
PROJECT REPORT :

Data-driven Computational Mechanics:
Implementation and Application

Yannick Neypatraiky

Supervised by

Sacha Zenon Wattel

Prof. Jean-François Molinari

19th January 2023

Contents

1 Introduction 2
1.1 Context . 2
1.2 Description . 2

2 Data-Driven Solver 3
2.1 Truss structures . 3

2.1.1 Theoretical principles . 3
2.1.2 Optimization problem . 4

2.2 Numerical Analysis of convergence . 7

3 Dynamic Data-Driven Solver 10
3.1 Adaptation of Static Solver . 10
3.2 Comparison with traditional solvers . 11

4 Stick-Slip Modelling 14
4.1 Problem Description . 14
4.2 Data-Driven Solver with damping . 16

4.2.1 Theoretical formulations . 16
4.2.2 Numerical Results . 17

4.3 Adaptation to Stick-Slip . 20
4.3.1 Theoretical formulations . 20
4.3.2 Numerical Results . 21

5 Conclusion 23

1 . Introduction

1.1 Context

Computational mechanics is a field that uses numerical simulations to solve complex mechanical
problems. Traditionally, these simulations have relied on models, known as constitutive laws,
to describe the behaviour of materials. These models attempt to match experimental results, but
they can be limited by the assumptions made. In recent years, a new approach known as Data-
Driven Computational Mechanics (DDCM) has emerged, which aims to use experimental data
directly to solve problems, bypassing the modeling step and reducing the potential for bias.

DDCM differs from traditional constitutive model-based simulation in the sense that it relies
on empirical knowledge. This allows the use of a much wider range of data and makes the
method less sensitive to any constitutive modelling assumptions. Additionally, it also has the
potential to overcome some of the limitations of traditional constitutive modelling, such as the
difficulty of modelling complex nonlinear behaviour or the lack of experimental data to validate
models. As such, it can be particularly useful in cases where there is limited understanding of
the underlying physical processes, or where the behaviour of a material changes significantly
with loading conditions.

1.2 Description

In this project, the data-driven computational mechanics approach is implemented and applied
to analyse structural mechanics. The project is based on Kirchdoerfer and Ortiz article [1], where
this new paradigm of data-driven computing was first developed. According to this paradigm,
calculations are performed directly from experimental material data, pertinent constraints and
conservation laws, bypassing the traditional step of empirical material modelling. The DDCM
method implemented here is based on the idea of finding the closest state from a prespecified
dataset to satisfying the conservation laws, and is equivalent to finding the state that satisfies
the conservation laws that is closest to the dataset.

The project involves the development of data-driven solvers in Python, and their application to
various examples, such as the static (or dynamic) equilibrium of a truss. The performance of
the data-driven solvers is evaluated in terms of their convergence properties with respect to the
number of data points, and with regard to local data assignment. The project aims to investigate
the potential advantages and limitations of this approach compared to traditional methods and
the robustness of data-driven solvers with respect to spatial discretization. Finally, the expected
results of this project is that the data-driven solutions converge to the classical solution as the
dataset approximates increasingly closely a classical material law in phase space, as highlighted
in the reference paper [1].

2

2 . Data-Driven Solver

2.1 Truss structures

2.1.1 Theoretical principles

The Data-Driven scheme is introduced by considering a simple linear elastic truss problem.
Truss structures are chosen here as they are composed of articulated bars that can only experi-
ence uniaxial stress and strain, making the material behaviour of a bar relatively simple to un-
derstand. Therefore, the use of trusses allows for a clear illustration of the underlying principles
of the DDCM approach.

In linear elasticity, the behaviour of a truss bar follows the well-known Hook’s law:

σ = E · ϵ (2.1)

where ϵ is the strain, σ the stress and E the Young Modulus of the truss bar.

In the Data-Driven approach however, it is assumed that the material behaviour for each bar
e ∈ {1, ...,m} of the truss is represented by a set Ee, composed of different pairs (ϵe, σe), known
as local states. These local states could be experimental measurements, subgrid multiscale calcu-
lations, or other data that can characterises material behaviour. It can be noted that this approach
completely removes the necessity to determine the material properties such as the Young Mod-
ulus.

