the varying individuals’ chronotypes

[17], positions in a time zone and type of death. In relation to the TOD, clock genes

such as PER2 and NR1D1 exhibited arrhythmic profiles in most tissues (figure 4.1a

), and mRNA rhythmicity at the genome-scale was nearly absent (figure 4.1b).

However, the pairwise correlations between clock transcripts were indicative of a
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Figure 4.1: Failure of the TOD to capture circadian phase and necessity of the
DIP. (a) Clock genes PER2 and NR1D1 exhibit statistically arrhythmic profiles in
liver and artery coronary as a function of GTEx time of death (TOD). Log2-centered
expression for each donor (light blue). Mean and standard error (SE) computed
in 2h bins are also shown (dark blue). (b) Number of rhythmic genes (q > 0.2 &
log2 peak-trough > 0.5 with peak-trough amplitude higher than a threshold (x-axis,
log2)) across 46 tissues using indicated time of death. (c) Weighted correlation
matrix of CRGs, see section 4.7, is indicative of a functioning circadian clock across
all tissues of the GTEx collection. (d) Boxplot of the difference between time of
death (TOD) and donor internal phase (DIP) as a function of type of death (hardy
scale).)
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Figure 4.2: Scheme of the steps to infer donor internal phase Summary of the
steps taken to assign one circadian phase (DIP) to 914 donors in the GTEx v8 RNA-
seq dataset. This allows us to analyze 46 tissues, and to compare phases of gene
rhythms across tissues. Left: Color scheme and list of all tissues present in our
analysis.

functional clock (Fig. S1C). We therefore developed an algorithm to assign DIPs

to all donors (figure 4.2). After correcting for sample covariates such as age, sex,

ischemic time (time between death and sample collection), and type of death to

reduce variability not due to circadian oscillations (figure 4.3), we applied two steps.

For each tissue independently, we used CHIRAL, an algorithm we developed to

estimate the tissue internal phases (TIPs) of all samples. We benchmarked CHIRAL

using time-labeled human samples from muscle [236] figure 3.3 and table 3.1. As

the TIPs in a donor’s tissues often showed one primary mode, we assigned the

DIPs to that mode (Fig. S1G-H). With the DIPs, we characterized gene expression

rhythmicity in 46 tissues by harmonic regression. DIPs were distributed fairly

uniformly along the 24-hour cycle (Table S2).

TODs and DIPs showed better concordance for fast compared to slow death (Hardy

scale), figure 4.1d. With the DIPs, PER2 and NR1D1 showed clear circadian oscil-

lations across all donors (figure 4.5a), indicating that the DIPs captured circadian

phase more reliably than TODs. Clock transcript oscillations across all tissues

showed that, although the amplitudes varied, the peak times were aligned, the

tightest being TEF and ARNTL (BMAL1), and the most variable NR1D1 (REVERBA)

(figure 4.5b).

We used the complex-valued singular value decomposition (cSVD) to summarize

the multi-gene structure of clocks across multiple conditions, explained in detail in

section 4.7. The first mode, which captured > 95% of the variance, showed that the
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Figure 4.3: Importance of covariates in the GTEx data Principal Component Anal-
ysis (PCA) analysis of samples for adipose subcutaneous in PC1-PC2 space color
coded according to different meta variables calls for removal of undesired sources
of variability in the data. PC1 and PC2 explain respectively 17.2% and 8.2% of the
total variance.

59



Chapter 4. Sex-dimorphic and age-dependent organization of 24-hour gene expression
rhythms in human
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Figure 4.4: Donor specific peaked TIP distribution. Illustrative TIP distributions
with one clear peak suggest the possibility of inferring the DIP. Distribution of the
TIP (shifted by the DIP) for all samples and donors shows a clear and tight peak.
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(a) PER2 and NR1D1 profiles in liver and artery
coronary.
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(b) Peak phase and amplitude of CRG across
tissues.

Figure 4.5: First results of DIP inference. (a) Clock reference genes PER2 and
NR1D1 exhibit robust oscillatory behavior in metabolic tissues as a function of
DIP. Mean and standard error (SE) computed in 2h bins, and harmonic regression
fits, are also shown as in figure 4.1a. (b) With the DIP, clock gene phases can be
compared across tissues. Phases (clockwise) and amplitudes (radial) of CRGs across
tissues highlight overall tight phases. NR1D1 is the most variable gene. Tissues are
color coded as in figure 4.2
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4.3 Comprehensive 24h gene expression rhythms in humans

human clock module comprises two main groups of antiphasic genes, plus fewer

genes with a phase angle (figure 4.6a). Clocks across tissues were well synchronized

showing relative offsets of only a few hours; the adrenal gland had the earliest phase,

perhaps related to the distinct role of adrenal glucocorticoids in systemic clock

organization [244]. Metabolic tissues (adipose tissue, esophagus, cardiovascular

tissues) showed the highest amplitudes whereas brain tissues and testis had lowest

4.6a [245], as reflected by the clock genes PER3 and ARNTL (figure 4.6b).

To test whether the DIPs also unveil mRNA rhythms associated with systemic

signals, we considered heat shock response genes, which exhibit rhythmic activity

in mice [246]. Heat shock genes (HSF1 targets) showed clear diurnal expression

patterns with highest oscillatory amplitude in brain tissues, peaking between 8

and 10pm, near the time of highest body temperature in humans [247] figure 4.7a.

Compared to the clock, we observed a larger spread in peak phases across tissues;

the peak times of both HSPH1 and HSPA1B were almost antiphasic in spleen and

amygdala (figure 4.7b). The high amplitude heat shock program in many brain

regions may reflect a pressure for high proteome integrity in non-renewing tissues

[248]. Genome-wide 24-hour rhythmicity (Fig. S1L, Table S3 and S4) across tissues

showed morning (centered on 7am) and evening (7pm) waves of gene expression

throughout the body (figures 4.8c), with metabolic tissues showing the most and

brain tissues the least rhythmicity [18, 20] (figure 4.8c). These waves showed slight

temporal shifts following the phases of the core clock (figure 4.6a): several glands

showed early phases, followed by cardiovascular, metabolic and brain tissues (figure

4.8c). Depending on the tissue, we found between tens and several hundreds of

rhythmic transcripts with peak-to-trough amplitudes higher than 2-fold (figure

4.8c). Besides clock genes, more than 100 transcripts were rhythmic in at least

20 tissues, including known rhythmic genes such as NFIL3 and PDK4 as well as

glucocorticoid responsive genes such as FKBP5 and pro-inflammatory cytokine

receptors, Interleukin 1 Receptor Like 1/2 (IL1RL1, IL1R2) (Table S4). 12-hour

ultradian mRNA rhythms were detected in several tissues, notably in ovary and liver

(Fig. S1M).

To characterize regulatory mechanisms, we used cSVD to integrate transcription

factor (TF) targets, further details in section 4.7. Putative regulators of both the

morning and evening waves were involved in immunity, core clock, carbohydrate

metabolism and cell proliferation (Fig. S1N, Table S5). Among TFs explaining the

most variance were the core clock dimer CLOCK:BMAL1 (peak target accumula-

tion at 10am) and glucocorticoid receptor (GR) NR3C1 (5pm) corresponding to GR
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Chapter 4. Sex-dimorphic and age-dependent organization of 24-hour gene expression
rhythms in human
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(b) PER3 and ARNTL profiles in adipose tissue and cortex.

Figure 4.6: Clock reference gene structure using DIPs. (a) First gene (left) and
tissue (right) complex vectors from the cSVD performed on clock reference genes
(CRGs) show coherent phase and amplitude relationships across tissues (first mod-
ule captures 95% of the 24-hour variance, E.V. ). The core clock is also tightly
synchronized across the human body (spread of 2 hours, tissue vector). Brain
tissues have the lowest clock gene amplitudes and the adrenal gland peaks earliest.
Tissues are color-coded as depicted in figure 4.2. Polar plots: time runs clockwise,
phases have been converted to 24-hour time. (b) mRNA expression levels (log2,
centered) of two clock genes (PER3 and BMAL1) in two representative tissues. Mean
and standard error (SE) computed in 2h bins, and harmonic regression fits are
shown (dark blue).
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4.3 Comprehensive 24h gene expression rhythms in humans
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(a) Structure of heat shock response genes.
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(b) HSPH1 and HSPA1B profiles in spleen and amygdala.

Figure 4.7: Heat shock response genes using DIPs. (a) Heat shock gene module
displayed as in figure4.6a. The genes representing the top 20 HSF1 targets (ChIP-
Atlas) show time of day specific expression in all tissues, with higher amplitudes
and earlier peak times in brain tissues (yellow). (b) mRNA expression levels (log2,
centered) for two heat shock response genes, represented as in figure 4.6b
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Chapter 4. Sex-dimorphic and age-dependent organization of 24-hour gene expression
rhythms in human
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(c) Distribution of DIPs and gene peak phase.

Figure 4.8: Gene rhythmicity across the body. (a) Number of rhythmic genes
(q(BH)> 0.2 and log2 peak-trough > 0.5) with q-value smaller than a threshold
(x-axis) across 46 tissues shows numerous and highly significant rhythms in the
metabolic tissues. Tissues are color coded as in figure 4.2. (b) Number of rhyth-
mic genes (q(BH)< 0.2 and log2 peak-trough > 0.5) with peak-trough amplitude
higher than a threshold (x-axis, log2) across 46 tissues show different intensities of
rhythmic gene expression programs across the human body. (c) Left: polar density
plot of the predicted DIPs of the 914 donors and of the peak times of all identified
rhythmic genes. Right: phase densities of rhythmic genes (q(BH)< 0.2 and log2
peak-trough > 0.5) for various groups of tissues show biphasic programs, with small
rotations.
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4.3 Comprehensive 24h gene expression rhythms in humans
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for 12h ultradian rhythms.
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(b) Plar plot of transcription factor activities.

Figure 4.9: Ultradian rhythms and transcription factor activity. (a) Number of
12h-rhythmic genes (q(BH)< 0.2 and log2 peak-trough > 0.5) with peak-trough
amplitude higher than a threshold (x-axis, log2) across 46 tissues show different
intensities of rhythmic gene expression programs across the human body.(b) Tran-
scription factor activities. Polar plot of mean phase and mean R2 values for the
top 100 targets of all transcription factors (ChIP-Atlas) across the body obtained
via cSVD (sections 4.7 and 4.7, Table ST3). These factors are mostly one with pan-
rhythmic activity, i.e. the target genes are rhythmic in multiple tissues.

repressed genes [249]. In the evening, MYC and MYCN (7pm, cell proliferation),

X-Box-Binding Protein 1 (XBP1) (8pm, response to Unfolded Protein Response),

and Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1 (PPARGC1)

(8pm, energy metabolism) were activated. During the night, IRF2 (2am, interferon

regulatory factor) and STAT2 (3am, cytokine response) activities peaked. Similar TFs

showed rhythmic activities in mouse liver [250]. Enriched gene functions showed

coherence across many tissues (Table S5, figure 4.10a). Starting at midnight, im-

mune response genes peaked early during the night consistent with the above IRF2

and STAT2 TFs, followed by a response to cholesterol in the early day coinciding

with peak times of serum cholesterol levels [251]. Around 9am, we observed a peak

for caffeine response, followed by energy homeostasis, gluconeogenesis, and lipid

metabolism genes. mRNAs involved in amino acid and glucose metabolism, as well

as protein synthesis and folding peaked in the early afternoon, extending into the

evening. Cell-cycle pathways peaked in the evening to late night, coinciding with

the predicted MYC and MYCN activities. Therefore, pan-rhythmic gene functions

in humans largely consist in timed metabolic processes reflecting a switch between

low and high energy states during the rest-activity cycle. Among functions that

showed tissue specificity, lipid metabolism was particularly rhythmic in the liver,
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rhythms in human

as was amino acid metabolism in the intestine and heat shock response across the

brain tissues (figure 4.10b).
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4.3 Comprehensive 24h gene expression rhythms in humans
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response to interferon−beta (GO:0035456)
somatic hypermutation of immunoglobulin genes (GO:0016446)

regulation of defense response to virus by host (GO:0050691)
positive regulation of immune effector process (GO:0002699)

detection of molecule of bacterial origin (GO:0032490)

positive regulation of toll−like receptor signaling pathway (GO:0034123)
positive regulation of innate immune response (GO:0045089)

negative regulation of toll−like receptor signaling pathway (GO:0034122)
regulation of nuclease activity (GO:0032069)

response to exogenous dsRNA (GO:0043330)

nuclear origin of replication recognition complex (GO:0005664)
mitotic recombination (GO:0006312)

regulation of nuclear division (GO:0051783)

cellular response to cholesterol (GO:0071397)
regulation of actin filament depolymerization (GO:0030834)

positive regulation of cation channel activity (GO:2001259)
dipeptidase activity (GO:0016805)

glucan biosynthetic process (GO:0009250)
regulation of gluconeogenesis (GO:0006111)

response to caffeine (GO:0031000)
regulation of energy homeostasis (GO:2000505)

lipid homeostasis (GO:0055088)
response to leptin (GO:0044321)

