
PdaDriver: A Handheld System for Remote Driving

Terrence Fong Charles Thorpe Betty Glass
The Robotics Institute The Robotics Institute CIS – SAIC

Carnegie Mellon University Carnegie Mellon University 8100 Shafer Parkway
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Littleton, CO 80127

terry@ri.cmu.edu cet@ri.cmu.edu betty@cis.saic.com

Abstract
PdaDriver is a Personal Digital Assistant (PDA)

system for vehicle teleoperation. It is designed to
be easy-to-deploy, to minimize the need for training,
and to enable effective remote driving through multi-
ple control modes. This paper presents the motivation
for PdaDriver, its current design, and recent outdoor
tests with a mobile robot.

Keywords: vehicle teleoperation, remote driving, per-
sonal digital assistant, handheld user interface

1 Introduction

For some remote driving applications, installing
control stations with multiple displays and high-
bandwidth communication is infeasible or prohibitive.
For other applications, the vehicle is driven by op-
erators for whom extensive training is impractical.
In these situations, we need a driving system that
requires minimal infrastructure and that does not
tightly couple performance to operator experience[1].

To satisfy this need, we have developed PdaDriver,
a Personal Digital Assistant (PDA) system for remote
driving. PdaDriver uses multiple control modes to
make vehicle teleoperation fast and efficient. We de-
signed PdaDriver to minimize the need for training,
to enable rapid command generation, and to improve
situational awareness.

We first developed PdaDriver in 2000 to teleoper-
ate a military training robot[1]. This version ran on
a Casio Cassiopeia and used a wired, serial link. In
2001, we extended PdaDriver to support “collabora-
tive control”, a system model in which the robot asks
questions to the human to obtain assistance with cog-
nitive tasks[2]. We used this second version to study
collaborative navigation and exploration [2, 3].

During 2002, we modified PdaDriver to run on a
Compaq iPAQ PocketPC with wireless ethernet (Fig-
ure 1, left). We did this for several reasons: the
iPAQ display works well in direct sunlight (important
for field use); the ethernet link provides high band-
width and low latency; and the iPAQ has greater bat-
tery life than the Casio. In addition, we integrated

Figure 1: Left, PdaDriver (version 3) on a Compaq
iPAQ; right, Remote driving with PdaDriver

PdaDriver with SAIC’s MarsScape architecture and
the Autonomous All Terrain Vehicle Intelligence Lab
(AATVIL) robot (Figure 1, right)[10].

AATVIL is based upon a modified Honda Rubicon
ATV chassis (Figure 2, left). It has multiple on-board
computers and actuation for steering, brake, throttle,
and transmission. AATVIL is capable of traversing
natural terrain at 5 m/s and can traverse moderately
steep slopes (30 deg incline, 20 deg side). AATVIL is
equipped with real-time kinematic differential GPS,
a north-finding module, and numerous cameras (Fig-
ure 2, right) for navigation in day and at night.

Figure 2: Left, Autonomous ATV Intelligence Lab
(AATVIL) vehicle; right, Camera head with digital
color stereo, progressive-scan high-resolution color,
multi-spectral, and infrared

Lt. Columbo
IEEE International Conference on Advanced Robotics 2003 (Coimbra, Portugal)

Lt. Columbo 
 



2 Related Work
One of the earliest (if not the first) PDA inter-

faces for remote driving was developed at the Naval
Research Laboratory[8]. This PDA interface ran on
a Palm PilotTMand was part of a multi-modal sys-
tem that incorporated natural language, visual ges-
turing, and synthetic gestures. A map display and
pen (touchscreen) gestures were used to the direct an
autonomous robot and to help disambiguate natural
language inputs.

Several other Palm Pilot interfaces have since been
developed. In [9], Rybski et al. describe a simple com-
mand interface for operating small scout robots. In
[7], Lu, Castellanes, and Rodrigues describe an inter-
face for teleoperating a robot dog. With this system,
low-bandwidth video (from the robot’s camera) and
four buttons are used for simple rate control. In [12],
Skubic et al. describe a system for communicating
robot navigation tasks. The system works by having
a user sketch a rough environment map and trajectory
on the PDA.

