
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Scalable Metaprogramming in Scala 3

Nicolas Alexander STUCKI

Thèse n° 8257

2023

Présentée le 19 janvier 2023

Prof. V. Kunčak, président du jury
Prof. M. Odersky, directeur de thèse
Prof. W. Taha, rapporteur
Dr N. Xie, rapporteuse
Prof. C. Koch, rapporteur

Faculté informatique et communications
Laboratoire de méthodes de programmation 1
Programme doctoral en informatique et communications

“With great power comes great responsibility”

— Benjamin F. Parker

i

Acknowledgements

Thesis advisor I would like to thank my advisor Martin Odersky for his support and mo-

tivation during my academic work. I am grateful for the opportunity to do my Ph.D. studies

with him and to work as an engineer in the LAMP laboratory. I am glad that Martin guided

me towards the design of the new metaprogramming features of Scala, a challenging and

gratifying job.

Thesis committee I want to thank my thesis committee Walid Taha, Ningning Xie, and

Christoph Koch for reading the thesis and the interesting discussions that followed. I am

especially grateful to Walid Taha for creating multi-stage programming, the core on which

this thesis is based. I also want to thank Viktor Kunčak for taking the jury president duties last

minute.

Papers and thesis I want to thank Fengyun Liu, Aggelos Biboudis, Sébastien Doeraene and

Paolo Giarrusso for their contributions to the papers that were used as a basis for the thesis.

Furthermore, I am particularly grateful to Sébastien Doeraene for kindly helping with revisions

of the entire thesis.

Metaprogaramming design I especially thank Fengyun Liu and Aggelos Biboudis for their

help while developing, implementing, and formalizing the system. Their contribution to the

design and implementation of the system was invaluable. I am also thankful to Jonathan

Brachthäuser and Aleksander Boruch-Gruszecki for help with the formalization of the system.

Scala compiler and language I want to thank Dmytro Petrashko for his mentoring on the

compiler details. I also want to thank Guillaume Martres, Olivier Blanvillain and Aleksander

Slawomir Boruch-Gruszecki for all their input to the metaprogramming system regarding the

compiler and the Scala language itself. I am also grateful to Sébastien Doeraene and Paolo

Giarrusso for their help in understanding and finding a solution to problems of type testing.

From Scala 2 to Scala 3 I want to thank Eugene Burmako and Denys Shabalin for their

previous work on the Scala 2 macros system. This work was an indispensable basis for

developing the Scala 3 macros system. As well, I want to thank Anatolii Kmetiuk, Fengyun Liu

and Aggelos Biboudis for their help porting Scala 2 macros into Scala 3 and for supporting the

community in this effort. Their work was vital to be able to ship Scala 3 with the essential core

macro libraries of the Scala 2.

ii

Acknowledgements

Scala professors I want to thank Martin Odersky and Viktor Kunčak for allowing me the

opportunity to be their head assistant for the programming courses; teaching and managing

were new and rewarding experiences for me. I also thank Ondřej Lhoták for all the insightful

discussions we had during his visits to EPFL.

Path to Ph.D. studies I want to thank Vlad Ureche and Aleksandar Prokopec for being

advisors on my projects during my Master’s studies. These projects guided me towards Scala

and my Ph.D. studies in LAMP.

The office I want to thank my office mates Manohar Jonnalagedda, Heather Miller, and

Matthieu Bovel for a fun and relaxed work environment. I want to thank Natascha Fontana

for all the administrative help she provided. I would also like to thank Fabien Salvi for all the

technical infrastructure support that he provided.

Good times I am especially thankful for all the fun activities in and around Lausanne with

Aggelos Biboudis, Aleksander Boruch-Gruszecki, Allan Renucci, Anatolii Kmetiuk, Claudia

Melcarne, Darja Jovanovic, Denys Shabalin, Dragana Milovancevic, Eugene Burmako, Felix

Mulder, Fengyun Liu, Georg Schmid, Guillaume Martres, Heather Miller, Jamie Thompson,

Jonathan Brachthäuser, Jorge Vicente Cantero, Julien Richard-Foy, Lisa Hult, Mahathi Jon-

nalagedda, Manohar Jonnalagedda, Maria Gazaki, Matthieu Bovel, Mia Primorac, Ólafur Páll

Geirsson, Olivier Blanvillain, Oskar van Rest, Sandro Stucki, Sébastien Doeraene, Théodore

Note, Valentine Dubus, Vojin Jovanovic, and many more.

COVID-19 My recovery from COVID-19 has not been easy. I would like to thank everyone

for their patience and support during my (long) long COVID-19 recovery. Without everyone’s

support, I would not have been able to finish this thesis.

Family I would like to extend my sincere thanks to my parent Urs and Valérie. Their loving

care and support was crucial throughout my studies and allowed me to pursue a Ph.D. degree.

I am also thankful to my two grandmothers: Edith, who provided encouragement and financial

support for my studies, and Georgette, whose devotion to teaching inspired me to follow a

higher level of education. I am very grateful to my aunt Evy and her husband Moca, who kindly

welcomed me at their home during my first years of studies in Switzerland. Last but not least,

I would like to thank my wife Camila, who has been present in my life since the start of my

Ph.D., making my days happier and believing in me at all times.

Nicolas Stucki

September 2022

Lausanne

iii

Résumé

Un métadéveloppeur devrait être à même de raisonner à propos de la sémantique du code

généré. La programmation multi-phase a proposé une solution à la fois élégante et puissante

à ce problème. Il s’ensuit une approche de la génération de code fondée sur la sémantique, où

celle-ci est entièrement définie par le métaprogramme, et ne peut être accidentellement alté-

rée lorsque l’on génère le code. Cela implique que le code généré est bien typé et hygiénique

par construction. L’on peut appliquer cette approche sémantique raisonnée à d’autres abstrac-

tions de métaprogrammation. En revanche, différentes abstractions exposent divers degrés

d’expressivité. En général, plus les abstractions sont expressives, plus elles sont complexes

et moins elles offrent de garanties statiques. Il est difficile, voire impossible, d’identifier une

unique abstraction qui soit à la fois simple and parfaitement expressive. Plutôt que devoir choi-

sir l’une ou l’autre de ces abstractions, nous pouvons concevoir un système unique formé de

plusieurs abstractions exposant des niveaux différents d’expressivité et de complexité. L’on se

doit d’être prudent avec les abstractions de métaprogrammation les plus expressives, compte

tenu de ce qu’elles peuvent exposer certains détails du compilateur ou de sa représentation

du code, et ainsi porter atteinte à la portabilité. Nous montrons qu’il est possible de concevoir,

implémenter et utiliser en production un Système Portable et Évolutif de Métaprogrammation

Fondé sur la Sémantique.

Mots-clés : métaprogrammation, macros, programmation multi-phase, inlining, formalisa-

tion, types algébriques de données virtuels, Scala

iv

Abstract

A metaprogrammer should be able to reason about the semantics of the generated code. Multi-

stage programming introduced an elegant and powerful solution to this problem. It follows a

semantically driven approach to code generation, where semantics are fully defined by the

metaprogram and cannot accidentally change when we generate the code. This implies that

the generated code is well typed and hygienic by construction. We can apply this principled

semantic approach to other metaprogramming abstractions. However, different metapro-

gramming abstractions have different levels of expressiveness. Usually, the more expressive

abstractions are more complex and give fewer static guarantees. It is hard or impossible to

find a single abstraction that is both simple and fully expressive. Instead of choosing a single

abstraction, we can design a single system out of several abstractions that scale with respect to

expressiveness and complexity. We must be careful with the most expressive metaprogram-

ming abstractions, as they may expose parts of the compiler or of its code representations,

which hinders portability. We demonstrate that it is possible to design, implement and use in

production a Portable Scalable Semantically Driven Metaprogramming System.

Keywords: metaprogramming, macros, multi-stage programming, inlining, formalization,

virtual algebraic data types, Scala

v

Contents

Acknowledgements ii

Résumé iv

Abstract v

List of Figures x

List of Code Examples xi

List of Theorems, Lemmas and Definitions xii

List of Tables xiv

1 Introduction 1

1.1 Macros Design Principles . 1

1.2 Scala 2 Macros . 2

1.3 Scala 3 Macros . 3

1.4 Contribution . 5

I Inlining for Metaprogramming 7

2 Semantics-Preserving Inlining for Metaprogramming 9

2.1 Inline Functions . 12

2.1.1 Inline Values . 13

2.1.2 Parameters of Inline Functions . 13

2.1.3 Recursion . 15

2.1.4 Inline Conditionals . 17

2.2 Inline Methods . 17

2.2.1 Members and Bridges . 17

2.2.2 Overloads . 18

2.2.3 Abstract Methods and Overrides . 19

2.3 Transparent Inlining . 24

2.4 Metaprogramming . 26

2.4.1 Inline Error . 26

vi

Contents

2.4.2 Inline Pattern Matching . 26

2.4.3 Inline Summoning . 27

2.4.4 Inlining and Macros . 27

2.5 Implementation . 29

2.6 Applicability . 29

2.7 Related Work . 30

2.8 Future Work . 32

2.9 Conclusion . 32

II Multi-Stage Programming 35

3 Macro and Run-Time Multi-Stage Programming 37

3.1 Macros and Run-Time Multi-Stage Programming 39

3.1.1 Multi-Staging . 39

3.1.2 Quoted Values . 40

3.1.3 Macros and Multi-Stage Programming . 42

3.1.4 Safety . 45

3.1.5 Staged Lambdas . 47

3.1.6 Staged Constructors . 47

3.1.7 Staged Classes . 48

3.1.8 Quote Pattern Matching . 48

3.1.9 Sub-Expression Transformation . 52

3.1.10 Staged Implicit Summoning . 53

3.2 Implementation . 54

3.2.1 Syntax . 54

3.2.2 Run-Time Representation . 55

3.2.3 Entry Points . 58

3.2.4 Compilation . 59

3.3 Reflection . 70

3.4 Related Work . 70

3.5 Future Work . 72

3.6 Conclusion . 74

4 Multi-Stage Macro Calculus 77

4.1 Multi-Stage Calculus . 78

4.2 Core Calculus . 78

4.3 Quoted Constants Calculus Extension . 83

4.4 Quote Pattern Matching Extension . 85

4.5 Global Definitions Extension . 91

4.6 Patterns with Type Variables Extension . 97

4.7 Parametric Polymorphism Extension . 103

4.8 Polymorphic Multi-Stage Macro Calculus . 108

vii

Contents

4.8.1 Syntax . 108

4.8.2 Environments . 109

4.8.3 Typing . 111

4.8.4 Operational Semantics . 114

4.8.5 Values . 119

4.9 Concrete Syntax in Scala . 120

4.10 Discussion and Related Work . 121

4.11 Future Work . 123

4.12 Conclusion . 123

III Typed AST Reflection 125

5 Virtual ADTs for Portable Metaprogramming 127

5.1 Scaling APIs with Virtual ADTs . 128

5.1.1 Abstract Types: Separating Interface from Implementation 130

5.1.2 TypeTest: Supporting Run-Time Type Tests 132

5.1.3 Extension Methods: Restoring the Interface 133

5.1.4 Abstract Objects: Encoding Companions 134

5.1.5 Unapply Methods: Extractors . 134

5.1.6 Singletons: Case Objects . 135

5.1.7 Summary . 135

5.2 Discussion . 137

5.2.1 Changing the Internal Representation . 137

5.2.2 Changing the Interface . 137

5.2.3 Monomorphism . 138

5.2.4 Limitations . 138

5.3 Related Work . 139

5.4 Future Work . 140

5.5 Conclusion . 140

6 A TASTy Reflection Interface 143

6.1 TASTy Binaries . 143

6.2 Overview of the Reflection API . 144

6.3 Multi-Stage Programming with Reflection . 146

6.4 TASTy Inspector . 149

6.5 Decompiler . 150

6.6 Macro Annotations . 150

6.7 Related Work . 152

6.8 Future Work . 153

6.9 Conclusion . 153

viii

Contents

Epilogue 155

7 Academic Projects 157

8 Core Library, Tools and Community Projects 159

9 Conclusion 161

Appendix 163

A Soundness Proof of the Polymorphic Multi-Stage Macro Calculus 165

A.1 Proof of Progress . 165

A.2 Proof of Preservation . 169

Bibliography 199

Curriculum Vitae 207

ix

List of Figures

4.1 Core Calculus . 79

4.2 Quoted Constants Calculus Extension . 84

4.3 Structural Quote Patterns Calculus . 86

4.4 Pattern Semantics . 87

4.5 Global Definitions Extension . 92

4.6 Pattern Type Variables Calculus . 97

4.7 Pattern Semantics . 98

4.8 Parametric Polymorphism Extension . 104

4.9 Pattern Semantics . 105

4.10 Pattern Unification Semantics . 106

4.11 Syntax . 108

4.12 Environments . 109

4.13 Well-Formed Environment . 110

4.14 Well-Formed Type . 110

4.15 Well-Formed Constraint . 110

4.16 Program Typing . 111

4.17 Term Typing . 112

4.18 Pattern Typing . 113

4.19 Program Operational Semantics . 114

4.20 Term Operational Semantics (a) . 115

4.21 Term Operational Semantics (b) . 116

4.22 Pattern Semantics . 117

4.23 Pattern Structural Matching . 117

4.24 Pattern Type Unification . 118

4.25 Program Values . 119

4.26 Term Values . 119

5.1 Virtual ADT Interface for Peano Numbers . 136

5.2 Virtual ADT Implementation with Case Classes 136

5.3 Virtual ADT Implementation with BigInt . 138

x

List of Code Examples

3.1 def unrolledPowerCode . 39

3.2 given OptionToExpr . 41

3.3 def powerCode . 41

3.4 def powerMacro . 42

3.5 scala.quoted.staging.run . 44

3.6 def fusedPowCode . 48

3.7 given OptionFromExpr . 49

3.8 HOAS pattern . 49

3.9 def fuseMapCode . 50

3.10 def let . 51

3.11 def empty[T] . 51

3.12 trait ExprMap . 52

3.13 def treeSetFor . 53

3.14 def setFor . 53

3.15 Quote syntax . 54

3.16 Splice syntax . 55

3.17 class Expr . 55

3.18 object Expr . 56

3.19 class Type . 56

3.20 object Type . 57

3.21 trait Quotes . 57

3.22 scala.quoted.staging.Compiler . 59

3.23 def emptyList . 62

6.1 def switch . 147

6.2 def unswitch . 148

6.3 object PrintCode . 149

xi

List of Theorems, Lemmas
and Definitions

List of Theorems

1 Theorem (Progress for Terms) . 82

2 Theorem (Preservation for Terms) . 82

3 Theorem (Progress for Programs) . 96

4 Theorem (Preservation for Programs) . 96

5 Theorem (Progress for Terms) . 96

6 Theorem (Preservation for Terms) . 96

List of Theorems

1 Lemma (Canonical Forms) . 82

2 Lemma (Extended Progress for Terms) . 82

3 Lemma (Substitution) . 83

4 Lemma (Multi-Substitution) . 90

5 Lemma (Preservation of Pattern Reduction) . 90

6 Lemma (Preservation for Match) . 90

7 Lemma (Extended Progress for Terms) . 96

8 Lemma (Substitution) . 96

9 Lemma (Σ-Weakening) . 96

10 Lemma (Constraints of Pattern Reduction) . 102

11 Lemma (Pattern Constraints Unification) . 102

12 Lemma (Constraint Substitution) . 102

13 Lemma (Type Substitution) . 102

14 Lemma (Pattern Type Substitution) . 102

15 Lemma (Well-Formed Type Substitution) . 102

16 Lemma (Constraints of Pattern Reduction) . 107

17 Lemma (Pattern Constraints Unification) . 107

18 Lemma (Unification Locality) . 107

List of Theorems

1 Definition (Restricted Typing Context) . 82

2 Definition (Well-FormedΦ) . 90

3 Definition (Well-FormedΩ) . 95

xii

List of Theorems, Lemmas and Definitions

List of Theorems

A.1 Theorem (Progress for Programs) . 165

A.2 Theorem (Progress for Terms) . 166

A.3 Theorem (Preservation for Programs) . 169

A.4 Theorem (Preservation for Terms) . 171

List of Theorems

A.1 Lemma (Canonical Forms) . 166

A.2 Lemma (Extended Progress for Terms) . 166

A.3 Lemma (Σ-Weakening) . 171

A.4 Lemma (Preservation for Match) . 172

A.5 Lemma (Well-Formed Constraint Shuffle) . 173

A.6 Lemma (Type Well-Fomedness Weakening) . 174

A.7 Lemma (Preservation of Pattern Reduction) . 174

A.8 Lemma (Constraint of Pattern Reduction) . 179

A.9 Lemma (Pattern Constraints Unification) . 184

A.10 Lemma (Unification Locality) . 187

A.11 Lemma (Well-Formed Type Weakeneing) . 187

A.12 Lemma (Constraint Union) . 188

A.13 Lemma (Substitution) . 188

A.14 Lemma (Multi-Substitution) . 190

A.15 Lemma (Type Substitution Well-formedness) . 190

A.16 Lemma (Type Substitution) . 192

A.17 Lemma (Well-Formed Weak Type Substitution) 194

A.18 Lemma (Type Multi-Substitution) . 194

A.19 Lemma (Pattern Type Substitution) . 194

A.20 Lemma (Constraint Substitution) . 196

List of Theorems

A.1 Definition (Well-formedΩ) . 165

A.2 Definition (Restricted Typing Context) . 166

A.3 Definition (Well-formedness ofΦ) . 174

xiii

List of Tables

2.1 Inline method overriding and implementation . 24

xiv

1 Introduction

At its core, the Scala library ecosystem relies on metaprogramming. Most of this ecosystem

relies on macros to generate new code, and analyze or modify existing code. Macros were

introduced in Scala 2 and improved in Scala 3 by the work presented in this dissertation.

1.1 Macros Design Principles

Semantically driven A metaprogrammer should be able to reason about the semantics of the

generated code. Multi-stage programming introduced an elegant and powerful solution to

this problem. It follows a semantically driven approach to code generation, where semantics

are fully defined by the metaprogram and cannot accidentally change when we generate the

code. This implies that the generated code is well typed and hygienic by construction. We can

apply this principled semantic approach to other metaprogramming abstractions.

Scalability Different metaprogramming abstractions have different levels of expressiveness.

Usually, the more expressive abstractions are more complex and have fewer static guaran-

tees. Instead of choosing a single abstraction, we can design a single system out of several

abstractions that scale with respect to expressiveness and complexity. In this system, simple

and common metaprogramming use cases have safe and straightforward implementations,

and less common complex uses cases can be implemented at the cost of some complexity.

Portability The most expressive metaprogramming abstractions expose part of the compiler’s

internal APIs or code representations. This imposes some practical limitations on the free

evolution of the compiler. To allow macro implementations to be used across compilers and

the free evolution of the compiler, we need to design a proper abstraction over the compiler

functionality and code representation.

In this thesis we demonstrate that it is possible to design, implement and use in production a

Portable Scalable Semantically Driven Metaprogramming System

1

Introduction

1.2 Scala 2 Macros

Scala 2 provided a powerful macro system using an AST reflection API. Even though the system

was labeled as experimental, it became one of the cornerstones of the language. This design

clearly showed the potential of macros in Scala but did introduce some inconvenient features

that affected macro implementations and compiler implementations of the macro system.

Syntactic and semantic macros The Scala 2 implementation of macros was quite flexible and

powerful, allowing the creation of typed (semantic) and untyped (syntactic) ASTs. The latter

provided ad-hoc support for hygiene, protecting against accidental rebinding of variables.

This is not enough for the Scala language due to its complex program elaboration during

type-checking. Implicit resolution, implicit conversion, overload resolution, and extension

methods can affect how the program is elaborated. For example, we could accidentally choose

the wrong overload because of the implicits available at call site, capture an unintended

implicit argument, or accidentally apply an implicit conversion. These issues arise in the part

of the system that is not semantically driven.

Low-level first The design of Scala 2 macros is centered on ASTs and then extended with

syntactic quasiquotation. This implies that developers of macros must learn all the details of

ASTs before using a more straightforward quasiquotation system. They also must be aware

of program elaboration and type-checking. This made the macro system scalable over its

expressivity but unscalable over its complexity.

Unportability Unfortunately, the architectural design of the metaprogramming API bound

it to the implementation of the compiler. This came at the cost of reduced portability of

macro implementation across compiler versions. Furthermore, this design also made it harder

to evolve the Scala 2 compiler as it had to fall in line with the metaprogramming interface.

Crucially, it made it impossible to re-implement the same system in Scala 3.

2

1.3 Scala 3 Macros

1.3 Scala 3 Macros

We use multi-stage programming at the core of our solution. It is simple to use and provides

strong static guarantees. We use semantics-preserving inline definitions to create multi-

stage macros. We design a system that works both for compile-time and run-time code

generation and analysis. We extend the multi-stage programming system with a reflection

API similar to Scala 2, but we only operate on typed code. All these abstractions follow the

semantically driven principle. Together they provide a genuinely scalable metaprogramming

system ranging from the simplicity of inlining and multi-stage programming to the expressivity

of AST manipulation.

Scala 3 introduced TASTy as a new high-level intermediate representation providing a porta-

bility layer between compiler versions. The TASTy format defines an abstract representation of

fully elaborated Scala programs. It is the perfect basis to support the internal implementations

of all semantically driven metaprogramming. We use the format directly to serialize staged

and inline code. We also use this abstraction to define our reflection API using a Virtual ADT

encoding to avoid binding the interface with the compiler.

Overview

In this thesis, we consolidate several publications and add new material. We divided the thesis

into three parts covering different topics. These topics scale from simple metaprogramming

abstractions to more expressive metaprogramming abstractions.

Part I: Inlining for Metaprogramming In Chapter 2 we describe the design of semantics-

preserving inlining for metaprogramming. Inlining is an essential component of multi-stage

macros and other simpler macro operations.

/** Specialize the operation based on static knowledge of the value of `n` */
inline def powerMacro(x: Double, inline n: Int): Double =

${ powerCode('x, 'n) }

Part II: Multi-Stage Programming We cover the design, implementation, and formalization

of Scala 3 multi-stage programming. In Chapter 3 we describe the design and implementation,

and in Chapter 4 we provide a formal calculus for multi-stage macros. The calculus is proven

sound in Appendix A.

/** If `n` is known, generate `'{ x * ... * x }` with `n` repetitions of `x`*/
def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =

unrolledPowerCode(x, n.valueOrAbort)

3

Introduction

/** Generate `'{ x * ... * x }` with `n` repetitions of `x` */
def unrolledPowerCode(x: Expr[Double], n: Int)(using Quotes): Expr[Double] =

if n == 0 then '{ 1.0 }
else if n == 1 then x
else '{ $x * ${ unrolledPowerCode(x, n - 1) } }

Part III: Typed AST Reflection We cover the design and implementation of the reflection

API. In Chapter 5 we cover the design of the Virtual ADT encoding used for the reflection API,

and in Chapter 6 we describe the reflection API, its uses, and its interactions with multi-stage

programming.

/** Generate specialized variants of `x^n` for small `n`s.
* '{
* n match
* case 0 => 1.0
* case 1 => x
* case 2 => x * x
* ...
* case _ => Math.pow(x, n.toDouble)
* }
*/

def switchPower(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =
import quotes.reflect.*
val caseDefs: Seq[CaseDef] =

for i <- 0 to numCases yield
CaseDef(Literal(IntConstant(i)), None, unrolledPowerCode(x, i).asTerm)

val defaultCaseDef =
CaseDef(Wildcard(), None, '{ Math.pow($x, $n.toDouble) }.asTerm)

Match(n.asTerm, caseDefs.toList :+ defaultCaseDef).asExprOf[Double]

Epilogue We list related academic projects in Chapter 7. We list libraries and tools that use

Scala 3 metaprogramming in Chapter 8. We finally conclude the thesis in Chapter 9.

4

1.4 Contribution

1.4 Contribution

In the context of this thesis, we designed and implemented the Scala 3 metaprogramming

system. To achieve this result, we made the following contributions.

Multi-stage macros using inlining We created a new multi-stage programming extension

that uses inline methods to define macros.

Design of semantics-preserving inlining for metaprogramming We created a specification

for inline methods that support macros and simpler metaprogramming operations. Under the

constraints of semantic preservation, we made the system as general as we could.

Unification of multi-stage macros and multi-stage programming We created the first im-

plementation of a multi-stage programming system allowing macros and run-time code

generation.

Multi-stage macro calculus We designed a generative and analytical multi-stage macro

calculus that captures all features present in Scala 3 macros.

Design of Virtual ADTs We designed a novel ADT encoding in Scala that can completely

decouple an interface from its implementation. We also introduced sound type testing for

abstract types in Scala to ensure the soundness of the encoding.

Use of TASTy as the metaprogramming lingua franca We show the usefulness of a high-level

intermediate binary representation for semantic metaprogramming. It is used for inlining

code, serializing staged code, and defining the reflection API.

TASTy inspector We show that this approach can also scale to other kinds of metaprogram-

ming. The TASTy inspector gives a view on a TASTy binary using the same reflection API. We

also show a novel approach to code decompilation using this tool.

Scala 3 implementation We fully implemented our metaprogramming system in Scala 3.

Scala ecosystem migration We took part in the first steps of the migrations of core libraries of

the ecosystem. This effort provided the initial inertia needed for the rest of Scala 2 projects

using macros to migrate to Scala 3.

5

Part IInlining for Metaprogramming

7

2 Semantics-Preserving Inlining
for Metaprogramming

This chapter contains a published paper authored by Stucki, Biboudis, Doeraene, and

Odersky [72].

Programming languages (e.g., C++ [69], F# [78], D [3]) usually offer inlining as a compiler

directive for optimization purposes. In some of these, an inline directive is mandatory to

trigger inlining, in others it is just a hint for the optimizer. The expectation from a user’s

perspective is simple: the semantic reasoning for a method call should remain unaffected

by the presence of inlining. In other words, inlining is expected to be semantics-preserving

and consequently this form of inlining can be done late in the compiler pipeline. Inlining is

typically implemented in the backend of a compiler, where code representations are simpler

to deal with. For example, in the following snippet of code, we would like to avoid one method

call, thus the method body itself replaces the call.

inline def square(x: Int): Int = x * x

square(y) // inlined as y*y to avoid a call to square at run-time

Some programming languages do not provide inlining at the language level and rely on

automatic detection of inlining opportunities instead. Java, with its dynamic features such as

dynamic dispatch and hot execution paths, pushes the inlining further down the pipeline at

the level of the JVM. Scala primarily relies on the JVM for performance, though it can inline

while compiling to help the JIT compiler.

However, there is another angle that we can view inlining from. Inlining can be seen as a

form of metaprogramming, where inlining is the syntactic construct that turns a program

into a program generator [67; 45]. Indeed, the snippet above describes a metaprogram, the

metaprogram that is going to generate a method body at the call site. This may seem like a

pointless observation, but in this chapter we show that metaprogramming through inlining

can be seen as a structured, and semantics-preserving methodology for metaprogramming.

9

Semantics-Preserving Inlining for Metaprogramming

Typically, in the aforementioned programming languages, inlining takes a piece of untyped

code and types it at the call site. Therefore the semantics are only defined at the call site and

there are no semantics to preserve.

// C++
#define square(X) X * X // * does not have any semantics here
square(y) // inlined as y*y and then typed

Sometimes such inlining is done using standard call notation (as in C++ #define), and at

other times it is done using a different language fragment (as in C++ templates). In these

cases, inlining is not necessarily semantics preserving and usually does not provide type-safety

guarantees at the definition site. In the latter case, C++ allows code that may not generate

valid code for some of the type parameters of the template, and is only checked for the actual

type arguments. There is no guarantee that an expanded inline call will always type-check.

Non-semantic inlining can be categorized as syntactic inlining. To see the difference between

the two, consider this example with overloaded methods:

def f(x: Any): Int = 1
def f(x: String): Int = 2

inline def g[T](x: T): Int = f(x)

g("abc")

When using semantics-preserving inlining, the inline keyword can be dropped from the

signature without changing the result. That means that the call f(x) resolves to the first

alternative and the result is 1. With syntactic inlining, we inline the call to g, expanding it to

f("abc"). This then resolves to the second alternative of f, yielding 2. So, in a sense, syntactic

inlining replaces overloading resolution with compile-time multi-method dispatch.

Syntactic inlining is very powerful and has been used to great effect to produce heavily spe-

cialized code. However, it can also be difficult to reason about, leading to errors in expanded

code that are hard to track down.

Other compile-time metaprogramming constructs have inlining as an implicit part of what

they do. For instance, a macro in Lisp [28] or Scala 2 [12] moves the code of the macro to the

call site (this is a form of inlining) and then executes the macro’s code at this point. Can we

disentangle inlining from the other metaprogramming features? This is the approach followed

in Scala 3 [21]. It offers a powerful set of metaprogramming constructs, including staging

with quotes '{...} and splices ${...}. Quotes delay the execution of code while splices

compute code that will be inserted in a larger piece of code. Staging is turned from a run-time

code-generation feature to a compile-time macro feature by combining it with inlining.

10

Semantics-Preserving Inlining for Metaprogramming

A macro is an inline function with a top-level splice. For example:

inline def powerMacro(m: Double, inline n: Int): Double =
${ powerCode('{m}, '{n}) }

A call site such as powerMacro(x, 4) is expanded by inlining its implementation and follow-

ing argument evaluation semantics (described in Section 2.1.2):

val m = x
${ powerCode('{m}, '{4}) }

The content of this splice is then executed in the context of the call site at compile-time.

When used in conjunction with other metaprogramming constructs, inlining has to be done

early, typically during type-checking, because that is when these other constructs apply.

Furthermore, it makes sense that inlining by itself should be as “boring” as possible. It should

be type-safe and semantics-preserving by default. At the same time, inlined definitions should

be usable and composable in interesting ways. For instance, since normal methods can

override methods in parent classes or implement abstract methods, it makes sense to allow

the same flexibility for inlined methods, as far as is possible.

These considerations lead us to the following principles:

• Semantics-preserving: A call to an inline method should have exactly the same semantics

as the same method without the inline modifier.

• Generality: We want to be able to use and define inline methods as generally as possible,

as long as (1) is satisfied.

In an object-oriented language like Scala, the concern for generality poses several interesting

questions, which are answered in this chapter:

• Can inline methods implement abstract methods?

• Can inline methods override concrete methods?

• Can inline methods be overridden themselves?

• Can inline methods be abstract themselves?

There is another question here that will influence the answers to these four questions:

• Can inline methods be called at run-time?

11

Semantics-Preserving Inlining for Metaprogramming

It will turn out that the answer to this question is “it depends”. Some inline methods will need

to be callable at run-time, in order to preserve semantics. Others cannot be called at run-time

because they use metaprogramming constructs that can only be executed at compile-time.

In this chapter, we explore these questions by presenting the rationale and design of Scala 3’s

inlining concept and how it relates to its metaprogramming architecture.

In Section 2.1 we discuss how our design of inline functions is based on the principles above.

In Section 2.2 we extend the discussion to the design of inline methods. In Section 2.3 we

introduce a simple extension to inline functions that can affect the semantics at call site (not

the call itself). In Section 2.4 we show some of the metaprogramming features that can be

built on top of semantics-preserving inlining. We conclude by discussing related work in

Section 2.7.

2.1 Inline Functions

We introduce the inline modifier to denote that a function is an inline function. A function

with inline can be called as any other function would.

inline def logged[T](logger: Logger, x: T): Unit =
logger.log(x)

Assuming that Logger has a proper definition of log, the code would type-check. Inlining

this code seems simple enough as shown below.

logged(new RefinedLogger, 3)
// expands to:
// (new RefinedLogger).log(3)

But what if the definitions of log were the following?

class Logger:
def log(x: Any): Unit = println(x)

class RefinedLogger extends Logger:
override def log(x: Any): Unit = println("Any: " + x)
def log(x: Int): Unit = println("Int: " + x)

If we look at logger.log(x) we can see that the only option is to call def log(x: Any)
defined in Logger. By examining the inline site, one would argue that the method to be

invoked should be def log(x: Int) defined in RefinedLogger. However, this would imply

a change in the semantics of the code after inlining where the overloading resolution results

12

2.1 Inline Functions

in different method selection depending on whether we use inlining or not. With or without

inline, the code should perform the same operation, therefore we need to retain the original

overload resolution to avoid breaking the first principle.

The elaboration of extension methods1, implicit conversions, and implicit resolution must

be preserved as these are part of the overload resolution. All of these could change if they are

performed with different type information, which could potentially end up calling different

methods.

While overloading should not change, it is possible to perform de-virtualization without

breaking semantics. De-virtualization is an optimization that precomputes the virtual dispatch

resolution (override) that would otherwise happen at run-time. In the example, we would

directly call the def log(x: Any) defined in RefinedLogger.

2.1.1 Inline Values

val definitions can also be marked as inline. An inline val inlines the contents of its right-

hand side (RHS) as an inline def would. Unlike inline defs, when inlining an inline
val we cannot inline any arbitrary RHS as it may recompute the values several times, which

would break the evaluation order semantics.

inline val x = 4
x // replaced with 4

def z: Int = ...
inline val y = z // error: z is not a known value
y // cannot replace y with z as z may have side effects

Therefore we constrain the RHS to be pure and to be able to reduce to a value at compile-time.

This means that the RHS can only contain literal values or references that reduce to a literal

constant such as another inline val or def.

2.1.2 Parameters of Inline Functions

To support semantics-preserving inlining in the presence of effects during the evaluation of

arguments, the latter must be let-bound at the call site. To illustrate this, consider the square
inline function.

inline def square(x: Int): Int =
x * x

1Extension methods allow one to add methods to a type after the type is defined – https://dotty.epfl.ch/docs/
reference/contextual/extension-methods.html

13

https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html
https://dotty.epfl.ch/docs/reference/contextual/extension-methods.html

Semantics-Preserving Inlining for Metaprogramming

This function could be called with an arbitrary parameter which could have side effects. As

Scala provides by-value call semantics, the argument expression must be evaluated once

before the evaluation of the body of the function. The solution is to let-bind the evaluation

of the expression passed as an argument to preserve the evaluation order. In the following

example, the method call n contains an I/O operation:

def n: Int =
scala.io.StdIn.readInt()

square(n)
// expands to:
// val x1 = n
// x1 * x1

If we were to inline it as n * n, we would mistakenly read two numbers from the standard

input. This shows why it is important to have let-bound arguments.

Scala also provides by-name parameters. These parameters need to be evaluated each time

they are referred to.

inline def twice(thunk: =>Unit): Unit =
thunk
thunk

twice { print("Hello!") } // prints: Hello!Hello!
// expands to:
// def thunk = print("Hello!")
// thunk
// thunk

Instead of binding them to a val we bind them to a def. We do not replace each reference

thunk by print("Hello!") to avoid code duplication.

Constant folding After methods and vals are inlined, we can perform constant folding

optimizations on primitive types. This implies that constants are propagated and primitive

operations are performed on them.

square(3)
// expands to:
// val x1 = 3; x1 * x1
// optimized to:
// 3 * 3
// then optimized to:
// 9

14

2.1 Inline Functions

Additionally, if constant folding evaluates the condition of an if to a known value, then we can

partially evaluate the if and eliminate one of the branches. This allows a limited but simple

way to generate simplified code. More complex and domain-specific optimizations demand

the use of custom metalanguage code with macros.

Inline parameters In some cases, we do not want to let-bind the arguments and instead we

wish to inline them directly where they are used. For this purpose, we allow parameters to be

marked as inline, but only in inline functions. This makes it a metaprogramming feature

as it provides semantics that are not expressible in normal functions. These parameters have,

by construction, semantics that are similar to by-name and may generate duplicated code.

The inline parameters allow further specialization of code by duplicating code and allowing

each copy to be specialized in a different way. This specialization might come from further

inlining or by one of the metaprogramming features.

For example, it is possible to remove closure allocations early on using inline parameters.

inline def tabulate3[T](inline f: Int => T): List[T] = List(f(0), f(1), f(2))

tabulate3(x => 2*x)
// expands to:
// List((x => 2*x)(0), (x => 2*x)(1), (x => 2*x)(2))
// which reduces to:
// List(0, 2, 4)

Without the inline parameter, we would have been forced to let-bind the instantiation of the

closure which may have side effects. An optimizer might remove it only if there are no side

effects where we can ensure that the whole expression is ignored.

2.1.3 Recursion

Inline functions can call other inline functions and in particular themselves. Calls to an inline

function f within another inline function g are not immediately inlined within the body of g.

Instead they are only inlined once g has itself be inlined in a third, non-inline function h.

inline def f(): Int =
3

inline def g(): Int =
f() // f not inlined here

def h(): Int =
g() // first inlines g then inlines f

15

Semantics-Preserving Inlining for Metaprogramming

Now consider the recursive inline function power.

inline def power(x: Double, n: Int): Double =
if n == 0 then 1.0
else if n == 1 then x
else if n % 2 == 1 then x * power(x, n - 1)
else power(x * x, n / 2)

power(expr, 10)
// expands to:
// val x = expr // x^1
// val x1 = x * x // x^2
// val x2 = x1 * x1 // x^4
// val x3 = x2 * x // x^5
// x3 * x3 // x^10

Note the importance of parameter semantics: if x would not be let-bound the computation

would be linear instead of the expected logarithmic time. In this example, we assume that n
will be a constant and that it can be constant folded in the conditions of the ifs. In turn, we

assumed that after constant folding only one branch will be kept and eventually will stop the

recursion. This will not always be the case.

With recursive inlining we introduce potentially non-terminating inline expansions. Consider

the previous example, but with an unknown value of n.

power(expr, m)
// expands in a first step to:
// val x = expr
// val n = m
// if n == 0 then 1.0
// else if n == 1 then x
// else if n % 2 == 1 then x * power(x, n - 1)
// else power(x * x, n / 2)

It is apparent that we could take one more unfolding step to the next call of power and then

recursively do the same again, so we would never end. The expansion will continue until a

predefined maximum inline depth limit2 is reached and fail compilation.

As we ensure that all calls to inline functions are inlined or a compilation failure occurs, we

never need to call these methods at run-time. This implies that the inline function definitions

can be removed from the generated code.

2This limit can be increased by the user if necessary

16

2.2 Inline Methods

2.1.4 Inline Conditionals

An inline if provides a variant of if that must be constant-folded in its condition to elimi-

nate one of the branches. If that cannot be done, an error is emitted and no further expansion

within the if is attempted. Using inline if ensures that we always partially evaluate the if
at compile-time. An inline if and an if have the exact same semantics at run-time.

This is also useful as an explicit convergence check when using recursive inline functions.

inline def power(x: Double, n: Int): Double =
inline if n == 0 then 1.0
else inline if n == 1 then x
else inline if n % 2 == 1 then x * power(x, n - 1)
else power(x * x, n / 2)

power(expr, m)
// expands in a first step to:
// val x = expr
// val n = m
// inline if n == 0 then 1.0
// else inline if n == 1 then x
// else inline if n % 2 == 1 then x * power(x, n - 1)
// else power(x * x, n / 2)

As n==0 does not have a known value at compile-time, the expansion fails and no further

nested expansions are attempted. The same happens for the other nested inline if.

2.2 Inline Methods

Inline can also be used for methods in classes or traits. Inline methods will be able to access

object fields and interact with virtual dispatch.

2.2.1 Members and Bridges

An inline method may refer in its body to the this reference of the current class or to any

private member. Let us consider the following inline method defined in a class.

class InlineLogger:
private var count = 0

inline def log[T](op: () => T): Unit =
val result = op() // may contain call to log
count += 1
println(count + "> " + result)

17

Semantics-Preserving Inlining for Metaprogramming

First, the method evaluates the operation, then it updates the private field count, and then

prints it with the result. Note that the operation may contain nested calls to log which would

use the current count.

def inlineLogger: InlineLogger =
new InlineLogger

inlineLogger.log(() => 5)
// naive expansion:
// val ths = inlineLogger
// val result = (() => 5)()
// ths.count += 1
// println(ths.count + "> " + result)

We need to make sure the prefix of the application (i.e., the receiver) is only evaluated once by

let-binding it to ths. Then we use ths in place of this in the inlined code. Unfortunately, the

inlined code contains a reference to the private field count which is not accessible from the

call site (under the JVM model). This does not break semantics-preservation but does greatly

limit what could be used in the body of an inline method.

To lift this limitation, we instead generate bridges for all members that may not be accessible

at the call site. For the count we would create a getter and setter that make the bridge possible.

This ensures that when the call is inlined all references are still accessible.

class InlineLogger:
private var count = 0

final def inline$count: Int = // only in generated code
count

final def inline$count_=(x: Int): Unit = // only in generated code
count = x

inline def log[T](op: () => T): Unit =
val result = op()
this.inline$count_=(this.inline$count + 1)
println(this.inline$count + "> " + result)

2.2.2 Overloads

As inline methods must be semantics-preserving, the definition and resolution of overloads

should not be affected. The overload resolution algorithm does not need any modification,

hence it considers all inline and non-inline functions as equivalent. For example, the following

variants perform the same overload resolution.

18

2.2 Inline Methods

def log(msg: String): Unit = ...
def log(x: Any): Unit = ...
log("a")

inline def log(msg: String): Unit = ...
inline def log(x: Any): Unit = ...
log("a")

def log(msg: String): Unit = ...
inline def log(x: Any): Unit = ...
log("a")

inline def log(msg: String): Unit = ...
def log(x: Any): Unit = ...
log("a")

2.2.3 Abstract Methods and Overrides

Inline methods implementing interfaces Consider the following example, where we have an

inline definition implementing a non-inline abstract method.

trait Logger:
def log[T](op: () => T): Unit

class InlineLogger extends Logger:
inline def log[T](op: () => T): Unit = println(op())

If we have an instance of InlineLogger we can inline the code. But now we also allow calls

to Logger.log which will not be inlined.

def logged[T](logger: Logger, x: () => T): Unit =
logger.log(x)

logged(new InlineLogger, 3)

This implies that we have a call to Logger.log at run-time, which should be dispatched

to InlineLogger.log. Therefore if the inline method implements an interface, we cannot

ensure it will be completely inlined and we must retain the code at run-time.

19

Semantics-Preserving Inlining for Metaprogramming

Inline methods overriding normal methods Consider the following example, where we have

an inline definition that overrides a non-inline method.

class Logger:
def log[T](op: () => T): Unit = println(op())

class NoLogger extends Logger:
inline def log[T](op: () => T): Unit = ()

If we have an instance of NoLogger we can inline the code. But once again we also allow calls

to Logger.log, which will not be inlined. Unlike with the implementation of the abstract

method, it would be tempting to say that, as there exists an implementation of log, we could

remove NoLogger.log from the generated code. However, that would not be semantics-

preserving. In order to ensure that calling Logger.log on a NoLogger does indeed no logging,

we must also keep the implementation of NoLogger.log at run-time. Then, virtual dispatch

will be able to find the correct implementation at run-time.

Overriding inline methods Consider the following example, where we have an inline method

that is overridden by another method.

class Logger:
inline def log[T](op: () => T): Unit =

println(op())

class NoLogger extends Logger:
/*inline*/ def log[T](op: () => T): Unit =

()

This time we turned things around and are trying to override an inline method with any

method (inline or not). Using the same logged example we have a different way in which

semantics-preservation fails.

def logged[T](logger: Logger, x: T): Unit =
logger.log(x) // expanded to the contents Logger.log

logged(new NoLogger)(3)

As log is inlined from Logger before we know which logger we are using, we will always call

Logger.log. Instead, we would have expected to call NoLogger.log which is a semantic

breakage.

In general, no inline method can be safely overridden as it bypasses virtual dispatch resolution.

Therefore all inline methods are effectively final.

20

2.2 Inline Methods

Abstract inline methods Consider the following example of an abstract inline method.

trait AbstInlineLogger:
inline def log[T](op: () => T): Unit

It would be possible to implement this interface with a non-inline function as it would perfectly

preserve the semantics. But this does not offer any expressivity advantage over a normal

abstract method. Instead, we will restrict it to only be implementable by inline methods to

guarantee that the calls can be inlined. Unlike plain abstract methods, the abstract inline

method does not enforce the implementations of inline methods to be retained at run-time.

class InlineLogger extends AbstInlineLogger:
inline def log[T](op: () => T): Unit =

println(op())

class NoLogger extends AbstInlineLogger:
inline def log[T](op: () => T): Unit =

()

It is clear that all implementations of log will be inlined if we know statically the receiver of the

log call which defines the methods. But, can we ever call AbstInlineLogger.log directly

and still have it inlined?

def logged[T](logger: AbstInlineLogger, x: () => T): Unit =
logger.log(x) // error: cannot inline abstract method

Calling it directly will not work as it is impossible to inline. However, by inlining the previous

code we can get this abstraction to work.

inline def logged[T](logger: AbstInlineLogger, x: () => T): Unit =
logger.log(x)

logged(new InlineLogger, () => 5)
logged(new NoLogger, () => 6)

Now, when logged is inlined, the call logger.log gets de-virtualized at compile-time and

then can be inlined. Crucially, with abstract inline methods, we provide a way to guarantee

that all calls to such methods are de-virtualized and inlined at compile-time.

21

Semantics-Preserving Inlining for Metaprogramming

Inline methods overriding with inline parameters Consider the following example where a

method is overridden with an inline method and its parameter is marked inline.

class Logger:
def log[T](x: T): Unit = println(x)

class NoLogger extends Logger:
inline override def log[T](inline x: T): Unit = ()

val noLogger: NoLogger = new NoLogger
noLogger.log(f()) // expands to: ()

val logger: Logger = noLogger
logger.log(f())

Here, inline has a deeper effect and provides the possibility to override the call semantics.

Whenever we call Logger.log, the arguments will be evaluated with the standard by-value

semantics. In this case, this implies the evaluation of f() which might have side effects. But,

when calling NoLogger.log the evaluation of the argument is just dropped. As a consequence,

the call semantics changed and this pattern should not be allowed.

Abstract inline methods and inline parameters Consider the following example of an abstract

inline method with an inline parameter. We implement it with a method that has the same

signature.

trait AbstInlineLogger:
inline def log[T](inline x: T): Unit

class InlineLogger extends AbstInlineLogger:
inline def log[T](inline x: T): Unit = println(x)

class NoLogger extends AbstInlineLogger:
inline def log[T](inline x: T): Unit = ()

inline def logged[T](logger: AbstInlineLogger, inline x: T): Unit =
logger.log(x)

val inlineLogger: InlineLogger =
new InlineLogger

logged(inlineLogger, f()) // expands to: println(f())

val noLogger: NoLogger =
new NoLogger

logged(noLogger, f()) // expands to: ()

22

2.2 Inline Methods

With this pattern, the semantics of the inline parameter x are preserved across all abstrac-

tions, until the de-virtualization of AbstInlineLogger.log into InlineLogger.log (which

preserves the call to f()) and NoLogger.log (which eliminates it). Therefore, we can allow

abstract methods to have inline parameters, as long as all its implementations use correspond-

ing inline parameters as well. This pattern shows another useful reason to have abstract inline

methods: regular abstract methods cannot have inline parameters, as we saw earlier, while

abstract inline methods can.

Now, consider an alternative implementation of NoLogger that does evaluate the argument

but does not print it.

class NoLogger extends AbstInlineLogger:
inline def log[T](inline x: T): Unit =

val y = x
()

val noLogger = new NoLogger
logged(noLogger, f())
// expands to:
// val y = f()
// ()

It also works, and we just emulated by-value parameters. Using a def for the parameter would

emulate a by-name parameter. This kind of parameter semantic emulation is not always

possible, particularly if we have an inline parameter followed by a by-value parameter. In

the following example, the cond argument will always be evaluated before the msg parameter

because cond.

inline def assert(inline msg: String, cond: Boolean): Unit =
val message = "Assertion failure: " + msg
if cond then

throw new AssertionError(message)

assert("expected 1", x == 1)
// expands to:
// val cond = x == 1
// val message = "Assertion failure: " + "expected 1"
// if cond then
// throw new AssertionError(message)

Inline methods summary All inline methods are final. Abstract inline methods can only

be implemented by inline methods. If an inline method overrides/implements a normal

method then it must be retained (i.e., cannot be erased). Retained methods cannot have inline

parameters. Table 2.1 shows the overriding rules.

23

Semantics-Preserving Inlining for Metaprogramming

(abstract) method inline method abstract inline method

- G H J

(abstract) method G G#

inline method ✕ ✕ ✕

abstract inline method ✕ H J

G runtime call H inlined runtime call and inlined ✕ disallowed

J inlined after de-virtualization G# runtime call and inlined after de-virtualization

Table 2.1: Inline method overriding and implementation. Method definitions listed on the left
are implemented or overridden by method definitions listed on the top. The first row describes
the behavior of method definitions that do not implement nor override any definitions.

