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Abstract

The development of cost-effective and earth-abundant semiconducting materials is impera-

tive for the sustainable deployment of photovoltaic technology. Zinc phosphide (Zn3P2) is a

promising candidate for terawatt-scale electricity generation. It has a near-optimal bandgap

of 1.5 eV, a high visible-light absorption coefficient (104-105 cm−1) near the band edge, a

long minority-carrier diffusion length (5-10 µm), and both zinc and phosphorous are earth-

abundant elements. However, the highest recorded efficiency stands at 6% for multicrystalline

Zn3P2 wafer solar cells. In the last 40 years, there has not been any significant improvement in

the efficiencies of Zn3P2-based solar cells. Material challenges include a lack of compatible

substrate for growth and control over the doping of the material. One of the key issues asso-

ciated with Zn3P2-based solar cells is the limited understanding of the correlation between

the functional properties and the crystalline structure and defect density of the material. In

this thesis, we explore an alternative approach for the growth of Zn3P2 that circumvents the

need for a lattice-matched substrate. In addition, we investigate the electrical properties of

Zn3P2 thin films and highlight the role of composition and growth conditions on the material

property. Finally, we demonstrate a minimally processed solar cell device with an efficiency

value of 4.4% and propose a working principle.

In the first part of this thesis, we demonstrate the growth of Zn3P2 on graphene using molecu-

lar beam epitaxy. The growth proceeds via van der Waals epitaxy and shows a preferentially

crystallographic orientation. We delve into the growth process by identifying the key growth

parameters and determining the limiting factors. The material structure and optical func-

tionality were also studied using Raman and photoluminescence spectroscopy. The second

part of this thesis presents the progress on the understanding of the electrical properties of

Zn3P2 thin films. We used several different characterization techniques to demonstrate the

role of composition and microstructure on the electrical transport mechanism and carrier

concentration. We showcase a hole mobility of 125 cm2/Vs for high-quality single crystalline

Zn3P2 thin films and the ability to modify the carrier density by the composition (Zn-to-P ratio).

In the final part of the thesis, we showcase a Zn3P2 thin film-based solar cell with relatively

high open-circuit voltage (0.528 V) and short-circuit current (13.7 mA//cm2). We investigate

the dominant recombination mechanism in the material using the ideality factor obtained

from dark and light measurements. We highlight the possible loss mechanisms of the solar

cell and provide a perspective on this new generation of Zn3P2-based solar cells.
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Keywords: Zinc phosphide, earth-abundant, solar cells, II-V semiconductor, van der Waals

epitaxy, Raman spectroscopy, photoluminescence, electrical transport, conductivity, electric

transport mechanism, device fabrication, defects, focused ion beam microfabrication
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Riassunto

Lo studio di materiali semiconduttori che siano poco costosi e disponibili in grandi quantità è

necessario per sviluppare in modo sostenibile la tecnologia fotovoltaica. Il fosfuro di zinco

(Zn3P2) è un candidato promettente nell’ottica dell’insieme di tecnologie per la generazione

di terawatt di elettricità: ha un band gap quasi ottimale di 1.5 eV, un alto coefficiente di

assorbimento nel visibile (104-105 cm−1), una importante lunghezza di diffusione dei portatori

minoritari (5-10 µm) e sia lo zinco che il fosforo sono materiali presenti in abbondanza

sulla Terra. Nonostante ciò, al momento la massima efficienza mai ottenuta per una cella

solare policristallina in Zn3P2 è del 6% e negli ultimi 40 anni non c’è stato un miglioramento

significativo di celle solari basate sul fosfuro di zinco. Le difficoltà legati a questo materiale

includono la mancanza di substrati compatibili per la crescita e lo scarso controllo sul livello

di drogaggio. In particolare, uno dei problemi principali legati alle celle solari in fosfuro di

zinco è l’ancòra limitata comprensione del rapporto tra le proprietà funzionali, la struttura

cristallina e la densità di difetti del materiale. In questa tesi si esplorerà un modo alternativo

per la crescita di Zn3P2, in grado di evitare la necessità di avere un substrato con un reticolo di

dimensioni adatte. Inoltre, si investigheranno le proprietà elettriche di film sottili di Zn3P2,

sottolineando il ruolo della composizione e delle condizioni di crescita. Infine, si illustrerà la

fabbricazione di una cella solare con un’efficienza del 4.4% e se ne proporrà un principio di

funzionamento.

Nella prima parte della tesi verrà spiegata la crescita di Zn3P2 su grafene mediante l’uso di

epitassia da fasci molecolari. La crescita è realizzata con epitassia di van der Waals e mostra

un’orientazione cristallografica preferenziale. Il processo di crescita è stato studiato identifi-

candone i parametri principali e i fattori limitanti, mentre la struttura del materiale e le sue

funzionalità ottiche sono state caratterizzate con spettroscopia di Raman e di fotolumine-

scenza. La seconda parte della tesi è legata alla comprensione delle proprietà elettriche di

film sottili di Zn3P2. Sono state impiegate diverse tecniche di caratterizzazione per analizzare

l’impatto della composizione e della microstruttura sul trasporto elettrico e la concentrazione

dei portatori. In particolare, è stato dimostrato che la mobilità delle lacune può raggiungere il

valore di 125 cm2/Vs per film sottili monocristallini di Zn3P2 di alta qualità e che la compo-

sizione (il rapporto tra Zn e P nei campioni) è in grado di modificare la densità di portatori.
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Nella parte finale della tesi si illustreranno i dettagli di una cella solare in Zn3P2 basata su film

sottili e con tensione di circuito aperto (0.528 V) e densità di corrente di corto circuito (13.7

mAcm−2) relativamente alte. I meccanismi di ricombinazione dominanti nel materiale sono

stati investigati analizzando il fattore di idealità ottenuto da misure al buio e sotto illuminazio-

ne. Infine, i possibili meccanismi di perdita del dispositivo sono stati analizzati, donando una

prospettiva sul futuro della nuova generazione di celle solari basate sul fosfuro di zinco.

Parole chiave: Fosfuro di zinco, materiali abbondanti, celle solari, semiconduttori II-V, epi-

tassia di van der Waals, spettroscopia di Raman, fotoluminescenza, trasporto elettrico, con-

duttività, capacità, meccanismi di trasporto elettrico, fabbricazione del dispositivo, micro-

fabbricazione con fascio ionico localizzato, difetti.
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1 Introduction & Motivation

Energy sources are vital for socio-economic development, any form of economic growth

surges energy consumption. In 2020, the yearly global power consumption was close to 23200

TWh according to the International Energy Agency (IEA), which was primarily provided by

fossil fuels. However, the current IPCC report warns against the impact of global warming of

1.5 °C above pre-industrial levels and highlights the need for immediate intervention in all

sectors to reduce emissions [47, 56]. Renewable sources of energy can provide an efficient

pathway to meet the growing energy demand while simultaneously mitigating the issues of

global warming [117, 146, 244]. Ambitious renewable support policies and the declining cost of

technology are raising the share of renewable energy in the global power mix [204]. Presently,

around 28% of global power demand is met by renewable energy sources, of which only 3%

comes from solar energy. To meet an appreciable portion of the future global energy demand,

the installed capacity of the terrestrial photovoltaics must increase to at least 5 TW. Crystalline

silicon solar cells dominate the present photovoltaic market, given the abundance of the

material and the technical know-how of silicon-based technology [190, 303, 149, 314, 218, 232].

However, as silicon is an indirect band gap material, the solar cell must be sufficiently thick to

allow efficient optical absorption [101, 9, 132]. Additionally, the processing of silicon is very

cost-intensive; the typical manufacturing process involves high-temperature (1500-2000 °C)

heating in an electrode arc furnace [77, 126]. Almost all the current commercial photovoltaic

technologies suffer from material or resource constraints, which directly hinder their role

in TW scale applications. To promote the large-scale deployment of solar cells, the process

must be economical and sustainable. An alternative approach is the use of earth-abundant

thin-film photovoltaic materials. Wadia et al. estimated the electricity contribution and cost

impact of material extraction to solar modules, by evaluating the maximum TWh and the

minimum cost per watt of 23 different photovoltaic compounds [281]. They demonstrated

that photovoltaic materials with significantly lower extraction costs (such as FeS2 and Zn3P2)

when performing at 10% power conversion efficiencies can deliver the same lifetime energy

output as devices performing above 20% with consideration of 3/4 material reduction. In

the last decade, emerging earth-abundant thin-film photovoltaic technologies have been

heavily researched due to their promise of low-cost and large-scale applications [248, 150,
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153, 230, 283]. Among these materials, copper-based quaternary kesterite compounds such

as Cu2ZnSnS4 (CZTS), Cu2ZnSnSe4 (CTZSe), and their alloys have gained popularity as a

prospective environmentally friendly alternative for CIGS and CdTe technologies [309, 157,

59, 23, 242]. The structure of CZTS can be derived from the CuInS2 chalcopyrite structure,

just by replacing half of the indium atoms with zinc and the other half with tin [157]. They

have a direct band gap of around 1.1.to 1.5 eV with a high absorption coefficient (over 104

cm−1), and a crystalline tetragonal unit cell structure [213, 215]. The efficiency of kesterite-

based solar devices has increased significantly from 0.66% in 1997 [112] to 12.6% in 2014 [288]

and 13.8% in 2016 for small-area solar cells [284]. Even though there has been considerable

progress in the performance of kesterite solar cells, the efficiencies fall far below the predicted

value of 28% for this technology from the Shockley-Queisser limit [284]. One of the major

limitations is the presence of defects, which lead to the formation of band tails and contribute

to the recombination process [248, 223, 278, 87]. Given the complex phase diagram of CZTS,

various secondary phases and intrinsic defects are produced [157, 215]. Additionally, the

correlation between the chemical composition and transport properties of the carriers is

highly complicated and not well understood [157]. Moreover, a large deficit in the open-circuit

voltage (VOC) has been observed in kesterite-based solar cells relative to their band gap [284].

The low efficiencies associated with kesterite-based solar cells have been attributed to the

deficit in the VOC [89, 88]. There are several hypotheses regarding the low VOC values, such as

non-Ohmic back electrical contacts, a poor-quality interface between the CZTS and the CdS

buffer layer, and large amounts of defects and disorder in the bulk absorber [284, 89, 26]. The

VOC value in a solar cell is defined by the band gap of the absorber material, however, defects

are known to modify the electronic bandstructure [257]. Localized states near the top of the

valence band or at the bottom of the conduction band can be formed due to lattice disorder.

When the concentrations of such defects are adequately high, they interact to form an impurity

band, and as the density of defects increases the tail states become more and more dominant

and penetrate further into the band gap [297, 276, 298, 110]. Figure 1.1 shows the schematic

representation of the effect of defect states on the electronic band structure, it can be seen

that localized defect states are associated with band tailing and narrowing of the band gap.

Despite the promising properties of kesterite-based solar cells, several key challenges need

to be addressed before their commercial application [41, 241]. Iron sulfide (FeS2) or pyrite

has gained substantial attention as a material for thin film photovoltaic application, due to its

abundance, low toxicity, and extremely low cost [69, 212, 183, 83]. The extraction cost of this

material is so low that a pyrite-based solar cell with only 4% efficiency could be as economical

as a monocrystalline silicon-based solar cell with 20% efficiency [281]. Iron sulfide has a direct

band gap energy of 0.95 eV and a high absorption coefficient (∼5×105 cm−1), which is suitable

for photovoltaic applications [212, 5, 224, 294]. However, there are a number of limitations

associated with FeS2, mainly due to the poor thermal instability of the material [142, 226].

Additionally, the dark current values are significantly high due to phase impurities and the

high density of surface states that acts as acceptors. Like pyrites, copper sulfide (Cu2S) is also

a low-cost and non-toxic solar cell material, however, it has an indirect band gap energy of

1.21 eV [93, 200, 155]. Even though the highest reported efficiencies for Cu2S-based solar cells
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is 9.15% [27], research on these devices have mostly been abandoned due to the migration of

Cu+ into other layers and the presence of mixed phases (ranging from Cu2S that has metallic

conduction to quasi-metallic behaviour). At first glance, most of the earth-abundant thin-film

photovoltaic materials look promising with optimal band gap energies and high absorption

coefficients. Nonetheless, there are some key limitations for this type of emerging material,

such as loss of VOC due to band tailing effect, presence of high recombination centres, the

presence of deleterious secondary phases, and phase stability. The success and the practical

implementation of emerging earth-abundant thin-film photovoltaic materials largely depend

on the economic aspect and research efforts to further improve these materials.

Figure 1.1: The band gap of a semiconductor showing the presence of (a) acceptor defect-
induced energy level, (b) broadening to an impurity band due to increased defect density, (c)
band tail formation leading to a reduction in the band gap.

Zinc phosphide (Zn3P2) is a strong contender for earth-abundant thin-film solar cells [28, 210,

176, 125], the material properties are promising for photovoltaic application along with low

material extraction cost. Zn3P2 has a direct bandgap of 1.5 eV placing it close to the maxima

of the Shockley-Queisser limit [68] (as shown in Figure 1.2). It also has a high absorption

coefficient >104 cm−1 [68, 72] in the optical range and a long minority carrier diffusion length

of 5-10 µm [206]. The low processing temperatures and high phase stability make Zn3P2 ideal

from a fabrication and cost standpoint. Additionally, both phosphorous and zinc are mined

at an industrial scale, thus making the transition to large-scale application simplified [281].
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Figure 1.2: Theoretical Shockley-Queisser detailed-balance limit as a function of the band
gap, the materials highlighted in green represent earth-abundant elements, the materials
depicted in purple contain rare-earth elements, and the materials denoted in black contain
toxic elements.

Since the 1970s, Zn3P2 has been sporadically researched as a photovoltaic material. The first

successful Zn3P2-based solar cell was fabricated using magnesium as Schottky contact. A

record-setting efficiency of ∼6% was demonstrated for Zn3P2 polycrystalline (the estimated

grain size was in the range of 0.001 to 0.1 cm2) wafers [20]. A more recent attempt to fab-

ricate a similar bulk Zn3P2 device has given an efficiency value of 4.50% [121]. Whereas an

efficiency of 4.3% was recorded for Mg Schottky contact Zn3P2 thin film solar cells [19]. Given

the limitations of metal-semiconductor Schottky devices and the lack of reliable n-type doping

of Zn3P2, Zn3P2-based heterojunction devices have been alternatively explored. A suitable

heterojunction material should have a bandgap of at least 2.7 eV to function as an emitter

to limit absorption losses in the UV range [109, 191, 24]. Low bandgap emitter material can

lead to absorption losses, which can significantly reduce photocurrent. Additionally, the

electron affinity should be similar to that of Zn3P2 (3.6 eV) [24]. Emitter material with similar

low electron affinity will circumvent the issue of a conduction band cliff at the heterojunc-

tion interface [25]. The doping concentration for the emitter should be high to achieve the

maximum barrier height for the heterojunction device. Whereas the mobility of the carrier

should be high even at higher doping concentrations. Finally, the interface quality should

be good as this determines the interfacial recombination [122, 124]. Among the different

emitter materials used for the development of Zn3P2-based heterojunction solar cells, ITO

has shown the most promising efficiency. An efficiency value of 2.1% has been demonstrated
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for heterojunction solar cells fabricated with large grain polycrystalline wafers of Zn3P2 and

ITO [265]. Additionally, ZnSe has been proposed as the ideal emitter material for Zn3P2 ab-

sorber solar cells. Zn3P2/ZnSe-based heterojunction solar cells have demonstrated the highest

open-circuit voltage (VOC) value of 810 mV [22]. However, the overall efficiency of 0.81% has

been achieved so far for this type of solar cell. Table 1.1 summarizes the device properties of

Zn3P2-based solar cells taken from the literature. There are some key material challenges that

need to be addressed for the practical implementation of Zn3P2-based solar cells. The large

lattice parameter of the Zn3P2 unit cell makes epitaxial growth inconvenient due to the lack

of suitable substrates. Alternatively, Escobar et al. have shown the growth of nanostructures

that are known to accommodate larger lattice mismatch [254, 255]. This opens the avenue for

the growth of high-quality Zn3P2 on commercially available substrates. The n-type doping in

Zn3P2 has rarely been achieved, this limits the fabrication and utilization of homojunction

solar cells. The contribution of defect states in Zn3P2 on band tailing and its effect on the

electrical properties has not been studied in detail. Only recently, Stutz et al. highlighted the

presence of band tails in Zn3P2 and its impact on the bandgap [261]. Moreover, surface prepa-

ration plays an integral role in the recombination process and the presence of surface states

has shown to severely impact device performance. Nonetheless, Zn3P2 possesses immense

potential as an absorber material that is yet to be fully investigated. This present work ex-

plores a new approach for the growth of Zn3P2 that overcomes the limitation of lattice-matched

substrates. Additionally, we study the material properties and fabricate Zn3P2-based solar cells.

Table 1.1: Device properties and the corresponding growth techniques of some of the Schottky
and heterojunction solar cells that is based on Zn3P2 photovoltaic absorber.

Junction Efficiency (%) Voc (mV) Jsc (mAcm−2) Fill Growth a

Material Factor
ZnSe 0.81 810 1.55 0.5 CSS [22]
CdS 1.6 300 11.1 0.35 Evaporation [139]
ZnS 0.01 780 0.05 0.35 MBE [24]
Mg 5.96 492 14.93 0.71 PVT [21]
ITO 2.1 280 18.4 0.4 PVT [265]
ZnO 1.97 260 11 0.59 PVT [191]

a Growth method abbreviations: Close space sublimation (CSS), Molecular beam epitaxy (MBE), and physical
vapour transport (PVT).
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This thesis is divided into seven chapters:

Chapter I: Introduction & Motivation

In the first chapter, the topic is introduced and the motivation behind the current work is

clearly stated. The topic is placed in a wider scientific context and evaluated in terms of

competing technologies.

Chapter II: Properties and Growth of Zn3P2

In the second chapter, the properties of Zn3P2 are reviewed and the common growth tech-

niques are discussed. We start with a detailed review of the work on the optical, electrical,

and structural properties of Zn3P2. Different growth techniques are highlighted with their

potential advantages and pitfalls. A new growth approach is discussed in depth.

Chapter III: Experimental Methods

In the third chapter, the experimental methods that are relevant to this thesis are presented.

We start by discussing the growth technique used in this thesis and its potential advantages

over other commonly used methods. The fabrication method used for the device preparation

is illustrated. Finally, the optical and electrical characterization used most frequently in this

thesis has been described in depth.

Chapter IV: van der Waals epitaxy of earth-abundant Zn3P2 on graphene for photovoltaics

In the fourth chapter, the main results of this thesis are presented. Our results include an alter-

native approach to the growth of Zn3P2 using van der Waals epitaxy. The growth mechanism is

elucidated, and the structural and optical properties of the material have been characterized.

Finally, we fabricated a simple Zn3P2-based solar cell, which demonstrates the possibility of

pushing the efficiency of Zn3P2-based solar cells.

Chapter V: Zn/P ratio and microstructure defines carrier density and electrical transport

mechanism in earth-abundant Zn3–xP2+y thin films

We also investigated the electrical properties of Zn3P2 thin films grown on InP substrate using

MBE. Our study highlights the limitations related to the material and demonstrates a path to

tune the functionality.

Chapter VI: Carrier generation and collection in Zn3P2/InP heterojunction solar cells

Finally, we fabricated a simple Zn3P2-based solar cell, which demonstrates the possibility of

pushing the efficiency of Zn3P2-based solar cells.

Chapter VII: Conclusion & Outlook

In the final chapter, we conclude the topic and present an outlook for future research.
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2 Properties and Growth of Zn3P2

In this chapter, first I will give a detailed overview of the properties of Zn3P2, and the existing

material challenges. Next, I will discuss the growth techniques most commonly used for the

growth of Zn3P2 and then introduce the growth technique used in this thesis. This chapter

is by far not exhaustive, it rather focuses on the topics which are relevant for this thesis and

motivates some of the studies performed.

2.1 Properties of Zn3P2

2.1.1 Physical Properties

A good understanding of the phase diagram of a material system is key to designing growth

experiments for high-quality crystal growth and for investigating the feasibility of material

integration. Figure 2.1(a) shows the phase diagram for the Zn-P system. It is apparent from

the phase diagram that there are two stoichiometric compounds in this binary system [84],

which are zinc phosphide (Zn3P2) and zinc diphosphide (ZnP2). Both the compounds exist in

a low-temperature (α) and high-temperature (β) phase. An amorphous phase has also been

reported [25], but this phase is not thermodynamically stable and it is mostly obtained due to

kinetically limited growth processes. For Zn3P2 the α to β transformation occurs at 850 °C and

the melting temperature for β-Zn3P2 is 1140 °C . The α-Zn3P2 has a tetragonal structure (as

shown in Figure 2.1(b)), while the β- Zn3P2 has a cubic structure. Even though all crystalline

phases of Zn3P2 demonstrate semiconducting properties, the α-Zn3P2 is most interesting as

its electronic properties are compatible with photovoltaics [21, 72]. Here onwards we will only

discuss the α-Zn3P2, and we refer to it as Zn3P2.

The tetragonal unit cell of Zn3P2 contains 40 atoms (or 8 formula units) [312, 76], which is

relatively larger than many other III-V and II-VI compounds. The unit cell has dimensions a =

b = 8.097 Å and c = 11.45 Å and it belongs to the P42/nmc space group [176]. The zinc (cations)

and phosphorous (anions) are stacked in alternative planes along the c-axis of the unit cell.

The structure of Zn3P2 is commonly described as a defective antifluorite structure, where
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Figure 2.1: (a) The Zn–P phase diagram calculated using the parameters optimized in the cur-
rent work [84] for the exponential (dotted-line) and LET model (solid line) of liquid interaction
parameter, reprinted from [84], Copyright 2019, with permission from Elsevier. (b) Crystal
structure representation of Zn3P2 tetragonal unit cell along different crystal planes, adapted
from [76].

the phosphorous atoms form a cubic close packing and three-quarters of the tetrahedral

voids are occupied by the zinc atoms and the remaining voids are unoccupied [312, 176].

It can also be viewed as an assemblage of four cubic sub-cells similar to fluoride structure,

where one-quarter of the cations are missing. The cation vacancies occur in pairs along all

four body diagonals of the cubic sub-cells with equal frequency [201]. The ordering of these

vacancies makes the Zn3P2 unit cell volume four times larger than that of the fluoride-like

sub-cells, which leads to an overall decrease in symmetry. The zinc atoms are coordinated with

phosphorous atoms that are located at the four corners of the distorted tetrahedron. Whereas,

the phosphorous atoms are located at the centres of the weakly distorted cubes, where six out

of eight vertices of each cube are occupied by zinc atoms. A conventional tetrahedrally bonded

semiconductor has an average of 2 valence electrons per bond. Whereas for Zn3P2 it is 4/3

valence electrons per bond, this results in a distribution of equilibrium bond lengths. In Zn3P2,

not all the atoms are tetrahedrally coordinated, the majority of the bond lengths lie below 2.5

Å, which is in agreement with the sum of covalent radii in tetrahedral coordination (2.4 Å),

whereas the remaining of the bond lengths are closer to the ionic radii (2.86 Å). Additionally,

the fractional ionicity of Zn3P2 is reported between 0.17-0.19 [256] . Therefore, the chemical

nature of bonds in Zn3P2 is a complex ionic-metallic-covalent bond.

2.1.2 Optoelectronic Properties

The optoelectronic properties of Zn3P2 make it favourable for solar cell applications, such as

long minority carrier diffusion lengths (7-10 µm) [300, 125], strong absorption in the visible

spectrum (>104-105 cm−1) [310, 269], and an almost ideal direct bandgap (∼1.5 eV) [125, 261].
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The high absorption coefficient of Zn3P2 near the band edge (with 90% of light absorption

occurring in the first 10 µm of the material) is significantly larger than that of high-quality

GaAs [269]. It has an absorption onset of around 1.4-1.5 eV, which is near the optimal value of

1.35 eV for a single junction device under terrestrial insolation. The absorption properties of a

semiconductor are determined by its electronic band structure. However, there has been a

long-standing debate regarding the fundamental bandgap of Zn3P2, some studies suggest it is

a direct bandgap semiconductor [260] whereas other studies suggest it is an indirect bandgap

semiconductor [125]. In general experimental studies agree upon a direct interband transition

at 1.5 eV. This transition occurring in the range 1.3-1.4 eV has been attributed by some groups

to an indirect band transition [125] and by others to defect-related transition [261]. Theoretical

studies on the band structure of Zn3P2 have also given different results, but these results largely

depend on the type of functional used for the simulation. More recent theoretical studies done

on the Zn3P2 band structure show the conduction band minimum (CBM) and the valance

band maximum (VBM) lie at the gamma point, which indicates a direct bandgap [305].

Figure 2.2: (a) Steady-state PL measurements of etched Zn3P2 wafers at different temperatures,
the inset depicts the energies, as a function of temperature. (b) Room temperature intensities
of the various PL peaks from etched Zn3P2 wafers as a function of laser pump intensity, the
inset depicts the normalized PL spectra over similar range of laser pump intensities. Reprinted
from [125], with the permission of AIP Publishing

Near-room-temperature steady-state photoluminescence measurements of Zn3P2 reported

by Kimball et al. show two peaks centred at 1.38 eV and 1.50 eV [125], as shown in Figure

2.2(a). They ascribed these two peaks to interband transition based on the results of the

power-dependent photoluminescence measurements. They observed no change in the peak

positions of the two peaks with the increase in the pump power, while the intensity of the

peaks increases with the pump power (as shown in Figure 2.2(b)) indicating a high density of

states which is consistent with photoluminescence signals derived from interband transitions.
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Whereas, similar steady-state photoluminescence measurements done by Stutz et al. show

the presence of a band tail [261]. The photoluminescence measurements were performed on

off-stoichiometric Zn3P2 thin film (Rutherford backscattering showed a uniform composition

of 55% zinc and 45% phosphorous, which makes the thin film slightly phosphorous rich). Even

though the Zn3P2 thin film is off-stoichiometric the corresponding Raman measurements

showed a typical fingerprint of the D4hα-Zn3P2 lattice. The lattice of Zn3P2 is known to accom-

modate relatively large compositional variations without altering its crystalline structure. The

photoluminescence measurement showed two distinct sets of peaks, one at low-energy range

(1.26–1.31 eV) and the other at high-energy range (1.52–1.54 eV). Figure 2.3(a) shows that

at lower temperatures, the low-energy peaks have very high photoluminescence intensities,

while the high-energy peaks are much weaker in intensity. Even though contradictory in

comparison to other materials, it has been widely reported for Zn3P2 that defect transitions

dominate the optical response at lower temperatures [261, 160], whereas interband transitions

are more pronounced at room temperatures. Peak broadening is observed with the increase in

temperature and the low-energy peaks are shifted to higher energies (1.32–1.4 eV), while the

high-energy peaks do not show any significant shift in peak position with increasing tempera-

ture, as shown in Figure 2.3(b). Additionally, the low-energy peaks shift to higher energies and

become asymmetric with increasing laser powers. This type of peak behaviour dependence

on temperature and laser power is attributed to band tail recombination mechanisms. Stutz

et al. explain the lack of agreement on the presence of the indirect fundamental band edge

could be due to the existence of a defect band or band tail [261]. High amounts of randomly

distributed charged defects can cause spatial potential fluctuations which in turn lead to the

formation of tails in the electron or hole densities of states, at energies above the valance band

maximum or below the conduction band minimum [261, 236]. Thus, the observation of the

band tail is highly dependent on the defect concentrations in the measured sample. Different

experimental methods have been used to investigate the defect-related transitions in Zn3P2,

and even though there is a wide range of reported energy levels for these defects [160, 251],

there is an overall consensus regarding the type of defect, all the reported defect types are

acceptor-like. Therefore, the discrepancies observed in the optical measurements for bandgap

determination mostly arise due to the presence and the densities of these defects, which in

turn are largely dependent on the growth techniques, conditions, and eventually post-growth

treatments.