Figure 2.1: Example of normalised material dataset for a linear elastic truss bar

The entire space of pairs (ϵ, σ) is referred to as the phase space. Unlike traditional computational
mechanics solvers, DDCM seeks to assign the best possible local state (ϵe, σe) from the corres-
ponding dataset Ee to each bar e, while simultaneously satisfying compatibility and equilibrium.
This leads to the concept of optimality of the local state, which is determined by minimising the
distance between the data points and the space defined by fundamental laws, compatibility and
equilibrium, within the phase space, using an appropriate penalty function.

3

CHAPTER 2. DATA-DRIVEN SOLVER

The local penalty functions considered here are defined as:

Fe(ϵe, σe) = min
(ϵ′e,σ

′
e)∈Ee

We(ϵe − ϵ′e) +W ∗
e (σe − σ′

e) (2.2)

for each bar e ∈ {1, ...,m} in the truss with,

We(ϵe) =
1

2
Ceϵ

2
e and W ∗

e (σe) =
1

2
Ceσ

2
e (2.3)

with the minimum taken over all local states (ϵ′e, σ
′
e) in the local dataset Ee. The functions We

and W ∗
e are introduced as part of the numerical scheme and does not need to represent any ac-

tual material behaviour, but can be seen as reference strain and complementary energy densities,
respectively. The constant Ce is also numerical and does not represent a material property.

In the same fashion as traditional methods, the global state of the truss in DDCM is obtained by
combining all local states (ϵe, σe) of each one of its bars, leading to the formulation of the global
penalty function:

F =
m∑
e=1

we · Fe(ϵe, σe) (2.4)

with we = Ae · Le denoting the volume of truss member e, Ae being its cross-sectional area and
Le its length.

2.1.2 Optimization problem

The aim of the data-driven solver being to find the optimal local states for each bar e. Mathem-
atically it can be seen as minimisation problem where the global penalty function F is the cost
whereas equilibrium and compatibility equations form the set of constraints.

The constrained minimisation problem can therefore be expressed as :

Minimise:
m∑
e=1

we · Fe(ϵe, σe)

subject to: ϵe =
n∑

i=1

Bei · ui, ∀ bar e ∈ {1, ...,m} (2.5)

m∑
e=1

we ·Bei · σe = fi, ∀ node i ∈ {1, ..., n}

where u = [u1, ..., un]
T is the array of nodal displacements, f = [f1, ..., fn]

T is the array of
applied nodal forces and the matrix B, of size m× n, encodes the connectivity and geometry of
the truss.

Expressing the strains in terms of displacements allows to highlight the compatibility constraints
while the equilibrium constraint can be enforced through the use of Lagrange multipliers, thus
resulting in a stationary problem (see Eq.5 in [1]).

After solving the stationary problem and determining all optimal data points (ϵ∗e, σ
∗
e), a system

of linear equations can be established for nodal displacements ui, local stresses σe, and Lagrange

4

CHAPTER 2. DATA-DRIVEN SOLVER

multipliers ηi. This system can be simplified and expressed in an equivalent form:

n∑
j=1

(
m∑
e=1

weCeBejBei

)
uj =

m∑
e=1

weCeϵ
∗
eBei (2.6)

n∑
j=1

(
m∑
e=1

weCeBeiBej

)
ηj = fi −

m∑
e=1

weBeiσ
∗
e (2.7)

This system is composed of two standard linear-elastic truss-equilibrium problems with identical
stiffness matrix. To simplify the implementations and notations, the equations are rewritten in
vector form by introducing the following parameters:

- The stiffness matrix:

K =
m∑
e=1

weCeBejBei = BTWCB (2.8)

- The displacement constraint vector:

U(ϵ∗) =
m∑
e=1

weCeϵ
∗
eBei = BTWC · ϵ∗ (2.9)

- The Lagragian multiplier constraint vector:

H(σ∗) =
m∑
e=1

weBeiσ
∗
e = BTW · σ∗ (2.10)

where diag(W) = [w1, .., wm]T and diag(C) = [C1, .., Cm]T .