2.3 Transparent Inlining

A simple but powerful metaprogramming extension to inlining is the ability to refine the type

of an expression after the call is inlined. The inline call is typed and inlined retaining its

elaboration as with normal inline functions. But instead of typing the inlined expression as

the result type of the inline function, we take the precise type of the inlined expression. This

unlocks the ability to change the semantics at the call site around the inlined call, without

changing the semantics of the code that was inlined. We use the transparent keyword to

enable this feature.

transparent inline def choose(b: Boolean): Any =
if b then 3 else "three"

val obj1: Int = choose(true)
val obj2: String = choose(false)

This may be used to influence type inference, overload resolution, and implicit resolution

at the call site. But as with all inlines, it may not change the elaboration of the inlined code.

To illustrate this, consider the following code where we have a definition of a method that is

overwritten, overloaded and returns a more precise type.

24

2.3 Transparent Inlining

class A:
def f(a: A): A = ...

class B extends A:
override def f(a: A): B = ...
def f(x: B): String = ...

transparent inline def g(inline a1: A, inline a2: A): A =
a1.f(a2)

val b: B = ???
val y = g(b, b) // expands to: val y: B = b.f(b)

def h(a: A): Unit = println("A")
def h(b: B): Unit = println("B")
h(y) // prints "B" because g is transparent (otherwise would be "A")

From Section 2.2, we know that for the call semantics to be preserved we need to make sure

that the inlined call to f should be to B.f(A) at run-time. Before inlining the code in g, the call

to f returned an A as we were calling A.f(A). After inlining the code in g, this same call gets

de-virualized and we know that we actually call B.f(A) and it returns a B. Hence the inlined

expression is of type B and y is inferred to be a B as well. Then the rest of the code outside the

call is subject to this more precise type.

The call to h(y) will be statically resolved to a call to the h(B) overload as y was typed as B. On

the other hand, if g had been a normal function or a non-transparent inline function, the type

of y would have been A. In this case the overload resolution would have chosen h(A). This

shows how transparent inline function can affect the semantics around their call site.

To be able to propagate the types as we do we need to inline while typing. Any non-transparent

inlining can be performed after typing. Each call to a transparent inline will respect the

semantic preservation. In contrast to non-transparent inline function, replacing it with the

same function without transparency may change the semantics of the overall program. It is

possible to emulate the transparent semantics adding casts that align with the results of the

implementation.

/*transparent*/ inline def choose(b: Boolean): Any =
if b then 3 else "three"

val obj1: Int = choose(true).asInstanceOf[Int]
val obj2: String = choose(false).asInstanceOf[String]

For this to be sound we would need to prove that these casts have exactly the type of the result

based on the types or statically known values of the arguments.

25

Semantics-Preserving Inlining for Metaprogramming

2.4 Metaprogramming

With metaprogramming, we introduce metalanguage features that allow code manipulation.

In general, these features only manipulate code in place which maintains the metaprogram-

ming abstractions simple. This is possible because inline takes care of placing the metapro-

gram where it needs to be. In most cases, these metaprogramming features do not have

run-time semantics until expanded at the call site. But all of them rely on the knowledge that

the code around them or in their parameters preserved their semantics when inlining. These

features may be combined with transparent inlining. In this section, we have a non-exhaustive

list of metaprogramming features that are supported by inlining.

2.4.1 Inline Error

An error method provides a way to emit custom error messages. The error will be emitted if a

call to error is inlined and not eliminated as a dead branch.

import scala.compiletime.error

inline def div(n: Int, m: Int): Int =
inline if m == 0 then error("Cannot divide by 0")
else n / m

error is not subject to the semantics-preservation principle, since it is illegal in code that

is retained at run-time. The same observation applies to most metaprogramming features

described in this section.

2.4.2 Inline Pattern Matching

This variant of match provides a way to match on the static type of some expression. It ensures

that only one branch is kept. In the following example, the scrutinee, x, is an inline parameter

that we can pattern match on at compile-time.

transparent inline def half(inline x: Any): Any =
inline x match

case x: Int => x / 2
case x: Double => x / 2.0d

half(1.0d) // expands to: 1.0d / 2.0d
half(2) // expands to: 2 / 2
val n: Any = 3
half(n) // error: n is not statically known to be an Int or a Double

The inline match will use the static type of the scrutinee and keep the branch that matches

26

2.4 Metaprogramming

said type. For this to work, the patterns must be non-overlapping. Unlike the inline if, this

reduction is not necessarily equivalent to its run-time counterpart when we have more type

information.

2.4.3 Inline Summoning

If we need to summon implicit evidence provided by the call site within a method we generally

need to pass it as an argument of that method. But we may want to conditionally generate

different code based on the existence of such implicit. This is not possible if it is part of the

arguments as it would require it before expanding the code.

For this purpose, we introduce a set of delayed summoning (such as summonInline and

summonFrom) that can be used within the body of an inline but will only be resolved at call site.

import scala.compiletime.summonFrom
inline def setFor[T]: Set[T] =

summonFrom {
case ord: Ordering[T] => new TreeSet[T](ord)
case _ => new HashSet[T]

}

In a sense, summonFrom is a transparent inline as the expanded expression will have the

type of the body of the chosen branch.

2.4.4 Inlining and Macros

Here is how we define a macro that generates code to compute the power of a number.

inline def powerMacro(x: Double, inline n: Int): Double =
${ powerCode('{x}, '{n}) }

The program is split into the macro definition powerMacro and code generators/analyzers

powerCode and powerUnrolled.

def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =
n.value match

case Some(m) => unrolledPowerCode(x, m) // statically known n
case None => '{ Math.pow(${x}, ${n}) }

def unrolledPowerCode(x: Expr[Double], n: Int)(using Quotes): Expr[Double] =
if n == 0 then '{ 1.0 }
else if n == 1 then x
else '{ ${x} * ${ unrolledPowerCode(x, n - 1) } }

27

Semantics-Preserving Inlining for Metaprogramming

The macro metalanguage provides two core constructs for code manipulation.

• '{...} quotes representing code fragments of type Expr[T] where T is the type of the

code within

• ${...} splices that insert code fragments into larger code fragments

The code directly in quotes delays the execution of the code, while the code within the splices

computes a code fragment now. For example, '{Math.pow(${x}, ${n})} represents a

snippet where we will insert the code of x and n. The operation Expr.value allows us to

extract the value of n if it is known at the call site.

If we use a splice outside of a quote, as in powerMacro, we call it a macro. Such a splice will

evaluate its contents at compile-time. To make this evaluation efficient we require the code

within the top-level splice to be a simple static call to a precompiled function. This way we

only interpret a single reflective function call which then executes any user-defined compiled

code. In theory it would be possible to let the users call this directly using the metalanguage.

${ powerCode('{x}, '{2}) } // would expand to: x * x * 1

But if the users had to use the metalanguage directly, the usability of such a feature would

have a high complexity cost. Instead, by using inline we can hide the metalanguage behind a

normal method call that does not mention the metalanguage. We also avoid expanding the

macros before the code is inlined.

inline def powerMacro(x: Double, inline n: Int): Double =
${ powerCode('{x}, '{n}) }

In this model, the macro expansion logic simply needs to evaluate and replace a piece of code.

Now the users of this macro only need to know how to call a method.

powerMacro(x, 2)
// expanded by inline to:
// ${ powerCode('{x}, '{2}) }
// then by macro to:
// x * x

For macro overrides, we additionally expand the macro inside of the inline function as it must

exist at run-time. In this case, the macro should also be able to generate a generic fallback

version of the code that does not have the call site information.

Given that the implementation of the macro is done directly in the language rather than

the metalanguage, the macro can execute arbitrary code at compile-time. This provides

extra flexibility and expressivity that is not available when using the metalanguage constructs

directly.

28

2.5 Implementation

2.5 Implementation

Next, we describe the implementation of inlining, as described in this work, as merged in the

Scala 3 compiler.

Inlining is performed while typing and inlines fully elaborated typed ASTs. The reason for this

design choice is to support the implementation of transparent inlining. One of the very first

steps we need to make is to obtain the typed ASTs. This can be done either via the definitions

that we are currently typing or from a published TASTy (serialized AST in a binary format) [51]

artifact. TASTy contains the fully elaborated typed ASTs of a complete class. From this artifact,

we can extract the original AST of the method. Quoted code fragments are also encoded in

TASTy.

Once we have the AST, the next step is to perform β-reduction. Most of the complexity

comes from making sure that during inlining we make all types as precise as possible without

changing the resolution of overloads. When we perform the inlining, we make sure that all

references in the code will be accessible at any inline site by generating public accessors if

needed.

It is worth noting that overload resolution did not change. Extra checks where added to

make sure that the override constraints hold. These constraints are summarized at the end

of Section 2.2. Furthermore, all inline method definitions are erased from the code except

if marked as retained. The RHS of retained methods is evaluated as if inlined to execute any

metaprogramming features.

2.6 Applicability

Using inlining as a compiler directive is already widely used and we advocate that the extra

restrictions on method overriding are portable to any OO programming language.

The use of inlining as a base for metaprogramming could be used in other compiled languages

in general. The quotes and splices were inspired by MetaML and MetaOCaml for run-time code

generation. They were transformed into compile-time code generation by simply allowing

top-level splices inline methods. Other metaprogramming features like the error and pattern

matching would also be useful in many languages.

29

Semantics-Preserving Inlining for Metaprogramming

2.7 Related Work

F# supports inlining of generic functions [78]. However, since generic numeric code–code

that uses primitive operators–is treated differently for each numeric type, the mechanism of

inlining demands specialized support for type inference. As a result, inline generic functions

can have statically resolved type parameters whereas non-inline functions cannot. Scala, in

combination with our work, does not infer a different type for the following method:

inline def f[T: Numeric](x: T, y: T): T =
x + x * y

The compiler resolves overloaded methods uniformly and orthogonally to the inlining mecha-

nism (note that Numeric is a view bound). F# infers statically resolved type parameters in the

inferred type of the corresponding definition of f in F#. F# does not support the equivalent of

inline if, inline match, inline overriding or the equivalent to transparent.

In C++, inlining is a compiler hint that an optimizer may or may not follow. However, inlining

is not binding compiler implementors to use inline substitution for any function that is not

marked inline and vice versa. Similarly to our system, C++17 supports both function and

variable inlining. It is worth noting that since C++ supports external linkage, linking behavior

needs to be changed to support inlining.

constexpr was one of the additions in C++11 and proves crucial in simplifying template

metaprogramming. A constant expression defines that an expression can be evaluated at

compile-time and is implied to be inline. A constant function can return a constant value

and may or may not be evaluated at compile-time. In C++20, consteval denotes immediate

functions (not semantically equivalent to normal functions), which are guaranteed to be

inlined and evaluated at compile-time. C++ supports if constexpr statements, similar to

our inline if. In Scala, constant expressions are specified by a very limited set of rules,

hence evaluation occurs only inside inline ifs and pattern matches. Right-hand sides of

inline values and arguments for inline parameters must be constant expressions in the sense

defined by the SLS § 6.24, including platform-specific extensions such as constant folding of

pure numeric computations. constexpr comes with a very complex set of rules that defines

what a constexpr function is; essentially a completely specified sub-language. In our work,

we decide to abstain from strong compile-time evaluation guarantees to support semantics-

preserving inlining. Since all the aforementioned variants of const expressions in C++ offer a

very powerful set of compile-time evaluation in C++, we can compare that aspect too. Firstly,

constant expressions are strictly term-level features (as opposed to template metaprograms).

In our work, as shown by transparent inlining we can refine the type of an expression after the

call is inlined.

D [3] supports the usual compiler directive called inline. Like C++ it is an advice to the compiler.

Similarly to C++, D is also equipped with a powerful template metaprogramming capability.

30

2.7 Related Work

While C++ uses a functional style for templates, in D a template looks like imperative code,

so syntactically D is very close to what a user would write at the term level. Our inline if,

similarly to D supports conditional compilation based on arguments.

D’s Compile Time Function Execution (CTFE) is also part of the compile-time metaprogram-

ming but on the interpretation side instead of merely inlining. D functions that are portable

and free from side effects can be executed at compile-time. While inlining is a declaration-level

directive in our work, in D it is triggered by various “static” contexts such as a static-if or

a dimension argument in a static array. One of the limitations in D is that the function

source code must be available while in our work it can also be loaded from compiled code. In

the compiler, CTFE comes after the AST manipulation phase (naming, type assignment, etc)

has been completed and performs essentially interpretation much like C++. However, as in

C++, D cannot introduce new types (or more precise types) in the context.

MetaML [81; 82; 80] and MetaOCaml [40] offer a distinction between the metalanguage and

an object language via staging annotations–brackets, escape and run. The aforementioned

syntactic modalities are introduced to denote where the evaluation needs to be deferred and

we already cross the boundary of semantics-preserving code. At this point, we can navigate

and guide freely the process of generating code from a quoted domain-specific language

as shown in past work [70; 42; 63]. The macro system that comes in Scala 3, described in

Section 2.4.4 essentially gains inspiration from these technologies and completes what we

present in this work. Racket is considered to have one of the most advanced macro systems

and racket macros can be viewed as compiler extensions that can expand syntax into existing

forms. The work we present in this chapter differs greatly from this direction.

Swift supports cross-module inlining and specialization with two attributes: inlinable and

usableFromInline. The first can be applied to functions and methods, among others, expos-

ing that declaration’s implementation as part of the module’s public interface. The second

introduces a notion of an Application Binary Interface (ABI)-public declaration. Swift’s at-

tributes offer an inlining mechanism similar to C++. The most important distinction between

Swift and our work is that inlinable declarations can only reference ABI-public declarations

while we also support access to private methods via bridges. Our work provides automated de-

tection and generation of said bridges at the cost of potentially leaking private implementation

details out of the public ABI.

31

Semantics-Preserving Inlining for Metaprogramming

2.8 Future Work

Currently, we provide several out-of-the-box metaprogramming solutions to be used just by

inlining while others require full-blown macros. For example, inline if, inline match,

summonInline and error are all supported in some form by macros but we provide simpler

primitives for those operations. As future work, we should identify a core set of metaprogram-

ming features that are often required and provide implementations for them in the standard

library.

Changing the implementation of transparent inline methods may break source compatibility,

while a normal inline method may break binary compatibility. We need to explore how those

can be mitigated and if it is possible to automatically detect all these cases. Swift’s approach to

the ABI might be considered for this purpose, even though it has an extra syntactic overhead.

We empirically test the correctness of the inlining system by comparing the result of equivalent

functions with and without inlining. It would be good to formally prove the soundness of

this inlining system. It would be interesting to prove the unsoundness of the system if the

overriding restrictions are removed.

2.9 Conclusion

In this work we introduce an inline language primitive to support metaprogramming features.

We showed the importance of preserving the semantics while inlining, including the implica-

tions of having methods and virtual dispatch. We listed a few metaprogramming features that

use inlining and showed how the metalanguage takes advantage of inlining to remain simple.

32

Part IIMulti-Stage Programming

35

3 Macro and Run-Time
Multi-Stage Programming

This chapter contains extracts of published papers authored by Stucki, Brachthäuser, and

Odersky [73] and authored by Stucki, Biboudis, and Odersky [70]. The content is updated

and extended to reflect the latest developments.

Generative programming [17] is used in scenarios such as code configuration of libraries, code

optimizations [86], and DSL implementations [18; 83]. There are various kinds of program

generation systems, ranging from syntax-based and unhygienic, to fully typed [67; 45]. Modern

macro systems, like Racket’s, can extend the syntax of the language [24] to create hierarchies of

domain-specific languages [6]. In this work, we are not concerned with Racket-like language

extensibility, but rather macros that can generate and analyze code of expressions at compile-

time.

Principled approaches to metaprogramming, such as MetaML [82; 79; 80] and BER MetaO-

Caml [13; 40; 39; 38], offer strong foundations for expression code generation. These systems

focus on run-time code generation and ensure static safety (well typed and hygienic) and

cross-stage safety. They usually provide cross-stage persistence (CSP) of local variables, the

ability to refer to values from previous stages, at the cost of not supporting cross-platform

portability [82]. Cross-platform portability, as defined by Taha and Sheard [82], describes

the ability to move code generated on one machine to a (potentially different) machine, to

compile and execute it there. This ability is necessary for multi-stage macros in compiled

languages with separate compilation. To move code from one machine to the next, cross-

platform portability requires code serialization, either in the form of source code or as a

serialized intermediate representation. Multi-stage systems that support portability usually

need to make some compromises. Some miss analytical capabilities while others allow both

generative and analytical macros by resorting to advanced type system machinery. Nowadays,

many programming languages provide support for similar mechanisms such as F#, Haskell

(Template Haskell [66] and later Typed Template Haskell [32]), Converge [85] and others.

MacroML [26] extended MetaML to provide a multi-stage macro system showing that “multi-

stage programming languages are a good foundation for the semantics-based design of macro

systems” [26]. By design, MacroML takes a conservative approach not to blur the distinction be-

tween code and data, explicitly avoids dynamic scoping, and lacks analytical macros. Modular

Macros [88] prototyped a compile-time variant of MetaOCaml which takes a similar approach.

37

Macro and Run-Time Multi-Stage Programming

Monnier and Shao [49] first expressed inlining as staged computation but MacroML offered a

user-level perspective by reusing the same mechanisms of quotes and splices, where splices

can appear at the top-level (not nested in a quote). Squid [56; 57; 58] provides a multi-stage

system for generative and analytical macros. Unlike MacroML, Squid uses statically typed

dynamic scoping, tracking free term variables in types, to provide type-safe analytical macros.

While the same line of work inspired many metaprogramming libraries and language features,

to our knowledge built-in support for both run-time multi-stage programming and genera-

tive macros has not been implemented previously in a unifying manner. We advocate that

such a unification has two benefits: firstly, users rely on a single abstraction to express code

generation; and secondly, having a single subsystem in the compiler favors maintainability.

Our view regarding macros aligns with the benefits of multi-stage programming on domain-

specific optimizations [16; 42; 39]: in modern programming languages, inlining (à la C++)

with a sufficiently smart partial evaluator is not necessarily equivalent with domain-specific

optimizations that can be done at compile-time.

Scala 2 already provided an experimental metaprogramming API called scala.reflect [12].

scala.reflect supports type-aware, run-time and compile-time code generation, providing

an expressive and powerful system to the user (both generative and analytical). Despite

the success of scala.reflect, the API exposed compiler internals and gave rise to portability

problems between compiler versions [46]. This API provided syntactic code quasiquotation

[65] which lacks the strong static safety provided by multi-stage programming.

We designed the Scala 3 metaprogramming core on multi-stage programming to provide

simpler and safer code generation and analysis tools. An additional goal was to make most of

the macros that were already available in Scala 2 also available in Scala 3, while making their

implementation simpler and safer. To allow more expressivity, when multi-stage programming

is too restrictive, we complement it with the reflection API (in Part III). In this chapter we

focus on the design and implementation of the Scala 3 macros and run-time multi-stage

programming.

Requirements We identify the requirements that a design of a multi-stage macro and run-time

system for compiled languages should meet:

• Cross-platform portability. It should be possible to use generated code on different

machines.

• Static safety. Generated code should be hygienic and well typed.

• Cross-stage safety. Access to variables should only be allowed at stages where they are

available.

• Generative and analytical. Programmers should be able to generate as well as analyze

and decompose code.

38

3.1 Macros and Run-Time Multi-Stage Programming

3.1 Macros and Run-Time Multi-Stage Programming

This section describes the design of the multi-stage system implemented in Scala 3. We also

show how the requirements are met and how they guide some of the design decisions.

3.1.1 Multi-Staging

Quoted expressions Multi-stage programming in Scala 3 uses quotes '{..} to delay, i.e.,

stage, execution of code and splices ${..} to evaluate and insert code into quotes. Quoted

expressions are typed as Expr[T] with a covariant type parameter T. It is easy to write stat-

ically safe code generators with these two concepts. The following example shows a naive

implementation of the xn mathematical operation.

import scala.quoted.*
def unrolledPowerCode(x: Expr[Double], n: Int)(using Quotes): Expr[Double] =

if n == 0 then '{ 1.0 }
else if n == 1 then x
else '{ $x * ${ unrolledPowerCode(x, n-1) } }

Listing 3.1: def unrolledPowerCode

'{
val x = ...
${ unrolledPowerCode('{x}, 3) } // evaluates to: x * x * x

}

Quotes and splices are duals of each other. For an arbitrary expression x of type T we have

${'{x}} = x and for an arbitrary expression e of type Expr[T] we have '{${e}} = e.

Abstract types Quotes can handle generic and abstract types using the type class Type[T].

A quote that refers to a generic or abstract type T requires a given Type[T] to be provided in

the implicit scope. The following examples show how T is annotated with a context bound

(: Type) to provide an implicit Type[T], or the equivalent using Type[T] parameter.

import scala.quoted.*
def singletonListExpr[T: Type](x: Expr[T])(using Quotes): Expr[List[T]] =

'{ List[T]($x) } // generic T used within a quote

def emptyListExpr[T](using Type[T], Quotes): Expr[List[T]] =
'{ List.empty[T] } // generic T used within a quote

If no other instance is found, the default Type.of[T] is used. The following example implicitly

uses Type.of[String] and Type.of[Option[U]].

39

Macro and Run-Time Multi-Stage Programming

val list1: Expr[List[String]] =
singletonListExpr('{"hello"}) // requires a given `Type[Sting]`

val list0: Expr[List[Option[T]]] =
emptyListExpr[Option[U]] // requires a given `Type[Option[U]]`

The Type.of[T] method is a primitive operation that the compiler will handle specially. It

will provide the implicit if the type T is statically known, or if T contains some other types Ui
for which we have an implicit Type[Ui]. In the example, Type.of[String] has a statically

known type and Type.of[Option[U]] requires an implicit Type[U] in scope.

Quote context We also track the current quotation context using a given Quotes instance.

To create a quote '{..} we require a given Quotes context, which should be passed as

a contextual parameter (using Quotes) to the function. Each splice will provide a new

Quotes context within the scope of the splice. Therefore quotes and splices can be seen as

methods with the following signatures, but with special semantics.

def '[T](x: T): Quotes ?=> Expr[T] // def '[T](x: T)(using Quotes): Expr[T]

def $[T](x: Quotes ?=> Expr[T]): T

The lambda with a question mark ?=> is a contextual function; it is a lambda that takes its

argument implicitly and provides it implicitly in the implementation the lambda. Quotes are

used for a variety of purposes that will be mentioned when covering those topics.

3.1.2 Quoted Values

Lifting While it is not possible to use cross-stage persistence of local variables, it is possible to

lift them to the next stage. To this end, we provide the Expr.apply method, which can take a

value and lift it into a quoted representation of the value.

val expr1plus1: Expr[Int] = '{ 1 + 1 }

val expr2: Expr[Int] = Expr(1 + 1) // lift 2 into '{ 2 }

While it looks type wise similar to '{ 1 + 1 }, the semantics of Expr(1 + 1) are quite

different. Expr(1 + 1) will not stage or delay any computation; the argument is evaluated to

a value and then lifted into a quote. The quote will contain code that will create a copy of this

value in the next stage. Expr is polymorphic and user-extensible via the ToExpr type class.

trait ToExpr[T]:
def apply(x: T)(using Quotes): Expr[T]

40

3.1 Macros and Run-Time Multi-Stage Programming

We can implement a ToExpr using a given definition that will add the definition to the im-

plicits in scope. In the following example we show how to implement a ToExpr[Option[T]]
for any liftable type T.

given OptionToExpr[T: Type: ToExpr]: ToExpr[Option[T]] with
def apply(opt: Option[T])(using Quotes): Expr[Option[T]] =

opt match
case Some(x) => '{ Some[T](${Expr(x)}) }
case None => '{ None }

Listing 3.2: given OptionToExpr

The ToExpr for primitive types must be implemented as primitive operations in the system.

In our case, we use the reflection API to implement them.

Extracting values from quotes To be able to generate optimized code using the method

unrolledPowerCode (Listing 3.1), the macro implementation powerCode needs to first de-

termine whether the argument passed as parameter n is a known constant value. This can be

achieved via unlifting using the Expr.unapply extractor from our library implementation,

which will only match if n is a quoted constant and extracts its value.

def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =
n match

case Expr(m) => // it is a constant: unlift code n='{m} into number m
unrolledPowerCode(x, m)

case _ => // not known: call power at run-time
'{ power($x, $n) }

Listing 3.3: def powerCode

Alternatively, the n.value method can be used to get an Option[Int] with the value or

n.valueOrAbort to get the value directly.

def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =
// emits an error message if `n` is not a constant
unrolledPowerCode(x, n.valueOrAbort)

Expr.unapply and all variants of value are polymorphic and user-extensible via a given

FromExpr type class.

trait FromExpr[T]:
def unapply(x: Expr[T])(using Quotes): Option[T]

We can use given definitions to implement the FromExpr as we did for ToExpr. The FromExpr

41

Macro and Run-Time Multi-Stage Programming

for primitive types must be implemented as primitive operations in the system. In our case,

we use the reflection API to implement them. To implement FromExpr for non-primitive types

we use quote pattern matching (Listing 3.7 of Section 3.1.8).

3.1.3 Macros and Multi-Stage Programming

The system supports multi-stage macros and run-time multi-stage programming using the

same quotation abstractions.

Multi-Stage Macros

Macros We can generalize the splicing abstraction to express macros. A macro consists of a

top-level splice that is not nested in any quote. Conceptually, the contents of the splice are

evaluated one stage earlier than the program In other words, the contents are evaluated while

compiling the program. The generated code resulting from the macro replaces the splice in

the program.

def power2(x: Double): Double =
${ unrolledPowerCode('x, 2) } // x * x

Inline macros Since using the splices in the middle of a program is not as ergonomic as calling

a function; we hide the staging mechanism from end-users of macros. We have a uniform way

of calling macros and normal functions. For this, we restrict the use of top-level splices to only

appear in inline methods (Chapter 2, [72]).

// inline macro definition
inline def powerMacro(x: Double, inline n: Int): Double =

${ powerCode('x, 'n) }

// user code
def power2(x: Double): Double =

powerMacro(x, 2) // x * x

Listing 3.4: def powerMacro

The evaluation of the macro will only happen when the code is inlined into power2. When

inlined, the code is equivalent to the previous definition of power2. A consequence of using

inline methods is that none of the arguments nor the return type of the macro will have to

mention the Expr types; this hides all aspects of metaprogramming from the end-users.

42

3.1 Macros and Run-Time Multi-Stage Programming

Avoiding a complete interpreter When evaluating a top-level splice, the compiler needs to

interpret the code that is within the splice. Providing an interpreter for the entire language is

quite tricky, and it is even more challenging to make that interpreter run efficiently. To avoid

needing a complete interpreter, we can impose the following restrictions on splices to simplify

the evaluation of the code in top-level splices.

• The top-level splice must contain a single call to a compiled static method.

• Arguments to the function are literal constants, quoted expressions (parameters), calls

to Type.of for type parameters and a reference to Quotes.

In particular, these restrictions disallow the use of splices in top-level splices. Such a splice

would require several stages of interpretation which would be unnecessarily inefficient.

Compilation stages The macro implementation (i.e., the method called in the top-level splice)

can come from any pre-compiled library. This provides a clear difference between the stages

of the compilation process. Consider the following 3 source files definied in distinct libraries.

// Macro.scala
def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] = ...
inline def powerMacro(x: Double, inline n: Int): Double =

${ powerCode('x, 'n) }

// Lib.scala (depends on Macro.scala)
def power2(x: Double) =

${ powerCode('x, '{2}) } // inlined from a call to: powerMacro(x, 2)

// App.scala (depends on Lib.scala)
@main def app() = power2(3.14)

One way to syntactically visualize this is to put the application in a quote that delays the

compilation of the application. Then the application dependencies can be placed in an outer

quote that contains the quoted application, and we repeat this recursively for dependencies of

dependencies.

'{ // macro library (compilation stage 1)
def powerCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =

...
inline def powerMacro(x: Double, inline n: Int): Double =

${ powerCode('x, 'n) }
'{ // library using macros (compilation stage 2)

def power2(x: Double) =
${ powerCode('x, '{2}) } // inlined from a call to: powerMacro(x, 2)

'{ power2(3.14) /* app (compilation stage 3) */ }
}

}

43

Macro and Run-Time Multi-Stage Programming

To make the system more versatile, we allow calling macros in the project where it is defined,

with some restrictions. For example, to compile Macro.scala and Lib.scala together in the

same library. To this end, we do not follow the simpler syntactic model and rely on semantic

information from the source files. When compiling a source, if we detect a call to a macro that

is not compiled yet, we delay the compilation of this source to the following compilation stage.

In the example, we would delay the compilation of Lib.scala because it contains a compile-

time call to powerCode. Compilation stages are repeated until all sources are compiled, or

no progress can be made. If no progress is made, there was a cyclic dependency between the

definition and the use of the macro. We also need to detect if at runtime the macro depends

on sources that have not been compiled yet. These are detected by executing the macro and

checking for JVM linking errors to classes that have not been compiled yet.

Run-Time Multi-Stage Programming

Traditional multi-stage programming supports run-time code generation using the run oper-

ation to evaluate a quoted expression into its value. We extend the system in the staging1

library, which defines the aforementioned run operation and a way to create and manage

compiler instances.

package scala.quoted.staging
def run[T](expr: Quotes ?=> Expr[T])(using Compiler): T = ...

Listing 3.5: scala.quoted.staging.run

The run method will provide a fresh instance of the Quotes context. The run operation also

requires an implicit instance of a Compiler, which will be used to compile the code of the

expression. Users can choose how to manage the compiler instances depending on their

needs.

given Compiler = Compiler.make(getClass.getClassLoader)

val power2: Double => Int = run {
'{ (x: Double) => ${ unrolledPowerCode('x, 2) } }

}

In this example, we first evaluate the argument of the run to '{ (x: Double) => x *
x }. Then run will compile the content of the quote and evaluate it to produce a lambda

implemented as (x: Double) => x * x.

1Implemented in the Scala 3 Dotty project https://github.com/lampepfl/dotty. sbt library dependency
"org.scala-lang" %% "scala3-staging" % scalaVersion.value

44

https://github.com/lampepfl/dotty

3.1 Macros and Run-Time Multi-Stage Programming

3.1.4 Safety

Multi-stage programming is by design statically safe and cross-stage safe.

Static Safety

Hygiene All identifier names are interpreted as symbolic references to the corresponding

variable in the context of the quote. Therefore, while evaluating the quote, it is not possible to

accidentally rebind a reference to a new variable with the same textual name.

Well-typed If a quote is well typed, then the generated code is well typed. This is a simple

consequence of tracking the type of each expression. An Expr[T] can only be created from a

quote that contains an expression of type T. Conversely, an Expr[T] can only be spliced in a

location that expects a type T. As mentioned before, Expr is covariant in its type parameter.

This means that an Expr[T] can contain an expression of a subtype of T. When spliced in a

location that expects a type T, these expressions also have a valid type.

Cross-Stage Safety

Level consistency We define the staging level of some code as the number of quotes minus

the number of splices surrounding said code. Local variables must be defined and used in the

same staging level.

It is never possible to access a local variable from a lower staging level as it does not yet exist.

def badPower(x: Double, n: Int): Double =
${ unrolledPowerCode('x, n) } // error: value of `n` not known yet

In the context of macros and cross-platform portability, that is, macros compiled on one

machine but potentially executed on another, we cannot support cross-stage persistence of

local variables. Therefore, local variables can only be accessed at precisely the same staging

level in our system.

def badPowerCode(x: Expr[Double], n: Int)(using Quotes): Expr[Double] =
// error: `n` potentially not available in the next execution environment
'{ power($x, n) }

The rules are slightly different for global definitions, such as unrolledPowerCode. It is

possible to generate code that contains a reference to a global definition such as in '{
power(2, 4) }. This is a limited form of cross-stage persistence that does not impede

cross-platform portability, where we refer to the already compiled code for power. Each

compilation step will lower the staging level by one while keeping global definitions. In con-

sequence, we can refer to compiled definitions in macros such as unrolledPowerCode in

${ unrolledPowerCode('x, 2) }.

45

Macro and Run-Time Multi-Stage Programming

We can sumarize level consistency in two rules:

• Local variables can be used only at the same staging level as their definition

• Global variables can be used at any staging level

Type consistency As Scala uses type erasure, generic types will be erased at run-time and

hence in any following stage. To ensure any quoted expression that refers to a generic type

T does not lose the information it needs, we require a given Type[T] in scope. The Type[T]
will carry over the non-erased representation of the type into the next phase. Therefore any

generic type used at a higher staging level than its definition will require its Type.

Scope extrusion Within the contents of a splice, it is possible to have a quote that refers to a

local variable defined in the outer quote. If this quote is used within the splice, the variable

will be in scope. However, if the quote is somehow extruded outside the splice, then variables

might not be in scope anymore. Quoted expressions can be extruded using side effects such

as mutable state and exceptions. The following example shows how a quote can be extruded

using mutable state.

var x: Expr[T] = null
'{ (y: T) => ${ x = 'y; 1 } }
x // has value '{y} but y is not in scope

A second way a variable can be extruded is through the run method. If run consumes a quoted

variable reference, it will not be in scope anymore. The result will reference a variable that is

defined in the next stage.

'{ (x: Int) => ${ run('x); ... } }
// evaluates to: '{ (x: Int) => ${ x; ... } }

To catch both scope extrusion scenarios, our system restricts the use of quotes by only allowing

a quote to be spliced if it was not extruded from a splice scope. Unlike level consistency, this

is checked at run-time2 rather than compile-time to avoid making the static type system too

complicated.

Each Quotes instance contains a unique scope identifier and refers to its parent scope, forming

a stack of identifiers. The parent of the scope of a Quotes is the scope of the Quotes used to

create the enclosing quote. Top-level splices and run create new scope stacks. Every Expr
knows in which scope it was created. When it is spliced, we check that the quote scope is

either the same as the splice scope, or a parent scope thereof.

2Using the -Xcheck-macros compiler flag

46

3.1 Macros and Run-Time Multi-Stage Programming

3.1.5 Staged Lambdas

When staging programs in a functional language there are two fundamental abstractions:

a staged lambda Expr[T => U] and a staging lambda Expr[T] => Expr[U]. The first is

a function that will exist in the next stage, whereas the second is a function that exists in

the current stage. It is often convenient to have a mechanism to go from Expr[T => U] to

Expr[T] => Expr[U] and vice versa.

def later[T: Type, U: Type](f: Expr[T] => Expr[U]): Expr[T => U] =
'{ (x: T) => ${ f('x) } }

def now[T: Type, U: Type](f: Expr[T => U]): Expr[T] => Expr[U] =
(x: Expr[T]) => '{ $f($x) }

Both conversions can be performed out of the box with quotes and splices. But if f is a known

lambda function, '{ $f($x) } will not β-reduce the lambda in place. This optimization is

performed in a later phase of the compiler. Not reducing the application immediately can

simplify analysis of generated code. Nevertheless, it is possible to β-reduce the lambda in

place using the Expr.betaReduce method.

def now[T: Type, U: Type](f: Expr[T => U]): Expr[T] => Expr[U] =
(x: Expr[T]) => Expr.betaReduce('{ $f($x) })

The betaReduce method will β-reduce the outermost application of the expression if possible

(regardless of arity). If it is not possible to β-reduce the expression, then it will return the

original expression.

3.1.6 Staged Constructors

To create new class instances in a later stage, we can create them using factory methods

(usually apply methods of an object), or we can instantiate them with a new. For example,

we can write Some(1) or new Some(1), creating the same value. In Scala 3, using the factory

method call notation will fall back to a new if no apply method is found. We follow the usual

staging rules when calling a factory method. Similarly, when we use a new C, the constructor

of C is implicitly called, which also follows the usual staging rules. Therefore for an arbitrary

known class C, we can use both '{ C(...) } or '{ new C(...) } as constructors.

47

Macro and Run-Time Multi-Stage Programming

3.1.7 Staged Classes

Quoted code can contain any valid expression including local class definitions. This allows the

creation of new classes with specialized implementations. For example, we can implement a

new version of Runnable that will perform some optimized operation.

def mkRunnable(x: Int)(using Quotes): Expr[Runnable] = '{
class MyRunnable extends Runnable:

def run(): Unit = ... // generate some custom code that uses `x`
new MyRunnable

}

The quoted class is a local class and its type cannot escape the enclosing quote. The class

must be used inside the quote or an instance of it can be returned using a known interface

(Runnable in this case).

3.1.8 Quote Pattern Matching

It is sometimes necessary to analyze the structure of the code or decompose the code into its

sub-expressions. A classic example is an embedded DSL, where a macro knows a set of defini-

tions that it can reinterpret while compiling the code (for instance, to perform optimizations).

In the following example, we extend our previous implementation of powCode to look into x
to perform further optimizations.

def fusedPowCode(x: Expr[Double], n: Expr[Int])(using Quotes): Expr[Double] =
x match

case '{ power($y, $m) } => // we have (y^m)^n
fusedPowCode(y, '{ $n * $m }) // generate code for y^(n*m)

case _ =>
'{ power($x, $n) }

Listing 3.6: def fusedPowCode

Sub-patterns In quoted patterns, the $ binds the sub-expression to an expression Expr that

can be used in that case branch. The contents of ${..} in a quote pattern are regular Scala

patterns. For example, we can use the Expr(_) pattern within the ${..} to only match if it is

a known value and extract it.

def fusedUnrolledPowCode(x: Expr[Double], n: Int)(using Quotes): Expr[Double] =
x match

case '{ power($y, ${Expr(m)}) } => // we have (y^m)^n
fusedUnrolledPowCode(y, n * m) // generate code for y * ... * y

case _ => // (n*m times)
unrolledPowerCode(x, n)

48

3.1 Macros and Run-Time Multi-Stage Programming

These value extraction sub-patterns can be polymorphic using an instance of FromExpr. In

the following example, we show the implementation of OptionFromExpr which internally

uses the FromExpr[T] to extract the value using the Expr(x) pattern.

given OptionFromExpr[T](using Type[T], FromExpr[T]): FromExpr[Option[T]] with
def unapply(x: Expr[Option[T]])(using Quotes): Option[Option[T]] =

x match
case '{ Some(${Expr(x)}) } => Some(Some(x))
case '{ None } => Some(None)
case _ => None

Listing 3.7: given OptionFromExpr

Closed patterns Patterns may contain two kinds of references: global references such as

the call to the power method in '{ power(...) }, or references to bindings defined in the

pattern such as x in case '{ (x: Int) => x }. When extracting an expression from a

quote, we need to ensure that we do not extrude any variable from the scope where it is

defined.

'{ (x: Int) => x + 1 } match
case '{ (y: Int) => $z } =>

// should not match, otherwise: z = '{ x + 1 }

In this example, we see that the pattern should not match. Otherwise, any use of the expression

z would contain an unbound reference to x. To avoid any such extrusion, we only match on

a ${..} if its expression is closed under the definitions within the pattern. Therefore, the

pattern will not match if the expression is not closed.

HOAS patterns To allow extracting expressions that may contain extruded references we offer

a higher-order abstract syntax (HOAS) [60] pattern $f(y) (or $f(y1,...,yn)). This pattern

will η-expand the sub-expression with respect to y and bind it to f . The lambda arguments

will replace the variables that might have been extruded.

'{ ((x: Int) => x + 1).apply(2) } match
case '{ ((y: Int) => $f(y)).apply($z: Int) } =>

// f may contain references to `x` (replaced by `$y`)
// f = (y: Expr[Int]) => '{ $y + 1 }
f(z) // generates '{ 2 + 1 }

Listing 3.8: HOAS pattern

A HOAS pattern $x(y1,...,yn) will only match the expression if it does not contain refer-

ences to variables defined in the pattern that are not in the set y1,...,yn. In other words,

the pattern will match if the expression only contains references to variables defined in the

pattern that are in y1,...,yn. Note that the HOAS patterns $x() are semantically equivalent

49

Macro and Run-Time Multi-Stage Programming

to closed patterns $x.

This approach was also used in earlier Squid [56] versions. The use of HOAS allows us to

keep the involved types simple. The η-expanded sub-expression can be typed with a simple

function type. This way, we can avoid scope extrusion without resorting to complex type-level

machinery of tracking free variables. HOAS patterns without parameters are considered closed

patterns.

Type variables Expressions may contain types that are not statically known. For example,

an Expr[List[Int]] may contain list.map(_.toInt) where list is a List of some type.

To cover all the possible cases we would need to explicitly match list on all possible types

(List[Int], List[Int => Int], ...). This is an infinite set of types and therefore pattern

cases. Even if we would know all possible types that a specific program could use, we may still

end up with an unmanageable number of cases. To overcome this, we introduce type variables

in quoted patterns, which will match any type.

In the following example, we show how type variables t and u match all possible pairs of

consecutive calls to map on lists. In the quoted patterns, types named with lower cases are

identified as type variables. This follows the same notation as type variables used in normal

patterns.

def fuseMapCode(x: Expr[List[Int]]): Expr[List[Int]] =
x match

case '{ ($ls: List[t]).map[u]($f).map[Int]($g) } =>
'{ $ls.map($g.compose($f)) }

...

fuseMapCode('{ List(1.2).map(f).map(g) }) // '{ List(1.2).map(g.compose(f)) }
fuseMapCode('{ List('a').map(h).map(i) }) // '{ List('a').map(i.compose(h)) }

Listing 3.9: def fuseMapCode

Variables f and g are inferred to be of type Expr[t => u] and Expr[u => Int] respectively.

Subsequently, we can infer $g.compose($f) to be of type Expr[t => Int] which is the type

of the argument of $ls.map(..).

Type variables are abstract types that will be erased; this implies that to reference them in

the second quote we need a given Type[t] and Type[u]. The quoted pattern will implicitly

provide those given types. At run-time, when the pattern matches, the type of t and u will be

known, and the Type[t] and Type[u] will contain the precise types in the expression.

As Expr is covariant, the statically known type of the expression might not be the actual type.

Type variables can also be used to recover the precise type of the expression.

50

3.1 Macros and Run-Time Multi-Stage Programming

def let(x: Expr[Any])(using Quotes): Expr[Any] =
x match

case '{ $x: t } =>
'{ val y: t = $x; y }

let('{1}) // will return a `Expr[Any]` that contains an `Expr[Int]]`

Listing 3.10: def let

While we can define the type variable in the middle of the pattern, their normal form is to

define them as a type with a lower case name at the start of the pattern. We use the Scala

backquote `t` naming convention which interprets the string within the backquote as a literal

name identifier. This is typically used when we have names that contain special characters

that are not allowed for normal Scala identifiers. But we use it to explicitly state that this is a

reference to that name and not the introduction of a new variable.

case '{ type t; $x: `t` } =>

This is a bit more verbose but has some expressivity advantages such as allowing to define

bounds on the variables and be able to refer to them several times in any scope of the pattern.

case '{ type t >: List[Int] <: Seq[Int]; $x: `t` } =>
case '{ type t; $x: (`t`, `t`) } =>

Type patterns It is possible to only have a type and no expression of that type. To be able to

inspect a type, we introduce quoted type pattern case '[..] =>. It works the same way as a

quoted pattern but is restricted to contain a type. Type variables can be used in quoted type

patterns to extract a type.

def empty[T: Type]: Expr[T] =
Type.of[T] match

case '[String] => '{ "" }
case '[List[t]] => '{ List.empty[t] }
...

Listing 3.11: def empty[T]

Type.of[T] is used to summon the given instance of Type[T] in scope, it is equivalent to

summon[Type[T]].

51

Macro and Run-Time Multi-Stage Programming

Type testing and casting It is important to note that instance checks and casts on Expr, such

as isInstanceOf[Expr[T]] and asInstanceOf[Expr[T]], will only check if the instance

is of the class Expr but will not be able to check the T argument. These cases will issue a

warning at compile-time, but if they are ignored, they can result in unexpected behavior.

These operations can be supported correctly in the system. For a simple type test it is possible

to use the isExprOf[T] method of Expr to check if it is an instance of that type. Similarly, it

is possible to use asExprOf[T] to cast an expression to a given type. These operations use a

given Type[T] to work around type erasure.

3.1.9 Sub-Expression Transformation

The system provides a mechanism to transform all sub-expressions of an expression. This is

useful when the sub-expressions we want to transform are deep in the expression. It is also

necessary if the expression contains sub-expressions that cannot be matched using quoted

patterns (such as local class definitions).

trait ExprMap:
def transform[T](e: Expr[T])(using Type[T])(using Quotes): Expr[T]
def transformChildren[T](e: Expr[T])(using Type[T])(using Quotes): Expr[T] =

...

Listing 3.12: trait ExprMap

Users can extend the ExprMap trait and implement the transform method. This interface is

flexible and can implement top-down, bottom-up, or other transformations.

object OptimizeIdentity extends ExprMap:
def transform[T](e: Expr[T])(using Type[T])(using Quotes): Expr[T] =

transformChildren(e) match // bottom-up transformation
case '{ identity($x) } => x
case _ => e

The transformChildren method is implemented as a primitive that knows how to reach all

the direct sub-expressions and calls transform on each one. The type passed to transform
is the expected type of this sub-expression in its expression. For example while transforming

Some(1) in '{ val x: Option[Int] = Some(1); ...} the type will be Option[Int] and

not Some[Int]. This implies that we can safely transform Some(1) into None.

52

3.1 Macros and Run-Time Multi-Stage Programming

3.1.10 Staged Implicit Summoning

When summoning implicit arguments using summon, we will find the given instances in the

current scope. It is possible to use summon to get staged implicit arguments by explicitly staging

them first. In the following example, we can pass an implicit Ordering[T] in a macro as an

Expr[Ordering[T]] to its implementation. Then we can splice it and give it implicitly in the

next stage.

inline def treeSetFor[T](using ord: Ordering[T]): Set[T] =
${ setExpr[T](using 'ord) }

def setExpr[T:Type](using ord: Expr[Ordering[T]])(using Quotes): Expr[Set[T]] =
'{ given Ordering[T] = $ord; new TreeSet[T]() }

Listing 3.13: def treeSetFor

We pass it as an implicit Expr[Ordering[T]] because there might be intermediate methods

that can pass it along implicitly.

An alternative is to summon implicit values in the scope where the macro is invoked. Using

the Expr.summon method we get an optional expression containing the implicit instance. This

provides the ability to search for implicit instances conditionally.

def summon[T: Type](using Quotes): Option[Expr[T]]

inline def setFor[T]: Set[T] =
${ setForExpr[T] }

def setForExpr[T: Type]()(using Quotes): Expr[Set[T]] =
Expr.summon[Ordering[T]] match

case Some(ord) =>
'{ new TreeSet[T]()($ord) }

case _ =>
'{ new HashSet[T] }

Listing 3.14: def setFor

53

Macro and Run-Time Multi-Stage Programming

3.2 Implementation

This metaprogramming system was implemented for the Dotty Scala 3 compiler [21]. In this

section we will cover details about the implementation such as syntax in Section 3.2.1, the

run-time encoding in Section 3.2.2, entry points (macros and run-time staging) in Section 3.2.3

and compilation in Section 3.2.4.

3.2.1 Syntax

The quotation syntax using ' and $ was chosen to mimic the string interpolation syntax of

Scala. Like a string double-quotation, a single-quote block can contain splices. However,

unlike strings, splices can contain quotes using the same rules.

s"Hello $name"
'{ hello($name) }
${ hello('name) }

s"Hello ${name}"
'{ hello(${name}) }
${ hello('{name}) }

Quotes

Quotes come in four flavors: quoted identifiers, quoted blocks, quoted block patterns and

quoted type patterns.

SimpleExpr ::= ...
| `'` alphaid // quoted identifier
| `'` `{` Block `}` // quoted block

Pattern ::= ...
| `'` `{` Block `}` // quoted block pattern
| `'` `[` Type `]` // quoted type pattern

Listing 3.15: Quote syntax

Quoted blocks and quoted block patterns contain an expression equivalent to a normal

block of code. When entering either of those we track the fact that we are in a quoted block

(inQuoteBlock) which is used for spliced identifiers. When entering a quoted block pattern

we additionally track the fact that we are in a quoted pattern (inQuotePattern) which is

used to distinguish spliced blocks and splice patterns. Lastly, the quoted type pattern simply

contains a type.

54

3.2 Implementation

Splices

Splices come in three flavors: spliced identifiers, spliced blocks and splice patterns. Scala

specifies identifiers containing $ as valid identifiers but reserves them for compiler and

standard library use only. Unfortunately, many libraries have used such identifiers in Scala 2.

Therefore to mitigate the cost of migration, we still support them. We work around this by only

allowing spliced identifiers3 within quoted blocks or quoted block patterns (inQuoteBlock).