Farnesoid X Receptor  Pathway WP2879

glucose homeostasis (GO:0042593)
regulation of cellular carbohydrate metabolic process (GO:0010675)

proteasome−activating ATPase activity (GO:0036402)

regulation of cell development (GO:0060284)
regulation of cellular senescence (GO:2000772)

negative regulation of fat cell differentiation (GO:0045599)
negative regulation of intracellular steroid hor. rec. path. (GO:0033144)

regulation of epithelial cell differentiation (GO:0030856)
stress−induced premature senescence (GO:0090400)

negative regulation of TOR signaling (GO:0032007)
regulation of protein localization to Cajal body (GO:1904869)

aryl hydrocarbon receptor binding (GO:0017162)
RNA polymerase I activity (GO:0001054)

Hsp90 protein binding (GO:0051879)
Hedgehog Signaling Pathway WP47

snoRNA 3'−end processing (GO:0031126)
box C/D snoRNP complex (GO:0031428)

base conversion or substitution editing (GO:0016553)

histone methylation (GO:0016571)

tRNA aminoacylation for mitochondrial protein translation (GO:0070127)
tRNA−specific ribonuclease activity (GO:0004549)
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(a) Pan-rhythmic GO terms.
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Figure 4.10: Rhythmic GO terms across the body. (a) Set of GO terms showing a
coherent rhythmicity across the body in the cSVD approach (section 4.7). Size of the
circle is the mean R squared (harmonic regression) of the genes, color is the mean
phase. (b) Set of tissue specific rhythmic GO terms highlight enhanced rhythmicity
of some function in specific tissues. Representation as in (a).
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Chapter 4. Sex-dimorphic and age-dependent organization of 24-hour gene expression
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4.4 Human sexual dimorphism in circadian rhythms

We leveraged DIPs to analyze sex-dimorphic mRNA rhythms. The first cSVD compo-

nent (93% of variance explained) indicated a conserved clock in males and females

(figure 4.11a) and the distributions of DIPs were similar for males and females

(figure 4.11b). To analyze sex-dimorphic clock programs, we used a model selection

approach to classify each transcript into five statistical scenarios (models) depend-

ing on the rhythmic behavior in both sexes, section 4.7[102]. Core clock genes were

largely classified as having identical rhythms in both sexes (model 4, Table S3), but

the overall number of rhythmic genes was almost double in females at all amplitude

thresholds (figure 4.11b).

Although tissues such as esophagus, skeletal muscle and adipose tissue did not dif-

fer much, the stratification by sex unveiled several highly dimorphic tissues (figure

4.12). Notably, females had significantly more rhythmic transcripts in the adrenal

gland and liver (figure 4.12). Cardiovascular tissues are known sites of circadian

regulation [252] exhibiting circadian rhythmicity in GTEx [217]. In the heart (atrial

appendage), the total number of rhythmic genes and their peak phases were similar

in males and females (figure 4.13). However, only about 50% of rhythmic genes

were shared between male and female, with the remaining rhythms being either

specific to one sex, or showing different rhythmic patterns (figure 4.15). Liver ex-

hibits marked circadian physiology and sex-dependent gene expression in humans

[239]. We found a strong enrichment of mRNA rhythms in females at all amplitudes,

mostly as an extensive morning wave (figure 4.14 and 4.16). Three pathways, which

have sex-dependent mRNA rhythms in mice [102], showed enriched rhythmicity

in female livers: xenobiotic detoxification, fatty acid oxidation, and cholesterol

synthesis (figure 4.17). In the latter nearly all enzymes, including the rate limiting

and statin target 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), showed

rhythmicity in females that was damped or absent in males (figure 4.18). In detoxi-

fication, many phase I and II enzymes were strongly enriched in female-specific

cyclers (figure 4.19) [253]. Female-specific rhythms in the liver were predicted as

driven by the Heat Shock Transcription Factor 1 (HSF1) and Peroxisome Proliferator

Activated Receptor Gamma (PPARG) (figure 4.17). The adrenal gland also exhibited

more rhythmic mRNAs in females than males, centered at midday (figure 4.20).

Among those, GR targets were enriched, which could reflect autocrine signaling

(figure 4.21). As glucocorticoid signaling is a systemic synchronizer and organizer of

peripheral rhythms [244], this might corroborate with the overall increased rhyth-

micity in females at transcriptional and physiological levels [101].
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Figure 4.11: Overview of clock, DIP, and rhythms in males and female. (a) First
gene (left) and tissue (right) vectors of cSVD performed on CRGs indicate invariant
clocks between males (triangle) and females (circle). Males and female samples for
one tissue were treated as two tissues. The first module captures 93% of the 24-hour
variance, E.V.. (b) (right) Polar densities of DIPs (solid line) and gene peak phases
(dashed line) in male (dark blue) and female (light blue) donors show morning
and evening waves of gene expression. (left) Number of 24-hour-rhythmic genes
with amplitude higher than a threshold plotted as a function of the threshold in all
tissues combined show a globally higher rhythmicity in females (solid line) than
males (dashed line).
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Figure 4.12: Distribution of rhythmicty between sexes. Summary of total number
of rhythmic genes in each tissue (top, bordeau) divided according to four statistical
models (bottom) show tissue-specificity of sex dimorphic mRNA rhyhtms. Models:
2/blue, 3/cyan, 4/mustard, 5/brick
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Figure 4.13: Close up on sex-dimorphism in the heart atrial appendage. (left)
Heart atrial appendage: polar densities of DIPs (solid line) and peak phase of
rhythmic genes (dashed line) in for males (dark blue) and females (light blue) show
similar overall rhythmicity. (right) Heart atrial appendage: number of genes with
amplitude higher than a threshold plotted as a function of the threshold for males
(dark blue) and females (light blue) reveals an overall similar amount of rhythmic
genes in the two sexes.
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Figure 4.14: Close up on sex-dimorphism in the liver. (left) Liver: polar densities
of DIPs (solid line) and peak phase of rhythmic genes (dashed line) in for males
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Figure 4.15: Heatmap of sex-dimorphic rhythms for heart atrial appendage. Liver:
heatmap of genes in models 2 to 5 recapitulates increased rhythmicity of gene
expression in females especially in xenobiotic, fatty acid metabolism and choles-
terol related pathways (figure 4.17). Log2 mean centered expression, low/blue to
high/brown, 1h bins plotted with a 4h window moving average.
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Figure 4.16: Heatmap of sex-dimorphic rhythms for liver. Heart atrial appendage:
heatmap of mRNA levels for genes in models 2 to 5 illustrates model selection, and
shows dimorphic (blue, cyan) and conserved (mustard) rhythmic gene expression.
Log2 mean centered expression, low/blue to high/brown, 1h bins plotted with a 4h
window moving average.
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Figure 4.17: Female-biased liver mRNA rhythms. Left part: Heatmaps of genes
classified as being only rhythmic in female liver (model 3) (left heatmap: males;
right heatmap: females, blue/brown scale). mRNAs with the top 3% amplitudes are
explicitly labeled. The heatmaps show log2 mean centered expression, low/blue
to high/brown, 1h bins plotted with a 4h window moving average. Corresponding
transcription factor activities (MARA, section 4.7) are shown below (blue/red scale).
Right part: GO and WikiPathway enrichments. P-values, TF activities, amplitudes
of gene fits are also reported (section 4.7). Fatty acid and cholesterol metabolism
are written in red and blue, respectively.
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females.
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Figure 4.19: Sex-dimorphism in detoxification. Liver: (a) visualization of biotrans-
formation meta pathway (WP702) colored according to amplitude of genes in males
(blue) and females (red) exemplifies the strong female biased rhythmicity in both
phase I and phase II enzymes. (b) Zoom on the rhythmic genes in the biotransfor-
mation meta pathway (WP702) colored according to amplitude of genes in males
(blue) and females (red).

76



4.4 Human sexual dimorphism in circadian rhythms

MALE FEMALE

M
F 

Ad
re

na
lG

la
nd

Adrenal gland

E
xpression [log2]

 1

 0

-1

Figure 4.20: Sex-dimorphism in glococorticoid signaling. Genes only rhythmic
in the female adrenal gland displayed as in figure 4.17. Note the enrichment of GR
signaling genes (blue text).
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Figure 4.21: Female-biased mRNA rhythms in the adrenal gland. Left part:
Heatmaps of genes classified as being only rhythmic in female liver (model 3)
(left heatmap: males; right heatmap: females, blue/brown scale). mRNAs with the
top 3% amplitudes are explicitly labeled. The heatmaps show log2 mean centered
expression, low/blue to high/brown, 1h bins plotted with a 4h window moving aver-
age. Corresponding transcription factor activities (MARA, section s 4.7) are shown
below (blue/red scale). Right part: GO and WikiPathway enrichments. P-values,
TF activities, amplitudes of gene fits are also reported (section 4.7). Fatty acid and
cholesterol metabolism are written in red and blue, respectively.

78



4.5 Age dependent circadian reprogramming of human gene expression

4.5 Age dependent circadian reprogramming of human gene

expression

We analyzed how aging reprograms daily rhythmic gene expression across the hu-

man body. Donors were divided in two age groups: less than fifty (38±9 years), and

over sixty (65±3 years). The clock was conserved across age groups (first cSVD com-

ponent: 91%, figure 4.22a), with core clock genes having mostly identical rhythms

(model 4, Table S3). Rhythmic transcripts showed two waves (figure 4.22b), and

were overall damped in the older donors (figure 4.22b) [254]. The latter showed

one third of rhythmic genes with amplitudes above 4-fold; such loss of rhythmicity

with aging occurred in the majority of but not all tissues (figure 4.23). For instance,

adipose tissues, esophagus, and skeletal muscle showed conserved rhythmicity

across age, with most genes exhibiting statistically identical rhythms in the two

groups (model 4, mustard, figure 4.23). This is illustrated in subcutaneous adipose

tissue, where the morning and evening waves are pronounced in both younger and

older donors (figure 4.24), represented by a majority of conserved mRNA rhythms

(figure 4.24 and 4.26). We next focused on coronary arteries, a tissue that strongly

loses rhythms with age. Although morning and evening transcript waves were

observed in both groups (figure 4.25), the number of rhythmic mRNAs in older

donors was about half that in younger donors, across all amplitudes (figure 4.25,

figure 4.27). Programs that lost rhythmicity include cholesterol biosynthesis, FA

synthesis, and the regulation of glycolysis (figure 4.28 and 4.29), processes known

to be deregulated in vascular smooth muscle cells in cardiovascular diseases [255].

Most enzymes in the cholesterol biosynthesis pathway, including HMGCR, were

rhythmically expressed in young coronary arteries but lost this feature with age (fig-

ure 4.28). Comparing ovaries between pre- and post-menopausal women revealed

both lost and gained mRNA rhythms (figure 4.30). Although rhythmicity in lipid and

cholesterol biosynthesis was suppressed in older donors, as in the coronary arteries

(figure 4.31), stress, and in particular heat shock response genes, became rhythmic,

as supported by predicted HSF1 transcription factor activity (figure 4.31 and 4.32).