Using those formulations, the linear system in Equation 2.6 and 2.7 can be rewritten as:

K · u = U(ϵ∗) and K · η = f −H(σ∗) (2.11)

The process of determining the optimal local data points (ϵ∗e, σ∗
e) in the local datasets Ee is done

iteratively. To begin, all bars in the truss are assigned random points (ϵ
∗(0)
e , σ

∗(0)
e) from the cor-

responding local datasets Ee. The displacements u
(0)
i and Lagrange multipliers η

(0)
i are then

calculated by solving the system of equations, and the stresses σ(0)
e are evaluated from the equa-

tions. For each member in the truss, the data points (ϵ
∗(1)
e , σ

∗(1)
e) in Ee that are optimal with

respect to the local state (ϵ
(0)
e , σ

(0)
e) are identified. The iterations then continues by recursion

until the local data assignments no longer change. All of these operations are summarised in
Algorithm 1.

5

CHAPTER 2. DATA-DRIVEN SOLVER

Algorithm 1 Data-driven solver
Data: Local datasets E = [E1, ..Em], B-matrix. Applied loads f

Initial local data assignment:
Set k ← 0
for all e = 1, ...,m do

Choose (ϵ
∗(0)
e , σ

∗(0)
e) randomly from Ee

end

Begin the DDCM loop
while True do

i) Solve for u(k) and η(k):

K · u(k) = U(ϵ∗(k)) and K · η(k) = f −H(σ∗(k))

ii) Compute local states:

ϵ(k) = B · u(k) and σ(k) = σ∗(k) +CB · η(k)

iii) Assign local state:
for all e = 1, ...,m do

(ϵ
∗(k+1)
e , σ

∗(k+1)
e) = argmin

(ϵ′e,σ
′
e)∈Ee

We(ϵ
(k)
e − ϵ′e) +W ∗

e (σ
(k)
e − σ′

e)

end

iv) Test for convergence:
if (ϵ∗(k+1),σ∗(k+1)) = (ϵ∗(k),σ∗(k)) then

u = u(k)

(ϵ,σ) = (ϵ∗(k),σ∗(k))
exit while loop

else
k ← k + 1

end
end

6

CHAPTER 2. DATA-DRIVEN SOLVER

2.2 Numerical Analysis of convergence

The convergence of data-driven solvers with respect to the dataset is an important aspect to
consider. In particular, when the materials in the truss follows a well-defined constitutive law,
such as the Hook’s law (Equation 2.1), it is expected that the data-driven solutions will converge
to the classical solution as the datasets increasingly approximate the stress-strain curve.

To demonstrate this convergence property, different configuration of datasets are tested on the
simple truss configuration, whose static system presented in Figure 2.2, which is made of a two
nodded bar under a uniaxial load applied at node 2, with the displacement at node 1 being
blocked. This type of configuration is commonly encountered in structural mechanics and can
be easily solved using classical Finite Element Method (FEM) techniques.

L

1 2

E, A f

Figure 2.2: One dimensional bar under uniaxial load

For this system, the well-known equation for FEM, KFEM · [u1, u2]T = [0, F]T , can be reduced
to EA

L u2 = F , where A is the cross-sectional area, E is the Young’s modulus, L is the length of
the bar, and f is the applied load. With A,E,L, F = 1, the displacement vector u = [0, 1]T is
obtained.

However, in the context of Data-Driven Mechanics, the material properties are not finite values,
but rather a set of (ϵ, σ) pairs obtained from experiments or simulations. Since the task is to
find the optimal pair that satisfies, or is closest to satisfying, the compatibility and equilibrium
constraints, the datasets properties then become crucial for achieving meaningful results. In this
project, the properties whose influence on the solver’s convergence are evaluated are the dataset
size and the noisiness.

• Influence of the number of data points

The number of data points in the set is an important factor because a large number of data points
increases the chances of finding the optimal state.