Splice blocks and splice patterns can contain an arbitrary block or pattern respectively. They

are distinguished based on their surrounding quote (inQuotePattern), a quote block will

contain spliced blocks, and a quote block pattern will contain splice patterns.

SimpleExpr ::= ...
| `$` alphaid if inQuoteBlock // spliced identifier
| `$` `{` Block `}` if !inQuotePattern // spliced block
| `$` `{` Pattern `}` if inQuotePattern // splice pattern

Listing 3.16: Splice syntax

Quoted Pattern Type Variables

Quoted pattern type variables in quoted patterns and quoted type patterns do not require

additional syntax. Any type definition or reference with a name composed of lower cases is

assumed to be a pattern type variable definition while typing. A backticked type name with

lower cases is interpreted as a reference to the type with that name.

3.2.2 Run-Time Representation

The standard library defines the Quotes interface which contains all the logic and the abstract

classes Expr and Type. The compiler implements the Quotes interface and provides the

implementation of Expr and Type.

class Expr Expressions of type Expr[T] are represented by the following abstract class:

abstract class Expr[+T] private[scala]

Listing 3.17: class Expr

The only implementation of Expr is in the compiler along with the implementation of Quotes.

It is a class that wraps a typed AST and a Scope object with no methods of its own. The Scope
object is used to track the current splice scope and detect scope extrusions.

3In quotes, identifiers starting with $ must be surrounded by backticks. For example `$conforms` from
scala.Predef.

55

Macro and Run-Time Multi-Stage Programming

object Expr The companion object of Expr contains a few useful static methods; the

apply/unapply methods to use ToExpr/FromExpr with ease; the betaReduce and summon
methods. It also contains methods to create expressions out of lists or sequences of expres-

sions: block, ofSeq, ofList, ofTupleFromSeq and ofTuple.

object Expr:
def apply[T](x: T)(using ToExpr[T])(using Quotes): Expr[T] = ...
def unapply[T](x: Expr[T])(using FromExpr[T])(using Quotes): Option[T] = ...
def betaReduce[T](e: Expr[T])(using Quotes): Expr[T] = ...
def summon[T: Type](using Quotes): Option[Expr[T]] = ...
def block[T](stats: List[Expr[Any]], e: Expr[T])(using Quotes): Expr[T] = ...
def ofSeq[T: Type](xs: Seq[Expr[T]])(using Quotes): Expr[Seq[T]] = ...
def ofList[T: Type](xs: Seq[Expr[T]])(using Quotes): Expr[List[T]] = ...
def ofTupleFromSeq(xs: Seq[Expr[Any]])(using Quotes): Expr[Tuple] = ...
def ofTuple[T <: Tuple: Tuple.IsMappedBy[Expr]: Type](tup: T)(using Quotes):

Expr[Tuple.InverseMap[T, Expr]] = ...

Listing 3.18: object Expr

class Type Types of type Type[T] are represented by the following abstract class:

abstract class Type[T <: AnyKind] private[scala]:
type Underlying = T

Listing 3.19: class Type

The only implementation of Type is in the compiler along with the implementation of Quotes.

It is a class that wraps the AST of a type and a Scope object with no methods of its own.

The upper bound of T is AnyKind which implies that T may be a higher-kinded type. The

Underlying alias is used to select the type from an instance of Type. Users never need to use

this alias as they can always use T directly. Underlying is used for internal encoding while

compiling the code (see Type Healing of Section 3.2.4).

object Type The companion object of Type contains a few useful static methods. The

first and most important one is the Type.of given definition. This instance of Type[T] is

summoned by default when no other instance is available. The of operation is an intrinsic

operation that the compiler will transform into code that will generate the Type[T] at run-

time. Secondly, the Type.show[T] operation will show a string representation of the type,

which is often useful when debugging. Finally, the object defines valueOfConstant (and

valueOfTuple) which can transform singleton types (or tuples of singleton types) into their

value.

56

3.2 Implementation

object Type:
given of[T <: AnyKind](using Quotes): Type[T] = ...
def show[T <: AnyKind](using Type[T])(using Quotes): String = ...
def valueOfConstant[T](using Type[T])(using Quotes): Option[T] = ...
def valueOfTuple[T <: Tuple](using Type[T])(using Quotes): Option[T] = ...

Listing 3.20: object Type

Quotes The Quotes interface is where most of the primitive operations of the quotation

system are defined.

Quotes define all the Expr[T] methods as extension methods. Type[T] does not have meth-

ods and therefore does not appear here. These methods are available as long as Quotes is

implicitly given in the current scope.

The Quotes instance is also the entry point to the reflection API through the reflect object.

We defer discussion of the reflect object to Part III.

Finally, Quotes provides the internal logic used in quote un-pickling (QuoteUnpickler) in

quote pattern matching (QuoteMatching). These interfaces are added to the self-type of the

trait to make sure they are implemented on this object but not visible to users of Quotes.

Internally, the implementation of Quotes will also track its current splicing scope Scope. This

scope will be attached to any expression that is created using this Quotes instance.

trait Quotes:
this: runtime.QuoteUnpickler & runtime.QuoteMatching =>

extension [T](self: Expr[T])
def show: String
def matches(that: Expr[Any]): Boolean
def value(using FromExpr[T]): Option[T]
def valueOrAbort(using FromExpr[T]): T

end extension

extension (self: Expr[Any])
def isExprOf[X](using Type[X]): Boolean
def asExprOf[X](using Type[X]): Expr[X]

end extension

// abstract object reflect ...

Listing 3.21: trait Quotes

57

Macro and Run-Time Multi-Stage Programming

Scope The splice context is represented as a stack (immutable list) of Scope objects. Each

Scope contains the position of the splice (used for error reporting) and a reference to the

enclosing splice scope Scope. A scope is a sub-scope of another if the other is contained in its

parents. This check is performed when an expression is spliced into another using the Scope
provided in the current scope in Quotes and the one in the Expr or Type.

3.2.3 Entry Points

The two entry points for multi-stage programming are macros and the run operation.

Macros

Inline macro definitions will inline a top-level splice (a splice not nested in a quote). This splice

needs to be evaluated at compile-time. In Avoiding a complete interpreter of Section 3.1.3, we

stated the following restrictions:

• The top-level splice must contain a single call to a compiled static method.

• Arguments to the function are either literal constants, quoted expressions (parameters),

Type.of for type parameters and a reference to Quotes.

These restrictions make the implementation of the interpreter quite simple. Java Reflection

is used to call the single function call in the top-level splice. The execution of that function

is entirely done on compiled bytecode. These are Scala static methods and may not always

become Java static methods, they might be inside module objects. As modules are encoded as

class instances, we need to interpret the prefix of the method to instantiate it before we can

invoke the method.

The code of the arguments has not been compiled and therefore needs to be interpreted by

the compiler. Interpreting literal constants is as simple as extracting the constant from the

AST that represents literals. When interpreting a quoted expression, the contents of the quote

is kept as an AST which is wrapped inside the implementation of Expr. Calls to Type.of[T]
also wrap the AST of the type inside the implementation of Type. Finally, the reference to

Quotes is supposed to be the reference to the quotes provided by the splice. This reference is

interpreted as a new instance of Quotes that contains a fresh initial Scope with no parents.

The result of calling the method via Java Reflection will return an Expr containing a new AST

that was generated by the implementation of that macro. The scope of this Expr is checked to

make sure it did not extrude from some splice or run operation. Then the AST is extracted

from the Expr and it is inserted as replacement for the AST that contained the top-level splice.

58

3.2 Implementation

Run-time Multi-Stage Programming

To be able to compile the code, the scala.quoted.staging library defines the Compiler
trait. An instance of staging.Compiler is a wrapper over the normal Scala 3 compiler. To be

instantiated it requires an instance of the JVM classloader of the application.

import scala.quoted.staging.*
given Compiler = Compiler.make(getClass.getClassLoader)

Listing 3.22: scala.quoted.staging.Compiler

The classloader is needed for the compiler to know which dependencies have been loaded

and to load the generated code using the same classloader.

def mkPower2()(using Quotes): Expr[Double => Double] = ...

run(mkPower2())

To run the previous example, the compiler will create code equivalent to the following class

and compile it using a new Scope without parents.

class RunInstance:
def exec(): Double => Double = ${ mkPower2() }

Finally, run will interpret (new RunInstance).exec() to evaluate the contents of the quote.

To do this, the resulting RunInstance class is loaded in the JVM using Java Reflection, instan-

tiated and then the exec method is invoked.

3.2.4 Compilation

Quotes and splices are primitive forms in the generated typed abstract syntax trees. These

need to be type-checked with some extra rules, e.g., staging levels need to be checked and

the references to generic types need to be adapted. Finally, quoted expressions that will be

generated at run-time need to be encoded (serialized) and decoded (deserialized).

Typing Quoted Expressions

The typing process for quoted expressions and splices with Expr is relatively straightforward.

At its core, quotes are desugared into calls to quote, splices are desugared into calls to splice.

We track the quotation level when desugaring into these methods.

def quote[T](x: T): Quotes ?=> Expr[T]

def splice[T](x: Quotes ?=> Expr[T]): T

59

Macro and Run-Time Multi-Stage Programming

It would be impossible to track the quotation levels if users wrote calls to these methods

directly. To know if it is a call to one of those methods we would need to type it first, but to type

it we would need to know if it is one of these methods to update the quotation level. Therefore

these methods can only be used by the compiler.

At run-time, the splice needs to have a reference to the Quotes that created its surrounding

quote. To simplify this for later phases, we track the current Quotes and encode a reference

directly in the splice using nestedSplice instead of splice.

def nestedSplice[T](q: Quotes)(x: q.Nested ?=> Expr[T]): T

With this addition, the original splice is only used for top-level splices.

The levels are mostly used to identify top-level splices that need to be evaluated while typing.

We do not use the quotation level to influence the typing process. Level checking is performed

at a later phase. This ensures that a source expression in a quote will have the same elaboration

as a source expression outside the quote.

Quote Pattern Matching

Pattern matching is defined in the trait QuoteMatching, which is part of the self type of

Quotes. It is implemented by Quotes but not available to users of Quotes. To access it, the

compiler generates a cast from Quotes to QuoteMatching and then selects one of its two

members: ExprMatch or TypeMatch. ExprMatch defines an unapply extractor method that

is used to encode quote patterns and TypeMatch defines an unapply method for quoted type

patterns.

trait Quotes:
self: runtime.QuoteMatching & ... =>
...

trait QuoteMatching:
object ExprMatch:

def unapply[TypeBindings <: Tuple, Tup <: Tuple]
(scrutinee: Expr[Any])
(using pattern: Expr[Any]): Option[Tup] = ...

object TypeMatch:
...

These extractor methods are only meant to be used in code generated by the compiler. The

call to the extractor that is generated has an already elaborated form that cannot be written in

source, namely explicit type parameters and explicit contextual parameters.

This extractor returns a tuple type Tup which cannot be inferred from the types in the method

60

3.2 Implementation

signature. This type will be computed when typing the quote pattern and will be explicitly

added to the extractor call. To refer to type variables in arbitrary places of Tup, we need to

define them all before their use, hence we have TypeBindings, which will contain all pattern

type variable definitions. The extractor also receives a given parameter of type Expr[Any]
that will contain an expression that represents the pattern. The compiler will explicitly add

this pattern expression. We use a given parameter because these are the only parameters we

are allowed to add to the extractor call in a pattern position.

This extractor is a bit convoluted, but it encodes away all the quotation-specific features. It

compiles the pattern down into a representation that the pattern matcher compiler phase

understands.

The quote patterns are encoded into two parts: a tuple pattern that is tasked with extracting

the result of the match and a quoted expression representing the pattern. For example, if the

pattern has no $ we will have an EmptyTuple as the pattern and '{1} to represent the pattern.

case '{ 1 } =>
// is elaborated to

case ExprMatch(EmptyTuple)(using '{1}) =>
// ^^^^^^^^^^ ^^^^^^^^^^
// pattern expression

When extracting expressions, each pattern that is contained in a splice ${..} will be placed

in order in the tuple pattern. In the following case, the f and x are placed in a tuple pattern

(f, x). The type of the tuple is encoded in the Tup and not only in the tuple itself. Otherwise,

the extractor would return a tuple Tuple for which the types need to be tested which is in turn

not possible due to type erasure.

case '{ ((y: Int) => $f(y)).apply($x) } =>
// is elaborated to

case ExprMatch[.., (Expr[Int => Int], Expr[Int])]((f, x))(using pattern) =>
// pattern = '{ ((y: Int) => pat[Int](y)).apply(pat[Int]()) }

The contents of the quote are transformed into a valid quote expression by replacing the splice

with a marker expression pat[T](..). The type T is taken from the type of the splice and the

arguments are the HOAS arguments. This implies that a pat[T]() is a closed pattern and

pat[T](y) is an HOAS pattern that can refer to y.

Type variables in quoted patterns are first normalized to have all definitions at the start

of the pattern. For each definition of a type variable t in the pattern we will add a type

variable definition in TypeBindings. Each one will have a corresponding Type[t] that will

get extracted if the pattern matches. These Type[t] are also listed in the Tup and added in the

tuple pattern. It is additionally marked as using in the pattern to make it implicitly available

in this case branch.

61

Macro and Run-Time Multi-Stage Programming

case '{ type t; ($xs: List[t]).map[t](identity[t]) } =>
// is elaborated to

case ExprMatch[(t), (Type[t], Expr[List[t]])]((using t, xs))(using p) =>
// ^^^ ^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^
// type bindings result type pattern expression
// p = '{ @patternType type u; pat[List[u]]().map[u](identity[u]) }

The contents of the quote are transformed into a valid quote expression by replacing type

variables with fresh ones that do not escape the quote scope. These are also annotated to be

easily identifiable as pattern variables.

Level Consistency Checking

Level consistency checking is performed after typing the program as a static check. To check

level consistency we traverse the tree top-down remembering the context staging level. Each

local definition in scope is recorded with its level and each term reference to a definition is

checked against the current staging level.

// level 0
'{ // level 1

val x = ... // level 1 with (x -> 1)
${ // level 0 (x -> 1)

val y = ... // level 0 with (x -> 1, y -> 0)
x // error: defined at level 1 but used in level 0

}
// level 1 (x -> 1)
x // x is ok

}

Type Healing

When using a generic type T in a future stage, it is necessary to have a given Type[T] in scope.

The compiler needs to identify those references and link them with the instance of Type[T].

For instance consider the following example:

def emptyList[T](using t: Type[T])(using Quotes): Expr[List[T]] =
'{ List.empty[T] }

Listing 3.23: def emptyList

For each reference to a generic type T that is defined at level 0 and used at level 1 or greater, the

compiler will summon a Type[T]. This is usually the given type that is provided as parameter,

62

3.2 Implementation

t in this case. We can use the type t.Underlying to replace T as it is an alias of that type. But

t.Underlying contains the extra information that it is t that will be used in the evaluation of

the quote. In a sense, Underlying acts like a splice for types.

def emptyList[T](using t: Type[T])(using Quotes): Expr[List[T]] =
'{ List.empty[t.Underlying] }

Due to some technical limitations, it is not always possible to replace the type reference with

the AST containing t.Underlying. To overcome this limitation, we can simply define a list of

type aliases at the start of the quote and insert the t.Underlying there. This has the added

advantage that we do not have to repeatedly insert the t.Underlying in the quote.

def emptyList[T](using t: Type[T])(using Quotes): Expr[List[T]] =
'{ type U = t.Underlying; List.empty[U] }

These aliases can be used at any level within the quote and this transformation is only per-

formed on quotes that are at level 0.

'{ List.empty[T] ... '{ List.empty[T] } ... }
// becomes

'{ type U = t.Underlying; List.empty[U] ... '{ List.empty[U] } ... }

If we define a generic type at level 1 or greater, it will not be subject to this transformation. In

some future compilation stage, when the definition of the generic type is at level 0, it will be

subject to this transformation. This simplifies the transformation logic and avoids leaking the

encoding into code that a macro could inspect.

'{
def emptyList[T: Type](using Quotes): Expr[List[T]] = '{ List.empty[T] }
...

}

A similar transformation is performed on Type.of[T]. Any generic type in T needs to have

an implicitly given Type[T] in scope, which will also be used as a path. The example from

Listing 3.11 would be transformed as follows:

def empty[T](using t: Type[T])(using Quotes): Expr[T] =
Type.of[T] match ...

// becomes
def empty[T](using t: Type[T])(using Quotes): Expr[T] =

Type.of[t.Underlying] match ...
// then becomes
def empty[T](using t: Type[T])(using Quotes): Expr[T] =

t match ...

63

Macro and Run-Time Multi-Stage Programming

The operation Type.of[t.Underlying] can be optimized to just t. But this is not always the

case. If the generic reference is nested in the type, we will need to keep the Type.of.

def matchOnList[T](using t: Type[T])(using Quotes): Expr[List[T]] =
Type.of[List[T]] match ...

// becomes
def matchOnList[T](using t: Type[T])(using Quotes): Expr[List[T]] =

Type.of[List[t.Underlying]] match ...

By doing this transformation, we ensure that each abstract type U used in Type.of has an

implicit Type[U] in scope. This representation makes it simpler to identify parts of the type

that are statically known from those that are known dynamically. Type aliases are also added

within the type of the Type.of though these are not valid source code. These would look like

Type.of[{type U = t.Underlying; Map[U, U]}] if written in source code.

Splice Normalization

The contents of a splice may refer to variables defined in the enclosing quote. This complicates

the process of serialization of the contents of the quotes. To make serialization simple, we first

transform the contents of each level 1 splice. Consider the following example:

def power5to(n: Expr[Int]): Expr[Double] = '{
val x: Int = 5
${ powerCode('{x}, n) }

}

The variable x is defined in the quote and used in the splice. The normal form will extract all

references to x and replace them with a staged version of x. We will replace the reference to x
of type T with a $y where y is of type Expr[T]. Then we wrap the new contents of the splice

in a lambda that defines y and apply it to the quoted version of x. After this transformation

we have 2 parts, a lambda without references to the quote, which knows how to compute the

contents of the splice, and a sequence of quoted arguments that refer to variables defined in

the lambda.

def power5to(n: Expr[Int]): Expr[Double] = '{
val x: Int = 5
${ ((y: Expr[Int]) => powerCode('{$y}, n)).apply('x) }

}

64

3.2 Implementation

In general, the splice normal form has the shape ${ <lambda>.apply(<args>*) } and the

following constraints:

• <lambda> a lambda expression that does not refer to variables defined in the outer

quote

• <args> sequence of quoted expressions or Type.of containing references to variables

defined in the enclosing quote and no references to local variables defined outside the

enclosing quote

Function references normalization A reference to a function f that receives parameters is not

a valid value in Scala. Such a function reference f can be η-expaned as x => f(x) to be used

as a lambda value. Therefore function references cannot be transformed by the normalization

as directly as other expressions as we cannot represent '{f} with a method reference type. We

can use the η-expanded form of f in the normalized form. For example, consider the reference

to f below.

'{
def f(a: Int)(b: Int, c: Int): Int = 2 + a + b + c
${ '{ f(3)(4, 5) } }

}

To normalize this code, we can η-expand the reference to f and place it in a quote contain-

ing a proper expression. Therefore the normalized form of the argument '{f} becomes the

quoted lambda '{ (a: Int) => (b: Int, c: Int) => f(a)(b, c) } and is an expres-

sion of type Expr[Int => (Int, Int) => Int]. The η-expansion produces one curried

lambda per parameter list. The application f(3)(4, 5) does not become $g(3)(4, 5) but

$g.apply(3).apply(4, 5). We add the apply because g is not a quoted reference to a

function but a curried lambda.

'{
def f(a: Int)(b: Int, c: Int): Int = 2 + a + b + c
${

(
(g: Expr[Int => (Int, Int) => Int]) => '{$g.apply(3).apply(4, 5)}

).apply('{ (a: Int) => (b: Int, c: Int) => f(a)(b, c) })
}

}

Then we can apply it and β-reduce the application when generating the code.

(g: Expr[Int => Int => Int]) => betaReduce('{$g.apply(3).apply(4)})

65

Macro and Run-Time Multi-Stage Programming

Variable assignment normalization A reference to a mutable variable in the left-hand side of

an assignment cannot be transformed directly as it is not in an expression position.

'{
var x: Int = 5
${ g('{x = 2}) }

}

We can use the same strategy used for function references by η-expanding the assignment

operation x = _ into y => x = y.

'{
var x: Int = 5
${

g(
(

(f: Expr[Int => Unit]) => betaReduce('{$f(2)})
).apply('{ (y: Int) => x = $y })

)
}

}

Type normalization Types defined in the quote are subject to a similar transformation. In

this example, T is defined within the quote at level 1 and used in the splice again at level 1.

'{ def f[T] = ${ '{g[T]} } }

The normalization will add a Type[T] to the lambda, and we will insert this reference. The

difference is that it will add an alias similar to the one used in type healing. In this example,

we create a type U that aliases the staged type.

'{
def f[T] = ${

(
(t: Type[T]) => '{type U = t.Underling; g[U]}

).apply(Type.of[T])
}

}

66

3.2 Implementation

Serialization

Quoted code needs to be pickled [37] to make it available at run-time in the next compilation

phase. We implement this by pickling the AST as a TASTy binary.

TASTy The TASTy format [51] is the typed abstract syntax tree serialization format of Scala 3.

It usually pickles the fully elaborated code after type-checking and is kept along the generated

Java classfiles. In the compiler, we use it for separate and incremental compilation, documen-

tation generation, and code decompilation. We also use it for language servers in IDEs, and

the metaprogramming API for quoted code.

Pickling We use TASTy as a serialization format for the contents of the quotes. To show how

serialization is performed, we will use the following example.

'{
val (x, n): (Double, Int) = (5, 2)
${ powerCode('{x}, '{n}) } * ${ powerCode('{2}, '{n}) }

}

This quote is transformed into the following code when normalizing the splices.

'{
val (x, n): (Double, Int) = (5, 2)
${

((y: Expr[Double], m: Expr[Int]) => powerCode(y, m)).apply('x, 'n)
} * ${

((m: Expr[Int]) => powerCode('{2}, m)).apply('n)
}

}

Splice normalization is a key part of the serialization process as it only allows references to

variables defined in the quote in the arguments of the lambda in the splice. This makes it

possible to create a closed representation of the quote without much effort. The first step is

to remove all the splices and replace them with holes. A hole is like a splice but it lacks the

knowledge of how to compute the contents of the splice. Instead, it knows the index of the

hole and the contents of the arguments of the splice. We can see this transformation in the

following example where a hole is represented by << idx; holeType; args* >>.

${ ((y: Expr[Double], m: Expr[Int]) => powerCode(y, m)).apply('x, 'n) }
// becomes

<< 0; Double; x, n >>

67

Macro and Run-Time Multi-Stage Programming

As this was the first hole it has index 0. The hole type is Double, which needs to be remembered

now that we cannot infer it from the contents of the splice. The arguments of the splice are x
and n; note that they do not require quoting because they were moved out of the splice.

References to healed types are handled in a similar way. Consider the emptyList example of

Listing 3.23, which shows the type aliases that are inserted into the quote.

'{ List.empty[T] }
// type healed to
'{ type U = t.Underlying; List.empty[U] }

Instead of replacing a splice, we replace the t.Underlying type with a type hole. The type

hole is represented by << idx; bounds >>.

'{ type U = << 0; Nothing..Any >>; List.empty[U] }

Here, the bounds of Nothing..Any are the bounds of the original T type. The types of a

Type.of are transformed in the same way.

With these transformations, the contents of the quote or Type.of are guaranteed to be closed

and therefore can be pickled. The AST is pickled into TASTy, which is a sequence of bytes.

This sequence of bytes needs to be instantiated in the bytecode, but unfortunately it cannot

be dumped into the classfile as bytes. To reify it we encode the bytes into a Java String. In

the following examples we display this encoding in human readable form with the fictitious

tasty"..." string literal.

// pickled AST bytes encoded in a base64 string
tasty"""

val (x, n): (Double, Int) = (5, 2)
<< 0; Double; x, n >> * << 1; Double; n >>

"""
// or
tasty"""

type U = << 0; Nothing..Any; >>
List.empty[U]

"""

The contents of a quote or Type.of are not always pickled. In some cases it is better to

generate equivalent (smaller and/or faster) code that will compute the expression. Literal

values are compiled into a call to Expr(<literal>) using the implementation of ToExpr to

create the quoted expression. This is currently performed only on literal values, but can be

extended to any value for which we have a ToExpr defined in the standard library. Similarly,

for non-generic types we can use their respective java.lang.Class and convert them into a

Type using a primitive operation typeConstructorOf defined in the reflection API.

68

3.2 Implementation

Unpickling Now that we have seen how a quote is pickled, we can look at how to unpickle it.

We will continue with the previous example.

Holes were used to replace the splices in the quote. When we perform this transformation we

also need to remember the lambdas from the splices and their hole index. When unpickling a

hole, the corresponding splice lambda will be used to compute the contents of the hole. The

lambda will receive as parameters quoted versions of the arguments of the hole. For example

to compute the contents of << 0; Double; x, n >> we will evaluate the following code

((y: Expr[Double], m: Expr[Int]) => powerCode(y, m)).apply('x, 'n)

The evaluation is not as trivial as it looks, because the lambda comes from compiled code

and the rest is code that must be interpreted. We put the AST of x and n into Expr objects to

simulate the quotes and then we use Java Reflection to call the apply method.

We may have many holes in a quote and therefore as many lambdas. To avoid the instantiation

of many lambdas, we can join them together into a single lambda. Apart from the list of

arguments, this lambda will also take the index of the hole that is being evaluated. It will

perform a switch match on the index and call the corresponding lambda in each branch.

Each branch will also extract the arguments depending on the definition of the lambda. The

application of the original lambdas are β-reduced to avoid extra overhead.

(idx: Int, args: Seq[Any]) =>
idx match

case 0 => // for << 0; Double; x, n >>
val x = args(0).asInstanceOf[Expr[Double]]
val n = args(1).asInstanceOf[Expr[Int]]
powerCode(x, n)

case 1 => // for << 1; Double; n >>
val n = args(0).asInstanceOf[Expr[Int]]
powerCode('{2}, n)

This is similar to what we do for splices when we replace the type aliased with holes we keep

track of the index of the hole. Instead of lambdas, we will have a list of references to instances

of Type. From the following example we would extract t, u

'{ type T1 = t1.Underlying; type Tn = tn.Underlying; ... }
// with holes

'{ type T1 = << 0; ... >>; type Tn = << n-1; ... >>; ... }

As the type holes are at the start of the quote, they will have the first N indices. This implies that

we can place the references in a sequence Seq(t, u, ...) where the index in the sequence

is the same as the hole index.

69

Macro and Run-Time Multi-Stage Programming

Lastly, the quote itself is replaced by a call to QuoteUnpickler.unpickleExpr which will

unpickle the AST, evaluate the holes, i.e., splices, and wrap the resulting AST in an Expr[Int].

This method takes takes the pickled tasty"...", the types and the hole lambda. Similarly,

Type.of is replaced with a call to QuoteUnpickler.unpickleType but only receives the

pickled tasty"..." and the types. Because QuoteUnpickler is part of the self-type of the

Quotes class, we have to cast the instance but know that this cast will always succeed.

quotes.asInstanceOf[runtime.QuoteUnpickler].unpickleExpr[T](
pickled = tasty"...",
types = Seq(...),
holes = (idx: Int, args: Seq[Any]) => idx match ...

)

3.3 Reflection

Multi-stage programming offers a powerful way to generate and analyze programs while en-

suring strong static safety guarantees. Providing this safety comes at the cost of expressiveness

of the system. For the use cases where extra expressivity is needed we extend the system

with a reflection API that allows inspection and creation of typed ASTs. This extension is

more expressive because it moves the static guarantees to the run-time (which are still at

compile-time for a macro). The design of the reflection API will be covered in Part III.

3.4 Related Work

Our system is heavily inspired by the long line of work by MetaML [82], MetaOCaml [13] and

BER MetaOCaml [38]. We rely on the latter for most of our design decisions. We offer the capa-

bility of pretty-printing generated code, but our system, contrary to BER MetaOCaml, compiles

to native code first. In our case, native code (JVM bytecode) was simpler to implement since

we rely on TASTy, the serialization format for typed syntax trees of Scala programs [51]. BER

MetaOCaml offers to programmers the capability to process code values in their own way.

Modular Macros [88] offered a compile-time variant of BER MetaOCaml by introducing a

new keyword to enable macro expansion. In their work they demonstrate that an existing

staged library needs intrusive changes to sprinkle the code with the aforementioned keywords.

In our case we just need one definition with a top-level splice and we reuse a staged library

unchanged. Modular Macros is a separate project to BER MetaOCaml so the two techniques

were not composed.

MacroML [26] pioneered compile-time version of MetaML showing at a theoretical level that

the semantics of MetaML subsume macros; MacroML essentially translates macro programs to

MetaML programs. Our work presents a confluence of macros and multi-stage programming

in the same language (considering the imperative features of Scala, something left out from

70

3.4 Related Work

MacroML’s development). Even though this merge was not demonstrated in the original work

by Ganz, Sabry, and Taha [26] we believe that their work provides useful insights for the future

foundations of our system.

Template Haskell [66] is a very expressive metaprogramming system that offers support for

code generation not only of expressions but also definitions, instances and more. Template

Haskell used the type class lift to perform cross-stage persistence. We used the same

technique for our Liftable construct. Code generation in Template Haskell is essentially

untyped; the generated code is not guaranteed to be well typed. Typed Template Haskell,

on the other hand, also inspired by MetaML and MetaOCaml, offers a more restrictive view

in order to pursue a disciplined system for code generation. Typed Template Haskell is still

considered to be unsound under side effects [35], providing the same static guarantees as

MetaOCaml. To avoid these shortcomings, we permit no side effects in splice operations

either. We regard side effects as an important aspect of programming code generators. The

decision to disallow effects in splices was taken because it was a simple approach to avoid the

unsoundness hole of scope extrusion. At the moment, code generators and delimited control

(e.g., like restricting the code generator’s effects to the scope of generated binders [34]) was

out of the scope of this work but remains a goal of our future work.

F# supports code quotations that offer a quoting mechanism that is not opaque to the user

effectively, supporting analysis of F# expression trees at run-time. Programmers can quote

expressions and they are offered the choice of getting back either a typed or an untyped

expression tree. F# does not support multi-stage programming and currently lacks a code

quotation compiler natively4. Furthermore, lifting is not supported. Finally, F# does not

support splicing of types into quotations.

Scala 2 offers experimental macros (called blackbox in Scala parlance) [12; 11]. The provided

macros are quite different from our approach. Those macros expose directly an abstraction of

the compiler’s ASTs and the current compilation context. Scala Macros require specialized

knowledge of the compiler internals. Quasiquotes, additionally, are implemented on top of

macros using string interpolators [64] which simplify code generation. However, the user is

still exposed to the same complex machinery, inherited from them. Scala also offers macros

that can modify existing types in the system (whitebox and annotation macros). They have

proven dangerously powerful; they can arbitrarily affect typing in unconventional ways giving

rise to problems that can deteriorate IDE support, compiler evolution and code understanding.

Instead, we use transparent inline macros to be able to influence typing at call site in a

controlled manner.

Lightweight Modular Staging (LMS) offers support for Multi-stage Programming in Scala [63].

LMS departs from the use of explicit staging annotations by adopting a type-based embedding.

On the contrary, a design choice of our system is to offer explicit annotations along the lines of

MetaML. We believe that programming with quotes and splices reflects the textual nature of

4Splice types into Quotations–https://github.com/fsharp/fslang-suggestions/issues/584

71

https://github.com/fsharp/fslang-suggestions/issues/584

Macro and Run-Time Multi-Stage Programming

this kind of metaprogramming and gives the necessary visual feedback to the user, who needs

to reason about code fragments. LMS is a powerful system that preserves the execution order

of staged computations and also offers an extensible Graph-based IR. On the flip side, two

shortcomings of LMS, namely high compile times and the fact that it is based on a fork of the

compiler, were recently discussed as points of improvement [62].

Squid [58] advances the state of the art of staging systems and puts quasiquotes at the center

of user-defined optimizations. The user can pattern match over existing code and implement

retroactive optimizations modularly. A shortcoming in Squid, implemented as a macro library,

is that free variables must be marked explicitly. Furthermore, contexts are represented as

contravariant structural types5 which complicates the use of the system.

3.5 Future Work

HOAS patterns parameterized by types While in theory these can be supported by combin-

ing polymorphic lambdas and contextual lambdas, these are not supported in the current

implementation.

case '{ def f[T]: U = $f[T]; ... } => f: [T] => Type[T] ?=> Expr[U]

Statically checked scope extrusions We attempted to make scope extrusion checks using

path-dependent types6. This made the types for Expr and Type dependent on the instance

of Quotes and used some extra type refinements to encode sub-scoping. In this system

extrusions are impossible, but it added extra complexity to the user of the system. The

complexity costs where deemed to great too be justified and we opted to keep the run-time

checks instead.

The alternative and initial idea is to use a co-effect system to ensure that expressions are not

extruded through side effects. The first step towards this co-effect system was described by

Odersky et al. [54]. This approach has the potential of avoiding any extra complexity on the

user side.

Let insertion Let insertion [9; 14; 34; 41], also known as genlet in multi-stage programming, is

not an indispensible feature for macros yet it might make some code generation abstractions

simpler to write. This abstraction gives a way to splice a reference to an expression that is not

yet bounded in the surrounding expression. A let binding will be inserted automatically .

5type Code[+Typ, -Ctx]
6https://github.com/lampepfl/dotty/pull/8940

72

https://github.com/lampepfl/dotty/pull/8940

3.5 Future Work

Generic instantiation One feature that was available in the Scala 2 experimental macros was

the ability to instantiate a generic type. This was performed in a syntactic way and lacked any

kind of static guarantees. It should be possible to achieve the same behavior in a statically

safe way by providing a type class. A new T would be accepted if there is a New[T] available in

scope. A Type[T] might also be required.

def f[T: Type : New]: Expr[T] = '{ new T }

To be complete, New should also allow instantiation using arguments for the constructor. This

implies that it would probably be a New[T][(T1, ..., Tn)] where T1, ..., Tn are the types of

the constructor’s parameters. The compiler could automatically generate instances for classes

where the constructors that are unambiguous based on the parameter types.

Function matching While it is possible to match on a method definition, its arity must be

known. Currently, the best that can be done is to match on all methods of a statically known

arity one after the other. It would be beneficial to find an abstraction that allows matching on

any method definition.

case '{ def f($args*): T = $body(args*) } =>

The challenge is to figure out what kind of data type is extracted out and how it would interact

with other abstractions such as HOAS patterns. Methods may have type parameters and

several term argument lists, which might cause extra complexity.

Pattern patterns Matching and extracting a regular Scala pattern that is within a quoted

expression is currently impossible using quote patterns. This ability might be useful for DSLs

that want to re-interpret or analyze match expressions.

case '{ x match { case $pat(x, y) => $body(x, y) } } =>

The challenge is that a new kind of Pattern construct must be added to the language. This

Pattern would need to statically know the type of its scrutinee and the extracted type. To be

complete, it needs to understand all kinds of patterns and handle them in a uniform way.

With this feature we could also imagine the introduction of quoted pattern literals as an

alternative form of quotation that could be spliced in a pattern of a quoted expression.

val pat: Pattern[..] = '{case Some($_: Int)}
'{ x match $pat(y) => y }

73

Macro and Run-Time Multi-Stage Programming

Class patterns Matching on class, trait or object definitions is not trivial due to the complexity

of their signatures. They can extend other classes and define any number of new members. It

would be interesting to investigate the feasibility and usefulness of these patterns. This has

the potential to be extremely difficult to achieve in general but might be approachable for a

useful subset of the language.

case '{ class A { ... }; } =>

3.6 Conclusion

Metaprogramming has a reputation for being difficult and confusing. However, with multi-

stage programming it can become downright pleasant. The strong static guarantees are the

key to provide a way to express code generation and analysis with ease and confidence.

We integrate multi-stage programming seamlessly with the language using inline methods. We

can support macros and run-time code generation by reducing the core multi-stage system to

its essential components. We use type classes to lift and unlift values into and out of quoted

expressions. We provide flexible pattern matching on quoted code without introducing extra

complexity in the rest of the system.

74

4 Multi-Stage Macro Calculus

This chapter contains part of a published paper authored by Stucki, Brachthäuser, and

Odersky [73]. Three new calculus extensions are added to the original work.

In metaprogramming, code generation and code analysis are complementary. Traditionally,

multi-stage metaprogramming extensions for programming languages, like MetaML and

BER MetaOCaml, offer strong foundations for code generation but lack equivalent support for

code analysis. Similarly, existing macro systems are biased towards code generation.

In this chapter, we present a polymorphic multi-stage macros calculus featuring both code

generation and code analysis. The calculus directly models separate compilation of macros,

internalizing a commonly neglected aspect of macros. The system ensures that the generated

code is well typed and hygienic. These foundations are used to implement Scala 3 multi-stage

macros.

Requirements In Chapter 3, we identified the requirements that a design of a multi-stage

macro system for compiled languages should meet:

• Cross-platform portability. It should be possible to use generated code on different

machines.

• Static safety. Generated code should be hygienic and well typed.

• Cross-stage safety. Access to variables should only be allowed at stages where they are

available.

• Generative and Analytical. Programmers should be able to generate as well as analyze

and decompose code.

We present a formal calculus that captures the fundamental aspects of the Scala 3 multi-stage

macro system. The formalization and implementation advance the state of the art, and satisfy

the requirements listed above. We prove soundness of this formalization.

77

Multi-Stage Macro Calculus

4.1 Multi-Stage Calculus

We present the λ▲ multi-stage macros calculus [73] and new extensions. In particular, the

System F▲ polymorphic multi-stage calculus extensions generalize the pattern match of theλ▲

multi-stage macros calculus. The presentation is organized into six parts. We first introduce

the core calculus in Section 4.2, which extends the simply-typed lambda calculus (STLC) with

support for quotes and splices. The two abstractions are at the core of cross-stage safety and

static safety. In a second step in Section 4.3, we extend the calculus with operations on quoted

constants1. Then we extend the core calculus with quote analysis by adding quote pattern

matching in Section 4.4. We extend the previous calculus to also capture the semantics of

compilation of macros using global definitions in Section 4.5. We then extend quote pattern

matching to support type variables in Section 4.6. We extend the previous calculus to have

System F parametric polymorphism in Section 4.7. Finally, we combine all extensions to

provide the polymorphic multi-stage macro calculus in Section 4.8 and prove its soundness in

Appendix A.

4.3 Quoted Constants 4.4 Quote Pattern Matching

4.6 Patterns with Type Variables 4.5 Global Definitions λ▲

4.2 Core Calculus

4.8 Polymorphic Multi-stage Macro Calculus

4.7 Parametric Polymorphism F▲

4.2 Core Calculus

This first calculus captures the fundamental semantics of programs that operate on and

produce code. To this end, it extends STLC with the ability to delay the computation by

quoting the code and the ability to compose delayed computations by splicing.

We use the notation t1[t2/x] to denote the standard capture-avoiding substitution of t2 for x

within t1. As usual, we follow Barendregt [8] and require that all variable names are globally

unique. We also only distinguish terms up to renaming.

Figure 4.1 contains the syntax and semantics of this calculus.

1A simple extension that should have been in λ▲ but was left out due to space limitations in [73].

78

4.2 Core Calculus

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
Type T ::= C | T→T | ⌈T ⌉

Typing environment Γ ::= ; | Γ, x :i T

Level i ∈ N0

Γ⊢i c : C (T-CONST)
x :i T ∈ Γ
Γ⊢i x : T

(T-VAR)

Γ, x :i T1 ⊢i t2 : T2

Γ⊢i λx:T1.t2 : T1→T2
(T-ABS)

Γ⊢i t1 : T1→T2 Γ⊢i t2 : T1

Γ⊢i t1 t2 : T2
(T-APP)

Γ⊢i t : T→T

Γ⊢i fix t : T
(T-FIX)

Γ⊢i+1 t : T

Γ⊢i ⌈t⌉ : ⌈T ⌉ (T-QUOTE)
Γ⊢i−1 t : ⌈T ⌉ i ≥ 1

Γ⊢i ⌊t⌋ : T
(T-SPLICE)

t1 −→i t ′1
t1 t2 −→i t ′1 t2

(E-APP-1)
⊢i t1 vl t2 −→i t ′2

t1 t2 −→i t1 t ′2
(E-APP-2)

⊢0 t2 vl

(λx:T1.t1) t2 −→0 t1[t2/x]
(E-BETA)

t −→i t ′ i ≥ 1

λx:T.t −→i λx:T.t ′
(E-ABS)

t −→i+1 t ′

⌈t⌉ −→i ⌈t ′⌉ (E-QUOTE)
t −→i t ′

fix t −→i fix t ′
(E-FIX)

fixλx:T.t −→0 t [fixλx:T.t/x] (E-FIX-RED)

t −→i−1 t ′ i ≥ 1

⌊t⌋ −→i ⌊t ′⌋ (E-SPLICE)
⊢1 t vl

⌊⌈t⌉⌋ −→1 t
(E-SPLICE-RED)

⊢i c vl (V-CONST) ⊢0 λx:T.t vl (V-ABS-0)

⊢i+1 t vl

⊢i ⌈t⌉ vl
(V-QUOTE)

i ≥ 1

⊢i x vl
(V-VAR)

⊢i t vl i ≥ 1

⊢i fix t vl
(V-FIX)

⊢i t vl i ≥ 1

⊢i λx:T.t vl
(V-ABS)

⊢i t1 vl ⊢i t2 vl i ≥ 1

⊢i t1 t2 vl
(V-APP)

⊢i−1 t vl i ≥ 2

⊢i ⌊t⌋ vl
(V-SPLICE)

Figure 4.1: Core Calculus

79

Multi-Stage Macro Calculus

Syntax

The calculus features the standard forms of simply-typed lambda calculus, that is, constant

c, variable x, abstraction λx:T.t , and application t t . In order to express the examples from

Chapter 3, we also add support for fixpoint computation fix t . The two most important

additions to the term syntax are quotation ⌈t⌉ (instead of '{t}) and splicing ⌊t⌋ (instead of

${t}). The syntax of types includes built-in type C , function type of the form T→T , and the

type of quoted terms ⌈T ⌉ (corresponds to Expr[T]). That is, for a term t of type T , the quoted

term ⌈t⌉ has type ⌈T ⌉.

Example 1. Within the core calculus, we can easily write a function that can generate

complex code. The powerCode of Listing 3.3 can be encoded in this calculus for a numerical

type N as follows:

fixλrec:⌈N⌉→N→⌈N⌉.

λx:⌈N⌉.λn:N.ifIsZero n ⌈1⌉ ⌈mult ⌊x⌋ ⌊rec x (n−1)⌋⌉

Environments

As usual, environments Γ are lists of bindings x :i T . However, they do not only track the type

of each binding T , but also at which staging level i a variable has been introduced. The staging

level i is a number in N0 = {0,1,2, . . . }. We consider bindings at different levels as disjoint.

That is, looking up the binding for x at level j in environment Γ= Γ1, x :i T,Γ2 only succeeds

if i = j . For simplicity, we require well-formedness to establish that environments contain a

single binding of each name x, ruling out Γ, x :i T, x : j T by construction. By definition, the

environment guarantees cross-stage safety. Notably, this implies that there is no cross-stage

persistence of local variables.

Example 2. Though the calculus itself does not support cross-stage persistence of local

variables, it is possible to use values in later stages by lifting and splicing. We generalize this

concept in Section 4.3. In the following example, we lift a boolean constant (of type B) into

a quote containing the constant.

λx:B.ifIsTrue x ⌈true⌉ ⌈false⌉

Typing

Typing judgments take the form Γ ⊢i t : T and assign the type T to term t . However, they

are also parameterized by the staging level i . Conceptually, the level starts at 0, increases

each time we encounter a quote (T-QUOTE), and decreases each time we encounter a splice

(T-SPLICE). All other typing rules maintain the same level in their premises. Splices cannot

be typed at level 0 to avoid negative staging levels. As can be seen in rule T-ABS, bindings are

added to the environment with the level at which they are defined. Similarly, variables can

only be typed if they were referenced at the level they were defined in (T-VAR).

80

4.2 Core Calculus

Example 3. Tracking of levels ensures cross-stage safety of variables. Both type derivations

in this example fail as expected.

x :1 T ∈;, x :0 T
FAIL

;, x :0 T ⊢1 x : T

;, x :0 T ⊢0 ⌈x⌉ : ⌈T ⌉
;⊢0 λx:T.⌈x⌉ : T→⌈T ⌉

x :0 ⌈T ⌉ ∈;, x :1 ⌈T ⌉
FAIL

;, x :1 ⌈T ⌉ ⊢0 x : ⌈T ⌉
;, x :1 ⌈T ⌉ ⊢1 ⌊x⌋ : T

;⊢1 λx:⌈T ⌉.⌊x⌋ : ⌈T ⌉→T

Operational Semantics

We present the semantics of our calculus in terms of a small-step operational semantics

(Figure 4.1). Like the typing judgments, the evaluation relation is indexed by a staging level i .

Also similar to typing, the index starts at 0, increases each time it enters a quote (E-QUOTE),

and decreases each time it enters a splice (E-SPLICE). At level 0, the semantics follow the

usual STLC semantics and we perform β-reduction (E-BETA) and fix-point computation

(E-FIX-RED). The rules E-APP-1, E-APP-2, and E-FIX express the usual congruences. The

congruences E-QUOTE and E-SPLICE modify the levels accordingly. Intuitively, the calculus

not only performs β-reduction on level 0, but also seeks to reduce all splices at level 1

(E-SPLICE-RED). To achieve this, at levels greater than 0, we need to evaluate under lambdas

(E-ABS) in case they contain level 1 splices.

Example 4. The specifics of the operational semantics are illustrated by the following

example, which makes use of both reduction rules E-BETA and E-SPLICE-RED. The resulting

expression is a value according to our definition since it does not contain any level 1 splice.

⌈λx:T.⌊(λy :⌈T ⌉.y) ⌈ f x⌉⌋⌉ −→0 ⌈λx:T.⌊⌈ f x⌉⌋⌉ −→0 ⌈λx:T. f x⌉
E-BETA E-SPLICE-RED

Values

While it may appear non-standard, the definition of values ⊢i t vl follows directly from the

operational semantics. Intuitively, a term is a value if it is a constant (V-CONST), an abstraction

(V-ABS-0), or a quote (V-QUOTE) that does not contain any level 1 splices.

Soundness

We show the soundness of the calculus by proving the standard progress and preservation

theorems.

81

Multi-Stage Macro Calculus

Theorem 1 (Progress for Terms).

If ;⊢i t : T , then t is a value ⊢i t vl or there exists t ′ such that t −→i t ′

Theorem 2 (Preservation for Terms).

If Γ⊢i t : T and t −→i t ′, then Γ⊢i t ′ : T

The full proofs can be found in Appendix A, here we only point out the structure and define

key lemmas.

As usual, progress requires us to show that values take canonical forms. The standard canonical

forms lemma trivially extends to our non-standard definition of values.

Lemma 1 (Canonical Forms).

• If ⊢0 t vl and t : C, then t = c for some c

• If ⊢0 t vl and t : T1→T2, then t =λx:T1.t1 for some x and t1

• If ⊢0 t vl and t : ⌈T ⌉, then t = ⌈t1⌉ for some t1

Proof of Lemma 1.

By case analysis on the value definition ⊢0 t vl. ■

To prove progress, we also need to prove a more general variant allowing the typing context Γ

to only contain bindings on a level greater than 0. To capture this property, we define Γ≥1as a

restricted typing context:

Definition 1 (Restricted Typing Context).

Γ≥1 ::= ; | Γ≥1, x :i T for i ≥ 1

Using the restricted context, we define the generalized version of progress as:

Lemma 2 (Extended Progress for Terms).

If Γ≥1 ⊢i t : T , then t is a value ⊢i t vl or there exists t ′ such that t −→i t ′

Proof of Theorem 1.

The proof of progress trivially follows from Lemma 2, by choosing Γ≥1 =;. ■

For the proof of preservation, we need to adjust the standard substitution lemma to our setting

with levels.

82

4.3 Quoted Constants Calculus Extension

Lemma 3 (Substitution).

∀i , j ∈N0, if Γ⊢ j t1 : T1 and Γ, x : j T1 ⊢i t2 : T2 then Γ⊢i t2[t1/x] : T2

Proof of Theorem 2.

Induction over the typing derivation, using the substitution lemma (Lemma 3). ■

4.3 Quoted Constants Calculus Extension

This section extends the core calculus of Section 4.2 with the possibility to create quoted

constants ⌈c⌉ or extract their values. In Example 2 we saw that it was possible to lift a constant

to a quoted constant. But this process becomes inefficient when the domain of the constants

is large. To avoid this we introduce a lift operation that takes a constant c into a ⌈c⌉. The

inverse operation of taking a ⌈c⌉ into a constant c is also useful for macros.