Demers et al. determined the role and formation energies of intrinsic point defects in the

Zn3P2 using density-functional theory (DFT) simulations [61]. The formation energies of both

the acceptor defects (zinc vacancies and phosphorous interstitials) in Zn3P2 are low, which

leads to the intrinsic p-type nature of Zn3P2. Zinc interstitials are known donor defects in

Zn3P2, and to date, there has been one experimental evidence of n-type Zn3P2 grown under

zinc-rich conditions using molecular beam epitaxy (MBE) [262]. However, the n-type carrier

concentrations obtained were very low (∼1010 cm−3). The difficulty in n-type doping of Zn3P2

arises from the high formation energy of Zn interstitial defect [305, 61]. In addition, it has

been seen that when Zn3P2 is doped with electron donors a large number of acceptor defects
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Figure 2.3: PL spectra obtained from monocrystalline thin film acquired with a 488 nm laser at
(a) 12 K, where the PL peaks from the InP substrate are depicted with grayed out areas, the
inset shows magnified view of the peaks near 1.52 eV, and (b) 230 K. Adapted from [261].

are created that act as ’electron-sinks’ and capture mobile electrons thus neutralizing the

doping and lowering the Fermi-level back towards the p-type regime [305, 114]. The doping

characteristics of Zn3P2 were calculated using DFT hybrid functional method by Yin et al. Their

study reveals doping with group III-A elements (such as Al, Ga, In) and group VI elements (such

as S, Se) could result in n-type Zn3P2 when grown under zinc-rich conditions [305]. Whereas,

doping with the group I elements (such as Na, and Cu) may produce better p-type Zn3P2 than

non-doped Zn3P2. They also demonstrated that the P-P bond formed by the incorporation of

phosphorous interstitials changes the charge state of the defect from a triple-hole acceptor

to a single-hole acceptor [305]. The partial density of states reveals the VBM mainly has a

phosphorous p-character and the CBM mainly exhibits a mixed p and s-character from both

phosphorous and zinc states. The theoretical studies provide insight into the band structure

and point defect characteristics in Zn3P2. Additionally, they provide a better understanding of

the experimental results of doping Zn3P2 and provide a guideline for doping Zn3P2.

2.1.3 Electrical Properties

The success of a solar cell design is largely dependent on the charge carrier transport properties

of the materials used. Of particular importance are the minority carrier diffusion length and

the conductivity of the absorber material, which ensures efficient collection of the photo-

generated carriers. For thin-film solar cells, it is desirable to have an absorber material with

a carrier diffusion length in the order of its thickness. Some studies have shown that p-type

Zn3P2 has a long minority-carrier diffusion length and consequently a long minority-carrier

lifetime [125]. However, to date, the highest reported efficiency for Zn3P2 based solar cells

stands at ∼6% [36]. Since the 1979 publication of Catalano et al. on Zn3P2 Schottky barrier solar
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cell, there have been several attempts to break the record efficiency by proposing alternative

junction schemes. The main disadvantages of the Schottky barrier solar cell are the low

attainable barrier height and increased surface recombination [65]. Zn3P2 solar cell devices

made with magnesium are reported to have a high concentration of interface trap states,

which limits the open-circuit voltage due to Fermi-level pinning. Furthermore, subsequent

studies on Mg/ Zn3P2 solar cells have revealed the formation of an intermediate layer between

Zn3P2 and Mg due to interdiffusion. Catalano et al. showed the formation of a buried p-n

homojunction on heating (at 100 °C) evaporated Mg contacts using spectral response and

electron-beam-induced current (EBIC) measurements [34]. They attributed the homojunction

formation to n-type doping of Zn3P2 by Mg and they demonstrated the formation of Mg3P2

as an intermediate layer between the Mg contact and the n-type Zn3P2 using Auger electron

spectroscopy, secondary ion mass spectroscopy, and X-ray photoelectron spectroscopy [18].

Similar studies done by Kimball et al. showed that the intermediate layer formed was an alloy of

Mg-P-Zn and no n-type conductivity of Zn3P2 was observed in Hall effect measurements [123].

However, a more recent study on the interface between Mg and Zn3P2 was done by Katsube et

al., they demonstrated the presence of a ternary compound as the intermediate layer [115]. A

schematic representation of the interface structure of Mg/Zn3P2 solar cells is shown in Figure

2.4(a). The interdiffusion of material leads to the formation of Mg(Mgx Zn1−x )2P2 layer. Figure

2.4(b) shows the cross-sectional STEM-EDS map of the interface, the STEM-EDS map depicts

the presence of voids and intermixing. While the ternary compound grows epitaxially on

Zn3P2 and has a low lattice mismatch, the interface between Mg and Mg(Mgx Zn1−x )2P2 is

unstable and forms an atmosphere sensitive Mg-rich phosphide phase which degrades the

device by forming voids around the interface.

Figure 2.4: Cross-sectional (a) STEM-DF image of the interface between Mg/p-Zn3P2, and (b)
STEM-EDS mapping across the Mg/p-Zn3P2 interface. Reprinted with permission from [115].
Copyright 2018 American Chemical Society.

Given the limitations of Schottky based Zn3P2 solar cells and the difficulties in doping Zn3P2

n-type for homojunction solar cells [114], various studies have been dedicated to understand-

ing the Zn3P2 based heterojunction solar cells. Some common emitter materials used for

Zn3P2 heterojunction solar cells are ZnO, ITO, CdS, ZnSe, and ZnS [191, 205, 24, 109, 22].

Among the different emitter materials, ZnSe has garnered the most attention due to its band

alignment with Zn3P2. The ZnSe/Zn3P2 interface has a negligible conduction-band offset and

a significantly large valence-band offset, which makes the junction an efficient hole-blocking
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layer. Even though the highest reported efficiency for ZnSe/Zn3P2 solar cell is just about 0.81%

the open-circuit voltages are considerably higher than other Zn3P2 based solar cells [22], thus

highlighting the importance of band alignment between the emitter and absorber material.

Heterojunction solar cells of ITO/Zn3P2 have shown the best efficiency (1.1%) among all the

reported heterojunction structures [265]. There are some added advantages of using ITO as

a heterojunction such as, it is degenerately n-type which could improve the fill factor of the

solar cell by reducing the series resistance, it serves as a transparent contact, and it has a

refractive index of 2.1, which implies it can be used as an anti-reflective coating for the device

[265]. In comparison to Schottky junction solar cells, the heterojunction architecture has

fewer fundamental limitations and has a wider scope for improvement by exploring different

combinations of emitter materials.

Figure 2.5: (a) Symmetric HRXRD scans of the Zn3P2 on GaAs substrate for increasing Zn3P2

layer thickness. (b) Hole mobility of Zn3P2 as a function of layer thickness, the filled circles
represent the data from strained films and the open circles depicts the data from partially
relaxed films. Reprinted from [25], Copyright 2013, with permission from Elsevier.

Some other aspects to consider when addressing the issues related to Zn3P2-based solar cells

are the challenges associated with making reliable electrical contacts and the electronic trans-

port properties of the material. The electronic transport properties have been explored for

single-crystalline and polycrystalline Zn3P2 grown using different techniques. Mostly p-type

conductivity of intrinsic Zn3P2 and hole mobility values ranging from 10-40 cm2 V−1 s−1 have

been reported [25, 122]. Wang et al. demonstrated that for single crystal Zn3P2 samples the

Hall mobility varied with temperature as approximately T1.5 in the range 130 and 200 K and

as approximately T −1.1 in the range 200 and 380 K, which indicates that charged impurity

scattering dominates at lower temperatures and acoustic lattice scattering dominates at higher

temperatures [287]. Bosco et al. have illustrated the effect of strain on mobility, strained films

of Zn3P2 grown epitaxially on GaAs show higher mobility than partially relaxed films [25].

Figure 2.5(a) shows the HRXRD measurements of Zn3P2 with varying thickness grown on GaAs

substrate, for thin films up to 150 nm a shift in the Zn3P2 (008) peak position with respect to
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the bulk 2θ was observed. The shift indicates an out-of-plane strain of ∼0.91%. Figure 2.5(b)

shows the mobility values as a function of the Zn3P2 film thickness, the strained films have

comparatively higher mobilities than partially relaxed films. Additionally, interfacial defects

present in partially or fully relaxed films can cause charge scattering thereby reducing mobil-

ity. Additionally, they reported a decrease in carrier concentration in partially relaxed films.

Misfit and threading dislocations that are formed upon relaxation not only cause charged-

carrier scattering but are also known to act as acceptor-compensation sites in semiconducting

materials. Consequently, a high density of dislocations formed in partially relaxed Zn3P2

film is expected to compensate the phosphorous interstitials in Zn3P2 that are responsible

for the intrinsic p-type behaviour. The resistivity values of Zn3P2 are highly dependent on

growth conditions, values ranging from 1-104 Ωcm have been reported for as-grown Zn3P2

[35, 265]. Diffusion doping of Zn3P2 with Ag has been shown to only moderately increase the

hole density and the conductivity of the material [121]. While Zn3P2 is intrinsically p-type

due to phosphorous interstitials and zinc vacancies, it is also desirable to dope the material

extrinsically to have better control over the process, for this purpose Ag and Cd is commonly

used as p-type dopants.

Figure 2.6: Barrier heights of different metal contacts on Zn3P2 as a function of the metal work
function. Reprinted from [299], with the permission of AIP Publishing.

As mentioned in the previous section, n-type doping of Zn3P2 is challenging due to the self-

compensation effect [114]. Another important area to consider when making devices are the

electrical contacts, the metal-semiconductor contact is either defined as an ohmic contact or

a Schottky contact depending on the barrier height formed. The type of device determines the

desirability of ohmic or Schottky or both contacts, such as ohmic contacts are necessary as the

final connection of a semiconductor device to an on-chip metallic layer whereas for a Schottky

junction solar cell a barrier height at the junction is preferred. Wyeth et al. studied contact

barrier heights for twelve metals on Zn3P2 [299]. Figure 2.6 shows the measured barrier heights

for metal contacts on Zn3P2 as a function of the metal work function. They elucidated that the
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determining factor for ohmic contacts is not the metal work function but it is the chemical

heat of reaction of the contact metal phosphide, which hints at the formation of an interfacial

compound. Metals like Cu, Au, Ag, Zn, and Ni were shown to form ohmic contact while Mg,

Mn, In, Fe, Cr, Be, and Al forms Schottky contact.

2.2 Zn3P2 Growth Overview

Most growth technique used for Zn3P2 takes advantage of the fact that Zn3P2 sublimes con-

gruently. This allows a straightforward deposition of Zn3P2 film on a target substrate by

sublimation in vacuum, examples of such growth techniques are thermal evaporation, close

space sublimation and hot-wall deposition. Even though these techniques are successful in

producing single-crystalline Zn3P2 with good optoelectronic quality, they lack the controllabil-

ity of the process and in particular the fine details of the stoichiometry. MBE is characterized

by low growth rates (∼1 Ås−1) and the ultra-high vacuum ensures low impurity incorporation

which fosters high-quality epitaxial films. The first use of MBE for Zn3P2 growth was reported

by Suda et al., where Zn3P2 was grown on semi-insulating GaAs [262]. Two separate high-purity

elemental sources were used to grow Zn3P2 film at 200 °C. By controlling the zinc and phos-

phorous fluxes they were able to obtain epitaxial n-type Zn3P2 on GaAs (001) substrates. Bosco

et al. utilized a compound source for the growth of Zn3P2 film on GaAs substrate (001) using

MBE [25]. The substrate selection is based on lattice matching, as the phosphorous sub-lattice

of Zn3P2 is similar to that of arsenic in GaAs with room temperature lattice mismatch lower

than 1.3%. The Zn3P2 compound source alone resulted in amorphous growth, an additional

Zn flux was necessary to produce crystalline Zn3P2 [25]. This is mainly due to the high vapour

pressure of Zn which results in lower sticking coefficients. For optimal growth, the reported

substrate temperatures were in the range of 200–235 °C. At lower temperatures, amorphous

growth was reported whereas for growth temperatures above 250 °C a drastic decline in growth

rate was observed due to the lower sticking coefficient of Zn at higher temperatures [25].

Figure 2.7: SEM images of (a) amorphous (top) and polycrystalline (bottom) Zn3P2 thin films
grown on InP substrate, the scale bars correspond to 1 µm, adapted from [311]. (b) Zn3P2

nanostructures at different stages of growth on InP substrate, the scale bars are 500 nm,
adapted from [66].

In recent studies, Zamani and Escobar et al. have demonstrated high-quality Zn3P2 thin film

and nanostructure growth on InP (001) substrate using elemental source MBE [311, 70, 255].
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Figures 2.7(a,b) show the SEM images of the Zn3P2 thin films and nanostructures grown on InP.

The substrate choice is motivated by a low lattice-mismatch (2.4%) between the phosphorous

sub-lattice of Zn3P2 and phosphorous in InP (001). For the thin film growth, the substrate

preparation plays an important role, degassing the substrate at 580 °C (to remove native oxide)

for a minimum of 30 minutes is critical for monocrystalline Zn3P2 growth. Additionally, the

nanostructures of Zn3P2 were grown using selective area epitaxy (SAE) by patterning a 30 nm

thick SiO2 mask on InP substrate, this is a unique technique that takes the advantage of lateral

overgrowth for high-quality thin film formation. A local variation in the stoichiometry of the

grown Zn3P2 as a function of pattern dimensions for a given growth condition was observed

[255]. Thus, SAE could provide tunability of doping just by changing the patterns locally. The

use of MBE drastically lowers the growth temperatures in comparison to chemical vapour

deposition methods, the lower temperatures significantly reduce the number of grown-in

defects caused due to strain arising from thermal expansion mismatch. Furthermore, the

precise control of fluxes allows better tunability of composition and doping of the grown

material.

2.3 Epitaxial Growth

Epitaxy is defined as the oriented growth of crystalline material on a single-crystalline sub-

strate. Epitaxial growth is widely used in the development of modern technology, especially in

the fields of solid-state electronics, optoelectronics, and photonics [274]. There are two types

of epitaxial growth, homoepitaxy (refers to the case where the epilayer and the substrate are

the same material, such as epitaxial Si deposited on Si wafer) and heteroepitaxy (refers to the

case where the epilayer and the substrate are different materials, such as AlAs deposited on

GaAs). Homoepitaxial growth typically results in a high-quality single-crystalline epilayer, due

to the closely matched lattice parameters and strain-free interfacial bonding. The main short-

comings of homoepitaxy are the high cost and the availability of high-quality single-crystalline

wafers. In conventional heteroepitaxy, the quality of the grown epilayer is largely dependent

on the crystal structure, the lattice parameter, and the coefficient of thermal expansion of

the substrate. The lattice mismatch between the substrate and the epilayer determines the

amount of strain. For a lattice mismatch of less than 9%, the growth usually occurs pseudo-

morphically [274, 16] (i.e., for a sufficiently thin film the epilayer would be elastically strained

to follow the interatomic spacing of the substrate). With increasing epilayer thickness, the

elastic strain energy increases, which is eventually relaxed by the formation of defects. These

defects are in form of dislocation that relieves a portion of the misfit, as the film grows thicker

more and more misfit-dislocations are formed until at a certain thickness the elastic strain

is completely eliminated. For a large enough lattice mismatch the spacing between misfit

dislocations decreases giving rise to poor quality epilayer. In epitaxial semiconducting films

defects such as misfit-dislocations, grain boundaries, twins, and stacking faults introduce

local inhomogeneities, which give rise to a short lifetime and non-radiative recombination of

charge carriers. These defects can severely degrade electronic/photonic device performance
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[167]. Several strategies have been adopted to reduce the defect density in heteroepitaxy, such

as low-temperature buffer layer, lattice-engineered buffer layer, domain-matched epitaxy,

metamorphic buffer layer, compliant substrate, epitaxial lateral overgrowth, strained layer

superlattice, and thermal treatments [71, 252, 199]. Even though advanced heteroepitaxy

techniques can help in mitigating the problems associated with lattice mismatch. Challenges

remain when working with systems with large lattice mismatch, large thermal expansion

coefficient mismatch, and different polarities. Additionally, the thermal and chemical stability

of the substrate is also important when using high-temperature growth techniques.

2.3.1 van der Waals Epitaxy

In 1984, Koma et al. introduced the concept of van der Waals epitaxy (vdWE), they successfully

demonstrated the growth of Se thin-film on a cleaved Te substrate and NbSe2 film on 2H-MoS2

[130]. The growth of Se thin-film on Te substrate occurred strain-free even for monolayer

coverage despite a lattice mismatch of 20% [130]. Te has a crystal structure that consists

of spiral chains bound by weak van der Waals force. When cleaved along the chains no

dangling bonds are expected on the cleaved surface. The growth of the epilayer in vdWE

proceeds via van der Waals forces due to the absence of dangling bonds. vdWE can result

in good quality heterostructures with a very abrupt interface, even between materials with

large lattice mismatch [302, 285, 50, 131]. The key aspect of vdWE is a dangling bond free

surface, this can be achieved by using 3D/2D layered materials (where, the atoms in the layer

are covalently bonded and the layers are held together by van der Waals force, such as mica,

graphene, hexagonal boron nitride) [180, 154, 221], or by using a 3D material with a passivated

surface (such as H-passivated silicon) [99]. Heteroepitaxial films with lattice mismatch greater

than 60% can be grown by vdWE [131], this is due to the nature of the bond formed at the

interface. The van der Waals bond is not a chemical bond like covalent or ionic bonds, instead,

it originates due to dipole interactions between atoms. In comparison to chemical bonds, it is

very weak and can accommodate large lattice mismatches [13, 130, 152]. Hence, the epilayer

grows unstrained on the van der Waals substrate with its bulk lattice parameters. The epilayer

grown with vdWE substrate shows an orientational crystalline relation with the substrate.

Unlike conventional heteroepitaxy which is coherent, epilayer grown by vdWE demonstrates

incommensurate/incoherent in-plane lattices at the interface [13, 8].

Even though vdWE was introduced in 1984, it was not until the discovery of graphene in 2004

that this growth technique gained major traction. Due to the interesting properties of graphene

[197, 14, 188, 145], there has been a lot of research and rapid advancement in this field. This

has led to the standardization of the growth technique and the possibility of large-scale

fabrication techniques [12]. The unique properties of graphene are due to its crystal structure.

The carbon atoms in graphene are arranged hexagonally on a 2D plane, popularly known

as the honeycomb lattice. The hexagonal planar structure occurs due to sp2-hybridization

between the s and the p (px and py ) orbitals [304]. The pz orbital is perpendicularly oriented

to the planar structure and forms pi-bonds with the neighbouring carbon atoms, this bond
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provides weak interaction between graphene layers. The sigma bonds formed between the sp2

hybridized orbitals are responsible for the robustness of the material. Whereas, the pi-bonds

result in pi-band, which is half-filled and responsible for the conductivity of the material

[304, 3]. In ambient conditions, the charge carriers in graphene can propagate with minimal

scattering as they behave like massless Dirac fermions [195]. Such unique characteristics give

rise to semimetallic behaviour, anomalous quantum Hall effect, and absence of localization in

graphene. Additionally, graphene is known for its excellent electrical and thermal conductivity,

high mechanical robustness and superb optical transparency [197, 195, 14, 188, 145]. There

are many ways to fabricate graphene, among which the simplest method is the scotch tape. It

is a mechanical exfoliation method where graphite flakes are thinned down to a monolayer

[37]. Even though it is a straightforward method which can produce defect-free monolayer

graphene, it is not suitable for large-scale production as the flakes are relatively small (up

to 100 µm). Chemical vapour deposition (CVD) is used widely for large-scale high-quality

preparation of graphene. For the CVD growth of graphene, a transition metal (like Cu or

Ni) is used as a catalyst and as a substrate [42]. The process temperature is around 1000

°C which is required for the decomposition of the hydrocarbon source (e.g. methane) into

carbon atoms by the catalyst. The formation mechanism of graphene is controlled by the

solubility property of the metal [147, 6]. The solubility of carbon is low in Cu this terminates

the growth after the Cu surface is covered with graphene as the absence of a catalyst hinders

methane decomposition [116]. Whereas, Ni has high solubility of carbon and can dissolve

higher amounts of carbon atoms precipitating on the surface during cooling to form additional

layers of graphene [156]. Usually, CVD-grown graphene is polycrystalline with grain sizes

ranging from a few microns to hundreds of microns, nonetheless, some newer studies have

shown the possibility to increase the domain size up to a centimetre-scale. After the CVD

growth of graphene on a metal substrate, the graphene is coated with a protective polymer

and the metal substrate is etched away and the graphene is transferred to a substrate of choice

(ex: Si wafer with SiO2 on top). The process of etching, transferring, and drying give rise to

cracks and folds on the graphene which is not ideal for vdWE (we will discuss this in detail in

the later section). An alternative way to achieve wafer-scale single-crystalline graphene is by

thermal decomposition of SiC, however, the process is far more expensive. The main interest

in graphene as a van der Waals substrate is due to its 2D structure, thermal stability, scalability,

cost-effectiveness, and relative abundance. Moreover, the unique properties of graphene open

the possibility for the fabrication of flexible functional devices.

Quasi van der Waals Epitaxy

As described earlier the growth of 2D material on a 2D substrate is defined as vdWE, the

interaction at the interface is purely due to van der Waals forces (e.g. WS2 on h-BN [196], as

shown in Figure 2.8(a)). Whereas, quasi van der Waals epitaxy (QvdWE) is described as the

growth of 3D crystalline material on a 2D substrate (or vice versa) (e.g. ZnO nanowire array

[275] on mica, as shown in Figure 2.8(b)). Figure 2.8(c) shows the schematic representation of

the different types of epitaxy [13]. In QvdW heteroepitaxy there is a combination of van der
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Waals and covalent (or ionic/metallic) interaction at the interface. The interaction between

the 3D epilayer and 2D substrate is about two orders of magnitude weaker than the chemical

bonds formed at the interface of a 3D epilayer and 3D substrate. However, this interaction is

stronger than vdW forces between 2D materials. The weak bonds between the epilayer and

the 2D substrate can accommodate the thermal mismatch arising during high-temperature

growths.

Figure 2.8: (a) SEM images of triangular-shaped WS2 crystals grown onto hBN flake, reprinted
with permission from [196], Copyright 2014 American Chemical Society. (b) SEM image
of vertically aligned ZnO nanowire array grown on muscovite mica substrate, inset shows
cross-sectional SEM image of the vertical nanowires, reprinted with permission from [275],
Copyright 2012 American Chemical Society. (c) Schematic illustrations of vdWE (left) and
QvdWE (right), reprinted from [13], with permission from Royal Society of Chemistry.

Additionally, the low growth-axis bond energies in QvdWE can aid in mitigating strain resulting

from the inplane lattice mismatch between the substrate and the epilayer [95, 152, 228]. Thus,

QvdWE provides the same advantages over conventional heteroepitaxy as vdWE, namely,

higher tolerance for lattice and thermal expansion coefficient mismatch and facilitates the

fabrication of flexible devices. A wide selection of materials has been grown on 2D material

using QvdWE such as ZnO [275], GaAs [2], GaN [95], CdS [267], ZnSe [295], and so on. Depend-

ing on the material and the growth conditions the growth could either be planar [184] (such as

flakes and thin films, as shown in Figure 2.9(a)) or non-planar [13] (such as nanowires and

tripods, as shown in Figure 2.9(b)). Due to the absence of dangling bonds on the surface of 2D

materials, the nucleation is suppressed significantly and only occurs when the surface state

changes, such as in the steps, ridges, and grain boundaries. The adsorption and migration of

adatoms on 2D material play an important role in the growth. Nakada et al. demonstrated the

theoretical study of adatom adsorption and migration on graphene using the first-principles

band calculation method based on DFT [189]. The adsorption energy is defined as the energy

required to remove an adatom from graphene. The hexagonal structure of graphene has

differential adatom adsorption sites, such as the centre of the hexagon (known as the hollow

site, denoted by H), the midpoint of a carbon-carbon bond (known as the bridge site, de-

noted by B) and the site above a carbon atom (known as the top site, denoted by T). Different

atoms have different preferential adsorption in these sites [189, 98], such as transition metal
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elements are most stable at the H-site, whereas H, F, Cl, Br, and I atoms are most stable at

T-site.The highest adsorption energy was shown for C, N, and O. Migration energy or migration

energy barrier is defined as the energy needed by an adatom to move from site to site on

graphene. A low migration energy barrier or small migration energy ensures the adatoms can

move easily across graphene even at room temperature. However, the formation probability

of stable nuclei becomes significantly small when the migration energy barrier is too low.

At a given temperature the interplay between the adsorption energy and migration energy

determines the growth characteristics. For the growth of GaN on graphene, it was shown

that nitrogen acts as a nucleation site due to the large adsorption and migration energies [1,

43, 189]. Another important parameter that influences the growth characteristics is the bulk

cohesive energy [2]. When the adsorption energy is larger than the bulk cohesive energy the

probability of adatoms sticking to graphene increases, this promotes the likelihood of 2D

growth. Whereas, if the adsorption energy is lower than the bulk cohesive energy the growth

would follow a 3D mode as the incoming adatoms would preferentially stick on top of the

existing nuclei than on graphene. In some cases growth defects are intentionally introduced

to aid the adsorption of the atoms. Commonly oxygen and nitrogen plasma treatments are

used to manufacture these defects. The creation of controlled point defects is desirable to

promote surface activity in graphene, however, large amounts of defects could deteriorate the

growth quality. Raman spectroscopy is used to monitor the changes in the graphene upon

plasma treatment. Raman spectra of pristine graphene show two distinct peaks, the G band

around 1580 cm−1 and the 2D band around 2700 cm−1, which corresponds to the in-plane

optical vibrational mode activated by intervalley double resonance [169]. On oxygen plasma

treatment new features related to the defect activated bands are observed (the D band around

1340 cm−1 and the D’ band around 1620 cm−1cm-1) in the Raman spectra. Thus, structural

changes in the graphene lattice can be easily monitored by the defect activated peaks and the

change in the I(D)/I(G) ratio (I is the peak intensity). Chung et al. investigated the growth

of GaN on oxygen plasma-treated graphene, even though the oxygen plasma step increases

the surface activity of graphene, it did not improve the epilayer quality [51]. Therefore, an

intermediate layer of high-density ZnO nanowalls was grown on the oxygen plasma-treated

graphene substrate, which in turn improved the growth quality of the GaN layer. Another

way to increase nucleation and promote 2D growth is by employing an element with high

absorption energy and low migration energy barrier, Li et al. showed by incorporating Al after

an oxygen plasma step the nucleation rates were enhanced on graphene [151]. The addition of

Al promotes the formation of a dense nucleation layer which in turn increases the adsorption

for Ga and N and helps in the re-crystallization process. The size of the nucleated island

increases on thermal annealing and subsequently coalesces with adjacent islands to form a

uniform film. For non-planar growth (such as nanowires) it is important to have a high growth

rate in the out-of-plane direction in comparison to the in-plane direction. The anisotropic

growth of the nanowire could be due to VLS, VS, dislocation-driven or self-catalysed.