To evaluate the effect of the number of data points on the accuracy of the data-driven solver,
the relative error between the displacements computed with DDCM and FEM is calculated for
various numbers of data points. In this study, the datasets assigned to the bar are collections of
evenly spaced data points along the Hook curve, with the Young Modulus set to E = 1 [MPa],
thus ensuring the results are not influenced by any noise.

The results, presented in Figure 2.3 provide insight into the relationship between the number of
data points and the accuracy of the data-driven solver and can be used to guide the selection of
the appropriate number of data points for a given application. As it could have been expected,
the error decreases with the number of data points following a trend with a log slope of−0.999.It
can be noted that this slope is similar to the results of Kirchdoerfer and Ortiz [1], which validates
the result.

7

CHAPTER 2. DATA-DRIVEN SOLVER

Figure 2.3: Effects of dataset size on the error on computed displacement

• Influence of noisiness

Noise is another important factor that influences the convergence of the DDCM solver. Here, it
refers to the random dispersion in the dataset that deviates from the usual material law model.
As a result, the computation can stray far from the traditional result, leading to a poor approx-
imation of the true solution.

Figure 2.4 illustrates the influence of noise on the dataset, and how the points deviates from the
expected material law model thus being a source of errors.

Figure 2.4: Effects of gaussian noise on the data points dispersion

To quantify the effect of noise on the DDCM solver, a study is conducted using a dataset with
1000 points and varying levels of noise, specifically in terms of standard deviation of a zero-
mean gaussian distribution. The results, presented in Figure 2.5, demonstrate that as the noise

8

CHAPTER 2. DATA-DRIVEN SOLVER

level increases, the error in the computed displacements also increases. Furthermore, it is ob-
served that there appears to be a threshold around std=1e−3 beyond which the error starts in-
creasing noticeably. These results highlight the importance of controlling noise in the dataset to
ensure accurate results when using a DDCM solver.

Figure 2.5: Effects of dataset noisiness on the error on computed displacement

• Summary

To summarise, it is crucial to consider the dataset noise and size factors when implementing
a DDCM solver. Ideally, the dataset should be as large as possible to increase the chances of
finding the optimal data point and as noise-free as possible to minimise the deviation from the
usual material law model. This way, the DDCM solver can converge to the true solution and
provide accurate results.

9

3 . Dynamic Data-Driven Solver

3.1 Adaptation of Static Solver

The extension of data-driven computing, presented in the previous chapter, to dynamical prob-
lems is demonstrated using the same example of truss structures as proposed by Kirchdoerfer
and Ortiz in their second paper [2]. Essentially by using the same parameters that are intro-
duced in the static scheme, the dynamic problem can be described by introducing the accelera-
tion within the main equations.

In the traditional method the main system is the well-known harmonic equation:

M · a+K · u = F (3.1)

where M is the mass matrix, K the stiffness matrix and a = v̇ = ü the acceleration.

This equation can be solved using finite element or other methods by introducing an adequate
time discretisation to compute the acceleration aj = üj at a given time tj as a function of previous
values of displacements. In this project, the chosen discretisation is based on the Newmark
algorithm which allows to introduce the following Newmark predictors:

upred
j = uj−1 +∆t · vj−1 +

(
1

2
− β

)
∆t2 · aj−1 (3.2)

vpred
j = vj−1 + (1− γ)∆t · aj−1 (3.3)

with the Newmark parameters β, γ and ∆t being the time step.

These predictors allows to introduce the associated update for acceleration and velocity:

aj =
1

β∆t2
· (uj − upred

j) (3.4)

vj = vpred
j + γ∆taj (3.5)

Assuming the state (ϵj ,σj) of the truss at time tj is known, the equilibrium constraint of the
minimisation problem in Equation 2.5 becomes:

m∑
e=1

we ·Bei · σe,j = fi,j −M · ai,j ∀i ∈ {1, ..., n} (3.6)

By inserting the expression in Equation 3.4 into 3.6, it results that in dynamic case the two inde-
pendent equations in Equation 2.11 becomes coupled, as highlighted in the paper [2]. At time tj
the system becomes:

[
K − 1

β∆t2
M

1
β∆t2

M K

]
·
[
uj

ηj

]
=

[
U(ϵ∗j)

fj −H(σ∗
j) +

1
β∆t2

M · upred
j

]
(3.7)

Overall to solve the dynamic problem, the implemented algorithm is the same as for the static
case by iterating on the number of time steps t replacing

10

CHAPTER 3. DYNAMIC DATA-DRIVEN SOLVER

3.2 Comparison with traditional solvers

First case: Same setup as in in Figure 2.2 in dynamics

To verify the accuracy and performance of the data-driven dynamic solver, it is tested and com-
pared against a traditional dynamic finite element solver (FEM). To ensure consistency in the
analysis, the same time discretisation is used for both solvers. Furthermore, the solvers are
tested under a variety of load and truss configurations to provide a comprehensive evaluation.

The first studied case consists in testing the DDCM solver using the same static system depicted
in Figure 2.2, with no initial displacement or velocity. The governing equation for this system
is that of an harmonic oscillator, meaning the displacement should oscillate with a constant
amplitude around the static solution.

Figure 3.1: Displacements for the dynamic problem with the static system in Figure 2.2

Figure 3.2: Velocities for the dynamic problem with the static system in Figure 2.2

The results of this comparison can be seen in Figure 3.1, where it can be observed that both the
DDCM and FEM solutions follow the expected pattern of an harmonic oscillator. The velocities

11

CHAPTER 3. DYNAMIC DATA-DRIVEN SOLVER

are plotted in Figure 3.2 which confirms the result since the velocities oscillates at the same
frequency as the displacements.

While the FEM solver and DDCM solver with lower noise (std=0.01) give similar results, the
DDCM solution with a higher level of noise (std=0.04) is not in phase with the the other two.
This behaviour can be attributed to the fact that even the static DDCM solver exhibits noticeable
errors with such level of noise in the dataset. To furthermore highlight the influence of noise in
the convergence to the classical solution, the displacements and velocities relative errors (com-
pared to the FEM results) are shown in Figure 3.3 and 3.4.

Figure 3.3: Displacements errors for the dynamic problem with the static system in Figure 2.2

Figure 3.4: Velocities errors for the dynamic problem with the static system in Figure 2.2

Second case: With a linearly increasing force and three nodes

The second case evaluated uses the same static system as depicted in Figure 2.2 but with a free
middle node and the applied force increases linearly over time, reaching a final value of 1 : [kN]
at time T = 400 [s].

12

CHAPTER 3. DYNAMIC DATA-DRIVEN SOLVER

The expected displacement behaviour is a linear increasing curve. This is actually consistent
with the results obtained from the FEM solver as shown in Figure 3.5. The data-driven solver,
however, still exhibits some oscillations around the traditional results due to the noise added to
the dataset. In Figure 3.6 the difference with the FEM results are presents, it can be seen that the
error at the middle is slightly less than the one at the last node which can be explained by the
fact the displacement at it is higher. As previously demonstrated, the closer the dataset is to the
traditional material law, the more accurate the results of the DDCM will be towards the classical
solution.

Figure 3.5: Displacement for the system which linearly increasing force, DDCM dataset with
gaussian noise std=0.01

Figure 3.6: Displacement errors for the system which linearly increasing force, DDCM dataset
with gaussian noise std=0.01

13

4 . Stick-Slip Modelling

4.1 Problem Description

The next phase of the project aims to study and solve the problem of a sliding block on a hori-
zontal frictional surface, as shown in Figure 4.1.

Such behaviour is of interest in many engineering and physics applications. Friction plays a
crucial role in this system, as it affects the force that is required to maintain the block in motion,
as well as the force required to accelerate or decelerate the block.

vel
M

Figure 4.1: Sliding block schematisation

As the block moves, the frictional force fluctuates relatively to the block’s velocity. At low
speeds, the frictional force is relatively high, making it difficult to accelerate or decelerate the
block. However, as the speed increases, the frictional force decreases towards a constant value,
making it easier to accelerate or decelerate the block.