Figure 4.2 extends Figure 4.1 to define the syntax and semantics of this extended calculus.

Syntax

The syntax of the quoted constants calculus (Figure 4.2) extends the syntax of the core calculus

(Figure 4.1). It adds the lift t operation that will take a term and lift it into a quote. It also

adds the unlift t with t or t operation, which takes as argument a quoted term, a lambda

containing the operation to evaluate if it is a quoted constant, and a term to evaluate if it is

not a quoted constant.

Typing

The quoted constant calculus typing judgments (Figure 4.2) extend the typing judgments

of the core calculus (Figure 4.1). Lifting a constant (T-LIFT) is typed similarly to a quote

(T-QUOTE) but it does not change the staging level and only works with C types. Unlift is typed

(T-UNLIFT) like a pattern match which takes a scrutinee of type ⌈C⌉, a lambda of type C→T

containing the operation to evaluate if it matches a quoted constant and lastly a term of type

T to evaluate if it does not match. None of these operations change the staging level.

Operational Semantics

The operational semantics in Figure 4.2 extend the operational semantics in Figure 4.1. For a

lift t at staging level 0, we first evaluate the term t until it is a constant c (E-LIFT), then we

evaluate by lifting the constant into ⌈c⌉ (E-LIFT-CONST). At all other levels, we also continue

to reduce the term t to evaluate level 1 splices. For the unlift t with t or t at staging level 0,

we first evaluate the scrutinee until it is a constant (E-UNLIFT-SCRUT), then we evaluate the

83

Multi-Stage Macro Calculus

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
| lift t | unlift t with t or t

Γ⊢i t : C

Γ⊢i lift t : ⌈C⌉ (T-LIFT)

Γ⊢i t1 : ⌈C⌉ Γ⊢i t2 : C→T Γ⊢i t3 : T

Γ⊢i unlift t1 with t2 or t3 : T
(T-UNLIFT)

t −→i t ′

lift t −→i lift t ′
(E-LIFT)

lift c −→0 ⌈c⌉ (E-LIFT-CONST)

t1 −→i t ′1
unlift t1 with t2 or t3 −→i unlift t ′1 with t2 or t3

(E-UNLIFT-SCRUT)

unlift ⌈c⌉ with t2 or t3 −→0 t2 c (E-UNLIFT-SUCC)

⊢0 t1 vl t1 ̸= ⌈c⌉
unlift t1 with t2 or t3 −→0 t3

(E-UNLIFT-FAIL)

⊢i t1 vl t2 −→i t ′2 i ≥ 1

unlift t1 with t2 or t3 −→i unlift t1 with t ′2 or t3
(E-UNLIFT-WITH)

⊢i t1 vl ⊢i t2 vl t3 −→i t ′3 i ≥ 1

unlift t1 with t2 or t3 −→i unlift t1 with t2 or t ′3
(E-UNLIFT-OR)

⊢i t vl i ≥ 1

⊢i lift t vl
(V-LIFT)

⊢i t1 vl ⊢i t2 vl ⊢i t3 vl i ≥ 1

⊢i unlift t1 with t2 or t3 vl
(V-UNLIFT)

Figure 4.2: Quoted Constants Calculus Extension

with branch (E-UNLIFT-SUCC) or or branch (E-UNLIFT-FAIL) depending on the contents of

the quote. At all other levels, we also continue to reduce the scrutinee (E-UNLIFT-SCRUT), the

with branches (E-UNLIFT-WITH) and or branches (E-UNLIFT-OR) to evaluate level 1 splices.

84

4.4 Quote Pattern Matching Extension

Example 5.

lift c −→0 ⌈c⌉
unlift ⌈c⌉ with (λx:C.x) or t −→0 c

unlift (lift c) with (λx:C.x) or t −→0 c

Values

The value definition in Figure 4.2 extends the value definition in Figure 4.1. At level 0, the lift

and unlift operations are evaluated away. At any other level, we need to ensure transitively

that sub-terms do not have any splices at level 1.

Soundness

Soundness for this extension follows the same proof structure as the core calculus. The proofs

can be extended by adding the missing cases without changing the theorems and lemmas.

4.4 Quote Pattern Matching Extension

We now extend the core calculus of Section 4.2 with support for analytical macros. To this end,

we add a pattern matching construct that can deconstruct a piece of code into its components.

Sub-expressions of the code can be selectively extracted using a bind pattern. Importantly,

patterns can only match on a subset of the language, specifically STLC+Fix.

Figures 4.3 and 4.4 extend Figure 4.1 to define the syntax and semantics of this calculus.

Syntax

We extend the core calculus with two new syntactic constructs: a pattern matching operation

ts match ⌈tp⌉ then tt else te , and a bind pattern TxUxk :Tk
k

T . The former matches a scrutinee ts

against a pattern tp . If the match succeeds the then branch tt is evaluated, otherwise the else
branch te is evaluated. A pattern tp may contain any of the following language constructs:

constants, references, lambdas, applications, and fix point operators. In addition, tp may

contain a bind pattern TxUxk :Tk
k

T , which will extract a sub-expression of type T from the quote

and bind it to x. The extracted sub-expression is locally closed under xk :Tk
k

, that is, it can

contain xk as free variables. We say the sub-expression is locally closed, since in addition to

free variables xk :Tk
k

bound in the pattern, it can contain free variables defined outside of the

pattern. Bind is commonly used without any xk :Tk
k

as TxUT to match a closed sub-expression.

For a formula Fk that mentions k, we write Fk
k

to denote Fk1 Fk2 . . .Fkn where n is the implicit

size of the repetition that depends on k.

85

Multi-Stage Macro Calculus

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
| t match ⌈t⌉ then t else t | TxUxk :Tk

k

T

Γ⊢i ts : ⌈Tp⌉ ;⊢i+1 tp : Tp ⊣ Γt Γ;Γt ⊢i tt : T Γ⊢i te : T

Γ⊢i ts match ⌈tp⌉ then tt else te : T
(T-MATCH)

⊢1 ts vl ts ≡ tp ⇒σ

⌈ts⌉ match ⌈tp⌉ then tt else te −→0 σ(tt)
(E-MATCH-SUCC)

⊢1 ts vl ts ≡ tp ⇏σ

⌈ts⌉ match ⌈tp⌉ then tt else te −→0 te
(E-MATCH-FAIL)

ts −→i t ′s
ts match ⌈tp⌉ then tt else te −→i t ′s match ⌈tp⌉ then tt else te

(E-MATCH-SCRUT)

⊢0 ts vl tt −→i t ′t i ≥ 1

ts match ⌈tp⌉ then tt else te −→i ts match ⌈tp⌉ then t ′t else te
(E-MATCH-THEN)

⊢0 ts vl ⊢0 tt vl te −→i t ′e i ≥ 1

ts match ⌈tp⌉ then tt else te −→i ts match ⌈tp⌉ then tt else t ′e
(E-MATCH-ELSE)

⊢i ts vl ⊢i tt vl ⊢i te vl i ≥ 1

⊢i ts match ⌈tp⌉ then tt else te vl
(V-MATCH)

Figure 4.3: Structural Quote Patterns Calculus

Typing

Typing a pattern match (T-MATCH) requires that the scrutinee of type ⌈Tp⌉ be matched against

a pattern of type Tp . Patterns themselves are typed under a different typing judgment Γp ⊢i

t : T ⊣ Γt . Here Γp represents an input and contains the bindings defined within the pattern.

In contrast, Γt represents an output and contains bindings introduced by the pattern, which

are then made available in the then branch. The pattern is typed at level i +1 as if it was in a

quote (as reflected by the syntax).

86

4.4 Quote Pattern Matching Extension

Γp ⊢i c : C ⊣; (T-PAT-CONST)

x :i T ∈ Γp

Γp ⊢i x : T ⊣; (T-PAT-VAR)

Γp , x :i T1 ⊢i t : T2 ⊣ Γt

Γp ⊢i λx:T1.t : T1→T2 ⊣ Γt
(T-PAT-ABS)

Γp ⊢i t1 : T1→T2 ⊣ Γt1 Γp ⊢i t2 : T1 ⊣ Γt2

Γp ⊢i t1 t2 : T2 ⊣ Γt1 ;Γt2

(T-PAT-APP)

Γp ⊢i t : T→T ⊣ Γt

Γp ⊢i fix t : T ⊣ Γt
(T-PAT-FIX)

xk :i Tk ∈ Γp
k

Γp ⊢i TxUxk :Tk
k

T : T ⊣;, x :i−1 ⌈Tk⌉→k⌈T ⌉
(T-PAT-BIND)

;⊢ ts � tp ⇒σ

ts ≡ tp ⇒σ
(E-PAT)

Pattern bindings Φ ::= ; |Φ, x 7→x

Φ⊢ c�c ⇒ [] (E-PAT-CONST)

Φ⊢ ts1 � tp1 ⇒σ1 Φ⊢ ts2 � tp2 ⇒σ2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ1 ◦σ2
(E-PAT-APP)

Φ⊢ ts � tp ⇒σ

Φ⊢ fix ts �fix tp ⇒σ
(E-PAT-FIX)

Φ⊢Φ(xp)� xp ⇒ [] (E-PAT-VAR)

Φ, xp 7→xs ⊢ ts � tp ⇒σ

Φ⊢λxs :T.ts �λxp :T.tp ⇒σ
(E-PAT-ABS)

FV (ts)∩ range(Φ) ⊆Φ(xk)
k

t ′s =λx ′
k :⌈Tk⌉

k
. ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

Φ⊢ ts �TxUxk :Tk
k

T ⇒ [t ′s /x]
(E-PAT-BIND)

Figure 4.4: Pattern Semantics

87

Multi-Stage Macro Calculus

The rules for pattern typing mostly coincide with their term typing counterparts. They only

differ in their treatment of environments. First, the Γp environment tracks any binding added

by a lambda pattern (T-PAT-ABS). It is used to look up references in (T-PAT-VAR) and to deter-

mine the types of free variables in a bind pattern (T-PAT-BIND). Second, the Γt environment

collects x bindings added by TxUxk :Tk
k

T , which will be made available in the then branch.

The bind pattern TxUxk :Tk
k

T matches against an arbitrary expression locally closed under xk :Tk
k

.

We represent this closed term as a curried function taking arguments of the corresponding

types Tk
k

(T-PAT-BIND). In the output environment, we bind x to a value of type ⌈Tk⌉→k⌈T ⌉.

As a special case of rule T-PAT-BIND, we match on a locally closed sub-expression where

the xk :Tk
k

is empty, and therefore the type of x is simply ⌈T ⌉. Note that the i in this typing

judgment is only present to inform at which level x must be added in Γt .

Operational Semantics

Once more, the operational semantics in Figures 4.3 and 4.4 extend the operational semantics

in Figure 4.1. First of all, to handle quoted pattern matching, we extend the reduction relation

t −→i t ′ with additional rules. At staging level 0, we first evaluate the scrutinee until it is a value

(E-MATCH-SCRUT). At all other levels, we also continue to reduce the then (E-MATCH-THEN)

and else branches (E-MATCH-ELSE).

To model the semantics of nested patterns, we introduce an additional reduction relation

Φ⊢ ts � tp ⇒σ. It states that the sub-term ts matches the sub-pattern tp with a substitution

mapΦ, which provides a mapping from a variable defined in the scrutinee to one defined in

the pattern. In addition to matching, the relation also transforms the then part of the match

tt into σ(tt) where all bindings defined in the pattern are substituted.

E-PAT is the only evaluation rule for ts ≡ tp ⇒σ and is only there to introduce the initial empty

Φ intoΦ⊢ ts � tp ⇒σ.

To reduce a match operation, if the pattern matched, we evaluate it into t ′t (E-MATCH-SUCC)

where t ′t does not contain any of the bindings defined in the pattern. We say that a pattern (or

sub-pattern) did not match if ts ≡ tp ⇏σ, that is we cannot derive a match. Therefore, if the

pattern did not match we evaluate to the else branch te (E-MATCH-FAIL).

Exactly as in pattern typing, sub-pattern matching Φ⊢ ts � tp ⇒σ can match the syntactic

form of STLC+Fix, and bind sub-terms. Rules that do not introduce bindings in the then
branch will not modify the σ, they will only propagate the results from sub-evaluation. The

rules E-PAT-CONST, E-PAT-FIX, and E-PAT-APP are straightforward.

Interestingly, when matching a lambda, the substitutionΦwill track the relationship between

the binding in the pattern and in the scrutinee (E-PAT-ABS). When matching a reference to a

binding defined in the pattern, we useΦ to know the name of the equivalent binding in the

scrutinee (E-PAT-VAR). We only match if those references are equivalent under theΦmapping.

88

4.4 Quote Pattern Matching Extension

Finally, we have the bind pattern (E-PAT-BIND), which may match any sub-term as long as it

has the correct type and the correct free variables. First, consider reduction of the simplified

TxUT pattern using E-PAT-BIND.

FV (ts)∩ range(Φ) ⊆; t ′s = ⌈ts⌉
Φ⊢ ts �TxUT ⇒ [t ′s/x]

In this case, the premise requires us to show that the intersection of the free variables of ts

and the range of Φ is empty. In other words, it means that ts does not contain a reference

to a binding that was defined in the scrutinee. Since it is only locally closed, it may still

have references to bindings defined outside of the pattern match, as those will be valid when

inserted in the then branch (cf., rule T-MATCH). If the match succeeds, rule E-PAT-BIND

reduces to tt [⌈ts⌉/x]. Now, consider the case where xk :Tk
k

is not empty. This implies that we

will match a ts that might contain references to bindings defined in the pattern. In this case,

we cannot simply substitute ts for x, we first need to re-bind all free variables. In particular,

for each free variableΦ(xk) defined in the pattern, we η-expand t ′s by creating a lambda that

receives a staged argument of type x ′
k :⌈Tk⌉. In the body of that lambda we substitute Φ(xk)

with the ⌊x ′
k⌋. This process results in a curried lambda of the type ⌈Tk⌉→k⌈T ⌉.

Example 6. In the following example, we show how to perform β-reduction at level 1 using

quote matching. The code below is an encoding of HOAS pattern example of Listing 3.8 for

a numerical type N.

λx:⌈N⌉.x match ⌈(λy :N.T f Uy :N
N) TzUN⌉ then f z else x

Values

The value definition in Figure 4.3 extends the value definition in Figure 4.1. At level 0, the

pattern match operations are evaluated away. At any other level, we need to ensure transitively

that sub-terms do not have any splices at level 1. As the pattern is not evaluated by itself it is

considered a value of its own.

Example 7. The ability to match individually quoted constants allows us to unlift a quoted

value into a value known in the current stage. In the example, we unlift a boolean constant

(B) returning the value applied to succ or fail if it is not a constant.

λx:B.λsucc:B→T.λfail:T.

x match ⌈true⌉ then succ true else

x match ⌈false⌉ then succ false else fail

89

Multi-Stage Macro Calculus

Substitution

To handle the new syntactic form of pattern matching, substitution is extended to homomor-

phically apply substitution to its sub-terms. As patterns can only refer to bindings defined in

the pattern itself, as ensured by Γp , substitution does not need to go into the pattern.

Soundness

The statements of the progress and preservation theorems carry over unchanged from Sec-

tion 4.2. Extending the proof of progress with a case for pattern matching is trivial; depending

on the pattern reduction, we simply invoke E-MATCH-SUCC or E-MATCH-FAIL. The proof

of preservation requires a few additional definitions and lemmas. First of all, we extend the

substitution lemma to parallel substitutions:

Lemma 4 (Multi-Substitution).

∀i , j ∈N0, if Γ⊢ j tk : Tk
k

and Γ, x : j Tk
k ⊢i t : T then Γ⊢i t [tk /xk]

k
: T

Next, we state well-formedness of the substitutionΦwith respect to environments Γp and Γδ.

Definition 2 (Well-FormedΦ).

We sayΦ is well formed with respect to Γp and Γδ, written Γp | Γδ ⊢Φ wf , if and only ifΦ is a

bijection between dom(Γp) and dom(Γδ), such that dom(Γp)∩dom(Γδ) =; and

∀xp :1 T ∈ Γp .Φ(xp) :1 T ∈ Γδ.

Using Definition 2, we can state type preservation of the pattern reduction. That is, reducing a

well typed matchΦ⊢ ts � p ⇒σ results in a well typed term t ′.

Lemma 5 (Preservation of Pattern Reduction).

If Eqs. (1) to (5) hold, then Γ⊢0 σ(t) : T

Γ;Γδ ⊢1 ts : T1 (1)

Γp ⊢1 tp : T1 ⊣ Γt (2)

Γ;Γt ⊢0 t : T (3)

Φ⊢ ts � tp ⇒σ (4)

Γp | Γδ ⊢Φ wf (5)

Here, premises (1) to (3) correspond to the premises of rule T-MATCH. Finally, the match case

in the proof of preservation follows directly from Lemma 5:

Lemma 6 (Preservation for Match).

If Γ⊢0 ⌈ts⌉ match ⌈tp⌉ then tt else te : T and ⊢1 ts vl and ts ≡ tp ⇒σ, then Γ⊢0 σ(tt) : T

90

4.5 Global Definitions Extension

4.5 Global Definitions Extension

The calculus from the previous section allowed us to write programs that generate and analyze

code using quotes and splices.

In realistic compiled languages, code is first compiled on some machine and then used on a

potentially different machine. If a macro is executed when compiling, the code it generates will

also be compiled and then used on another machine. This implies that we need cross-platform

portability to compile the generated code. If a macro definition is itself compiled, we need to

compile a program containing quoted code. In practice, this requires a form of serialization

but for this to be sound it also requires cross-platform portability.

To capture the semantics of compiling programs, we extend the previous calculus with global

library function definitions. These definitions will be compiled before they are used. The

calculus also adds a restricted notion of cross-stage persistence that is compatible with cross-

platform portability.

Figure 4.5 extends Figures 4.1, 4.3 and 4.4 to define the syntax and semantics of the λ▲ multi-

stage macro calculus.

Syntax

The calculus extends the syntax of Figure 4.3 adding a syntactic form for programs p. Programs

are lists of library bindings def x = ⌈t⌉ in p ending in a single term eval t that will be evaluated

after all library bindings have been compiled. Here, def x = ⌈t⌉ in p represents the definition

of a library function that is made available as x in the remaining program. The implementation

t , which is given as code, is compiled and then added to a simplified store, which we use to

model the set of compiled functions loaded in the program. In this program, a macro is a

splice within t . The syntactic form eval t represents a program that will be evaluated without

being compiled. In practice, eval t would be an interpreted call to the main method.

Environment

Figure 4.5 introduces store-like run-time librariesΩ that map library function names x to their

implementation. It also adds a new typing environment Σ, which types librariesΩ and allows

us to track references to compiled programs. Values will only ever be added to the libraryΩ

but never updated. Importantly, the bindings in Σ (and Ω) are not annotated with staging

levels and are thus staging-level agnostic.

91

Multi-Stage Macro Calculus

Program p ::= eval t | def x = ⌈t⌉ in p

Library typing Σ ::= ; |Σ, x : T

Global store Ω ::= ; |Ω, x := t

Σ |; ⊢1 t : T1 Σ, x : T1 ⊢ p : T2

Σ⊢ def x = ⌈t⌉ in p : T2
(T-DEF)

Σ |; ⊢0 t : T

Σ⊢ eval t : T
(T-EVAL)

x : T ∈Σ
Σ |Γ⊢i x : T

(T-LINK)

x : T ∈Σ
Σ |Γp ⊢i x : T ⊣; (T-PAT-LINK)

t −→0
Ω t ′

eval t |Ω−→ eval t ′ |Ω (E-EVAL)

t −→1
Ω t ′

def x = ⌈t⌉ in p |Ω−→ def x = ⌈t ′⌉ in p |Ω (E-MACRO)

⊢1 t vl

def x = ⌈t⌉ in p |Ω−→ p |Ω, x := t
(E-COMPILE)

x ∈ dom(Ω)

x −→0
ΩΩ(x)

(E-LINK)

Φ⊢ x � x ⇒ [] (E-PAT-LINK)

⊢0 t vl

⊢ eval t vl
(V-EVAL)

Figure 4.5: Global Definitions Extension

92

4.5 Global Definitions Extension

Typing

The typing judgments in Figure 4.5 extend the ones presented in Figure 4.1. We modify the

judgment form Γ ⊢i t : T to also track the library typing Σ as Σ |Γ ⊢i t : T . All existing

rules simply pass Σ unmodified to their premises. To type programs, we add a new typing

judgment Σ ⊢ p : T where Σ tracks the library bindings. When typing a library definition

def x = ⌈t⌉ in p (T-DEF), we type the term t at level 1. This way the term t can contain splices,

which in turn allows us to model macros. The rest of the program is typed by adding x to the

library environment Σ. Typing eval t (T-EVAL) simply types t at level 0 (like in Section 4.2)

but adds the Σ, which will not change in the remainder of the derivation. To be able to access

library functions, we add rules T-LINK and T-PAT-LINK, which look up the signature of a free

variable x inΣ. We assume that dom(Σ) and dom(Γ) are disjoint and hence there cannot be any

ambiguity with (T-VAR). Note that, unlike rule T-VAR, variables in Σ are stage-polymorphic,

therefore library functions display a form of cross-stage persistence.

Example 8. Library functions in Σ can be used at any level after they are compiled. This

is illustrated by the typing derivation below, where f is used at staging levels 0 and 1.

Assuming that f : ⌈C⌉→C ∈Σ, we can see that all premises are satisfiable with T1 = T3 = ⌈C⌉
and T2 = C.

f : T1→C ∈Σ
Σ |; ⊢0 f : T1→C

f : T3→T2 ∈Σ
Σ |; ⊢1 f : T3→T2

Σ |; ⊢2 c : C T3 = ⌈C⌉
Σ |; ⊢1 ⌈c⌉ : T3

Σ |; ⊢1 f ⌈c⌉ : T2

T1 = ⌈T2⌉

Σ |; ⊢0 ⌈ f ⌈c⌉⌉ : T1

Σ |; ⊢0 f ⌈ f ⌈c⌉⌉ : C

Σ⊢ eval f ⌈ f ⌈c⌉⌉ : C

93

Multi-Stage Macro Calculus

Example 9. In the following example, we show how the combined calculus can be used to

describe an optimization of our “DSL for mathematical operations”. We match a numeric

expression and check whether it is a call to our global power DSL function defined in a

library. The code below is an encoding of the last version of fusedPowCode of Listing 3.6

for a numerical type N with a ∗ multiplication operation.

def fusedPowCode = ⌈
fixλrec:⌈N⌉→⌈N⌉→⌈N⌉.λx:⌈N⌉.λn:⌈N⌉.

x match ⌈power TyUN TmUN⌉ then rec y ⌈∗ ⌊n⌋ ⌊m⌋⌉ else ⌈power ⌊x⌋ ⌊n⌋⌉
⌉ in def power4 = ⌈

λn:N.⌊fusedPowCode ⌈power n 2⌉ 2⌋
⌉ in p

Operational Semantics

Like in the case of typing, the operational semantics in Figure 4.5 extends the one presented

in Figure 4.3 by modifying the relation t −→i t ′ to be indexed with a run-time library Ω as

t −→i
Ω t ′. Also, like in typing, all existing rules simply pass onΩ to their premises. To specify

the evaluation of programs, we introduce a new relation p |Ω−→ p ′ |Ω′, where a program p

with a libraryΩ evaluates to a program p ′ with a potentially extended libraryΩ′. For a library

definition def x = ⌈t⌉ in p, where t is a value (i.e., where t does not not contain macros),

the library store is updated with a binding x := t and the definition is removed (E-COMPILE).

Importantly, in this process we are taking a t at staging level 1 and compiling it, making it

available as a run-time dependency in the rest of the program; the compiled library function

t can be used on arbitrary levels, including level 0. If the library function t in a definition

def x = ⌈t⌉ in p still contains splices at staging level 1 (macros), we first need to evaluate them

(E-MACRO). Using the reduction of the core calculus from Section 4.2, the contents of the

macros will be evaluated at that point. This will produce a quote value that is then canceled

with the splice. To evaluate the final expression eval t , we simply reduce the term t using

the run-time dependencies inΩ (E-EVAL). At this point,Ω is fixed and will not change, and it

will just propagate down to allow E-LINK to useΩ. A reference x to a library function typed

with T-LINK at level 0 will lead to x being replaced by the compiled code fromΩ (E-MACRO).

We say that we “link the reference with the compiled function”. At any other level i ≥ 1, we

simply keep the reference to x, since it is considered a value. When matching a library function

reference (E-PAT-LINK) we match if the scrutinee is a reference to the same library function.

This pattern does not change or useΦ in any way as it only needs to handle local variables.

94

4.5 Global Definitions Extension

Values

The definition of values of Figure 4.3 is kept unchanged. We merely add a value definition for

programs ⊢ p vl. The only program value is eval t where t is required to be a value (V-EVAL).

Example 10. The following example illustrates evaluation in the calculus. We define a

library function powerCode (implemented as in Example 1) as a macro taking a quoted base

x and an exponent n of numeric type (N); and a library function power2 using the macro

with 2 as the exponent.

def powerCode = ⌈fixλrec:⌈N⌉→N→⌈N⌉. . . .⌉ in
;def power2 = ⌈λx:N.⌊powerCode ⌈x⌉ 2⌋⌉ in

eval power2 3

First, we compile the macro definition powerCode since it does not contain any splices at

level 1, storing it inΩ.

def power2 = ⌈λx:N.⌊powerCode ⌈x⌉ 2⌋⌉ in ;, powerCode:=fixλrec:⌈N⌉→N→⌈N⌉. . . .
eval power2 3

Next, we perform macro expansion and evaluate the code in the splice of power2.

def power2 = ⌈λx:N.⌊⌈x ∗x ∗1⌉⌋⌉ in ;, powerCode:=fixλrec:⌈N⌉→N→⌈N⌉. . . .
eval power2 3

Performing splice canceling results in:

def power2 = ⌈λx:N.x ∗x ∗1⌉ in ;, powerCode:=fixλrec:⌈N⌉→N→⌈N⌉. . . .
eval power2 3

As before, we compile power2, which does not contain splices at level 0 anymore.

eval power2 3 | ;, powerCode:=fixλrec:⌈N⌉→N→⌈N⌉. . . . , power2=λx:N.x ∗x ∗1

Finally, we evaluate the main program:

eval 9 | ;, powerCode:=fixλrec:⌈N⌉→N→⌈N⌉. . . . , power2=λx:N.x ∗x ∗1

Soundness

To state the progress and preservation theorems for the λ▲ calculus, we introduce an auxiliary

well-formedness relation Σ⊢Ω wf , which means thatΩ is well typed under environment Σ.

Definition 3 (Well-FormedΩ).

Σ⊢Ω wf if and only if dom(Σ) = dom(Ω) ∧ ∀i ∈N0, x ∈ dom(Ω).Σ |; ⊢i Ω(x) :Σ(x)

95

Multi-Stage Macro Calculus

Using this definition, we state the soundness of the calculus in terms of progress and preserva-

tion for programs. Again, the full proofs can be found in Appendix A.

Theorem 3 (Progress for Programs).

If Σ⊢ p : T , then p is a value ⊢ p vl or, for anyΩ such that Σ⊢Ω wf ,

there exists p ′ andΩ′ such that p |Ω−→ p ′ |Ω′

Theorem 4 (Preservation for Programs).

If Σ⊢ p : T , Σ⊢Ω wf and p |Ω−→ p ′ |Ω′,
then the exists a Σ′ such that Σ′ ⊇Σ, Σ′ ⊢ p ′ : T and Σ′ ⊢Ω′ wf

Since we added rule T-LINK, we need to revisit the lemmas from the previous section. Lemma 1

(of Canonical Forms) still holds because there was no change in value definitions.

We also need to restate the various theorems and lemmas for terms to account for libraries

and library typing.

Theorem 5 (Progress for Terms).

If Σ |; ⊢i t : T and Σ⊢Ω wf , then t is a value ⊢i t vl or there exists t ′ such that t −→i
Ω t ′

Lemma 7 (Extended Progress for Terms).

If Σ |Γ≥1 ⊢i t : T and Σ⊢Ω wf , then t is a value ⊢i t vl or there exists t ′ such that t −→i
Ω t ′

Theorem 6 (Preservation for Terms).

If Σ |Γ⊢i t : T , t −→i
Ω t ′ and Σ⊢Ω wf , then Σ |Γ⊢i t ′ : T

Lemma 8 (Substitution).

∀i , j ∈N0, if Σ |Γ⊢ j t1 : T1 and Σ |Γ, x : j T1 ⊢i t2 : T2 then Σ |Γ⊢i t2[t1/x] : T2

Most of the proofs carry through unchanged. To show preservation we additionally need the

following lemma.

Lemma 9 (Σ-Weakening).

If Σ⊢ p : T and Σ′ ⊇Σ, then Σ′ ⊢ p : T

96

4.6 Patterns with Type Variables Extension

4.6 Patterns with Type Variables Extension

It is not always possible or practical to match on a pattern where all types are statically known.

For example, if we want a single pattern that can match any application, we do not wish to

repeat the pattern for each argument type.

To this end, we extend the calculus of Section 4.4 with support for existential type variables in

patterns. These type variables are local to the match construct and are immediately evaluated

away on a successful match. The extension introduces a notion of type constraints and

unification in the operational semantics.

Figures 4.6 and 4.7 extend Figures 4.1, 4.3 and 4.4 to define the syntax and semantics of this

extended calculus.

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
| t match X ⌈t⌉ then t else t | TxUxk :Tk

k

T

Type T ::= C | T→T | ⌈T ⌉ | X

Typing environment Γ ::= ; | Γ, x :i T | Γ, X

Constraints C ::= ; |C ,T=T

Γ⊢i ts : ⌈Tp⌉ Γ; X |; ⊢i+1 tp : Tp ⊣ Γt Γ; X ;Γt ⊢i tt : T Γ⊢i te : T

Γ⊢i ts match X ⌈tp⌉ then tt else te : T
(T-MATCH)

ts −→i t ′s
ts match X ⌈tp⌉ then tt else te −→i t ′s match X ⌈tp⌉ then tt else te

(E-MATCH-SCRUT)

⊢1 ts vl X ⊢ ts ≡ tp ⇒σ

⌈ts⌉ match X ⌈tp⌉ then tt else te −→0 σ(tt)
(E-MATCH-SUCC)

⊢1 ts vl X ⊢ ts ≡ tp ⇏σ

⌈ts⌉ match X ⌈tp⌉ then tt else te −→0 te
(E-MATCH-FAIL)

⊢0 ts vl tt −→i t ′t i ≥ 1

ts match X ⌈tp⌉ then tt else te −→i ts match X ⌈tp⌉ then t ′t else te
(E-MATCH-THEN)

⊢0 ts vl ⊢0 tt vl te −→i t ′e i ≥ 1

ts match X ⌈tp⌉ then tt else te −→i ts match X ⌈tp⌉ then tt else t ′e
(E-MATCH-ELSE)

Figure 4.6: Pattern Type Variables Calculus

97

Multi-Stage Macro Calculus

;⊢ ts � tp ⇒σ1 |C unify(Xi
i |C) ⇒σ2

Xi
i ⊢ ts ≡ tp ⇒σ2 ◦σ1

(E-PAT)

Φ⊢ c�c ⇒ [] | ; (E-PAT-CONST)

Φ⊢ ts1 � tp1 ⇒σ1 |C1 Φ⊢ ts2 � tp2 ⇒σ2 |C2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ1 ◦σ2 |C1;C2
(E-PAT-APP)

Φ⊢ ts � tp ⇒σ |C

Φ⊢ fix ts �fix tp ⇒σ |C
(E-PAT-FIX)

Φ⊢Φ(xp)� xp ⇒ [] | ; (E-PAT-VAR)

Φ, xp 7→xs ⊢ ts � tp ⇒σ |C

Φ⊢λxs :T1.ts �λxp :T2.tp ⇒σ |C ,T1=T2
(E-PAT-ABS)

FV (ts)∩ range(Φ) ⊆Φ(xk)
k

t ′s =λx ′
k :⌈Tk⌉

k
. ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

Φ⊢ ts �TxUxk :Tk
k

T ⇒ [t ′s /x] | {type(ts)=T
} (E-PAT-BIND)

unify(;|;) ⇒ [] (U-EMPTY)

unify(Xi
i |C) ⇒σ

unify(Xi
i |C ,T=T) ⇒σ

(U-EQ)

unify(Xi
i
; X j

j |C [T /X]) ⇒σ

unify(Xi
i
, X , X j

j |C ,T=X) ⇒ [T /X]◦σ
(U-PAT-VAR)

unify(Xi
i |C ,Ts1=Tp1 ,Ts2=Tp2) ⇒σ

unify(Xi
i |C ,Ts1→Ts2=Tp1→Tp2) ⇒σ

(U-ABS)

unify(Xi
i |C ,Ts=Tp) ⇒σ

unify(Xi
i |C ,⌈Ts⌉=⌈Tp⌉) ⇒σ

(U-QUOTE)

Figure 4.7: Pattern Semantics

98

4.6 Patterns with Type Variables Extension

Syntax

The new calculus extends the quote pattern match calculus with type variables. Type variable

X is added as a possible type T and the matching operation is extended to define a set X of

type variables. These type variables are accessible in the pattern and the then branch of the

pattern match. If the pattern matches, the type variables in the then branch are substituted

by concrete types found in the pattern. The syntax X is used as a shorthand for Xk
k

when

there can be no ambiguity in the indexing.

Environment

The environment Γ is extended to keep track of type variables X . We also use X to define an

environment that only contains type variables. The addition of type variables implies that

we need to make sure that all environments are well formed with respect to type variables.

In short, an environment is well formed ⊢ Γ wf if the definition of the type variable appears

before the uses in the environment. Similarly, a type is well formed Γ ⊢ T wf if ⊢ Γ wf and

ftv(T) ∈ Γ. The explicit well-formedness rules can be found in Figures 4.13 to 4.15.

Typing

The typing of T-MATCH is extended to define any number of existential type variables X .

These type variables are accessible in the pattern and in the then branch of the pattern match.

Bindings in Γt may contain references to these type variables.

Typing rules for patterns are extended with an extra Γ environment at the beginning Γ |Γp ⊢i

t : T ⊣ Γt . Γ is the environment of the match term and is only used for well-formedness of

the types in the patterns. The typing of match (T-MATCH) adds the X to the pattern typing

environment Γ; X and the typing environment Γ; X ;Γt of the then branch. This does not

change in any of the pattern typing rules.

For convenience, we add the implicit requirement that all environments and types in typing

judgments are well-formed. For term typing Γ⊢i t : T , well-formedness of types is defined

as Γ ⊢ T wf and well-formedness of environments is defined as ⊢ Γ wf. For pattern typing

Γ |Γp ⊢i t : T ⊣ Γt , well-formedness of types is defined as Γ;Γp ⊢ T wf and well-formedness of

environments is defined as ⊢ Γ;Γp wf and ⊢ Γ;Γt wf. In particular, the type T in T-PAT-BIND is

well formed because it appears in ⊢ Γ;Γt wf.

99

Multi-Stage Macro Calculus

Example 11. The following pattern shows how to match on any application regardless of

its type using a type variable for the type of the argument. The derivation also shows how

the bound type variables interact with the bind pattern and the then branch of the match.

Here, Γt = ;, x1 :0 ⌈X→T ⌉, x2 :0 ⌈X ⌉ is defined by the pattern derivation and used in the

then branch.

. . . Γ, X |; ⊢1 Tx2UX : X ⊣;, x2 :0 ⌈X ⌉
Γ, X |; ⊢1 Tx1UX→T Tx2UX : T ⊣;, x1 :0 ⌈X→T ⌉, x2 :0 ⌈X ⌉

x2 :0 ⌈X ⌉ ∈ Γ, X , . . . , x2 :0 ⌈X ⌉
Γ, X , . . . , x2 :0 ⌈X ⌉ ⊢0 x2 : ⌈X ⌉

. . .

Γ, X ;Γt ⊢0 ⌈⌊x1⌋ ⌊x2⌋⌉ : ⌈T ⌉
. . .

Γ⊢0 t : ⌈T ⌉
Γ⊢0 t match X ⌈Tx1UX→T Tx2UX ⌉ then ⌈⌊x1⌋ ⌊x2⌋⌉ else t : ⌈T ⌉

Operational Semantics

For terms, the operational semantics of Figure 4.6 are virtually unchanged. We only need

to modify E-MATCH-SCRUT, E-MATCH-SUCC, E-MATCH-FAIL, E-MATCH-SCRUT, E-MATCH-

THEN and E-MATCH-ELSE to include the X in ts match X ⌈tp⌉ then tt else te . The pattern

operational semantics will use the X while performing the match and therefore must be

passed in X ⊢ ts ≡ tp ⇒σ from E-MATCH-SUCC, E-MATCH-FAIL into E-PAT.

In E-PAT (Figure 4.7), a pattern that contains a type variable will only match if there exists a

type for which the pattern matches the scrutinee. To figure out this type, the pattern matching

will also return a set of type constraints C in Φ ⊢ ts � tp ⇒ σ1 | C (not to be confused with

C for constants). Then the constraints are unified to provide a substitution for all X of the

pattern in unify(X |C) ⇒σ2. The composition σ2 ◦σ1 will substitute all x introduced by the

bind patterns and all X defined in the match.

The collection of constraints is mostly straightforward with the exception of the bind pattern.

E-PAT-CONST and E-PAT-VAR do not add constraints, E-PAT-FIX propagates the constraints, E-

PAT-APP combines the constraints and E-PAT-ABS adds the constraint that the two argument

types must be the same. On the other hand E-PAT-BIND adds a single constraint type(ts)=T

where type(ts) is the type of ts . This implies that for any quoted sub-term we need to be able

to recover its type at run-time. This is implicitly assumed in the calculus.

The unification unify(X |C) ⇒ σ will try to unify the constraints C with the type variables

X . The result of the unification is a substitution σ that will be used to substitute all X with

concrete types. To solve the unification, we need to reach U-EMPTY which states that if we

have no type variables and no constraints we can use the empty substitution. U-EQ introduces

the notion that if two types are equal they can be removed from the constraint. U-ABS and

U-QUOTE simply flatten the constraints. The most interesting rule is the U-PAT-VAR which

takes the constraint T = X and will set T to be the solution of X . A key property to make this

work is that ftv(T)∩X =; which means that neither C [T /X] nor range([T /X]) will introduce

a reference to any of the X . This is a property that holds by construction of the constraints as

100

4.6 Patterns with Type Variables Extension

X can only appear in the pattern and hence on the right-hand side of the constraints. This

property is captured by well-formedness of the constraint Γ | X ⊢C wf.

Example 12. The following match has an X that needs to be resolved at run-time.

⌈(λx1:C.x1) c⌉ match X ⌈(λx2:X .x2) TxUX ⌉ then ⌈(λx3:X .x3) ⌊x⌋⌉ else t

The structure of the tree will obviously match and it will collect the ;,C=X , type(c)=X

which is equivalent to the constraint ;,C=X ,C=X from the E-PAT-ABS and E-PAT-BIND

rules, which are combined using the E-PAT-APP rule. From this we can infer that the type

substitution is [C/X].
unify(;|;) ⇒ []

unify(;|;,C=C) ⇒ [C/X]

unify(X |;,C=X ,C=X) ⇒ [C/X]

Therefore the match will succeed and use the combination of the substitution for the

bound term x and the substitution for the variable X .

⌈(λx1:C.x1) c⌉ match X ⌈(λx2:X .x2) TxUX ⌉ then ⌈(λx3:X .x3) ⌊x⌋⌉ else t −→0

[C/X]◦ [c/x](⌈(λx3:X .x3) ⌊x⌋⌉) −→0

⌈(λx3:C.x3) ⌊c⌋⌉

Substitution

To handle the new syntactic form of pattern matching, substitution is extended to homo-

morphically apply substitution to its sub-terms and sub-types. As patterns can only refer to

bindings defined in the pattern itself, as ensured by Γp , term substitution does not need to

go into the pattern. On the other hand, the pattern might refer to a type defined in Γ, which

needs substitution in the pattern.

Soundness

The statements of the progress and preservation theorems carry over unchanged from Sec-

tion 4.4. The proofs of progress and presentation only need to explicitly mention the X .

With the change in E-PAT, Lemma 6 does not follow directly from Lemma 5 anymore. To

prove it, we first need Lemma 10 to show that the constraint is well-formed. Then, we need

Lemma 11 to prove that the substitution resulting from the unification will replace all the type

variables of the match in the then branch.

101

Multi-Stage Macro Calculus

Lemma 10 (Constraints of Pattern Reduction).

If Eqs. (1) to (4) then Γ;Γδ | X ;Γp ⊢C wf.

Γ;Γδ ⊢1 ts : Ts (1)

Γ; X |Γp ⊢1 tp : Tp ⊣ Γt (2)

Φ⊢ ts � tp ⇒σ |C (3)

Γp | Γδ ⊢Φ wf (4)

Lemma 11 (Pattern Constraints Unification).

If unify(X |C) ⇒σ and Γ | X ⊢C wf and Γ⊢ T wf and Γ; X ⊢0 t : T , then Γ⊢0 σ(t) : T

To prove Lemma 6 we can apply Lemma 5 to get the first premise of Lemma 11. And then,

using Lemma 10, we get the second premise needed to use Lemma 11.

To prove Lemma 11 we also need to prove Lemma 12 on type substitution in constraints. This

is used in the case U-PAT-VAR where we have C [T /X].

Lemma 12 (Constraint Substitution).

If Γ | X , X ⊢C wf and Γ⊢ T wf, then Γ | X ⊢C [T /X] wf

To apply the type substitution of Lemma 11 we need the type substitution Lemma 13.

Lemma 13 (Type Substitution).

∀i ∈N0, if Γ1 ⊢ T1 wf and Γ1, X ;Γ2 ⊢i t : T then Γ1; (Γ2[T1/X]) ⊢i t [T1/X] : T [T1/X]

As type substitution is also performed on patterns, the T-MATCH case of Lemma 13 will require

the auxiliary Lemma 14.

Lemma 14 (Pattern Type Substitution).

∀i ∈N, if Γ1 ⊢ T1 wf and Γ1, X ;Γ2 |Γp ⊢i t : T ⊣ Γt

then Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i t [T1/X] : T [T1/X] ⊣ Γt [T1/X]

To prove Lemmas 12 to 14 we also need to prove well-formedness of types after substitution.

Lemma 15 (Well-Formed Type Substitution).

If Γ⊢ T1 wf and Γ, X ⊢ T2 wf, then Γ⊢ T2[T1/X] wf

102

4.7 Parametric Polymorphism Extension

4.7 Parametric Polymorphism Extension

Adding System F-like parametric polymorphism to the core calculus of Section 4.2 is straight-

forward. However, combining it with the quote pattern matching type variables and bind

pattern has some interesting consequences.

We extend the calculus of Section 4.6 with support for parametric polymorphism. To this end,

we add type lambdas and type applications to the terms and the patterns. We also generalize

the bind pattern to allow type-polymorphic bindings and enhance type unification.

Figures 4.8 to 4.10 extends Figures 4.1, 4.3, 4.4 and 4.6 to define the syntax and semantics of

this extended calculus.

Syntax

We extend the calculus with two new syntax constructs: the type lambdaΛX .t and the type

application t T . In addition, we extend the syntax of the bind pattern to allow the capture of

type variables X j
j

defined in the pattern TxUX j
j

xk :Tk
k

T . The syntax of types is extended to not

only have type variables X , but also type abstractions ∀X .T .

Environment

Figure 4.6 from the calculus of Section 4.6 already introduced the necessary environment

definitions.

Typing

Typing of (T-TABS) and (T-TAPP) are the usual typing rules from System F, with the extra

tracking of the current staging level.

The rules (T-PAT-TABS) and (T-PAT-TAPP) mostly coincide with their typing counterparts.

However, the Γp environment tracks any type binding added by a type lambda pattern (T-PAT-

TABS). It is used for well-formedness of the pattern and to determine the free type variables in

a bind pattern (T-PAT-BIND).

The rule (T-PAT-BIND) for the bind pattern TxUX j
j

xk :Tk
k

T now matches against an arbitrary

expression locally closed under X j
j

and xk :Tk
k

. We represent this closed term as k curried

lambdas taking arguments of the corresponding types Tk
k

nested in j curried type lambdas.

Hence, in the output environment, we bind x to a value of type ∀X j .
j ⌈Tk⌉→k⌈T ⌉.

103

Multi-Stage Macro Calculus

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
| t match X ⌈t⌉ then t else t | TxUX j

j
xk :Tk

k

T

|ΛX .t | t T

Type T ::= C | T→T | ⌈T ⌉ | X | ∀X .T

Pattern bindings Φ ::= ; |Φ, x 7→x |Φ, X 7→X

Γ, X ⊢i t : T

Γ⊢i ΛX .t : ∀X .T
(T-TABS)

Γ⊢i t : ∀X .T2

Γ⊢i t T1 : T2[T1/X]
(T-TAPP)

Γ |Γp , X ⊢i t : T ⊣ Γt

Γ |Γp ⊢i ΛX .t : ∀X .T ⊣ Γt
(T-PAT-TABS)

Γ |Γp ⊢i t : ∀X .T2 ⊣ Γt

Γ |Γp ⊢i t T1 : T2[T1/X] ⊣ Γt
(T-PAT-TAPP)

X j ∈ Γp
j

xk :i Tk ∈ Γp
k

Γ |Γp ⊢i TxUX j
j

xk :Tk
k

T : T ⊣;, x :i−1 ∀X j .
j ⌈Tk⌉→k⌈T ⌉

(T-PAT-BIND)

t −→i t ′

t T −→i t ′ T
(E-TAPP)

t −→i t ′ i ≥ 1

ΛX .t −→i ΛX .t ′
(E-TABS)

(ΛX .t) T −→0 t [T /X] (E-TBETA)

;⊢ ts � tp ⇒σ1 |C | Xl
l

Xl
l ⊢ unify(Xi

i |C) ⇒σ2

Xi
i ⊢ ts ≡ tp ⇒σ2 ◦σ1

(E-PAT)

⊢0 ΛX .t vl (V-TABS-0)

⊢i t vl i ≥ 1

⊢i ΛX .t vl
(V-TABS)

⊢i t vl i ≥ 1

⊢i t T vl
(V-TAPP)

Figure 4.8: Parametric Polymorphism Extension

Operational Semantics

We extend the small-step semantics of the calculus. At level 0, the semantics follow the usual

System F semantics, and we perform type β-reduction (E-TBETA). The rule E-TAPP expresses

the usual congruence. Similarly to E-ABS, rule E-TABS needs to reduce at level 1 or above to

reduce nested splices.

104

4.7 Parametric Polymorphism Extension

Φ⊢ c�c ⇒ [] | ; | ; (E-PAT-CONST)

Φ⊢ ts1 � tp1 ⇒σ1 |C1 | Xl1

l1
Φ⊢ ts2 � tp2 ⇒σ2 |C2 | Xl2

l2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ1 ◦σ2 |C1;C2 | Xl1

l1 ; Xl2

l2
(E-PAT-APP)

Φ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ fix ts �fix tp ⇒σ |C | Xl
l

(E-PAT-FIX)

Φ⊢Φ(xp)� xp ⇒ [] | ; | ; (E-PAT-VAR)

Φ, xp 7→xs ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢λxs :T1.ts �λxp :T2.tp ⇒σ |C ,T1=T2 | Xl
l

(E-PAT-ABS)

Φ, Xp 7→Xs ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ΛXs .ts �ΛXp .tp ⇒σ |C [Xs /Xp] | Xl
l
, Xs

(E-PAT-TABS)

Φ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ ts Ts � tp Tp ⇒σ |C ,Ts=Tp | Xl
l

(E-PAT-TAPP)

FV (ts)∩ range(Φ) ⊆Φ(X j)
j
;Φ(xk)

k
t ′s =ΛX ′

j

j
.