ZnO nanowires have been grown using QvdWE, Kim et al. demonstrated the growth of verti-

cally aligned ZnO nanowires using catalyst-free MOVPE[120]. They observed distinct growth
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Figure 2.9: (a) SEM image of InP crystal grown on graphene/SiO2/Si, scale bar in the image
corresponds to 1 µm, reprinted from [184], with the permission of John Wiley & Sons. (b) SEM
image of CdTe nanowires grown on muscovite mica substrate, inset shows the magnified SEM
image, reprinted from [13], with permission from Royal Society of Chemistry.

behaviour depending on the location, on graphene the ZnO nanowires grew vertically but in

adjacent areas, with no graphene coverage (on SiO2/Si surface) the nanowires of ZnO grew

tilted with no preferential orientation. Additionally, nanowalls of ZnO were observed in the

step edges due to increased nucleation and growth rate. The temperature had a strong influ-

ence on the morphology and the density of the nanowires, with in increase temperature the

nanowires grew longer due to an increase in surface diffusion and the density was reduced due

to reduced nucleation sites. Similar observations were also noted for InAs nanowires grown

using catalyst-free MOVPE [97], the roughness in graphene substrate caused by graphene

ledges and kinks facilitates heterogeneous nucleation and growth of the nanowires, however,

if the roughness or the disorder increases too much the vertical growth deteriorates. The

yield of vertically aligned nanowires decreased significantly with increasing surface rough-

ness even though the overall nucleation density increased. They hypothesized in absence of

graphene steps and ledges point defects and vacancies in graphene could act as nucleation

sites and are conducive to vertically aligned InAs nanowire arrays. GaAs has been grown on a

graphitic substrate using the self-catalyzed VLS method with MBE. Munshi et al. reported the

importance of the contact angle of the catalyst droplet for the growth of vertical nanowires

[185]. For higher growth temperatures the nanowires grew vertically with a uniform hexagonal

cross-section however the yield was very low and high densities of Ga droplets were formed.

The contact angle of the Ga droplets was high indicating the nonwetting character of the Ga on

graphene which in turn doesn’t favour nanowire formation. The vertical yield of the nanowires

significantly increases with the decrease in growth temperatures, this was attributed to the

increased wetting of Ga and subsequently smaller contact angle formation. However, at lower

temperatures, the parasitic growth also increases. To avoid the parasitic growth and to en-

hance the vertical nanowire growth they adopted a two-temperature growth method in which

a low-temperature nanowire nucleation step was followed by a high-temperature nanowire
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growth step. Several parameters influence the growth on graphene such as temperature, type

of adatoms, and defects. For a given material system the growth temperatures are significantly

lower on graphene than on conventional substrates due to the low adsorption of most adatoms

on graphene surface for a given temperature. Thus, temperature plays a significant role in

controlling the growth on graphene. Additionally, the incorporation of an element with high

adsorption energy can aid the nucleation process and encourage growth. It is evident from

the planar and non-planar growth on graphene that the presence of local defects is important

for nucleation and growth, however depending on the type and density of these defects it

might be deleterious for the growth as the growth mechanism is significantly different due

to difference in adatom adsorption and migration behaviour, furthermore, this can lead to

inhomogeneous growth on graphene.

Figure 2.10: (a) Top-view SEM image of the overgrown AlGaN pyramid arrays grown on
graphene, the inset shows the magnified view of the same sample, the scale bar in the inset is
2 µm, reprinted from [186], with the permission of AIP Publishing. (b) Top-view SEM image of
GaN crystals grown on graphene, reprinted from [105], with the permission of IOP Publishing,
Ltd.

Some other approaches in QvdWE are selective area epitaxy and remote epitaxy. Position

controlled fabrication is of importance in nanostructure-based devices, Munshi et al. demon-

strated selective area growth of AlGaN nanopyraminds on graphene using a patterned mask

for optoelectronic applications [186], as shown in Figure 2.10(a). This lays the foundation

of nanostructure array-based devices on graphene with high yield and functionality. Ebeam

lithography followed by etching was used to pattern the oxide mask on graphene which was

then used as a template for AlGaN growth using MOVPE. The growth mechanism of SAE on

van der Waals substrate is fundamentally similar to QvdWE, except for the added benefit of

spatial control. In contrast, the working principle of remote epitaxy [118] is markedly different

as the substrate beneath the van der Waals substrate influences the growth significantly, which

in the case of QvdWE acts as mere support. Figure 2.10(b) shows an SEM image of GaN grown

on graphene/SiC substrate via remote epitaxy [105]. Remote atomic interaction through 2D

materials is governed by the polarity of the atomic bonds, both in the substrate below the 2D
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material and the 2D material itself. The potential field from the ionically bonded substrate (i.e.

polar materials, e.g. GaN, GaAs, and so on) can penetrate through the few layers of graphene

(depending on the strength of ionicity), whereas the potential field from the covalently bonded

substrate (i.e. non-polar materials, e.g. Si and Ge) is effectively screened by the graphene

monolayer. Kong et al. demonstrated the growth of high-quality orientationally aligned

monocrystalline GaN epilayer grown on monolayer graphene coated GaN(0001) substrate

[133]. In contrast, the growth of Si on monolayer graphene coated Si(001) substrate gave rise

to polycrystalline growth. The potential fluctuation from the GaN substrate is transmitted

through the monolayer graphene and the electrostatic interaction with the GaN substrate is

preserved at the epitaxial surface. The incoming adatoms on the surface of graphene coated

GaN(0001) substrate stabilize at the energetically favourable potential minima and in turn,

follow the epitaxial registry of the substrate. The polarity of the 2D material can also affect

the atomic arrangement in the epilayer, it was shown that polar 2D material (eg: h-BN) can

partially screen the field from the substrate due to increased inhomogeneity of the potential

distribution and thus giving rise to the coexistence of two distinct crystalline orientations in

the same epilayer. On increasing the number of monolayers of the 2D material the growth

completely transforms from remote epitaxy to QvdWE. High-quality single-crystalline thin

film can be obtained using Remote epitaxy on 2D material coated substrates, the grown thin

film can be easily transferred to any other substrate. This provides unique opportunities

for the heterointegration of arbitrary single-crystalline thin films in functional applications.

Additionally, the same 2D material coated substrate can be used for subsequent growths, thus

making this process cost-effective. However, one main shortcoming of this process is the lack

of compatibility with non-polar materials. Moreover, a new study suggests the possibility of

“thru-hole” epitaxy [100].
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3 Experimental Methods

This chapter presents an overview of the growth, fabrication, and characterization techniques

primarily used in this thesis. First, the growth method is described in detail. Then, the

optical characterization methods relevant to this work are stated. Next, I present the device

fabrication techniques used for making electrical devices and finally, I state the main electrical

characterizations used to understand the electrical properties of the material.

3.1 Molecular Beam Epitaxy

MBE is an epitaxial growth technique that operates under an ultrahigh vacuum (UHV) con-

dition. The UHV condition minimizes the incorporation of contaminants in the epilayer,

making this technique ideal for novel material investigation and device fabrication. MBE

was initially developed in the late 1960s for the deposition of thin-film III-V semiconductors.

Some of the pioneering work on understanding MBE growth highlighted the importance of

the growth conditions for achieving high-quality epitaxial films [46, 60, 106, 103, 45]. Davey

and Pankey demonstrated the growth of epitaxial GaAs films using MBE, they emphasized

the importance of the substrate cleaning process and its impact on the epitaxial film quality

[46]. Cho and Arthur illustrated the importance of growth temperature [46, 45]. They showed

that excess As desorbs from the surface at temperatures above 300 °C, and the stoichiometric

growth of epitaxial GaAs layer is favoured [46]. Since the early usage of MBE for the growth of

III-V compound semiconductors particularly GaAs, it has evolved as a popular technique for

growing numerous high-purity materials.

There are several variants of MBE based on the source type, such as solid source MBE (SSMBE)

and gas source MBE (GSMBE) [274, 96, 73, 38]. An SSMBE is based on the utilization of solid

sources, which are heated by thermal radiation or by electron beam impact. Whereas, a GSMBE

utilizes hybrids, such as arsine (AsH3) or phosphine (PH3). The gas source is introduced

into the UHV growth chamber and subsequently thermally cracked on contact with hot

surfaces to form dimer beams. Additional, metal-organic compound sources (such as tris-

dimethyl-aminoarsenic (TDMAAs) and triethylgallium (TEGa) used for the growth of GaAs)
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could be used and it is called metal-organic MBE (MOMBE). Hereafter, I will only discuss

the conventional solid source MBE system. MBE has a complex operating system, where the

main module is maintained under a UHV condition. A typical setup consists of a growth and

preparation chamber that are separated by a gate valve and individually pumped. Figure

3.1(a) shows the schematic representation of an MBE growth chamber. Some of the main

components of a growth chamber are the source cells, the substrate heater, the beam flux

monitor, shutters, the diagnostic system, and the pumping system. The MBE system used in

this thesis is a Veeco GENxplor, as shown in Figure 3.1(b), and the details of the components

will be discussed in light of the system used.

Figure 3.1: MBE system (a) schematic representation of the MBE chamber, and (b) photograph
of the Veeco GENxplor MBE system used in this thesis.

The growth rates in MBE are usually very low, often in the order of 1 ML s−1 [274, 96]. To

ensure high-purity growth the impurity levels should be lower than one part per million,

which necessitates a low background pressure. Since not all residual impurities react and

adhere to the surface of the grown material the impurity level of one part per million can be

maintained with a background pressure of ∼10−11 Torr. To maintain the UHV conditions in

our MBE system, the growth chamber is equipped with an ion pump, a titanium sublimation

pump, cryopanels, and cryopumps. Additionally, the load-lock provides a fast and clean

way to introduce samples into the UHV system, it has a turbomolecular pump and a scroll

pump. The load-lock is vented to atmospheric pressure under an argon atmosphere for the

introduction or removal of the substrates. Subsequently, the load-lock is degassed at 150

°C for at least two hours to remove moisture and other impurities. The substrates are then

moved from the load-lock to the preparation chamber. The preparation chamber has the

provision for storing the substrates (up to 7 substrates at a time) and further degassing the

substrates. Depending on the substrate material, it is degassed at temperatures ranging

from 300-600 °C. After the degassing step when the pressure of the preparation chamber

reaches the optimal value the degassed substrate is transferred to the growth chamber. The

substrate is placed on a substrate manipulator, which can azimuthally rotate continuously

during growth to improve the uniformity across the substrate. In some cases, the rotation of
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the substrate manipulator is turned off to study the composition or doping gradient along

the diameter of the substrate. The substrate is heated from the backside and the temperature

is measured using a thermocouple at the manipulator. The substrate temperature is also

monitored during the growth using an infrared pyrometer installed at a heated viewport. The

source cells are positioned at the bottom of the growth chambers and face the substrate at

a 45° angle. Depending on the material, different types of source cells can be used, such as

Knudsen cells, cracker cells, sublimation cells, and electron beam evaporation cells. Our MBE

system is equipped with a valved effusion cell for zinc, a valved cracker cell for phosphorous

(with GaP as the solid source), and effusion cells for gold, silver, and magnesium.

The ultra-pure (to minimize potential contamination) raw materials are placed in pyrolytic

boron nitride (PBN) crucibles and loaded into the cell. In general, the molecular or atomic

beams are generated by evaporating or sublimating the source material by radiatively heating

the crucible with Ta heaters. Most of the cells used in our MBE are effusion cells, an effusion

cell works as a thermal evaporator. There are different types of effusion cells depending on the

application temperature such as the standard effusion cell, high-temperature effusion cell, and

low-temperature effusion cell. The design of each effusion cell is based on specific evaporation

requirements, such as a cold lip filament effusion cell, which has a short filament that does

not reach the orifice of the crucible and is commonly used for Al evaporation. Additionally,

an effusion cell must be designed to provide high purity, good time stability of the beam flux,

and a high uniformity over the entire substrate area. Cracker cells are commonly used for

group-V species that evaporate as tetramers (e.g. As, P, and Sb). The material is first thermally

evaporated from the bulk of the cell, which subsequently passes through a hotter cracking zone

tube where it decomposes the tetramers into dimers. A mechanical shutter with an actuation

time of tenths of seconds is placed in front of each cell, which operates as an on/off control for

the beam flux. The temperature of the cell determines the flux and it is precisely measured

using a thermocouple. The thermocouple provides feedback to the temperature controller for

power supply regulation. A beam flux monitor (BFM) is used to measure the beam equivalent

pressure in the MBE. The filament of the BFM is inserted into the beam path close to the

substrate to measure the beam equivalent pressure, this allows the calibration of the cells.

Reflection high-energy electron diffraction (RHEED) is an in-situ characterization method

commonly used in MBE for real-time feedback on the influence of growth conditions on the

structure of the epitaxial layer. It provides information about the epilayer thickness, growth

rate, surface roughness, and surface reconstruction [79, 277]. The substrate surface is probed

using a high-energy electron at a grazing incidence, which is then diffracted by the surface

layer. The diffraction spots formed on the fluorescent screen are known to oscillate during the

growth, these oscillations correspond to the recurring roughening and smoothening of the

substrate surface. The periodicity of oscillation coincides with the time needed to complete

the one-monolayer growth, and hence it is used to estimate the growth rate.

In general, MBE has a number of advnatages over other growth techniques. It provides

growth conditions suitable for high-purity growth, which gives an insight into the properties

of prestine materials. Additionally, it provides high degree of control over the paramters this is
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essential for understanding the growth mechanism, especially for compound semiconductors.

Nonetheless some of the major limitations of this technique is the low throughput (due to the

low growth rate) and high cost of maintenance.

3.2 Optical Spectroscopy

Spectroscopy is the study of the interaction of electromagnetic radiation with matter. Optical

spectroscopy measures the absorption, reflection, and emission of light by matter. Depending

on the type of light-matter interaction and the wavelength of light there are several different

spectroscopy techniques, such as Infrared, Raman, Ultraviolet-Visible, Photoluminescence,

and so on, It is a non-destructive method used extensively for qualitative and/or quantitative

understanding of material systems. Here I will only focus on Raman and Photoluminescence

spectroscopy.

3.2.1 Raman Spectroscopy

Raman spectroscopy is based on the inelastic scattering of monochromatic light by a crystal

lattice or molecule. When incident light interacts with a material, it can be scattered either

elastically or inelastically. Most of the scattered light is at the same wavelength as the incident

light, this elastic scattering is called Rayleigh scattering. Whereas, only about one photon in

a million (0.0001%) is inelastically scattered [219]. The inelastic scattering process modifies

the (ro-)vibrational state of the molecule [58]. This energy transfer in a crystal lattice cre-

ates/annihilates phonon (quasi-particle) in the lattice. According to the quantum mechanical

description of Raman, the (ro-)vibrational energy states of molecules/phonons are discrete

quanta [58, 104, 161]. The intermediate perturbed state inflicted by the incident light usually

does not correspond to any electronic state of the system and is instead a virtual energy state.

When the scattered photon has lower energy than the incident photon it is called Stokes Raman

scattering. Whereas, when the scattered photon has higher energy than the incident photon

it is called anti-Stokes Raman scattering. The anti-Stokes signal is much weaker than the

Stokes signal in molecules as the population of energy states is governed by thermal statistics

[104]. And, for phonons in crystals, the probability of the scattering target occupying a given

vibrational quantum energy state obeys Bose-Einstein statistics [179].

Raman spectroscopy is a powerful technique for the characterization of 2D materials and

phonon modes in crystals [75, 40, 44, 91, 166]. It is used for the determination of a wide

array of material properties such as chemical structure, phase, strain, impurity, and thermal

conductivity [104, 225, 129, 235, 62]. Raman spectroscopy was routinely used during this thesis

to understand the quality of the as-grown Zn3P2 and the graphene substrate. Here, I give a

generalized overview of the Raman spectra of Zn3P2, more detailed studies are reported in

Chapter 4. Depending on the crystal symmetry of the material certain transitions are allowed

or forbidden, consequently, specific transitions can be Raman active or inactive. The rule

describing the conditions where some modes are allowed or not is given by the selection rules
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of the scattering process. According to group theory analysis, there are 39 Raman active modes

for Zn3P2 with the following irreproducible representation [175, 76, 260]:

ΓRaman = 9A1g +10B1g +4B2g +16Eg (3.1)

Here the A and the B modes correspond to the non-degenerate modes and the E mode

corresponds to the doubly degenerate [76, 260, 201]. The 39 Raman modes of Zn3P2 are

present below the frequency range of 400 cm−1, which makes detection difficult due to the

overlap of peaks. Stutz et al. showed a detailed analysis of the Zn3P2 Raman spectra and

attributed the various peak centres to their contributing modes [260]. The peaks positioned

below 210 cm−1 have more contribution from Zn-related vibrations, whereas peaks positioned

above 225 cm−1 have more contribution from P-related vibrations. Additionally, a phonon gap

is present in the range 210-225 cm−1. Figure 3.2(a) and (b) show a typical Raman spectrum

obtained from Zn3P2 at 300 K and 15 K, respectively. The different modes are highlighted

for the low-temperature Raman spectra. The Raman spectra can also be correlated to the

compositional variation in Zn3P2, peak intensities of some of the modes vary with a change

in the Zn/P ratio. Thus Raman spectroscopy plays an important role in the qualitative and

quantitative characterization of Zn3P2.

Figure 3.2: Raman spectra obtained from Zn3P2 grown on graphene at (a) 300 K, and (b) 15 K,
the different modes are highlighted for the lower temperature measurement.

To measure the Raman spectra a Renishaw inVia confocal Raman setup. The system is config-

ured with four different lasers (405 nm, 532 nm, 488 nm, and 785 nm) and it is combined with

a charge-coupled detector through a high-resolution spectrometer comprising of gratings to

disperse the Raman signal. The grating 3000 lines per millimetre (l/mm) provides a maximum
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Raman spectral resolution of 0.8 cm−1 when coupled with the 532 nm laser. The majority of

the measurements were done using a 532 nm laser either with a grating of 1800 l/mm or 3000

l/mm. The maximum incident power of the laser spot was limited to 1 mW and the spot of the

laser was ∼1 µm.

3.2.2 Photoluminescence Spectroscopy

In a thermodynamic non-equilibrium state a semiconductor can have surplus charges, which

are created by carrier injection. This could be through carrier injection via contacts, an

electron beam, or light absorption [90, 31]. Photoluminescence (PL) spectroscopy involves

the excitation of a material with light and measuring its spontaneous emission signature.

Photoluminescence provides information regarding the bandgap and the defects of a given

material system. When a semiconducting material is illuminated with light energies higher

than its bandgap, the carriers present in the material are excited to higher energy states.

When these carriers return to their original state, they may do so via a radiative or non-

radiative recombination process. When an electron and hole recombine radiatively, a photon

is emitted and the energy of the emitted photon provides information about the optoelectronic

properties of the material. The peak shape and position of the Photoluminescence spectra

contain a number of information regarding the material. The peak width is closely related to

the quality of the material, while a shift in the peak position may indicate band filling or a shift

in energy levels (due to lattice expansion or contraction influenced by temperature or stress)

[10, 64]. Additionally, power-dependent measurements can provide information about the

underlying recombination mechanism [239].

Figure 3.3: Major radiative recombination processes (a) band-to-band recombination, (b)
recombination between a free and a localized carrier, (c) recombination between the levels of
a single impurity, (d) recombination between an acceptor and a donor, and (e) recombination
between free or bound excitons.
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When carriers return to their original state, they can do so either immediately or after scatter-

ing, or they can recombine with another state away from their original state after diffusion.

There are a number of recombination pathways as shown in Figure 3.3, some of which are

radiative and the others are non-radiative. The most common radiative recombination pro-

cesses are direct recombination (also known as band-to-band recombination), free-to-bound

transition, donor-acceptor pair transition, and exciton transition. Non-radiative recombi-

nation is usually an undesired effect, where the entropy of the system is increased due to

the generation of heat which in turn reduces the device performance. The non-radiative

recombination mechanisms in a semiconductor are Auger recombination and recombina-

tion through defects. Extended defects that act as recombination centres are surfaces, grain

boundaries, and dislocations. The break in crystal symmetry due to the presence of a surface

induces midgap levels, which act as non-radiative recombination centres. Grain boundary is

the interface between two grains. The decrease in the grain boundary area causes a decrease

in the minority carrier lifetime, which can severely impact the performance of photovoltaic

devices. When the average distance between grain boundaries is significantly larger than the

minority carrier diffusion length the impact on the device performance is negligible. This

makes the growth of monocrystalline or large-grain polycrystalline material enticing. Disloca-

tions are also referred to as carrier sinks and the minority carrier lifetime is dependent on the

dislocation density (τ−1 ∝ nd , where τ is the carrier lifetime and nd is the dislocation density)

[90]. These non-radiative recombinations are not directly measured by Photoluminescence

spectroscopy, however, they do reduce the overall luminescence of the material.

The setup used for the PL measurements is a LabRam HR Evolution HORIBA spectrometer. A

monochromatic light source with wavelengths 532 or 633 nm was used. A diffraction grating

of 300 l/mm was used for the measurements and a charge-couple device (CCD) detector

collects the signal. The measurements were carried out in Prof. Qihua Xiong’s lab at Nanyang

Technological University in Singapore, for more information on the setting refer to Chapter 4.

3.3 Device Fabrication

To probe the electrical properties of Zn3P2 thin film grown on InP substrates several devices

were fabricated to carry out the electrical measurements. All of the device fabrication steps

were carried out in the cleanroom facility of the Centre of MicroNanoTechnology (CMI)

and the characterization platform of the Interdisciplinary Centre for Electron Microscopy

(CIME). In this thesis mainly electron beam lithography and focused ion beam were used for

device fabrication, which is discussed in detail in Chapter 5. Additionally, we also fabricated

photovoltaic devices, which are discussed in detail in Chapter 6.

3.3.1 Electron Beam Lithography

Electron beam lithography (EBL) is a lithography technique that utilizes focused electron

beams for creating fine patterns for various applications. It is a high-resolution technique
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capable of writing nanoscale features. EBL consist of three main steps: exposure of the resist,

development of the resist, and pattern transfer. The electron beam scans across a surface

coated with a resist sensitive to the electron beam to create the pattern. The resist could be a

positive (the exposed area to the electron beam is removed on developing) or a negative (the

unexposed area is removed on developing) resist and the choice of the resist largely depends

on the desired resolution of the pattern. Moreover, the final resolution of the feature is an

accumulative effect of each individual step in the process. The electron beam has a Gaussian

distribution and the higher the energy of the beam lower the wavelength of the beam which

ensures a small beam diameter. In general, an EBL system consists of an electron source, two

or more lenses used for focusing the electron beam, a beam blanker for turning the beam

on and off, a stigmator for compensating astigmatism, apertures for defining the beam, a

deflection system for moving the beam, an electron detector for locating markers on the

sample, and a Faraday cage used for the beam current measurement to ensure precise dose

for resist exposure.

Figure 3.4: Optical image of a Hall bar structure processed on the micro-crack.

Some of the major limitations of the EBL process are cost, complexity, slower process, low

throughput, and proximity effect. The EBL process is slow in comparison to some other

lithography techniques, each writing step could take several hours and some samples could

require multiple writing steps. When the beam operates at lower voltages the aberration is

greater, thus the resolution is low and a higher working voltage is preferred. However, at

higher voltages, the resist outside the targeted exposure area receives a non-zero electron

dose known as the proximity effect. When the electron beam collides with the resist and the

substrate underneath, forward and backscattered electrons are produced which in turn causes

the exposure of the resist far from the originally targeted area. This leads to poor resolution

and nonuniform exposure. Despite the limitations, EBL has proven to be beneficial for the

development of applications based on submicron-sized features. The major advantages of

the EBL process are high resolution, direct transfer of complex patterns, high accuracy of

alignment, and flexibility.
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Figure 3.5: Schematic representation of the fabrication steps used for processing the electrical
device structures.

The monocrystalline samples contained micro-cracks, to avoid the processing of the elec-

trical structures on these micro-cracks EBL was used. EBL allows precise alignment of the

structure with respect to the cracks. Figure 3.4 shows the optical microscope image of a hall

bar processed on the micro-crack due to misalignment. The fabrication process schematic

is depicted in Figure 3.5. As a first step EBL is used for defining the alignment markers on

the sample. This is done by first coating the sample with ∼440 nm of methylmethacrylate

(MMA) and ∼220 nm polymethylmethacrylate (PMMA) which are positive photoresists. Two

resist are used to ensure proper lift-off of the deposited metal and the thickness of the resists

is adjusted in accordance with the thickness of the metal to be deposited. The resist-coated

sample is exposed selectively to the electron beam, where the dose and the current are ad-

justed according to the desired resolution. After the exposure, the resist is developed using

MiBK:IPA (1:3) developer. The resist is removed from the exposed areas. Next, the metal used

for the alignment markers is deposited using sputtering. The thickness of the metal used is

∼100 nm comprising of 10 nm of Cr and 90 nm of Au. The metal from the rest of the sample

is removed via liftoff in acetone. In the subsequent step, 30 nm of Si3N4 is deposited using

plasma-enhanced chemical vapour deposition (PECVD). The nitride layer protects the sample

and isolates the electrical structures. A second EBL step is used for creating the electrical

structures on the sample. After the exposure and the development, a reactive ion etching step

(∼60 seconds) is used to selectively remove the nitride from the exposed areas. The unexposed

resist (PMMA) is stripped in acetone. Finally, an EBL step is performed to make the final

contacts of the electrical structures. The EBL process is followed by a metal (Au ∼150-180 nm)

deposition using sputtering and a final liftoff in acetone. The electrical structures are isolated
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using a FIB milling technique, which is discussed in the next section. Figure 3.6 shows the

SEM micrograph of the final electrical structure.

Figure 3.6: SEM image of a fabricated Hall bar structure.

The electron beam lithography system used in this thesis is Raith EBPG5000+, which is capable

of writing features smaller than 10 nm. The instrument is normally set to 100 keV for operation

and a thermal field emission gun is used as the source.

3.3.2 Focused Ion Beam

Focused ion beam (FIB) technique utilizes a highly-focused beam of charged ions for precise

nanopatterning such as milling and material deposition. Additionally, FIB can be used for

imaging, compositional analysis, and structural analysis. In this section, I describe the fun-

damentals of FIB in the light of device fabrication. The interaction of the focused ion beam

with the material on which it impinges can be exploited for selective material removal and in

presence of a gaseous precursor for material deposition. The working resolution provided by

FIB ranges from hundreds of micrometres to a few nanometers, and this range largely depends

on the material, ionic species, and beam configuration. FIB systems are usually combined with

a scanning electron microscope (SEM) system, the main components of this instrument are

an ion column, an electron column and a process chamber. The upper part of the ion column

houses the ion source and the lower part encompasses a series of elements for the acceleration,

focus, and steering of the beam. The ions coming from the source are accelerated and focused

in the ion column. The ion column also has electromagnetic and electrostatic lenses, and

apertures. The lenses present in the instrument are used for beam deflection and focus. And,

the apertures are used for defining the beam size. A beam blanker is present to steer the beam

away from the axis when needed. And, a Faraday cup is present to accurately measure the ion

beam current. The processing occurs in the process chamber that consists of the sample stage,

detectors, and processing module which includes a gas delivery system used for the injection
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of precursors into the chamber for material deposition. The gas injection system (GIS) delivers

the precursor material in gaseous form in close proximity to the sample using a nozzle. Some

of the most common precursor materials found in FIB systems are tungsten hexacarbonyl

(W(CO)6), methylcyclopentadienyl trimethyl platinum (CH3)3Pt(CpCH3), and naphthalene

(C10H8). The injected molecule should have a sufficient sticking coefficient on the sample

surface to ensure deposition on decomposition upon irradiation by the beam [198].

The processing chamber is also equipped with a sample stage which can be moved in all three

dimensions, rotated around its axis, and tilted to a certain angle. Most of the modules in a

FIB/SEM system are calibrated to work optimally at the eucentric height. The eucentric height

refers to the height of the sample at which the image does not move laterally upon tilting the

sample, this height is set at the coincidence point between the two beams and the stage. The

SEM column is placed at 0° tilt while the FIB column is placed at an angle (45-55°) with respect

to the SEM column.