Since 2000, there has been growing interest in Win-
dows CE-based PDAs, primarily because these devices
have better displays and communication options than
their PalmOS counterparts. In [5], Hüttenrauch and
Norman describe several iPAQ interfaces for operat-
ing an indoor robot. In [13], Suomela and Halme de-
scribed an iPAQ interface designed for an operator
who must works in close, physical proximity to a large
service robot.

As the distinction between PDAs and cellular tele-
phones continues to blur, it is only natural for re-
mote driving interfaces to be deployed on the latter.
Fujitsu, for example, has recently developed a home
robot that can be teleoperated by a NTT DoCoMo
mobile phone[4]. With the mobile phone, users can is-
sue direct motion commands or command navigation
to pre-defined locations, while watching robot camera
images on the phone’s display.

Although all these interfaces are similar in some re-
spects to PdaDriver, there are several important dif-
ferences. First, PdaDriver is designed for remote driv-
ing in unstructured, unknown environments. Thus,
unlike other interfaces, which are used for short-
range operation or in known environments, PdaDriver
emphasizes multiple control methods (e.g., image-
waypoint) that are appropriate for exploration, par-
ticularly in low-bandwidth and high-delay situations.

Second, PdaDriver is designed for rapid integra-
tion. Specifically, the choice of simple messaging pro-
tocol and control paradigms enables PdaDriver to be
used with a variety of robot systems. For example,
we have used the same interface to control indoor re-
search robots and an ATV-based mobile robot. In
addition, we are currently working to remotely drive
a robot Jeep (CMU Navlab 11).

Finally, with the exception of [5], none of the other
PDA interfaces was developed using HCI methods. As
such, their designs are ad-hoc and provide poor affor-
dances. With PdaDriver, however, we relied heavily
on user-centered design techniques, such as heuristic
evaluation, to produce an effective interface. We feel
strongly that when an interface is well-crafted it be-
comes transparent: users take it for granted and can
use it with minimal effort. On the other hand, if an
interface is poorly crafted it is difficult to understand,
difficult to use and limits performance.

3 Architecture

The PdaDriver architecture is shown in Figure 3.
The user interface (described in Section 4) runs on a
PDA and connects to a mobile robot controller, typi-
cally located on-board the robot, via a network com-
munication link and TCP sockets.

Two modules, the PDA Gateway and the Image
Server, are customized for each robot and integrated
into the robot’s controller. These modules are de-
scribed in the following section. Although the archi-
tecture is optimized for single vehicle operation, simul-
taneous (switched) control of multiple vehicles from a
single user interface is supported.

Figure 3: PdaDriver (ver. 3) architecture

When the user interface is running, it maintains
a continuous connection to the PDA Gateway. This
gateway processes commands from the user interface
and outputs robot data (pose, health, etc.). To obtain
camera images, the user interface also intermittently
connects to the Image Server, which provides JPEG
compressed images from the robot’s camera.

Both the PDA Gateway and the Image Server com-
municate using an open-source network communica-
tion library[11]. This design facilitates integration of
PdaDriver with different mobile robots. In particular,
all robot-specific code (messaging, hardware control,
etc.) is isolated to these two modules. Thus, the user
interface can be used without modification (except for
simple parameter changes) with different robot con-
trollers and hardware.



3.1 PDA Gateway

The PDA Gateway is a designed as a proxy server
for the user interface[2]. It provides access to robot
controller services (motion control, localization, etc.)
while hiding the controller’s design and implementa-
tion. The PDA Gateway communicates with a simple
protocol that works well even over low-bandwidth con-
nections. The protocol is text-based (which speeds in-
tegration testing) and synchronous (to reduce latency
and to improve operational safety).