This signature of a thermal stress response in post-menopausal women may reflect

circadian patterns of temperature control [256]. In some tissues, genes switched

from a 24-hour to a 12-hour ultradian periodicity with age. In the pituitary gland,

the liver, and the colon, 12-hour rhythms arose in 30 to 50% of genes classified as

only rhythmic in young (figure 4.33). In humans, these tissues regulate rhythms of

temperature, energy metabolism and absorption. Such destabilization of 24-hour

periodicity in favor of an ultradian state as a result of aging might reflect differences
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in reception of external cues in older individuals [257].
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Figure 4.22: Overview of clock, DIP, and rhythms in young and old. (a) First
gene (left) and tissue (right) vectors of cSVD performed on CRGs indicate invariant
clocks between younger (triangle) and older (circle). Young and old samples for one
tissue were treated as two tissues. The first module captures 91% of the 24-hour
variance, E.V.. (b) (right) Polar densities of DIPs (solid line) and gene peak phases
(dashed line) in all tissues combined exhibit substantially stronger 24-hour mRNA
rhythmicity in younger (dark blue) compared to older (light blue), especially for
higher amplitudes. (left) Number of 24-hour-rhythmic genes with amplitude higher
than a threshold plotted as a function of the threshold in all tissues combined show
a globally higher rhythmicity in females (solid line) than males (dashed line).
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Figure 4.23: Distribution of rhythmicty between ages. Summary of the number of
rhythmic genes in each tissue divided according to the model selection approach
recapitulates the global behavior of tissues (metabolic tissues are more rhythmic,
brain less) and the general trend of loss of rhythmicity as a result of aging. Models:
2/blue, 3/cyan, 4/mustard, 5/brick. Models: 2/blue, 3/cyan, 4/mustard, 5/brick
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Figure 4.24: Close up on age-dependent rhythms in adipose subcutaneous. (left)
Adipose subcutaneous: polar densities of DIPs (solid line) and peak phase of rhyth-
mic genes (dashed line) in adipose subcutaneous for younger (dark blue) and older
(light blue) show a decay in the biphasic rhythmic programming as age progresses.
(right) Adipose subcutaneous: number of genes with amplitude higher than a
threshold for young (dark blue) and old (light blue) shows highly conserved rhyth-
mic programs with only a mild dampening of high amplitude rhythms in elderly.
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Figure 4.25: Close up on age-dependent rhythms in the coronary arteries. (left)
Coronary arteries: polar density plot of DIPs (solid line) and peak phase of rhythmic
genes (dashed line) for young (dark blue) and old (light blue) shows morning and
evening waves of gene expression that decay with age. (right) Coronary artery:
number of genes with amplitude higher than a threshold plotted as a function of
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rhythmic programming in younger donors across all amplitudes.
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Figure 4.26: Heatmap of age-dependent rhythms for adipose subcutaneous. Adi-
pose subcutaneous: Heatmap of genes in models 2 to 5 highlights the mainly
conserved rhythmic programming (mustard) as well fewer losses (blue) and gains
(cyan) with aging. Log2 mean centered expression, low/blue to high/brown, 1h
bins plotted with a 4h window moving average.
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Figure 4.27: Heatmap of age-dependent rhythms for coronary arteries. Coronary
arteries: Heatmap of genes in models 2 to 5 illustrates strong morning and evening
waves of gene expression and exemplifies instances of loss of functional rhythmic
programs as a result of ageing. Log2 mean centered expression, low/blue to high-
/brown, 1h bins plotted with a 4h window moving average.
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Figure 4.29: Age-induced loss of rhythms in the coronary arteries. Coronary
arteries: genes showing rhythmicity in younger donors analyzed and displayed as
in figure 4.17 recapitulate loss of functional rhythms in metabolic functions. Lipid,
cholesterol and glucose metabolism terms are highlighted in blue text.
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Figure 4.30: Age-related change of physiology in the ovary. Ovary: heatmap of
genes in models 2 to 5 depicts differential rhythmic programming of gene expres-
sion as a function of age.
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Figure 4.31: Loss of metabolic function in elderly’s ovary. Ovary: Genes only
rhythmic in younger donors displayed as in figure 4.17. Note the loss of rhythmic
lipid metabolic functions in elderly.
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Figure 4.32: Gain of heat shock response in elderly’s ovary. Ovary: genes only
rhythmic in older donors displayed as in figure 4.17 confirm the gain of rhythmic
heat shock response.
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Figure 4.33: Emergence of ultradian rhythms with age. Genes only rhythmic in
young liver, pituitary and colon displayed as in figure 4.17. Note that high amplitude
24-hour patterns in the younger group showed the emergence of 12h rhythms in
older donors.

4.6 Discussion

We developed an algorithm to temporally order GTEx samples that could overcome

several limitations of postmortem data through pre-processing, controlled statistics

and formulation in terms of a population-level phase model (DIP). Nevertheless,

sensitivity to data quality, complex covariate structures or sampling bias cannot be

fully ruled out. Clocks were largely in phase in 46 analyzed tissues, with the adrenal

gland peaking earliest. The concomitant signature of a sizable wave of negative

GR targets in the afternoon suggests that released adrenal glucocorticoids play

a crucial role in human body-wide circadian synchronization, including overall

increased rhythmicity in females. HSF1 targets contributed a significant portion of

the body’s 24-hour rhythms and showed sex- and age-dependency. The observation

that rhythmic liver transcript levels, particularly in xenobiotic detoxification, was

prevalent in females may reflect sex-dimorphic incidence of liver diseases [258].

Similarly, the loss of mRNA rhythms with age in coronary arteries correlates with

age-dependent incidence rates of cardiovascular diseases [259]. The identified

differences in 24-hour rhythmic processes across sexes and ages may help improve

patient-specific chronopharmacology [260].
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4.7 Methodological details

This section has been adapted as little as possible from the preprint of the supple-

mentary material of preprint of [219] written by Lorenzo Talamanca, Cedric Gobet

and Felix Naef. The research was developed along the way by interactions of the

three; the original research question envisioned by Felix Naef has been addressed in

chapter 3. This work in its entirety had been supervised and checked by Felix Naef;

the analysis, coding, writing and illustrations were made by Lorenzo Talamanca

and Cedric Gobet in equal parts.

RNA-seq data preprocessing

Gene mRNA read count data from GTEx V8 (2017-06-05_v8_RNASeQCv1.1.9) were

downloaded. For each tissue, genes with less than 10 counts on average across

the samples were discarded. Counts were normalized by library size and scaled

using the TMM method from edgeR [261], and then converted to counts per mil-

lion (CPM). Normalized counts were then log-transformed (log2) after addition

of a pseudo-count of 0.25 (called hereafter LCPM). We proceeded in two filtering

steps: the first that is a more stringent one which is used to assign the DIPs to all

individuals; once these are fixed, a second step where we add back more samples

and genes to increase coverage. In the first step (stringent selection) of the analysis,

to control for sample quality, we selected samples with RIN numbers larger than

6, total number of reads larger than 40 millions, proportion of uniquely mapped

read larger than 0.8, a positive ischemic time and autolysis score of 1 or 0; genes

with on average less than 3 LCPM per tissue were discarded. Tissues with less than

48 samples were discarded. The initial filterings led to 35 tissues comprising 10646

samples (set-1) that were used for the TIP/DIP assignments. In the second filtering

step, once the DIPs had been assigned, the criteria for sample inclusion were re-

laxed and we kept all samples with RIN numbers larger than 4 and whose donor

had at least one sample in set-1, we also included genes with more than 0 LCPM.

Tissues with less than 48 samples were discarded once again. This allowed us to

include additional samples and genes covering in total 15’745 samples across 46

tissues (set-2). Using principal component analysis (PCA) for data exploration, we

noticed that several covariates available as metadata explained significant portions

of the variance (Fig. S1D). Therefore, we regressed out ischemic time, sex, age

and type of death as categorical variables with a linear regression model on the

log-transformed normalized count data (LCPM) [262]. The regression was done on

each gene in each tissue independently in both set-1 and set-2. The residuals of
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these fits were then used for all subsequent analyses. Outlier data points distant

more than thirty two-fold (5 log2 units) from the mean were not considered.

Estimation of TIPs with CHIRAL

First, we assigned a TIP for each sample in each tissue using CHIRAL (details in

chapter 3). For the purpose of inferring the Tissue Internal Phases, we modeled the

LCPM matrix (Eg c ) in each tissue using a multivariate harmonic regression model

Eg c = µg + ag cos
(
ϕc

)+bg sin
(
ϕc

)+ ε for condition c and gene g with Gaussian

noise ε. If a gene did not carry time information in that tissue, the corresponding

gene Fourier parameters (ag , bg ) can be very small or even zero. We treated the

model probabilistically with prior Gaussian distributions over the gene parameters

and used a Bayesian calculation to marginalize over the gene parameters distribu-

tion and derived a posterior distribution over the unknown phases ϕc . We then

inferred maximum a posteriori estimators using an expectation maximization (EM)

algorithm that had a similar structure as probabilistic PCA [235]. Our EM procedure

enforced one additional constraint to ensure that each 2D cosine and sine vector

has norm 1, which we imposed exactly using Lagrange multipliers. We considered a

two state mixture model in the EM to account for genes that do not carry temporal

information (flat genes): the two state model weighs each gene contribution to

the phase estimate according to the posterior probability of that gene carrying

information. The initial phases were seeded using a mean field approximation,

which yielded a so-called XY spin glass [84], and which was solved using an iterative

scheme (chapter 3). Although CHIRAL was constructed to take as input an arbitrary

number of genes, even the full genome, the different sources of variance in addition

to the internal phase external time renders this approach ineffective in human

data. Thus, we applied the algorithm only to a subset of genes which are good

candidates for carrying temporal information. We picked the 12 Clock Reference

Genes (CRGs) from the literature (ARNTL, CIART, CRY1, CRY2, DBP, NR1D1, NR1D2,

NPAS2, PER1, PER2, PER3, TEF), and standardized the measurements (LCPM) for

each gene. Applying CHIRAL on this gene subset yields very good reconstruction

of circadian phases in human time-series of muscle biopsies [236] (Fig. S1B). In

this task, CHIRAL outperformed CYCLOPS (11), the most widely used unsupervised

method for circadian phase inference (Table S1). The phase ordering from CHIRAL

(but also any other unsupervised method) has two intrinsic symmetries: a time

direction symmetry and a rotational symmetry. We broke the first by considering

the known temporal order of clock genes. For the rotation symmetry we referenced

the TIPs to the peak of PER3 mRNA. We broke the invariances in a tissue specific
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way.

Inference of DIPs from TIPs

Due to the nature of the GTEx data, the TIPs for one donor were not independent

but had additional structure. At the level of TIPs we had a set of internal phases {ϕtd }

that depended on the donor (d) and tissue (t). Our main assumption consisted

in expressing the TIPs as a sum of two contributions: ϕt ,d = ϕd +δϕt , where d

was the donor specific phase (DIP) and δϕt was the tissue specific shift which was

assumed to be common to all donors (as a convention we used skeletal-muscle

as the reference, i.e. δϕt=skeletal muscle = 0). In essence, this assumption considers

a population level model for the tissue specific shifts, and neglects individual

deviations with respect to the mean behavior of the population. Moreover, the

number of parameters is reduced from |d |× |t | to |d |+ |t |. To compute the DIPs

from the TIPs we then applied a heuristic approach based on the probabilistic model

and the following observations (using the samples in set-1). The distributions of t,d

across tissues for one donor were typically fairly peaked (Fig. S1G-H), indicating

that the majority of tissue harbored very similarly phased clocks. Outliers in those

distributions tended to be caused by an inherent instability of phase ordering

algorithms, linked to the collinearity of clock transcripts (most transcripts peak in

the ARNTL or almost exactly opposite PER3 phase), and which was particularly

present in tissues with weak or confounded clocks. We thus defined the robustly

estimated mode of the distribution of TIPs for each individual as the DIP. Specifically,

for each donor, after identifying the primary mode we computed the circular mean

of samples within a 2h interval of the model. In this approach tissues with weak

clocks, or tissues which contain significant sources of non temporal gene expression

variability did not bias the donor phase estimates. Moreover, unlike time of death

(TODs), DIPs did not need to be corrected for chronotype as they directly measured

the internal clock phase. The DIP assignment based on samples in set-1 was directly

applied to set-2 since the donors of samples in set-1 and set-2 were the same. DIPs

allowed us to expand the analysis to tissues and samples of lower data quality

from which a robust circadian phase could not have been inferred alone. Overall,

this allowed us to study the daily oscillations in 46 tissues and 16k bulk RNA-seq

samples from GTEx (set-2). In other words, the DIPs allow us to transfer clock phase

information from tissues with strong clock signatures to ones with weaker weaker

or biased signatures. Because only one global reference was needed (PER3 peak

expression in muscle was fixed to 9am as in labeled muscle data (12)), all gene and

tissue phases could be compared across tissues.
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Harmonic regression

Once we assigned the DIPs d to all donors, we assessed rhythmicity and inferred

gene coefficients in each tissues using multivariate harmonic regression for gene

g in donor d for all the LCPM (Egd) of set-2: Eg c =µg +ag cos
(
ϕc

)+bg sin
(
ϕc

)+ε.