Figure 3.7: Schematic representation of FIB (a) milling, and (b) deposition, process.

When the ion beam scans over the material, a number of interactions take place. Broadly, the

ion-solid interaction leads to nuclear interaction and electronic interaction. The volume of

interaction is defined by the ionic species used and the sample material. Figure 3.7(a) shows

the schematic representation of the ion-solid interactions that take place in FIB processing.

When the incident ions elastically collide with the atoms in the sample, the atoms are displaced

from their equilibrium position and a collision cascade is triggered. During a collision cascade,

if the transferred momentum to the atoms close to the surface exceeds the binding energy

then they are sputtered from the bulk [55]. Whereas, when the beam is used for the purpose

of material deposition (as shown in Figure 3.7(b)), it is the secondary electrons emitted from

the sample upon interaction with the beam that induces the decomposition reaction of the

adsorbed precursor molecules. The precursor molecules are dissociated into volatile (which

are pumped out) and non-volatile (which are deposited on the sample) parts. In general,

the process of atomic displacement can lead to the amorphization of the material and the

sputtered material can get redeposited close to the point of ejection. In order to minimize

the damage caused by the FIB processing while milling the parameters used for the process

should be customized according to the material. Some of the parameters that are commonly

adjusted are the acceleration voltage (the potential difference used for accelerating the ions
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down the column, the attainable working range is usually between 0.2 kV to 60 kV), the ion

beam current (the ion charge delivered to the sample per unit time, depending on the FIB

system this value can range from 0.1 pA to 2 µA), the dose (the amount of charge received by

the material per unit area in a given time interval), and the dwell time (time spent by the beam

on each irradiation spot during a scan).

In this thesis the Thermofisher HeliosT M G4 PFIB UXe DualBeamT M FIB/SEM system was

used, it combines the PFIB column with an SEM column. The ion source for the FIB could be a

liquid metal ion source or a gas field ion source or a plasma source. A plasma source FIB (PFIB)

was used in this thesis, it operates by creating a plasma of a noble gas. One major advantage of

plasma source FIB is the improvement of the beam current with a relatively small spot size.

3.4 Electrical Characterization

In the following section, I will describe the electrical characterization methods used to deter-

mine the electrical properties of the as-grown Zn3P2 on the InP substrate. An understanding

of the electrical properties is crucial for the application of the material for photovoltaics. The

fabrication process required for the electrical devices has been described in detail in the

previous section.

3.4.1 Transmission Line Measurement

Transmission line measurement (TLM) is used to determine a number of electrical properties

of a semiconductor, such as resistivity, specific contact resistivity, transfer length, and sheet

resistance. It involves current-voltage measurements between adjacent contacts of variable

spacing. Figure 3.8(a) shows the schematic representation of a TLM structure, the length (L)

and width (W) of the contacts are kept constant throughout the structure while the distance

(d) between the contacts is varied. The total resistance between two contacts is measured

and plotted as a function of the contact spacing, as shown in Figure 3.8(b). Three parameters

are extracted directly from the plot, the sheet resistance RSH , the contact resistance RC , and

the transfer length LT . The sheet resistance is obtained by the slope of the plot, the contact

resistance is obtained from the y-intercept, and the transfer length is obtained from the

x-intercept. The total resistance (RT OT ) is described as:

RT OT = 2RM +RS +2RC (3.2)

where RS is the resistance of the semiconductor and RM is the resistance of the metal (this is

neglected as it is very low). Alternative the total resistance can be expressed as:

RT OT =

(
RSH

W

)
d +2RC (3.3)
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The transfer length is the average distance over which the current transfer from the semicon-

ductor into the metal and vice versa. The transfer length is described as :

LT =
√

ρc

RSH
(3.4)

The term ρc is the specific contact resistivity, on considering the path of current underneath

the contact, it is evident that the distribution of the current density is dependent on the value

of the specific contact resistivity [82]. For a small value of ρc , the current can flow quickly

into the contact, as shown in Figure 3.8(c). Whereas, for a high value of ρc , the current path is

extended as the transition resistance is high, as shown in Figure 3.8(d). In general, when L ≥
1.5 LT the contact is described as good contact with low specific contact resistivity. Whereas,

when L ≤ 0.5 LT the contact is described as poor contact with high specific contact resistivity,

which can occur due to current crowding [316].

Figure 3.8: Schematic representation of (a) the top-view of a TLM structure, highlighting
the dimensions, (b) a common measurement outcome, where the resistance is plotted as a
function of the distance. The cross-sectional view showing the representative electric field
lines (c) low ρc , and (d) high ρc .

The TLM measurements were performed in our table-top probe station at room temperature.

A Keithley 6487 voltage source was used to apply the voltage and a picoampermeter was used

to measure the current. The measurements were carried out by placing two probes on two

adjacent metal pads and applying a voltage sweep in the range ± 1 V while simultaneously

measuring the current.

3.4.2 Hall Effect Measurement

When a magnetic field is applied perpendicular to the direction of current flow in a conductor

an electric field is developed in the direction perpendicular to both. The underlying principle

of Hall effect can be understood from the Lorentz force acting on the charge carriers due to

the magnetic force and the electric force. When a charge carrier (q) moving in the x-direction

with a drift velocity (vX ) experiences an external magnetic field (BZ ) in the z-direction, a force
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(F) develops on the charge. This force is in the y direction and described as [164]:

F = −qvX Bz (3.5)

As a consequence of this force, the charge carriers will be deflected to one side, which in turn

creates a negative charge on one side and a positive charge on the other. This induces an

electric field in the y-direction and it is proportional to the current and the magnetic field.

The force on the charge carrier due to the electric field is balanced by the Lorentz force. The

Hall voltage is the integral of the electrical field across the width of the sample, this can either

be positive or negative. When the force from the electric field is equal and opposite to the

magnetic force, the net force in the y-direction is zero, this is known as the Hall effect. And,

the current flow is uniform in the x-direction and it takes only a few picoseconds to establish

this steady state. Therefore the Hall voltage can be derived from:

−q
VH al l

w
= −qvX BZ (3.6)

and, vX can be written as:

vX =
I

nqwt
(3.7)

thus, from Equations 3.6 and 3.7 we obtain:

VH al l =
I BZ

nqt
(3.8)

where n is the carrier density, t is the thickness and, the Hall coefficient is defined as RH = 1
nq .

It is positive if the charge carriers are positive and negative if they are negative. The polarity of

the voltage drop across the width of the hall bar determines the sign. The mobility (µ) of the

carrier can be obtained by using the carrier concentration from Equation 3.8, and by using the

conductivity of the material given by σ = nqµ.

The Hall effect measurements can provide information on a number of material properties

such as carrier mobility, carrier concentration, resistivity, magnetoresistance, and the type

of majority carrier. The hall effect measurements are commonly done in two distinct config-

urations, one in the Hall bar geometry and the other in the van der Pauw geometries. Each

configuration has its own advantages and disadvantages, for example, the van der Pauw

method can be applied to a sample of arbitrary geometry but it is more prone to errors due

to the finite size of the contacts than Hall bars. In this thesis, we will only discuss Hall bar

geometry as it was most frequently used. Figure 3.9(a) shows the schematic representation of

a Hall bar geometry. Placing the contacts at the ends of the contact arm reduces the contact
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Figure 3.9: Schematic representation of (a) a Hall bar, highlighting the dimensions, the current
injection, the Hall voltage, and the longitudinal voltage, and (b) a common measurement
outcome, where the resistance is plotted as a function of the applied magnetic field.

size error, which is significantly high for just a rectangular bar. The length of the Hall bar

should at least be three times longer than the width (L/w ≥ 3), if the length is shorter then

the end contacts could short out the Hall voltage [90, 164, 86]. The length of the contact arm

should be approximately the same as the dimension of the contact (p ≈ c). And the width of

the bar should be at least 3 times larger than the arm contact (w ≥ 3c). These are some of

the geometrical considerations for the Hall bar geometry. In a typical Hall effect measure-

ment, the longitudinal resistance (RX X ) and the transverse resistance (RX Y ) are measured as a

function of the applied magnetic field. Figure 3.9(b) shows the schematics of the expected

measurement outcome, where the slope of the RX Y against the magnetic field plot gives RH .

Figure 3.10: Schematic representation of the temperature dependence of (a) carrier con-
centration, (b) mobility and the contribution from different scattering mechanisms, and (c)
conductivity, in a semiconductor adapted from [90].

Apart from room temperature Hall effect measurements, more frequently temperature de-

pendent measurements are also done in order to understand the material better. Figure

3.10(a) shows the variation in the carrier concentration as a function of temperature, and the

dependence can be expressed as n ∝ e−Ea /kB T , where n is the carrier concentration, kB is
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the Boltzmann constant, T is the temperature, and Ea is the activation energy. The bandgap

(Eg ) is related to the activation energy in the case of thermally excited carriers as Eg = 2Ea ,

however, this can vary if the semiconductor has dopants, impurities, or trap states. It can

be seen from Figure 3.10(a) the carrier concentration decreases with a decrease in temper-

ature and there are three distinct temperature regimes. At high temperatures, the carrier

concentration increases due to excitation across bandgap and this regime is dominated by

the intrinsic carriers. At moderate temperatures, the carrier concentration is almost constant

due to the fully ionized dopants and this regime is dominated by extrinsic carriers. At low

temperatures, the carrier concentration decreases due to the freeze-out of the dopants. Figure

3.10(b) shows the variation in mobility as a function of temperature, all the different scattering

processes make the temperature dependence of mobility quite complicated. In non-polar

semiconductors like Ge and Si, the most dominant process at low temperatures is the ionized

impurity scattering (µ ∝ T3/2). And, at high temperatures, the most dominant process is

deformation potential scattering (µ∝ T−3/2). Whereas, in polar semiconductors like GaAs, the

most dominant process at high temperatures is polar optical scattering. Figure 3.10(c) shows

the variation in the conductivity of the semiconductor as a function of temperature. As the

carrier concentration increases with temperature and the mobility decreases, the resistivity

has a minimum or conductivity has a maximum [90]. Moreover, at high temperatures, when

the intrinsic conduction starts, the resistance decreases significantly due to the increase in

carrier concentration.

The setup used in this thesis for Hall effect and temperature-dependent measurements is a

physical property measurement system (PPMS® DynaCoolTM) by Quantum Design. The

temperature range in which the system can be used is from 1.8 – 400 K. The magnetic field can

be varied up to 14 T. It contains a built-in cryopump for high vacuum application (<10−4 Torr).

3.4.3 Conductive Atomic Force Microscopy

When dealing with nanostructured samples it is often inconvenient to contact the sample

by evaporating or sputtering metal contact pads. To directly probe the electric behaviour

of the sample we use conductive atomic force microscopy (C-AFM). It is an AFM technique

that utilizes a conductive cantilever and tip for measuring the current flowing between the

tip/sample nanojunction while simultaneously measuring the topography [143, 173, 308].

Apart from the conductive tip, it also requires a voltage source for the application of a potential

difference between the tip and the sample holder and a preamplifier for the conversion of

the analogue current into digital voltage. A Faraday cage can also be present to isolate the

sample from external electrical interference. The sample is placed on the sample holder using

conductive tape or paste (such as silver paste). When a potential difference is applied between

the sample and the tip an electrical field is created that causes a net current flow from the tip

to the sample or vice versa. This allows precise measurement of the local electrical properties

of the sample at high resolution. CAFM is most frequently used for current maps and current-

voltage measurements. Current maps can be obtained by scanning the tip along the sample
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surface. Current maps provide insight into local inhomogeneity in electrical conductivity.

The difference between the current map and the topography of the surface could occur due

to the reduced effective electron emission area in comparison to the physical contact area.

Alternatively, current-voltage (I-V) curves can be obtained by positioning the tip at a given

point on the sample and sweeping the voltage while recording the corresponding current

values. It should be noted the contact between the sample and the tip should ideally be ohmic,

otherwise, the tip/sample barrier should be considered.

The C-AFM setup used in this thesis is Cypher S AFM Microscope from Oxford Instruments.

It has an ARC2 (Asylum Research Controller 2), which contains the power supplies and elec-

tronics required for controlling the scan and acquiring the image data. Igor pro software

environment is utilized as the interface between the hardware and the user, it is capable of

scientific graphing, image processing, and macro programming. A PtSi-FM tip was used for

the I-V measurements, the platinum silicide coating is highly conductive and provides a good

wear-out behaviour. And, a PtSi-CONT is used for the current maps. This tip has a much lower

force constant (∼0.2 N/m) and resonance frequency (∼13 kHz).
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4 van der Waals epitaxy of earth-
abundant Zn3P2 on graphene for
photovoltaics

4.1 Accompanying information

This work has been published in peer-reviewed journal Crystal Growth & Design 2020, 20,

(6), 3816-3825. Its digital object identifier is 10.1021/acs.cgd.0c00125. The list of authors is as

follows: Rajrupa Paul, Nicolas Humblot, Simon Escobar Steinvall, Elias Zsolt Stutz, Shreyas

Sanjay Joglekar, Jean-Baptiste Leran, Mahdi Zamani, Cyril Cayron, Roland Logé, Andres

Granados del Aguila, Qihua Xiong, and Anna Fontcuberta i Morral. My contribution includes

growth of Zn3P2, characterization of the material, and data analysis. I contributed significantly

to the writing of the manuscript.

4.2 Abstract

Earth-abundant semiconducting materials are a potential solution for large-scale deployment

of solar cells at a lower cost. Zinc phosphide (Zn3P2) is one such earth-abundant material

with optoelectronic properties suitable for photovoltaics. Herein, we report the van der Waals

epitaxy of tetragonal Zn3P2 (α-Zn3P2) on graphene using molecular beam epitaxy. The growth

on graphene progresses by the formation of Zn3P2 triangular flakes, which merge to form

a thin film with a strong (101) crystallographic texture. Photoluminescence from the Zn3P2

thin films is consistent with previously reported Zn3P2. This work demonstrates that the need

for a lattice-matched substrate can be circumvented by the use of graphene as a substrate.

Moreover, the synthesis of high-quality Zn3P2 flakes and films on graphene brings new material

choices for low-cost photovoltaic applications.
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4.3 Introduction

The global energy consumption continues to severely impact the world’s climatic conditions,

and this necessitates a firm shift toward clean and sustainable sources of energy. Earth-

abundant semiconducting materials could be beneficial for the purpose of low-cost, large-

scale deployment of photovoltaics [282, 259]. Zn3P2 is an Earth-abundant semiconductor with

promising optoelectronic properties [177, 19, 70]. Zn3P2 has a high absorption coefficient

(>104 cm−1) [72] in the visible part of the electromagnetic spectrum and long minority-carrier

diffusion length (>5 µm) [301]. The reported band gap of Zn3P2 lies close to the theoretical

maxima of the Shockley-Queisser limit [250], making it a suitable candidate for photovoltaics

[207, 125]. The highest solar energy conversion efficiency (∼6%) was reported by Bhushan et

al. for Mg Zn3P2 based solar cells [21].

Since 1981, there has been no report on the improvement of efficiency for Zn3P2-based

solar cells. One of the major issues associated with Zn3P2 is its large lattice parameter (a

= 8.089 Å, c = 11.45 Å) [211], which makes high-quality epitaxial growth suitable for solar

cell application challenging [25]. Furthermore, the choice of substrate is limited due to the

large linear thermal expansion coefficient (1.4 × 10−5 K−1) [162] of Zn3P2 [48]. Cracks were

observed on Zn3P2 thin films grown at high temperatures (≥600 °C) on a large number of

commercially available substrates [48]. Additionally, the formation energies of zinc vacancies

and phosphorus interstitials are very low in Zn3P2, which makes the material intrinsically

p-type [305, 61]. The intrinsic p-type nature of Zn3P2 in principle rules out the formation

of low-resistive homojunction solar cells. And most of the Zn3P2 solar cells are based on

heterojunction or Schottky junction [21, 123]. In 1984, Atsushi Koma introduced the concept

of van der Waals epitaxy (vdWE). He demonstrated the growth of an epitaxial thin film on a

substrate with over 20% lattice mismatch by avoiding the formation of covalent bonds at the

interface [130]. The advantage of vdWE is the use of substrates with no dangling bonds, such

as two-dimensional materials (e.g., graphene) or bulk layered materials (e.g., mica) [302, 285].

Because of the absences of dangling bonds at the surface of a van der Waals substrate, the

growth of the overlayer proceeds without the formation of covalent bonds at the interface. van

der Waals bonds originate from the dipolar interactions between atoms. Compared to covalent

bonds, the van der Waals bonds are much weaker, and this gives an unstrained epitaxial

overlayer growth with a defect-free interface on a highly lattice-mismatched substrate. Hence,

vdWE could be a suitable method to overcome the limitation of lattice-matched substrates

for the growth of high-quality epitaxial material. Graphene is widely used for vdWE due to

its two-dimensional nature as well as its high electrical and thermal conductivities [197, 14],

optically transparency [188], and high mechanical strength and flexibility [145, 181, 50]. The

recent advances in the synthesis technique of high-quality graphene have made it possible to

fabricate large-area polycrystalline graphene substrates at a lower cost [12, 108]. Graphene

can function as a low-cost, transparent, and flexible electrode, which can be exploited for the

fabrication of Zn3P2-graphene junction-based solar cells. Vazquez-Mena et al. demonstrated

a field-effect solar cell using graphene that formed a tunable junction barrier with Zn3P2 [279].
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This opens an avenue for the integration of functional material on graphene to create a new

hybrid material system. Bosco et al. [25] demonstrated the growth of Zn3P2 on GaAs substrates

by congruently sublimating Zn3P2. We believe that the use of congruent sublimation can come

at the expense of controlling the stoichiometry of the material in a precise manner. As an

example, Suda et al. reported the growth of n-type Zn3P2 by using elemental source MBE [262].

They attributed the n-type behavior of Zn3P2 on the zinc-rich growth conditions. Additionally,

the use of MBE has some advantages over other growth techniques commonly used for Zn3P2

growth [78, 106]. MBE uses high purity source materials and an ultrahigh vacuum growth

environment, which ensures low impurity incorporation. In this work, we demonstrate the

growth of high-quality Zn3P2 on graphene with vdWE using MBE, as demonstrated by the

structural and optical properties. The optimum growth parameters were established by varying

the temperature, pressure, and flux ratio in our system. We present the growth mechanism,

based on the observation of how the film evolves with growth time. This work shows a direct

and efficient way to integrate Zn3P2 on graphene.

4.4 Experimental Details

4.4.1 Growth of Zn3P2

The Zn3P2 thin films were grown using Veeco GENxplor MBE on the commercially purchased

graphene substrate. The graphene substrates were purchased from Graphenea, and each

substrate consists of a monolayer of graphene transferred onto a 4 inch SiO2(300 nm)/Si(100)

wafer. The MBE system utilizes separate sources of zinc and phosphorus (MBE Komponenten

GaP-based P2 source). Before each growth, the graphene substrates were degassed at 500 °C

for 1 h in the prep-module. The Zn3P2 thin films were grown in the growth-module of the MBE

system, at a 150 °C manipulator temperature for 300 min using a Zn BEP of 5.20 × 10−7 Torr

and a P2 BEP of 7.50 × 10−7 Torr.

4.4.2 Characterization

The spectrometer used for PL is a LabRam HR Evolution HORIBA Raman spectrometer. A

source of monochromatic light (laser) of a specific wavelength (532 or 633 nm) is used to

investigate the sample. The beam is directed onto the sample using a set of mirrors allowing

a controllable alignment. The use of a bandpass filter on the laser’s path prevents undesir-

able laser lines. Neutral density (ND) filters are arranged to tune the laser intensity. After

passing through a beam splitter and a dichroic mirror, the laser is focused on the sample. PL

spectroscopy is implemented in back reflection geometry, consisting of a collecting signal

from the same spot on which the exciting radiation is focused by the lens. The focusing lens

has a large numerical aperture in order to collect as much luminescent or scattered light as

possible from a large solid angle. The light is then collimated and passes through a notch

filter to subtract the overwhelming laser light. It is then focused onto the entrance slit of a
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spectral device. Light is dispersed into a spectrum by mean of a monochromator. For PL, the

diffraction grating holds 300 grooves per millimeter (gr/mm). A charge-coupled device (CDD)

detector finally collects the signal. The Raman spectroscopy measurements were done in a

commercial Renishaw inVia system at room temperature. A 532 nm laser was used at 1 mW

incident power. The backscattered spectrum was collected after an exposure time of 25 s,

averaged over 10 accumulations. A diffraction grating of 1800 lines per millimeter (l/mm) was

used. The laser spot size used in the measurement was ∼1 µm. the spectral resolution of the

setup is 1.5 cm−1. The XRD measurement was done using a Panalytical Empyrean XRD setup,

which uses a Cu (K-α) X-ray source of 1.54 Å. The EBSD maps were acquired with a Nordlys 2

EBSD camera coupled to the Aztec (Oxford Instruments) acquisition software on an XLF30

(FEI) scanning electron microscope working at 25 kV, with a step size of 40 nm, in “refined

accuracy” mode to avoid pseudosymmetry miss-indexation issues. The AFM measurements

were done using a commercial Bruker Dimension FastScan system. A silicon tip mounted

on a silicon nitride cantilever was used for the measurements. The scan of each sample was

carried out for an area ranging from 1 × 1 to 5 × 5 µm2 with a frequency range of 1-1.5 Hz. The

images were analyzed using Nanoscope software (version 1.7). The material was characterized

using Zeiss Merlin FE-SEM and FEI Talos for conventional TEM operating at 200 kV. The TEM

diffraction pattern was indexed using JEMS software, and Gatan software was used to calculate

the distance between planes.

4.5 Results and Discussion

We start by reporting the influence of growth parameters on the morphology and the com-

position of Zn3P2 grown on graphene. The variation of the V/II ratio could potentially lead

to the formation of different compounds, such as ZnP2, Zn3P2, and even intermediate amor-

phous compounds (a ZnxPy) [84, 25]. The reported V/II ratio in this work corresponds to the

ratio between the values of Zn and P2 beam equivalent pressure (BEP), and the temperatures

correspond to the manipulator temperature. Electron microscopy characterization of the

initial stages of growth provides information on the morphology of the grown material. Figure

4.1(a-f) displays the scanning electron microscopy (SEM) images of Zn3P2 samples obtained

at different temperatures and V/II ratios. The effect of the V/II ratio at 150 °C is shown in the

SEM micrographs of Figure 4.1(a-c). For V/II ≥ 2.30, the morphology of the grown material

is spherical with no distinct crystal facets. When the V/II ratio is maintained between 1.30

and 1.70, we observe a change in morphology. Crystalline triangular flakes are formed on

graphene. These triangular flakes are not all randomly oriented on graphene, and some of

them maintain a similar orientation as can be observed from the SEM images. When the V/II

ratio is decreased to a value below 0.83, the triangular flakes change to a dense columnar-like

growth. The influence of temperature on morphology at a given V/II ratio is shown in the SEM

images of Figure 4.1(d-f). At temperatures ≤100 °C, we observe irregularly shaped clusters

with metal-like aggregates on top, as shown in Figure 4.1(d). As the temperature is increased

to 150 °C, crystalline triangular flakes start to appear. By further increasing the temperature to
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180 °C, there is a substantial decrease in the growth rate, and the deposition is sparse. However,

the triangular morphology is preserved at 180 °C. We attribute the drastic reduction in the

growth rate at higher temperatures to the increased adatom desorption.

Figure 4.1: (a-f) Representative scanning electron micrographs of growths of Zn3P2 on
graphene as a function of temperature and V/II ratio; (g) room temperature Raman spec-
tra of samples shown in a-c, indicating that for V/II = 1.55 crystalline Zn3P2 is formed, while for
lower V//II ratios crystalline zinc is found in addition, and for higher V/II ratios the material is
amorphous.

Figure 4.1(g) presents the room temperature Raman spectra of the samples grown at 150 °C at

three different V/II ratios. At a V/II ratio of 2.30, the Raman spectrum is composed of broad

peaks. This is consistent with the amorphous nature of the material, which is evident from

its morphology (Figure 4.1(a)). The Raman peaks become sharper for lower V/II ratios. The

bands are located around the spectral zone where one would expect for α-ZnP2 [201, 176].

Both for V/II = 1.55 and 0.83, we observe a group of peaks in the range between 50 cm−1 and

380 cm−1, with no first-order Raman active phonons present at wavenumbers higher than 380

cm−1, similar to the reports from Pangilinan et al. for α-Zn3P2 [201]. This demonstrates the

formation of crystalline α-Zn3P2 on graphene. For V/II = 0.83, we detect an additional peak at

71 cm−1, which is related to the presence of crystalline Zn. The presence of Zn could explain

the modification in the morphology of the sample, which could be due to the formation of

Zn aggregates [194] (Figure 4.1(c)). The intensity of the Raman peak at 71 cm−1 increases

when the V/II ratio is further lowered (see Supporting Information (SI) Section A, Figure A.1).

The presence of Zn has been further confirmed by X-ray diffraction (XRD) measurements, as

shown in Figure A.1. We find peaks corresponding to the (002) and (101) planes of Zn, along

with the XRD peaks from crystalline α-Zn3P2. At the given growth temperature, Zn has a low

sticking coefficient on graphene [189, 98, 25]. However, the formation of Zn aggregates could

imply that first a Zn3P2 layer is formed on graphene, which subsequently leads to the change

in adsorption behavior of Zn. This explains the presence of both Zn and α-Zn3P2 peaks in the

Raman spectra and the XRD measurement. It is further corroborated by the SEM image shown

in the inset of Figure A.2, and a clear Zn3P2 layer is present on top of which Zn aggregates are

formed.
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The growth window for crystalline α-Zn3P2 on graphene is relatively narrow, unlike other

semiconducting materials grown on graphene, which have robust growth conditions [2, 184].

The optimum temperature range is between 150 and 170 °C, with an optimum V/II ratio

between 1.3 and 1.7. An additional dependence on the total flux was also observed (see SI,

Section A, Figure A.3(a-c)). At the optimal temperature and V/II ratio, an increase in total

flux leads to an expected increase in the overall growth rate; this is due to a higher surface

adatom density, which causes an increase in nucleation density. Thus, the growth of Zn3P2 on

graphene is susceptible to temperature, V/II, and total flux. All the studies reported hereafter

are done on the samples grown at 150 °C with a V/II ratio of 1.55. The P2 BEP was maintained

at 7.50 × 10−7 Torr unless specified otherwise.

Figure 4.2(a) shows a representative top-view SEM image of the commercial monolayer

graphene on SiO2/Si wafer used in this work. The contrast in the image is related to the

presence of grain boundaries, multilayers, wrinkles, and folds on graphene [296, 15, 148,

307]. Such features are common for graphene grown by CVD on a polycrystalline copper

substrate [148, 172]. The defects on graphene play a critical role in adsorption, and nucleation

of adatoms as the sticking coefficient of adatoms is significantly different at these sites [15, 95].

The nucleation probability of a new layer is higher at the defect sites than on pristine graphene

due to their higher chemical reactivity [15, 315]. The growth on pristine graphene is highly

suppressed due to the lack of dangling bonds [189]. Figure 4.2(b-c) elucidates the growth

evolution of Zn3P2 on graphene substrate with time. As the growth progresses, the Zn3P2

flakes accumulate at the grain boundaries and other defect sites, which leads to the formation

of compact islands with an irregular shape at these sites. At this stage of growth, the island

formation tends to be sparse away from these defect sites, preserving the triangular shape

of the flakes. The growth at the folds and grain boundaries on graphene traces their linear

morphology [307]. In the case of multilayer graphene, the growth traces their patch-like mor-

phology [318, 119, 39]. The defect sites have strikingly different growth behavior, as precursors

exhibit a higher sticking coefficient at these sites [307, 289]. Overall, we find that the growth

of Zn3P2 on commercial graphene is highly impacted by the defects, creating distinct growth

regimes simultaneously on the same substrate. Figure 4.2(d) depicts our understanding of the

growth mechanism of Zn3P2 on commercial graphene. The growth starts with the formation of

small triangular flakes of Zn3P2 all over the substrate. With time, the nucleation density along

the grain boundaries and other defect sites increases, which causes a preferential deposition of

Zn3P2. Eventually, the triangular flakes grow in dimension to form several micron large Zn3P2

islands. Finally, all Zn3P2 islands merge with one another, forming a compact continuous film

with a coarse surface.

