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Abstract 
 
In this paper, we present a hybrid method for calibration of an endoscope and its 
registration with an active optical tracker. Practically, both operations are done 
simultaneously by moving an active optical marker in the field of view of the two 
devices. By segmenting image data, the LEDs composing the marker are extracted and 
the transformation matrix between the two referentials (homography) is calculated. By 
reformulating the calibration problem, registration and calibration parameters are 
extracted from the homography. As camera calibration and registration is an 
indispensable step for augmented reality or image guided applications, this technique can 
easily be used in the operating field because it is fast, accurate and reliable. We currently 
are using this technique with an augmented reality system for laparoscopic procedures. 
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1. Introduction 
 
In one and a half decade, laparoscopic surgery has gained wide acceptance in both the 
surgical community and the general population. The obvious advantages of a minimal 
aggression, including the preservation of the abdominal wall integrity, have given to 
laparoscopic approaches a widespread use. Operations such as cholecystectomy, 
appendicetomy, adrenalectomy, colectomy are performed mostly laparoscopically. 
 
However some intrinsic limitations of the technique are not been overcame. The 
perception of the depth is lost, as well as the tactile information. The degree of freedom 
of the laparoscopic tools is much less than with a hand in open surgical field. Therefore, 
dissection during laparoscopic surgery is often somewhat hazardous and takes the longest 
part of the operation. 
 
Many operations, like liver or pancreatic resections, cannot yet be habitually performed 
by laparoscopy. In order to be able to deal safely with such highly vascularized organs, 



there is a need for a positioning system, allowing the surgeon to know where the relevant 
structures are, sparing the dissection time. This implies the development of augmented 
reality tools specifically designed for laparoscopic surgery. 
 
Camera calibration is an indispensable step for augmented reality or image guided 
applications. Among the different calibration techniques, the photometric calibration is 
current the most used in the medical field [1-6]. It consists of observing a calibration 
object, like a chessboard or a planar grid, whose geometry in the 3-D space is known with 
a good precision. This technique uses some snapshot representing the calibration object at 
different poses and extracts object’s features in the image, to finally correlate them with 
the 3-D model of the reference object. A calibration algorithm then extracts the 
homography matrix and the camera intrinsic parameters (focal lengths, optical centre, 
skew, and optionally radial distortions parameters), as well as extrinsic parameters 
(rotation and translation of the calibration object relatively to its model coordinates). 
 
Registration of a medical camera relatively to an optical tracker is also an important step 
for image guided applications. On way to perform this operation consist on finding some 
common cues visible simultaneously by the two devices. 
 
In this paper, we present a technique using an active optical marker as the calibration and 
registration object. By reformulating the calibration problem, it is so possible to express 
the extrinsic parameters as the registration matrix. Calibration and registration are done 
simultaneously by moving an active marker both visible by the optical tracker and the 
endoscope. This technique can easily be deployed in the operating field because it is fast, 
accurate and reliable.  
 
2. Methods 
 
Different optical trackers like easyTrack [7] or Polaris® [8] are using active markers 
composed of luminescent diodes (LEDs) that are emitting in the near infrared (~ 850 
nm). Although, this wavelength is not visible by human eyes, most classic camera sensors 
are sensitive to the near infrared and can detect without difficulties LEDs’ flashes (figure 
1). Active markers, taken at different positions, can thus be used as calibration objects 
during the procedure. 
 
The calibration procedure consists of placing an emitting marker on the endoscope and 
another one in its field of view. Both markers should be visible by the optical tracking 
device but only the free one has to be seen by the camera. When moving this marker, the 
tracker records the 3-D position of its LEDs. Endoscope images are simultaneously 
acquired and the corresponding 2-D positions of the LEDs are extracted via 
segmentation. A resampling of the data is usually necessary due to the acquisition rate 
difference of the two devices.  
 
The first calibration step finds the linear transformation from the tracker coordinates  
(Xi, Yi, Zi) to the endoscope image coordinates (ui, vi). Using a homogeneous 3 x 4 
matrix representation for matrix A the following equation can be written: 
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The matrix A, also called homography, has 11 degrees of freedom (3 rotations, 3 
translations, 5 intrinsic parameters) and has an arbitrary scale factor involved, so one of 
the entries can be set to 1 without loss of generality (i.e.  axy = axy / a34).  
 
The direct linear transformation, initially developed by Y. Abdel-Aziz [9] is used to solve 
this system. Assume that the camera is pinhole without radial distortions, the 
correspondence between the image points and the tracker points is the following 
projection: 
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For N corresponding points (N ≥ 6), the equation 2 can be rewritten: 
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Where L is a 2N x 9 matrix and matrix a is the matrix A rewritten as a column vector. 
The well known solution of this over constrained homogenous system is the right 
singular vector of L associated with the smallest singular value (or equivalently, the 
eigenvector of LT L associated with the smallest eigenvalue). 
 