Rhythmicity was assessed using a likelihood ratio test between a rhythmic and a

flat (ag = bg = 0) model. P-values were computed from a χ-squared distribution.

Adjusted p-values were computed with the Benjamini-Hochberg (BH) correction.

The complex number representation of a gene used in the cSVD is ag + i bg .

Clock gene correlation matrix

We computed a clock correlation matrix following [84]. For tissue X, the clock

correlation matrix is the matrix of correlation of the CRGs across samples of tissue

X. We then performed a weighted average of the correlation matrices across tissues

using as weights the number of samples in each tissue shown in figure 4.1c. The

distance from a reference clock correlation matrix is a proposed metric for clock

integrity in tissues without the need of time stamped data.

Model selection

To study differential mRNA rhythms after stratifying the samples into two groups

(male vs. female and young vs. old), we first selected the union of possible rhythmic

genes, namely those which had a q-value (Benjamini Hochberg, BH) < 0.2 and

a log2 peak-to-trough > 0.5 when performing harmonic regression with either

all samples, or only samples in one of the two conditions. Then, on this set of

genes, we used model selection similarly to [43, 102] using the Akaike Information

Criterion (AIC). This allowed us to classify genes into 5 different models. Model 1

(never shown and highly infrequent due to the selection) represented genes flat

in both conditions, male-female or young-old. Model 2 (blue) represented genes

only rhythmic in the first condition, male/young, and model 3 (cyan) those in the

second condition, female/old. Model 4 (mustard) is composed of genes rhythmic in

both conditions with the same parameters (phase and amplitude) while in model

5 (brick), genes are rhythmic in both conditions with different parameters. As the

number of samples in the two compared groups might differ, we subsampled the

group with more samples to match the sample size of the smaller group, therefore

avoiding sample size biases.

95



Chapter 4. Sex-dimorphic and age-dependent organization of 24-hour gene expression
rhythms in human

Complex-valued Singular Value Decomposition (cSVD)

We used the complex-valued singular value decomposition (cSVD) to decompose

and represent rhythmic gene expression across multiple tissues as in [19]. In par-

ticular, gene complex Fourier component for the 24-hour oscillation are fitted

tissue-by-tissue. Then we apply the cSVD factorization to the matrix of gene com-

plex Fourier components across tissues for relevant sets of genes. The algebra

of complex numbers and linear mathematics of cSVD is optimally suited to de-

compose oscillatory gene expression matrices into rank 1 modules consisting of

complex-valued gene and condition vectors allowing to display the relative phases

and amplitudes in genes space, and how these genes modules are scale- and phase-

shifted in tissues (visualized in two separate polar plots). We mostly displayed the

rank-one approximations and indicated the fraction of the variance (explained

variance) explained by those. In the representations, we set as a convention the

maximum amplitude of the tissue vector to 1 (so that the gene amplitudes could

be read directly on the gene graphs) and the mean phase of the tissue vector to

zero (so that the gene phases correspond to daily time). Thus, this allowed the

gene representation to correctly show both amplitude and phase of the genes. For

each relevant gene set (CRGs, GO gene sets, TF targets), we constructed Ngene×

Ntissue matrices containing the Fourier coefficients (ag+ ibg) in complex notation

and applied the SVD decomposition. The first left (gene) and right (tissue) complex

vectors of the cSVD were shown in the figures and used to calculate the metrics

described below.

Gene Ontology analysis with cSVD

We considered all sets of genes in each Gene Ontology (GO) category (biological

process, molecular function, and cellular component) as well as Wikipathways [263]

and KEGG pathways and performed the cSVD. We identified common (Fig. S2A)

and tissue-specific (Fig. S2B) rhythmic functions. To prevent highly varying genes

with poor sinusoidal fits from dominating the cSVD, for this analysis, we renormal-

ized the complex matrix entries such that the amplitudes (norms of the complex

numbers) reflected the fraction of explained variance by the harmonic fit for each

gene in each tissue. This analysis using the cSVD allowed us to calculate a number

of useful metrics for each GO term (see below for a detailed list) and used to make

selections. Commonly rhythmic functions in (Fig. S2A) have been selected due to ei-

ther a high variance explained (variance) by the first SVD component, a high phase

coherence of the mean peak time across tissues (tissue_phase_similarity), or a high
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coherence of the peak times of the genes across tissues (gene_phase_similarity). In

particular, we ordered the GO terms according to these three metrics and extracted

the top 50 from each. We then removed redundancies and eliminated general GO

terms to reach the list in Fig. S2A. Finally, by inspecting all genes in these functions

we coarse- grained the terms into functional themes for easier interpretation. These

gene functions are displayed as ordered by (mean) time of day. To identify more

tissue-specific circadian mRNA programs, we filtered functions according to either

a high entropy of the first tissue vector (tix_entropy), or a high standard deviation of

the mean peak phase across tissues (tissue_phase_similarity) (Fig. S2B). As before,

we ordered the GO terms according to these three metrics and extracted the top

50 from each. Then we removed redundancies and eliminated general GO terms

to remain with the list in Fig. S2B. The coarse grained themes often overlap be-

tween Figs. S2A and S2B, however, the specific pathways or genes involved in these

functions are often not exactly the same.

Metrics calculated for all GO or Wikipathway gene sets

The metrics indicated in bold are the columns of Table S5. Variance: variance

explained by the 1st cSVD component. Mean_gene_time: argument of the sum

of complex valued gene parameters of 1st cSVD component. Mean_ampl: mean

of absolute values of complex valued gene parameters of 1st svd components.

Tix_entropy: entropy of the probability distribution given by the modulus squared of

the complex valued tissue parameters of 1st cSVD component. Gene_phase_similarity:

modulus of the sum of complex valued gene parameters of 1st cSVD component.

Tissue_phase_similarity: modulus of the sum of complex valued tissue parameters

of 1st cSVD component.

GO enrichment analysis

For the functional analysis of the stratified analysis (sex and age groups), we used the

“enrichR” R package providing an interface to the Enrichr database [264]. For each

model, we performed enrichment analysis for three databases: GO_Biological_Process_2021,

KEGG_2021_Human, WikiPathway_2021_Human. Terms with an adjusted p-values

smaller than 0.05 and a combined score larger than 20 were selected. Duplicated

terms with a similar list of genes were discarded. The top fifteen terms (i.e. smallest

adjusted p-values) across databases were reported in the heatmaps (e.g. Fig. S3A).

Selected Wikipathways were visualized using Cytoscape [265] using the “RCy3” R

package [266].
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Transcription factor analysis with the MARA model

This approach was used for the stratified analyses (sex and age groups). ChIP-

Seq target gene data were downloaded from ChIP-Atlas for the H. Sapiens (hg38)

genome [? ]. Peak-calls overlapping a 5kb window around the TSS of a gene were

assigned to it. For each sample, MACS2 score was normalized to its maximum value.

For each transcription factor (TF), the normalized MACS2 score was averaged

across all samples. To infer TF activity, we adapted a penalized regression model

[267] as previously [19]. In the stratified analysis, we inferred sample-specific TF

activities using mean-centered mRNA expression level (without subsampling) and

the ChIP-Seq matrices described above. As for the mRNA patterns, we performed

model selection on the inferred TF activities and selected TFs classified in each

model with high confidence (AICW > 0.5). The top 10 TFs in terms of amplitude or

explained variance (z-score) were shown in the heatmaps. Gene expression, GO

term analysis and TF activity inference were visualized using the complexheatmap

R package [268].

Transcription factor (TF) analysis with cSVD

We performed cSVD analysis on sets of transcription factor (TF) target genes in

a similar manner to the analysis of GO terms. This allowed us to visualize the

predicted peak phase activities of each TF throughout the day (Fig. S1N). In order

to build a matrix of genes times conditions, we identified sets of transcription factor

targets from human ChIP-Atlas (46). We used the same process and normalization

as described above and selected the top 100 target genes for each TF. We performed

cSVD on the resulting complex matrix (Supplementary Table ST5). This allowed us

to calculate the same metrics as for the GO term analysis for each TFs. As for the

GO terms, we used the renormalized Fourier coefficients to account for explained

variance.
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5 RNA velocity 2.0

5.1 Introduction

This work to improve RNA velocity [180] is underway with a collaboration with the

creator of RNA velocity, Gioele La Manno, as well as Felix Naef, Alex Lederer, Maxine

Leonardi; Colas Droin also contributed to a first analysis and implementation.

The mathematical part described in this chapter has been developed by Lorenzo

Talamanca under the supervision of Felix Naef and Gioele La Manno. This is still a

work in progress and will evolve until publication.

5.1.1 The general problem

RNA velocity has brought to single cells the idea that we can predict the future state

of a cell by exploiting unspliced mRNA counts. We can draw arrows connecting the

present location of the cell to its future one. The set of these arrows for all cells is a

velocity field on the low dimensional manifold. This technique has been favourably

adopted by the community and has allowed to infer developmental and differenti-

ation trajectories from single cell omics snapshots. The inner consistency of the

velocity field, both geometrical and derived from a dynamical systems perspective

have not yet been exploited. We want to introduce these constraints which would

also allow us to integrate the velocity field and find the trajectories of the cells. The

possibility of inferring time intervals between different states of cells from a single

snapshot could be used to greatly improve our knowledge of cell differentiation

and development. A good process to develop and test a more precise formulation

of RNA velocity is the cell cycle, due to its known low dimensional manifold and

experimentally measurable period.
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5.1.2 Estimation of cell cycle period

The cell cycle is a ubiquitous biological process, so a more in depth knowledge

of how exactly embryonic cells progress through it could be a great tool to better

understand the first steps of life. In particular, we want to infer a phase dependent

speed, and from it the length of the cell cycle. In addition, we aim to be able to

compare the shape of the speed of cells undergoing the cell cycle across cell types

and species.