In order to determine the growth rate of Zn3P2 film, we performed a growth time series. SEM

and atomic force microscopy (AFM) were used to study the vertical and lateral dimensions of

the Zn3P2 triangular flakes as a function of time. Figure 4.2(e-g) corresponds to representative

AFM images as a function of the growth time. In the early stages of growth, when the surface

coverage is relatively low, the triangular flakes are well dispersed on the substrate, as illustrated

in Figure 4.2(e). Some of the flakes are seen to merge mostly along the grain boundaries of
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Figure 4.2: (a-c) SEM images of (a) commercial graphene, (b) Zn3P2 triangular flakes grown
on graphene after growing for 20 min, and (c) Zn3P2 triangular flakes grown on graphene
after growing for 90 min; (d) schematic representation of the growth evolution of Zn3P2 on
graphene; (e-f) AFM images of Zn3P2 grown on graphene for (e) 80 min and (f) 150 min; (g)
highlights two different morphologies of Zn3P2 grown on graphene; (h-i) cross-sectional SEM
images of Zn3P2 grown on graphene for (h) 240 min and (i) 300 min; (j) plot showing the
time evolution of the surface coverage (red triangular symbol) and vertical dimensions (blue
circular symbol) of Zn3P2 flakes on graphene; the solid lines in the graph is a guide to the eye.

graphene. The average height of these flakes after 80 min of growth is 60 nm. The lateral

dimension has a significant size distribution. For a longer duration of growth, the flakes start

to lose its distinct triangular shape as they merge with the other neighboring flakes. The

average height of the Zn3P2 flakes after 150 min growth is 130 nm. Figure 4.2(g) illustrates
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the morphology of the top facet of the flake at two different growth sites. The Zn3P2 island

deposited along the fold in graphene has an irregular base with a pyramid-like top facet

(highlighted with a red line). The irregular base of the growing island is due to the merging of

two or more triangular flakes in the initial phase of the growth. The pyramid-like facets are

mainly observed on top of Zn3P2 islands and are denser at the folds, wrinkles, and defect sites.

This type of growth behavior could be due to localized growth front pinning, which occurs

at the contact point between two or more growing islands [158, 94] or could be attributed to

interfacial dislocations [94, 74, 111]. In contrast, Zn3P2 growth away from the fold exhibits a

triangular shape with a smooth top surface (highlighted with a green line). This illustrates the

difference in the morphology of Zn3P2 islands based on their nucleation site.

For longer growth times, the height of the layers was determined by cross-section SEM, as

shown in Figure 4.2(h-i). For a growth duration of 240 min, Zn3P2 islands were obtained with

an average thickness of 300 nm (see Figure 4.2(h)). Finally, for a growth duration of 300 min

and longer, the adjoining Zn3P2 islands merge to form a continuous film. The thickness of the

film obtained for 300 min of growth time is 450 nm. The film surface is highly faceted, as seen

in Figure 4.2(i).

The time evolution of surface coverage and vertical dimensions of the Zn3P2 flakes and islands

is plotted in Figure 4.2(j). The error bars in the graph represent the broad size distribution

of Zn3P2 flakes on graphene. We observe a dominant lateral growth at the initial stages of

growth, which slows down over time, whereas the vertical growth rate increases significantly

with time. For the first 20 min of growth, small triangular Zn3P2 flakes were observed with an

average lateral dimension of 95 nm and an average height of 35 nm. After further 60 min of

growth, the average lateral dimension changes to 200 nm, and the average vertical dimension

changes to 60 nm. This indicates that, in the initial stages of growth when the surface coverage

is low, the Zn3P2 flakes grow primarily laterally. This is due to the adatom kinetics: the adatom

supply to the growing flakes is mainly by adsorption onto the graphene substrate followed by

surface diffusion. As the migration energy barrier is low on graphene, the adatom can diffuse

over a longer distance before being incorporated into an energetically favorable growing site

[189, 98]. After 150 min of total growth time, the average lateral dimension is 530 nm, and

the average vertical dimension is 130 nm. After an additional 60 min of growth, the average

lateral dimension changes to 570 nm, and the vertical dimension changes to 235 nm. It is

clear that at this stage of growth, the vertical growth rate is much higher in comparison to the

lateral growth rate. Indeed, at a surface coverage of approximately 80%, a significant number

of Zn3P2 islands merge or are closely spaced. Hence, for growth durations longer than 150

min, it is difficult to measure the lateral dimensions of individual Zn3P2 flakes. For longer

growth durations, we compare the surface coverage with the vertical dimension of the islands.

An 80% surface coverage is achieved in first 150 min; however, a further 150 min of growth is

required to achieve 100% surface coverage. The significant slowdown of the lateral growth rate

and the increase in vertical growth rate are primarily due to two reasons. First, at a growth

stage with high surface coverage, most of the adatoms are incorporated directly onto the Zn3P2

islands, which have a higher absorption coefficient than graphene. And only a small fraction
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of material is deposited into the trenches between these growing islands, thus increasing the

vertical growth rate and slowing down the surface coverage. Second, an important factor

that aids the vertical growth rate during the epitaxial growth of three-dimensional materials

is the so-called Erhlich-Schwoebel (ES) barrier [192, 214]. The ES barrier hinders the step-

down diffusion of adatoms landing on a terrace [214]. The presence of ES barrier causes an

accumulation of atoms on the top-facet of an island, which favors the vertical growth. One

should note that there is a significant deviation in the growth rate at the grain boundaries,

multilayer graphene, and other defect sites.

We believe the growth on graphene could be improved by suppressing nucleation density at

the defect sites. This could be achieved by increasing the growth temperature or by decreasing

the growth pressure. However, as mentioned before, the growth rate drops significantly by

increasing the temperature from 150 to 180 °C. A similar effect is observed when the pressure

is decreased. It is mainly because Zn and P have a very low sticking coefficient on graphene at

elevated temperatures [189]. Alternatively, postgrowth annealing could be used to improve

the grown film [247, 237]. However, it was reported by Bosco et al. that the desorption of Zn

occurs at a temperature above 250 °C [25]. This limits the temperature range for annealing and

hence compromises the quality of the film. In this work, we mainly focus on a one-step growth

method, where a fixed temperature, V/II value, and total flux were used throughout the growth.

We also attempted a two-step growth method [2]. Here, we induced first the nucleation at 150

°C and followed by a high-temperature growth step (190 °C). One should note, for the two-step

growth, a negligible change in the Zn3P2 thin film was observed. And even after 300 min of

growth, we did not obtain full coverage. Pyramidal top facets were observed for both one-step

growth and two-step growth methods.

The X-ray diffraction (XRD) measurement done on the grown Zn3P2 film is shown in Figure

4.3(a). Four main peaks resolved at 13.54°, 27.10°, 41.09°, and 55.80° correspond to the re-

flections 101, 202, 303, and 404, respectively in the tetragonal phase of Zn3P2. The indexing

was done using the reference ICDD file no. 01-073-4212 [312]. Additionally, a low-intensity

peak at 33.11° was observed, which is attributed to the substrate. The lattice parameters were

calculated from profile fitting of the XRD peaks, and a = 8.087 Å and c = 11.43 Å were obtained,

which gives a c/a = 1.41. This is very close to the reported bulk lattice parameter of Zn3P2

[312, 313]. The symmetrical θ-2θ scan gives information on the planes that are parallel to the

substrate surface. Only the peaks associated with the {101} family of planes are detected. This

indicates that the Zn3P2 film has a preferential orientation parallel to the graphene surface.

The film is thus highly textured and composed solely of the tetragonal Zn3P2 phase. These re-

sults were also confirmed by electron backscattered diffraction (EBSD) measurements, which

showed the same preferentially orientation with respect to the graphene substrate (see SI

Section A, Figure A.4). EBSD measurements were performed on samples that were grown for a

shorter period, with less than 60% surface coverage, whereas the XRD measurements were

done on samples grown for a long period, with full surface coverage. Both samples gave the

same directional dependence, indicating that the Zn3P2 islands maintain the same growth

direction over time. Given the tetragonal crystal structure of Zn3P2, the 3-fold symmetry of the
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triangular flake can only be the result of a pseudosymmetry. Indeed, the Zn3P2 crystal struc-

ture is often defined as a pseudocubic crystal system [313], with c/a exactly equal to Sqrt(2).

When the tetragonal crystal system is transformed into the pseudocubic crystal system, the

(101) plane is transformed to the (111) plane, which explains the morphology of the flakes.

For a cubic system, the [111] 3-fold growth direction is the most common on a hexagonal

(0001) substrate [185, 102, 240]. The van der Waals interaction between the grown Zn3P2 and

graphene is confirmed by its crystallographic texture; as a (101) fiber texture is present, it

indicates there is a complete degree of freedom on the rotation angle around the normal

of the (101) plane of Zn3P2, whereas a classical epitaxial relation would have resulted in a

strict coherent orientation relationship of the grown material with the substrate. The Zn3P2

structure was further investigated using transmission electron microscopy (TEM), shown in

Figure 4.3(b-c). For this, Zn3P2 flakes were transferred to a TEM grid by pressing the grid on

the sample. A small force is required to remove them, due to the weak van der Waals forces

attaching the flakes on the graphene. The flake exhibits a 3 nm thick native amorphous oxide

at the surface. This native oxide is formed upon exposure to atmospheric conditions. Figure

4.3(d) shows a representative HRTEM micrograph. It reveals a defect-free single crystalline

Zn3P2 triangular flake. From these measurements, we deduced the spacing between the (002)

planes. We obtain 5.68 Å, which corresponds to c = 11.36 Å, which is in close agreement with

the XRD results. The electron diffraction (Figure 4.3(e)) further confirms the single-crystalline

nature of the Zn3P2 triangular flake. The diffraction pattern is in good agreement with the

[210] zone axis of α-Zn3P2.

Figure 4.3: (a) XRD pattern of a Zn3P2 film showing the tetragonal structure and a preferential
orientation. Only 101 family of planes are observed in the pattern; (b-c) Bright-field TEM
images of the triangular Zn3P2 flake grown on graphene; (d) HRTEM image of the triangular
Zn3P2 flake, showing a d-spacing of 0.568 nm; (e) electron diffraction pattern obtained from
the Zn3P2 flake along the [210] zone axis.

Katsube et al. had previously demonstrated the fabrication of (101) oriented Zn3P2 film by

phosphidation of Zn film [113]. They compared the electrical resistivity of the (101) oriented
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Zn3P2 film with a differently oriented Zn3P2 film, and they observed the lowest resistivity for

the (101) orientation. The vdWE of Zn3P2 on graphene is a phosphidation-free method to

obtain the low resistive (101) orientated Zn3P2 film, which is beneficial for solar cell device

fabrication.

The optical properties of Zn3P2 are of great interest, given the potential application in pho-

tovoltaics [21]. There has been a long-standing controversy regarding the fundamental gap

of the material [207, 206]. Recently, a study done by Kimball et al. showed that there is a fun-

damental indirect bandgap at 1.38 eV and a direct bandgap at 1.50 eV [125]. The presence of

both indirect and direct bandgap in close proximity is deemed beneficial in solar cell material,

as the indirect bandgap could result in longer carrier lifetimes and diffusion lengths, whereas

the close-lying direct bandgap could provide high photogeneration efficiencies. In order to

understand the optical properties of Zn3P2 grown on graphene, we measured the PL response

as a function of temperature and excitation power, as shown in Figure 4.4(a-h). In this study,

we compared the PL response of two samples with different growth durations. Sample A was

grown for 100 min (see Figure 4.4(a) inset), and sample B was grown for 250 min (see Figure

4.4(b) inset).

Figure 4.4: (a-b) PL spectra at room temperature excited with 633 nm illumination with
different powers (a) of sample A, which is Zn3P2 grown on graphene for 100 min; inset shows
the SEM image of sample A, (b) of sample B, which is Zn3P2 grown on graphene for 250 min;
inset shows the SEM image of sample B; (c-d) PL spectra at temperatures from 300 to 200 K
excited with 633 nm illumination at 621 µW of (c) sample A, and (d) sample B; (e-f) PL spectra
done by decreasing the temperature below 200 K excited with 532 nm illumination (e) at 946
µW on sample A, and (f) at 92 µW on sample B; (g-h) PL spectra at cryogenic temperature
using different powers (g) on sample A at 10 K excited with 633 nm illumination, and (h) on
sample B at 5.8 K excited with 532 nm illumination.
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Figure 4.4(a) demonstrates the room temperature PL response of sample A. At room tempera-

ture, we observe a broad PL peak centered at 1.52 eV and a lower energy shoulder at 1.42 eV.

The peak positions does not change with the increase in laser power. The relation between the

PL intensity and laser power is linear for the two peaks (see Figure A.5(a)), thus indicating a

high density of states [239]. Figure 4.4(b) shows the room temperature PL response for sample

B, and we observe a broad PL peak at 1.45 eV, which undergoes a slight redshift with increasing

laser power. The PL emission could be a combination of peaks that behave differently upon

increasing the laser power, which could potentially lead to the observed redshift.

Figure 4.4(c) depicts the PL spectra of sample A as a function of temperature. When the

temperature is decreased from 300 to 200 K, the peak at 1.52 eV is quenched, whereas the

shoulder peak at 1.42 eV becomes prominent. This behavior is attributed to the fact that at

room temperature the thermal energy allows high-energy transitions. At lower temperatures,

the high-energy transition is quenched, and the low-energy transition is favored [266]. The PL

response is consistent with the study done by Kimball et al., where they observed quenching of

the peak at 1.5 eV around 200 K [125]. We additionally measured the power dependence PL of

sample A at 200 K (see Figure A.5(b)); the peak position does not change with increasing laser

power, and the peak has a tail in the high-energy side. Such power dependence and line shape

of PL peak are indicative of band-to-band recombinations [80]. Figure 4.4(d) represents the PL

spectra of sample B as a function of temperature. When the temperature is decreased from

300 to 260 K, the peak at 1.45 eV is blueshifted to 1.46 eV. However, an additional peak at 1.53

eV is observed when the temperature is decreased to 200 K, and the main peak is red-shifted

to 1.42 eV. This behavior is strikingly different from PL emission observed by Kimball et al.,

where they observed two distinct peaks only at temperatures above 250 K, and the peak at 1.5

eV was more prominent at higher temperatures [125].

Figure 4.4(e-f) shows the PL response as a function of temperature (below 200 K) for samples

A and B, respectively. We observe a clear redshift when the temperature is decreased from 150

to 12.1 K for sample A, as shown in Figure 4.4(e). At 150 K, the peak is measured at 1.40 eV,

which redshifts to 1.35 eV at 12.1 K. The redshift of the peak at lower temperatures has been

previously reported by different groups [125, 28, 138]. The positive temperature coefficient

of this peak has been previously speculated to be associated with an indirect transition to

higher-lying energy states [138]. For sample B, we observed a similar redshift of the peak when

the temperature is decreased from 200 to 50 K, as shown in Figure 4.4(f). The peak at 1.42 eV at

200 K redshifts to 1.38 eV at 50 K, whereas the peak at 1.52 eV undergoes a rapid quenching at

low temperatures. Additionally, a second smaller peak at 1.26 eV becomes prominent at below

150 K (see Figure 4.4(f)). On further decreasing the temperature from 50 to 6.3 K, there is an

observable blueshift of the main peak at 1.38-1.40 eV, which is similar to the work done by

Briones et al., where below 40 K, major emission bands with negative temperature coefficients

emerge and are responsible for the intense PL signal [28]. The sample grown for shorter growth

duration (sample A) lacks the low-temperature blue shift behavior reported by Briones et al.

[28], but rather has a similar low-temperature response reported by Kimball et al. [125].
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Figure 4.4(g-h) shows the cryogenic PL response as a function of laser power for the samples A

and B, respectively. For both the samples at cryogenic temperatures, the PL signal exhibited a

significant blueshift as the laser excitation intensity was increased, and this behavior has been

previously reported by Briones et al. [28]. The peak at 1.26 eV present in sample B remains

constant, and the intensity of the peaks saturates at a higher laser power (see Figure A.5(c));

the nonshifting behavior of the peak at 1.26 eV and its eventual saturation indicate it is a defect

related transition [239].

Given the similarity between the PL study reported in the literature and sample A, we as-

sign the room temperature PL peaks at 1.52 and 1.42 eV to direct and indirect transitions,

respectively. Even though the low-temperature behavior of sample B is similar to the one

reported by Briones et al. [28], the room temperature PL response is significantly different.

The dissimilarity between the room temperature PL response of sample A and B is attributed

to the presence of defects in sample B, which is evident by the presence of the defect peak at

lower temperatures in sample B. Indeed, for a higher growth time and surface coverage, the

probability of defect formation is higher in sample B.

4.6 Conclusions

In summary, we demonstrated the growth of high-quality crystalline Zn3P2 on graphene via

vdWE using MBE. The growth on graphene is highly sensitive to the growth conditions, and the

defects on graphene play an integral role in nucleation and growth. The growth mechanism

was outlined by studying the temporal evolution of the Zn3P2 flakes. In the initial phase of the

growth, lateral growth is more pronounced. In the later stages of growth, with the increase

in areal coverage, there is a switch to dominant vertical growth. We attribute this change to

the difference in adsorption and diffusion characteristics of the adatoms on graphene and

on well-formed Zn3P2 layer (at higher areal coverage). XRD and EBSD revealed a preferential

growth direction of Zn3P2 on graphene. The {101} family of planes were oriented parallel to the

surface of graphene, and the preferential orientation was maintained irrespective of growth

duration. The PL response of Zn3P2 on graphene as a function of temperature and power is

consistent with the optical behavior reported in the literature for Zn3P2 grown using different

techniques. We compared the PL response of two samples grown for different durations.

The difference in the PL behavior between the two samples is attributed to the presence

of defects in the sample grown for longer duration. This work demonstrates an efficient

integration of an earth-abundant material on graphene, which could be used to fabricate

earth-abundant semiconductors and graphene-based solar cells. Future work will be in the

direction to improve the growth on van der Waals substrate by reducing the dependence of the

growth behavior on the presence of defects on the substrate and to materialize earth-abundant

semiconductor-based
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5 Zn/P ratio and microstructure defines
carrier density and electrical trans-
port mechanism in earth-abundant
Zn3–xP2+y thin films
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journal. The list of authors is as follows: Rajrupa Paul, Vanessa Conti, Mahdi Zamani, Simon
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íñiquez-de-la-Torre, Mirjana Dimitrievska, Valerio Piazza, Anna Fontcuberta i Morral. My

contributions to this work include device fabrication, data acquisition, data analysis, and

writing the manuscript.

5.2 Abstract

Scalable and sustainable photovoltaic technology requires low-cost and earth-abundant

semiconducting materials. Zinc phosphide is purported to be an absorber material with

optimal photovoltaic properties. Herein we report the electrical properties of Zn3P2 thin

films with different crystallinity grown on InP substrates. The room temperature electrical

resistivity of the as-grown single crystal thin films was in the range of 42–1050 Ωcm. We

correlate the crystalline quality and composition to the electrical properties. The capacitance-

voltage measurements and the secondary ion mass spectroscopy demonstrate the direct

correlation between the carrier concentration and the Zn/P ratio. The highest hole mobility

value (125 cm2/Vs) was obtained from high-quality single crystalline Zn3P2 thin films. The

electrical characteristics of the heterojunction between the thin film and the substrate were

also illustrated. This work sheds light on the electrical properties and conduction mechanism,

thus providing a better understanding of the limitations and potentials of the electrical devices

related to the material.
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5.3 Introduction

A sustainable approach to large-scale deployment of photovoltaic technology must involve

the utilization of earth-abundant solar cell materials. These materials can further reduce

the cost associated with the terrestrial installation of solar cells, thus encouraging wide-scale

deployment. Zinc phosphide (Zn3P2) is an earth-abundant photovoltaic absorber material

with promising photovoltaic properties [261, 70, 72, 177]. It exhibits a direct bandgap around

1.50 eV and a high absorption coefficient (104-105 cm−1) in the visible light range near the

band edge [63, 269, 210, 209, 176, 125, 203]. Additionally, it has a long minority carrier

diffusion length (5-10 µm) and electrically passive grain boundaries. All these characteristics

are beneficial for its use in photovoltaic devices [300, 25, 20, 265]. The highest reported

efficiency for Zn3P2-based solar cells is just about 6%, demonstrated for Mg/Zn3P2 Schottky

junction solar cells by Catalano et al. in 1979 [36]. A major limitation of Zn3P2-based solar

cells is the lack of controllability on the doping in the material.

Zn3P2 is intrinsically p-type in nature due to the low formation energies of the Zn vacancies

and P interstitials, which act as p-type dopants [61, 251, 256, 160, 264]. Previous studies

have shown growth conditions play an integral role in the electrical properties of the samples

[25, 35, 109]. The reported hole mobility values lie in the range of 10-300 cm2/Vs at 300 K

for Zn3P2 thin films [25, 264, 35, 109, 140, 122, 287]. Suda et al. reported a hole mobility

value of 310 cm2/Vs for epitaxial Zn3P2 thin films grown on GaAs (001) substrates [264]. In

contrast, epitaxial thin films synthesized by Bosco et al. exhibited hole mobility values of 10-45

cm2/Vs. For similar hole concentrations (∼4 ×1016 cm−3) [25], the discrepancy in the hole

mobility arises due to the difference in resistivity of the samples, which could be caused by

the difference in the local microstructure and defect density of the samples. These are largely

dependent on the growth technique, growth condition, and thermal history. A large variation

has been observed in the room temperature resistivity of Zn3P2 thin films, resistivity values

ranging from 0.1-106 Ωcm has been measured [265, 35, 124]. A systematic study on the effect

of vapour composition during annealing showed the resistivity of the sample monotonically

decreases with an increase in phosphorous partial pressure [35]. The corresponding Hall

measurements showed an increase in the carrier concentrations (from 1012 to 1016 cm−3) with

no significant variation in mobility [35]. Thus, by regulating the composition of the vapour

during growth or annealing, the p-type carrier concentration in Zn3P2 can be modified.

Doping the material n-type is challenging due to self-compensation by intrinsic acceptors.

Studies indicate the introduction of the donor impurity is compensated by the formation of the

intrinsic p-type defect in the crystal lattice [262, 114]. Only a few instances of n-type doping

of Zn3P2 have been reported, Suda et al. demonstrated the n-type doping of Zn3P2 thin films

epitaxially grown on GaAs substrates [262]. Their results indicate that the presence of excess

Zn during growth can lead to n-type doping of the material. The reported room-temperature

electron mobility values were in the range 3000-7000 cm2/Vs and the carrier concentration

values were in the range 3-9×1010 cm−3. Furthermore, the measured carrier concentration

did not increase above a certain point instead Zn segregation occurred. Additionally, the
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resistivity for the Zn3P2 epitaxial thin films was ∼ 103-104 Ωcm, the low carrier concentration

and high resistivity are attributed to the self-compensation effect of Zn3P2. Whereas,the

electron mobility values reported by Katsube et al. for n-type doping of bulk Zn3P2 were < 10

cm2/Vs [114]. Low carrier concentration values were measured even though the bulk dopant

concentration was about 1020 cm3.

Despite the previous attempts, Zn3P2 still lacks a reliable n-type doping route. Additionally,

the literature is sparse for extrinsic p-type doping of Zn3P2. Even though there is a consensus

about the intrinsic p-type nature of Zn3P2, there is a wide variation in mobility and resistivity

values for similar types of materials. We believe that the limited efficiency of Zn3P2-based solar

cells is largely due to the limited control of the electrical properties of the material, such as the

minority carrier mobility and the carrier diffusion lengths. For a p-type absorber, the electrical

behaviour of the minority carrier to a large extent determines the electrical performance of

the solar cell. Furthermore, recently Stutz et al. have highlighted the compositional tolerance

of the Zn3P2 tetragonal unit cell. Compound compositions largely off-stoichiometric do not

imply significant changes in the material phase or crystalline quality [310]. Still, variations in

composition would impact the transport properties of the material and should be investigated.

In this work, we investigate the electrical properties of polycrystalline and monocrystalline

Zn3P2 thin films grown on InP(100) substrates and correlate it to their chemical composi-

tion and microstructure. We demonstrate a device fabrication technique that circumvents

challenges arising from micro-cracks present in monocrystalline thin films. We measure

and compare the resistivity, carrier concentration, and mobility between polycrystalline and

monocrystalline Zn3P2 thin films. Temperature-dependent measurements elucidated the

defect states and their contribution to the transport in Zn3P2 thin films. We thus show that the

growth conditions play a vital role in determining the electrical properties of the given thin

films. Finally, we describe the junction behaviour between Zn3P2 and InP (n-,p-, and i-type),

which gives an understanding of Zn3P2/InP-based devices. Our study provides an insight into

the influence of composition on the electrical behaviour of Zn3P2 thin films, which in turn can

help bridge the gap between the structural quality and functionality of Zn3P2 and provide the

base to improve Zn3P2-based solar cell devices.

5.4 Experimental Details

5.4.1 Materials and devices

Zn3P2 thin films were grown on InP(100) substrates using molecular beam epitaxy (Veeco

GENxplor MBE) system equipped with separate zinc and phosphorous sources. Prior to the

growth, the substrate was degassed in the MBE in three steps. In the first two steps, the

substrate was degassed at 150 °C and 300 °C for 2 hours. Followed by a third degassing step at

580°C under phosphorous beam equivalent pressure (BEP) > 1×10−6 Torr for 10 minutes (in

the case of polycrystalline Zn3P2) and 30 minutes or higher (in the case of monocrystalline

Zn3P2). During the growth,the substrate temperature was set in the range of 240-270 °C.
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Additionally, the BEP of zinc and phosphorous fluxes were set to control the Zn/P ratio

between 1.5 and 0.72. The detailed growth method is explained in our previouspaper [311].

To study the electrical properties of the as-grown monocrystalline Zn3P2 (mono-Zn3P2)and

polycrystalline Zn3P2 (poly-Zn3P2) thin films, different electrical devices were fabricated on

the samples. These devices include structures for Hall Effect measurements, transmission

line measurements (TLM), and capacitance-voltage (C-V) circuits. Thin films grown on the

undoped InP substrates were used for the investigation of charge transport in Zn3P2. Whereas

doped InP (both n-, p-type) and undoped (i-type) InP substrates were used to examine the

current-voltage characteristic of Zn3P2/InP heterojunction.

Figure 5.1(a) shows the schematic representation of the fabrication steps. First, a 30 nm of

Si3N4 is deposited on the Zn3P2 thin film using a plasma-enhanced chemical vapour deposition

(PECVD) system. A first electron beam lithography (EBL) step defines the alignment markers,

which are settled by metal (Cr/Au) sputtering. In the second EBL step, the device structures

were defined and a subsequent reactive ion etching (RIE) step was performed to remove the

Si3N4 from the defined structures. The hall bars were fabricated with varying dimensions

(the lengths of the hall bars were in the range of 50-100 µm while keeping the geometrical

proportions constant) to accommodate the micro-cracks that are present in some of the

mono-Zn3P2 samples (as shown in SI Section B, Figure B.1). A final EBL step was performed to

pattern the micro-contacts and subsequently,the contacts were deposited using sputtering.