Whenever the user interface is connected, the gate-
way continually monitors data transmission. If it
detects a communication problem (network outage,
loss of connection, etc.) or that the interface is no
longer responding, the PDA Gateway immediately
closes the connection, then stops and safeguards the
robot. Thus, the PDA Gateway ensures that opera-
tor commands are only executed while the interface is
connected and functioning correctly.

3.2 Image Server

As an alternative to video, we use an event-driven
Image Server[2]. This server helps minimize band-
width consumption by transmitting images only when
“significant” events occur. Specifically, the Image
Server captures a frame, compresses it into a JPEG
image, and sends the image only when the operator
issues a request, the robot stops, an obstacle (static or
moving) is detected, or an interframe timer expires.

Event-driven imagery is a flexible mechanism. For
example, if an application allows a high-bandwidth,
low-latency communication link, we set the interframe
timer to a low value. This produces an image stream
that approximates low-rate video. Alternatively, if
the link is low-bandwidth, we set the timer to a high
value. In this case, images are transmitted only when
key events occur, thus minimizing link usage.

4 User Interface

The PdaDriver user interface is written in Per-
sonal JavaTMand runs under the Insignia Solutions
JeodeTMJava Virtual Machine. Because the interface
requires high-resolution color, we usually employ Win-
dows CE-based PDAs. However, we have also used
Sharp’s Linux-based Zaurus1 and are currently evalu-
ating Sony’s Clie.

Vehicle teleoperation in unstructured, unknown en-
vironments requires flexible control. Because both the
task and the environment may vary (depending on sit-
uation, over time, etc.), no single control mode is op-
timal for all conditions. Thus, we designed and imple-
mented three modes in the PdaDriver user interface:

1The Zaurus is thinner and sleeker than other Windows CE-
based PDAs, but has poorer display back lighting than the
iPAQ.

1. Direct (“raw teleop”) mode. A “virtual” joystick
combined with low-rate video.

2. Image mode. The operator designates a path by
clicking a sequence of waypoints in a still image.

3. Sensor mode. Allows selection of camera used for
remote driving.

We designed each interface mode using a combi-
nation of heuristic design, heuristic evaluation, and
cognitive walkthrough[3]. We chose these methods
because they are rapid, can be used throughout the
development process, and have been shown to produce
high-quality interfaces in a variety of domains.

4.1 Direct Mode
Direct mode supports two-axis, rate control remote

driving. This mode is appropriate when the terrain is
benign (e.g., few dangerous obstacles), when high op-
erator workload is acceptable, and when latency (i.e.,
communication delay and image update rate) can be
tolerated. Direct mode is often used for performing
long-distance, high-speed traverses.

In direct mode, camera images and a graduated
cross are shown on the PDA screen (Figure 4). Press-
ing the vertical cross axis commands translation and
the horizontal axis commands steering curvature. The
iPAQ “joypad” (a 4-button cursor control) may also
be used to command fixed driving rates (forward, turn
left, etc). Releasing the screen press, or the joypad,
stops the robot.

Figure 4: Direct mode enables rate control driving
with low-rate video.

As the robot moves, the direct mode display is up-
dated to show current compass heading, translation
rate (m/s) and curvature (1/m). Commanded trans-
lation and curvature are shown as green markers on
the graduated cross. Current translation and curva-
ture are shown as filled red bars.



4.2 Image Mode

Image mode supports image-based waypoint driv-
ing, inspired by Kay’s STRIPE system[6]. However,
instead of Kay’s ad-hoc calibration, Image mode uses
Tsai’s method for camera calibration and distortion
correction[14]. Image mode (Figure 5) shows an im-
age from the robot’s camera. Horizontal lines overlaid
on the image indicate the projected horizon and robot
width. The user specifies a path by clicking a series
of waypoints (red circles) on the image. When the
go button is pressed, PdaDriver sends the projected
world points to the robot. As the robot moves, a sta-
tus bar displays the robot’s progress.

Figure 5: Image mode supports waypoint driving via
a sequence of projected image points.