5.2 The general model

We describe the general mathematical formulation that accounts for geometri-

cal and dynamical constraints. Let’s assume that our process of interest can be

projected onto a low-dimensional manifold, M . For example M =R2,S1. All the

variance in the data not explained by changes in the position on M is assumed

to be noise. The right1 inverse link function from the low dimensional manifold

to the high dimensional gene space comprised of spliced and unspliced reads

is defined as L −1 : M → O , where O is the high dimensional gene space. Thus,

each measured cell (c) provides an |O |-dimensional realisation Yc = (Uc ,Sc ) ∈O of

yc = (uc , sc ) = (u(xc ), s(xc )) = L −1(xc ), and xc ∈ M is the position of cell c on the

manifold M . As a notation capital letters represent the result of measurements

while lower-case letters the respective theoretical noiseless values. The projection

from the gene space to M can be both probabilistic, with a probability distribution

P (xc |Yc ), or deterministic inferred using one of the methods described in section

1.2.1. In the high-dimensional space, we expect some dynamical equation gov-

erning the time-evolution of the spliced mRNA depending both on spliced and

unspliced mRNA:
dS

d t
= F (S,U ). (5.1)

We do not expect to be able to infer F . Instead we assume F to be the one described

in [180]. For each gene we have:

Ṡ =βU −γS (5.2)

with β and γ being the splicing and degradation rate. This equation cannot make

predictions (for example we can’t integrate it), since it’s not an autonomous equa-

1Given f : A → B the right inverse function is the function f −1 : B → A such that f ◦ f −1 ≡ I : B → B ,
but not necessarily f −1 ◦ f ≡ I : A → A
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tion for S. We also remind the assumed dynamics for the unspliced counts:

U̇ =α−βU , (5.3)

where α is the transcription rate. All the parameters governing gene dynamics (α,

β, γ) could in principle be dependent on x ∈M or time, but won’t in our formula-

tion. Our crucial assumption is that there exists an autonomous and deterministic

equation for x:
d x

d t
=V (x), (5.4)

which provides a low-dimensional approximation of the full dynamics of equation

(5.1). Thus, on M , we expect a velocity field V (x) which could also be explicitly

time-dependent but will not due to the assumptions on α, β, and γ. V (x) is the

deterministic field describing the temporal evolution on the low dimensional mani-

fold, the actual velocity field in low dimensions, and is the quantity of interest. We

can now link the geometry of the problem, with its dynamical formulation in terms

of biological parameters. Assume x(t ) is a deterministic trajectory, id est it satisfies
d x
d t =V (x(t )), then

d sg (x(t ))

d t
= (∇x sg ) ·V (x(t )) =βg ug (x(t ))−γg sg (x(t )). (5.5)

Here again βg and γg are the gene specific splicing and degradation rates. Equation

(5.5) is the base of all our theory as it connects the topology of the low dimensional

manifold on the left with the biology on the right. Of note, from now on we assume

that M can be fully determined by the spliced counts S alone. Biological observ-

ables, such as time, are independent of the parametrization2 of M . This is not

self-evident in our formulation and should therefore be verified.

5.2.1 Properties of the velocity field

As time is an observable, the time between two points (connected by a trajectory

allowed by the dynamical system) on M shouldn’t change depending on the chosen

parameterization of the low dimensional manifold. We check that this property is

2If unclear, the parametrization of a manifold is the system of coordinates, the base, used to
describe points on it. For example we can think of a segment connecting the points A and B ,
A,B ∈ RN . It can parametrized in many ways such as {Y |Y = A + (B − A)x, x ∈ (0,1)}, or {Y |Y =
(A+B)/2+ (B − A)/2x, x ∈ (−1,1)}, or even {Y |Y = A+ (B − A)x2, x ∈ (0,1)}
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verified with our formulation. In general, we have:

∆tx0,x1 =
∫
Γ

x1
x0

1

v(x)
d x. (5.6)

Γ
x1
x0

is the trajectory x(t) that connects the two points. In particular it is useful to

notice that xi = x(Si ). In addition, we remind:

∂S

∂t
= ∂S

∂x

∂x

∂t
and v(x) = ∂x

∂S

∂S

∂t
. (5.7)

For any parameterization of M we can apply a change of variable and obtain:

∆tx0,x1 =
∫
Γ

x1
x0

∂t

∂x
d x =

∫
Γ

x1
x0

∂t

∂S

∂S

∂x
d x =

∫
Γ

S1
S0

∂t

∂S
dS =

∫
Γ

S1
S0

1

Ṡ
dS. (5.8)

Thus, time intervals are, as they should be, a property of the original high dimen-

sional space which is not changed by different possible parametrizations of M .

This means that the details of the L function are not relevant as long as it links

the same low and high dimensional manifold. This is a very important property

allowing us not to worry about how we parameterize the low dimensional manifold.

We now simplify our theory and reach an optimization function focusing on the

cell cycle.

5.3 Measuring cell cycle period

In this section we will develop the same theory as before, focusing on the cell

cycle. In this case we know the low dimensional manifold and we can build a

probabilistic formulation to infer the parameters of interest. To link it with the

previous formulation: we are assuming that M is the one dimensional circle M ≡ S1

and the low dimensional coordinate is a phase x ≡ϕ. We develop a general theory,

but we will use in our inference only genes known to oscillate along the cell cycle to

reduce noise. The precise list of genes that we will use for the practical inference is

not yet fully determined, but comprises about 100 markers of different cell cycle

phases. The equation of the dynamics (5.5) becomes:

ṡ = ∂ϕs(ϕ)ω(ϕ) =βu −γs, (5.9)

where we again assume that the βs and the γs are not cell cycle dependent, i.e.

β(ϕ) =β and γ(ϕ) = γ. The parameters of this equation are strongly constrained by

their biological function, as detailed in appendix B.1. However, these constraints
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will allow us to translate into hour the period of the cell cycle we obtain, in a very

direct way explained in appendix B.2. Our coordinate (phase on the cell cycle)

follows the equation:

ϕ̇=ω(ϕ). (5.10)

We notice that the spliced counts exhibit a "sinusoidal" behaviour in the log trans-

formed space, and this dictates our choice of basis. We consider up to n Fourier

components in our expansion (from a practical perspective we will use n ∼ 3). This

means that in the linear space we can write:

sg (ϕc ) = e
∑

f νg f ζ f c , (5.11)

with

νg =



a0
g

a1
g

b1
g
...

an
g

bn
g


ζ=



1

cos
(
ϕ

)
sin

(
ϕ

)
...

cos
(
nϕ

)
sin

(
nϕ

)


ζc =



1

cos
(
ϕc

)
sin

(
ϕc

)
...

cos
(
nϕc

)
sin

(
nϕc

)


. (5.12)

In this model the νg is the vector of gene Fourier parameters that identifies the

behaviour of gene g . We fix a log normal error model on the spliced and unspliced

counts that we write as:

ln
(
Sg c

)= ln
(
sg (ϕc )

)+εg c (5.13)

ln
(
Ug c

)= ln
(
ug (ϕc )

)+ε′g c , (5.14)

where ε is the Gaussian noise. The predicted spliced are defined in equation (5.11)

and the predicted unspliced u are a non trivial function of {ν}, {ϕ}, {β}, {γ} and ω.

We will evaluate this function later, imposing the dynamical equation (5.9). Before

that, it is relevant to notice that we have:

P (U ,S|{ϕ}, {ν},ω(ϕ), {β}, {γ}) (5.15)

as a joint probability. However, looking a bit more closely at the model we have

made, especially at equation (5.11), we notice that there is a hierarchy. For our

formulation s = f (ϕ,ν), while u is influenced by all the parameters of the model.
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Thus translates to formulae as:

P (U ,S|{ϕ}, {ν},ω(ϕ), {β}, {γ}) = (5.16)

P (U |{ϕ}, {ν},ω(ϕ), {β}, {γ})P (S|{ϕ}, {ν}). (5.17)

This means that we can proceed step wise, greatly simplifying the inference at the

cost of small approximations. In particular, we exploit P (S|{ϕ}, {ν}) via either maxi-

mum likelyhood[269], variational inference [270], maximum a posteriori inference

methods [271, 272] (such as CHIRAL described in section 3) to infer both the {ϕ} and

{ν}. Then we inject the parameters inferred using the S to condition our expected

value of U . We notice that the {ϕ} effectively defines the manifold and is inferred by

using only the S, in line with the assumption that the low dimensional manifold

is determined by the spliced counts alone. We are interested to have a biological

meaning in our low dimensional manifold. Therefore, we rotate our definition of

the phase to allow ϕ = 0 to be mitosis (appendix B.3). Now we write the explicit

formulation of u, remembering that {ϕ} and {ν} are known. Using the chain rule we

can explicitly write the dynamics in our notation:

∂ϕsg (ϕ)

ϕ=ϕc

= ∑
f f ′
νg f D f f ′ζ f ′cω(ϕc )sg (ϕc ), (5.18)

with D f f ′ defined as:

D f f ′ =
(
δ⌈

f
2

⌉
,
⌈

f ′
2

⌉−δ f , f ′

)⌈
f

2

⌉
(−1) f . (5.19)

Thus we have an expression for the expected unspliced, u:

βu −γs = ∂ϕs(ϕ)ω(ϕ)

→ u = 1

β

(
∂ϕs(ϕ)ω(ϕ)+γs

)
→ u = 1

βg

(∑
f f ′
νg f D f f ′ζ f ′cω(ϕc )+γg

)
sg (ϕc ).

(5.20)

This can be combined with our error model written in equation (5.13) to write

ln
(
Ug c

)= ln

(
1

βg

(∑
f f ′
νg f D f f ′ζ f ′cω(ϕc )+γg

)
sg (ϕc )

)
+εg c . (5.21)
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Rewriting all in a probabilistic formulation we obtain

P (U |{ϕ}, {ν},ω(ϕ), {β}, {γ}) ∼ (5.22)

exp

(
− 1

2σ2

∑
g c

(
ln

(
Ug c

)− ln

(
1

βg

(∑
f f ′
νg f D f f ′ζ f ′cω(ϕc )+γg

)
sg (ϕc )

))2)
∼

exp

(
− 1

2σ2

∑
g c

(
ln

(
Ug c

)+ ln
(
β̃g

)− ln

((∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

))2)
,

where we have introduced the unitless notation: β̃g = βg /β̄, γ̃g = γg /β̄, ω̃(ϕ) =
ω(ϕ)/β̄. The geometric mean of the prior probability distribution of β is β̄. We will

soon explicitly write the distribution of β. As we want to marginalise over β̃, we

want to rewrite P (U | . . . ) as:

P (U |{ϕ}, {ν},ω̃(ϕ), {β̃}, {γ̃}) ∼ exp

(∑
g

(
−1

2
ag ln

(
β̃g

)2 +bg ln
(
β̃g

)+ cg

))
. (5.23)

We need to calculate the gene specific coefficients that appear in the integral:

(a,b,c).

∑
g c

(
ln

(
Ug c

)+ ln
(
β̃g

)− ln

((∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

))2

= (5.24)

∑
g c

(
ln

(
β̃g

)− ln

((∑
f f ′ νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

Ug c

))2

= (5.25)

∑
g
|C | ln(

β̃g
)2 −∑

g c
2ln

(
β̃g

)
ln

((∑
f f ′ νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

Ug c

)
+ (5.26)

∑
g c

ln

((∑
f f ′ νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

Ug c

)2

. (5.27)

This directly means:

ag = |C |
σ2 (5.28)

bg = 1

σ2

∑
c

ln

((∑
f f ′ νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

Ug c

)
(5.29)

cg = −1

2σ2

∑
c

ln

((∑
f f ′ νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc )

Ug c

)2

. (5.30)
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For the moment we can forget about cg as it is only a normalisation constant for

the β̃ integral. The integral we want to solve to marginalise over β̃ is:∫
P (U |{ϕ}, {ν},ω̃(ϕ), {β̃}, {γ̃})P ({β̃}|{ϕ}, {ν},ω̃(ϕ), {γ̃})d β̃. (5.31)

We need a (conditioned) prior on β to perform this integral. For ease of analytics

we use a log-normal distribution. The geometric mean of this prior should set a

time scale for all the other parameters in play. Given the intrinsic scale invariance

of the system we will set β̄= 1, for simplicity. However, the spread that we expect is

important, thus we need to carefully treat the τ parameter. As the βs are susceptible

to a great deal of technical noise we will assume τ= 2, thus leaving great variability

to the splicing rate. This parameter will determine the impact of the prior on the

future optimization. In formulae:

P ({β}|{ϕ}, {ν},ω(ϕ), {γ}) ∼∏
g

1

β̃g
e−

1
2τ2 ln

(
β̃g

)2

(5.32)

So, considering all the definitions we have provided up to now, we can explicitly

write our integral:∫
P (U |{ϕ}, {ν},ω̃(ϕ), {β̃}, {γ̃})P ({β̃}|{ϕ}, {ν},ω̃(ϕ), {γ̃})d β̃∼ (5.33)∏

g

∫
e

(
−ag ln

(
β̃g

)2+bg ln
(
β̃g

)+cg

)
e−

1
2τ2 ln

(
β̃g

)2 1

β̃g
d β̃g ∼ (5.34)