For fabricating the Ohmic contacts, Au, Ag, or Pt was used, as these metals showed linear

behaviour with Zn3P2(as shown in SI Section B, Figure B.2). Prior to any metal deposition,

30-45 seconds of Ar milling was done to remove the native oxide of the Zn3P2 to ensure

good contact quality. Finally, for the hall bars, the devices were electrically isolated from the

surrounding thin film using focused ion beam (FIB) milling. This approach allows to probe

the charge transport via parallel and perpendicular paths in samples containing micro-cracks

without the need for correction factors required in the Van der Pauw approach for non-uniform

continuous films [222]. For the sake of comparison, the same approach has been used for

the poly-Zn3P2 sample although no micro-cracks were observed. Figure 5.1(b) shows the

SEM micrograph of the final device fabricated on the mono-Zn3P2 thin film.The processing of

the structures for TLM and C-V measurements remains the same, except for the FIB milling.

The C-V measurements were done in a planar configuration utilizing Schottky and Ohmic

contacts. Sputtered Al was used as the Schottky contact. The distance between the Schottky

and the Ohmic pads was varied from 1-1000 µm, to identify the parasitic effects arising from

this configuration.

5.4.2 Characterization

The morphology of the thin films was characterized using a scanning electron microscope

(Zeiss Merlin FE-SEM). The crystallinity and orientation were measured usingout-of-plane

diffraction on a Bruker D8 Discover Plus equipped with a Cu (K-α) rotating anode X-ray source

(1.54 Å). Out-of-plane scans were performed using Dectris Eiger2 500 K detector in 2D scan-
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Figure 5.1: Fabrication process of the electrical device on Zn3P2 thin films: (a) schematic
representation of the device fabrication steps, (step 1) alignment marker definition, (step 2)
hall bar definition after the second EBL and RIE process, (step 3) contact deposition using
sputtering after the third EBL process, (step 4) isolation of the device using FIB milling. (b)
SEM image of the final device.

ning mode (gamma coverage of approximately 30 °), and conditioning the primary beam with

a focusing mirror and collimating optics of 0.5 mm. The Secondary Ion Mass Spectroscopy

(SIMS) was carried out by Eurofins EAG laboratories. PHI Model 6600 Quadrupole Secondary

Ion Mass Spectrometer was utilized to determine the concentration distribution of Zn3P2 and

InP layers qualitatively, using ion implant standards with known concentrations for approxi-

mation. In quadrupole SIMS, Cs+ is used as the primary beam and the molecular ions (CsE+)

of Cs and the ions of interest are counted in the quadrupole SIMS mass analyzer. The TLM

and the current-voltage (I-V) measurements were done using a Keithley 6487 voltage source

and picoampermeter to apply voltage and measure the current. The voltage sweep range

was between ± 2 V. For 4-point measurements, a Keithley 6517A nanovoltmeter was used to

measure the voltage. Temperature-dependent I-V measurements were done using LakeShore

CRX-VF cryogenic probe station, connected to a Keithley SCS 4200 used as amperemeter

and voltmeter. Four continuously variable temperature (ZN50R-CVT) probes allow the mea-

surement of temperature sweeps without the need to lift and re-position the probes, the 336

controller adjusts the temperature. Hall effect and temperature-dependent measurements

were done using a physical property measurement system (PPMS ®DynaCoolT M by Quantum

Design). The measurements can be carried out in a cryogenic temperature range and the

built-in cryopump ensures high vacuum applications (< 104 Torr). The excitation current was

varied in the range of 0.1 µA to 1 µA and the magnetic field was swept in the range ± 5 T. All

the C-V measurements have been performed at room temperature under ambient conditions,

a conventional semiconductor parameter analyzers and electrical probes were used (Keithley

4200A-SCS).The DC voltage was set in the range of ± 2 V and the AC signal had a frequency of

1-2 MHz with a 30-50 mV amplitude.
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5.5 Results and Discussion

5.5.1 Structural properties of Zn3P2 thin films

We start by elucidating the structural differences between mono-Zn3P2 and poly-Zn3P2 thin

films. Figure 5.2(a-b) show the representative SEM cross-section micrographs of the mono-

Zn3P2 and poly-Zn3P2 thin film, respectively. The thickness of both thin films is ∼1 µm. The

cross-sectional morphology of the poly-Zn3P2 thin film is granulated and it has a columnar-like

growth perpendicular to the substrate. The top surface of the poly-Zn3P2 thin film is distinctly

rough. Whereas, the mono-Zn3P2 thin film has a smooth cross-sectional morphology and

relatively flat top surface. To identify the crystallographic growth direction and the relation

with the substrate, out-of-plane scans were performed with an area detector using X-ray

scattering. Figure 5.2(c) show the resulting image of bare InP(100) substrate, where only

the reflections associated with the (200) and (400) planes are observed. Additionally, the

intensity is concentrated in the spots, which is indicative of its highly ordered crystalline

nature [168]. Figure 5.2(d-e) show the out-of-plane scans of mono-Zn3P2 and poly-Zn3P2

thin films, respectively. The reflections associated with the (002), (004), and (006) planes

are observed for the mono-Zn3P2 thin film. Thus indicating the growth proceeds along the

[001] direction and the epitaxial relation with the InP(100) substrate. Whereas the poly-Zn3P2

thin film has textured growth, we observe a few different families of planes perpendicular to

the growth direction. More prominent growth planes observed in X-ray scattering are (101),

(201), and (200). Finally, we also investigate the compositional variation between the different

crystalline thin films. SIMS measurements demonstrate a clear distinction in the composition

between mono-Zn3P2and poly-Zn3P2. The Zn/P ratio for the mono-Zn3P2 sample is ∼1.47,

which indicates the sample is slightly off-stoichiometric (as shown in Figure 5.2(f)). Whereas

the Zn/P ratio for the poly-Zn3P2 sample is ∼ 1.64, indicating the sample is Zn rich (as shown

in Figure 5.2(g)). Additionally, the interface between the thin film and the substrate is sharp

and well-defined for both samples. It is important to note that we do observe a compositional

variation among different samples. This variation is attributed to the growth conditions (such

as temperature and flux), while the difference in crystallinity is mainly due to the degassing

process [311]. In general, most of the poly-Zn3P2 thin films have a Zn/P ratio > 1.5. Whereas,

the mono-Zn3P2 thin films have a Zn/P ratio ≤ 1.5. Table 5.1 contains an overview of the

samples used in this study along with the characterization results obtained in this study;

hereon the sample name will be used to refer to a specific sample.

5.5.2 Electrical Measurements

The understanding of the material’s fundamental properties establishes the first step toward

the achievement of functional devices. TLM measurements were performed to gain insight

into the resistivity of the mono-Zn3P2 and poly-Zn3P2 thin films. Representative results of

these measurements of different samples are outlined in Figure 5.3, and resistivity values are

reported in Table 5.1. Figure 5.3(a) shows an optical microscope image of a typical device.
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Figure 5.2: Cross-sectional SEM micrographs of the (a) monocrystalline Zn3P2 thin film (b)
polycrystalline Zn3P2 thin film. Out-of-plane diffraction from (c) InP (100) substrate (d)
monocrystalline Zn3P2 thin film showing only the 00h family of planes (e) polycrystalline
Zn3P2 thin film showing a textured growth. SIMS measurements from (f) monocrystalline
Zn3P2 thin film (M1) with Zn/P ratio ∼1.47 (g) polycrystalline Zn3P2 thin film (P2) with Zn/P
ratio ∼1.64.

It is constituted by a series of multiple electrical contacts with increasing distances. The

smallest spacing between two adjacent contact pads is 30 µm. The total resistance (RT OT )

between two metal contact pads is measured as a function of the distance between two contact

pads. It is given by RT OT = 2RM + 2RC + RS , where RM is the resistance of the metal, RC is the

contact resistance, and RS is the resistance of the material between the electrical pads. As

the RM value is relatively smaller than the other terms,it can be neglected. Figure 5.3(b-c)

show the TLM plots obtained from thin film samples M1 and P2 grown on i-InP substrates,

respectively. The resistance increases linearly as a function of length, as expected. The contact

resistance (2RC ) is obtained from the y-intercept of the plot of the linear fit. The estimated

contact resistivity from the TLM plots is 0.95 ± 0.4 Ωcm2 for M1 and 0.63 ± 0.05 kΩcm2 for

P2. The contact resistivity value obtained from M1 is in the same range as previously reported
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Table 5.1: Measured sample names with corresponding substrate type, crystallinity, Zn/P ratio,
resistivity, and carrier concentration.

Sample Substrate Crystallinity Zn/P Resistivity Carrier
Name Type (Ωcm) Concentration (cm−3)

M0 n-InP Monocrystalline 1.164 51.6±5.0 (1.22±0.19)×1019

M1 i-InP Monocrystalline 1.469 154.6±10.7 (4.03±0.31) ×1015

M2 n-InP Monocrystalline 1.474 42.6±9.8 (4.00±0.23) ×1015

M3 n-InP Monocrystalline 1.502 44.9±3.7 (1.09±0.11) ×1015

M4 i-InP Monocrystalline 1.578 1050±263 (1.17±0.95) ×1014

P1 i-InP Polycrystalline 1.610 8794±350 (1.06±0.15) ×1013

P2 i-InP Polycrystalline 1.642 6632±421 (3.84±0.33) ×1013

values of as-deposited Au contacts on Zn3P2 [287]. It should be noted that we did not observe

any significant reduction of the contact resistance when using other metals such as Ag, Pt,

and Zn/Au. Thermal treatments are often used for reducing contact resistance. We did not

apply any thermal treatment in this study as post-growth annealing could affect the thin film

composition by desorption of Zn [203, 25]. The resistivities obtained from the poly-Zn3P2 (P1

and P2) thin films were in the range of 6500-9000 Ωcm. Whereas the resistivities obtained

from the mono-Zn3P2 (M1 and M4) thin films were in the range of 150-1050 Ωcm . The

vast difference in resistivity value is attributed to the presence of grain boundaries in the

poly-Zn3P2 thin films, which could contribute to increased scattering of the charge carriers.

Figure 5.3(d) shows the TLM data obtained from M3, which is a mono-Zn3P2 thin film grown

on n-type InP substrates. The TLM characteristics of the mono-Zn3P2 thin film grown on

n-InP are distinctly different from the mono-Zn3P2 grown on i-InP. Two distinct slopes can be

observed from the plot, the first slope (depicted by the red dashed line) can be assigned to

the Zn3P2 thin film. Whereas the second slope (depicted by the blue dashed line) is attributed

to the flow of current into the substrate. The change in the TLM slope is accompanied by a

change from linear to non-linear I-V curves(as shown in SI Section B, Figure B.3). The change

occurs when the distance between two contact pads increases over 100 µm. We attribute the

non-linearity of the I-V curves to the current crossing the heterojunction. In contrast, the

I-V curves obtained from the (poly-and mono-) Zn3P2 on i-InP are linear irrespective of the

distance between the two contact pads(as shown in SI Section B, Figure B.2).The junction

behaviour between the Zn3P2 and n-InP plays an integral role in the leakage current, over a

critical distance of 100 µm leakage current dominates. We will highlight this behaviour in the

later section when we describe the junction properties between Zn3P2 thin film and differently

doped InP substrate. A resistivity value of ∼ 45 Ωcm was obtained on fittingthe first slopeof

the TLM and the contact resistivity value of 0.6±0.17 Ωcm2 was obtained. These values are in

good agreement with the values obtained from the mono-Zn3P2 thin films grown on the i-InP

substrate. Thus, indicating the first slope of the TLM plot provides information regarding the

thin film. From here on, we discuss the electric properties of the thin films grown on i-InP,

unless specified otherwise.
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Figure 5.3: (a)Optical image of the TLM structure used for the measurements. TLM plots
showing resistance as a function of the length, obtained from (a) monocrystalline Zn3P2 thin
film (M1) (b) polycrystalline Zn3P2 thin film(P2), on i-InP (100) substrates (c) monocrystalline
Zn3P2thin film on n-InP (100) substrate(M3).

We now turn to the temperature dependence of the conductivity for different samples, in view

of further understanding of the electrical transport properties of Zn3P2. Figure 5.4(a-b) depict

the dependence of resistivity with temperature for M1 and P2, respectively, over a range of 100

to 300 K. The resistivity of the thin films increases as the temperature decreases, in agreement

with the semiconducting nature of the material. The increase in resistivity for P2 over a 200 K

decrease in temperature is significantly steeper than the M1. The temperature dependence

of resistivity gives insight into the conduction mechanism in a material. Thermally activated

band conduction in semiconductors is described by an Arrhenius temperature dependence,

given by [7, 136]:

σ(T ) =σ0 e
−Ea
kB T (5.1)

where σ0 is a constant, Ea is the activation energy, and kB is the Boltzmann constant. Given

the exponential relation between thermally activated conduction and temperature,a linear
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line can be obtained by plotting ln σ vs 1/T or ln ρ vs 1/T. The insets in Figure 5.4(a-b) show

the plot of ln ρ vs 1/T, on fitting Eq. 5.1 to the experimental data we obtain a good fit for

higher temperature values. For the temperature range of 150 to 300 K,the activation energy

obtained for M1 is 22.53 meV. This value is consistent with the energy levels expected for

phosphorus interstitial levels in bulk Zn3P2. Both phosphorous interstitials and zinc vacancies

act as acceptors in Zn3P2, typically zinc vacancies have energy levels ranging from 190 meV

to 290 meV and phosphorous interstitials have energy levels ranging from 14 meV to 90 meV

[251, 160, 310, 174]. For temperature values less than 150 K we observe a gradual decrease

in resistivity, this is due to the interplay of temperature variations of the carrier density and

mobility. The carrier density diminishes with a decrease in temperature while the mobility

increases, thus the resistivity has a minimum typically around 70 K [90]. The activation

energy obtained from P2 was 317.69 meV for the temperature range of 200 to 300 K. This

activation energy is slightly higher than the expected energy level for zinc vacancy levels

[160]. The activation energy value could be due to the presence of crystalline disorder in the

polycrystalline thin film. Still, one should note that the activation energy in the thermally

activated conduction regime depends on the carrier concentration and the impurity energy

levels [136]. A decrease in carrier concentration due to a lower amount of acceptors would lead

to an increase in the activation energy due to the change in the Fermi level. At temperatures

below 200 K, a distinct change in the slope of the ln ρ vs 1/T plot is observed, indicating a

change in the conduction mechanism. A hypothesis is that at lower temperatures, holes are

recaptured by the acceptors and hopping starts to be the dominating mechanism. There are

two types of hopping mechanisms that dominate the conduction process in semiconductors

at lower temperature ranges, which are Nearest-Neighbor Hopping (NNH) and Variable Range

Hopping (VRH) [7, 136, 227, 171, 17]. NNH and VRH can coexist in a material, however, NNH

usually tends to dominate at higher temperatures. In NNH, the holes hop to the nearest-

neighbour vacant site and this requires a thermal activation. The activation energy for NNH is

much lower than the activation energy for thermally activated band conduction. For the NNH

conduction, temperature and conductivity have a similar exponential dependence [7]. We

fitted the temperature dependence of the resistivity in the range between 100 to 200 K and an

activation energy value of 14.72 meV was obtained. On further decreasing the temperature, the

VRH conduction mechanism often comes into play. Here charge carriers hop between levels

close to the Fermi level irrespective of their spatial distribution [170]. The plotted data (ln ρ vs

1/T) does not show any deviation from linearity in the measured range (200-100 K). Therefore

we conclude, that for the measured temperature range,we do not observe the VRH (for which

conductivity can be expressed as σ =σ0 e−[
T0
T ]

1
4 , where T0 is the characteristic temperature,

and σ0 is a constant parameter)conduction mechanism as this would lead to a non-linear

behaviour [38]. It is evident that the thermally activated conduction mechanism dominates

at higher temperatures (above 200 K for P2 and above 150 K for M1) for both thin films. Now

we turn toward a specific sample (M4) that showed atypical I-V characteristics.Figure 5.4(c)

shows the semi-logarithmic I-V plots measured at different temperatures for M4 (that has a

high Zn/P ratio∼1.58). The typical I-V characteristic of mono-Zn3P2 and poly-Zn3P2 thin films

are linear (as shown in SI Section B, Figure B.2). The I-V plots obtained from sample M4 show
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a non-linear asymmetric behaviour and demonstrate a deviation from the ohmic or Schottky

behaviour [90]. Furthermore, on decreasing the temperature, the overall current decreases

and the deviation becomes more pronounced. To understand the electrical properties of

the sample, the I-V characteristic in the forward bias is plotted in a log-log scale, as shown

in Figure 5.4(d). The slope of the log-log plot gives the power dependence of current and

voltage [57, 317]. At low voltages (below 0.2 V) an ohmic relation is observed between the

current and voltage (I ∝ V) over all the measured temperature ranges. Between the voltage

ranges of 0.2 to 0.7 V, the slope changes to 8 for 300 K and 15 for 150 K (I ∝ Vm , where m is the

slope in the log-log plot). Whereas above 0.7 V the slope is 2 (I ∝ V2) for all the temperature

ranges. We observe three distinct regimes in the log-log I-V plot: first, a low-voltage ohmic

regime with a slope of 1, followed by a trap filling regime with a large slope (>2), and a high

voltage space-charge-limited current (SCLC) regime with a slope of 2. The SCLC conduction

mechanism has been widely reported for organic semiconductors and insulators [144, 233, 67,

271]. There are also some instances of SCLC conduction in inorganic semiconductors such

as III-nitrides and semi-insulating II-V materials [253, 245]. The presence of trapping states

caused by impurities and defects can capture and immobilize a fraction of the injected carriers,

thereby influencing the current transportprocess. Zn3P2 is known to form band tails due to

the presence of impurity levels [310] and deep-level traps at ∼0.7 eV [251, 263]. Depending on

the trap density and distribution,it might be feasible to observe SCLC conduction in Zn3P2.

The trap density can be calculated from the trap-filled-limit voltage, given by [144]:

VTFL =
qnt L2

2ϵ
(5.2)

Where q is the elementary charge, nt is the trap density, L is the thickness, and ϵ is the dielectric

constant. The crossing point between the tangent of the SCLC regime and the trap-filled-

limited regime is used as the VTFL [144]. We estimated the trap density using Eq. 5.2, the

obtained values were 3.62×1013 cm−3 and 4.28×1013 cm−3 for 300 and 150 K, respectively.

SCLC measurements are often used to extract the mobility of the carrier, where the mobility

value is extracted from the quadratic regime. However, the estimation of mobility is prone to

misinterpretation [144, 141]. Given the asymmetric nature of the I-V plot, we decided not to

use this method to extract the mobility values.

Hall effect measurements can be used to measure the carrier density. However, our measure-

ments showed a non-linear transverse resistance behaviour (refer to SI Section B, Figure B.4 for

more information). Therefore, the carrier concentrations in different thin films were analyzed

using C-V measurements. Figure 5.5(a) shows the schematic representation of the planar

configuration used for the measurements. The set-up consists of two adjacent dissimilar

contacts, separated by a distance (Lt ). The Au contact was ohmic, while the Al was Schottky.

Figure 5.5(b-c) show 1/C2 against voltage, also known as the Mott-Schottky plot, for M1 and P2,

respectively. The data display a negative Mott-Schottky slope, indicating a p-type conductivity

for all the measured Zn3P2 thin films [92]. For a Schottky-diode under bias, the C-V relation
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Figure 5.4: Temperature-dependent resistance plot showcasing the semiconducting behaviour
of (a) monocrystalline Zn3P2 thin film (M1), and the corresponding fitting for thermally
activated conduction (inset) (b) polycrystalline Zn3P2 thin film (P2), and the corresponding
fitting for thermally activated conduction between 300-200 K and NNR between 200-100
K (inset). (c) Temperature-dependent I-V characteristics obtained from monocrystalline
Zn3P2 thin film with a Zn/P ratio ∼ 1.58 (M4) plotted on a semi-logarithmic scale (d) the
corresponding temperature-dependent I-V characteristics plotted on a log-log scale, three
distinct transport regions are visible : (I ∝ V) ohmic region, (I ∝ Vm , m >2) TFL region, and
(I ∝ V2) SCLC region, the dashed lines represent the tangents with slopes 2 and 8 used for
determining VTFL at 300 K and slopes 2 and 15 for determining VTFL at 150 K

can be expressed as [246]:

A2

C 2 =
2(Vbi −V − kT

q )

qϵs N
(5.3)

where C is the capacitance, Vbi is the built-in potential of the diode, ϵs is the relative per-

mittivity of Zn3P2, A is the area of the anode, and N is the carrier concentration.The slope

of the Mott-Schottky plot gives the carrier concentration and the x-axis intercept gives the

Vbi . The carrier concentration for M1 was found to be ∼4.03×1015 cm−3, whereas the carrier
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concentration of P2 was ∼3.84×1013 cm−3. We did not observe any significant variation in the

carrier concentration arising from distance (Lt ) variation between the contact pads (at least

for the measured distances). While the carrier density difference between the monocrystalline

and polycrystalline samples could eventually be attributed to the microstructure, one should

consider chemical composition. Zn3P2 is an unusual compound semiconductor as the Zn/P

ratio can deviate strongly from 3/2 without loss of the semiconductor functionality [70]. The

temperature dependence of the samples has also hinted at a relation between the composition

and the carrier density, as given by the different activation energy for the relatively zinc richer

or poorer nature of samples M1 and P2. These activation energies could be related to zinc

vacancies and phosphorous interstitials, which act as dopants in the material.

The compositional analysis performed using SIMS was correlated with the carrier density

obtained from the capacitance method (see Table 5.1). The results are presented in Figure

5.5(d). The carrier concentration (∼1.22×1019 cm−3) is highest for M0 that has a Zn/P =

1.16. The carrier concentration strongly decreases for Zn/P ratios approaching 1.5. The

sample M3 that is almost at stoichiometry (Zn/P = 1.502) has a carrier concentration of

∼1.09×1015 cm−3. For Zn/P > 1.5 carrier densities are extremely low, below ∼1.5×1014 cm−3.

The measured carrier concentrations as a function of the Zn/P ratio for different samples

follow an exponential behaviour. To further confirm this, Figure 5.5(d) inset depicts the data

in a semi-logarithmic scale, which displays the linear behaviour and shows the sample with

the highest carrier concentration in the same plot. The role of chemical composition in carrier

density can be found in the nature of interstitials in Zn3P2. Phosphorus interstitials act as a

p-type dopant with low formation energy in Zn3P2 [61, 306], thus explaining the increased

carrier concentration in the samples with Zn/P less than 1.5. Instead, Zn inclusion in the

lattice should act as an n-type dopant in Zn3P2 [306]. However, we do not observe n-type

nature in any of the samples with a high Zn/P ratio. This is attributed to the prevalent self-

compensation effect in Zn3P2 [114, 10]. Given the low formation energy of P interstitials, excess

Zn in the material is compensated by the formation of P interstitials. This results in a decrease

in the carrier concentration with an increase in the Zn/P ratio. Additionally, this also leads

to higher resistivity in the sample [35]. The monocrystalline Zn3P2 thin film with a higher

Zn/P ratio (M4) exhibits higher resistivity (∼1050 Ωcm) in comparison to the stoichiometric

monocrystalline Zn3P2 thin film(M3) that has resistivity of ∼45 Ωcm. We extract the mobility

values using σ = nqµ, where σ is the conductivity obtained from TLM, while n is the carrier

concentration obtained from C-V profiling. For monocrystalline samples, the mobility values

are in the range of 15-125 cm2/Vs. Whereas for polycrystalline samples, the mobility values are

in the range of 19-60 cm2/Vs. The higher values of mobility obtained from the monocrystalline

Zn3P2 thin films are among the upper bound of values reported in the literature for Zn3P2 [264,

286], thus indicating the high-quality crystalline Zn3P2 thin films.

Finally, we probe the junction behaviour between the Zn3P2 thin film and the InP substrate.

Figure 5.6(a) inset shows the configuration used for the I-V measurements. Figure 5.6(a) shows

the comparison of the I-V characteristics of mono-Zn3P2 and poly-Zn3P2 thin films grown

on i-InP substrate. Both thin films have a rectifying behaviour. The current values obtained

69



Chapter 5
Zn/P ratio and microstructure defines carrier density and electrical transport mechanism

in earth-abundant Zn3–xP2+y thin films

Figure 5.5: (a) Schematic representation of the planar configuration used for the C-V mea-
surements, Lt is the distance between the Schottky and the ohmic contacts. The C-V plot
obtained by varying Lt from (b) monocrystalline Zn3P2 thin film (M1) (c) polycrystalline Zn3P2

thin film (P2). (d) Plot showing the measured carrier concentration as a function of the Zn/P
ratio (the error bars represent standard deviation due to Lt variation for each sample), the
corresponding semi-logarithmic plot (inset) highlights the sample with the highest carrier
concentration (1.22×1019 cm−3) and lowest Zn/P (1.16) ratio. The stoichiometric Zn/P ratio is
at 1.5, represented by the dashed line. The details of the plotted sample are listed in Table 5.1

at higher voltages from mono-Zn3P2 are much higher in comparison to the poly-Zn3P2. We

attribute the lower current value of the polycrystalline thin film to the high resistivity in

the material. To better understand the influence of the doping in the InP on the junction

behaviour we measure the I-V characteristic of Zn3P2 thin films grown on differently doped

InP substrates. Figure 5.6(b) shows the semi-logarithmic plot of the I-V characteristic obtained

from monocrystalline Zn3P2 thin films grown on (p-,n-,i-) InP and polycrystalline Zn3P2 grown

on i-InP. The Zn3P2 thin film grown on p-InP illustrates a linear and symmetric behaviour,

which is indicative of a poor diodic behaviour between the two p-type materials (theoretical

band alignment between p-type Zn3P2 and p-type InP is shown in SI Section B, Figure B.5).

When comparing the I-V characteristic of monocrystalline Zn3P2 on i-InP and n-InP we

observe in the case of n-InP there is a large leakage current in the reverse bias. Additionally,

the thin film grown on i-InP has a much greater threshold voltage value (0.68 V) in comparison

to the thin film grown on n-InP (0.47 V). Moreover, the ideality factor obtained on fitting the

linear part of the I-V plot was 2.03 ± 0.14 for thin film grown on i-InP and 3.46 ± 0.2 for thin
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film grown on n-InP. These differences demonstratethe monocrystalline Zn3P2 thin film grown

in i-InP has relatively better diode parameters than the ones on n-InP. Thus, the junction

behaviour between monocrystalline Zn3P2 and n-InP corroborates the flow of current into the

substrate during TLM measurements.

Figure 5.6: (a) I-V characteristic of the monocrystalline and polycrystalline Zn3P2 thin film
grown on i-InP (100) substrate measured in a top-down configuration (inset). (b) Semi-
logarithmic I-V curve obtained from monocrystalline Zn3P2 thin film grown on (p-, n-, i-) InP
substrates and polycrystalline Zn3P2 thin film grown on i-InP.

5.6 Conclusion

In conclusion, we compared and contrasted the difference in the structural, compositional,

and electrical behaviour between polycrystalline Zn3P2 and monocrystalline Zn3P2 thin films.

We identified the conduction mechanism involved in different crystalline Zn3P2 thin films.

Thermally activated conduction mechanism dominates at higher temperatures, whereas

nearest-neighbour hopping mechanism was observed for polycrystalline thin films at lower

temperatures. The corresponding activation energies obtained from our measurements

are primarily associated with the phosphorous interstitials in the monocrystalline sample.