(
λx ′

k :⌈Tk⌉
k

. ⌈ts⌉[⌊x ′
k⌋/Φ(xk)]

k
)

[X ′
j /Φ(X j)]

j

Φ⊢ ts �TxUX j
j

xk :Tk
k

T ⇒ [t ′s /x] | {type(ts)=T
} | ;

(E-PAT-BIND)

Figure 4.9: Pattern Semantics

The premise of the rule E-PAT-BIND is generalized from FV (ts)∩range(Φ) ⊆Φ(xk)
k

to FV (ts)∩
range(Φ) ⊆Φ(X j)

j
;Φ(xk)

k
. This implies that we will match a ts that might contain references

to types defined in the pattern. In this case, we cannot simply substitute ts for x. We first need

to bind all free variables and free type variables. In particular, for each free variable Φ(xk)

defined in the pattern, we η-expand t ′s by creating a lambda that receives a staged argument of

type x ′
k :⌈Tk⌉. Then, for each free type variableΦ(X j) defined in the pattern, we type-η-expand

by creating a type lambda that receives a replacement for that type. In the body of that lambda

we substituteΦ(xk) with the ⌊x ′
k⌋ and X j with X ′

j . This process results in a curried lambda of

type ∀X ′
j .

j ⌈T ′
k⌉→

k⌈T ⌉, where T ′
k = Tk [X ′

j /Φ(X j)]
j

.

Just like (E-PAT-ABS), the rule (E-PAT-TABS) tracks the relationship between the binding in the

pattern and the binding in the scrutinee inΦ as type mappings. The type variable mappings

ofΦ are only used for the bind pattern. Other relationships between types are made through

the constraints. Rule E-PAT-TAPP is similar to E-PAT-APP but adds a type constraint.

105

Multi-Stage Macro Calculus

Xl
l ⊢ unify(;|;) ⇒ [] (U-EMPTY)

Xl
l ⊢ unify(Xi

i |C) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,T=T) ⇒σ
(U-EQ)

Xl
l ⊢ unify(Xi

i
; X j

j |C [T /X]) ⇒σ ftv(T)∩Xl
l =;

Xl
l ⊢ unify(Xi

i
, X , X j

j |C ,T=X) ⇒ [T /X]◦σ
(U-PAT-VAR)

Xl
l ⊢ unify(Xi

i |C ,Ts1=Tp1 ,Ts2=Tp2) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,Ts1→Ts2=Tp1→Tp2) ⇒σ
(U-ABS)

Xl
l
, X1 ⊢ unify(Xi

i |C ,T1=(T2[X1/X2])) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,∀X1.T1=∀X2.T2) ⇒σ
(U-TABS)

Xl
l ⊢ unify(Xi

i |C ,Ts=Tp) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,⌈Ts⌉=⌈Tp⌉) ⇒σ
(U-QUOTE)

Figure 4.10: Pattern Unification Semantics

E-PAT-TABS may introduce new free type variables in the constraints. These should not

escape through the substitution created by the type unification. To ensure this, we track these

variables Xl
l

along with constraints in Φ ⊢ ts � tp ⇒ σ | C | Xl
l
. Then we pass them to the

unification Xl
l ⊢ unify(Xi

i |C) ⇒σ in E-PAT. U-PAT-VAR has the added premise ftv(T)∩Xl
l =

; to ensure that the unification only succeeds if none of those variables are present in the

substitution. We also need a U-TABS rule to unify ∀X .T with each other. To make the

constraints comparable, we substitute one of the variables with the other. We keep the variable

that is defined in the scrutinee. As this is also a local variable that is added to the constraint,

we add it to the Xl
l
.

Example 13. There are two interesting interactions between type variables introduced by a

match and those introduced in type abstraction patterns.

. . . match X1 ⌈ΛX2.TxUX1
⌉ then . . . else . . . (1)

. . . match X1 ⌈ΛX2.TxUX2
X1
⌉ then . . . else . . . (2)

In the case of Eq. (1) we have a closed bind pattern, and U-PAT-VAR ensures that the pattern

will only match if the term x does not contain references to X2. In the case of Eq. (2) we can

refer to X2 in x, and the unification may result in a type containing a reference to X2. The

rule T-PAT-BIND will replace this X2 with the well-scoped X ′
2.

106

4.7 Parametric Polymorphism Extension

Values

The term values for type lambdas and type applications follow the same rules as normal

lambdas and applications.

Soundness

The statements of the progress and preservation theorems carry over unchanged from Sec-

tion 4.6. We only need to add the usual new cases in the proof for type abstraction and type

application.

To prove Lemma 6 with the additional Xl
l

tracking local pattern variables, we need to modify

slightly Lemmas 5, 10 and 11. We replace Lemma 10 with Lemma 16 to add the extra Xl
l

with the local pattern type variables to make the constraint well formed. We also need to add

cases to cover T-PAT-TAPP and T-PAT-TABS, which follow similar proofs to T-PAT-APP and

T-PAT-ABS. The case for T-PAT-BIND is extended to account for the captured type variables

and type lambdas.

Lemma 16 (Constraints of Pattern Reduction).

If Eqs. (1) to (4) then Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf.

Γ;Γδ ⊢1 ts : Ts (1)

Γ; Xi
i |Γp ⊢1 tp : Tp ⊣ Γt (2)

Φ⊢ ts � tp ⇒σ |C | Xl
l

(3)

Γp | Γδ ⊢Φ wf (4)

We also replace Lemma 11 with Lemma 17 to add the extra Xl
l
. This environment is used in

U-PAT-VAR to ensure that the unification only succeeds if none of those variables are present

in the substitution. To prove this case we use Lemma 18. We also need to add a proof case for

the new U-TABS rule.

Lemma 17 (Pattern Constraints Unification).

If Xl
l ⊢ unify(Xi

i |C) ⇒σ and Γ; Xl
l | Xi

i ⊢C wf and Γ⊢ T wf and Γ; Xi
i ⊢0 t : T ,

then Γ⊢0 σ(t) : T

Lemma 18 (Unification Locality).

If Xl
l ⊢ unify(Xi

i |C) ⇒σ and X ∈ Xl
l
, then X ∉ image(σ)

To restate the Lemma 5 we only need to add the Xl
l

in Φ⊢ ts � tp ⇒ σ |C | Xl
l
. To prove it,

we need to add the two cases for T-PAT-TAPP and T-PAT-TABS, which follow similar proofs to

T-PAT-APP and T-PAT-ABS. Finally, we need to change the proof case for the T-PAT-BIND to

account for captured local variables.

107

Multi-Stage Macro Calculus

4.8 Polymorphic Multi-Stage Macro Calculus

In this section, we present the full polymorphic multi-stage macro calculus. It contains the

unification of the multi-stage macro calculus λ▲, polymorphic multi-stage calculus F▲ and

the quoted constants extension of Section 4.3. Appendix A contains the complete soundness

proofs of the calculus.

4.8.1 Syntax

Figure 4.11 shows the syntax of the calculus.

The calculus features syntax for program such as library bindings def x = ⌈t⌉ in p and program

evaluation eval t from Section 4.5. The calculus also features syntax for terms such as

constants c, variables x, abstraction λx:T.t , applications t t , fixpoint computations fix t ,

quotations ⌈t⌉ and splices ⌊t⌋ from Section 4.2. It includes the operations on quoted constants

lift t and unlift t with t or t from Section 4.3. It contains type abstractionΛX .t and type

application t T from Section 4.7. It has quote pattern matching ts match X ⌈tp⌉ then tt else te

as defined in Section 4.6 and TxUX j
j

xk :Tk
k

T as defined in Section 4.7.

The syntax of types includes built-in types C, function types of the form T→T , and the type of

quoted terms ⌈T ⌉ from Section 4.2. It also includes type variables X from Sections 4.6 and 4.7

and type lambdas ∀X .T from Section 4.7.

Program p ::= def x = ⌈t⌉ in p | eval t

Term t ::= c | x |λx:T.t | t t | fix t | ⌈t⌉ | ⌊t⌋
| lift t | unlift t with t or t

|ΛX .t | t T

| t match X ⌈t⌉ then t else t | TxUX j
j

xk :Tk
k

T

Type T ::= C | T→T | ⌈T ⌉ | X | ∀X .T

Figure 4.11: Syntax

108

4.8 Polymorphic Multi-Stage Macro Calculus

4.8.2 Environments

Figure 4.12 shows the environment definitions.

Environments Γ are lists of bindings x :i T as described in Section 4.2 and type variables X as

described in Section 4.6. An environment Γ is well formed if ⊢ Γ wf as defined in Figure 4.13. A

type T is well formed under an environment Γ if Γ⊢ T wf as defined in Figure 4.14. A staging

level i is defined as a non-negative integer as defined in Figure 4.1.

Pattern bindings Φ are lists of mappings of term names x 7→x as defined in Section 4.4 or

mappings of type names X 7→X from Section 4.7. AΦ is well formed with respect to Γp and Γδ
if Γp | Γδ ⊢Φ wf as stated in Definition A.3.

Library typings Σ are lists of bindings x : T and global storesΩ are lists of x := t as described in

Section 4.5. A storeΩ is well typed with respect to Σ if Σ⊢Ω wf as stated in Definition A.1.

Constraints are lists of equivalences between types T=T as defined in Section 4.6. A constraint

C is well formed under an environment Γ and pattern type variables X if Γ | Γ, X ⊢ C wf as

defined in Figure 4.15.

Typing environment Γ ::= ; | Γ, x :i T | Γ, X

Level i ∈ N0

Pattern bindings Φ ::= ; |Φ, x 7→x, X 7→X

Library typing Σ ::= ; |Σ, x : T

Global store Ω ::= ; |Ω, x := t

Constraints C ::= ; |C ,T=T

Figure 4.12: Environments

109

Multi-Stage Macro Calculus

⊢; wf (WFE-EMPTY)

Γ⊢ T wf x ∉ dom(Γ)

⊢ Γ; x :i T wf
(WFE-VAR)

⊢ Γ wf X ∉ dom(Γ)

⊢ Γ; X wf
(WFE-TVAR)

Figure 4.13: Well-Formed Environment

⊢ Γ wf

Γ⊢ C wf
(WFT-CONST)

Γ⊢ T1 wf Γ⊢ T2 wf

Γ⊢ T1→T2 wf
(WFT-ABS)

Γ, X ⊢ T wf

Γ⊢∀X .T wf
(WFT-TABS)

Γ⊢ T wf

Γ⊢ ⌈T ⌉ wf
(WFT-QUOTED)

⊢ Γ wf X ∈ Γ
Γ⊢ X wf

(WFT-VAR)

Figure 4.14: Well-Formed Type

⊢ Γ; X wf

Γ | X ⊢; wf
(WFC-EMPTY)

Γ⊢ T1 wf Γ; X ⊢ T2 wf Γ | X ⊢C wf

Γ | X ⊢C ,T1=T2 wf
(WFC-EQ)

Figure 4.15: Well-Formed Constraint

110

4.8 Polymorphic Multi-Stage Macro Calculus

4.8.3 Typing

Figures 4.16 to 4.18 show the typing rules.

Program typing is performed with T-EVAL and T-DEF as described in Section 4.5.

Term typing for T-CONST, T-VAR, T-ABS, T-APP T-QUOTE and T-SPLICE is performed as

described in Section 4.2. Typing for T-LIFT and T-UNLIFT is performed as described in

Section 4.3. Typing for T-LINK is performed as described in Section 4.5. Typing for T-MATCH is

performed as described in Section 4.6. Term typing for T-TABS and T-TAPP is performed as

described in Section 4.7. We add the Σ environment from Section 4.5 to all the typing rules.

Pattern typing for T-PAT-CONST, T-PAT-VAR, T-PAT-ABS T-PAT-APP and T-PAT-FIX is performed

as described in Section 4.4. Typing for T-PAT-TAPP, T-PAT-TABS and T-PAT-BIND is performed

as described in Section 4.7. Typing for T-PAT-LINK is performed as described in Section 4.5.

We add the Σ environment from Section 4.5 and Γ environment from Section 4.6 to all the

typing rules.

Σ |; ⊢0 t : T

Σ⊢ eval t : T
(T-EVAL)

Σ |; ⊢1 t : T1 Σ, x : T1 ⊢ p : T2

Σ⊢ def x = ⌈t⌉ in p : T2
(T-DEF)

Figure 4.16: Program Typing

111

Multi-Stage Macro Calculus

Σ |Γ⊢i c : C (T-CONST)

x :i T ∈ Γ
Σ |Γ⊢i x : T

(T-VAR)
x : T ∈Σ

Σ |Γ⊢i x : T
(T-LINK)

Σ |Γ, x :i T1 ⊢i t2 : T2

Σ |Γ⊢i λx:T1.t2 : T1→T2
(T-ABS)

Σ |Γ⊢i t1 : T1→T2 Σ |Γ⊢i t2 : T1

Σ |Γ⊢i t1 t2 : T2
(T-APP)

Σ |Γ, X ⊢i t : T

Σ |Γ⊢i ΛX .t : ∀X .T
(T-TABS)

Σ |Γ⊢i t : ∀X .T2

Σ |Γ⊢i t T1 : T2[T1/X]
(T-TAPP)

Σ |Γ⊢i+1 t : T

Σ |Γ⊢i ⌈t⌉ : ⌈T ⌉ (T-QUOTE)
Σ |Γ⊢i−1 t : ⌈T ⌉ i ≥ 1

Σ |Γ⊢i ⌊t⌋ : T
(T-SPLICE)

Σ |Γ⊢i t : C

Σ |Γ⊢i lift t : ⌈C⌉ (T-LIFT)
Σ |Γ⊢i t : T→T

Σ |Γ⊢i fix t : T
(T-FIX)

Σ |Γ⊢i t1 : ⌈C⌉ Σ |Γ⊢i t2 : C→T Σ |Γ⊢i t3 : T

Σ |Γ⊢i unlift t1 with t2 or t3 : T
(T-UNLIFT)

Σ |Γ⊢i ts : ⌈Tp⌉ Σ |Γ; X |; ⊢i+1 tp : Tp ⊣ Γt Σ |Γ; X ;Γt ⊢i tt : T Σ |Γ⊢i te : T

Σ |Γ⊢i ts match X ⌈tp⌉ then tt else te : T
(T-MATCH)

Figure 4.17: Term Typing

112

4.8 Polymorphic Multi-Stage Macro Calculus

Σ |Γ |Γp ⊢i c : C ⊣; (T-PAT-CONST)

x :i T ∈ Γp

Σ |Γ |Γp ⊢i x : T ⊣; (T-PAT-VAR)
x : T ∈Σ

Σ |Γ |Γp ⊢i x : T ⊣; (T-PAT-LINK)

Σ |Γ |Γp , x :i T1 ⊢i t : T2 ⊣ Γt

Σ |Γ |Γp ⊢i λx:T1.t : T1→T2 ⊣ Γt
(T-PAT-ABS)

Σ |Γ |Γp ⊢i t1 : T1→T2 ⊣ Γt1 Σ |Γ |Γp ⊢i t2 : T1 ⊣ Γt2

Σ |Γ |Γp ⊢i t1 t2 : T2 ⊣ Γt1 ;Γt2

(T-PAT-APP)

Σ |Γ |Γp ⊢i t : T→T ⊣ Γt

Σ |Γ |Γp ⊢i fix t : T ⊣ Γt
(T-PAT-FIX)

Σ |Γ |Γp , X ⊢i t : T ⊣ Γt

Σ |Γ |Γp ⊢i ΛX .t : ∀X .T ⊣ Γt
(T-PAT-TABS)

Σ |Γ |Γp ⊢i t : ∀X .T2 ⊣ Γt

Σ |Γ |Γp ⊢i t T1 : T2[T1/X] ⊣ Γt
(T-PAT-TAPP)

X j ∈ Γp
j

xk :i Tk ∈ Γp
k

Σ |Γ |Γp ⊢i TxUX j
j

xk :Tk
k

T : T ⊣;, x :i−1 ∀X j .
j ⌈Tk⌉→k⌈T ⌉

(T-PAT-BIND)

Figure 4.18: Pattern Typing

113

Multi-Stage Macro Calculus

4.8.4 Operational Semantics

Figures 4.19 to 4.24 show the operational semantics.

Program evaluation E-EVAL, E-MACRO and E-COMPILE is performed as described in Sec-

tion 4.5.

Term evaluation E-APP-1, E-APP-2, E-BETA, E-ABS, E-FIX, E-FIX-RED, E-QUOTE, E-SPLICE

and E-SPLICE-RED is performed as described in Section 4.2. Type abstraction evaluation

E-TAPP, E-TBETA and E-TABS is performed as described in Section 4.7. Reference to global

definition evaluation E-LINK is performed as described in Section 4.5. Quoted constant evalu-

ation E-LIFT, E-LIFT-CONST, E-UNLIFT-SCRUT, E-UNLIFT-SUCC, E-UNLIFT-FAIL, E-UNLIFT-

WITH and E-UNLIFT-OR is performed as described in Section 4.3. Pattern match evaluation

E-MATCH-SUCC, E-MATCH-FAIL, E-MATCH-SCRUT, E-MATCH-THEN and E-MATCH-ELSE is

performed as described in Section 4.4 with the additional X introduced in Section 4.6.

Pattern evaluation E-PAT is performed as described in Section 4.7, which generalizes the

semantics presented in Sections 4.4 and 4.6. Structural matching for E-PAT-CONST, E-PAT-

VAR, E-PAT-APP, E-PAT-ABS E-PAT-FIX is performed as described in Section 4.4. Structural

matching for E-PAT-LINK is performed as described in Section 4.5. Structural matching for

E-PAT-TABS and E-PAT-TAPP as performed as described in Section 4.7. Structural matching

for E-PAT-BIND is performed as described in Section 4.7, which generalizes the semantics

presented in Section 4.4. For all rules except E-PAT-LINK, constraints are collected as described

in Section 4.6. We collect empty constraints for E-PAT-LINK following the same reasoning

as E-PAT-VAR. Likewise, local type variables are collected as described in Section 4.7. We

collect empty local type variables for E-PAT-LINK following the same reasoning of E-PAT-

VAR. Unification of constraints U-EMPTY, U-EQ, U-PAT-VAR, U-ABS, U-TABS and U-QUOTE

is performed as described in Section 4.7, which generalizes the semantics introduced in

Section 4.6.

t −→0
Ω t ′

eval t |Ω−→ eval t ′ |Ω (E-EVAL)

t −→1
Ω t ′

def x = ⌈t⌉ in p |Ω−→ def x = ⌈t ′⌉ in p |Ω (E-MACRO)

⊢1 t vl

def x = ⌈t⌉ in p |Ω−→ p |Ω, x := t
(E-COMPILE)

Figure 4.19: Program Operational Semantics

114

4.8 Polymorphic Multi-Stage Macro Calculus

t1 −→i
Ω t ′1

t1 t2 −→i
Ω t ′1 t2

(E-APP-1)
⊢i t1 vl t2 −→i

Ω t ′2
t1 t2 −→i

Ω t1 t ′2
(E-APP-2)

⊢0 t2 vl

(λx:T1.t1) t2 −→0
Ω t1[t2/x]

(E-BETA)
t −→i

Ω t ′ i ≥ 1

λx:T.t −→i
Ω λx:T.t ′

(E-ABS)

x ∈ dom(Ω)

x −→0
ΩΩ(x)

(E-LINK)
t −→i

Ω t ′

fix t −→i
Ω fix t ′

(E-FIX)

fixλx:T.t −→0
Ω t [fixλx:T.t/x] (E-FIX-RED)

t −→i+1
Ω t ′

⌈t⌉ −→i
Ω ⌈t ′⌉ (E-QUOTE)

t −→i−1
Ω t ′ i ≥ 1

⌊t⌋ −→i
Ω ⌊t ′⌋ (E-SPLICE)

⊢1 t vl

⌊⌈t⌉⌋ −→1
Ω t

(E-SPLICE-RED)

t −→i
Ω t ′

t T −→i
Ω t ′ T

(E-TAPP) (ΛX .t) T −→0
Ω t [T /X] (E-TBETA)

t −→i
Ω t ′ i ≥ 1

ΛX .t −→i
Ω ΛX .t ′

(E-TABS)

t −→i
Ω t ′

lift t −→i
Ω lift t ′

(E-LIFT) lift c −→0
Ω ⌈c⌉ (E-LIFT-CONST)

Figure 4.20: Term Operational Semantics (a)

115

Multi-Stage Macro Calculus

t1 −→i
Ω t ′1

unlift t1 with t2 or t3 −→i
Ω unlift t ′1 with t2 or t3

(E-UNLIFT-SCRUT)

unlift ⌈c⌉ with t2 or t3 −→0
Ω t2 c (E-UNLIFT-SUCC)

⊢0 t1 vl t1 ̸= ⌈c⌉
unlift t1 with t2 or t3 −→0

Ω t3
(E-UNLIFT-FAIL)

⊢i t1 vl t2 −→i
Ω t ′2 i ≥ 1

unlift t1 with t2 or t3 −→i
Ω unlift t1 with t ′2 or t3

(E-UNLIFT-WITH)

⊢i t1 vl ⊢i t2 vl t3 −→i
Ω t ′3 i ≥ 1

unlift t1 with t2 or t3 −→i
Ω unlift t1 with t2 or t ′3

(E-UNLIFT-OR)

⊢1 ts vl X ⊢ ts ≡ tp ⇒σ

⌈ts⌉ match X ⌈tp⌉ then tt else te −→0
Ω σ(tt)

(E-MATCH-SUCC)

⊢1 ts vl X ⊢ ts ≡ tp ⇏σ

⌈ts⌉ match X ⌈tp⌉ then tt else te −→0
Ω te

(E-MATCH-FAIL)

ts −→i
Ω t ′s

ts match X ⌈tp⌉ then tt else te −→i
Ω t ′s match X ⌈tp⌉ then tt else te

(E-MATCH-SCRUT)

⊢0 ts vl tt −→i
Ω t ′t i ≥ 1

ts match X ⌈tp⌉ then tt else te −→i
Ω ts match X ⌈tp⌉ then t ′t else te

(E-MATCH-THEN)

⊢0 ts vl ⊢0 tt vl te −→i
Ω t ′e i ≥ 1

ts match X ⌈tp⌉ then tt else te −→i
Ω ts match X ⌈tp⌉ then tt else t ′e

(E-MATCH-ELSE)

Figure 4.21: Term Operational Semantics (b)

116

4.8 Polymorphic Multi-Stage Macro Calculus

;⊢ ts � tp ⇒σ1 |C | Xl
l

Xl
l ⊢ unify(Xi

i |C) ⇒σ2

Xi
i ⊢ ts ≡ tp ⇒σ2 ◦σ1

(E-PAT)

Figure 4.22: Pattern Semantics

Φ⊢ c�c ⇒ [] | ; | ; (E-PAT-CONST) Φ⊢ x � x ⇒ [] | ; | ; (E-PAT-LINK)

Φ⊢Φ(xp)� xp ⇒ [] | ; | ; (E-PAT-VAR)

Φ⊢ ts1 � tp1 ⇒σ1 |C1 | Xl1

l1
Φ⊢ ts2 � tp2 ⇒σ2 |C2 | Xl2

l2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ1 ◦σ2 |C1;C2 | Xl1

l1 ; Xl2

l2
(E-PAT-APP)

Φ, xp 7→xs ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢λxs :T1.ts �λxp :T2.tp ⇒σ |C ,T1=T2 | Xl
l

(E-PAT-ABS)

Φ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ ts Ts � tp Tp ⇒σ |C ,Ts=Tp | Xl
l

(E-PAT-TAPP)

Φ, Xp 7→Xs ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ΛXs .ts �ΛXp .tp ⇒σ |C [Xs/Xp] | Xl
l
, Xs

(E-PAT-TABS)

Φ⊢ ts � tp ⇒σ |C | Xl
l

Φ⊢ fix ts �fix tp ⇒σ |C | Xl
l

(E-PAT-FIX)

FV (ts)∩ range(Φ) ⊆Φ(X j)
j
;Φ(xk)

k
t ′s =ΛX ′

j

j
.

(
λx ′

k :⌈Tk⌉
k

. ⌈ts⌉[⌊x ′
k⌋/Φ(xk)]

k
)

[X ′
j /Φ(X j)]

j

Φ⊢ ts �TxUX j
j

xk :Tk
k

T ⇒ [t ′s /x] | {type(ts)=T
} | ;

(E-PAT-BIND)

Figure 4.23: Pattern Structural Matching

117

Multi-Stage Macro Calculus

Xl
l ⊢ unify(;|;) ⇒ [] (U-EMPTY)

Xl
l ⊢ unify(Xi

i |C) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,T=T) ⇒σ
(U-EQ)

Xl
l ⊢ unify(Xi

i
; X j

j |C [T /X]) ⇒σ ftv(T)∩Xl
l =;

Xl
l ⊢ unify(Xi

i
, X , X j

j |C ,T=X) ⇒ [T /X]◦σ
(U-PAT-VAR)

Xl
l ⊢ unify(Xi

i |C ,Ts1=Tp1 ,Ts2=Tp2) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,Ts1→Ts2=Tp1→Tp2) ⇒σ
(U-ABS)

Xl
l
, X1 ⊢ unify(Xi

i |C ,T1=(T2[X1/X2])) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,∀X1.T1=∀X2.T2) ⇒σ
(U-TABS)

Xl
l ⊢ unify(Xi

i |C ,Ts=Tp) ⇒σ

Xl
l ⊢ unify(Xi

i |C ,⌈Ts⌉=⌈Tp⌉) ⇒σ
(U-QUOTE)

Figure 4.24: Pattern Type Unification

118

4.8 Polymorphic Multi-Stage Macro Calculus

4.8.5 Values

Figures 4.25 and 4.26 show the value definitions.

V-EVAL is the only value for programs p as described in Section 4.5. Terms can be values

for V-CONST, V-VAR, V-ABS-0, V-ABS, V-APP, V-QUOTE, V-SPLICE and V-FIX as described

in Section 4.2. Term values V-LIFT and V-UNLIFT are described in Section 4.3. Term values

V-TABS-0, V-TABS and V-TAPP are described in Section 4.7. The term value for V-MATCH

follows the description in Section 4.4 but uses the extra X added in Section 4.6.

⊢0 t vl

⊢ eval t vl
(V-EVAL)

Figure 4.25: Program Values

⊢i c vl (V-CONST)
i ≥ 1

⊢i x vl
(V-VAR)

⊢0 λx:T.t vl (V-ABS-0)
⊢i t vl i ≥ 1

⊢i λx:T.t vl
(V-ABS)

⊢0 ΛX .t vl (V-TABS-0)
⊢i t vl i ≥ 1

⊢i ΛX .t vl
(V-TABS)

⊢i t1 vl ⊢i t2 vl i ≥ 1

⊢i t1 t2 vl
(V-APP)

⊢i t vl i ≥ 1

⊢i t T vl
(V-TAPP)

⊢i+1 t vl

⊢i ⌈t⌉ vl
(V-QUOTE)

⊢i−1 t vl i ≥ 2

⊢i ⌊t⌋ vl
(V-SPLICE)

⊢i t vl i ≥ 1

⊢i lift t vl
(V-LIFT)

⊢i t vl i ≥ 1

⊢i fix t vl
(V-FIX)

⊢i t1 vl ⊢i t2 vl ⊢i t3 vl i ≥ 1

⊢i unlift t1 with t2 or t3 vl
(V-UNLIFT)

⊢i ts vl ⊢i tt vl ⊢i te vl i ≥ 1

⊢i ts match X ⌈tp⌉ then tt else te vl
(V-MATCH)

Figure 4.26: Term Values

119

Multi-Stage Macro Calculus

4.9 Concrete Syntax in Scala

The static checks as performed by the type-checker closely follow the rules of the calculus

as described in this chapter. The choice of syntax for quotes '{t} and for splices ${t} fol-

lows the standard syntax rules of Scala’s string interpolators s"hello $world" or s"hello
${world}" where world is spliced in the string. To lift or unlift values, we use the Expr(x)
syntax which corresponds to Expr.apply in expression position and to Expr.unapply in

pattern position. Global library function definitions such as

def x = ⌈ f 3⌉ in

def y = ⌈λa:N.a⌉ in

def z = ⌈fixλrec:N.rec⌉ in . . .

can be expressed in Scala as

def x: Int = f(3)
def y: Int => Int = (a: Int) => a
def z: Int = ...

To support quoted pattern matching, we extend the pattern syntax to allow the pattern '{pat}.

For example, the expression

s match ⌈ f TxUN⌉ then t else e

can be expressed in Scala as

s match
case '{ f($x: Int) } => t
case _ => e

where f is a global library reference and $x represents a locally closed bind pattern. Free

variables in bind patterns, as in TxUy :N
N , can be specified as $x(y):Int. The following term in

System F▲ that binds the body of a lambda to x and might have y as a free variable

s match ⌈λy :N.TxUy :N
N ⌉ then t else e

can be expressed in Scala as

s match
case '{ (y: Int) => $x(y):Int } => t
case _ => e

120

4.10 Discussion and Related Work

Binding an applied function in a pattern

s match ⌈T f UN→N 3⌉ then t else e

can be expressed in Scala as

s match
case '{ ($f: Int=>Int)(3) } => t
case _ => e

Finally, patterns with type variables

s match X ⌈T f UX→N T f UX ⌉ then t else e

can be expressed in Scala as

s match
case '{ ($f: x=>Int)($a) } => t
case _ => e

// or explicitly as

s match
case '{ type x; ($f: `x`=>Int).apply($a: `x`) } => t
case _ => e

4.10 Discussion and Related Work

LISP LISP has a very simple way to treat programs as data based on the uniform representation

of programs as lists. Quotation turns fragments of unevaluated code into data: '42 is a

number, 'a is a symbol, '(+ 3 4) is a list of the quoted constituents. Quasiquotation—with

a backquote—lets us escape inside a program fragment (for example, of a whole list) with

a comma operator that can unquote and evaluate a part of the quasiquoted expression e.g.,

`(1 2 ,(+ 3 4)).

Racket Racket has a sophisticated macro system. Contrary to Scala, Racket is dynamically

typed. Typed Racket will type-check all expressions at the run-time phase of the given module

[84]. Despite these fundamental differences, it is worth noting that Racket supports pattern

matching with quasiquotes (quasipatterns). Interestingly, Racket goes one step further: much

like the quasiquote expression form, unquote and unquote-splicing escape back to normal

patterns, which is something that we do not support.

121

Multi-Stage Macro Calculus

Multi-stage programming Multi-stage programming transfers the concepts of quotes, quasi-

quotes, unquotes and staged evaluation [33; 20] in a statically scoped, modularly type-safe

environment [67]. Multi-stage programming, popularised by MetaML [82] and MetaOCaml [13;

40; 39], made generative programming easier [17], effectively narrowing the gap of writing

complex solutions of code manipulation such as code optimizations [86] and DSL imple-

mentations [18; 83]. Fred McBride [47] highlights the need to bridge the gap of expressing

computer-aided manipulation of symbols. Arguing that it is important to lower the cognitive

barrier of reading and writing algebraic manipulators such as algebraic simplificators and inte-

grators, he develops the first pattern matching facility for LISP; a form that provides a natural

description to increase the user’s problem solving potential. MacroML [26] used the quotation

system of MetaML to define macros. The two fundamental quasiquotation operators in Scala 3

were inspired by MetaML/MacroML and BER MetaOCaml.

Template Haskell Haskell was introduced to metaprogramming using quasiquotes with

Template Haskell [66]. Neither MetaOCaml, MetaML, or Template Haskell support pattern

matching with quasiquotes. A formalization of this system was proposed for Typed Template

Haskell [87], which solves some previously unsound uses of type classes. It elaborates the

program into a version that has staged versions of type classes. This elaborated form resembles

the explicit handling of type classes that Scala uses. This implies that, in Scala, there is an

additional syntactic overhead to encode the same sound type classes. Additionally, [87]

introduces the concept of splice environments to handle staged captured variables in the

splice lazily. Given that Scala is not pure, we have to performs splice normalization (from

Section 3.2.4), capturing the same environments but evaluating the splices eagerly.

Squid Squid [58; 57], a metaprogramming library for Scala, advances the state of the art of

staging systems and puts quasiquotes at the center of user-defined optimizations. The user

can pattern match over existing code and implement retroactive optimizations modularly. To

the best of our knowledge, in an earlier version of Squid, Parreaux et al. [57] were the first to

represent locally closed terms as HOAS functions. However, they later revisited the approach

to instead track free variables in the type. While expressive, this approach requires advanced

typing features to encode open expressions such as path-dependent types, singleton types,

and intersection types.

Mœbius Mœbius [31] is a run-time polymorphic multi-stage programming calculus that

supports code generation and analysis. Like our calculus, it supports System F-like polymor-

phism, HOAS patterns, and type variables in the patterns; but unlike our calculus, it uses open

expressions and tracks free variables explicitly.

Modal logic Our calculus is closely related to λ◦ [19] and λ2 [20]. These calculi capture the

temporal and modal logic essence of multi-stage programming. They support code generation

but not code analysis.

122

4.11 Future Work

4.11 Future Work

Mechanization While the “pen and paper” proof in Appendix A shows with a good degree

of confidence that the calculus is sound, it is always better to have a mechanized proof to

double-check the correctness of the calculus.

Scope extrusion The calculus assumes the lack of side channels, for which we use dynamic

scope extrusion detection. It is worth formalizing this mechanism and precisely describe how

it can be implemented at run-time or expressed as a static check.

Subtyping The calculus could be extended with subtyping. It should be fairly straightforward

to extend the core calculus with subtyping, with a covariant T for ⌈T ⌉. What is more challeng-

ing is the extension of pattern matching operations, where the patterns should match if the

scrutinees are subtypes of the patterns. Type constraints would need to be extended to type

bounds constraints.

Higher-kinded types Scala has higher-kinded types and therefore it would be interesting to

formalize the interactions of these types with staging. Having higher-kinded types would also

allow generalizing quoted pattern type variables to be higher-kinded.

Meta-metaprogramming Another way to extend the system would be to investigate the

possibility to also allow matching on programs that use quotes, splices, and matches them-

selves. Adding pattern matching on quotes and splices seems to involve a more general

notion of staged eta-expansion. In order to add support for matching on the match itself,

we would require some form of meta-patterns. While both extensions are interesting, we

expect the metatheory to be significantly more involved, and thus neither of the two features

is implemented in Scala 3.

4.12 Conclusion

We presented the multi-stage macro calculus λ▲ for well typed and hygienic multi-stage

metaprogramming, which allows both generative and analytical macros. We introduced

the polymorphic multi-stage calculus F▲ extensions to add two kinds of polymorphism. We

proved the soundness of the full polymorphic multi-stage macro calculus and implemented it

in Scala 3.

123

Part IIITyped AST Reflection

125

5 Virtual ADTs
for Portable Metaprogramming

This chapter contains a published paper authored by Stucki, Brachthäuser, and Odersky

[74]. Section on “use cases” was removed to avoid duplications.

Scala 3 introduced TASTy as a new high-level intermediate representation providing a porta-

bility layer between compiler versions [51; 52]. The TASTy format defines an abstract repre-

sentation of fully elaborated Scala programs. Instead of directly producing JVM bytecode, the

compiler first generates binaries containing trees in TASTy format. These high-level binaries

enable portability and can be used in future compiler versions to generate bytecode, generate

documentation, support IDEs, analyze the program, or transform the program.

Given the promised stability of the TASTy format, it also provides the perfect basis to support

semantically driven metaprogramming. However, this format exposes low-level encoding

details that are not relevant to metaprogrammers. A high-level abstraction over this inter-

mediate representation could provide the same portability guarantees while encapsulating

representation details.

Many use cases of metaprogramming require directly manipulating program trees (or abstract

syntax trees – ASTs) represented with algebraic data types (ADT). It appears natural to define

interfaces for those trees, which the compiler would then implement. Such an implementation

of metaprogramming was the underlying design of Scala 2’s experimental macros. However, it

also directly couples the metaprogramming interface with the internal representation. This

implies that the compiler internal representations cannot freely evolve without breaking the

metaprogramming interface.

127

Chapter 5. Virtual ADTs for Portable Metaprogramming

The ADT virtualization problem can be described as being able to virtualize (and thus decou-

ple) the underlying representation of an ADT, while maintaining the exact same user interface

as a normal ADT. In particular, a solution to the ADT virtualization problem should satisfy the

following requirements:

• Type Hierarchies: The interface must be able to represent hierarchical and mutually

recursive families of types.

• Abstraction: The interface must be directly implementable by any isomorphic runtime

representation.

• Ergonomics: The interface must: (1) provide an object-oriented API with (static) methods

and fields, (2) allow instances to be type-tested at run-time, and (3) support deconstruct-

ing instances with pattern matching.

No previous solution that we are aware of satisfies the above constraints. In this chapter, we

introduce a set of implementation techniques that allows us to encode Virtual ADTs in Scala 3.

We evaluated the implementation techniques in the implementation of the Scala 3 compiler

to decouple the compiler internal representation of ASTs from the metaprogramming API.

While our design of Virtual ADTs arose in the context of the Scala 3 metaprogramming API,

the technique can be applied to any other ADT that requires decoupling the interface from its

implementation.

5.1 Scaling APIs with Virtual ADTs

Often, library APIs not only consist of methods but also of types. Especially in object-oriented

(OO) programming languages: interfaces and classes are used as the primary decomposition,

and they thus occur very naturally to design library APIs. Depending on the size and purpose

of the API, the involved types range from single individual types to mutually recursive families

of types to full ADTs.

As an example, the Scala 3 compiler uses a variant of the following (simplified) ADT to model

fully elaborated ASTs, types, and constants:

sealed trait Tree
sealed trait TermTree extends Tree
case class Literal(const: Constant) extends TermTree
case class WhileDo(cond: Tree, body: Tree) extends TermTree
// ...
sealed trait Type
case class TypeRef(prefix: Type, name: String) extends Type
case class ConstantType(const: Constant) extends Type
// ...
case class Constant(value: Any, tpe: Type)

128

5.1 Scaling APIs with Virtual ADTs

The ADT represents a family of types, grouped into Tree, Type, and Constant. The ADT is

mutually recursive, since ConstantType mentions Constant, and Constant mentions Type
in turn. Finally, the ADT is structured hierarchically: types can be leaf types, composite types,

abstract types, or a combination thereof. The hierarchical structure immediately gives rise to

subtyping relationships.

Sometimes it is desirable to decouple the actual implementation of such types from their

declaration to prevent dependencies of users on concrete implementation details [55]. Ab-

straction can be motivated by the need to later being able to choose another underlying

runtime representation, or to offer a stable interface while internally changing the structure of

the types. As illustrated in the above example, in OO languages, algebraic data types can be

mutually recursive families of types, with arbitrary intermediate hierarchies modeled in terms

of interfaces and subtyping. This significantly complicates efforts to decouple the declaration

of an ADT from its implementation.

In the case of the above compiler AST, the declaration of the ADT is directly coupled to its

implementation. It is not possible to choose another runtime representation, or modify

the type hierarchies internally, without breaking existing programs that are consuming or

producing such trees. While for compiler internals this form of encapsulation might not be

necessary, in other use cases it is. Such a use case is the metaprogramming reflection API of

Scala 3.

In the rest of this section, we identify a set of features provided by Scala 3, which allows us to

express Virtual ADTs, satisfying our above requirements, while maintaining the same interface

for users of the ADT. In particular, we use:

• Abstract types to model the type hierarchy;

• Type classes to recover runtime type tests in patterns;

• Extension methods to add methods on abstract types;

• Abstract objects to encode companion objects;

• Unapply methods to support pattern matching;

• Singleton types to encode case objects.

In this section, we describe in detail how all of these language features cooperate to achieve the

desired decoupling, while providing maximal convenience to users of the API. The complete

encoding of Virtual ADTs might seem complicated. However, designers can individually

choose from the following subsections which individual aspect to support in their API.

129

Chapter 5. Virtual ADTs for Portable Metaprogramming

Running Example: Modeling ASTs

As could be seen in the previous example, in the Scala, language ADTs can be expressed using

a combination of sealed traits (which in essence can be understood as interfaces) and case

classes (which are immutable classes that come equipped with support for pattern matching

and comparison). To describe our solution of virtualizing ADTs, we use another, much simpler,

running example: Peano numbers1.

sealed trait Natural:
def plus(other: Natural): Natural =

this match
case Successor(pred) => pred.plus(Successor(other))
case Zero => other

case object Zero extends Natural
case class Successor(pred: Natural) extends Natural

This example defines a type Natural (for natural numbers) with a single method for adding

two numbers. Natural numbers are constructed using the dedicated object Zero and the

constructor Successor, which takes the predecessor as its argument. Case classes also provide

the necessary means to perform pattern matching as illustrated in the implementation of

plus.

5.1.1 Abstract Types: Separating Interface from Implementation

We intend to provide a programming interface very similar to the one defined above, without

superimposing a concrete implementation for any of the types. From the perspective of an API

user, the interface should expose the same subtyping relationships and should have the same

ergonomics for constructing instances, pattern matching on instances, and calling methods

(like addition).

The first step is to remove the dependency on any particular runtime class by making those

types abstract.

trait Peano:
type Nat
type O <: Nat
type Succ <: Nat

class Impl extends Peano:
type Nat = Natural
type O = Zero.type
type Succ = Successor

1It should be pointed out that this (quite obviously) is not how a library for numerical computation would
represent numbers.

130

5.1 Scaling APIs with Virtual ADTs

With this representation we are allowed to choose any isomorphic representation we want for

Nat, O and Succ as long as the subtyping relationship holds. We could implement the interface

using the concrete Natural, Zero and Successor implementations (shown in class Impl);

or even use Int2, BigInt, or Any for all three types.

Path-Dependent Interface

Users of the Virtual ADT will always use the abstract Peano interface to access the types, as

illustrated below. Using a path on a parameter, or using the cake pattern [29].

def user1(peano: Peano): T =
import peano.*

...

trait User2:
val peano: Peano
import peano.*
...

The Nat type can only be used as a path-dependent type (such as peano.Nat). This implies

that a p1.Nat and a p2.Nat only have the same types if their paths p1 and p2 are the same.

This ensures that we do not accidentally mix instances of p1.Nat in p2.Nat, which might

have different runtime representations.

Contextual Abstraction

To hide the verbosity of passing the Peano module, we can mark it as a contextual parameter.

Defining the parameter with using will make it implicitly available in the body of the method.

At call site the compiler will search for an implicitly available instance of type Peano.

def one(using p: Peano): p.Succ =
p.Succ(p.O)

def two(using p: Peano): p.Succ =
p.Succ(one)

To provide the instance of Peano we can use a given definition.

given Peano = ...

one.plus(two)

Contextual abstractions are similar to implicits from Scala 2. They provide greater flexibility,

ease of use, and enable new abstractions such as contextual function types [53].

2Primitive type specialization is a non-goal. Primitive types will be boxed.

131

Chapter 5. Virtual ADTs for Portable Metaprogramming

5.1.2 TypeTest: Supporting Run-Time Type Tests

By using abstract types, instead of modeling the ADT using traits or classes, we lose the ability

to perform runtime type tests. Type tests are performed on runtime classes. However, abstract

types do not introduce those classes. This implies that the following code would not work out

of the box.

nat match // nat: Nat
case succ: Succ => ...

To be able to perform this runtime type testing without explicitly using an extractor, Scala 3

added the built-in type class TypeTest.

trait TypeTest[-S, T]:
def unapply(x: S): Option[T & x.type]

The implementation of the method unapply is expected to check whether the scrutinee x of

type S is also of type T, in which case it returns the argument (hence the intersection with the

singleton type x.type), refined to T. Given an instance of TypeTest[Nat, Succ], we can

thus check at runtime if an instance of a Nat is an instance of a Succ.

For Succ, we can require such type test instances as follows:

trait Peano:
...
given SuccTypeTest: TypeTest[Nat, Succ]

By marking it as given, the type test instances will be implicitly brought into scope where a

pattern requires one.

nat match // nat: Nat
case succ: Succ => ...
// is transformed by the compiler into
case SuccTypeTest(succ) => ... // succ: Succ

Below, we implement it by using the runtime class test for Successor. If the test is successful,

we return an instance of Some[Successor & x.type], otherwise we return None.

class Impl extends Peano:
...
object SuccTypeTest extends TypeTest[Nat, Succ]:

def unapply(x: Nat): Option[Succ & x.type] =
x match

case s: (Successor & x.type) => Some(s)
case _ => None

132

5.1 Scaling APIs with Virtual ADTs

5.1.3 Extension Methods: Restoring the Interface

By using a type alias instead of a trait or class, we also lose the ability to define methods

directly on those instances. To add methods to our abstract types, we can use extension

methods.

trait Peano:
...
extension (n: Nat) def plus(m: Nat): Nat

This way, we can call the plus method on instances of Nat.

def example1(p: Peano)(nat: p.Nat): p.Nat =
nat.plus(nat) // `plus` called as a method

def example2(p: Peano)(nat: p.Nat): p.Nat =
p.plus(nat)(nat) // `plus` called explicitly

Placing the extension methods directly in the Peano trait works but has limitations. Type

erasure can easily cause conflicts on methods with the same name defined on different types.

For example, if plus is defined in Nat and Succ, they will both be erased to:

// JVM bytecode signature
public Object plus(Object n, Object m);

To prevent this problem, we group all extension methods of a type in one trait (NatMethods
below) and make this trait implicitly available:

trait Peano:
...
given NatMethods: NatMethods
trait NatMethods:

extension (n: Nat) def plus(m: Nat): Nat

This encoding will ensure that there will not be conflicts between methods of different types.

Implementing the NatMethods interface requires an object that defines the extension meth-

ods.

class Impl extends Peano:
...
object NatMethods extends NatMethods:

extension (n: Nat) def plus(m: Nat): Nat = ...

133

Chapter 5. Virtual ADTs for Portable Metaprogramming

Extensions can also be defined collectively to avoid the overhead of declaring the receiver (e.g.,

n: Nat) several times.

extension (n: Nat)
def plus(m: Nat): Nat
def times(m: Nat): Nat

5.1.4 Abstract Objects: Encoding Companions

When we define a case class in Scala, we automatically get a companion object with an apply
factory method that serves as constructor for this type. We can encode the same functionality

using an abstract val that will play the role of the companion object.

trait Peano:
...
// the encoded companion object
val Succ: SuccCompanion
// the API of companion object
trait SuccCompanion:

def apply(nat: Nat): Succ

SuccCompanion defines all the methods that are available in the companion while val Succ
provides the reference to the implementation of the companion. This encoding provides an

abstract companion object that can then be implemented as a regular object.

class Impl extends Peano:
...
object Succ extends SuccCompanion:

def apply(nat: Nat): Succ = Successor(nat)

To ensure that SuccCompanion is only used to implement val Succ, we can additionally

include a this:Succ self type in the interface.

5.1.5 Unapply Methods: Extractors

The main purpose of case classes is to be used in pattern matching.

nat match // nat: Nat
case succ @ Succ(pred) => // succ: Succ, pred: Nat

To allow pattern matching on Virtual ADTs, we also add an unapply method to our abstract

companion object. Assuming that we have implemented type tests (Section 5.1.2), we can

134

5.1 Scaling APIs with Virtual ADTs

delegate type testing and only decompose the type-refined result in the unapply.

trait SuccCompanion:
...
// Can only deconstruct values of type Succ.
// This always succeeds and returns Some of the predecessor.
def unapply(x: Succ): Some[Nat]

For example, to match a value of type Nat against Succ, we first perform a type test to see if

the scrutinee is of type Succ, and only then use the SuccCompanion.unapply method as an

extractor to decompose the ADT. As the unapply method returns Some[Nat], this part of the

match is statically known to succeed and the value of the predecessor is directly extracted

from the Some instance. We can apply the same technique for extractors of any arity: true is

used for arity 0, Some is used for arity 1 and tuples (T1,...,Tn) are used for arity n > 1.

5.1.6 Singletons: Case Objects

In the case of O, we have two possible encodings. The first is to use the same encoding as

shown for Succ. This implies that the object will be created by calling the O() constructor.

Similarly, we would use the O() extractor in pattern matches. As an alternative, assuming that

all implementations of the interface will use a singleton value for O, we can also encode this in

the interface.

trait Peano:
...
val O: Nat

Like with case objects, with this definition we can simply use O to refer to this singleton value

or pattern match on it. Its singleton type will be O.type just like Zero.type.

class Impl extends Peano:
...
val O: Nat = Zero

5.1.7 Summary

To avoid coupling to one implementation, we defined the interface of an ADT with abstract

types. We added methods to the abstract types by using extension methods, showed how to

express companion objects as abstract objects, recovered pattern matching using unapply,

and showed how to enable runtime type tests. The complete implementation of Peano can be

in Figures 5.1 to 5.3.