∏
g

∫
e

(
−ag ln

(
β̃g

)2+bg ln
(
β̃g

))
e−

1
2τ2 ln

(
β̃g

)2

d ln
(
β̃g

)
. (5.35)

Ideally it could be interesting to also integrate out γ̃. However, it would be a bit

more tricky and would require some approximations. At this moment we have:

P (U |{ϕ}, {ν},ω̃(ϕ), {γ̃}β̄,τ) ∼∏
g

e

(bg )2

1
2

(
ag + 1

τ2

)+cg

. (5.36)

This does not really give us any intuition, so we should explicitly write the coeffi-

cients. Before that it is useful to introduce:

ūg = ug (βg = β̄) = βg

β̄
ug =

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc ) (5.37)
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By referring to the appendix in section A.3 we can solve the integral and write:

P (U |{ϕ}, {ν},ω̃(ϕ), {γ̃}, β̄,τ) ∼∏
g

e
− 1

2σ2
∑

c

(
ln

(
ūg c
Ug c

)
−〈ln(

β̃g
)〉)2

(5.38)

with 〈
ln

(
β̃g

)〉= 1
σ2

∑
c ln

(
ūg c

Ug c

)
+ 1

τ2 ln
(
β̄
)

( |C |
σ2 + 1

τ2

) =
∑

c ln
(

ūg c

Ug c

)
σ2

( |C |
σ2 + 1

τ2

) (5.39)

as β̄= 1. However, care is still needed as ūg c = ūg c ({ϕ}, {ν},ω̃(ϕ), {γ̃}, β̄,τ). In addi-

tion, as we have take the derivative of the s to obtain the u, we need to be careful

to predict plausible shapes for the unspliced and not venture into un-biological

territory allowed by the geometry of the system, as detailed in appendix B.4. We can

now solve the problem of fitting the best parameters for (5.38) either with simple

maximum likelihood, or set some priors on the parameters of interest and infer the

maximum or expected value of their posterior distribution.

A note on differential geometry

We just want to remind how the properties of manifold and velocity field pervade

our formulation. In particular, by definition a velocity field constructed according

to our method lies in the tangent bundle of a manifold. This geometrical constraint

is automatically inserted in equation (5.38). In fact the combination of the expected

values of spliced and unspliced, s and u, is always such that the velocity lies in the

tangent bundle of M in its high dimensional parameterization.

5.4 Implementation

We describe here the computational implementation of the models described

above. The computational implementation has been implemented by Alex Lederer,

Maxine Leonardi, Giole La Manno, and Felix Naef. It is briefly reported here to

show the development of the project. The mathematical models needed for the

implementation have been calculated by Lorenzo Talamanca.

5.4.1 Probabilistic programming with pyro

We implemented our model in a flexible probabilistic programming language, pyro

[273]. Pyro, contrary to the majority of programming languages, allows one to

analytically write all the probability distributions in play. After the optimization it

109



Chapter 5. RNA velocity 2.0

returns a posterior probability density for the variables of interest while marginalis-

ing over the hidden variables. So, we have access to the full posterior distributions

on the variables of interest and not only a point estimator. However, to comply with

the fully probabilistic model we need priors on all the parameters of the system.

In addition, Pyro needs as input normalised probability distributions. Fortunately,

for many known distributions it is able to calculate the normalisation coefficients.

However, the distributions must be given as the correct set of parameters. In par-

ticular, for Gaussian and log-normal distributions we must provide the mean and

covariance or precision matrix. So, we calculate the pyro-approved parametriza-

tion of P (U |{ϕ}, {ν},ω(ϕ), {γ}, β̄,τ) = P (U |u) in detail in appendix B.5. Once this

complies with the requirements of pyro we fix the priors on all our parameters and

proceed with the inference.

Prior distributions

We have set a series of priors on the parameters of interest. The choices were mainly

based in literature and to allow biological meaning of the parameters. We chose:

P (β) ∼ 1

β
e

1
2∗22 (ln(β))2

P (γ) ∼ 1

γ
e

1
2∗0.52 (ln(γ)−0.25)2

P (νω) ∼ e
1
2ν

⊺
ωAνω

(5.40)

with

Ai j = 20

2∗πδi j e−
⌈

i
2

⌉
. (5.41)

All these prior probabilities are already formulated in an acceptable way for pyro.

Now we will re writeP (U |u) to comply with pyro’s input requirements.

5.4.2 Preliminary results

We applied our method to a developmental mice brain atlas [274]. We focused on

inferring cell cycle speed for four different brain regions at embryonic day 10.5

(conception is embryonic day 0). The regions analysed are the forebrain, midbrain,

hindbrain, and midbrain-hindbrain boundary. To compare datasets and account

for different overall expression levels a small dose of care is needed (appendix

B.6). We have inferred the νs and ϕs simultaneously on all four regions. Then, we

have inferred the γs across datasets while the ω(ϕ) on each one separately. We

110



5.4 Implementation

re-scaled all the velocities ω(ϕ), dividing them by the geometric mean of the γs,

γ0. The different constant velocities, therefore periods, for the various regions, are

displayed in figure 5.1. We use the inference with a flat omega to infer the period;

we set the mean3 inferred half life for the genes considered to be 45 minutes to

be able to measure the period of the cell cycle in hours (appendix B.2). We notice

that the cell cycle is faster, with a period of about 21h, in the forebrain. In the

boundary between the midbrain and hindbrain the cell cycle period is 40h, shorter

in a puzzling way than the period of the midbrain which is 55h. In the hindbrain

the period is about 100h, which suggests an almost stopped cell cycle. This is

almost in accordance with the general idea that neurons in the forebrain are still

undergoing cell cycle while as the mature and differentiate they stop [274–278].

Although the standard deviation looks large compared to the mean it is important to

notice that it is the standard deviation of the posterior distribution, not the standard

deviation of the mean of the posterior. However, for the midbrain, hindbrain and

the boundary between the two, the sample standard deviation makes the effect

size of the differences in mean relatively small. This is especially important when

comparing the midbrain with either the boundary or the hindbrain. The difference

in period could be also due to the different proportion of cycling and non-cycling

cells in the various regions. We are currently working to solve this problem with

a mixture model consider only cycling cells for our velocity estimation. We also

inferred ω(ϕ) up to the first Fourier harmonic, shown in figure 5.2. The velocity is

more dependent on the position along the cycle for the midbrain. For the hindbrain

ω(ϕ) becomes negative at certain cell cycle phases probably signalling the fact that

these cells no longer cycle. The biological meaning of these findings is still unclear.

These results, like the mice brain dataset we exploited, are still in an embryonic

stage, however they look promising for relevant future developments.

5.4.3 Next steps

We need to expand our method, verify its robustness and wide applicability. We can

start by including more data from the mouse atlas. We then need to validate the ap-

proach, to ensure that our estimated cell-cycle periods are biologically relevant. To

do this, we could measure the period experimentally, for example with the FUCCI

system [197], in various conditions and match the experimental results to the com-

putational inference. In a more distant future it could be interesting to cross4 the

circular manifold of the cell cycle with any developmental manifold. Information

3In the geometric sense
4In the geometrical sense of making a cross product between two spaces
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Figure 5.1: Inference of a flatω(ϕ). Cell cycle speed of cells across different devel-
opmental brain regions recapitulates faster cell cycle in the forebrain and a stopped
cycle in the hindbrain. Bright colour is the mean, veiled is the standard deviation of
the posterior distribution. Cell cycle phase on the x-axis between 0 and 2π, unitless
ω(ϕ)/γ0 on the y-axis.
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Figure 5.2: Inference of a phase dependent ω(ϕ). Oscillatory behaviour of ω(ϕ)
shows stronger speed differences as a function of cell cycle phase in the midbrain.
Bright colour is the mean, veiled is the standard deviation of the posterior distri-
bution. Cell cycle phase on the x-axis between 0 and 2π, unitless ω(ϕ)/γ0 on the
y-axis.
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on cell cycle phase and speed in each part of the developmental manifold could

reveal novel biological properties.
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6 Conclusions and perspectives

6.1 Contributions of this thesis

We are now at the end, so we will summarise all the relevant contributions to science

encapsulated in this thesis. The objective results will be presented in plural form,

while personal, and sometimes more philosophical, reflections and speculations

are written in the singular form.

6.1.1 Circadian phase inference

The first problem we tackled was the one of circadian phase inference, given the

high abundance of unlabelled samples from a variety of different studies and our

interest in chronobiology. I think this problem is deeply relevant as it opens the

opportunity to reduce the need for animal experiments while studying the circadian

clock. Experiments for chronobiology require time points around the clock as well

as biological replicates to ensure a robust signal to noise ratio, resulting in at least

8, but more often around 50, animals sacrificed per experiment. Thus, I think it is

paramount to widely exploit computational methods of circadian phase inference

across the circadian field. We have seen that computational methods are already

available, however the community has not yet agreed on a golden standard.

We developed a rigorous, fully probabilistic approach to the problem. It has shown

its high level performance on mice and human labelled data outperforming the

only other existing unsupervised method, CYCLOPS. I think an interesting part

of CHIRAL it’s its deeply rooted analytical formulation. In fact, we pushed the

analytical calculations as much as we could, even when most would have resorted
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to computational optimization. This is shown both in the recursive solution of

the spin model, in the introduction of Lagrange multipliers, and in the analytical

maximisation step in the EM. CHIRAL also differs from CYCLOPS for the mixture

model we implemented that is able to discard genes that do not carry temporal

information. Overall, the improvement we bring is not only from a results perspec-

tive, but also from a conceptual point of view. I believe that all these little details

have in the end paid off, allowing CHIRAL to outperform existing methods. We also

developed an R package for CHIRAL, making it easily accessible and applicable to

project any omics data onto relevant circular manifolds. The main and most crucial

application we found for CHIRAL was ordering about 16000 samples from the GTEx

project. I hope this set of ordered samples will be used as a circadian atlas by the

community fuelling future studies on human chronobiology.

6.1.2 Human chronobiology

We have discussed the inner complexities of studying chronobiology in humans,

especially across tissues. I think the majority of these difficulties are born from little

communication among scientists and between the clinic and researchers. We are

very grateful to the GTEx project for allowing us to access a vast collection of human

samples spanning the whole body. We exploited the data, after cleansing it from

biases and assigning a circadian phase to each donor, to discover a rich picture of

human 24h rhythms. This was the first time that the clock could be studied so in

depth in humans in such a variety of tissues. In particular, we are also able for the

first time to compare the timing of tissues, although only in an average sense.

We have studied the clock across the body, its structure is conserved while the

amplitude of oscillations of core clock gene expression is tissue dependent. In

addition, downstream rhythms vary in intensity and breadth throughout the body.

In accordance with the expectations from the field, the oscillations in the brain are

less frequent and have lower amplitude than those in metabolic tissues, such as the

liver. Nonetheless, the heat shock response was highly rhythmic in brain tissues,

peaking at the time of highest body temperature, and not as marked in the rest of the

body. We have shown an ensemble of rhythmic functions occurring throughout the

body every day, from carbohydrate metabolism in the morning to lipid homeostasis

in the afternoon and immunity in the night. I think it could be relevant to make

these rhythms more known to the general population, as respecting them could

increase general well-being. We then stratified our analysis to compare rhythmic

oscillations between sexes.
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We showed similar behaviour of the circadian clock for males and females, while

downstream rhythms were overall more female biased. The liver was a very interest-

ing example of sex-dimorphic tissue. It showed more prevalent mRNA oscillations

in the females, with almost ten times more rhythmic high amplitude genes. In

fact, in the liver more than 1000 mRNA, some driving physiological changes, lose

their rhythms in males. In particular, we found a loss of functional oscillations in

the male liver for detoxification pathways; both the xenobiotics and cholesterol

metabolism pathways are in fact rhythmically regulated only in females. I believe

this should remind the medical community to take more care of drug delivery time.