This approximate linear solution for L is used as the starting point for a non-linear 
minimisation of the difference between the measured and the projected points. This 
optimization will take into account the radial distortions and the camera real model: 
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Extraction of intrinsic and extrinsic parameters from L is performed using either 
Faugeras method [10] or QR decomposition [11] depending on the number of points 
available. For example, using the first method, we have: 
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I is the intrinsic matrix, fx and fy are the focal length in the horizontal and vertical 
directions, (u0, v0) is the optical centre. Note that this technique assumes that the skew 
(i12) is equal to 0. E is the extrinsic matrix (rotation and translation). Parameters can 
easily be extracted from the Faugeras decomposition (equation 5). Other decomposition 
method, like absolute conics, can alternatively be used to extract the intrinsic and 
extrinsic parameters.  
 
Depending on the optics distortions, radial correction may be necessary. The reader is 
referred to [5] for a more elaborated discussion about this topic. 
 
The resulting extrinsic parameters are expressed in the referential of the tracker. The final 
step consists of formulating this transformation in the referential of the marker fixed on 
the endoscope. This final transformation is the searched registration. For augmented 
reality applications, the resulting intrinsic parameters can optionally be used to set the 
virtual camera and viewport settings.  
 
3. Results 
 
We currently are developing an augmented reality system for laparoscopic procedures. 
Our system allows displaying preoperative 3D models or real-time ultrasound data of the 
liver in the endoscopic image during minimal invasive interventions. The proposed 
method is currently used to calibrate and register a 10 mm endoscope with an optical 
tracker easyTrack 500 [7].  
 
The segmentation of endoscopic images is based on a growing region method (figure 1b). 
LED’s blobs are sorted depending on their aspect ratio, size, mean intensity and 
neighbour pixels variance intensity attributes which are statistically pertinent. The LED 
position used to compute the homography is the barycentre of the blob. To improve 
detection reliability and speed, the initial homography can be guessed with the first 4 
points correspondences by mean of either the described method or a 2D-3D pose 
estimation technique [12]. This estimate gives a cue of the approximate position of the 
LEDs in the images and allows improving the search success and speed.  
 
In our system, about 20 LEDs positions per second can be processed with this technique 
and calibration starts with about 150 samples acquired in the full field of view of the 



camera. Some of these samples contain badly segmented centres and should be filtered 
before homography calculation. First, the homography is estimated with the whole 
samples using equation 3. Then, the distance between the measured and the projected 
points indicates if the sample is an outlier. If so, it is removed and the homography is 
estimated again. 
 
Calibration accuracy is closed to conventional grids methods but is faster and do not 
require an extra calibration object in the operating field. Results has been compared with 
the gold-standard “Camera Calibration Toolbox for Matlab” [6] and do not differ for 
more than one percent. Total time for data acquisition, camera calibration and registration 
is less than one minute using a modern laptop. This method is about twice faster than the 
system we previously have developed and which needs a calibration grid. 
 
We currently are validating our technique with different kind of endoscopes, as well as, 
medical microscopes. For example, figure 2 presents a test of augmented reality we have 
performed during a kidney transplant on living donor. The 3D preoperative model was at 
bootstrap manually and rigidly registered. The endoscope allows keeping the rigid 
registration correct while moving. We also plan to quantitatively compare our algorithm 
with the computer vision gold standard calibration algorithms for early 2004 and to adapt 
a non-rigid registration algorithm on the augmented reality application. 
 
 

 
 

 
 
Figure 1: (a) Marker and (b) 
Segmented marker. Example of 
illuminated LED (left) and 
corresponding region-based 
segmentation. 

 
Figure 2: Proposed technique used in an augmented 
reality application for kidney transplant on living 
donors. The initial 3D model rigid registration is 
done manually and is kept while moving the 
endoscope.  

 



4. Conclusion  
 
We present a new method for both calibration and registration of camera images with an 
active optical tracker. By exploiting the fact that markers’ LEDs are both visible by the 
endoscope and the optical tracker, the calibration problem can be reformulated to give 
simultaneously the registration of the camera relatively to the tracker and the intrinsic 
parameters of the camera. Compared to existing techniques using calibration objects, the 
proposed approach is ergonomic because medical markers are designed for sterilization 
and the LEDs can easily be located in the images. This new combined method will also 
improve time saving during clinical use because technical preparation with this technique 
is short. 
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