Here, in order to reuse the data-driven pipeline for trusses, the problem is modeled in one di-
mension using truss elements. So instead of a linear elastic truss bar acting as a stiff spring, the
soil is represented by a bar that acts as a damping support and is linked to another bar repres-
enting the block, the corresponding system is shown in Figure 4.2

L L

1 2 3

Ė E,A vel

Figure 4.2: One dimensional modelisation of the sliding block (2-3) and frictional surface (1-2)

In this context, the phase space shifts from the traditional stress-strain pairs since the applied
forces now relates to the velocity of the block. As such, the stress-strain relationship is replaced
by the relation between stress σ and the variation of the strain with time, or the strain rate ϵ̇.

14

CHAPTER 4. STICK-SLIP MODELLING

To describe the frictional sliding behaviour, a mathematical expression of the material law is
then formulated as follows:

σ(ϵ̇)/σ0 =


µs · ϵ̇/ϵ̇sk if ϵ̇ ≤ ϵ̇sk

µk + (µs − µk) e
−α·(ϵ̇−ϵ̇sk) otherwise

(4.1)

where σ is the stress, µs and µk are the static and kinematic friction coefficients respectively, σ0
is a reference stress, ϵ̇ is the strain rate, ϵ̇sk is a threshold strain rate at which the friction starts
changing regime, and α is a coefficient that accounts for the rate at which the friction goes from
µs to µk. The curve defined by such fuction is presented in Figure 4.3.

Figure 4.3: Representation of stress-strain rate relationship using Equation 4.1 with µs = 1,
µk = 0.6 and ϵ̇sk ≪ 1 [s−1]

From the derived material law, it is possible to simulate the data-points required to test a data-
driven solver. To develop it, the procedure for studying the system is divided into two steps,
the first one being to develop the DDCM procedure that can solve problems in the phase space
associated with the frictional surface and the second one being to adapt the solver to account for
the sliding block.

15

CHAPTER 4. STICK-SLIP MODELLING

4.2 Data-Driven Solver with damping

4.2.1 Theoretical formulations

In this section, the focus is directed towards a specific subsystem of the system presented in
Figure 4.4. The objective is to create a data-driven solver that uses the relationship between
stress and strain rate to calculate the displacement, velocity, and acceleration of the free node of
the truss bar under uniaxial load.

L

1 2

Ė, A f

Figure 4.4: One dimensional bar with damping under uniaxial load

For these novel considerations, the constrained minimisation problem at time tj becomes:

Minimise:
m∑
e=1

we · Fe,j(ϵ̇e,j , σe,j)

subject to: ϵ̇e,j = Bevj , ∀ bar e ∈ {1, ...,m} (4.2)
m∑
e=1

weB
T
e σe,j = fj −Maj

By using the expression of vj and aj derived in Equation 3.4 and 3.5, the system becomes only
dependant on the nodal displacements. This allows us to enforce compatibility and equilibrium
constraints, in the same manner as in Eq.5 of the paper [1], to highlight the stationary problem:

δ


m∑
e=1

weFe

(
Bev

pred
j +

γBe(uj−upred
j)

β∆t , σe,j

)
−
(

m∑
e=1

weB
T
e σe,j − fj +

M ·(uj−upred
j)

β∆t2

)
· ηj

 = 0 (4.3)

Taking all possible variations, the following equations are obtained:

δuj ⇒Kuj −
Mηj

β∆t2
=

(
m∑
e=1

weB
T
e Ce

β∆t

γ
ϵ̇∗e,j

)
−K

(
β∆t

γ
vpred
j − upred

j

)
, (4.4)

δηj ⇒
m∑
e=1

weB
T
e σe,j = fj −

M · (uj − upred
j)

β∆t2
, (4.5)

δσe,j ⇒ CeBeηj + σ∗
e,j , (4.6)

16

CHAPTER 4. STICK-SLIP MODELLING

where (ϵ∗e,j , σ
∗
e,j) denote the optimal data points for each of bar e and K =

(
m∑
e=1

weB
T
e CeBe

)
By combining Equation 4.5 and 4.6 and rewriting the resulting equations in vector form, the
system to be solved by the dynamic solver can be summarised as: K − 1