In addition, the optimal drug timing might differ between men and women. We also

discovered the oscillations of glucocorticoids in the female adrenal gland which

could be a putative mechanistic reason for the difference in overall rhythmicity. I

think it is very relevant to notice how known stronger female behavioural rhythms

are indeed correlated with higher oscillations at the molecular level. We then looked

at the differences in circadian rhythmicity occurring with age.

There is the general idea in the field that the clock and its downstream rhythms

decay with age. We confirmed a strong decline of circadian oscillations across the

body. However, we noticed an intact circadian clock conserved between young and

old. In particular, we exposed a general loss of evening peaked mRNA rhythms as

age progresses. I believe the notion that the core clock does not deteriorate with age

will either deeply change our understanding of the human circadian rhythms, or

will be refuted by the community. The coronary arteries showed a relevant pattern

of rhythmicity loss as a function of ageing. They revealed reduced oscillation in the

cholesterol biosynthesis pathway along with other 800 mRNAs. We also uncovered a

radical functional change of rhythmic expression in the ovary. Rhythmic processes

switched from being related to biosynthetic and metabolic processes to heat shock

and stress response. I think it’s quite unexpected to see a functional change rather

than a simple reduction of oscillations as a possible result of menopause. Lastly, we

showed how rhythmic processes can change phase locking with the environment

as a result of ageing. Pituitary, liver, and colon, important regulators of physiology,

switched to a 1 : 2 phase locking with earth’s period exhibiting 12h ultradian rhythms

in elderly, for many processes with circadian oscillations in young.

Overall, we gave a comprehensive analysis of the circadian clock in humans and re-

vealed a rich picture of rhythms specific only to sub populations. We recapitulated

some known or expected behaviours of the clock while detailing its downstream
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effects on putative physiological rhythms in humans. We also showed some un-

expected behaviour of the circadian pacemaker that I hope will shape the way

the clock is perceived in the field. While we did not focus strictly on any pathway

and its physiological and clinical aspects, I think we provided a great resource for

more specialised scientists to explore. I am glad we were able to open the way for,

hopefully, many future studies about the impact of sex and age on human circadian

rhythms.

6.1.3 Dynamically consistent RNA velocity

We wrote a general theory to include differential geometry and dynamics in the RNA

velocity framework. We then derived a more mathematically precise formulation for

the special case of the cell cycle. Knowing the low dimensional manifold of interest

allowed us to explicitly formulate our theory and greatly progress with analytical

calculations. We reached a prediction of unspliced measurement based on the

characteristics of the low dimensional manifold, gene parameters and cell cycle

speed. Exploiting the prediction we optimised the gene parameters and the cell

cycle speed with probabilistic programming. We managed to apply our method for

cell cycle speed inference to mouse brain developmental atlas and found interesting

results. Although not perfectly in line with biological expectations, the cell cycle

velocity showed a relevant decrease for cells outside the forebrain. Still much work is

ahead, but I believe that there is promise in this mathematical formulation coupled

with the strategy of inference via probabilistic programming. Independently on the

practical results of the inference, I think the theoretical formulation we developed

is quite elegant and is able to include the beautiful constraints of tangent bundles

to a complex biological problem in a graceful way.
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7.1 Cancer and circadian clock

Here we will describe the work that we performed to study the effects of cancer on

the clock, and how it should be continued as it is still in a preliminary stage.

Current developments

Many connections have been made between cancer presence and circadian clock

malfunction [81–89]. However, still much is to be discovered about the interplay

between the clock and cancer. To study more in depth these links and contribute to

the field we started analyzing data from The Cancer Genome Atlas (TCGA) program

[279]. We applied our methodology to test whether we could exploit the TGCA data

to gain new insights about the interplay of cancer and circadian clock. The TCGA

dataset contains about 11000 RNA-seq samples from 33 distinct cancers across

the body. Samples are often taken when patients undergo surgery; in about 5%

of the cases cancerous samples are matched with a sample from healthy tissue

surrounding the cancer. We hypothesised that, although the cancerous tissue might

harbour a broken clock, healthy tissues surrounding the cancer have an intact cir-

cadian pacemaker. Therefore, we transferred circadian phase information from the

surrounding healthy tissue to the tumor; we are transmitting time information from

robust clocks to presumably broken ones where the inference would conceptually

not be possible. We selected tissues from the TCGA data where matched samples

were > 36. The selection left us with 516 matched samples from 12 tissues. We then

applied CHIRAL on the healthy samples and assigned the inferred phase also to

the cancer sample. Performing our cSVD approach we see how the clock retains its
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Figure 7.1: Clock structure in healthy and cancerous tissues. First gene (left) and
tissue (right) vectors of cSVD performed on CRGs indicate highly reduced clock
reference genes oscillations in cancerous samples (triangle) compared to healthy
tissues (circle). The first module captures 78% of the 24h variance, E.V..

properties both in the healthy and cancerous set of samples, while the amplitude

of oscillations is greatly decreased in cancer (figure 7.1). The clock appears still

intact with the correct structure in the healthy tissues next to cancerous growth in

all cancers studied. This is not an artefact as CHIRAL is an unsupervised algorithm.

However, we can see a strong decrease in amplitude of clock oscillations in the

various associated tumors that should be investigated further. Also the relatively

low percentage of variance explained could be studied more in depth. In particular,

relevant contributions to deformation of the clock either in healthy or tumorous

tissue could come from further cSVD components.

Future directions

From the circadian ordering of the TCGA data we can learn much in terms of which

oscillatory functions are lost when cancer invades healthy tissues. This dataset

has already been used to study the connection of various cancer types with the

expression of clock genes, but has not been fully exploited. Studies have zoomed

on specific cancers and have not assigned any time stamp to either healthy or

diseases samples whilst focusing on the overall gene expression differences and not

considering circadian oscillations [280–283]. Assigning time circadian phases to

samples in TCGA allows us to include the temporal aspect when comparing healthy

tissues and cancers. In addition, we can also study the time oscillations of mRNAs
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across cancers to look for potential pan-cancer rhythmic expression. This newly

ordered data allows us to study possible differences in rhythmic activity between

TCGA and GTEx data from the same tissues. Thus, we would have three stages per

tissue: healthy, healthy neighbouring cancer, and tumorous. This stratification

could bring to light a stepwise decline of relevant circadian functions; the loss of

rhythmicity in such functions could be included in the diagnosis and prognosis of

various cancer types, as proposed for breast cancer [284–286]. Finally, it can also

be relevant to investigate, in a patient-specific way, if and how rhythmic functions

are correlated with survival rate or response to treatment. However, to advance in

many of these directions we first need to have solid metrics to evaluate the state of

the circadian clock.

Introduction of metrics

For many of the challenges that lie ahead the introduction of metrics to evaluate

either the strength of the clock in a set of samples or the probability that one sample

has a working clock seems paramount. Some metrics have been proposed, but

they lack solid mathematical foundations as they are mostly based on empirical

observations [84, 287]. The cSVD could be exploited to introduce a metric on

collective clock robustness, as it recapitulates well the oscillatory properties of clock

reference genes. The sample-specific metric is more complicated to introduce.

In fact, for this kind of metric a reference with which to compare our sample of

interest is needed. One option would be to use a probabilistic projection onto a

reference clock behaviour, possibly in a tissue specific way, exploiting the ordered

GTEx data. This would mean to evaluate the probability that a sample is on the

high dimensional trajectory of the clock, thus separating (in a probabilistic way)

samples with a functioning clock from samples with a broken one.

7.2 Timed treatments

We explore possible future studies, spurring from the findings in chapter 4, related

to the need of introducing time in medical, clinical, and pharmaceutical research.

Fatty liver diseases

Behaviour of non alcoholic fatty liver diseases has recently been strongly correlated

with different states of the clock [288–291]. The role of the clock as a prevention
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against such diseases has been proposed [292–294]. On the other hand, malfunction

of the clock has been strictly linked with the insurgence of liver pathologies [295–

297]. It could be relevant to combine the time labels we inferred with the sample-

specific metric described in section 7.1 and histology slices from the donor’s liver.

In fact, we could verify if also in humans liver cell size shows circadian oscillations,

as it does in mice ??. In addition, we could infer novel properties and hopefully

treatment strategies for liver diseases. Lastly, combining the GTEx data with the

TCGA atlas could provide further knowledge on which and how circadian controls

breaks in hepatocellular carcinoma [298]. This could provide new important insight

on the interplay of the circadian clock and liver diseases.

Sex-dimorphism in liver diseases

Non alcoholic fatty liver disease have also been strongly characterized as sex-

dimorphic[299–304]. In fact, the incidence is significantly higher in males than

females across world regions and races [305–313]. The striking observation, from

the analysis of the GTEx data, that rhythmic liver gene expression was significantly

more prevalent in females may bring new insights into the staggering sexual di-

morphism of fatty liver diseases. While it would need to be established that mRNA

rhythms propagate to rhythmic enzymatic activities, we may speculate that en-

hanced rhythmicity in metabolic pathways may be an attenuating risk factor for

such diseases. The interplay of sex-dimorphic liver mRNA rhythms, disrupted clock,

and liver diseases should be investigated more in depth, possibly exploiting along-

side GTEx other available datasets of RNA-seq from patient with various degrees of

fatty liver diseases, possibly like [314–318]. Lastly, the pervasive differential gene

expression rhythmicity, in particular in xenobiotic detoxification genes, may also

provide opportunities to develop sex-specific chronopharmacology [260].

Cardiovascular diseases in ageing

Cardiovascular diseases show known age-dependent incidence rates, in fact enough

to characterise age as a direct risk factor [319, 320]. In addition, age has also been

indirectly correlated with cardiovascular disease risk trough the inflammation

[321], menopause [322], and overall changes in health [323]. The loss of nearly 800

mRNA rhythms in coronary arteries in the older age group could be exploited to

discover possible correlations of loss of circadian function and increased risk of

cardiovascular disease. The strong difference in rhythmic processes could also

be relevant to explain the uneven timing of sudden cardiac death across ages
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and possibly open new avenues for prevention [324] and effectiveness of timed

medication [325]. Overall, a study focused on the cardiovascular tissues is needed to

understand in detail the interplay of circadian rhythms and cardiovascular disease

incidence across ages and sexes [326, 327].

Oscillations of SERPINE1

From our analysis Serpin Family E Member 1 (SERPINE1) showed the frequent loss

of high amplitude circadian rhythms between population subgroups. SERPINE1

is needed for controlled blood clot degradation [328, 329] and has been related

to myocardial infarction [330, 331]. We found it to be arrhythmic in elderly or in

male cardiovascular tissues. On the other hand, in females and young its ampli-

tude was in the top 3%. Therefore, we have possibly identified a physiologically

relevant circadian process which is highly sex-dimorphic and age dependent. As

cardiovascular diseases show lower incidence in young and in females, the precise

role of SERPINE1 oscillations in such diseases should be studied more in depth.

Physiological studies on the effect of this gene and especially its oscillations could

open unexpected ways for therapy. Hopefully, strategies based on restoring SER-

PINE1 rhythms may be attempted. In addition, SERPINE1 has been proposed as a

biomarker for various cancers [332–334] and a null mutation in this gene has been

associated with protection against ageing [335]. The circadian direction of these

findings has not yet been addressed and makes SERPINE1 a great candidate for

an in-depth study across the body. Such study could pave the way to exploit the

different rhythmic behaviour of SERPINE1 across tissue as both a diagnostic and

therapeutic tool for a diverse set of diseases.

Chronopharmacology

Chronopharmacology studies the effect of rhythms on drugs, and suggests that

some drugs should be administered at precise times during the day. This concept

has been introduced fifty years ago[336–339], but has generally been disregarded

by the majority of physicians. Only recently circadian researchers are pushing

again for clinical applications of chronopharmacology [340–342]. Our results might

open the way to optimize timing and dosing of drugs, notably according to sex

and age, both for improving the efficacy or reduce side effects [100, 211, 325]. A

screen of the interaction between drug targets and highly rhythmic mRNA could

give relevant insights about which treatments should be timed, especially when

taking into account the age and sex of a patient.
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A Gaussian integration

We remind some known Gaussian integrals, with the help of [166].