Temperature-dependent I-V characteristic of Zn3P2 thin film with low carrier concentration

revealed the occurrence of SCLC transport. High-quality monocrystalline Zn3P2 thin films

with moderate carrier concertation demonstrated a high hole mobility (125 cm2/Vs) at room

temperature, indicating the growth conditions and composition of the material play an inte-

gral role in tuning the material functionality. We unveiled the impact of unintentional doping

caused due changes in the Zn/P ratio on the electrical properties of the material. Carrier

concentrations were directly correlated to the Zn/P ratio.They were attributed to a variation in

Zn vacancies and P interstitials, in agreement with the activation energies deduced for conduc-

tivity. Finally, the effect of substrate doping on the electrical behaviour of the heterojunction

has been highlighted. Hence, the present study provides insight into the electrical properties

of Zn3P2 thin films and allows for a better understanding of the limitations and prospects of
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Zn3P2 thin film-based solar cells.
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6 Carrier generation and collection in
Zn3P2/InP heterojunction solar cells

6.1 Accompanying information
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Franz-Josef Haug, Albert Polman, and Anna Fontcuberta i Morral. My contributions to this

work include writing the manuscript and analysis of the current-voltage characteristics (in

dark and under illumination) and the external quantum efficiency data.

6.2 Abstract

Zinc phosphide (Zn3P2) has been lauded as a promising solar absorber material due to its

functional properties and the abundance of zinc and phosphorous. In the last 4 decades, there

has not been any significant improvement in the efficiencies of Zn3P2-based solar cells. This is

vastly due to the limited understanding of how to tune its optoelectronic properties. Recently,

significant progress has been made in the growth and characterization of the material, which

has shed light on its potential. In this study, we report an energy conversion efficiency as high

as 4.4% for a solar cell based on a polycrystalline Zn3P2 thin film on an InP substrate. We inves-

tigated the dominant recombination mechanisms in the device using different techniques and

identified the key factors that limit the device efficiency. Additionally, we provide a perspective

on the next-generation Zn3P2-based solar cells.
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6.3 Introduction

Zinc phosphide (Zn3P2) is a highly suitable candidate for the large-scale deployment of photo-

voltaic technology [281]. It has a direct bandgap at 1.5 eV [125, 261], which places it close to

the optimum following the Shockley-Queisser detailed balance efficiency calculation [250]. In

addition, it has been demonstrated that Zn3P2 exhibits a high absorption coefficient (>104-105

cm−1) [72, 269] and a long minority carrier diffusion length (5-10 µm) [125]. Additionally, zinc

and phosphorous are earth-abundant elements with a low cost and high extraction volume.

However, despite of these promising material characteristics, there has not been any signifi-

cant improvement in the efficiency values related to Zn3P2-based solar cells. The record for

highest efficiency was reported in 1981 and has remained for the past few decades at 5.96% for

Mg/Zn3P2 Schottky junction solar cells [36].

One of the shortcomings of Zn3P2 is the lack of understanding of how to engineer its car-

rier density by doping. Zinc vacancies and phosphorous interstitials exhibit relatively low

formation energies (which are between 14 meV and 90 meV for phosphorous interstitials

and 190 meV to 290 meV for zinc vacancies) [160, 35, 174], and they act as acceptors in

Zn3P2. Consequently, Zn3P2 is naturally, p-type. Doping the material n-type has proven to

be challenging due to the self-compensation effect [114]. This has hindered the fabrication

of p-n homojunction solar cells. Instead, the majority of the Zn3P2-based solar cells are ei-

ther heterojunction or Schottky junction solar cells. The Schottky junction solar cells with

high efficiencies were fabricated on multi-crystalline large grain Zn3P2 wafers with Mg as the

Schottky contact [20]. While similar Schottky junction solar cells fabricated on polycrystalline

Zn3P2 thin films have efficiency values close to 4.3% [19]. The reduced efficiency associated

with polycrystalline Zn3P2 thin films is due to the reduced fill factor arising from higher series

resistance. Alternatively, heterojunction device architecture has been proposed to overcome

the inherent limitations of the Schottky junction solar cells. Some commonly used n-type

emitters for Zn3P2 heterojunction solar cells are ZnO, ZnSe, ZnS, and CdS [191, 205, 24, 109,

22]. Even though Zn3P2 p-n heterojunction solar cells have not shown efficiencies greater than

the Schottky junction solar cells, they did demonstrate higher open-circuit voltage values. For

instance, p-Zn3P2/n-ZnSe solar cells showed an efficiency of 0.8% but demonstrated record

high open-circuit voltage of 810 mV [22]. Similarly, an efficiency of 1.1% was obtained with

p-Zn3P2/n-ITO heterojunction solar cell with a short-circuit current value of 18.4 mA/cm2

[265]. Prior studies on Zn3P2 heterojunction solar cells indicate the possibility of efficiency

enhancement by utilizing high-quality single-crystalline Zn3P2 and an optimal heterojunction

device design. However, improvement in the crystallinity has not translated into enhancement

in the efficiency of Zn3P2-based solar cells [24, 279]. Epitaxial Zn3P2 thin film grown on GaAs

(001) substrate by Bosco et al. showed low short-circuit current (<0.1 mA/cm2 under 1 Sun

simulated illumination) [24]. This hints toward the need for an efficient device architecture

capable of harnessing the full potential of Zn3P2 as a solar absorber material.

In this work, we demonstrate a minimally processed Zn3P2-based solar cell, by employing an

ITO top contact on a polycrystalline Zn3P2 thin film, we were able to achieve 4.4% efficiency.
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We analyze the illumination-dependent electronic behaviour, as well as the external quantum

efficiency to determine the dominant limiting factors of the device. Additionally, we propose a

working principle for the device, highlight the role of ITO, and investigate the contribution of

Zn3P2 to the overall working of the device. Finally, we provide an overview of the prospects

associated with the next generation of Zn3P2-based solar cells.

6.4 Experimental Details

6.4.1 Materials and device fabrication

Molecular beam epitaxy (MBE) was used for the growth of micron-thick Zn3P2 films on un-

doped InP(100) substrates. The growth method is described in detail in reference [311]. Under

optimal growth conditions, we are able to tune the crystallinity of the Zn3P2 thin films by con-

trolling the degassing time of the substrate. Short degassing times of 10-20 minutes resulted

in polycrystalline growth, whereas degassing times of 30-60 minutes ensured monocrystalline

growth. The presence of oxide at the interface determines the crystalline quality of the Zn3P2

thin film. The schematic representation of the process flow used for fabricating Zn3P2-based

solar cells is shown in Figure 6.1(a). A polycrystalline Zn3P2 thin film was grown on an InP

substrate at 265 °C for 240 minutes. Prior to the device fabrication, the sample surface was

cleaned using argon milling in the sputtering chamber for 30-45 seconds (at an Ar flow of 50

sccm and 100 W power) to remove the native oxide. Subsequently, a transparent conductive

oxide (ITO = In2O3:SnO = 90%:10%) electrode was sputtered on top. The nominal thickness of

sputtered ITO was ∼100 nm, however, depending on the reactor conditions this value could

fluctuate between ± 10%. Before the deposition of the top grid, 100 nm of Au was sputtered

on the backside of the InP substrate to act as the back contact. Finally, the top Ag finger

grid was deposited by sputtering using a shadow mask. Figure 6.1(b) shows the schematic

representation of the fabricated device and Figure 6.1(c) shows the photograph of a completely

fabricated device.

6.4.2 Characterization

To first characterize the composition of the Zn3P2 thin films. Rutherford backscattering

spectrometry measurements were performed by EAG Laboratories. A nearly-normal-incident

beam of 2.275 MeV alpha particles was used for the measurements, where the normal detector

angle collected particles scattered by 160 ° and the grazing detector was set at 104 °. The atomic

concentration uncertainty is ± 1%, and an assumption of 6.61 × 1022 atoms/cm−3 in the Zn3P2

layer and 5.26 × 1022 atoms/cm3 in the InP substrate was used. Following this, optical-pump

terahertz-probe spectroscopy measurements were performed using a spectrometer with an

ultrafast Ti:Sapphire amplifier (Newport Spectra Physics Spitfire Ace, 13mJ, 1kHz, 40 fs), which

described in detail in another study [182]. An optical pulse centered at 750 nm (E = 1.65 eV)

was used to photoexcite the sample with a pulse duration of 40 fs at fluences between 12 and
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Figure 6.1: (a) Schematic representation of the process employed for the fabrication of Zn3P2

solar cell, ITO is deposited on the surface of the as-grown Zn3P2 thin film with sputtering,
followed by the deposition of Au as the back contact, and Ag is sputtered using a mask to
form the top contact. (b) Schematic representation of the final device containing the Au
back contact, InP substrate, Zn3P2 thin film, sputtered ITO layer, and the Ag top contact. (c)
Photograph of a fully fabricated cell.

128 µJcm−2. The terahertz probe was generated by optical rectification in GaP crystal and

was directed to the sample at an angle of incidence < 15° by a silver-coated prism, which was

positioned near the focus of the optical-pump terahertz-probe spectrometer at the sample

position. The terahertz beam reflected from the sample was then collected via the same prism

and detected by electro-optic sampling in a ZnTe crystal.

Finally, the dark current-voltage (I-V) measurements were performed to assess the device

performance using a Keithley 6487 voltage source and picoampmeter to apply voltage and

measure the current. The measurements were performed in the voltage range of ± 1V. The light

measurements were done using a solar simulator with continuous illumination, composed

of a Halogen lamp (IR+VIS) and Xenon lamp (VIS+UV) with a temperature-controlled chuck.

Measurements were performed according to the standard testing procedure (1-sun (1000
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Wm2), AM 1.5 Global, 25°C). For all the I-V measurements, one of the probes was placed on

the Ag grid and the other on the back contact. The external quantum efficiency measurements

were done using a Newport Oriel QuantX 300 tool. The basic gain was set to "1M", the

wavelength spacing to 5 nm; the measurement range to 330-1000 nm; and the voltage bias

was 0 V. The system calibration was checked using the reference Si solar cell of the system. The

I-V curves were measured using a Newport Oriel Sol2A tool. The I-V curve was measured with

a measurement delay of 0.009 s, voltage steps of 2 mV, and measured going from -1V to 1V and

from 1V to -1V. The intensity was checked with the system’s power calibration solar cell.

6.5 Results and Discussion

We start by outlining the functional properties of the as-grown polycrystalline Zn3P2 thin

film. Figure 6.2(a) shows the scanning electron microscopy (SEM) image of the thin film. The

20°-tilted SEM micrograph shows the cross-section and the top surface of the sample. The

growth is granulated and columnar in nature with a coarse top surface. The thickness of the

thin film was estimated to be ∼0.7 µm. Previous studies have shown that grain boundaries

in polycrystalline Zn3P2 thin films are electrically passive with no detrimental effect on the

photocurrent collection and the open-circuit voltage [25, 178]. The composition of the thin film

across the depth was analyzed using Rutherford backscattering spectrometry (RBS), as shown

in Figure 6.2(b). The lattice of Zn3P2 has demonstrated a high tolerance for compositional

variations [310]. Zn3P2 can maintain its crystalline structure even at large off-stoichiometric

compositions; the RBS measurements show a uniform composition of ∼57% zinc and ∼43%

phosphorous. The thin film is slightly phosphorous rich, with a Zn:P ratio of 1.32 in comparison

to 1.5 at stoichiometry (Zn:P = 60:40). Previous studies have shown that changes in the Zn:P

ratio have no significant impact on the crystalline structure of the material, however, it can

impact the optical and electrical properties of the material [261, 35]. More importantly, the

carrier concentration in the material can significantly vary as excess phosphorous in the lattice

acts as an acceptor-type impurity making the thin film p-type. To understand the temporal

dynamics of the photoexcited carriers in the as-grown polycrystalline Zn3P2 thin film, we used

optical pump-terahertz probe (OPTP) spectroscopy. It is a versatile noncontact technique

that is capable of measuring the photoconductivity and thereby the carrier mobilities, surface

recombination velocities, carrier lifetimes, and doping levels of the material [107, 159]. The

measurements were conducted in reflection mode at room temperature and the sample

was photoexcited with an optical pump with an FWHM of 1.2 mm, a centre wavelength of

750 nm wavelength with incident fluence values of 12, 28, 57, and 128 µJcm−2. The higher

photon energy of the optical pump (E = 1.65 eV) compared to the bandgap of Zn3P2 (Eg

= 1.50 eV) provides above-bandgap photoexcitation, generating free electron-hole pairs in

Zn3P2 thin film. While the photon energy of the pump is also above-bandgap for the InP

substrate, the thickness of the Zn3P2 film is greater than the absorption depth of photons with

750 nm wavelength. The majority of the optical pump photons are consequently absorbed

within the Zn3P2 film, so the InP substrate can be considered to be in equilibrium (i.e. not
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excited by the optical pump) with a negligible response on the measured THz response (see

SI, Figure. C.1). The above-bandgap photoexcitation, therefore, generates free electron-

hole pairs predominately in Zn3P2 film inducing a change in its dielectric function. This

photoinduced change is measured by monitoring the change, ∆E, of the reflected electric

field of the terahertz probe, E. The ratio of the differential change in the reflected THz field

compared to the response in equilibrium, ∆E/E, is directly related to free carrier concentration

and photoconductivity in the sample. Monitoring the change ∆E/E, as a function of time

after photoexcitation, therefore, provides information about the carrier recombination rates

and carrier lifetimes of the thin film. Figure 6.2(c) shows the variation in photoconductivity

as a function of time after photoexcitation for different photoexcitation fluences. As the

photoexcitation fluence was increased from 12 to 128 µJcm−2 the extracted photoinduced

carrier densities also increased from 0.47×1018 cm−3 to 5.01×1018 cm−3. For all fluences,

a sharp increase in the photoconductivity was observed within 10 ps after photoexcitation

followed by a monoexponential decay. The characteristic decay times of the monoexponential

fits of the carrier decay data are shown in the inset of Figure 6.2(c). A carrier lifetime of 4.6

ns was observed for 12 µJcm−2, whereas an increase in the carrier lifetime is observed with

an increase in the laser fluence. The monoexponential decay indicates that monomolecular

recombination (or trap-assisted recombination) is dominant recombination mechanism

affecting the carrier lifetime.

Figure 6.2: (a) SEM image of the as-grown Zn3P2 thin film on InP substrate. (b) RBS mea-
surements from Zn3P2 thin film depicts a Zn/P ratio ≈1.32. (c) The decay of photoinduced
charge carrier density plotted as a function of pump-probe delay time measured by OPTP
spectroscopy at different pump fluence.

Having investigated the material properties of the as-grown polycrystalline Zn3P2 thin film

we now turn toward the demonstration of the photovoltaic device. The current density-

voltage (J-V) curves of the device measured in dark and under simulated AM 1.5G 1-sun solar

illumination are shown in Figure 6.3(a). The inset in Figure 6.3(a) shows the photograph of the

measured device, the device has an active area of 0.467 cm2. Under simulated solar radiance

the open-circuit voltage (Voc ) and short-circuit current (Jsc ) obtained from the device were

528.8 V and 13.7 mA/cm2, respectively. A fill-factor (FF) of 60.7% was measured, resulting in

a power-conversion efficiency (PCE) of 4.4%. In contrast to the previous study on the bulk

Zn3P2/ITO solar cells, the Voc , FF, and PCE show a significant improvement, whereas the Jsc is
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found to be in the same range [265]. The series resistance was found to be ∼18.35 kΩcm2 and

the shunt resistance was found to be ∼1.03 kΩcm2. When comparing the J-V curves under

illumination and dark we observe a crossover behaviour at a voltage around 537 mV. This

behaviour leads to a failure of the dark/light superposition of the J-V curve [270]. To achieve

the same current density at the forward bias, the dark curve needs more voltage compared to

the light curve. Crossover is often associated with the presence of an electric barrier at the

interface [49, 216, 272, 217, 238] as an illumination-dependent barrier height variation can lead

to a crossover of dark and light J-V curves. Under illumination, this barrier height is reduced

due to photodoping, thus resulting in a higher diode current [216, 238]. The presence of a

conduction band “spike” between ZnS and Zn3P2 has shown similar crossover behaviour and

it is known to hinder electron transport across the heterojunction interface in ZnS/Zn3P2-solar

cells [24]. Another common reason for crossover behaviour is attributed to the high density of

acceptors-like deep-level defects in the absorber near the interface region, which lead to a

modification of the electric barrier. A strong potential drop associated with the large negative

charge in the acceptor states leads to an electric barrier in the dark. Upon illumination, the

acceptor states are filled with holes, resulting in a reduction in the acceptor charge and thereby

decreasing the electric barrier [49, 272, 193, 32]. Additionally, the illumination-dependent

series resistance in solar cells is ascribed to photogating, which implies the excited carriers are

captured in long-lived trap states, thereby increasing the conductivity [81, 165]. This coincides

with our OPTP measurements, which demonstrated that trap-assisted recombination was the

dominant mechanism governing carrier transport in the Zn3P2 thin films. However, it should

be noted that the distortion in the J-V curve could be a combination of these effects [49, 32].

To identify the dominant form of recombination one can look at the ideality factor of the

solar cell, which is typically obtained from the Shockley diode equation. The Shockley diode

equation is derived from drift-diffusion theory [249], and it is expressed as:

Jd ar k = J0

[
e

V
VT ni d −1

]
(6.1)

where Jd ar k is the dark current density, J0 is the saturation current, ni d is the ideality factor,

and VT = kB T/q is the thermal voltage. The above equation does not take into account parasitic

resistances. The ideality factor is described as a fitting parameter that determines how closely

a diode behaviour matches the theory, ideally, ni d = 1 for direct radiative recombination.

However, when other types of bulk recombination dominate the ideality factor is given by ni d

= 2/γ where γ is reaction order. When γ = 1, it indicates first-order recombination (typically

ni d = 2 is associated with trap-assisted Shockley-Read-Hall (SRH) recombination) [231]. A γ

value of 2 signifies bimolecular band-to-band recombination, whereas a γ value of 3 suggests

trimolecular Auger recombination [128, 234, 52]. In addition, there are other interpretations

of the γ values [33]. Figure 6.3(b) depicts the dark J-V characteristic in a semi-logarithmic

scale. The dark J-V curve shows a rectifying behaviour and the curve can be divided into three

distinct regions (as shown in Figure 6.3(b)). At low voltages (< 0.25 V, region I), the selected

device layout shows a low parasitical leakage current. In this low voltage region, the shunt
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resistance dominates the J-V characteristics. The presence of pinholes and micro-cracks in

a device can serve as a shunt pathway [137]. A high shunt resistance is preferred to ensure a

low leakage current. A sharp increase in the current is observed at the intermediate voltage

(0.25 < V < 0.53, region II) region. The sharp transition arises due to a diffusion-dominated

current [30]. At high voltages (> 0.53, region III), above the built-in potential, the dark J-V

curve shows an expected shift to a less sharp current-voltage behaviour as a result of drift-

dominated current. The drift-dominated current is limited by either the charge injection or

the formation of space charge [293]. Additionally, the series resistance determines the J-V

characteristics at the high voltage region, a steep slope in this region typically indicates low

series resistance [243]. It should be noted here that the ideality factor is determined from the

regime below the built-in voltage, as solar cells operate below the built-in voltage. The ideality

factor was obtained from the slope of the semi-logarithmic dark J-V plot using Equation (6.1),

which is valid only in the exponential region. The ideality factor obtained on fitting the plot

was 2.07. We also plot the ideality factor as a function of the applied bias (as shown SI in

Figure C.2), where the ideality factor is obtained from the plateau value [290]. This method

prevents erroneous fitting, as the exponential region is clearly distinguishable. The ideality

factor values obtained from both methods are significantly larger than unity, indicating trap-

assisted recombination plays a dominant role in the recombination process. This corroborates

the monomolecular recombination behaviour obtained from the OPTP spectroscopy. Even

though the device consists of ITO and additional processes, the predominant recombination

mechanism remains the same.

Figure 6.3: (a) Representative J-V curves obtained in dark (denoted by black line) and under
1-sun illumination (denoted by red line), the inset shows the actual device measure that had
an active area of 0.467 cm2. (b) Dark J-V curve plotted in semi-logarithmic scale depicting the
three distinct regions, region I corresponds to the voltage range < 0.25 V, region II corresponds
to the voltage range between 0.25 V and 0.53 V, region III corresponds to the voltage range >
0.53 V.

Nonetheless, the interpretation of the ideality factor obtained from the dark J-V can be prone

to error. As the series and shunt resistance can influence the current dependence on voltage,
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it is difficult to attribute the variations in the estimated ideality factor as an influence of resis-

tance (series and shunt) or recombination. Alternatively, we analyzed the Voc as a function of

illumination intensity. This method is also known as the Suns-Voc method and it is deemed

more reliable as the measurement is performed at open-circuit, which eliminates the depen-

dence on the parasitic series resistance [273, 229, 127]. Figure 6.4(a) shows the systematic

variation of the J-V curve of the thin film solar cell with respect to the illumination intensity of

the solar simulator, where the incident nominal power is varied between 0 and 1125 W/m2

(0-1.125 suns). The Voc obtained at 1.125 suns was ∼0.5 V for an aged device. The variation

in the Jsc , Voc , and FF leads to a combined light-intensity dependence of the PCE. A sharp

increase in the Jsc is observed, while the Voc shows a gradual increase with the increase in light

intensity. Moreover, there is a slight variation in the FF as a function of the light intensity. The

solar cell parameters are extracted from the J-V curve and plotted individually as a function

of the illumination intensity in Figure 6.4(b-d). The Jsc shows a monotonic increase with the

increase in the illumination intensity and shows no sign of saturation over the measured range

of optical power, as shown in Figure 6.4(b). The FF obtained from Pmax /(Jsc Voc ) is plotted

in Figure 6.4(c), where Pmax denotes the output at the maximum power point. We observe a

small variation in FF as a function of illumination intensity and the maximum FF (∼66 %) is

reached at 1.125 suns. Additionally, the PCE is expressed as Pmax /Pi n , where Pi n is the input

power. Figure 6.4(d) shows the variation in the PCE against the illumination intensity. We

observe a PCE value of 4±0.1% throughout the range. It should be noted here that the J-V

curve showing an efficiency of 4.4% (as shown in Figure 6.3(a)) was obtained using a different

setup, so a differences in the illumination input (power, spectrum, homogeneity) could lead

to a slight discrepancy in the measured efficiencies. Additionally, the illumination power-

dependent studies were done after several weeks after fabrication, which could have resulted

in the degradation of the device. Finally, the Voc is plotted as a function of the light intensity,

as shown in Figure 6.4(e). The Voc increases steadily with the increase in the light intensity

until 0.8 suns, with a slight fluctuation at the higher illumination intensities. The slope of

the semi-logarithmic plot of Voc against the illumination intensity can be used for estimating

the ideality factor, where the slope has the unit of kT /q. A change in the slope is observed

at higher illumination intensities, previous studies have shown that the change in the slope

can arise due to the discrepancy in recombination mechanisms [229, 134, 54, 29, 258, 280].

As mentioned previously that the ideality factor can be determined more reliably from the

illumination intensity and the Voc than the dark J-V curve. At the open circuit and steady-state

conditions, to ensure net zero current flow, the integrated generation and recombination rates

must be the same [127]. As the photogeneration is proportional to the illumination intensity,

under light the ideality factor can be expressed as:

ni d ,l =

(
q

kB T

dVoc

dl n(Popt )

)
(6.2)

where ni d ,l is the ideality factor under illumination, and Popt is the illumination intensity. At

open circuit conditions, the ideality factor is affected by the shunt resistance, however, the
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voltage drop over the series resistance is zero, which allows a more accurate description of

the recombination mechanism. The ideality factor obtained on fitting the plot was found

to be 1.03, it should be noted that as the slope changes over higher illumination intensities,

the last two points are neglected (in case we include the last two points we obtain an ideality

factor of 0.92). The results show a clear dominance of bimolecular recombination in presence

of light. The shift from trap-assisted in the dark (ni d > 1) to band-to-band recombination

under illumination (ni d ,l ≈ 1) has been previously reported [134, 53, 292, 291]. Cowan et al.

hypothesized that a higher density of charge carriers under illumination could lead to the shift

from monomolecular to bimolecular recombination [54], as these recombination mechanisms

have different density dependencies [290, 135]. Alternatively, the difference in the ideality

factor obtained from two methods could arise due to poor conductivities, which could give

rise to large gradient in quasi-Fermi levels at Voc [273].

Figure 6.4: (a) Light intensity dependence of J-V characteristics of the device, the measure-
ments were performed at different illumination intensities ranging from 0 sun (dark) to 1.125
suns (which corresponds to 1125 W/m2). The different solar cell parameters are extracted
from the light intensity dependent J-V curve and plotted as a function of the light intensity
(b) short-circuit current density Jsc , (c) fill factor FF, (d) power conversion efficiency η, (e)
open-circuit voltage Voc , the red dashed line denotes the part of the plot used for extracting
the ideality factor from the semi-logarithmic plot of light intensity against the Voc .

Having assessed the recombination mechanism, we now turn to the contribution of Zn3P2 and

InP to the working device. Figure 6.5(a-d) show the simulated band alignment between the

between the Zn3P2, the ITO (on the front side) and an intrinsic InP substrate. We present the

band alignment under an applied bias ranging between 0 to 1 V. The simulated band alignment

indicates that the electrons drift in the direction from the Zn3P2 to the InP and the holes in the

opposite direction. This is in agreement with the polarity of the I-V curve given the direction of

the applied bias. The collection of holes at the front of the device could be counterintuitive as

ITO is traditionally used as an n-type contact and Zn3P2 is a p-type semiconductor [265]. This

would suggest that electron collection is facilitated at the Zn3P2-ITO interface. However, the

junction with i-InP dominates the behaviour of the device and electrons are actually collected
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at the rear side of the device.

Figure 6.5(e) shows the external quantum efficiency (EQE) of the device as a function of

wavelength. The EQE of solar cells corresponds to the conversion efficiency of the incident

photons to collected electron [220, 4], which provides understanding of the charge collection

behaviour as a function of the energy of an incident photon. We observe a maximum EQE

of 85% at 847 nm wavelength. A sharp rise in the EQE is observed at a wavelength of 940

nm, which corresponds to 1.32 eV. This value coincides with the absorption onset of InP

(which has a bandgap of 1.34 eV), although there might be a slight contribution from the

Zn3P2 band tails [278, 248, 284]. The band gap of Zn3P2 is widely reported to be 1.5 eV [125,

261, 187], and thus cannot account for the EQE contribution at energies below its bandgap.

Still, a recent study by Stutz et al. demonstrated the presence of band tails that lead to band

gap narrowing in Zn3P2 [261]. This observation gives room to an alternative explanation, in

which the Zn3P2 already absorbs around the energy of the observed high-intensity PL peak.