β∆t2
M

1
β∆t2

M K

 ·
uj

ηj

 =

U
(
β∆t
γ ϵ̇∗j

)
−K

(
β∆t
γ vpred

j − upred
j

)
fj −H(σ∗

j) +
1

β∆t2
M · upred

j

 (4.7)

The solver can then be implemented similarly to the data-driven dynamic solver with some
slight modifications, since Equation 4.7 is solved instead of Equation 3.7 and the new local states
to be computed at time tj and the k-th iteration of the DDCM loop are:

ϵ̇
(k)
j = B · v(k)

j and σ
(k)
j = σ∗

j
(k) +CB · η(k)

j (4.8)

4.2.2 Numerical Results

In this study, the data-driven solver with damping is used to solve a friction problem in which
the friction coefficient is constant and equal to the kinematic friction coefficient. To create the
dataset, the mathematical expression in Equation 4.1 is used with a value of µs = µk = 0.6.
With an initial velocity imposed, it is expected that the velocity would decrease to 0 and the
displacement would increase until they reach a given plateau.

To provide a point of comparison, a traditional finite difference scheme is used to solve the
damping problem of the form Ma + Cv = 0. The results of this traditional solver are then
compared to the results of the data-driven approach, as presented in Figure 4.5 and 4.6.

17

CHAPTER 4. STICK-SLIP MODELLING

Figure 4.5: Displacements over time for the system of a bar with damping with an imposed
initial velocity v = 1 [mm/s]

The results of the computation using the data-driven solver with damping are consistent with
the expected behaviour of the system, but there is a noticeable difference between the data-
driven results and the traditional solver results. Despite the lack of noise in the dataset, the
data-driven solver does not produce results that perfectly overlay the traditional solver results.
Additionally, it can be observed that a large number of data points are needed to achieve reas-
onable accuracy, and using fewer points leads to a significant divergence in the results.

Despite these limitations, the data-driven solver is able to capture the general trend of the sys-
tem, and therefore it can be used to model the stick-slip behaviour. Further validation and
testing is necessary to confirm the validity of this data-driven solver with damping.

18

CHAPTER 4. STICK-SLIP MODELLING

Figure 4.6: Velocities over time for the system of a bar with damping with an imposed initial
velocity v = 1 [mm/s]

19

CHAPTER 4. STICK-SLIP MODELLING

4.3 Adaptation to Stick-Slip

4.3.1 Theoretical formulations

An effort is now made to extend the previously developed data-driven solver to include the
dynamics of the sliding block, represented by bar (2-3) in Figure 4.2. To simplify the problem, it
is assumed that the block has a constant imposed velocity, vel, and as such the displacement of
node 3 can be represented as u3 = vel · t. With this assumption, the unknowns of the problem
are limited to the nodal displacements, u = [0, u2]

T , of bar (1-2).

L

1 2

Ė f = Kel(vel · t− u)

Figure 4.7: Modelisation of the sliding block as an equivalent force and the frictional surface as
a truss bar with damping

To account for the influence of bar (2-3) of Figure 4.2 on the system represented in Figure 4.7, it is
modeled as an equivalent spring force f = Kel(vel · t−u), where (vel · t−u) is the displacement
difference between node 2 and 3, and Kel is the spring stiffness matrix.

This method allows for the incorporation of the dynamic behaviour of the sliding block while
still utilising the previously developed data-driven solver for bar (1-2). The displacement, ve-
locity, and acceleration of the truss bar’s free node can be computed by solving the system of
equations arising from the compatibility and equilibrium constraints, where the new expression
of the force fj is injected into the stationary problem Equation 4.2. Solving the problem with
those new parameters leads to the final system at time tj :


K −

(
M

β∆t2
+Kel

)
(

M
β∆t2

+Kel

)
K

 ·
uj

ηj

 =

U
(
β∆t
γ ϵ̇∗j

)
−K

(
β∆t
γ vpred

j − upred
j

)
Kel · veltj −H(σ∗

j) +
1

β∆t2
M · upred

j

 (4.9)