135

Chapter 5. Virtual ADTs for Portable Metaprogramming

trait Peano:
type Nat
given NatMethods: NatMethods
trait NatMethods:

extension (nat: Nat) def plus(other: Nat): Nat

val O: Nat

type Succ <: Nat
given SuccTypeTest: TypeTest[Nat, Succ]
val Succ: SuccCompanion
trait SuccCompanion:

this: Succ.type =>
def apply(nat: Nat): Succ
def unapply(x: Succ): Some[Nat]

Figure 5.1: Virtual ADT Interface for Peano Numbers

class Impl extends Peano:
type Nat = Natural
object NatMethods extends NatMethods:

extension (nat: Nat) def plus(other: Nat): Nat =
nat match

case Successor(pred) => pred.plus(Successor(other))
case Zero => other

val O: Nat = Zero

type Succ = Successor
object SuccTypeTest extends TypeTest[Nat, Succ]:

def unapply(x: Nat): Option[Succ & x.type] =
x match

case s: (Successor & x.type) => Some(s)
case _ => None

object Succ extends SuccCompanion:
def apply(nat: Nat): Succ =

Successor(nat)
def unapply(succ: Succ): Some[Nat] =

Some(succ.pred)

Figure 5.2: Virtual ADT Implementation with Case Classes

136

5.2 Discussion

5.2 Discussion

In this section, we discuss the extensibility scenarios enabled by the abstraction of Virtual

ADTs and report limitations.

5.2.1 Changing the Internal Representation

The motivation behind Virtual ADTs is to modify the internal representation while maintaining

a stable interface with users of the API. The virtual ADT can thus be seen as a view [25] on the

underlying representation.

Virtual ADTs enable refactorings In general, the underlying representation can always be re-

placed with another one that is isomorphic. Refactorings that fall into this category range from

simple renamings, or moving of information from one class to another, to structural changes

like switching from a sum-of-products representation to a product-of-sums representation.

In order to support the interface provided by Virtual ADTs, and in particular to implement

TypeTest, it is important that different variants of the ADT can be distinguished at runtime

(either by runtime classes, custom tags, values, etc.).

Virtual ADTs hide implementation details Obviously, not all fields or methods on the under-

lying representation need to be exposed to the user. Furthermore, composite subtrees in the

intermediate representation can be represented as a single node in the user API.

Virtual ADTs provide fine-grained access As mentioned earlier, the implementation of a

Virtual ADT does not need to necessarily mirror the tree structure of the interface. This implies

that the implementor of a Virtual ADT can choose a more efficient representation, while

providing the tree interface to the API user. For example, the implementation can group

multiple different nodes into a single tagged node, or even flatten whole trees into a flat

uniform representation. As an example, we show how to instantiate the Peano Virtual ADT

with BigInt as underlying implementation, making it possible to represent large naturals

compactly.

This is an extreme case where the hierarchal structure of the Virtual ADT is collapsed into

a single flat domain. Interestingly, to implement type tests (in SuccTypeTest) we cannot

compare runtime classes anymore, but need to analyze the underlying integer value.

5.2.2 Changing the Interface

Even though the Virtual ADTs are designed to abstract over changes in the underlying im-

plementation, they are also well-suited for adding functionality to the user-facing API. In

particular, adding new types, objects, or methods are backward binary compatible changes.

This allows API designers to evolve the interface definition without breaking existing code.

137

Chapter 5. Virtual ADTs for Portable Metaprogramming

class BigIntImpl extends Peano:
type Nat = BigInt
object NatMethods extends NatMethods:

extension (nat: Nat) def plus(other: Nat): Nat = nat + other

val O: BigInt = 0

type Succ = BigInt
object SuccTypeTest extends TypeTest[Nat, Succ]:

def unapply(nat: Nat): Option[Succ & nat.type] =
if nat > 0 then Some(nat) else None

object Succ extends SuccCompanion:
def apply(nat: Nat): Succ = nat + 1
def unapply(succ: Succ): Some[Nat] = Some(succ - 1)

Figure 5.3: Virtual ADT Implementation with BigInt

5.2.3 Monomorphism

If we assume that users of the Virtual ADT always use a single implementation at a time, then

all the calls to methods of this interface will be effectively monomorphic. This implies that the

JVM JIT compiler will be able to devirtualize and possibly inline those method invocations

[30; 59; 77; 68].

5.2.4 Limitations

Unfortunately, Scala defines some methods on Any, which is the top of Scala’s subtyping lattice.

These methods can be called on Nat directly, potentially breaking encapsulation. In particular,

this implies that calls to equals, hashCode, ..., or toString will be directly performed on

the underlying representation. Currently, there is no way to override the behavior of those

methods and therefore the implementation of the Virtual ADT needs to work under those con-

straints. For example, the toString method might not print the appropriate ADT structure.

To work around this limitation, we can add a show method to the API that displays the desired

format. Furthermore, methods like equals and hashCode come with contracts that need to

be satisfied by the chosen underlying representation. Finally, API designers should document

additional contracts on the declaration of the Virtual ADT, such as the use of structural equality

for comparison of ADT nodes.

138

5.3 Related Work

5.3 Related Work

Virtual classes and family polymorphism Abstracting over and refining families of types is a

long-studied subject on its own [22; 23].

Ernst et al. [23] present the vc calculus of Virtual Classes, where classes are members of other

classes and can be overridden and specialized, much like methods in other languages. Since

classes are virtual and can vary at runtime, depending on the concrete object instance, it

is important to distinguish between classes nested in different instances. The vc calculus

supports family polymorphism [22]: member classes nested within one class represent a family

of types that can be refined in parallel. Every instance of such a grouping class gives rise to its

own family of types that should not be confused with those of other instances.

With path-dependent object types at its core [4; 5; 50], Scala is equipped with a very similar

mechanism, allowing to distinguish between types that have different paths. While very

similar at the surface, the underlying motivation behind Virtual ADTs differs greatly from

that of virtual classes. Virtual classes are designed with extensibility in mind: they allow a

step-wise refinement of nested types in subclasses. They thus do not satisfy our requirement

of abstraction. In contrast, Virtual ADTs are designed with modularity in mind: to improve

maintainability, implementations are fully decoupled from the interface description of the

ADT. In particular, virtual classes only allow refining classes, that is, subclassing member

classes and adding new methods, while refinements are always bound to the original class

structure. Virtual ADTs avoid the bound with the original class structure as illustrated by

instantiating Nat with BigInt.

Scala 2 experimental macros [12; 11] As a direct descendant of Scala 2 macros, the Scala 3

reflection API uses a similar encoding but provides fundamental changes. The Scala 2 version

used ClassTag for type tests, which was later shown to be unsound when used in this kind

of API definition [71]. Instead of using extension methods (which would have been costly in

Scala 2), the abstract type is set to be a subtype of the trait defining the methods. This forces

the compiler to use this exact representation. Abstract companion objects are defined in a

similar way, though we added an extra self type constraint. Attempts to modify the interface

to handle two compilers were designed [46] but were replaced with the TASTy-based solution.

Type testing Scala 2 introduced ClassTag to generically create array. It was later retrofitted

as a way to perform generic type tests, but this addition was later shown to be unsound.

In particular, it was unsound for this use case, a limitation that was described in depth in

[71]. Hence, in Scala 3 we introduced TypeTest to be able to provide sound type testing and

properly support Virtual ADTs.

139

Chapter 5. Virtual ADTs for Portable Metaprogramming

5.4 Future Work

Abstract object Instead of encoding the abstract object explicitly, Scala could introduce the

abstract object concept natively. An abstract object would define an object that may

have abstract members. Then on the implementation side, it would be implemented with a

concrete object.

trait Peano:
...
abstract object Succ:

def apply(nat: Nat): Succ
def unapply(x: Succ): Some[Nat]

Virtual ADTs If this pattern is used frequently it would be helpful if the language provided the

abstraction natively. We could write code like in the example below and get all the encoding

generated automatically.

trait Peano:
virtual trait Nat:

def plus(other: Nat): Nat
virtual case object O extends Nat
virtual case class Succ(pred: Nat) extends Nat

5.5 Conclusion

We showed how to encode a Virtual ADT in Scala 3 and how this encoding provides a way to

decouple the interface from the implementation. We showed how Virtual ADTs were used to

create the metaprogramming interface.

140

6 A TASTy Reflection Interface

Scala 3 introduced a new high-level intermediate representation that provides a portability

layer between compiler versions. The TASTy format is the perfect basis to support semantically

driven metaprogramming. A high-level abstraction over this intermediate representation

provides the same portability guarantees as the TASTy format while encapsulating low-level

representation details.

Many use cases of metaprogramming require directly manipulating program trees (or abstract

syntax trees – ASTs) represented with algebraic data types (ADT). We use Virtual ADTs to

abstract over the TASTy tree implementation of the compiler as discussed in Chapter 5.

In this chapter, we discuss the details of the TASTy format in Section 6.1. We provide an

overview of all the reflection APIs in Section 6.2. We then discuss the interactions between the

reflection API and multi-stage programming in Section 6.3. We show other applications of the

reflection API in Sections 6.4 to 6.6. Finally, we discuss related and future work and conclude

in Sections 6.7 to 6.9.

6.1 TASTy Binaries

The TASTy format is the compact, lazy, extensible and precise typed abstract syntax tree seri-

alization format of Scala 3 [51; 52]. In the compiler, we use it for separate and incremental

compilation, documentation generation, and code decompilation. We also use it for language

servers in IDEs, and the metaprogramming API for quoted code.

TASTy is portable by design: it allows ASTs generated by one compiler to be accessed from any

future compiler version. We leverage TASTy in some way or another for all metaprogramming

features. TASTy contains the fully elaborated program ASTs, which is the program’s most com-

plete and detailed semantic representation. It also contains the documentation of definitions

and positions of ASTs in the source. The binary representation is too low-level for direct usage.

Instead, metaprogramming features use the compiler ASTs which map to TASTy.

143

A TASTy Reflection

6.2 Overview of the Reflection API

The reflection API exposes a view of the compiler’s TASTy tree representation. This view mostly

follows the encoding of the TASTy format but also adds some extra functionality that the

compiler can provide.

Trees The API defines the Tree type hierarchy to represent the typed ASTs. A notable sub-

hierarchy rooted in the Definition type contains: ClassDef for class definitions, TypeDef
for type definitions, DefDef for method definitions, and ValDef for val, var and lazy val
definitions. Term is a sub-hierarchy that contains all term expressions such as Literal, New,

Apply, If, Match, and many more. The TypeTree sub-hierarchy represents types written in

the source. We also have the PackageClause type to define the package declarations of the

source. Finally, a Tree can be pattern-related such as CaseDef, Unapply, Bind, and Literal
(both a term and a pattern).

Trees are encoded using a Virtual ADT and can therefore be used as patterns and reconstructed

from their parts as if they were case classes. Trees define methods to extract their parts and

other non-structural information such as positions. We can test for the type of a tree using

pattern matching.

The reflection interface also provides a few utility classes on trees. TreeMap gives a way to

transform trees. TreeTraverser provides a way to traverse trees without transforming them.

TreeAccumulator gives a way to accumulate information from trees.

Types Our API defines the TypeRepr type hierarchy to represent types. Every Term and

TypeTree has a type accessible with the tpe method. Types can be references to named

types such as TypeRef and TermRef, literal singleton types such as ConstantType, type

applications AppliedType, type refinements Refinement, union and intersection types

OrType/AndType, among others. The sub-hierarchy LambdaType provides types for method

and type lambdas definitions.

Constant Our API defines the Constant types to represent literal constants. These includes

all primitive types, String, Unit, null and classOf[T].

Symbol Symbols are unique identifiers for definitions. Each Definition tree defines a

symbol that can be copied to a new version of the same definition during transformations.

Terms such as Select and Ident contain references to the symbol of the definition to which

they refer.

144

6.2 Overview of the Reflection API

Symbols also contain extra information about definitions, such as owners, signatures, doc-

umentation, flags, positions, trees, and annotations. For methods and value definitions,

the symbol gives information about the overriding relationships. A class symbol contains

information about the parents and members (declared or inherited).

Flags Flags provide extra information about a symbol, such as modifiers and internal encoding

details. The Flags API mimics a bitwise flag encoding used in the compiler. The show method

exposes a human-readable representation of flags.

Signatures The Signature of a method symbol provides its bytecode signature.

Standard definitions The defn object provides fast accessors to many symbols defined in the

language or standard library.

Implicits It is possible to programmatically trigger an implicit search using the Implicits
module. It will return a Term if the search succeeds or give the reason for the failure (such as

NoMatchingImplicits, AmbiguousImplicits, or DivergingImplicit).

Position Source Positions are ranges with start and end offset in the source file. Our API

provides the line number and column of the position and the source code at that position.

Every Tree has a pos method that returns the tree’s position. Newly created trees get the

position of the code that generated those trees. We also use positions for error reporting. In

this case, it is often helpful to create a custom (more precise) position.

SourceFile SourceFile provides a simple abstraction over a physical or virtual source file.

Since files might be virtual, for example in the REPL, we might not always have access to a file

path. It also provides a way to access the source code when available.

Reporting The report module gives a way to report errors, warnings, and other information.

Printers The Printer type class provides a customizable way to print Tree, TypeRepr and

Constant values. Printers come into two categories: source printers and structure printers.

Source printers (TreeCode, TypeReprCode, ConstantCode, among other variants) show the

code in source code format and are used by default. Structural printers (TreeStructure,

TypeReprStructure, ConstantStructure) print the ADT structure. These reflect the code

needed to construct or match these trees, types, or constants.

145

A TASTy Reflection

6.3 Multi-Stage Programming with Reflection

Multi-stage programming offers a powerful way to generate and analyze programs while

ensuring strong static safety guarantees. This safety comes at the cost of the expressiveness of

our system. For the use cases where extra expressivity is needed, we extend the multi-stage

system with the reflection API to allow inspection and creation of typed ASTs.

Static and Dynamic Guarantees

For the reflection API, we trade-off some static guarantees for dynamic guarantees in order to

be more expressive.

Well-typed The most evident trade-off is the static typing of expressions. For each Expr[T],

we have the static guarantee that the expression is well typed. On the other hand, a Term only

knows its type dynamically. Assuming that a term is hygienic, well-scoped, and well-formed,

we can safely transform that term into an Expr[Any]. We can use the asExpr method on

Term to get its tree. Furthermore, we can cast expressions into Expr[T] using asExprOf[T]
for a known T that can be checked dynamically at run-time using a Type[T]. When we do not

know the type of an expression statically, we can use a quoted pattern with a type variable to

name and retrieve this type.

Hygiene The reflection API is hygienic. The API does not provide ways to refer to a variable by

its name; only symbolic references can be constructed.

Well-scoped The reflection API does not provide any static guarantees about the scoping of

variable references. We can check these dynamically once we know the scope where the tree is

used.

Well formed AST Every quote '{..} produces a well formed AST by construction. However,

the TASTy API allows the construction of nonsensical tree structures that the compiler will not

know how to handle. For example, we could create a nonsensical tree which would represent

something like new =>Int using New(ByName(TypeTree.of[Int])). Given the complexity

of the language, these checks involve complex rules. We check all of them dynamically.

Dynamic Checks

-Ycheck The compiler contains infrastructure to check that the AST is well-formed, well

typed, and well-scoped after each compilation phase. We need these checks for the reflection

API; they run after macro expansion.

-Xcheck-macros While the -Ycheck infrastructure can catch many issues, we only execute

it after macro expansion. -Xcheck-macros enables extra checks during the creation of ASTs.

These provide better information for debugging, but come with a small performance cost.

146

6.3 Multi-Stage Programming with Reflection

Code Generation

Consider the following example where we want to generate a switch-like expression. Given an

integer number, we want to index it into the list of expressions passed as arguments.

switch(n)("a", "b", ..., "z")
// expands to
n match

case 0 => "a"
case 1 => "b"
...
case 25 => "z"

inline def switch[T](n: Int)(inline xs: T*): T = ${ switchExpr('n, 'xs) }

def switchExpr[T:Type](n: Expr[Int], xs: Expr[Seq[T]])(using Quotes): Expr[T] =
xs match

case Varargs(args) => mkSwitch(n, args.toList)
case _ => '{ $xs($n) } // access argument from unpacked varargs

def mkSwitch[T: Type](n: Expr[Int], xs: List[Expr[T]])(using Quotes): Expr[T] =
...

Listing 6.1: def switch

While we get pretty far using multi-stage programming alone, there is no way to express the

expression containing the match in a well typed quote. We know neither the number of cases

nor the patterns statically. Instead, we use the reflection API to create this expression.

def mkSwitch[T: Type](n: Expr[Int], xs: List[Expr[T]])(using Quotes): Expr[T] =
import quotes.reflect.* // `quotes` refers to the given `Quotes` instance
val cases: List[CaseDef] =

for (caseExpr, i) <- xs.zipWithIndex
yield CaseDef(Literal(IntConstant(i)), None, caseExpr.asTerm)

Match(n.asTerm, cases).asExprOf[T]

First, we enable reflection using import quotes.reflect.*. In the example this will im-

port the Tree, CaseDef, Match, Literal and IntConstant classes, as well the asTerm and

asExprOf methods. We can convert any expression Expr[T] to a term tree Term using asTerm.

Using trees, we can construct arbitrary ASTs. In this case, we created the one for a Match
expression. To make it an expression, we can use the asExprOf method, which will check that

the expression has the expected type. The asExprOf call uses the given Type[T] to check the

type of the expression.

147

A TASTy Reflection

Code Analysis

To continue with the previous example, consider the opposite operation of decomposing a

switch expression into its values. Given a switch expression where indices are represented as

case patterns, we want to return all cases in a sequence.

unswitch {
n match

case 0 => "a"
case 1 => "b"
...
case 25 => "z"

}
// expands to
(n, Seq("a", "b", ..., "z"))

We cannot write a quote pattern because we do not know the number of cases or the patterns

statically. Again, the reflection API gives the necessary flexibility to decompose this expression.

inline def unswitch[T](inline x: T): (Int, Seq[T]) = ${ unswitchExpr('x) }

def unswitchExpr[T: Type](x: Expr[T])(using Quotes): Expr[(Int, Seq[T])] =
import quotes.reflect.*
x.asTerm match

case Inlined(_, _, Block(Nil, Match(scrut, cases))) =>
val exprs: List[Expr[T]] = cases.zipWithIndex.map {

case (CaseDef(Literal(IntConstant(i)), None, body), j) if i == j =>
body.asExprOf[T]

case (cse, _) => report.errorAndAbort("unexpected case: ", cse.pos)
}
scrut.asExpr match

case '{ $scrutExpr: Int } => '{ ($scrutExpr, ${Expr.ofSeq(exprs)}) }
case _ => report.errorAndAbort("not Int scrutinee", scrut.pos)

case xAsTerm => report.errorAndAbort("not a match", xAsTerm.pos)

Listing 6.2: def unswitch

In this case, we can match on the Match tree to extract the scrutinee, and the cases, and collect

all right-hand-side expressions, to create a sequence of Expr[T]. All the right-hand sides

must be of type T because that is the type of the match. These expressions are well-scoped

because the cases did not introduce any bindings. These expressions are also well formed

because the overall match is well-formed. As a result, all dynamic checks will always succeed

for this code.

148

6.4 TASTy Inspector

In this example, we also see how we can use the tree positions to provide more precise error

messages to the macro user. At the same time, we can pass an expression to emit an error at

the position of the whole expression.

Note that we only needed to handle the cases with reflection. We can easily use quotes to

recover the type of the scrutinee and create the resulting expression.

6.4 TASTy Inspector

The TASTy Inspector library1 provides a way to inspect the contents of TASTy files using

reflection. In the following example, the TastyInspector loads the given files, and prints the

source representation of the ASTs to the standard output.

import scala.tasty.inspector.*

object PrintCode extends Inspector:
def inspect(using Quotes)(tastys: List[Tasty[quotes.type]]): Unit =

import quotes.reflect.*
for tasty <- tastys do

println("// " + tasty.path)
println(tasty.ast.show)

TastyInspector.inspectTastyFiles(paths)(PrintCode)

Listing 6.3: object PrintCode

This interface provides the Quotes and a list with all the loaded ASTs as Tree. We bundle the

tree and its path as a Tasty instance. Since the AST contains a class definition, we cannot

pass the definition as an Expr as in macros. Alternatively, it would also be possible to use

pattern matching on quoted code to match expressions contained within this AST, as done in

Listing 6.2.

Scaladoc The Scala 3 documentation tool works by reading the TASTy files and generating

documentation on a web page. To do so, it uses the TASTy inspector interface to access all

definitions and their documentation.

1Implemented in the Scala 3 Dotty project https://github.com/lampepfl/dotty. sbt library dependency
"org.scala-lang" %% "scala3-tasty-inspector" % scalaVersion.value

149

https://github.com/lampepfl/dotty

A TASTy Reflection

6.5 Decompiler

When we decompile a program, we want to see a source version of the compiled program

representing the same program. Scala 3 offers this functionality to allow users to decompile

the TASTy binaries, using the scalac -decompile command.

This decompiler is trivial to implement using the reflection interface. We only need to load

the AST and show it in its source representation. Doing so requires that the PrintCode of

Listing 6.3 is a valid decompiler implementation. The only difference between the original

source and the decompiled one is that the latter will be fully elaborated (explicit types, explicit

implicits, explicit extension methods, . . .). Hence it can also show the result of type inference

and other typing elaborations.

package example
object Math:

import math.Numeric.Implicits.infixNumericOps
def sq[T: Numeric](x: T): T = x * x

/** Decompiled from ./example/Math.tasty */
package example {

object Math {
import scala.math.Numeric.Implicits.{infixNumericOps}
def sq[T](x: T)(implicit evidence$1: scala.Numeric[T]): T =

scala.math.Numeric.Implicits.infixNumericOps[T](x)(evidence$1).*(x)
}

}

6.6 Macro Annotations

Macro annotations are annotations that trigger tree transformations. We designed the reflec-

tion API to support these kinds of transformations. At the time of writing, this feature is still in

the prototype phase of development [7].

The aim is to be able to annotate a definition with a macro annotation. We apply the trans-

formation defined in the annotation class to the annotated definition. For example, we

could implement a macro annotation @memoize that automatically adds argument-based

memoization to a normal def.

@memoize def fib(n: Int): Int =
if n <= 1 then 1 else fib(n - 1) + fib(n - 2)

When we expand the macro annotation we can add new definitions such as a fibCache and

modify the implementation of the annotated definition accordingly.

150

6.6 Macro Annotations

val fibCache = Map.empty[Int, Int]
def fib(n: Int): Int =

if !fibCache.contains(n) then
fibCache(n) = if n <= 1 then 1 else fib(n - 1) + fib(n - 2)

fibCache(n)

Macro annotations are annotations that inherit from a MacroAnnotation trait.

trait MacroAnnotation extends StaticAnnotation:
def transform(using Quotes)(tree: quotes.reflect.Definition):

List[quotes.reflect.Definition]

The implementation of this logic uses the same Quotes context as inline macros. The main

difference is that we manipulate definitions with unknown signatures. Therefore, we need

to use the reflection API. While the creation and manipulation of definitions use reflection,

we can use quotes and splices to generate well typed expressions that we will use in the

definitions.

class memoize extends MacroAnnotation:
override def transform(using Quotes)(tree: quotes.reflect.Definition):

List[quotes.reflect.Definition] =
import quotes.reflect._
tree match

case DefDef(name, params @ List(TermParamClause(List(param))), tpt, Some(impl)) =>
(Ref(param.symbol).asExpr, impl.asExpr) match

case ('{ $paramRef : arg }, '{ $implExpr : res })=>
val cacheSymbol = Symbol.newVal(tree.symbol.owner, name + "Cache",

TypeRepr.of[Map[arg, res]], Flags.EmptyFlags, Symbol.noSymbol)
val fibCacheRef = Ref(cacheSymbol).asExprOf[Map[arg, res]]
val cacheVal = ValDef(cacheSymbol, Some('{ Map.empty[arg, res] }.asTerm))
val newDef = DefDef.copy(tree)(name, params, tpt, Some(

'{
if !$fibCacheRef.contains($paramRef) then

$fibCacheRef($paramRef) = $implExpr
$fibCacheRef($paramRef)

}.asTerm
))
List(cacheVal, newDef)

case _ =>
report.errorAndAbort("expected a `def` with a single parameter list")

151

A TASTy Reflection

6.7 Related Work

Scala 2 experimental macros As a direct descendent of the Scala 2 macros [12; 11], the Scala 3

reflection API uses a similar encoding but provides fundamental changes. Scala 2 used an ADT

encoding that tied the reflection API to compiler internals. This made it hard to evolve the

compiler without breaking the portability of the reflection API. Scala 3 uses TASTy as lingua

franca to expose the ADTs and encodes them using Virtual ADTs, for portability purposes.

TASTy Query TASTy Query2 is intended to be at the core of all compiler-independent tools

that analyze TASTy. It defines ADTs for trees and types. It also provides classes representing

symbols, signatures, names, and constants. The tool loads the complete TASTy definitions

and returns them as trees to the user. It currently lacks some advanced functionalities that

the compiler can provide to the Reflection API, such as subtyping comparisons. Another

difference is that the compiler leverages the laziness of TASTy to avoid loading the full trees

whenever possible. TASTy Query takes a more straightforward approach and loads all trees

eagerly.

Compiler plugins Scala 3 provides two kinds of compiler plugins3: standard and research

plugins. A standard plugin can insert a new compilation phase into the compiler. A research

plugin can customize all compilation phases; these are only allowed under the experimental

mode. Scala 2 provided the equivalent to the standard plugin but also provided analyzer

plugins that ran during type-checking, allowing the plugin to influence type-checking. The

research plugins can also influence typing by changing the implementation of the type-

checker.

Plugins are more flexible than the reflection interface (macros, inspector, annotations) as they

can modify the code in any step of the pipeline. However, they use the internal compiler APIs,

which are more complex and have no portability guarantees between compiler versions.

2https://github.com/scalacenter/tasty-query
3https://dotty.epfl.ch/docs/reference/changed-features/compiler-plugins.html

152

https://github.com/scalacenter/tasty-query
https://dotty.epfl.ch/docs/reference/changed-features/compiler-plugins.html

6.8 Future Work

6.8 Future Work

Reflection interface The design of the interface is complete. Nevertheless, it could still change

in the future. Each time we add a new language feature to the language, we might need to

add it to the interface. Similarly, if we extend the TASTy format, we must reflect this addition

in the interface. We use the Virtual ADTs encoding to ensure that these additions are binary

compatible.

Macro annotations Currently in the prototype phase, the macro annotations still need con-

siderable work. Firstly, we need to specify what kinds of transformations should be allowed.

Secondly, we need to design a robust interface that covers all the use cases we plan to support

and allows for the evolution of the interface.

Portable plugin We already have plugins, but we must implement them using the internal

compiler API. We could create a plugin interface that would use the reflection API. These

plugins would be portable and usable by future versions of the compiler.

6.9 Conclusion

Reflecting on the TASTy trees provides a complete semantic view of the program. This gives

the ability to reason about programs at the same level as the compiler. The API greatly extends

the expressivity of multi-stage programming at the cost of verbosity and the loss of some static

guaranties. We showed that the reflection API is integral to complete program analysis tools,

such as documentation generation, decompilation, and general code inspection. It also has

the potential to be applied to more general code transformation interfaces such as annotation

macros and possibly portable plugins.

153

Epilogue

155

7 Academic Projects

We undertook a handful of academic projects since implementing the Scala 3 metaprogram-

ming framework. This is a list of projects that we have worked on in our research group.

• Staged Tagless Interpreters: An early proof of concept project [43] focused on porting

code from [15; 80] into Scala 3.

• Strymonas: A port of the Strymonas stream fusion library to Scala [42; 70].

• String Interpolator Macros: Several projects focused on using multi-stage programming

macros on string interpolators [2; 36; 27]. The projects focused on code analysis and

generation using multi-stage programming macros.

• Scala 3 Decompiler: A project focused on showing the capabilities of the TASTy Inspector

and reflection API [10]. We now use it as the de facto TASTy decompiler.

• Scala 3 Doc: A project focused on creating a new documentation tool using TASTy

Inspector and reflection API [1]. Now it has evolved into the de facto documentation

tool for Scala 3.

• DSLs: Several projects focused on showing the DSL capabilities of multi-stage program-

ming in Scala 3 [48; 44].

• Mechanized Proof: A mechanized proof [61] of an earlier and less expressive version of

the macro calculus [76].

• Macro Annotations for Scala 3: A project focused on the design and implementation

of new annotation macros based on the reflection API [7]. We could use multi-stage

programming to generate and analyze expressions when implementing these macros.

157

8 Core Library, Tools and
Community Projects

Core Libraries and Tools

The following tools that come included with Scala 3 use or extend the metaprogramming API.

These projects where initially developed in our research group1.

• Scala 3 Doc scaladoc

• Scala Decompiler scalac -decompile

• Scala Staging scala.quoted.staging

• TASTy Inspector scala.tasty.inspector

Community Projects

Scala 2/3 community Some projects are cornerstones of the Scala ecosystem and need to

be ported to Scala 3 to allow a successful transition2. The following non-exhaustive list

contains projects that had Scala 2 macros that were ported by the community into Scala 3

macros. Most of these projects opted to port their macros using the reflection API due to its

similarity with the previous implementation. Even though these macros were not designed

with multi-stage programming in mind, many used multi-stage programming to make parts

of the implementation shorter, safer, and more readable.

Airframe, Argonaut, Blindsight, Izumi-reflect, Jsoniter Scala, Kebs, Log4s, Minitest, Monocle,

MUnit, PPrint, Proto, Quill, ScalaPy, ScalaTest + JUnit, ScalaTest, Scodec, Scodec-bits, Shapeless

3, SourceCode, Tapir, Zio, µPickle, µTest, . . .

Scala 3 community Despite Scala 3 still being in its early days, we have already seen several

new projects leveraging Scala 3 macros and metaprogramming in general. Here is a non-

exhaustive list of open-source projects using Scala 3 macros.

Dotty CPS Async, DottyTags, Iron, Less Funky Trees, Perspective, Scodec 2, SLInC, Scala Reflec-

tion, Shaka, TypeTrees, . . .

1Scala 3 Doc was then further developed by VirtusLab.
2Note that Scala 3 projects can use most macroless Scala 2 projects without a port

159

https://github.com/wvlet/airframe
https://github.com/argonaut-io/argonaut
https://github.com/tersesystems/blindsight
https://github.com/zio/izumi-reflect
https://github.com/plokhotnyuk/jsoniter-scala
https://github.com/theiterators/kebs
https://github.com/log4s/log4s
https://github.com/monix/minitest
https://github.com/optics-dev/Monocle
https://github.com/scalameta/munit
https://github.com/com-lihaoyi/pprint
https://github.com/zero-deps/proto
https://github.com/zio/zio-quill
https://github.com/scalapy/scalapy
https://github.com/scalatest/scalatestplus-junit
https://github.com/scalatest/scalatest
https://github.com/scodec/scodec
https://github.com/scodec/scodec-bits
https://github.com/typelevel/shapeless-3
https://github.com/typelevel/shapeless-3
https://github.com/com-lihaoyi/sourcecode
https://github.com/softwaremill/tapir
https://github.com/zio/zio
https://github.com/com-lihaoyi/upickle
https://github.com/com-lihaoyi/utest
https://github.com/rssh/dotty-cps-async
https://github.com/ciaraobrien/dottytags
https://github.com/Iltotore/iron
https://github.com/anatoliykmetyuk/less-funky-trees
https://github.com/Katrix/perspective
https://github.com/scodec/scodec
https://github.com/markehammons/SLInC
https://github.com/gzoller/scala-reflection
https://github.com/gzoller/scala-reflection
https://github.com/getshaka-org/shaka
https://github.com/gaeljw/typetrees

9 Conclusion

In this thesis, we demonstrated that it is possible to design, implement and use in production a

Portable Scalable Semantically Driven Metaprogramming System. We used three semantically

driven metaprogramming abstractions with different levels of expressiveness: inline, multi-

stage programming and typed AST reflection. We showed how the system is scalable by trading

static safety for expressiveness when needed. We also showed how a common portable AST

representation (TASTy) can be used in all levels of metaprogramming to make the whole

system portable.

Our multi-stage programming system is the first implementation to simultaneously support

macros and run-time code generation. We use inline definitions to declare multi-stage macros

without leaking implementation details. We designed and implemented a powerful quote

pattern matching system to allow code analysis and transformation. We formalized our macro

system with the λ▲ and System F▲ calculi. We proved soundness of the calculi.

We designed the Virtual ADT encoding to have an ergonomic, portable, and sound encoding

for the AST reflection interface. To this end, we also improved Scala’s generic type testing

abstraction.

We released the system in Scala 3.0. This system allowed crucial core macro libraries of the

Scala 2 ecosystem to be ported to Scala 3, allowing for a smooth transition between the two

versions.

161

Appendix

163

A Soundness Proof of the Polymorphic
Multi-Stage Macro Calculus

We prove soundness of the calculus in terms of the standard theorems for progress (Theorems A.1

and A.2) and preservation (Theorems A.3 and A.4). Alternatively, modular proofs for the calculi of

Sections 4.2, 4.4 and 4.5 can be found in [75].

A.1 Proof of Progress

Definition A.1 (Well-formedΩ).

Σ⊢Ω wf if and only if dom(Σ) = dom(Ω) ∧ ∀i ∈N0, x ∈ dom(Ω).Σ |; ⊢i Ω(x) :Σ(x)

Theorem A.1 (Progress for Programs).

If Σ⊢ p : T , then p is a value ⊢ p vl or, for anyΩ such that Σ⊢Ω wf ,

there exists p ′ andΩ′ such that that p |Ω−→ p ′ |Ω′

Proof.

We perform induction on type derivation of Σ⊢ p : T .

Case T-EVAL where p is eval t If t is a value ⊢0 t vl, then p is a value ⊢ p vl by definition V-EVAL.

Otherwise if t is not a value, by Theorem A.2 using Σ |; ⊢0 t : T and Σ⊢Ω wf there exists a t ′ such

that t −→0
Ω t ′; therefore we can take a step with E-EVAL.

Case T-DEF where p is def x = ⌈t⌉ in p1 If t is a value ⊢1 t vl, then we can take a step with

E-COMPILE, therefore there exists p ′ = p1 andΩ′ =Ω, x := t such that p |Ω−→ p ′ |Ω′. Otherwise if

t is not a value, by Theorem A.2 using Σ |; ⊢1 t : T1→T2 and Σ⊢Ω wf there exists a t ′ such that

t −→1
Ω t ′. Then we can take a step with E-MACRO and therefore there exist p ′ = eval t ′ andΩ′ =Ω

such that p |Ω−→ p ′ |Ω′.

■

165

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Definition A.2 (Restricted Typing Context).

Γ≥1 ::= ; | Γ≥1, x :i T | Γ≥1, X for i ≥ 1

Theorem A.2 (Progress for Terms).

If Σ⊢Ω wf and Σ |; ⊢i t : T , then t is a value ⊢i t vl or there exists t ′ such that t −→i
Ω t ′

Proof.

The proof of progress trivially follows from Lemma A.2, by choosing Γ≥1 =;. ■

Lemma A.1 (Canonical Forms).

• If ⊢0 t vl and t : C, then t = c for some c.

• If ⊢0 t vl and t : T1→T2, then t =λx:T1.t1 for some x and t1.

• If ⊢0 t vl and t : ∀X .T , then t =ΛX .t1 for some t1.

• If ⊢0 t vl and t : ⌈T ⌉, then t = ⌈t1⌉ for some t1.

Proof.

By case analysis on the value definition ⊢0 t vl. ■

Lemma A.2 (Extended Progress for Terms).

If Σ⊢Ω wf and Σ |Γ≥1 ⊢i t : T , then t is a value ⊢i t vl or there exists t ′ such that t −→i
Ω t ′

Proof.

Perform induction on the typing derivation of Σ |Γ≥1 ⊢i t : T .

Case T-CONST with t = c
Trivial, t is a value ⊢i t vl by definition V-CONST.

Case T-VAR with t = x

Sub-case i = 0 As x :0 T ∉ Γ≥1 by definition of Γ≥1, the precondition Σ |Γ≥1 ⊢0 x : T cannot hold.

Sub-case i > 0 Trivial, t is a value ⊢i t vl by definition V-VAR.

Case T-LINK with t = x

Sub-case i = 0 From T-LINK we know that x : T ∈ Σ. By the premise Σ⊢Ω wf we have that

x ∈ dom(Ω) and therefore there exists a t ′ =Ω(x) such that t −→i
Ω t ′. Hence we can take a step

using E-LINK.

Sub-case i > 0 Trivial, t is a value ⊢i t vl by definition V-VAR.

166

A.1 Proof of Progress

Case T-ABS with t =λx:T.t1.

Sub-case i = 0 Trivial, t is a value ⊢0 t vl by definition V-ABS-0.

Sub-case i > 0 If t1 is a value, then t is a value ⊢i t vl by definition V-ABS. Otherwise, if t1 is not

a value, then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1. Therefore there

exists t ′ =λx:T1.t ′1 such that t −→i
Ω t ′.

Case T-TABS with t =ΛX .t1

Sub-case i = 0 Trivial, t is a value ⊢0 t vl by definition V-TABS-0.

Sub-case i > 0 If t1 is a value, then t is a value ⊢i t vl by definition V-TABS. Otherwise, if t1 is

not a value, then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1. Therefore

there exists t ′ =ΛX .t ′1 such that t −→i
Ω t ′.

Case T-APP with t = t1 t2

Sub-case i = 0 If t1 is not a value, then by induction hypothesis there exists a t ′1 such that

t1 −→0
Ω t ′1. Therefore by E-APP-1 there exists a t ′ such that t −→0

Ω t ′. If t1 is a value and t2 is

not a value, then by induction hypothesis there exists a t ′2 such that t2 −→0
Ω t ′2. Therefore by

E-APP-2 there exists a t ′ such that t −→0
Ω t ′. Otherwise, if t1 and t2 are values, by the Lemma A.1

using t1 : T1→T from T-APP, we know that t1 =λx:T1.t3. Therefore we take a step using E-BETA

to get a t ′ = t3[t2/x] such that t −→0
Ω t ′.

Sub-case i > 0 If t1 and t2 are values, then t is a value by definition V-APP. Otherwise, if t1 is

not a value, then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1. Therefore

there exists t ′ = t ′1 t2 such that t −→i
Ω t ′. Lastly, if t2 is not a value, then by induction hypothesis

there exists a term t ′2 such that t2 −→i
Ω t ′1. Therefore there exists t ′ = t1 t ′2 such that t −→i

Ω t ′.

Case T-TAPP with t = t1 T1

Sub-case i = 0 If t1 is not a value, then by induction hypothesis there exists a t ′1 such that

t1 −→0
Ω t ′1. Therefore by E-TAPP there exists a t ′ such that t −→0

Ω t ′. Otherwise, if t1 is a value,

then t1 : ∀X .T2 by T-APP. By the Lemma A.1 t1 = X T2, therefore we can use E-TBETA to get a

t ′ = t1[T1/X] such that t −→0
Ω t ′.

Sub-case i > 0 If t1 is values, then t is a value by definition V-TAPP. Otherwise, if t1 is not a

value, then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1. Therefore there

exists t ′ = t ′1 T1 such that t −→i
Ω t ′.

Case T-FIX with t = fix t1

Sub-case i = 0 If t1 is not a value, then by induction hypothesis there exists a t ′1 such that

t1 −→0
Ω t ′1. Therefore by E-FIX there exists a t ′ such that t −→0

Ω t ′. Otherwise, if t1 is a value,

then t1 : T→T by T-FIX. By the Lemma A.1 t1 =λx:T.t2, therefore we can use E-FIX-RED to get

a t ′ = t2[fixλx:T.t2/x] such that t −→0
Ω t ′.

Sub-case i > 1 If t1 is a value, then t is a value by definition V-FIX. Otherwise, if t1 is not a value,

then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1. Therefore there exists

t ′ = fix t ′1 such that t −→i
Ω t ′.

167

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Case T-QUOTE with t = ⌈t1⌉ If t1 is a value, then t is a value by definition V-QUOTE. Otherwise, if t1

is not a value, then by induction hypothesis there exists a term t ′1 such that t1 −→i+1
Ω t ′1. Therefore

there exists t ′ = ⌈t ′1⌉ such that t −→i
Ω t ′.

Case T-SPLICE with t = ⌊t1⌋
Sub-case i = 0 Term t cannot be typed.

Sub-case i = 1 If t1 is a value, then by Lemma A.1 we know that t1 = ⌈t2⌉ for some t2, thus

t = ⌊⌈t2⌉⌋. By E-SPLICE-RED we can take a step ⌊⌈t2⌉⌋ −→1
Ω t2. Otherwise, if t1 is not a value,

then by induction hypothesis there exists a term t ′1 such that t1 −→0
Ω t ′1. Therefore there exists

t ′ = ⌊t ′1⌋ such that t −→1
Ω t ′.

Sub-case i ≥ 2 If t1 is a value, then t is a value by definition V-SPLICE. Otherwise, if t1 is not a

value, then by induction hypothesis there exists a term t ′1 such that t1 −→i−1
Ω t ′1. Therefore there

exists t ′ = ⌊t ′1⌋ such that t −→i
Ω t ′.

Case T-LIFT with t = lift t1 As T-LIFT is the only typing rule that fits this case, the premise must

be of the form Σ |Γ≥1 ⊢i lift t1 : ⌈C⌉. From T-LIFT we can also deduce that Σ |Γ≥1 ⊢i t1 : C.

Sub-case i = 0 and ⊢i t1 vl Given that Σ |Γ≥1 ⊢0 t1 : C, by the Lemma A.1 we know that t1 = c for

some c, therefore we can use E-LIFT-CONST to get a t ′ = ⌈c⌉ such that t −→0
Ω t ′.

Sub-case i > 0 and ⊢i t1 vl Then t is a vale by definition V-LIFT.

Otherwise The term t1 is not a value. By induction hypothesis there exists a term t ′1 such that

t1 −→i
Ω t ′1. Therefore there exists t ′ = lift t1 such that t −→i

Ω t ′.

Case T-UNLIFT with t = unlift t1 with t2 or t3 T-UNLIFT is the only typing rule that fits this

case, the premise must be of the form Σ |Γ≥1 ⊢i unlift t1 with t2 or t3 : T . From T-UNLIFT we

can also deduce that Σ |Γ≥1 ⊢i t1 : ⌈C⌉, Σ |Γ≥1 ⊢i t2 : C→T and Σ |Γ≥1 ⊢i t3 : T .

Sub-case i = 0 If t1 is not a value, then by induction hypothesis there exists a term t ′1 such that

t1 −→i
Ω t ′1. Therefore there exists t ′ = unlift t ′1 with t2 or t3 such that t −→i

Ω t ′. Otherwise, if

t1 is a value, it can be of the form t1 = ⌈c⌉ where we can take a step with E-UNLIFT-SUCC; or it

can be of the form t1 ̸= ⌈c⌉ where we can take a step with E-UNLIFT-FAIL.

Sub-case i > 0 If t1, t2 and t3 are a values, then t is a value by definition V-UNLIFT. Otherwise,

if t1 is not a value, then by induction hypothesis there exists a term t ′1 such that t1 −→i
Ω t ′1.

Therefore there exists t ′ = unlift t ′1 with t2 or t3 such that t −→i
Ω t ′. Otherwise, if t2 is not

a value, then by induction hypothesis there exists a term t ′2 such that t2 −→i
Ω t ′2. Therefore

there exists t ′ = unlift t1 with t ′2 or t3 such that t −→i
Ω t ′. Otherwise, if t3 is not a value,

then by induction hypothesis there exists a term t ′3 such that t3 −→i
Ω t ′3. Therefore there exists

t ′ = unlift t1 with t2 or t ′3 such that t −→i
Ω t ′.

Case T-MATCH t = ts match X ⌈tp⌉ then tt else te

Sub-case i = 0 If ts is not a value, then by induction hypothesis there exists a t ′s such that

ts −→0
Ω t ′s . Therefore by E-MATCH-SCRUT there exists a t ′ such that t −→0

Ω t ′. Otherwise, if ts

is values, by Lemma A.1 using ts : ⌈T1⌉ from T-MATCH we know that ts = ⌈ts2⌉ for some ts2 . If

evaluation of X ⊢ ts2 ≡ tp ⇒σ can succeed then we can take a with E-MATCH-SUCC. Otherwise,

if X ⊢ ts2 ≡ tp ⇏σ, we can take a step with E-MATCH-FAIL

168

A.2 Proof of Preservation

Sub-case i ≥ 1 If ts is not a value, then by induction hypothesis there exists a t ′s such that ts −→i
Ω

t ′s . Therefore by E-MATCH-SCRUT there exists a t ′ = t ′s match X ⌈tp⌉ then tt else te such that

t −→i
Ω t ′. Otherwise, if tt is not a value, then by induction hypothesis there exists a t ′t such that

tt −→i
Ω t ′t . Therefore by E-MATCH-THEN there exists a t ′ = ts match X ⌈tp⌉ then t ′t else te such

that t −→i
Ω t ′. Otherwise, if te is not a value, then by induction hypothesis there exists a t ′e such

that te −→i
Ω t ′e . Therefore by E-MATCH-ELSE there exists a t ′ = ts match X ⌈tp⌉ then tt else t ′e

such that t −→i
Ω t ′. Otherwise, ts , tt and te are values and therefore t is a value by definition

V-MATCH.

■

A.2 Proof of Preservation

Theorem A.3 (Preservation for Programs).

If Σ⊢ p : T , Σ⊢Ω wf and p |Ω−→ p ′ |Ω′,
then the exists a Σ′ such that Σ′ ⊇Σ, Σ′ ⊢ p ′ : T and Σ′ ⊢Ω′ wf

Proof.

Proof by case analysis on the type derivation of Σ⊢ p : T .

From the premises, we know that

Σ⊢ p : T (1)

p |Ω−→ p ′ |Ω′ (2)

Σ⊢Ω wf (3)

Case T-EVAL Σ⊢ eval t : T From T-EVAL we know that

Σ |; ⊢0 t : T (4)

The only evaluation step is E-EVAL, therefore

t −→0
Ω t ′ (5)

p ′ = eval t ′ (6)

Ω′ =Ω (7)

Therefore by Theorem A.4 using Eqs. (3) to (5) implies

Σ |; ⊢0 t ′ : T (8)

Using T-EVAL with premise Eq. (8) we get

Σ⊢ eval t ′ : T (9)

169

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

From Eqs. (6) and (9) we get

Σ⊢ eval p ′ : T (10)

Using Σ′ =Σ and Eq. (7), we have that Eqs. (3) and (10) are equivalent to

Σ′ ⊢ eval p ′ : T

Σ′ ⊢Ω′ wf

Case T-DEF Σ⊢ def x = ⌈t⌉ in p1 : T From T-DEF we know

Σ |; ⊢1 t : T1 (11)

Σ, x : T1 ⊢ p1 : T (12)

Sub-case E-MACRO

From E-Macro we know

p ′ = def x = ⌈t ′⌉ in p1 (13)

t −→1
Ω t ′ (14)

Ω′ =Ω (15)

Therefore by Theorem A.4: Eqs. (3), (11) and (14) we have

Σ |; ⊢1 t ′ : T1 (16)

From E-MACRO with Eqs. (12) and (16) we have

Σ⊢ def x = ⌈t ′⌉ in p1 : T (17)

From Eqs. (13) and (17) we get

Σ⊢ p ′ : T (18)

Using Σ′ =Σ and Eq. (15), we have that Eqs. (3) and (18) are equivalent to

Σ′ ⊢ eval p ′ : T

Σ′ ⊢Ω′ wf

Sub-case E-COMPILE

We E-COMPILE know that

p ′ = p1 (19)

⊢1 t vl (20)

Ω′ =Ω, x := t (21)

From Eqs. (12) and (19) we get

Σ, x : T1 ⊢ p ′ : T (22)

170

A.2 Proof of Preservation

From Eq. (3) and Definition A.1, we have that

Σ, x : T1 ⊢Ω, x := t wf (23)

Using Σ′ =Σ, x : T1 and Eq. (21), we have that Eqs. (22) and (23) are equivalent to

Σ′ ⊢ eval p ′ : T

Σ′ ⊢Ω′ wf

■

Lemma A.3 (Σ-Weakening).

If Σ⊢ p : T and Σ′ ⊇Σ, then Σ′ ⊢ p : T

Proof.

Proof by straight-forward induction over the typing derivation. ■

Theorem A.4 (Preservation for Terms).

If Σ |Γ⊢i t : T , t −→i
Ω t ′ and Σ⊢Ω wf, then Σ |Γ⊢i t ′ : T

Proof.

The proof proceeds by induction on the typing derivation, followed by inversion on the reduction

step taken.

If Σ |Γ⊢i t : T , t −→i
Ω t ′ and Σ⊢Ω wf then

Case T-CONST Σ |Γ⊢i c : C Cannot take a step.

Case T-VAR Σ |Γ⊢i x : T Cannot take a step.

Case T-LINK Σ |Γ ⊢i x : T From T-LINK we know x : T ∈ Σ. The only congruence sub-case is

E-LINK, which implies that x ∈ dom(Ω). Therefore from Definition A.1 we have Σ |; ⊢i Ω(x) :Σ(x)

which is equivalent to Σ |; ⊢i Ω(x) : T . By weakening we have Σ |Γ⊢i Ω(x) : T .