To transform image points to world points, we as-
sume that the ground-plane is locally flat and use
simple perspective projection. We perform forward
projection by first computing undistorted coordinates
(Tsai dewarp) and then transforming from the image
point to the world frame. Although this procedure
computes 3D world points, we only use 2D coordi-
nates (i.e., ground points) for driving. With this ap-
proach, we typically achieve less than 5% downrange
projection error.

4.3 Sensor Mode

One of the difficulties with outdoor remote driving
is that environmental characteristics may vary with
time, location, and situation. For example, scene il-
lumination can rapidly change due to sun position,
shadows, and other factors (fog, dust, etc). Sensor
mode addresses this problem by allowing the opera-
tor to select which camera is used for remote driving.
With AATVIL, for example, six forward-mounted
cameras are available, three of which are shown in
(Figure 6).

Figure 6: Sensor mode supports multiple cameras.
From left: color, disparity (range), and multispectral.

5 Experiment Results

In August 2002, we conducted field tests at SAIC
(Littleton, Colorado), using PdaDriver to remotely
drive AATVIL over natural terrain (dirt and loose
gravel with sparse vegetation) and in a parking lot
(adjacent to a brick building surrounded by shrubs).
During the tests, the operator was located 50-100m
from AATVIL, but did not directly observe the robot.

5.1 Direct Mode

Figure 7: Top, AATVIL operating on natural terrain;
bottom, Direct mode display sequence

Figure 7 shows a typical direct mode driving se-
quence with AATVIL on natural terrain. In this test,
the robot was initially stopped, then was commanded
to drive forward and to turn to the right. Image la-
tency (time from capture to PDA display) was mea-
sured at 800 msec. Control latency (PDA command
to robot execution) was approximately 500 msec. Be-
cause of these delays, some operator training was re-
quired to effect smooth vehicle control.



5.2 Image Mode

Figure 8: Top, AATVIL driving on a dirt road; bottom
left to right, Image mode display sequence (color cam-
era): designated path with three waypoints, first-half
of path achieved, approaching final waypoint.

Figure 8 shows a typical image mode driving se-
quence using a color camera. In this test, AATVIL
was commanded to drive on a dirt road (Figure 8,
top), parallel to several mounds of dirt located to the
left of the vehicle. To do this, the operator began by
designating a path with three waypoints in the image
(Figure 8, bottom left). He then pressed the go but-
ton and AATVIL then autonomously moved along the
path (Figures 8, bottom center and right).

Because image mode commands points in a world
reference frame, we found that vehicle motion ac-
curacy was highly dependent on localization perfor-
mance. In addition, although image-based driving is
an efficient command mechanism, it sometimes fails
to provide sufficient contextual cues for good situa-
tional awareness. One remedy for this is to use sensor-
derived maps, which provide reference to environmen-
tal features and explored regions[3].

5.3 Multiple sensors

Figure 9 demonstrates the value of having multiple
sensors for remote driving. In this test, which was con-
ducted just prior to a storm, AATVIL was driven to-
wards a building surrounded by small shrubs. Due to
the harsh lighting conditions, vegetation was difficult
to discern in color and disparity images (Figure 6).
With the multi-spectral camera, however, shrubs sur-
rounding the building were easy to identify (Figure 9).

Figure 9: Top, AATVIL approaching a building bor-
dered by small shrubs; bottom, Image mode display
sequence (multispectral camera).

6 Future Work

Although both rate and image-waypoint control are
efficient command mechanisms, neither may provide
sufficient contextual cues for good situational aware-
ness. Maps can remedy this by providing reference
to environmental features, explored regions and tra-
versed path. Thus, previous versions of PdaDriver
included a mode for map-based waypoint driving.

The current PdaDriver, however, does not use
maps. This is partially due to AATVIL’s limited map
building capability, but also because we considered
the field test environment to be benign (uncluttered,
few dangerous obstacles, etc). Yet, even in such an
environment, we found that having a map would be
useful. For example, some operators had difficulty
judging depth and spotting nearby obstacles in the
image displays. Thus, there is a clear need to incor-
porate sensor-based map displays, if not a complete
map-based waypoint driving mode.