20

CHAPTER 4. STICK-SLIP MODELLING

4.3.2 Numerical Results

The final goal of the project is to use the solver developed for solving the system in Figure 4.7 to
model the stick-slip behaviour between the block and the frictional surface. Stick-slip is a type of
dynamic behaviour that is characterised by the block’s displacement alternately sticking to and
slipping on the surface. During the slipping phase, the block’s displacement increases, while
during the sticking phase, the displacement remains constant. As a result, here the displacement
is expected to have a stair-like shape, with each step representing a slipping phase and each flat
portion representing a sticking phase.

Additionally, the velocity is expected to oscillate around the imposed velocity value, with the
amplitude of the oscillations being twice the imposed velocity value. This is due to the fact that
during the sticking phase, the velocity is zero and during the slipping phase, the velocity reaches
twice the imposed velocity value. As a result, the velocity curve is expected to have a sinusoidal
shape, with the oscillations decreasing in amplitude as the block approaches the steady-state.

Figure 4.8: Displacements over time for the main system in Figure 4.7

Figure 4.9: Velocities over time for the main system in Figure 4.7

21

CHAPTER 4. STICK-SLIP MODELLING

The results presented in Figure 4.8 and 4.9 show that the solver is able to capture the stick-slip
behaviour as the displacement and velocity follow the expected trend. The displacement curve
is stair-like, with the block’s displacement increasing during sticking phases and remaining con-
stant during slipping phases and the velocity curve is sinusoidal as wanted. It can also be noted
that a lower value of the spring stiffness Kel leads to longer sticking phases, as highlighted by
the longer plateaus for both velocity and displacement on the figures and by the higher value
of velocity. It can also be seen that the slipping phase is follows the same pattern since with a
low stiffness the velocity reaches higher values and the displacement increasing portions lasts
longer.

This indicates that the solver is able to accurately capture the stick-slip behaviour and can be
utilised to model such systems. However, it is important to note that further verification are
required to ensure the validity of the results, especially since the damping data-driven solver
needs to be reassessed.

22

5 . Conclusion
In conclusion, the purpose of this project was to develop data-driven solvers for dynamic sys-
tems. A new solver was developed by utilising a relationship between stress and strain rate for
frictional problems, which replaces the traditional stress-strain phase space.

To develop such solver, multiple steps were involved, starting from the basic data-driven solver
which was tested and compared to a traditional finite element solver on a variety of load and
truss configurations. The results showed that the data-driven solver was able to accurately cap-
ture the dynamic behaviour of simple trusses, with the accuracy increasing with the number of
data points in the set and decreasing with the noise in the data.

By adapting this basic solver, it was possible to study the stick-slip behaviour between a block
and a frictional surface, which resulted in a stair-like pattern of displacement and sinusoidal
oscillations in velocity. The results obtained through the data-driven solver were found to be
in good agreement with the expected behaviour, and thus it looks promising for modeling such
systems in the future.

23

Bibliography
[1] T Kirchdoerfer and M Ortiz. ‘Data-driven computational mechanics’. In: Comput. Methods

Appl. Mech. Engrg. vol 304 (2016), pp. 81–101.
[2] T. Kirchdoerfer and M. Ortiz. ‘Data-driven computing in dynamics’. In: International Journal

for Numerical Methods in Engineering vol. 112.7 (2017), pp. 704–731. DOI: 10.1002/nme.
5716.

24

https://doi.org/10.1002/nme.5716
https://doi.org/10.1002/nme.5716

	Introduction
	Context
	Description

	Data-Driven Solver
	Truss structures
	Theoretical principles
	Optimization problem

	Numerical Analysis of convergence

	Dynamic Data-Driven Solver
	Adaptation of Static Solver
	Comparison with traditional solvers

	Stick-Slip Modelling
	Problem Description
	Data-Driven Solver with damping
	Theoretical formulations
	Numerical Results

	Adaptation to Stick-Slip
	Theoretical formulations
	Numerical Results

	Conclusion