Case T-ABS Σ |Γ⊢i λx:T1.t2 : T1→T2 The congruence sub-case E-ABS immediately follows from

the induction hypothesis.

Case T-TABS Σ |Γ⊢i ΛX .t : ∀X .T1 The congruence sub-case E-TABS immediately follows from

the induction hypothesis.

Case T-APP Σ |Γ⊢i t1 t2 : T The congruence sub-cases E-APP-1 and E-APP-2 immediately follow

from the induction hypothesis. To show sub-case E-BETA, we need to construct a typing derivation

for t3[t2/x], given t1 =λx:T2.t3 and ⊢0 t2 vl, and premises (a) Σ |Γ⊢0 λx:T2.t3 : T2→T , (b) Σ |Γ⊢0

t2 : T2. From (a) we get (by inversion), (c) Σ |Γ, x :0 T2 ⊢0 t : T . By applying the Lemma A.13 with (b)

and (c), we obtain Σ |Γ⊢0 t3[t2/x] : T .

171

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Case T-TAPP Σ |Γ⊢i t1 T1 : T2[T1/X] The congruence sub-case E-TAPP immediately follows from

the induction hypothesis. To show sub-case E-TBETA, we need to construct a typing derivation

for t2[T1/X], given t1 =ΛX .t2 and premises (a) Σ |Γ⊢0 ΛX .t2 : ∀X .T2. From T-TABS and (a) have

the premise (b) Σ |Γ, X ⊢0 t2 : T2. From T-TAPP we also assume that (c) Γ⊢ T1 wf. By applying the

Lemma A.16 with (b) and (c), we obtain Σ |Γ⊢0 t2[T1/X] : T2[T1/X].

Case T-FIX Σ |Γ⊢i fix t : T The congruence sub-case E-FIX immediately follows from the in-

duction hypothesis. To show sub-case E-FIX-RED, we need to construct a typing derivation

for t1[fix λx:T.t1]/x], given t = λx:T.t1, and premises (a) Σ |Γ ⊢0 λx:T.t1 : T→T , (b) Σ |Γ ⊢i

fixλx:T.t1 : T . From (a) we get (by inversion), (c) Γ,Σ |x :0 T ⊢0 t1 : T . By applying the SUBSTITU-

TION LEMMA with (b) and (c), we obtain Σ |Γ⊢0 t1[fixλx:T.t1/x] : T .

Case T-QUOTE Σ |Γ⊢i ⌈t⌉ : ⌈T ⌉ The congruence sub-case E-QUOTE immediately follows from the

induction hypothesis.

Case T-SPLICE Σ |Γ⊢i ⌊t1⌋ : T The congruence sub-case E-SPLICE immediately follows from the

induction hypothesis. To show sub-case E-SPLICE-RED (where i = 1), we need to construct the

typing derivation of t1 where t1 = ⌈t2⌉. From T-SPLICE we know that Σ |Γ⊢0 ⌈t2⌉ : ⌈T ⌉, therefore by

T-QUOTE we obtain Σ |Γ⊢1 t2 : T

Case T-LIFT Σ |Γ ⊢i lift t : ⌈C⌉ The congruence sub-case E-LIFT immediately follows from

the induction hypothesis. To show sub-case E-LIFT-CONST we need to construct the typing

derivation of ⌈c⌉. We know that Σ |Γ⊢1 c : C from T-CONST, therefore by T-QUOTE we have that

Σ |Γ⊢0 ⌈c⌉ : ⌈C⌉.

Case T-UNLIFT Σ |Γ⊢i unlift t1 with t2 or t3 : T The congruence sub-cases E-UNLIFT-SCRUT,

E-UNLIFT-WITH and E-UNLIFT-OR immediately follows from the induction hypothesis. The

congruence sub-case E-UNLIFT-FAIL follows directly from T-UNLIFT. The congruence sub-case

E-UNLIFT-SUCC follows from T-UNLIFT and T-APP.

Case T-MATCH Σ |Γ⊢i ts match X ⌈tp⌉ then tt else te : T The congruence sub-case E-MATCH-

SCRUT immediately follows from the induction hypothesis. The congruence sub-case E-MATCH-

FAIL immediately follows from T-MATCH. The congruence sub-case E-MATCH-SUCC immediately

follows from the Lemma A.4.

■

Lemma A.4 (Preservation for Match).

If Σ |Γ⊢0 ⌈ts⌉ match Xi
i ⌈tp⌉ then tt else te : T and ⊢1 ts vl and Xi

i ⊢ ts ≡ tp ⇒σ,

then Σ |Γ⊢0 σ(tt) : T

Proof.

Assuming premises

⊢1 ts vl (1)

Σ |Γ⊢0 ⌈ts⌉ match Xi
i ⌈tp⌉ then tt else te : T (2)

Xi
i ⊢ ts ≡ tp ⇒σ (3)

172

A.2 Proof of Preservation

From Eq. (2) we know

Σ |Γ⊢1 ts : T1 Σ |Γ; Xi
i |; ⊢1 tp : T1 ⊣ Γt Σ |Γ; Xi

i
;Γt ⊢0 tt : T

Σ |Γ⊢0 ⌈ts⌉ match Xi
i ⌈tp⌉ then tt else te : T

T-MATCH

(4)

From Eq. (3) we know

;⊢ ts � tp ⇒σ1 |C | Xl
l

Xl
l ⊢ unify(Xi

i |C) ⇒σ2 σ=σ2 ◦σ1

Xi
i ⊢ ts ≡ tp ⇒σ (5)

By Definition 2 we have

; |;⊢; wf (6)

From Lemma A.7 with Γδ = ;, Γp = ;, Φ = ;, premises of Eq. (4), the first premise of Eq. (5) and

Eq. (6) it follows that

Σ |Γ; Xi
i ⊢0 σ1(tt) : T (7)

Using Lemma A.8 with Γδ =;, Γp =;, the first two premises of Eq. (4), the first premise of Eq. (5)

and Eq. (6) we get

Γ; Xl
l | Xi

i ⊢C wf (8)

Then using Lemma A.9 with the second premise of Eq. (5) and Eqs. (7) and (8) we get

Σ |Γ⊢0 σ2(σ1(tt)) : T

which is equivalent to

Σ |Γ⊢0 σ2 ◦σ1(tt) : T

■

Lemma A.5 (Well-Formed Constraint Shuffle).

If Γ | Xi
i
, X ; X j

j ⊢C wf then Γ | Xi
i
; X j

j
, X ⊢C wf

Proof.

Perform induction on the constraint well-formedness derivation of constraint well formedness.

Case WFC-EMPTY C is ; From the premise we have ⊢ Xi
i
, X ; X j

j
wf. Hence we also know that

⊢ Xi
i
; X j

j
, X wf and therefore Γ | Xi

i
; X j

j
, X ⊢; wf holds by WFC-EMPTY.

Case WFC-EQ C is C2,T1=T2 Follows from induction hypothesis and Lemma A.11.

■

173

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Lemma A.6 (Type Well-Fomedness Weakening).

If Γ⊢ T wf then Γ, X ⊢ T wf

Proof.

Proof by straight-forward induction over the typing derivation. ■

Definition A.3 (Well-formedness ofΦ).

We sayΦ is well formed with respect to Γp and Γδ, written Γp | Γδ ⊢Φ wf ,

if and only ifΦ is a bijection between dom(Γp) and dom(Γδ),

such that dom(Γp)∩dom(Γδ) =; and ∀xp :1 T ∈ Γp .Φ(xp) :1 T ∈ Γδ.

Lemma A.7 (Preservation of Pattern Reduction).

If Eqs. (1) to (5) hold, then Σ |Γ⊢0 σ(t) : T

Σ |Γ;Γδ ⊢1 ts : Ts (1)

Σ |Γ |Γp ⊢1 tp : Tp ⊣ Γt (2)

Σ |Γ;Γt ⊢0 t : T (3)

Φ⊢ ts � tp ⇒σ |C | Xl
l

(4)

Γp | Γδ ⊢Φ wf (5)

Proof.

From the premise of the Lemma we assume that Eqs. (1) to (5) hold. The proof is performed by

induction on the typing derivations of the patterns Σ |Γ |Γp ⊢1 tp : Tp ⊣ Γt .

Case T-PAT-CONST Σ |Γ |Γp ⊢1 c : C ⊣;
The only pattern rule that applies is E-PAT-CONST which implies that

σ= [] (6)

As Γt =;, we have that

Σ |Γ⊢0 t : T (7)

Eqs. (6) and (7) imply

Σ |Γ⊢0 σ(t) : T

Case T-PAT-VAR Σ |Γ |Γp ⊢1 x : Tp ⊣;
From T-PAT-VAR we know that

Γt =; (8)

Eq. (4) can be one of the follow two cases:

174

A.2 Proof of Preservation

Sub-case E-PAT-VAR withΦ⊢Φ(xp)� xp ⇒σ | ; | Xl
l

From E-PAT-VAR we know that

σ= [] (9)

Eqs. (3) and (8) imply

Σ |Γ⊢0 t : T (10)

Eqs. (9) and (10) imply

Σ |Γ⊢0 σ(t) : T

Sub-case E-PAT-LINK As x :i Ts ∈ Γ implies that x :i Ts ∉ Γδ by Eq. (5), we have that tp ̸= x which

implies that this rule cannot be applied.

Case T-PAT-LINK Σ |Γ |Γp ⊢1 x : Tp ⊣;
From T-PAT-LINK we know that

Γt =; (11)

Eq. (4) can be one of the follow two:

Sub-case E-PAT-VAR withΦ⊢Φ(xp)� xp ⇒σ |C | Xl
l

As x : Ts ∈Σ implies that x :i Ts ∉ Γδ by

Eq. (5), therefore there is noΦ(x) which implies that this rule cannot be applied.

Sub-case E-PAT-LINK

From E-PAT-LINK we know that

σ= [] (12)

Eqs. (3) and (11) imply

Σ |Γ⊢0 t : T (13)

Eqs. (12) and (13) imply

Σ |Γ⊢0 σ(t) : T

Case T-PAT-ABS Σ |Γ |Γp ⊢1 λxp :Tp1 .tp2 : Tp1→Tp2 ⊣ Γt

The only pattern rule that applies is E-PAT-ABS therefore from Eq. (4) we know

Φ, xp 7→xs ⊢ ts2 � tp2 ⇒σ |C1 | Xl
l

Φ⊢λxs :Ts1 .ts2 �λxp :Tp1 .tp2 ⇒σ |C1,Ts1=Tp1 | Xl
l

E-PAT-ABS

(14)

From the premise (T-ABS) of Eq. (1) we know

Σ |Γ;Γδ, xs :1 Ts1 ⊢1 ts2 : Ts2 (15)

From the premise (T-PAT-ABS) of Eq. (2) we know

Σ |Γ |Γp , xp :1 Tp1 ⊢1 tp2 : Tp2 ⊣ Γt (16)

From Eq. (5) and Definition A.3 and the Ts1 = Tp1 constraint we know that

Γp , xp :1 Tp1 | Γδ, xs :1 Ts1 ⊢Φ, xp 7→xs wf (17)

175

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Using the induction hypothesis with premise of Eq. (14) and Eqs. (3) and (15) to (17) we get

Σ |Γ⊢0 σ(t) : T

Case T-PAT-APP Σ |Γ |Γp ⊢1 tp1 tp2 : Tp ⊣ Γt1 ;Γt2

The only pattern rule that applies to this type derivation is E-PAT-APP and therefore from Eq. (4)

we know

Φ⊢ ts1 � tp1 ⇒σ1 |C1 | Xl1

l1
Φ⊢ ts2 � tp2 ⇒σ2 |C2 | Xl2

l2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ2 ◦σ1 |C1;C2 | Xl1

l1 ; Xl2

l2
E-PAT-APP

(18)

We will first prove that Σ |Γ;Γt2 ⊢0 σ1(t) : T using induction hypothesis over the following state-

ments:

– By T-APP we have Σ |Γ;Γδ ⊢1 ts1 : Ts2→Ts

which can be weakened to Σ |(Γ;Γt2);Γδ ⊢1 ts1 : Ts2→Ts

– By T-PAT-APP we have Σ |Γ |Γp ⊢1 tp1 : Tp2→Tp ⊣ Γt1

which can be weakened to Σ |(Γ;Γt2) |Γp ⊢1 tp1 : Tp2→Tp3 ⊣ Γt1

– As Γt = Γt1 ;Γt2 , Eq. (3) is equivalent to Σ |(Γ;Γt2);Γt1 ⊢0 t : T

– From the first premise of Eq. (18) we knowΦ⊢ ts1 � tp1 ⇒σ |C1 | Xl1

l1

– From Eq. (5) we know Γp | Γδ ⊢Φ wf

and therefore we have that

Σ |Γ;Γt2 ⊢0 σ1(t) : T (19)

Now we will prove that Σ |Γ⊢0 σ2 ◦σ1(t) : T using induction hypothesis over the following state-

ments:

– By T-APP we have Σ |Γ;Γδ ⊢1 ts1 : Ts2→Ts

– By T-PAT-APP we have Σ |Γ |Γp ⊢1 tp2 : Tp2→Tp ⊣ Γt2

– From Eq. (19) we have Σ |Γ;Γt2 ⊢0 σ1(t) : T

– From the second premise of Eq. (18) we haveΦ⊢ ts2 � tp2 ⇒σ2 |C2 | Xl2

l2

– From Eq. (5) we have Γp | Γδ ⊢Φ wf

and therefore we have that

Σ |Γ⊢0 σ2 ◦σ1(t) : T

Case T-PAT-TABS Σ |Γ |Γp ⊢1 ΛXp .tp2 : ∀Xp .Tp2 ⊣ Γt

The only pattern rule that applies is E-PAT-TABS therefore from Eq. (4) we know

Φ, Xp 7→Xs ⊢ ts2 � tp2 ⇒σ |C1 | Xl
l

Φ⊢ΛXs .ts2 �ΛXp .tp2 ⇒σ |C1[Xs /Xp] | Xl
l
, Xs

E-PAT-TABS

(20)

From the premise of T-TABS, Eq. (1) implies

Σ |Γ;Γδ, Xs ⊢1 ts2 : Ts2 (21)

176

A.2 Proof of Preservation

From the premise of T-PAT-TABS, Eq. (2) implies

Σ |Γ |Γp , Xp ⊢1 tp2 : Tp2 ⊣ Γt (22)

From Eq. (5) and Definition A.3 we know that

Γp , Xp | Γδ, Xs ⊢Φ, Xp 7→Xs wf (23)

Using the induction hypothesis with premise of Eq. (20) and Eqs. (3) and (21) to (23) we get

Σ |Γ⊢0 σ(t) : T

Case T-PAT-TAPP Σ |Γ |Γp ⊢1 tp1 Tp1 : Tp2 [Tp /X] ⊣ Γt

The only pattern rule that applies is E-PAT-TAPP therefore Eq. (4) is equivalent to

Φ⊢ ts1 � tp1 ⇒σ |C1 | Xl
l

Φ⊢ ts1 Ts1 � tp1 Tp1 ⇒σ |C1,Ts1=Tp1 | Xl
l

E-PAT-TAPP

(24)

From the premise of T-TAPP, Eq. (1) implies

Σ |Γ;Γδ ⊢1 ts1 : ∀Xs .Ts2 (25)

From the premise of T-PAT-TAPP, Eq. (2) implies

Σ |Γ |Γp ⊢1 tp1 : ∀Xp .Tp2 ⊣ Γt (26)

Using the induction hypothesis with premise of Eq. (24) and Eqs. (3), (5), (25) and (26) we get

Σ |Γ⊢0 σ(t) : T

Case T-PAT-FIX Σ |Γ |Γp ⊢1 fix t : Tp ⊣ Γt The only Φ ⊢ ts � tp ⇒ σ | C | Xl
l

rule that applies is

E-PAT-FIX, the proof follows directly from the induction hypothesis.

Case T-PAT-BIND

From Eq. (2) we know

X j ∈ Γp
j

xk :1 Tk ∈ Γp
k

Σ |Γ |Γp ⊢1 TxUX j
j
xk :Tk

k

Tp
: Tp ⊣;, x :0 ∀X j .

j ⌈Tk⌉→k⌈Tp⌉
T-PAT-BIND

(27)

The only pattern rule that applies is E-PAT-BIND therefore

σ= [∀X ′
j .

j
(
λx ′

k :⌈Tk⌉
k

. ⌈ts⌉[⌊x ′
k⌋/Φ(xk)]

k
)

[X ′
j /Φ(X j)]

j
/x] (28)

FV (ts)∩ range(Φ) ⊆Φ(X j)
j
;Φ(xk)

k
(29)

177

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

From Eq. (3) we know

Σ |Γ, x :0 ∀X j .
j ⌈Tk⌉→k⌈Tp⌉ ⊢0 t : T (30)

We trivially know that

x ′
k :0 ⌈Tk⌉ ∈ Γ; X ′

j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j

k

(31)

Note the nested repetition in · · ·x ′
k :0 ⌈Tk⌉

k · · ·
k

. This implies that we have one ∈ for each k and

each one has an environment containing a x ′
k :0 ⌈Tk⌉ for each k.

Therefore from Eq. (31) can derive

x ′
k :0 ⌈Tk⌉ ∈ Γ; X ′

j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j

k

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j ⊢0 x ′

k : ⌈Tk⌉
k

T-VAR

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j ⊢1 ⌊x ′

k⌋ : Tk

k
T-SPLICE

(32)

From xk :1 Tk ∈ Γp
k

and Eq. (5) we know that for every k

Φ(xk) :1 Tk ∈ Γδ
k

(33)

From X j ∈ Γp
j

and Eq. (5) we know that for every j

Φ(X j) ∈ Γδ j
(34)

From Eqs. (1), (29), (33) and (34) we can deduce that

Σ |Γ;Φ(X j)
j
;Φ(xk) :1 Tk

k ⊢1 ts : Ts (35)

From T-QUOTE and Eq. (35) we get

Σ |Γ;Φ(X j)
j
;Φ(xk) :1 Tk

k ⊢0 ⌈ts⌉ : ⌈Ts⌉ (36)

By weakening Eq. (36) we can get

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j
;Φ(xk) :1 Tk

k ⊢0 ⌈ts⌉ : ⌈Ts⌉ (37)

Using Lemma A.14 with Eqs. (32) and (37) we get

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k

;Φ(X j)
j ⊢0 ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

: ⌈Ts⌉ (38)

For every j , we can use WFT-VAR to instantiate

Γ; X ′
j ⊢ X ′

j wf
j

(39)

178

A.2 Proof of Preservation

Eq. (39) can be weakened to

Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k ⊢ X ′

j wf
j

(40)

Using Lemma A.18 with Eqs. (38) and (40) we get

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k ⊢0 ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

[X ′
j /Φ(X j)]

j
: ⌈Ts⌉ (41)

From Eq. (41) we can derive

Σ |Γ; X ′
j

j
; x ′

k :0 ⌈Tk⌉
k ⊢0 ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

[X ′
j /Φ(X j)]

j
: ⌈Ts⌉

Σ |Γ; X ′
j

j ⊢0 λx ′
k :⌈Tk⌉

k
. ⌈ts⌉[⌊x ′

k⌋/Φ(xk)]
k

: ⌈Tk⌉→k⌈Ts⌉
T-ABS

Σ |Γ⊢0 ∀X j .
j

(
λx ′

k :⌈Tk⌉
k

. ⌈ts⌉[⌊x ′
k⌋/Φ(xk)]

k
)

[X ′
j /Φ(X j)]

j
: ∀X j .

j ⌈Tk⌉→k⌈Ts⌉
T-TABS

(42)

Using Lemma A.13 with Eqs. (30) and (42) we finally get

Σ |Γ⊢0 σ(t) : T

■

Lemma A.8 (Constraint of Pattern Reduction).

If Eqs. (1) to (4) then Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf

Σ |Γ;Γδ ⊢1 ts : Ts (1)

Σ |Γ; Xi
i |Γp ⊢1 tp : Tp ⊣ Γt (2)

Φ⊢ ts � tp ⇒σ |C | Xl
l

(3)

Γp | Γδ ⊢Φ wf (4)

Proof.

From the premise of the Lemma we assume that Eqs. (1) to (4) hold. The proof is performed by

induction on the typing derivations of the patterns Σ |Γ; Xi
i |Γp ⊢1 tp : Tp ⊣ Γt .

Case T-PAT-CONST Σ |Γ; Xi
i |Γp ⊢1 c : C ⊣; The only pattern rule that applies is E-PAT-CONST

which implies that C =; and Xl
l =;. From Eq. (2) we also have that ⊢ Γ; Xi

i
;Γp wf which can

be weakened to ⊢ Γ;Γδ; Xi
i
;Γp wf. Therefore by WFC-EMPTY we can derive Γ;Γδ | Xi

i
;Γp ⊢; wf

which is equivalent to Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf.

Case T-PAT-VAR Σ |Γ; Xi
i |Γp ⊢1 x : Tp ⊣; The only pattern rule that applies is E-PAT-VAR which

implies that C = ; and Xl
l = ;. From Eq. (2) we also have that ⊢ Γ; Xi

i
;Γp wf which can be

179

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

weakened to ⊢ Γ;Γδ; Xi
i
;Γp wf. Therefore by WFC-EMPTY we can derive Γ;Γδ | Xi

i
;Γp ⊢ ; wf

which is equivalent to Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf.

Case T-PAT-LINK Σ |Γ; Xi
i |Γp ⊢1 x : Tp ⊣ ; The only pattern rule that applies is E-PAT-LINK

which implies that C =; From Eq. (2) we also have that ⊢ Γ; Xi
i
;Γp wf which can be weakened

to ⊢ Γ;Γδ; Xi
i
;Γp wf. Therefore by WFC-EMPTY we can derive Γ;Γδ | Xi

i
;Γp ⊢ ; wf which is

equivalent to Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf.

Case T-PAT-ABS

In this we have

Σ |Γ; Xi
i |Γp , xp :1 Tp2 ⊢1 tp2 : Tp ⊣ Γt Γ;Γδ; Xi

i
;Γp ⊢ Tp2 wf

Σ |Γ; Xi
i |Γp ⊢1 λxp :Tp2 .tp2 : Tp2→Tp1 ⊣ Γt

T-PAT-ABS

(5)

The only pattern rule that applies is E-PAT-ABS therefore from Eq. (3) we know

Φ, xp 7→xs ⊢ ts2 � tp2 ⇒σ |C1 | Xl
l

Φ⊢λxs :Ts2 .ts2 �λxp :Tp2 .tp2 ⇒σ |C1,Ts2=Tp2 | Xl
l

E-PAT-ABS

(6)

From Eq. (1) we know

Σ |Γ;Γδ, xs :1 Ts2 ⊢1 ts2 : Ts Γ;Γδ ⊢ Ts2 wf

Σ |Γ;Γδ ⊢1 λxs :Ts2 .ts2 : Ts

T-ABS
(7)

From Eq. (4) and Definition A.3 and the Ts2 = Tp2 constraint we know that

Γp , xp :1 Tp2 | Γδ, xs :1 Ts2 ⊢Φ, xp 7→xs wf (8)

From the induction hypothesis with premises of Eqs. (5) to (7) and Eq. (8) we get

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C1 wf (9)

Γ;Γδ ⊢ Ts2 wf and Γ;Γδ; Xi
i
;Γp ⊢ Tp2 wf can be weakened to

Γ; Xl
l
;Γδ ⊢ Ts2 wf (10)

Γ; Xl
l
;Γδ; Xi

i
;Γp ⊢ Tp2 wf (11)

Therefore using WFC-EQ we can derive

Γ; Xl
l
;Γδ ⊢ Ts2 wf Γ; Xl

l
;Γδ; Xi

i
;Γp ⊢ Tp2 wf Γ; Xl

l
;Γδ | Xi

i
;Γp ⊢C1 wf

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C1,Ts2=Tp2 wf

180

A.2 Proof of Preservation

Case T-PAT-APP

In this case we have

Σ |Γ; Xi
i |Γp ⊢1 tp1 : Tp2→Tp ⊣ Γt1 Σ |Γ; Xi

i |Γp ⊢1 tp2 : Tp2 ⊣ Γt2

Σ |Γ; Xi
i |Γp ⊢1 tp1 tp2 : Tp ⊣ Γt

T-PAT-APP

(12)

The only pattern rule that applies to this type derivation is E-PAT-APP and therefore from Eq. (3)

we know

Φ⊢ ts1 � tp1 ⇒σ1 |C1 | Xl1

l1
Φ⊢ ts2 � tp2 ⇒σ2 |C2 | Xl2

l2

Φ⊢ ts1 ts2 � tp1 tp2 ⇒σ2 ◦σ1 |C1;C2 | Xl1

l1 ; Xl2

l2
E-PAT-APP

(13)

From Eq. (1) we know

Σ |Γ;Γδ ⊢1 ts1 : Ts2→Ts Σ |Γ;Γδ ⊢1 ts2 : Ts2

Σ |Γ;Γδ ⊢1 ts1 ts2 : Ts

T-APP
(14)

Using the induction hypothesis with the first premises of Eqs. (12) to (14) and Eq. (4) we get

Γ; Xl1

l1 ;Γδ | Xi
i
;Γp ⊢C1 wf (15)

Eq. (15) can be weakened to

Γ; Xl1

l1 ; Xl2

l2 ;Γδ | Xi
i
;Γp ⊢C1 wf (16)

Using the induction hypothesis with second premises of Eqs. (12) to (14) and Eq. (4) we get

Γ; Xl2

l2 ;Γδ | Xi
i
;Γp ⊢C2 wf (17)

Eq. (17) can be weakened to

Γ; Xl1

l1 ; Xl2

l2 ;Γδ | Xi
i
;Γp ⊢C2 wf (18)

Using Lemma A.12 with Eqs. (16) and (18) we get

Γ; Xl1

l1 ; Xl2

l2 ;Γδ | Xi
i
;Γp ⊢C1;C2 wf

which is equivalent to

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf

Case T-PAT-TABS

In this case we have
Σ |Γ |Γp , Xp ⊢1 tp2 : Tp ⊣ Γt

Σ |Γ; Xi
i |Γp ⊢1 ΛXp .tp2 : Tp ⊣ Γt

T-PAT-TABS

(19)

The only pattern rule that applies is E-PAT-TABS therefore from Eq. (3) we know

Φ, Xp 7→Xs ⊢ ts2 � tp2 ⇒σ |C1 | Xl1

l1

Φ⊢ΛXs .ts2 �ΛXp .tp2 ⇒σ |C1[Xs /Xp] | Xl1

l1 , Xs

E-PAT-TABS

(20)

181

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

From Eq. (1) we know
Σ |Γ;Γδ, Xs ⊢1 ts2 : Ts

Σ |Γ;Γδ ⊢1 ts : Ts

T-TABS
(21)

From Eq. (4) and Definition A.3 we know that

Γp , Xp | Γδ, Xs ⊢Φ, Xp 7→Xs wf (22)

From the induction hypothesis with premises of Eqs. (19) to (21) and Eq. (22) we get

Γ; Xl1

l1 ;Γδ, Xs | Xi
i
;Γp , Xp ⊢C1 wf (23)

By substituting Xp with Xs in Eq. (23) we get that

Γ; Xl1

l1 ;Γδ, Xs | Xi
i
;Γp ⊢C1[Xs /Xp] wf (24)

Eq. (24) can be weakened to

Γ; Xl1

l1 , Xs ;Γδ | Xi
i
;Γp ⊢C1[Xs /Xp] wf

which is equivalent to

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf

Case T-PAT-TAPP Σ |Γ; Xi
i |Γp ⊢1 tp1 Tp2 : Tp ⊣ Γt

The only pattern rule that applies is E-PAT-TAPP therefore Eq. (3) is equivalent to

Φ⊢ ts1 � tp1 ⇒σ |C1 | Xl
l

Φ⊢ ts1 Ts2 � tp1 Tp2 ⇒σ |C1,Ts2=Tp2 | Xl
l

(25)

From Eq. (1) we know
Σ |Γ;Γδ ⊢1 ts1 : Ts1 Γ;Γδ ⊢ Ts wf

Σ |Γ;Γδ ⊢1 ts1 Ts2 : Ts (26)

From Eq. (2) we know

Σ |Γ |Γp ⊢1 tp1 : Tp1 ⊣ Γt Γ;Γδ; Xi
i
;Γp ⊢ Tp wf

Σ |Γ; Xi
i |Γp ⊢1 tp1 Tp2 : Tp ⊣ Γt

T-PAT-TAPP

(27)

Using the induction hypothesis with premises of Eqs. (25) to (27) and Eq. (4) we get

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C1 wf (28)

182

A.2 Proof of Preservation

Γ;Γδ ⊢ Ts wf and Γ;Γδ; Xi
i
;Γp ⊢ Tp wf can be weakened to

Γ; Xl
l
;Γδ ⊢ Ts2 wf (29)

Γ; Xl
l
;Γδ; Xi

i
;Γp ⊢ Tp2 wf (30)

Therefore we can derive

Γ; Xl
l
;Γδ ⊢ Ts2 wf Γ; Xl

l
;Γδ; Xi

i
;Γp ⊢ Tp2 wf Γ; Xl

l
;Γδ | Xi

i
;Γp ⊢C1 wf

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C1,Ts2=Tp2 wf

which is equivalent to

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf

Case T-PAT-FIX The onlyΦ⊢ ts � tp ⇒σ |C | Xl
l

rule that applies is E-PAT-FIX, the proof follows

directly from the induction hypothesis.

Case T-PAT-BIND

We know that

· · · Γ;Γδ; Xi
i
;Γp ⊢ Tp wf ⊢ Γ;Γδ; Xi

i
;Γp wf

Σ |Γ; Xi
i |Γp ⊢1 TxUX j

j
xk :Tk

k

Tp
: Tp ⊣ Γt;, x :0 ∀X j .

j ⌈Tk⌉→k⌈T1⌉ (31)

Using premise of Eq. (31) we can derive

⊢ Γ;Γδ; Xi
i
;Γp wf

Γ;Γδ | Xi
i
;Γp ⊢; wf

WFC-EMPTY

(32)

The only pattern rule that applies is E-PAT-BIND therefore Eq. (3) is equivalent to

Φ⊢ ts �TxUX j
j
xk :Tk

k

Tp
⇒ [t ′s /x] | {type(ts)=Tp

} | ; (33)

From Eq. (1) we know that

Γ;Γδ ⊢ Ts wf (34)

From Eq. (1) we also know the type of ts is Ts , therefore Eq. (34) is equivalent to

Γ;Γδ ⊢ type(ts) wf (35)

Therefore we can derive

Γ;Γδ ⊢ type(ts) wf Γ;Γδ; Xi
i
;Γp ⊢ Tp wf Γ;Γδ | Xi

i
;Γp ⊢; wf

Γ;Γδ | Xi
i
;Γp ⊢ {

type(ts)=Tp
}

wf
WFC-EQ

which is equivalent to

Γ; Xl
l
;Γδ | Xi

i
;Γp ⊢C wf ■

183

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Lemma A.9 (Pattern Constraints Unification).

If Xl
l ⊢ unify(Xi

i |C) ⇒σ and Γ; Xl
l | Xi

i ⊢C wf and Γ⊢ T wf and Σ |Γ; Xi
i ⊢0 t : T ,

then Σ |Γ⊢0 σ(t) : T

Proof.

Assuming premises of the Lemma

Xl
l ⊢ unify(Xi

i |C) ⇒σ (1)

Γ; Xl
l | Xi

i ⊢C wf (2)

Σ |Γ; Xi
i ⊢0 t : T (3)

Γ⊢ T wf (4)

We perform a proof by induction on the unification derivation of Xl
l ⊢ unify(Xi

i |C) ⇒σ.

Case U-EMPTY

Trivial as Xi
i

is empty and σ is the empty substitution.

Case U-EQ

In this case C is C2,T1=T1 and therefore have

Xl
l ⊢ unify(Xi

i |C2) ⇒σ

Xl
l ⊢ unify(Xi

i |C2,T1=T1) ⇒σ
U-EQ

(5)

From the derivation of Eq. (2) we know

· · · Γ; Xl
l | Xi

i ⊢C2 wf

Γ; Xl
l | Xi

i ⊢C2,T1=T1 wf (6)

Therefore by induction hypothesis using premises of Eqs. (5) and (6) and Eqs. (3) and (4) we get

Σ |Γ⊢0 σ(t) : T

Case U-PAT-VAR

In this case C is C2,T1=X and X = Xi ′
i ′

, X ; Xi ′′
i ′′

and σ= [T1/X]◦σ1. Therefore have

Xl
l ⊢ unify(Xi ′

i ′
; Xi ′′

i ′′ |C2[T1/X]) ⇒σ1 ftv(T1)∩Xl
l =;

Xl
l ⊢ unify(Xi ′

i ′
, X ; Xi ′′

i ′′ |C2,T1=X) ⇒ [T1/X]◦σ1 (7)

184

A.2 Proof of Preservation

From the derivation of Eq. (2) we know

Γ; Xl
l ⊢ T1 wf Γ; Xl

l
; Xi ′

i ′
, X ; Xi ′′

i ′′ ⊢ X wf Γ; Xl
l | Xi ′

i ′
, X ; Xi ′′

i ′′ ⊢C2 wf

Γ; Xl
l | Xi ′

i ′
, X ; Xi ′′

i ′′ ⊢C2,T1=X wf (8)

Using Lemma A.5 on Γ; Xl
l | Xi ′

i ′
, X ; Xi ′′

i ′′ ⊢C2 wf we get

Γ; Xl
l | Xi ′

i ′
; Xi ′′

i ′′
, X ⊢C2 wf (9)

Using Lemma A.20 on Eq. (9) and Γ; Xl
l ⊢ T1 wf we get

Γ; Xl
l | Xi ′

i ′
; Xi ′′

i ′′ ⊢C2[T1/X] wf (10)

Using Lemma A.11 on Σ |Γ; Xi ′
i ′

, X ; Xi ′′
i ′′ ⊢0 t : T we get

Σ |Γ, X ; Xi ′
i ′

; Xi ′′
i ′′ ⊢0 t : T (11)

Therefore by induction hypothesis using premise of Eq. (7) and Eqs. (4), (10) and (11) we get

Σ |Γ, X ⊢0 σ1(t) : T (12)

From Γ; Xl
l ⊢ T1 wf and ftv(T1)∩Xl

l =; we can deduce that

Γ⊢ T1 wf (13)

Using Lemma A.15 on Eqs. (12) and (13) we get

Σ |Γ⊢0 [T1/X]◦σ1(t) : T [T1/X] (14)

Given that Γ⊢ T wf we know that T [T1/X] is equivalent to T . We also know that σ= [T1/X]◦σ1.

Therefore Eq. (14) is equivalent to

Σ |Γ⊢0 σ(t) : T

Case U-ABS

In this case C is C2,Ts1→Ts2=Tp1→Tp2 and therefore have

Xl
l ⊢ unify(Xi

i |C2,Ts1=Tp1 ,Ts2=Tp2) ⇒σ

Xl
l ⊢ unify(Xi

i |C2,Ts1→Ts2=Tp1→Tp2) ⇒σ
U-ABS

(15)

From the derivation of Eq. (2) we know

Γ; Xl
l | Xi

i ⊢C2 wf

Γ; Xl
l ⊢ Ts1 wf Γ; Xl

l ⊢ Ts2 wf

Γ; Xl
l ⊢ Ts1→Ts2 wf

Γ; Xl
l
; Xi

i ⊢ Tp1 wf Γ; Xl
l
; Xi

i ⊢ Tp2 wf

Γ; Xl
l
; Xi

i ⊢ Tp1→Tp2 wf

Γ; Xl
l | Xi

i ⊢C2,Ts1→Ts2=Tp1→Tp2 wf
(16)

185

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Using the premises from Eq. (16) we can derive

Γ; Xl
l | Xi

i ⊢C2 wf Γ; Xl
l ⊢ Ts1 wf Γ; Xl

l
; Xi

i ⊢ Tp1 wf

Γ; Xl
l | Xi

i ⊢C2,Ts1=Tp1 wf Γ; Xl
l ⊢ Ts2 wf Γ; Xl

l
; Xi

i ⊢ Tp2 wf

Γ; Xl
l | Xi

i ⊢C2,Ts1=Tp1 ,Ts2=Tp2 wf
(17)

Therefore by induction hypothesis using premise of Eq. (15) and Eqs. (2), (3) and (17) we get

Σ |Γ⊢0 σ(t) : T

Case U-TABS

In this case C is C2,∀X1.T1=∀X2.T2 and therefore have

Xl
l
, X1 ⊢ unify(Xi

i |C2,T1=(T2[X1/X2])) ⇒σ

Xl
l ⊢ unify(Xi

i |C2,∀X1.T1=∀X2.T2) ⇒σ
U-TABS

(18)

From the derivation of Eq. (2) we know

Γ; Xl
l
, X1 ⊢ T1 wf

Γ; Xl
l ⊢∀X1.T1 wf

Γ; Xl
l
; Xi

i
, X2 ⊢ T2 wf

Γ; Xl
l
; Xi

i ⊢∀X2.T2 wf Γ; Xl
l | Xi

i ⊢C2 wf

Γ; Xl
l | Xi

i ⊢C2,∀X1.T1=∀X2.T2 wf (19)

Premises of Eq. (19) can be weakened to

Γ; Xl
l
, X1; Xi

i
, X2 ⊢ T2 wf (20)

Γ; Xl
l
, X1 | Xi

i ⊢C2 wf (21)

Now, we can substitute X2 with X1 in Eq. (20) to remove it from the environment

Γ; Xl
l
, X1; Xi

i ⊢ T2[X1/X2] wf (22)

Therefore from Eqs. (19), (21) and (22) we can derive

Γ; Xl
l
, X1 ⊢ T1 wf Γ; Xl

l
, X1; Xi

i ⊢ T2[X1/X2] wf Γ; Xl
l
, X1 | Xi

i ⊢C2 wf

Γ; Xl
l
, X1 | Xi

i ⊢C2,T1=T2[X1/X2] wf (23)

Therefore by induction hypothesis using premise of Eq. (18) and Eqs. (2), (3) and (23) we get

Σ |Γ⊢0 σ(t) : T

186

A.2 Proof of Preservation

Case U-QUOTE

In this case C is C2,∀X1.T1=∀X2.T2 and therefore have

Xl
l ⊢ unify(Xi

i |C2,Ts=Tp) ⇒σ

Xl
l ⊢ unify(Xi

i |C2,⌈Ts⌉=⌈Tp⌉) ⇒σ
U-QUOTE

(24)

From the derivation of Eq. (2) we know

Γ; Xl
l ⊢ Ts wf

Γ; Xl
l ⊢ ⌈Ts⌉ wf

Γ; Xl
l
; Xi

i ⊢ Tp wf

Γ; Xl
l
; Xi

i ⊢ ⌈Tp⌉ wf Γ; Xl
l | Xi

i ⊢C2 wf

Γ; Xl
l | Xi

i ⊢C2,⌈Ts⌉=⌈Tp⌉ wf (25)

Using the premises of Eq. (25) we can derive

Γ; Xl
l ⊢ Ts wf Γ; Xl

l
; Xi

i ⊢ Tp wf Γ; Xl
l | Xi

i ⊢C2 wf

Γ; Xl
l | Xi

i ⊢C2,Ts=Tp wf (26)

Therefore by induction hypothesis using premise of Eq. (24) and Eqs. (3), (4) and (26) we get

Σ |Γ⊢0 σ(t) : T

■

Lemma A.10 (Unification Locality).

If Xl
l ⊢ unify(Xi

i |C) ⇒σ and X ∈ Xl
l
, then X ∉ image(σ)

Proof.

Proof by straight-forward induction over the unification derivation. The case U-PAT-VAR is the only

one to add a new mapping and it explicitly states ftv(T)∩Xl
l =;.

■

Lemma A.11 (Well-Formed Type Weakeneing).

If Γ1;Γ2, X ;Γ3 ⊢ T wf then Γ1, X ;Γ2;Γ3 ⊢ T wf

Proof.

Type well-formedness is preserved when environment is permuted up to well-formedness of the

environment, since the well-formedness judgment only looks up types in the environment and is

not sensitive to their order.

■

187

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Lemma A.12 (Constraint Union).

If Γ | X ⊢C1 wf and Γ | X ⊢C2 wf then Γ | X ⊢C1;C2 wf

Proof.

Trivial proof by induction on the derivation Γ | X ⊢C1 wf. ■

Lemma A.13 (Substitution).

∀i , j ∈N0, if Σ |Γ⊢ j t1 : T1 and Σ |Γ, x : j T1 ⊢i t2 : T2 then Σ |Γ⊢i t2[t1/x] : T2

Proof.

From the premises we have that ∀i , j ∈N0,

Σ |Γ⊢ j t1 : T1 (1)

Σ |Γ, x : j T1 ⊢i t2 : T2 (2)

Proof by induction on the typing derivation of Σ |Γ, x : j T1 ⊢i t2 : T2.

Case T-CONST Σ |Γ, x : j T1 ⊢i c : C
The substitution yields c which is trivially typeable with T-CONST as Σ |Γ⊢i c : C.

Case T-VAR Σ |Γ, x : j T1 ⊢i y : T2

Sub-case i = j If x ̸= y , substitution will return y and therefore Σ |Γ⊢ j y : T2. If x = y , substitu-

tion will return t1, which implies Σ |Γ⊢ j t1 : T2 where T1 = T2.

Sub-case i ̸= j Then x ̸= y , otherwise premise Eq. (2) (i.e., Σ |Γ, x : j T1 ⊢i x : T2) would lead to a

contradiction. Hence the substitution will return y and Σ |Γ⊢ j y : T2.

Case T-LINK Σ |Γ, x : j T1 ⊢i x : T

Premise does not hold as x is defined in Σ and not in Γ, x : j T1.

Case T-ABS Σ |Γ, x : j T1 ⊢i λy :T3.t3 : T3→T4

From Eq. (2), we know that

Σ |Γ, x : j T1, y :i T3 ⊢i t3 : T4 (3)

Since x ̸= y , we can use the following permutation of the environment of Eq. (3)

Σ |Γ, y :i T3, x : j T1 ⊢i t3 : T4 (4)

Eq. (1) can be weakened to

Σ |Γ, y :i T3 ⊢ j t1 : T1 (5)

Using the induction hypothesis on Eqs. (4) and (5) we get

Σ |Γ, y :i T3 ⊢i t3[t1/x] : T4 (6)

188

A.2 Proof of Preservation

Therefore we can derive
Σ |Γ, y :i T3 ⊢i t3[t1/x] : T4

Σ |Γ⊢i λy :T3.(t3[t1/x]) : T3→T4

T-ABS
(7)

Finally, by definition of substitution Eq. (7) is equivalent to

Σ |Γ⊢i (λy :T3.t3)[t1/x] : T3→T4

Case T-APP Σ |Γ, x : j T1 ⊢i t3 t4 : T

Typing of Σ |Γ⊢i t3[t1/x] t4[t1/x] : T2 follows directly from the induction hypothesis and T-APP.

Case T-TABS Σ |Γ, x : j T1 ⊢i ΛX .t : ∀X .T3

Typing of Σ |Γ⊢i ΛX .t [t1/x] : ∀X .T3 follows directly from the induction hypothesis and T-TABS.

Case T-TAPP Σ |Γ, x : j T1 ⊢i t T3 : T4[T3/X]

Typing of Σ |Γ⊢i t [t1/x] T3 : T4[T3/X] follows directly from the induction hypothesis and T-TABS.

Case T-FIX Σ |Γ, x : j T1 ⊢i fix t3 : T

Typing of Σ |Γ⊢i fix t3[t1/x] : T2 follows directly from the induction hypothesis and T-FIX.

Case T-QUOTE Σ |Γ, x : j T1 ⊢i ⌈t3⌉ : ⌈T ⌉
Typing Σ |Γ⊢i ⌈t3[t1/x]⌉ : T2 follows directly from the induction hypothesis and T-QUOTE.

Case T-SPLICE Σ |Γ, x : j T1 ⊢i ⌊t3⌋ : T

Sub-case i = 0 Premise Eq. (2) does not hold as T-SPLICE expects an i ≥ 1.

Sub-case i > 0

Typing Σ |Γ⊢i ⌊t3[t1/x]⌋ : T2 follows directly from the induction hypothesis and T-SPLICE.

Case T-LIFT Σ |Γ, x :0 T1 ⊢i lift t3 : ⌈C⌉
Typing Σ |Γ⊢i lift t3[t1/x] : C follows directly from the induction hypothesis and T-LIFT.

Case T-UNLIFT Σ |Γ, x :0 T1 ⊢i unlift t3 with t4 or t5 : ⌈C⌉
Typing judgment Σ |Γ ⊢i unlift t3[t1/x] with t4[t1/x] or t4[t1/x] : C follows directly from the

induction hypothesis and T-UNLIFT.

Case T-MATCH with Σ |Γ, x : j T1 ⊢i ts match X ⌈tp⌉ then tt else te : T2

We know that

Σ |Γ, x : j T1 ⊢i ts : T3 · · · Σ |Γ, x : j T1; X ;Γt ⊢i tt : T2 Σ |Γ, x : j T1 ⊢i te : T2

Σ |Γ, x : j T1 ⊢i ts match X ⌈tp⌉ then tt else te : T2

T-MATCH

(8)

Using induction hypothesis on Eq. (1) and the first and last premise of Eq. (8) we get

Σ |Γ⊢i ts [t1/x] : T3 (9)

Σ |Γ⊢i te [t1/x] : T2 (10)

We can weaken Σ |Γ, x : j T1; X ;Γt ⊢i tt : T2 to

Σ |Γ; X ;Γt , x : j T1 ⊢i tt : T2 (11)

189

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Using induction hypothesis on Eqs. (1) and (11) we get

Σ |Γ, X ;Γt ⊢i tt [t1/x] : T2 (12)

Therefore we can derive

Σ |Γ⊢i ts [t1/x] : T3 · · · Σ |Γ, X ;Γt ⊢i tt [t1/x] : T2 Σ |Γ⊢i te [t1/x] : T2

Σ |Γ⊢i ts [t1/x] match X ⌈tp⌉ then tt [t1/x] else te [t1/x] : T2 (13)

Finally, definition of substitution Eq. (13) is equivalent to

Σ |Γ⊢i (ts match X ⌈tp⌉ then tt else te)[t1/x] : T2

■

Lemma A.14 (Multi-Substitution).

∀i , j ∈N0, if Σ |Γ⊢ j tk : Tk
k

and Σ |Γ, xk : j Tk
k ⊢i t : T then Σ |Γ⊢i t [tk /xk]

k
: T

Proof.

By well-formedness of Γ and the first premise we know that none of the terms tk can have any xk

free. We can thus safely apply Substitution Lemma A.13 for each individual substitution [tk /xk].

■

Lemma A.15 (Type Substitution Well-formedness).

If Γ⊢ T1 wf and Γ, X ⊢ T2 wf, then Γ⊢ T2[T1/X] wf

Proof.

Assuming premises

Γ⊢ T1 wf (1)

Γ, X ⊢ T2 wf (2)

Perform induction on the type well-formedness derivation of Γ, X ⊢ T2 wf.

Case WFT-CONST T2 = C
Then by definition WFT-CONST we have Γ⊢ C wf . Therefore by definition of substitution we

have Γ⊢ C[T1/X] wf which is equivalent to Γ⊢ T2[T1/X] wf .

190

A.2 Proof of Preservation

Case WFT-ABS T2 = T3→T4

The typing judgment Γ⊢ (T3→T4)[T1/X] wf follows directly from induction hypothesis, WFT-

ABS and definition of substitution.

Case WFT-TABS T2 =∀X2.T3

From Eq. (2) know that
Γ, X , X2 ⊢ T3 wf

Γ, X ⊢∀X2.T3 wf
WFT-TABS

(3)

Using Lemma A.11 on premise of Eq. (3) we get

Γ, X2, X ⊢ T3 wf (4)

Using weakening Lemma A.6 on Eq. (1) we get

Γ, X2 ⊢ T1 wf (5)

Using the induction hypothesis with Eqs. (4) and (5) we get

Γ, X2 ⊢ T3[T1/X] wf (6)

Therefore from Eq. (6) we can derive

Γ, X2 ⊢ T3[T1/X] wf

Γ⊢∀X2.(T3[T1/X]) wf
WFT-TABS

(7)

By definition of substitution Eq. (7) is equivalent to

Γ⊢∀X2.T3[T1/X] wf

Case WFT-QUOTED T2 = ⌈T3⌉
The typing judgment Γ ⊢ ⌈T3⌉[T1/X] wf follows directly from induction hypothesis, WFT-

QUOTED and definition of substitution.