However, this would mean that the Zn3P2 has an effective bandgap around 1.32 eV instead,

but at the same time does not explain why the EQE is 0% for wavelengths of 550 nm and

lower, as Zn3P2 demonstrates a high optical absorption coefficient in the visible spectral range

[269]. To clarify the contribution of Zn3P2 and InP to the measured EQE, we simulated the

absorption of InP (10 µm thick) and Zn3P2 (700 nm thick), as shown in Figure 6.5(f). It can be

seen that a significant part of the incident light is absorbed by the InP substrate. Additionally,

the measured EQE and the simulated InP absorption show a large spectral overlap, while the

simulated Zn3P2 absorption spectrum cannot be recognized from the shape of the measured

EQE curve. This suggests that the Zn3P2 layer contributes significantly less to the measured

EQE than the InP. To simulate the contribution of InP and Zn3P2 to the overall current density,

we selectively switched the charge carrier generation in the individual layers on and off, to

obtain I-V curves for the different contributions, as shown in Figure 6.5(g). The orange line

depicts the contribution from Zn3P2; the green line depicts the contribution from InP; and the

purple line indicates their combined contribution. The simulation predicts that combining the

two materials gives a higher current density, where the 700 nm of Zn3P2 contributes only 3.3

mA/cm2 to the overall current density. It is interesting to note that the simulated absorption

predicts there could be a contribution of up to 18.2 mA/cm2 from the 700 nm thick Zn3P2. In

comparison, the InP contributes 12.4 mA/cm2 and almost the same amount (13.0 mA/cm2) is

predicted from the simulated absorption. This indicates the internal quantum efficiency of

InP is around 95%, whereas it is solely 18% for Zn3P2. The insufficient charge carrier extraction

in the Zn3P2 can be explained in the following way: we note that there is a slight downward

bending in the CB of Zn3P2 towards the ITO interface (as shown in Fig. 5(a-d)). This means

that electrons that are generated within the first few hundreds of nanometers of the Zn3P2

layer can get stuck and recombine instead of being collected at the back. The photo-generated

carriers further away from the surface and in the vicinity of the InP and Zn3P2 interface can

be separated more efficiently. Thus, the reduced carrier collection from Zn3P2 in comparison

to InP is due to unfavorable energy alignment at the Zn3P2-ITO interface, which should be

addressed in the future.
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Figure 6.5: Simulated band alignment between the Zn3P2 layer and ITO at the front side, and
the Zn3P2 layer and InP at the back side, the blue solid line represents the conduction band
(CB), the red solid line represents the valence band (VB), the blue dashed line depicts the
quasi-fermi level for electrons (QFe ), and the red line depicts the quasi-fermi level for holes
(QFh), the simulation is done under different bias voltages (a) 0 V, (b) 0.4 V, (c) 0.8 V, and (d) 1 V.
(e) The EQE obtained from the measured device (denoted with purple line) and the reference
Si (denoted with red line). (f) Simulated absorption obtained from Zn3P2 (denoted by the
solid orange line), InP (denoted by the green solid line), and ITO (denoted by grey line) for
the wavelength range of 300 nm to 1000 nm. (g) Simulated I-V diagram obtained from Zn3P2

generation (denoted by the solid orange line), from InP generation (denoted by the green solid
line), and from the combined (Zn3P2 and InP) generation (denoted by the solid purple line).

High energy photons are absorbed much closer to the surface, and hence are affected more

strongly by the low extraction efficiency in the Zn3P2. This explains the EQE loss at shorter

wavelengths. If the small Zn3P2 contribution predicted by the simulations indeed also occurs

experimentally, then it is spectrally overlapping with the InP contribution. Note that the

comparison between experiment and simulation relies mainly on band alignment arguments,

as the simulations assume fairly ideal bulk recombination parameters and no interface/surface

recombination. Similar loss behaviour has been reported for Zn3P2/ZnSe heterojunction solar

cells [22].

An alternative device design should be considered to enhance the EQE and the overall effi-

ciency of the device. Instead of ITO, a front contact with a larger work function could reduce

the band bending at the front interface. Alternatively, to still utilize the transparency of the

ITO, one could insert a dedicated hole-selective layer between the Zn3P2 and ITO which would

have an equivalent function. Passivation of the Zn3P2 thin films has been shown to reduce the

surface recombination velocity and could also be implemented [122] to reduce surface recom-

bination effects. Additionally, reflection losses can be prevented by using an anti-reflective

coating on the device surface and/or by texturing. To ensure efficient absorption in the Zn3P2

84



Carrier generation and collection in Zn3P2/InP heterojunction solar cells Chapter 6

layer, the thickness of the film can also be increased (from 700 nm to several micrometres).

In the long term, a different substrate material has to be used along with the Zn3P2 absorber

layer, to make sure that light is solely absorbed in the dedicated Zn3P2 layer.

6.6 Conclusion

We demonstrated an efficiency of 4.4% for a solar cell consisting of polycrystalline Zn3P2

thin film on an intrinsic InP substrate. The fabrication of the device entails a straightforward

method of depositing transparent conductive oxide and metal contacts on the as-grown thin

film. The optimization of power conversion efficiency is related to improving the solar cell

parameters; therefore, it is important to identify the limiting parameters and their causes.

We observed a crossover behaviour between the light and the dark IV curves; even though

the exact origin of this behaviour is unknown. We highlight some of the main factors that

could lead to crossover, as the crossover behaviour could lead to a reduction in the Voc

and FF. Additionally, losses in the FF could arise from the high series resistance. The high

series resistance could be attributed to the polycrystalline nature of the thin film and to the

interface between the ITO and Zn3P2. The OPTP spectroscopy measurements elucidate a

monomolecular recombination behaviour in the Zn3P2 thin film. This is in good agreement

with the recombination mechanism obtained from the ideality factor of the device, which

shows trap-assisted recombination mechanism is dominant in our system. Whereas the

switch from the high ideality factor (n >1) in dark to the low ideality factor in light (n ≈ 1) could

arise from the fitting. As the light ideality factor is determined by the slope of the Voc against

illumination intensity, this could average out over different recombination mechanisms. The

recombination mechanism is dependent on the light intensity, charge density, and density of

traps. Any variation in these factors can cause a switch from one recombination mechanism to

the other, in particular the strength of the bimolecular recombination coefficient, the carrier

density, the occupation and capture cross-section of the traps, and the thermal velocity of

charge carriers. The presence of non-radiative recombination centers, such as crystallographic

defects and impurities, leads to losses in the PCE. Additionally, band tails can significantly

impede the Voc values obtained from the device; they constitute a density of state that extend

into the band gap, which can give rise to radiative and non-radiative recombination channels.

In prior studies, a linear trend between Voc -loss and the Urbach energy has been demonstrated.

Finally, the loss in EQE is mainly ascribed to the poor spatial collection efficiency of charges

generated in the Zn3P2 layer, arising due to unfavorable energy level alignment. The carrier

lifetime (≈4.6 ns) obtained from OPTP spectroscopy measurements is significantly lower than

carrier lifetimes previously reported for Zn3P2. Having identified some of the key limitations

of the fabricated solar cell and the contribution of InP to the working device, we believe the

path toward high-efficiency Zn3P2 solar cells entails a strategic device design. To minimize

the dependence on the InP substrate for epitaxial growth one can utilize a InP buffer layer or

use Zn3P2 nanostructures. Alternatively, the InP substrate can be replaced by earth-abundant

material like Si (for the nanostructure growth) or van der Waals substrates. Stoichiometric
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(Zn:P = 60:40) Zn3P2 growth is imperative to avoid the formation of band tails, which in turn

can lead to bandgap narrowing. Deviation from stoichiometry has proven to incorporate

defect states, which causes poor carrier lifetime and recombination losses. The thickness of

the Zn3P2 layer can be further increased and the optical device architecture improved to ensure

the majority of the incident light is absorbed in the Zn3P2 layer. Additionally, a different device

design can be implemented, which does not rely on heterojunction or Schottky junction, but

utilizes selective contacts instead, which could potentially lead to highly efficient Zn3P2-solar

cells.
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In this thesis, we investigated the growth and properties of Zn3P2. We focused on its crystal

structure, optical, and electrical properties. The gained understanding was used to determine

the factors that hinder the performance of Zn3P2-based devices. We observe a correlation

between the composition and the material properties. Our results contribute to the under-

standing of the growth of Zn3P2 on alternative substrates and they provide insights into the

limitations and potential of the material.

In this first part, we demonstrated the growth of Zn3P2 on an alternative substrate that circum-

vents the requirement of a lattice-matched substrate. The large unit cell of Zn3P2 makes the

growth on conventional substrate challenging. In this study, we demonstrated the growth of

Zn3P2 on graphene via van der Waals epitaxy. We provided a detailed account of the growth

condition and proposed a suitable growth mechanism. We found the growth window is

relatively narrow on graphene and the growth temperatures are significantly lower than on

traditional substrates like GaAs and InP. The lower temperatures prevent the formation of

microcracks, which are commonly observed in Zn3P2 growth due to its large coefficient of

thermal expansion. A preferential orientation of the grown Zn3P2 with respect to the substrate

has been observed, which is highlighted by the triangular flake-like growth. For a longer

duration of growth, we observe an increase in growth rate that is predominantly influenced by

the defects present on the graphene surface. The PL measurements showed similar behaviour

as conventionally grown Zn3P2 with a bandgap of ∼1.5 eV. Thus, van der Waals epitaxy has

proven to be an efficient growth technique to overcome the limitation of lattice-matched

substrate. As a follow up of this work, it will be interesting to understand the growth of Zn3P2

on graphene with lower defect densities, such as by utilizing high-quality graphene on silicon

carbide. One could hope to obtain larger grains in this way. Moreover, the role of defects on

growth can be investigated by locally tuning the defects using focused ion beam. One can also

think about new pathways for device fabrication using the Zn3P2 grown with van der Waals

epitaxy, one can easily transfer the grown layer to any other suitable substrate. For example,

the grown Zn3P2 could be transferred on a glass substrate coated with transparent conductive

oxide and an electron collecting layer. Whereas on the top surface a hole collecting layer and a

87



Chapter 7 Conclusion and Outlook

metal contact can be used. Additionally, it would be interesting to explore the selective area

growth of Zn3P2 using graphene as a mask.

In the second part, we investigated the electrical transport properties of Zn3P2 thin films

grown on InP substrates. We demonstrated an efficient process for fabricating electrical

devices on thin films exhibiting microcracks, which involves electron beam lithography and

focused ion beam processing. The difference in the electrical properties of monocrystalline

and polycrystalline Zn3P2 as well as Zn/P composition has been highlighted. We identified

the dominant conduction mechanism in the different crystalline thin films as a function of

temperature. It was shown that the thermally activated conduction mechanism is prevalent

in all the measured thin films. The estimation of the activation energies shows the presence

of a trapping level consistent with that of phosphorous interstitials. Only p-type transport

behaviour was observed for different compositions of Zn3P2, with the Zn/P ratio ranging from

1.16 to 1.64. Furthermore, we demonstrated a relatively high hole mobility of 125 cm2/Vs

for high-quality single crystalline Zn3P2 thin films. We correlated the composition obtained

from SIMS measurements to the carrier concentration. We found an exponential relation

between the two for the measured range of data. Finally, we highlighted the role of the

substrate on the transport behaviour, we probed the junction between Zn3P2 and InP to

demonstrate the influence of the substrate. Monocrystalline Zn3P2 grown on n-InP shows

considerable leakage in the reverse bias condition in comparison to monocrystalline Zn3P2

on i-InP. This work demonstrates the influence of composition and microstructure on the

electrical properties.Further work would entail the understanding of how to tune reproducibily

the Zn/P ratio in the film.

In the final part, we demonstrated a photovoltaic device utilizing the as-grown Zn3P2 with

minimal post-growth processing. This study provided insight into the prevalent recombination

mechanisms in the device. The terahertz spectroscopy measurements show the dominant

recombination mechanism in Zn3P2 thin film is monomolecular in nature. Furthermore,

the ideality factor obtained from the dark I-V characteristics was compared to the ideality

factor obtained from illumination-dependent measurements. We observe a difference in

the recombination mechanism estimated from the two methods, we attribute this difference

to different density dependencies of the two recombination mechanisms. However, this

requires further investigation. We accounted for the various loss mechanisms in the device

and recommend ways to further improve the efficiency of Zn3P2-based solar cells. Indeed, one

cannot ignore the contribution of InP to the working device, given the similar bandgap of the

two materials. Among the different devices we tested, we found significant variations mostly

arising from the difference in composition in Zn3P2. Additionally, our prior study done on

the absorption properties of Zn3P2 shows that the majority of the absorption occurs in Zn3P2

for the given thickness of the film. Thus, the loss in the EQE of the device is attributed to the

unfavourable band alignment between Zn3P2 and ITO. The decoupling of the contribution of

Zn3P2 and InP needs further investigation. This study largely indicates that the growth of Zn3P2

for its application in photovoltaics requires an alternative substrate, which is earth-abundant

and eliminates uncertainty from measurements.
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A continuation of this work would entail the growth of Zn3P2 thin films on a buffered InP layer

to avoid the use of the whole substrate. This would ensure the epitaxial relation required for

the growth but would significantly reduce the contribution of InP to the fabricated device.

Alternatively, we could explore the selective area growth of Zn3P2 on silicon substrates. These

two materials have a relatively large lattice-mismatch; however, starting the growth with a

nanostructure can significantly relax the requirement for a lattice-matched substrate. These

two growth techniques could provide a path to reduce (if not eliminate) the use of rare-earth

material in the fabrication of earth-abundant material for photovoltaics. To conclude, the

present work contributes significantly to the understanding of zinc phosphide. Through in-

depth characterization, we have demonstrated the impact of microstructure and composition

on the electrical and optical properties. We also opened new avenues for Zn3P2 growth, which

reduces the dependency on the substrate. Furthermore, we believe this work will serve as a

foundation for the growth and fabrication of next-generation Zn3P2-based devices. This work

leaves off with a plethora of possible follow-up studies, with the prospect of optimization of

Zn3P2-based photovoltaics.
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A Supplementary information for “van
der Waals epitaxy of earth-abundant
Zn3P2 on graphene for photovoltaics”

A.1 Raman spectra

Figure A.1 represents the room temperature Raman spectroscopy measurements for samples

grown at 150 °C at three different V/II ratios. These V/II ratios are lower than the optimum

V/II range for Zn3P2 growth on graphene at 150 °C. It is observed that an additional peak at

71 cm−1 is present along with the room temperature Raman peaks of Zn3P2. The intensity of

the peak at 71 cm−1 increases with decreasing V/II ratio. Whereas the intensity of the Raman

peaks assigned to Zn3P2 does not change, this indicates that the Zn content in the sample

increases with lower V/II ratio. The presence of excess Zn in the sample leads to a change in

morphology of the grown sample, as shown in Figure 4.1(c).

A.2 XRD measurements

Figure A.2 depicts the SEM and XRD measurements for Zn3P2 samples grown at 150 °C at a

V/II = 0.83. Figure A.2(a) represents the SEM image and XRD peaks for the sample grown for

240 minutes. Dense aggregates are observed in the SEM image, and the presence of Zn is

confirmed by the corresponding XRD measurements. The XRD peaks consist of (101), (202),

(303), and (404) planes of Zn3P2 along with (002) and (101) planes of Zn. The Zn peaks are

matched using the ICDD file no 00-004-0831 [268]. Figure A.2(b) represents the SEM image and

XRD measurements for the sample grown for 150 minutes under the same growth conditions

as above. It is seen from the SEM image that for lower growth time, fewer aggregates are

present on top of a well-formed Zn3P2 layer. The XRD peaks consist of (101), (202), (004),

(203), (303) and (404) planes from Zn3P2 and plane (002) from Zn. The intensity of (002) and

(101) planes of Zn is much stronger for the sample grown for a longer duration (240 minutes,

Figure A.2(a)), this indicates that aggregates formed on top of Zn3P2 layer are of Zn at the

given conditions and the Zn aggregates become denser with time. The aggregation of Zn

occurs due to higher absorption behaviour on Zn3P2 than on graphene at the given growth

91



Appendix
Supplementary information for “van der Waals epitaxy of earth-abundant Zn3P2 on

graphene for photovoltaics”

Figure A.1: Raman spectra of Zn3P2 grown on graphene at 150 °C with varying V/II ratio

conditions. The growth starts with the formation of Zn3P2 on graphene, when a layer of Zn3P2

is formed the absorption of Zn increases and leads to the formation of Zn aggregates. The

presence of (004) and (203) planes of Zn3P2 in the XRD measurement indicates that the growth

of Zn3P2 on graphene in the normal growth conditions is more random than under optimal

growth conditions, which causes the loss of preferential orientation of Zn3P2 on graphene.

Indeed, such drastic change in adsorption behaviour is not observed under the optimum

growth conditions.

A.3 Effect of Total Flux

Figures A.3(a-c) illustrate the SEM images for Zn3P2 grown on graphene by varying the total

flux conditions for 30 minutes. The growth temperature and V/II ratio were maintained at the

optimal growth conditions. The Zn and P2 fluxes were adjusted to maintain the V/II ratio at

different overall flux ranges. The growth rate increases with the increase in total flux. Figure

A.3(c) shows the SEM image of the sample grown at P2 BEP of 9.18 × 10−7 Torr, as expected the

surface coverage of the sample is higher than the samples grown at lower pressure conditions.

This demonstrates that the growth parameters significantly influence the growth rate.
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Figure A.2: (a) XRD of Zn3P2 samples grown on graphene at 150 °C at a V/II = 0.83 for 240
minutes, inset represents the corresponding SEM image for the sample: (b) XRD of Zn3P2

samples grown on graphene at 150 °C at a V/II = 0.83 for 150 minutes

Figure A.3: (a-c) SEM images of Zn3P2 grown on graphene for 30 minutes at 150 °C and at a
V/II = 1.55 with (a) P2 BEP of 8.75 × 10−8 Torr, (b) P2 BEP of 4.30 × 10−7 Torr, (c) P2 BEP of 9.18
× 10−7 Torr.

A.4 EBSD

The EBSD measurement was done by placing the sample on the SEM stage with a 70°C tilt.

Kikuchi band obtained at the surface of the Zn3P2 flakes were indexed with the expected93
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α-Zn3P2. Figure A.4(a) represents the EBSD map of Zn3P2 grown on graphene under optimal

growth conditions. The EBSD map was acquired for 4 hours on aXLF30 SEM equipped with

EBSD system (Nordlys 2 camera, Aztec software, Oxford Instruments). Since 95% the Zn3P2

flakes≥ in the map coloured in IPFz (inverse pole figure in the z-direction) mode have the

same green/yellow colour, it is clear that the crystallographic plane parallel to the graphene

surface is the same. The pole figure plot was used to determine that the (101) plane of α-Zn3P2

have a strong texturization parallel to the surface. These results are corroborated by the

XRD measurements shown in Figure 4.3(a). This indicates the Zn3P2 grown on graphene has

a preferential (101) orientation under optimal growth conditions. Figure A.4(b) shows the

schematic representation of the tetragonal unit cell of Zn3P2. Each phosphorous atom (green

spheres) is 6 surrounded by eight tetrahedral cavities, six are occupied by Zn atoms (yellow

spheres) and the other two is vacant [202, 208]. Each Zn atom is tetrahedrally bonded to four

P atoms. The unit cell of tetragonal Zn3P2 can be constructed by stacking slightly distorted

cubic cells of fluorite (grey) and zinc-blende (blue). The a and b lattice parameters of the

tetragonal unit cell of Zn3P2 are oriented along the diagonal faces of the cubic cells, and the c

lattice parameter is equivalent to twice the lattice parameter of a single cubic unit cell. The

total volume of the tetragonal unit cell is equal to 4 cubic cells3. Given the lattice, parameter

c is equivalent to for the tetragonal unita cell, one can expect an orientation relationship

between the tetragonal phase and pseudo-cubic phase. The phase transformation of the

Zn3P2 tetragonal unit cell to a pseudo-cubic phase can be done the following way:

The orientation relationship matrix X is built using the equivalent directions of the tetragonal

unit cell in pseudo-cubic form, as shown in the table of Figure A.4(b).

X =

1 −1 0

1 1 0

0 0 2


the transpose of the matrix X is:

X T =

 1 1 0

−1 1 0

0 0 2


The inverse of the XT is :

X −T =
1

2

1 −1 0

1 1 0

0 0 1


The matrix X−T is the orientation relationship matrix for the planes. It multiplied by a plane in
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the tetragonal crystal system (t) to obtain its equivalent pseudo-cubic form (c).1 −1 0

1 1 0

0 0 1


1

0

1


T

=

1

1

1


C

This proves that the (101) tetragonal plane is equivalent to the (111) pseudo-cubic plane. The

quasi-hexagonal shape of the Zn3P2 comes from the quasi three-fold symmetry of the [111]

axis.

Figure A.4: (a) EBSD map of Zn3P2 grown on graphene under optimal growth conditions
showing the preferential orientation, (b) corresponding EBSD pole figure, (c) Schematic
representation of the tetragonal unit cell of Zn3P2 in pseudo-cubic form.

A.5 Photoluminescence

In sample A, we observed two room-temperature PL peaks at 1.52 eV and 1.42 eV. The

intensities were derived for the two peaks and the corresponding power dependence is shown

in Figure A.5(a). It is seen that the PL intensity for both the peaks increases linearly with

the laser power. No saturation of these two peaks was observed for the power range used.

The slopes for peaks 1.52 eV and 1.42 eV, k = log (PL intensity)/log (laser intensity) 1.6 and

1.7 ≈ respectively, which suggests exciton line [239]. Figure A.5(b) shows the PL peak as a

function of power at 200 K for sample A. The peak position does not change with the increase

in laser power, and the slope of the peak is ∼ 1.28, which suggests an exciton line [239]. The

PL peak has a tail in its high energy side, which is common in many crystal systems (example:

GaAs) [80]. Figure A.5(c) shows the plot of intensities of the peak at 1.26 eV in sample B as

a function of laser power at 5.8 K. The peak position does not change with increase in laser

power. However the intensity of the peak starts to saturate at higher laser powers, which

suggests a defect-related peak [239].

95



Appendix
Supplementary information for “van der Waals epitaxy of earth-abundant Zn3P2 on

graphene for photovoltaics”

Figure A.5: (a) Plot of room temperature PL intensities for peaks at 1.52 eV and 1.42 eV as a
function of laser power done on sample A with 633 nm illumination, (b) PL spectra of sample
A at 200 K as a function of laser power excited with 633 illumination; (c) Plot of PL intensities
for peak at 1.26 eV as a function of laser power done on sample B at 5.8 K excited with 532 nm
illumination.
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Figure B.1: Optical microscope image of the monocrystalline Zn3P2 thin film demonstrating
micro-cracks formed due toalarge thermal coefficient mismatch between the Zn3P2 thin film
(14×10−6K−1) [163] and the substrate (4.35×10−6K−1) [85] (a) bare thin film (b) thin film after
the second EBL step, the surface is coated with PMMA except for the exposed area, which
contains the hall bar. The hall bar is positioned away from the existing micro-cracks on the
sample.
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Figure B.2: I-V characteristicobtained as a function of distance between two contacts from
(a) monocrystalline Zn3P2 thin film(M1) (b) polycrystalline Zn3P2 thin film (P2), on i-InP
(100)substrate

Figure B.3: I-V characteristic obtained as a function of distance between two contacts from (a)
monocrystalline Zn3P2 thin film on n-InP (100) substrate(M3), a switch from linear I-V curve
to non-linear I-V curve is observed at ∼ 100 µm.
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Figure B.4: Hall effect measurement done at 300 K using an injection current 0.1µA (a) longitu-
dinal resistance (RXX)(b)transverse resistance (RXY), plotted as a function of magnetic field.

Figure B.4(a) and b show the longitudinal resistance (RXX) and transverse resistance (RXY),

respectively, as a function of the magnetic field. The measured RXX increases with increase in

the magnetic field and follows a parabolic dependence, as seen in Figure B.4(a). However, a

parabolic dependence is also observed for the measurement of RXY as a function of the mag-

netic field. Qualitatively, a non-linear behaviour with a clear offset from the origin indicates

the RXY measurements are largely influenced by the RXX component, which could occur due

to misalignment in hall probes [11].

Figure B.5: COMSOL simulation of the band alignment between (a) p-InP and p-Zn3P2 (b)
n-InP and p-Zn3P2, a nominal carrier concentration of 1015cm−3 is assumed for Zn3P2 and
1018cm−3for InP
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Figure C.1: The decay of pump intensity in the Zn3P2 thin film.

The decay of pump intensity in the Zn3P2 layer is calculated using the Beer-Lambert law

I = I0e−αd (C.1)

Where I and I0 are pump intensity reaching thickness d and pump intensity at the front surface.

101



Appendix
Supplementary information for “Carrier generation and collection in Zn3P2/InP

heterojunction solar cells”

α is the absorption coefficient at the pump wavelength. Based on 700 nm thickness, almost

∼75% of pump energy is absorbed in the Zn3P2 layer, leaving only ∼25% reaching the InP

substrate. Moreover, the OPTP measurements were taken in reflection mode, which is more

sensitive to the surface layer. Thus, the overall response from THz measurements can be

considered from the Zn3P2 layer itself.

Figure C.2: The dark ideality factor is plotted as a function of the voltage, where the ideality
factor-voltage characteristic is calculated by numerical differentiation according to Equation.
C.2, and the ideality factor is obtained from the plateau.

The J-V curve is dominated by parasitic effects arising due to shunt and series resistance [273].

Therefore, the ideality factor can be plotted as a function of the voltage, where the ideality

factor is derived from:

ni d ,l =

(
kB T

q

dl n J

dV

)−1

(C.2)

Figure C.2 shows the plot of the voltage-dependent ideality factor, the dashed line corresponds
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to the minimum in the exponential region of the diode curve. The increase in the ideality factor

towards the lower and higher voltage values is due to shunt and series resistance, respectively.

The ideality factor obtained from the plateau in the ni d -V plot was 1.85. This is slightly lower

than the value obtained by the other method (which is ∼ 2).

C.1 Optical simulations

We use a finite-difference time-domain (FDTD) solver (Ansys Lumerical FDTD) for optical

simulations. The following device stack was simulated (top to bottom): ITO (85 nm), Zn3P2

(700 nm), InP (10 µm), Au (500 nm); The mesh accuracy was set to 10 nm normal to the layer

stack, and 100 nm parallel to the stack for a “uniform” mesh type. The mesh refinement was set

to “conformal variant 1”. The simulations were done in 3D, with periodic boundary conditions

along the plane of the cell (500 nm range in x-/y-direction), and perfectly matched layers

(PMLs) at both ends of the simulation region in z-direction. A plane-wave source at a distance

of 2.4 µm from the front of the solar cell was used as input, and dedicated “Transmission

box” and “Solar generation rate” analysis groups were used to obtain absorption spectra and

generation profiles, respectively.

C.2 Electronic simulations

A finite-element method-based drift-diffusion equation solver (Ansys Lumerical CHARGE) is

used to calculate the electronic device performance. The device stack is the same as for the

optical simulations. The mesh edge lengths are limited to a range between 10 nm and 1 µm

via “Global Mesh Constraints”. The device is simulated in the steady-state solver mode, and

in 2D, with a “norm length” of 1 cm for the 3r d dimension. To simulate the device within an

electric circuit, the front and back contacts are identified as electronic connection points. The

front contact (ITO, ϕ = 4.7) is set to “force ohmic = false”, while the back contact (Au, ϕ = 5.1) is

set to “force ohmic = true”. Surface/interface recombination is neglected, and the generation

profiles from the optical simulations are imported via the designated import function. Band

diagrams are recorded with the dedicated “Band Structure Monitor”, and IV curves are directly

extracted from the “CHARGE”-solver window. A detailed listing of the parameter values used

for the semiconductors (Zn3P2, InP) can be found in Table C.1.
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Table C.1: List of parameters used for the semiconductors in the drift-diffusion simulations.

Property Units

material name Zn3P2 InP ITO Au
material type semiconductor semiconductor metal metal

dc permittivity 11 12.4
work function eV 4.355 5.0105 4.7 5.1

Ec valley Gamma Gamma
effective mass electrons 1/me 0.268 0.073

effective mass holes 1/me 1.069 0.59
Eg eV 1.51 1.35
ni 1/cm3 2.04E+06 1.08E+07

mobility electrons cm2/(Vs) 1000 5300
mobility holes cm2/(Vs) 20 200

lifetime electrons s 2.70E-08 1.00E-08
lifetime holes s 2.70E-08 3.00E-06

Capture Coefficient Auger e. cm6/s n.a. 1.70E-33
Capture Coefficient Auger h. cm6/s n.a. 9.00E-31

radiative recombination coefficient cm3/s n.a. 2.00E-10
n-type doping cm−3 0.00E+00 1.00E+16
p-type doping cm−3 1.00E+15 0.00E+00
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