A.1 Univariate Gaussian integrals

Here we assume x, a,b,c ∈ R and a > 0.∫ ∞

−∞
e−

1
2 ax2±bx+c =

√
2π

a
e

b2

2a +c (A.1)

∫ ∞

−∞
xe−

1
2 ax2+bx+c = b

a

√
2π

a
e

b2

2a +c (A.2)

∫ ∞

−∞
x2e−

1
2 ax2+bx+c = (b2 +a)

a2

√
2π

a
e

b2

2a +c (A.3)

∫ ∞

−∞
f (x)e−

1
2 ax2+bx±c =

(
e

b
a

∂
∂x + 1

2a
∂
∂x

∂
∂x f (x)

)
0

√
2π

a
e

b2

2a ±c (A.4)

A.2 Multivariate gaussian integrals

Here we assume X ,B ∈RN and A ∈RN ×RN , C ∈R and that the matrix A is positive

definite, although these constraints can be relaxed1.

∫ ∞

−∞
e−

1
2 X ⊺AX±B X+c = (2π)

N
2

det(A)
e

B⊺A−1B
2 +C (A.5)

∫ ∞

−∞
X e−

1
2 X ⊺AX+B X+C = A−1B

(2π)
N
2

det(A)
e

B⊺A−1B
2 +C (A.6)

1Lecture on probability, Giorgio Parisi
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∫ ∞

−∞
X ⊺X e−

1
2 X ⊺AX+B X+C =

(
B⊺ (

A−1)2
B + A−1

) (2π)
N
2

det(A)
e

B⊺A−1B
2 +C (A.7)

∫ ∞

−∞
f (X )e−

1
2 X ⊺AX+B X+C =

(
e

Bi A−1
i j

∂
∂x j

+ 1
2 A−1

i j
∂
∂xi

∂
∂x j f (X )

)
0

(2π)
N
2

det(A)
e

B⊺A−1B
2 +C (A.8)

where xi is the i th component of the vector X .

A.3 Particular case

We develop more in detail this calculation as it is useful in our derivation of the

marginalized probability in chapter 5.∫ ∞

−∞
e−

∑
i (yi −µ)2

2σ2 e−
(µ−µ̄)2

2τ2 dµ=∫ ∞

−∞
e
− 1

2µ
2
(
|I |
σ2 + 1

τ2

)
+µ

( ∑
i yi
σ2 + µ̄

τ2

)
−

( ∑
i y2

i
2σ2 + µ̄2

2τ2

)
dµ=

√
2π

|I |
σ2 + 1

τ2

e

( ∑
i yi
σ2 + µ̄

τ2

)2

2

(
|I |
σ2 + 1

τ2

) −
( ∑

i y2
i

2σ2 + µ̄2

2τ2

) (A.9)

We would like to rewrite the exponent of A.9 in a more intuitive way:(∑
i yi

σ2 + µ̄

τ2

)2

2
( |I |
σ2 + 1

τ2

) −
(∑

i y2
i

2σ2 + µ̄2

2τ2

)
= a

2

∑
i

(
yi − ȳ

)2 (A.10)

for some a and ȳ . In particular we would like to have ȳ = µ̂ where, however, µ̂=
f (

∑
i yi ) so thngs might get a bit more tricky. Let’s get into the calculation, keeping
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A.3 Particular case

in mind that we are not interested in the constant term.(∑
i yi

σ2 + µ̄
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where of course:

µ̂= 1( |I |
σ2 + 1

τ2

) (∑
j y j

σ2 + µ̄

τ2

)
=

|I |
σ2 〈y〉+ 1

τ2 µ̄

|I |
σ2 + 1

τ2

(A.12)

which is only a weighted mean of the data and prior contributions, where the

weitghts are the varinces scaled by the observations. We then write concisely:

∫ ∞

−∞
e−

∑
i (yi −µ)2

2σ2 e−
(µ−µ̄)2

2τ2 dµ=
√

2π
|I |
σ2 + 1

τ2

e−
1

2σ2
∑

i (y−µ̂)2

(A.13)
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B Technical details for the improve-

ment of RNA velocity

Here we collect and discuss a series of small technical details that are however

crucial to a correct interpretation of the system and its numerical implementation.

B.1 Biological constraints β and γ

The biological parameters governing the dynamics of spliced mRNA, S are β and γ.

For this reason their values are highly constrained by the biology. In particular, for

genes oscillating during the cell cycle:

β0 = β̄= 1

β−1
0 ∈ [10,20] minutes, estimate is unsure due to technical artefacts

γ−1
0 ∈ [0.5,1.5] hours

2π〈ω−1
0 〉 ∈ [6,50] hours ∼ 12γ−1

0

γ0 <β0 γ0 ∼ 1

4
β0

ω0 ∼ 2π

12γ−1
0

∼ γ0

2
∼ β0

8

(B.1)

with γ0 the (geometric) mean of the γ distribution.

B.2 Velocity and period

One of the main issue is how to interpret the velocities we find. Although we have

set a time scale with the β̃ prior, we have chosen a large τ= 2 parameter that does

not effectively constrain the scales of the parameters in play. However, the posterior
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distribution of the γs can be used to infer the scale in hours of the cell cycle period.

For this reason, we re-scaled the cell cycle velocity we infer by the geometric mean

(or the median) of the inferred γs, γ0. If we have a strong prior for the γs this is

equivalent to setting the median of the prior equal to γ0; however if the prior is

uninformative we must to use the posterior distribution of γs across genes. We

assume, form literature or experiments, the mean half life of spliced mRNAs to be a

hours:

γ−1
0 ≃ ah. (B.2)

So, taking advantage of (5.6) we write:

T =
∫ 2π

0

1

ω(ϕ)
dϕ= 2π

ω̄
√

1−|νω|2
(B.3)

for ω with mean ω̄ and up to one harmonic described by the coefficients νω. So, the

units of measurement can be included via γ0:

T = 2π

ω̄
√

1−|νω|2
= Kγ−1

0 (B.4)

which leads to:

T [γ−1
0 ] = 2π

ω̄
γ0

√
1−|νω|2

= K (B.5)

and finally

T [h] = 2aπ
ω̄
γ0

√
1−|νω|2

. (B.6)

In our case we take:

a = 3

4
. (B.7)

B.3 Rotation in the Fourier space

As we know the cell cycle phases of cells are defined apart from a rotation. To have

a clearer biological interpretability we would like the phases to be such that ϕ= 0

correspond to mitosis.

ϕ′ =ϕ−ϕmitosis =ϕ−δ. (B.8)

So we have in general for gene g after we rotate the phases:

log sg = νgζ= ν′gζ(ϕ′) = ν′gζ′. (B.9)
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B.4 Constraints on γ

For each harmonic the rotation is quite straightforward:

a′
n = ancos(nδ)−bnsin(nδ)

b′
n = bncos(nδ)+ansin(nδ) .

(B.10)

However, using the notation ζ(δ) = ζδ, we can see how this translates into a matrix

multiplication:

ν′ =∆ζδ (B.11)

with

∆i j = a⌊
i
2

⌋δi j +b⌊
i
2

⌋ (
δ⌊

i
2

⌋
,
⌊

j
2

⌋−δi j

)
(−1) j (B.12)

remembering that the notation accounts for the constant mean term, a0.

B.4 Constraints on γ

We have approached the system in the "opposite" way. Instead of integrating the

levels of u to get the s, we are taking the derivative of s to have a predicted u. This

could lead to non-biological situations, such as a predicted negative values of the

unspliced counts in the linear space:

ug c =
(∑

f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc ) < 0. (B.13)

These scenarios can be avoided with correct constraints on γg . We notice an

important relation:

min(∂t s) ≥−γs. (B.14)

So in our model it should be included that:

min
c

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )sg

)
≥−γg sg

→ min
c

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )

)
≥−γg ,

(B.15)

which clearly means:

min
c

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+γg

)
≥ 0 → u ≥ 0 as s ≥ 0. (B.16)
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It seems easier to freely chose ν and then constrain γ; so we calculate:

min
c

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )

)
≥

min
ϕ

(∑
f f ′
νg f D f f ′ζ f ′ω̃(ϕ)

)
≥

−max
ϕ

(ω(ϕ))
∑

f odd

(
f +1

2

√
ν2

g , f +ν2
g , f +1

) (B.17)

thus:

γg ≥ max
ϕ

(ω(ϕ))
∑

f odd

(
f +1

2

√
ν2

g , f +ν2
g , f +1

)
. (B.18)

B.5 Pyro-accepted probability distributions

We want to explicitly write P (U |u) as a function of its location and precision matrix

in order to include it in the pyro framework. Let us remind the object in question:

P (U |u) =∏
g

e
− 1

2σ2
∑

c

(
ln

(
ūg c
Ug c

)
−〈ln(

β̃g
)〉)2

⃗dUg . (B.19)

We simplify the notation to not carry useless weights. We start by dropping the gene

index, as it would only burden us, and define the vectors l and L as:

l = {lc } = {ln(uc )} =−−−→
ln(ū), L = {Lc } = {ln(Uc )} =−−−−→

ln(U ) (B.20)

So we can rewrite (B.19) using (5.39) as

P (U |u) = e−
1

2σ2
∑

c (lc−Lc−κ∑
c′(lc−Lc′))2

d⃗U . (B.21)

with

κ−1 =σ2
( |C |
σ2 + 1

τ2

)
. (B.22)

The last ingredient before integrating is a change of variable for the differential

d⃗U =∏
c

dUc =
∏

c
dUc

∏
c Uc∏
c Uc

=∏
c

dUc

Uc

∏
c

Uc = dL
∏

c
Uc = e

∑
c Lc dL. (B.23)

Finally, we write

P (U |u) = e−
1

2σ2
∑

c (lc−Lc−κ∑
c′(lc′−Lc′))2

e
∑

c Lc dL. (B.24)
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B.6 Scales across datasets

We have a closer look and manipulate our exponential

∑
c

(
lc −Lc −κ

∑
c ′

(lc ′ −Lc ′)

)2

=

∑
c

(
l 2

c +L2
c +κ2
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∑
c ′′
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−2lc Lc −2lcκ
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(−2|C |κ21−2I +4κ1

)
L+

l
(
I +|C |κ21−2κ1

)
l =

σ2(L AL+−2l AL+ l Al )

(B.25)

with A = (I −2κ1+ |C |κ21)/σ2, I the identity matrix, and 1 a matrix or vector of

entries always equal to one, in |C | dimensions. Definig the vector B =−l A+1 we

can quite easily write (B.19) and obtain

P (U |u) ∼ e−
1
2 L AL+BLdL (B.26)

following the definitions above. Thus the A and B parameters are the correct

parametrization for pyro to deal with this probability.

B.6 Scales across datasets

After applying all this machinery to real data we found that sometimes data doesn’t

behave exactly as expected. In particular, some genes are constitutively more or

less expressed, although the oscillations are quite similar. In our framework this

would mean a "dataset" specific νg 0, or discarding the genes with this behaviour. In

general, changing the νs between datasets would mean obtaining non-comparable

velocities after the optimization. However, if we remember that the only way in

which the νs enter the optimization is through ūg c . We rewrite the definition of

ūg c :

ūg = ug (βg = β̄) = βg

β̄
ug =

(∑
f f ′
νg f D f f ′ζ f ′cω̃(ϕc )+ γ̃g

)
sg (ϕc ) (B.27)
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and of the differential operator D f f ′ :

D f f ′ =
(
δ⌈

f
2

⌉
,
⌈

f ′
2

⌉−δ f , f ′

)⌈
f

2

⌉
(−1) f (B.28)

and notice that

D0i = Di 0 = 0 ∀i . (B.29)

This directly means that that νg 0 does not influence the inference, and is just an

adjustemnt for the fits of the exon reads. Therefore, we can easily adjust the mean

of the gene fits given by the νs to match the right one. In particular, we can do

this before even inferring the phases for a new dataset. This batch correction can

improve the overall phase estimate and allow for the inference of {ν} simultaneously

across dataset.
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