Case WFT-VAR T2 = X2

Sub-case X = X2

In this case we have to show Γ⊢ X2[T1/X2] wf . By definition of substitution this is equivalent

to Γ⊢ T1 wf which hold by premise Eq. (1).

Sub-case X ̸= X2

From Eq. (2) know that

⊢ Γ wf X ∉ dom(Γ)

⊢ Γ, X wf
WFE-TVAR

X2 ∈ Γ
X2 ∈ Γ, X

Γ, X ⊢ X2 wf
WFT-VAR

(8)

191

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Therefore we can derive
⊢ Γ wf X2 ∈ Γ

Γ⊢ X2 wf
WFT-VAR

(9)

By definition of substitution Eq. (9) is equivalent to

Γ⊢ X2[T1/X] wf

■

Lemma A.16 (Type Substitution).

∀i ∈N0, if Γ1 ⊢ T1 wf and Σ |Γ1, X ;Γ2 ⊢i t : T then Σ |Γ1; (Γ2[T1/X]) ⊢i t [T1/X] : T [T1/X]

Proof.

From the premises we have that ∀i ∈N0,

Γ1 ⊢ T1 wf (1)

Σ |Γ1, X ;Γ2 ⊢i t : T (2)

We perform a proof by induction on the typing derivation of Σ |Γ1, X ;Γ2 ⊢i t : T .

Case T-CONST Σ |Γ1, X ;Γ2 ⊢i c : C
Follows directly from T-CONST.

Case T-VAR Σ |Γ1, X ;Γ2 ⊢i x : T

From the premise of T-VAR we have that x :i T ∈ Γ1, X ;Γ2.

Sub-case x :i T ∈ Γ1

Then by well-formedness X ∉ ftv(T) and the substitution trivially holds.

Sub-case x :i T ∈ Γ2

In this cases we know that x :i T [T1/X] ∈ Γ2[T1/X] and therefore by T-VAR we have that

Σ |Γ1, (Γ2[T1/X]) ⊢i x[T1/X] : T [T1/X].

Case T-LINK Σ |Γ1, X ;Γ2 ⊢i x : T

From the premise of T-LINK we have that x : T . Therefore by T-LINK Σ |Γ1; (Γ2[T1/X]) ⊢i x : T

holds. We also know that ftv(T) =; because it is defined in Σ, this implies that T [T1/X] = T . We

additionally know from the definition of type substitution that x[T1/X] = x. Therefore we can

conclude Σ |Γ1; (Γ2[T1/X]) ⊢i x[T1/X] : T [T1/X].

Case T-ABS Σ |Γ1, X ;Γ2 ⊢i λx:T3.t3 : T3→T4

From T-ABS we have Σ |Γ1, X ;Γ2, x :i T3 ⊢i t3 : T4. Therefore by induction hypothesis we have

that Σ |Γ1; (Γ2, x :i T3[T1/X]) ⊢i t3[T1/X] : T4[T1/X]. Which is equivalent to the typing judgment

Σ |Γ1; (Γ2[T1/X]), (x :i T3[T1/X]) ⊢i t3[T1/X] : T4[T1/X]. Using this as premise of T-TABS we get

Σ |Γ1; (Γ2[T1/X]) ⊢i λx:(T3[T1/X]).(t3[T1/X]) : (T3[T1/X])→(T4[T1/X]). Therefore by definition of

substitution we get Σ |Γ1; (Γ2[T1/X]) ⊢i λx:T3.t3[T1/X] : T3→T4[T1/X].

192

A.2 Proof of Preservation

Case T-APP Σ |Γ1, X ;Γ2 ⊢i t1 t2 : T

Follows directly from induction hypothesis and T-APP.

Case T-TABS Σ |Γ1, X ;Γ2 ⊢i ΛX2.t1 : ∀X2.T3

From T-TABS we have Σ |Γ1, X ;Γ2, X2 ⊢i t1 : T3 which is weakened to Σ |Γ1, X2, X ;Γ2 ⊢i t1 : T3. There-

fore by induction hypothesis we have that Σ |Γ1, X2; (Γ2[T1/X]) ⊢i t1[T1/X] : T3[T1/X]. From T-

TABS we have Σ |Γ1; (Γ2[T1/X]) ⊢i ΛX2.(t1[T1/X]) : ∀X2.(T3[T1/X]). Using the definition of type

substitution we get Σ |Γ1; (Γ2[T1/X]) ⊢i ΛX2.t1[T1/X] : ∀X2.T3[T1/X].

Case T-TAPP Σ |Γ1, X ;Γ2 ⊢i t T2 : T3[T2/X2]

Follows directly from induction hypothesis and T-APP.

Case T-FIX Σ |Γ1, X ;Γ2 ⊢i fix t1 : T

Follows directly from induction hypothesis and T-FIX.

Case T-QUOTE Σ |Γ1, X ;Γ2 ⊢i ⌈t1⌉ : ⌈T ⌉
Follows directly from induction hypothesis and T-QUOTE.

Case T-SPLICE Σ |Γ1, X ;Γ2 ⊢i ⌊t1⌋ : T

From T-SPLICE we know that an i ≥ 1. The proof follows directly from induction hypothesis and

T-SPLICE.

Case T-LIFT Σ |Γ1, X ;Γ2 ⊢i lift t1 : ⌈C⌉
Follows directly from induction hypothesis and T-LIFT.

Case T-UNLIFT Σ |Γ1, X ;Γ2 ⊢i unlift t1 with t2 or t3 : ⌈C⌉
Follows directly from induction hypothesis and T-UNLIFT.

Case T-MATCH Σ |Γ1, X ;Γ2 ⊢i ts match X ⌈tp⌉ then tt else te : T

From T-MATCH we have

Σ |Γ1, X ;Γ2 ⊢i ts : ⌈Tp⌉ (3)

Σ |Γ1, X ;Γ2; X |; ⊢i+1 tp : Tp ⊣ Γt (4)

Σ |Γ1, X ;Γ2; X ;Γt ⊢i tt : T (5)

Σ |Γ1, X ;Γ2 ⊢i te : T (6)

Therefore by induction hypothesis applied on Eq. (1) and Eqs. (3), (5) and (6) we have that

Σ |Γ1; (Γ2[T1/X]) ⊢i ts [T1/X] : ⌈Tp⌉[T1/X] (7)

Σ |Γ1; (Γ2; X ;Γt [T1/X]) ⊢i tt [T1/X] : T [T1/X] (8)

Σ |Γ1; (Γ2[T1/X]) ⊢i te [T1/X] : T [T1/X] (9)

By distributing the substitution in Eq. (8) we get

Σ |Γ1; (Γ2[T1/X]); X ; (Γt [T1/X]) ⊢i tt [T1/X] : T [T1/X] (10)

By Lemma A.19 using premise Eq. (4) we get

Σ |Γ1; (Γ2; X [T1/X]) |; ⊢i+1 tp [T1/X] : Tp [T1/X] ⊣ Γt [T1/X] (11)

193

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Eq. (11) is equivalent to

Σ |Γ1; (Γ2[T1/X]); X |; ⊢i+1 tp [T1/X] : Tp [T1/X] ⊣ Γt [T1/X] (12)

From T-MATCH with premises Eqs. (7), (9), (10) and (12) we have

Σ |Γ1; (Γ2[T1/X]) ⊢i ts [T1/X] match X ⌈tp [T1/X]⌉ then tt [T1/X] else te [T1/X] : T [T1/X] (13)

By definition of type substitution Eq. (13) is equivalent to

Σ |Γ1; (Γ2[T1/X]) ⊢i (ts match X ⌈tp⌉ then tt else te)[T1/X] : T [T1/X]

■

Lemma A.17 (Well-Formed Weak Type Substitution).

If Γ⊢ T1 wf and Γ⊢ T2 wf, then Γ⊢ T2[T1/X] wf

Proof.

Premise Γ⊢ T2 wf can be weakened to Γ, X ⊢ T2 wf . Therefore using Lemma A.15 with Γ⊢ T1 wf
and Γ, X ⊢ T2 wf we get Γ⊢ T2[T1/X] wf .

■

Lemma A.18 (Type Multi-Substitution).

∀i ∈N0, if Γ⊢ T j wf
j

and Σ |Γ, X j
j ⊢i t : T then Σ |Γ⊢i t [T j /X j]

j
: T [T j /X j]

j

Proof.

By well-formedness of Γ and the first premise we know that none of the terms T j can have any X j

free. We can thus safely apply Substitution Lemma A.16 for each individual substitution [T j /X j].

■

Lemma A.19 (Pattern Type Substitution).

∀i ∈N, if Γ1 ⊢ T1 wf and Σ |Γ1, X ;Γ2 |Γp ⊢i t : T ⊣ Γt

then Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i t [T1/X] : T [T1/X] ⊣ Γt [T1/X]

Proof.

Proof by induction on the typing derivations of the patterns Σ |Γ1, X ;Γ2 |Γp ⊢i t : T ⊣ Γt .

Case T-PAT-CONST Σ |Γ1, X ;Γ2 |Γp ⊢i c : C ⊣; Follows directly from T-PAT-CONST.

Case T-PAT-VAR Σ |Γ1, X ;Γ2 |Γp ⊢i x : T ⊣;
From the premises of T-PAT-VAR we have x :i T ∈ Γp and Γ1, X ;Γ2,Γp ⊢ T wf. Therefore we also

194

A.2 Proof of Preservation

know that x :i T [T1/X] ∈ Γp [T1/X] and Γ1, (Γ2[T1/X]); (Γp [T1/X]) ⊢ T [T1/X] wf. By T-PAT-VAR we

can derive Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i x : T [T1/X] ⊣;. By definition of type substitution we get

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i x : T [T1/X] ⊣;[T1/X].

Case T-PAT-LINK Σ |Γ1, X ;Γ2 |Γp ⊢i x : T ⊣ ; From the premise of T-PAT-LINK we have that

x : T . Therefore by T-PAT-LINK Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i x : T ⊣; holds. We also know that

ftv(T) =; because it is defined in Σ, this implies that T [T1/X] = T . We additionally know from

the definition of type substitution that x[T1/X] = x and ;[T1/X] =;. Therefore we can conclude

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i x[T1/X] : T [T1/X] ⊣;[T1/X].

Case T-PAT-ABS Σ |Γ1, X ;Γ2 |Γp ⊢i λx:T2.t2 : T2→T3 ⊣ Γt

From the premise of T-PAT-ABS we have that Σ |Γ1, X ;Γ2 |Γp , x :i T2 ⊢i t2 : T3 ⊣ Γt . Therefore by

induction hypothesis we get

Σ |Γ1; (Γ2[T1/X]) |Γp , x :i T2[T1/X] ⊢i t2[T1/X] : T3[T1/X] ⊣ Γt [T1/X]

Distributing the substitution in Γp we get

Σ |Γ1; (Γ2[T1/X]) | (Γp [T1/X]), x :i (T2[T1/X]) ⊢i t2[T1/X] : T3[T1/X] ⊣ Γt [T1/X]

Therefore by T-PAT-ABS we can derive

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i λx:(T2[T1/X]).(t2[T1/X]) : (T2[T1/X])→(T3[T1/X]) ⊣ Γt [T1/X]

Finally, by definition of type substitution we get

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i λx:T2.t2[T1/X] : T2→T3[T1/X] ⊣ Γt [T1/X]

Case T-PAT-APP Σ |Γ1, X ;Γ2 |Γp ⊢i t1 t2 : T ⊣ Γt1 ;Γt2

Follows directly from induction hypothesis, T-PAT-APP and definition of substitution.

Case T-PAT-TABS Σ |Γ1, X ;Γ2 |Γp ⊢i ΛX2.t2 : ∀X2.T2 ⊣ Γt

From the premise of T-PAT-ABS we have that Σ |Γ1, X ;Γ2 |Γp , X2 ⊢i t2 : T2 ⊣ Γt . Therefore by induc-

tion hypothesis we get

Σ |Γ1; (Γ2[T1/X]) |Γp , X2[T1/X] ⊢i t2[T1/X] : T2[T1/X] ⊣ Γt [T1/X]

Which is equivalent to

Σ |Γ1; (Γ2[T1/X]) | (Γp [T1/X]), X2 ⊢i t2[T1/X] : T2[T1/X] ⊣ Γt [T1/X]

Therefore by T-PAT-TABS we can derive

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i ΛX2.(t2[T1/X]) : ∀X2.(T2[T1/X]) ⊣ Γt [T1/X]

Finally, by definition of type substitution we get

Σ |Γ1; (Γ2[T1/X]) |Γp [T1/X] ⊢i ΛX2.t2[T1/X] : ∀X2.T2[T1/X] ⊣ Γt [T1/X]

195

Appendix A. Soundness Proof of the Polymorphic Multi-Stage Macro Calculus

Case T-PAT-FIX Σ |Γ1, X ;Γ2 |Γp ⊢i fix t : T ⊣ Γt

Follows directly from induction hypothesis, T-PAT-FIX and definition of substitution.

Case T-PAT-BIND Σ |Γ1, X ;Γ2 |Γp ⊢i TxUX j
j
xk :Tk

k

T : T ⊣;, x :0 ∀X j .
j ⌈Tk⌉→k⌈T ⌉

From the premise of T-PAT-BIND we have that

X j ∈ Γp
j

xk :i Tk ∈ Γp
k

Γ1, X ;Γ2 ⊢ T wf

Σ |Γ1, X ;Γ2 |Γp ⊢i TxUX j
j
xk :Tk

k

T : T ⊣;, x :0 ∀X j .
j ⌈Tk⌉→k⌈T ⌉

T-PAT-BIND

(1)

Form Γ1, X ;Γ2 ⊢ T wf and Γ1 ⊢ T1 wf we know that

Γ1; (Γ2[T1/X]) ⊢ T [T1/X] wf (2)

We can substitute X in X j ∈ Γp
j

and xk :i Tk ∈ Γp
k

to get

X j ∈ Γp [T1/X]
j

(3)

xk :i Tk [T1/X] ∈ Γp [T1/X]
k

(4)

Therefore by T-PAT-BIND we can derive

X j ∈ Γp [T1/X]
j

xk :i Tk [T1/X] ∈ Γp [T1/X]
k

Γ1; (Γ2[T1/X]) ⊢ T [T1/X] wf

Σ |Γ1; (Γ2[T1/X]) | (Γp [T1/X]) ⊢i TxU
X j

j
xk :Tk [T1/X]

k

T [T1/X] : T [T1/X] ⊣;, x :0 ∀X j .
j ⌈Tk [T1/X]⌉→k ⌈T [T1/X]⌉

Finally, by definition of type substitution we get

Σ |Γ1; (Γ2[T1/X]) | (Γp [T1/X]) ⊢i TxUX j
j
xk :Tk

k

T [T1/X] : T [T1/X] ⊣ (;, x :0 ∀X j .
j ⌈Tk⌉→k⌈T ⌉)[T1/X]

■

Lemma A.20 (Constraint Substitution).

If Γ | X , X ⊢C wf and Γ⊢ T wf, then Γ | X ⊢C [T /X] wf

Proof.

Assuming premises

Γ | X , X ⊢C wf (1)

Γ⊢ T wf (2)

Perform induction on the constraint well-formedness derivation of Γ | X , X ⊢C wf.

196

A.2 Proof of Preservation

Case WFC-EMPTY Γ | X , X ⊢; wf
Then we have that C =; and therefore we also have C [T /X] =;[T /X] =;. Therefore we want to

prove that Γ | X ⊢C [T /X] wf which is equivalent to Γ | X ⊢; wf which holds by WFC-EMPTY.

Case WFC-EQ Γ | X , X ⊢C1,T1=T2 wf
From WFC-EQ we have the following premises

Γ⊢ T1 wf Γ; X , X ⊢ T2 wf Γ | X , X ⊢C1 wf

Γ | X , X ⊢C1,T1=T2 wf
WFC-EQ

(3)

Using the induction hypothesis with Γ | X , X ⊢C1 wf and Eq. (2) we get

Γ | X ⊢C1[T /X] wf (4)

Using Lemma A.17 with Γ⊢ T1 wf and Eq. (2) we get

Γ⊢ T1[T /X] wf (5)

Using Lemma A.15 with Γ; X , X ⊢ T2 wf and Eq. (2) we get

Γ; X ⊢ T2[T /X] wf (6)

Therefore we can derive

Γ⊢ T1[T /X] wf Γ; X ⊢ T2[T /X] wf Γ | X ⊢C1[T /X] wf

Γ | X ⊢ (C1[T /X]), (T1[T /X])=(T2[T /X]) wf
WFC-EQ

(7)

By definition of constraint substitution Eq. (7) is equivalent to

Γ | X ⊢ (C1,T1=T2)[T /X] wf

■

197

Bibliography

[1] B. J. Abate. Implement a documentation tool for Dotty using Tasty. Technical report, EPFL, 2019.

M.Sc. Semester Project.

[2] S. Alemanno. Implementing the f string interpolator using Dotty macros. Technical report, EPFL,

2019. URL https://infoscience.epfl.ch/record/267528. B.Sc. Semester Project.

[3] A. Alexandrescu. The D Programming Language. Addison-Wesley Professional, 2010. ISBN

9780321635365.

[4] N. Amin, T. Rompf, and M. Odersky. Foundations of path-dependent types. SIGPLAN Not., 49

(10):233–249, Oct. 2014. ISSN 0362-1340. doi: 10.1145/2714064.2660216. URL https://doi.org/10.

1145/2714064.2660216.

[5] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki. The Essence of Dependent Object Types,

pages 249–272. Springer International Publishing, Cham, 2016. ISBN 978-3-319-30936-1. doi:

10.1007/978-3-319-30936-1_14. URL https://doi.org/10.1007/978-3-319-30936-1_14.

[6] L. Andersen, S. Chang, and M. Felleisen. Super 8 languages for making movies (functional pearl).

Proc. ACM Program. Lang., 1(ICFP), Aug. 2017. doi: 10.1145/3110274. URL https://doi.org/10.

1145/3110274.

[7] Z. Ang. Macro annotations for Scala 3. Master’s thesis, EPFL, 2022. URL https://infoscience.epfl.

ch/record/294615?&ln=en.

[8] H. P. Barendregt. Lambda Calculi with Types, page 117–309. Oxford University Press, Inc., USA,

1993. ISBN 0198537611.

[9] A. Bondorf and O. Danvy. Automatic autoprojection of recursive equations with global variables

and abstract data types. Science of computer programming, 16(2):151–195, 1991.

[10] T. Bordenca. Dotty Decompiler. Technical report, EPFL, 2019. URL https://infoscience.epfl.ch/

record/292828. M.Sc. Semester Project.

[11] E. Burmako. Scala macros: Let our powers combine! on how rich syntax and static types work with

metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA ’13, New York, NY, USA,

2013. Association for Computing Machinery. ISBN 9781450320641. doi: 10.1145/2489837.2489840.

URL https://doi.org/10.1145/2489837.2489840.

[12] E. Burmako. Unification of Compile-Time and Runtime Metaprogramming in Scala. PhD thesis,

EPFL, 2017.

199

https://infoscience.epfl.ch/record/267528
https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3110274
https://doi.org/10.1145/3110274
https://infoscience.epfl.ch/record/294615?&ln=en
https://infoscience.epfl.ch/record/294615?&ln=en
https://infoscience.epfl.ch/record/292828
https://infoscience.epfl.ch/record/292828
https://doi.org/10.1145/2489837.2489840

Bibliography

[13] C. Calcagno, W. Taha, L. Huang, and X. Leroy. Implementing multi-stage languages using ASTs,

gensym, and reflection. In Proc. of the 2nd International Conference on Generative Programming

and Component Engineering, GPCE ’03, pages 57–76, Berlin, Heidelberg, 2003. Springer-Verlag.

ISBN 3-540-20102-5.

[14] J. Carette and O. Kiselyov. Multi-stage programming with functors and monads: Eliminating

abstraction overhead from generic code. In International Conference on Generative Programming

and Component Engineering, pages 256–274. Springer, 2005.

[15] J. CARETTE, O. KISELYOV, and C.-C. SHAN. Finally tagless, partially evaluated: Tagless staged

interpreters for simpler typed languages. Journal of Functional Programming, 19(5):509–543, 2009.

doi: 10.1017/S0956796809007205.

[16] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov, and D. Padua. In Search of a

Program Generator to Implement Generic Transformations for High-performance Computing.

Sci. Comput. Program., 62(1):25–46, Sept. 2006. ISSN 0167-6423.

[17] K. Czarnecki, K. Østerbye, and M. Völter. Generative programming. In J. Hernández and A. Mor-

eira, editors, Object-Oriented Technology ECOOP 2002 Workshop Reader, pages 15–29, Berlin,

Heidelberg, 2002. Springer Berlin Heidelberg. ISBN 978-3-540-36208-1.

[18] K. Czarnecki, J. T. O’Donnell, J. Striegnitz, and W. Taha. DSL Implementation in MetaOCaml,

Template Haskell, and C++, pages 51–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

ISBN 978-3-540-25935-0. doi: 10.1007/978-3-540-25935-0_4. URL https://doi.org/10.1007/

978-3-540-25935-0_4.

[19] R. Davies. A temporal logic approach to binding-time analysis. J. ACM, 64(1), mar 2017. ISSN

0004-5411. doi: 10.1145/3011069. URL https://doi.org/10.1145/3011069.

[20] R. Davies and F. Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555–604, may

2001. ISSN 0004-5411. doi: 10.1145/382780.382785. URL https://doi.org/10.1145/382780.382785.

[21] L. EPFL. Scala 3 Compiler. https://github.com/lampepfl/dotty, 2021.

[22] E. Ernst. Family polymorphism. In J. L. Knudsen, editor, ECOOP 2001 — Object-Oriented Pro-

gramming, pages 303–326, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. ISBN 978-3-540-

45337-6.

[23] E. Ernst, K. Ostermann, and W. R. Cook. A Virtual Class Calculus. In Conference Record of the

33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’06, page

270–282, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595930272. doi:

10.1145/1111037.1111062. URL https://doi.org/10.1145/1111037.1111062.

[24] M. Flatt. Composable and compilable macros: You want it when? In Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming, ICFP ’02, page 72–83, New

York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581134878. doi: 10.1145/

581478.581486. URL https://doi.org/10.1145/581478.581486.

[25] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for bidirectional

tree transformations: A linguistic approach to the view-update problem. ACM Trans. Program.

Lang. Syst., 29(3):17–es, May 2007. ISSN 0164-0925. doi: 10.1145/1232420.1232424. URL https:

//doi.org/10.1145/1232420.1232424.

200

https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1007/978-3-540-25935-0_4
https://doi.org/10.1145/3011069
https://doi.org/10.1145/382780.382785
https://github.com/lampepfl/dotty
https://doi.org/10.1145/1111037.1111062
https://doi.org/10.1145/581478.581486
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424

Bibliography

[26] S. E. Ganz, A. Sabry, and W. Taha. Macros as multi-stage computations: Type-safe, generative,

binding macros in macroml. In Proc. of the Sixth ACM SIGPLAN International Conference on

Functional Programming, ICFP ’01, pages 74–85, New York, NY, USA, 2001. ACM. ISBN 1-58113-

415-0.

[27] P. V. Gorilskij. Implement string interpolator inline unapply. Technical report, EPFL, 2022. URL

https://infoscience.epfl.ch/record/294614?&ln=en. M.Sc. Semester Project.

[28] T. P. Hart. MACRO definitions for LISP. https://dspace.mit.edu/handle/1721.1/6111, October

1963.

[29] J. Hunt. Cake Pattern, pages 115–119. Springer International Publishing, Cham, 2013.

ISBN 978-3-319-02192-8. doi: 10.1007/978-3-319-02192-8_13. URL https://doi.org/10.1007/

978-3-319-02192-8_13.

[30] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A study of devirtualization

techniques for a Java just-in-time compiler. SIGPLAN Not., 35(10):294–310, Oct. 2000. ISSN

0362-1340. doi: 10.1145/354222.353191. URL https://doi.org/10.1145/354222.353191.

[31] J. Jang, S. Gélineau, S. Monnier, and B. Pientka. Mœbius: Metaprogramming using contextual

types: The stage where System F can pattern match on itself. Proc. ACM Program. Lang., 6(POPL),

jan 2022. doi: 10.1145/3498700. URL https://doi.org/10.1145/3498700.

[32] S. P. Jones. Template haskell, 14 years on. https://slidetodoc.com/

template-haskell-14-years-on-simon-peyton-jones/, August 2016.

[33] U. Jørring and W. L. Scherlis. Compilers and staging transformations. In Proc. of the 13th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’86, pages 86–96,

New York, NY, USA, 1986. ACM.

[34] Y. Kameyama, O. Kiselyov, and C.-c. Shan. Shifting the stage: Staging with delimited control.

In Proc. of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation,

PEPM ’09, pages 111–120. ACM, 2009. ISBN 978-1-60558-327-3.

[35] Y. Kameyama, O. Kiselyov, and C. chieh Shan. Combinators for impure yet hygienic code

generation. Science of Computer Programming, 112:120–144, 2015. ISSN 0167-6423. doi:

https://doi.org/10.1016/j.scico.2015.08.007. Selected and extended papers from Partial Eval-

uation and Program Manipulation 2014.

[36] Y. Kammoun. XML String Interpolator for Dotty. Technical report, EPFL, 2019. URL https:

//infoscience.epfl.ch/record/267527. M.Sc. Semester Project.

[37] A. J. Kennedy. Functional pearl pickler combinators. J. Funct. Program., 14(6):727–739, nov

2004. ISSN 0956-7968. doi: 10.1017/S0956796804005209. URL https://doi.org/10.1017/

S0956796804005209.

[38] O. Kiselyov. The design and implementation of ber metaocaml. In M. Codish and E. Sumii, editors,

Functional and Logic Programming, pages 86–102, Cham, 2014. Springer International Publishing.

ISBN 978-3-319-07151-0.

[39] O. Kiselyov. Reconciling abstraction with high performance: A MetaOCaml approach. Foundations

and Trends®in Programming Languages, 5(1):1–101, 2018. ISSN 2325-1107.

201

https://infoscience.epfl.ch/record/294614?&ln=en
https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1007/978-3-319-02192-8_13
https://doi.org/10.1145/354222.353191
https://doi.org/10.1145/3498700
https://slidetodoc.com/template-haskell-14-years-on-simon-peyton-jones/
https://slidetodoc.com/template-haskell-14-years-on-simon-peyton-jones/
https://infoscience.epfl.ch/record/267527
https://infoscience.epfl.ch/record/267527
https://doi.org/10.1017/S0956796804005209
https://doi.org/10.1017/S0956796804005209

Bibliography

[40] O. Kiselyov and C.-c. Shan. The metaocaml files - status report and research proposal. In ACM

SIGPLAN Workshop on ML, 2010.

[41] O. Kiselyov and J. Yallop. let (rec) insertion without effects, lights or magic. CoRR, abs/2201.00495,

2022. URL https://arxiv.org/abs/2201.00495.

[42] O. Kiselyov, A. Biboudis, N. Palladinos, and Y. Smaragdakis. Stream Fusion, to Completeness.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,

POPL ’17, page 285–299, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450346603. doi: 10.1145/3009837.3009880. URL https://doi.org/10.1145/3009837.3009880.

[43] B. Knuchel. Staged Tagless Interpreters in Dotty. Technical report, EPFL, 2019. URL https:

//infoscience.epfl.ch/record/264990. B.Sc. Semester Project.

[44] S. Le Bail-Collet. Stackful Coroutines for Scala 3. Technical report, EPFL, 2020. B.Sc. Semester

Project.

[45] Y. Lilis and A. Savidis. A survey of metaprogramming languages. ACM Comput. Surv., 52(6), Oct.

2019. ISSN 0360-0300. doi: 10.1145/3354584. URL https://doi.org/10.1145/3354584.

[46] F. Liu and E. Burmako. Two approaches to portable macros. Technical report, EPFL, 2017. URL

https://infoscience.epfl.ch/record/231413w.

[47] F. McBride. Computer Aided Manipulation of Symbols. PhD thesis, Queen’s University of Belfast,

1970.

[48] V. Mihaescu. A SQL to C compiler in Scala 3.0. Master’s thesis, EPFL, 2020. M.Sc. Semester Project.

[49] S. Monnier and Z. Shao. Inlining as staged computation. J. Funct. Program., 13(3):647–676,

may 2003. ISSN 0956-7968. doi: 10.1017/S0956796802004616. URL https://doi.org/10.1017/

S0956796802004616.

[50] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects with dependent types.

In L. Cardelli, editor, ECOOP 2003 – Object-Oriented Programming, volume 2743 of Lecture Notes

in Computer Science, pages 201–224. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-40531-3.

doi: 10.1007/978-3-540-45070-2_10. URL https://dx.doi.org/10.1007/978-3-540-45070-2_10.

[51] M. Odersky, E. Burmako, and D. Petrashko. A TASTY Alternative. Technical report, EPFL, 2016.

URL https://infoscience.epfl.ch/record/226194.

[52] M. Odersky, E. Burmako, and D. Petrashko. TASTY Reference Manual. Technical report, EPFL,

2016. URL https://infoscience.epfl.ch/record/226193.

[53] M. Odersky, O. Blanvillain, F. Liu, A. Biboudis, H. Miller, and S. Stucki. Simplicitly: Foundations

and applications of implicit function types. Proc. ACM Program. Lang., 2(POPL), Dec. 2017. doi:

10.1145/3158130. URL https://doi.org/10.1145/3158130.

[54] M. Odersky, A. Boruch-Gruszecki, J. I. Brachthäuser, E. Lee, and O. Lhoták. Safer Exceptions for

Scala. In Proceedings of the 12th ACM SIGPLAN International Symposium on Scala, SCALA 2021,

page 1–11, New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450391139.

doi: 10.1145/3486610.3486893. URL https://doi.org/10.1145/3486610.3486893.

202

https://arxiv.org/abs/2201.00495
https://doi.org/10.1145/3009837.3009880
https://infoscience.epfl.ch/record/264990
https://infoscience.epfl.ch/record/264990
https://doi.org/10.1145/3354584
https://infoscience.epfl.ch/record/231413w
https://doi.org/10.1017/S0956796802004616
https://doi.org/10.1017/S0956796802004616
https://dx.doi.org/10.1007/978-3-540-45070-2_10
https://infoscience.epfl.ch/record/226194
https://infoscience.epfl.ch/record/226193
https://doi.org/10.1145/3158130
https://doi.org/10.1145/3486610.3486893

Bibliography

[55] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules, pages 479–498.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2001. ISBN 978-3-642-48354-7. doi: 10.1007/

978-3-642-48354-7_20. URL https://doi.org/10.1007/978-3-642-48354-7_20.

[56] L. Parreaux, A. Shaikhha, and C. E. Koch. Squid: Type-safe, hygienic, and reusable quasiquotes.

In Proceedings of the 8th ACM SIGPLAN International Symposium on Scala, SCALA 2017, pages

56–66, New York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450355292. doi:

10.1145/3136000.3136005. URL https://doi.org/10.1145/3136000.3136005.

[57] L. Parreaux, A. Shaikhha, and C. E. Koch. Quoted staged rewriting: A practical approach to

library-defined optimizations. SIGPLAN Not., 52(12):131–145, Oct. 2017. ISSN 0362-1340. doi:

10.1145/3170492.3136043. URL https://doi.org/10.1145/3170492.3136043.

[58] L. Parreaux, A. Voizard, A. Shaikhha, and C. E. Koch. Unifying analytic and statically-typed

quasiquotes. Proc. ACM Program. Lang., 2(POPL), dec 2017. doi: 10.1145/3158101. URL https:

//doi.org/10.1145/3158101.

[59] D. Petrashko. Design and implementation of an optimizing type-centric compiler for a high-level

language. PhD thesis, EPFL, Lausanne, 2017. URL https://infoscience.epfl.ch/record/232671.

[60] F. Pfenning and C. Elliott. Higher-Order Abstract Syntax. In Proc. of the ACM SIGPLAN 1988

Conference on Programming Language Design and Implementation, PLDI ’88, pages 199–208.

ACM, 1988. ISBN 0-89791-269-1.

[61] W. Radosław. A mechanized theory of quoted code patterns. Technical report, EPFL, 2020. URL

https://infoscience.epfl.ch/record/278147. M.Sc. Semester Project.

[62] T. Rompf. Reflections on lms: Exploring front-end alternatives. In Proc. of the 2016 7th ACM

SIGPLAN Symposium on Scala, SCALA 2016, pages 41–50, New York, NY, USA, 2016. ACM. ISBN

978-1-4503-4648-1.

[63] T. Rompf and M. Odersky. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code

Generation and Compiled DSLs. In Proc. of the Ninth International Conference on Generative

Programming and Component Engineering, GPCE ’10, pages 127–136, New York, NY, USA, 2010.

ACM. ISBN 978-1-4503-0154-1.

[64] D. Shabalin. Hygiene for Scala. Technical report, EPFL, 2014. URL https://infoscience.epfl.ch/

record/215109.

[65] D. Shabalin, E. Burmako, and M. Odersky. Quasiquotes for Scala. Technical report, EPFL, 2013.

URL https://infoscience.epfl.ch/record/185242.

[66] T. Sheard and S. P. Jones. Template meta-programming for haskell. In Proc. of the 2002 ACM

SIGPLAN Workshop on Haskell, Haskell ’02, pages 1–16, New York, NY, USA, 2002. ACM. ISBN

1-58113-605-6.

[67] Y. Smaragdakis, A. Biboudis, and G. Fourtounis. Structured Program Generation Techniques.

In J. Cunha, J. P. Fernandes, R. Lämmel, J. Saraiva, and V. Zaytsev, editors, Grand Timely Topics

in Software Engineering, pages 154–178, Cham, 2017. Springer International Publishing. ISBN

978-3-319-60074-1.

203

https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1145/3136000.3136005
https://doi.org/10.1145/3170492.3136043
https://doi.org/10.1145/3158101
https://doi.org/10.1145/3158101
https://infoscience.epfl.ch/record/232671
https://infoscience.epfl.ch/record/278147
https://infoscience.epfl.ch/record/215109
https://infoscience.epfl.ch/record/215109
https://infoscience.epfl.ch/record/185242

Bibliography

[68] L. Stadler, G. Duboscq, H. Mössenböck, T. Würthinger, and D. Simon. An experimental study of

the influence of dynamic compiler optimizations on Scala performance. In Proceedings of the 4th

Workshop on Scala, SCALA ’13, New York, NY, USA, 2013. Association for Computing Machinery.

ISBN 9781450320641. doi: 10.1145/2489837.2489846. URL https://doi.org/10.1145/2489837.

2489846.

[69] B. Stroustrup. The C++ programming language. Addison-Wesley Professional, 2000. ISBN

9780201700732.

[70] N. Stucki, A. Biboudis, and M. Odersky. A practical unification of multi-stage programming

and macros. In Proceedings of the 17th ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences, GPCE 2018, pages 14–27, New York, NY, USA, 2018.

Association for Computing Machinery. ISBN 9781450360456. doi: 10.1145/3278122.3278139. URL

https://doi.org/10.1145/3278122.3278139.

[71] N. Stucki, P. G. Giarrusso, and M. Odersky. Truly Abstract Interfaces for Algebraic Data Types: The

Extractor typing problem. In Proceedings of the 9th ACM SIGPLAN International Symposium on

Scala, Scala 2018, pages 56–60, New York, NY, USA, 2018. Association for Computing Machinery.

ISBN 9781450358361. doi: 10.1145/3241653.3241658. URL https://doi.org/10.1145/3241653.

3241658.

[72] N. Stucki, A. Biboudis, S. Doeraene, and M. Odersky. Semantics-preserving Inlining for Metapro-

gramming. In Proceedings of the 11th ACM SIGPLAN International Symposium on Scala, SCALA

2020, pages 14–24, New York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450381772. doi: 10.1145/3426426.3428486. URL https://doi.org/10.1145/3426426.3428486.

[73] N. Stucki, J. I. Brachthäuser, and M. Odersky. Multi-Stage Programming with Generative and

Analytical Macros. In Proceedings of the 20th ACM SIGPLAN International Conference on Generative

Programming: Concepts and Experiences, pages 110–122, 2021.

[74] N. Stucki, J. I. Brachthäuser, and M. Odersky. Virtual ADTs for Portable Metaprogramming.

In Proceedings of the 18th ACM SIGPLAN International Conference on Managed Programming

Languages and Runtimes, pages 36–44, 2021.

[75] N. Stucki, J. I. Brachthäuser, and M. Odersky. Proof of Multi-Stage Programming with Generative

and Analytical Macros. Technical report, EPFL, Sept. 2021. URL https://infoscience.epfl.ch/

record/288718?&ln=en.

[76] N. A. Stucki, F. Liu, and A. Biboudis. Report on theory of quoted code patterns. Technical report,

EPFL, 2020. URL https://infoscience.epfl.ch/record/277946.

[77] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and C. Godin.

Practical virtual method call resolution for Java. In Proceedings of the 15th ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’00, pages

264–280, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 158113200X. doi:

10.1145/353171.353189. URL https://doi.org/10.1145/353171.353189.

[78] D. Syme. The F# 3.0 Language Specification. https://fsharp.org/specs/language-spec/3.0/

FSharpSpec-3.0-final.pdf, Sept. 2012.

[79] W. Taha. Multi–Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate

Institute of Science and Technology, 1999.

204

https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/2489837.2489846
https://doi.org/10.1145/3278122.3278139
https://doi.org/10.1145/3241653.3241658
https://doi.org/10.1145/3241653.3241658
https://doi.org/10.1145/3426426.3428486
https://infoscience.epfl.ch/record/288718?&ln=en
https://infoscience.epfl.ch/record/288718?&ln=en
https://infoscience.epfl.ch/record/277946
https://doi.org/10.1145/353171.353189
https://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf
https://fsharp.org/specs/language-spec/3.0/FSharpSpec-3.0-final.pdf

Bibliography

[80] W. Taha. A Gentle Introduction to Multi-stage Programming, pages 30–50. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 2004. ISBN 978-3-540-25935-0. doi: 10.1007/978-3-540-25935-0_3. URL

https://doi.org/10.1007/978-3-540-25935-0_3.

[81] W. Taha and M. F. Nielsen. Environment classifiers. In In Proc. of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL ’03, pages 26–37, New York, NY, USA,

2003. ACM. ISBN 1-58113-628-5.

[82] W. Taha and T. Sheard. Multi-stage programming with explicit annotations. SIGPLAN Not., 32(12):

203–217, dec 1997. ISSN 0362-1340. doi: 10.1145/258994.259019. URL https://doi.org/10.1145/

258994.259019.

[83] S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Languages as libraries.

In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’11, page 132–141, New York, NY, USA, 2011. Association for Computing

Machinery. ISBN 9781450306638. doi: 10.1145/1993498.1993514. URL https://doi.org/10.1145/

1993498.1993514.

[84] S. Tobin-Hochstadt, V. St-Amour, E. Dobson, and A. Takikawa. The Typed Racket Guide - caveats

and limitations, 2021. URL https://docs.racket-lang.org/ts-guide/caveats.html.

[85] L. Tratt. Domain specific language implementation via compile-time meta-programming. ACM

Trans. Program. Lang. Syst., 30(6), oct 2008. ISSN 0164-0925. doi: 10.1145/1391956.1391958. URL

https://doi.org/10.1145/1391956.1391958.

[86] T. L. Veldhuizen and D. Gannon. Active Libraries: Rethinking the roles of compilers and libraries,

1998. URL https://arxiv.org/abs/math/9810022.

[87] N. Xie, M. Pickering, A. Löh, N. Wu, J. Yallop, and M. Wang. Staging with class: A specification for

typed template haskell. Proc. ACM Program. Lang., 6(POPL), jan 2022. doi: 10.1145/3498723. URL

https://doi.org/10.1145/3498723.

[88] J. Yallop and L. White. Modular macros. OCaml Users and Developers Workshop, 2015.

205

https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://docs.racket-lang.org/ts-guide/caveats.html
https://doi.org/10.1145/1391956.1391958
https://arxiv.org/abs/math/9810022
https://doi.org/10.1145/3498723

NICOLAS
STUCKI
Language Designer
Computer Scientist
Software Engineer

 linkedin.com/in/nicolas-stucki

� github.com/nicolasstucki

 Lausanne, Switzerland

Swiss

HIGHLIGHTS

Core contributor to Scala language design
and implementation. Extensively worked on
Scala 3 and Scala.js compilers and libraries. A
decade and a half of JVM-languages experi-
ence. Contributed: 3’700+ commits, 500’000+
LOC, 2’000+ PRs to Scala open source projects.

INTERESTS

• Programming language design, implementation and theory
• Algorithms and data structures design and implementation
• Modern language features
• Maintainable and clean code

 EDUCATION

2016 – 2022 PhD in Computer Science
supervised by Martin Odersky LAMP at EPFL, Lausanne, CH

2012 – 2015 Master in Computer Science
with Specialization in Foundations of Software EPFL, Lausanne, CH

2006 – 2012 Bachelor in Systems and Computer Engineering
with Minor in Computational Mathematics Universidad de los Andes, Bogotá, CO

� WORK EXPERIENCE

9/2016 – 8/2022 Doctoral Assistant (LAMP at EPFL) Lausanne, CH

4/2015 – 8/2016 Software Developer (LAMP at EPFL) Lausanne, CH

2/2014 – 8/2014 Software Developer (Akselos SA internship at EPFL Innovation Park) Lausanne, CH

6/2010 – 7/2010 Software Developer (Panalpina internship) Basel, CH

 TEACHING EXPERIENCE

2018 – 2021 (Head) TA of Parallel Programming Class EPFL, Lausanne, CH

2014, 2017 – 2021 (Head) TA of Functional Programming Class EPFL, Lausanne, CH

2010 – 2012 TA of Algorithm Design Class Universidad de los Andes, Bogotá, CO

2008 TA of OOP and Algorithms Class Universidad de los Andes, Bogotá, CO

2008 TA of Differential Equations Class Universidad de los Andes, Bogotá, CO

207

� SCIENTIFIC PUBLICATIONS

2021 Multi-Stage Programming with Generative and Analytical Macros GPCE
Stucki, Nicolas / Brachthäuser, Jonathan Immanuel / Odersky, Martin
⋆ Best paper award

2021 Virtual ADTs for Portable Metaprogramming MPLR
Stucki, Nicolas / Brachthaeuser, Jonathan Immanuel / Odersky, Martin

2020 Semantics-Preserving Inlining for Metaprogramming Scala Symposium
Stucki, Nicolas / Biboudis, Aggelos / Doeraene, Sébastien / Odersky, Martin

2018 Truly Abstract Interfaces for Algebraic Data Types Scala Symposium
Stucki, Nicolas / Giarrusso, Paolo Giosuè / Odersky, Martin

2018 A Practical Unification of Multi-stage Programming and Macros GPCE
Stucki, Nicolas / Biboudis, Aggelos / Odersky, Martin

2016 Semantics-Driven Interoperability between Scala.js and JavaScript Scala Symposium
Doeraene, Sébastien / Schlatter, Tobias / Stucki, Nicolas

2015 Improving the Interoperation between Generics Translations PPPJ
Ureche, Vlad / Stojanovic, Milos / Beguet, Romain Michel / Stucki, Nicolas / Odersky, Martin

2015 RRB Vector: A Practical General Purpose Immutable Sequence ICFP
Stucki, Nicolas / Rompf, Tiark / Bagwell, Phil / Ureche, Vlad / Odersky, Martin

2013 Bridging Islands of Specialized Code using Macros and Reified Types Scala Workshop
Stucki, Nicolas / Ureche, Vlad

 CONFERENCES

2022 Program Committee at GPCE Auckland, NZ

2021 Selected Talk at ScalaCon Online
Scala 3 Macros

2019 Selected Talk at Scala Days Lausanne, CH
Metaprogramming in Dotty

� SUPERVISED STUDENT PROJECTS

2022 M.Sc. Thesis: Macro Annotations for Scala 3 LAMP at EPFL
Ang Zhendong

2021 M.Sc. Project: Customizable generation of wrapper code fo Scala Programs LAMP at EPFL
Andres Timothée

2020 M.Sc. Project: A Mechanized Theory of Quoted Code Patterns LAMP at EPFL
Wasko Radosław

2019 B.Sc. Project: Evaluating and Improving Performance of Generic Tuple LAMP at EPFL
Antoine Brunner

2019 M.Sc. Project: XML String Interpolator for Dotty LAMP at EPFL
Yassin Kammoun

2019 B.Sc. Project: Implementing the f string interpolator using Dotty macros LAMP at EPFL
Sara Alemanno

2018 M.Sc. Project: Implementation of Decompiler for the new Scala compiler LAMP at EPFL
Tobias Bordenca

2018 B.Sc. Project: Staged Tagless Interpreters in Dotty LAMP at EPFL
Benoit Louis Knuchel

2017 M.Sc. Project: Call-graph-based Optimizations in Scala LAMP at EPFL
Romain Beguet

⋔ OPEN SOURCE PROJECTS

� github.com/lampepfl/dotty
Scala 3 compiler and standard library. Contributed: 3’400+ commits, 335’000+ LOC, 1’800+ PRs.

� github.com/scala/vscode-scala-syntax
Visual Studio Code plugin for Scala 2 and Scala 3 syntax highlighting. Also the reference syntax
for GitHub syntax highlighting. Contributed: 100+ commits, 4’500+ LOC, 70+ PRs.

� github.com/scala-js/scala-js
Scala.js compiler, library and tools. Contributed: 169 commits, 178’000+ LOC, 125 PRs.

LANGUAGES

English - proficient
Spanish - native
French - mother tongue
(Swiss) German - rudimentary

PROGRAMMING LANGUAGES

Scala - expert
Java - expert
Rust - intermediate
JavaScript - intermediate
Python - intermediate
C/C++/CUDA - intermediate
C# - rudimentary

OTHER SKILS

CI/CD - GitHub Actions, Jenkins
Versioning - Git, Subversion
Markup - LATEX, HTML, XML, Mark-
down, Graphviz Dot
Cloud Computing - Google Cloud

209

	Acknowledgements
	Résumé
	Abstract
	Contents
	List of Figures
	List of Code Examples
	List of Theorems, Lemmas and Definitions
	List of Tables
	Introduction
	Macros Design Principles
	Scala 2 Macros
	Scala 3 Macros
	Contribution

	I Inlining for Metaprogramming
	Semantics-Preserving Inlining for Metaprogramming
	Inline Functions
	Inline Values
	Parameters of Inline Functions
	Recursion
	Inline Conditionals

	Inline Methods
	Members and Bridges
	Overloads
	Abstract Methods and Overrides

	Transparent Inlining
	Metaprogramming
	Inline Error
	Inline Pattern Matching
	Inline Summoning
	Inlining and Macros

	Implementation
	Applicability
	Related Work
	Future Work
	Conclusion

	II Multi-Stage Programming
	Macro and Run-Time Multi-Stage Programming
	Macros and Run-Time Multi-Stage Programming
	Multi-Staging
	Quoted Values
	Macros and Multi-Stage Programming
	Safety
	Staged Lambdas
	Staged Constructors
	Staged Classes
	Quote Pattern Matching
	Sub-Expression Transformation
	Staged Implicit Summoning

	Implementation
	Syntax
	Run-Time Representation
	Entry Points
	Compilation

	Reflection
	Related Work
	Future Work
	Conclusion

	Multi-Stage Macro Calculus
	Multi-Stage Calculus
	Core Calculus
	Quoted Constants Calculus Extension
	Quote Pattern Matching Extension
	Global Definitions Extension
	Patterns with Type Variables Extension
	Parametric Polymorphism Extension
	Polymorphic Multi-Stage Macro Calculus
	Syntax
	Environments
	Typing
	Operational Semantics
	Values

	Concrete Syntax in Scala
	Discussion and Related Work
	Future Work
	Conclusion

	III Typed AST Reflection
	Virtual ADTs for Portable Metaprogramming
	Scaling APIs with Virtual ADTs
	Abstract Types: Separating Interface from Implementation
	TypeTest: Supporting Run-Time Type Tests
	Extension Methods: Restoring the Interface
	Abstract Objects: Encoding Companions
	Unapply Methods: Extractors
	Singletons: Case Objects
	Summary

	Discussion
	Changing the Internal Representation
	Changing the Interface
	Monomorphism
	Limitations

	Related Work
	Future Work
	Conclusion

	A TASTy Reflection Interface
	TASTy Binaries
	Overview of the Reflection API
	Multi-Stage Programming with Reflection
	TASTy Inspector
	Decompiler
	Macro Annotations
	Related Work
	Future Work
	Conclusion

	Epilogue
	Academic Projects
	Core Library, Tools and Community Projects
	Conclusion

	Appendix
	Soundness Proof of the Polymorphic Multi-Stage Macro Calculus
	Proof of Progress
	Proof of Preservation

	Bibliography
	Curriculum Vitae