An additional improvement to PdaDriver would be
to develop a “pendant” mode that supports direct
control of vehicle actuators and display of vehicle sta-
tus (health, pose, etc.). Such a mode would greatly
improve vehicle field deployment, particularly manual
egress/regress and vehicle check-out. Pendant mode
would also be useful for quickly activating and de-
activating robot controller modules, thus aiding fault
detection and isolation.

Finally, although we developed PdaDriver for re-
mote driving, its design is well-suited for other tele-



operation functions. For example, PdaDriver could
easily be extended for high-level tasking: visual servo
target designation, payload deployment, etc. In addi-
tion, PdaDriver has significant potential as a highly
portable, field control unit. Specifically, we believe
the interface could be used with little modification to
operate almost any type of computer controlled de-
vice, such as military training targets, remote sensors,
UAV’s, etc.

Acknowledgments
We would like to thank James McKenna, Matt

Morgenthaler, and Jeremy Myrtle for supporting
AATVIL integration. This work was partially funded
by grants from the DARPA ITO Mobile Autonomous
Robot Software (MARS) program and SAIC.

References

[1] T. Fong et al., “Novel interfaces for remote driv-
ing: gesture, haptic, and PDA”, In Proceedings of
the SPIE Telemanipulator and Telepresence Tech-
nology, 2000.

[2] T. Fong, Collaborative control: a robot-centric
model for vehicle teleoperation, Technical Report
CMU-RI-TR-01-34, Ph.D. dissertation, Robotics
Institute, Carnegie Mellon University, 2001.

[3] T. Fong et al., “A personal user interface for col-
laborative human-robot exploration”, In Proceed-
ings of the International Symposium on Artificial
Intelligence, Robotics, and Automation in Space,
2001.

[4] Fujitsu develops mobile phone-controlled robot for
the home, Press Release, 7 October 2002, Fujitsu
Laboratories, Inc., 2002.

[5] H. Hüttenrauch and M. Norman, “PocketCERO –
mobile interfaces for service robots”, In Proceed-
ings of the Mobile HCI, International Workshop
on Human Computer Interaction with Mobile De-
vices, 2001.

[6] J. Kay, STRIPE: Remote driving using limited
image data, Technical Report CMU-CS-97-100,
Ph.D. dissertation, Computer Science, Carnegie
Mellon University, 1997.

[7] W. Lu, J. Castellanes, and O. Rodrigues, Remote
robot control using a Personal Digital Assistant,
B.A. thesis, Computer Science, Ryerson Polytech-
nic University, 2001.

[8] D. Perzanowski et al. “Towards seamless integra-
tion in a multi-modal interface”, In Proceedings
of the Workshop on Interactive Robot Entertain-
ment, 2000.

[9] P. Rybski et al., “System architecture for versatile
autonomous and teleoperated control of multiple
miniature robots”, In Proceedings of the IEEE In-
ternational Conference on Robotics and Automa-
tion, 2001.

[10] Mobile Autonomous Robot Software (MARS)
Self-Composing Adaptive Programming Environ-
ment, Final Report, SAIC, Littleton, CO, 2002.

[11] Simple Communications Library (SCL), Fourth
Planet, Inc., Los Altos, CA, 2000.

[12] M. Skubic et al., “Extracting navigation states
from a hand-drawn map”, In Proceedings of the
IEEE International Conference on Robotics and
Automation, 2001.

[13] J. Suomela and A. Halme, “Novel interactive con-
trol interface for centaur-like service robot”, In
Proceedings of the International Federation of Au-
tomatic Control, 2002.

[14] R. Tsai, “An efficient and accurate camera cal-
ibration technique for 3D machine vision”, In
Proceedings of the Computer Vision and Pattern
Recognition, 1986.




