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A Phase-Contrast Imaging (PCI) diagnostic provides measurements of line-integrated electron density fluctuations.
Localisation along the laser beam path can be achieved with a spatial filter that selects the wave-vector directions
of the fluctuations contributing to the PCI measurement, and is a key feature of the PCI diagnostic installed on the
TCV tokamak and also of a similar system planned for JT-60SA. We have developed a synthetic diagnostic that models
measurements from PCI taking into account the effect of such a spatial filter. The synthetic tool is based on the principle
of integrating over selected diagnostic volumes the electron density fluctuations generated by turbulence simulations,
and applying an appropriate spatial filter in wave-vector space. We demonstrate the effect of the filter for a positive and
a negative triangularity TCV discharge, and illustrate the potential of the synthetic diagnostic for better understanding
the corresponding experimental results. We consider different types of filters and make first-principle estimates of the
localisation of the measurement. Finally, using gyrokinetic simulations that include electromagnetic effects, collisions
and four kinetic species, we make first predictions of the characteristics of the measurements using the planned set-up

of PCI on JT-60SA.
I. INTRODUCTION

Turbulence driven by small scale instabilities causes signif-
icant transport of heat and particles, greatly reducing the con-
finement time and preventing the formation of a self-sustained
plasma reaction in magnetic confinement devices. Mitigation
of this transport is crucial to achieve controlled fusion, which
requires a proper understanding of the underlying physics of
the turbulent processes.

For a systematic study of turbulence phenomena one should
take both a theoretical and an experimental approach. Theory
is necessary for understanding and predicting turbulence phe-
nomena, which, due to their complexity, often involves car-
rying out numerical simulations and modelling. While this
approach gives an understanding of turbulence from first prin-
ciples physics it often relies on assumptions and simplifica-
tions of the real-life event. To ensure that the simplified mod-
els are valid and the theoretical predictions are accurate, the
modelled turbulence should be compared with experimental
measurements of the fluctuating quantities. Apart from vali-
dating the theory such a comparison, just as importantly, helps
to interpret experimental measurements that are often com-
plex and difficult to link to the underlying physical mecha-
nisms. For example measurements can give information on
fluctuations integrated over a laser beam path or the change
in the shape of a pulse after being reflected by the turbu-
lent structures, thus providing an indirect observation of the
underlying turbulence. The result is also dependent on the
measurement system geometry and procedure (such as opti-
cal components, passage of a laser beam through the plasma,
etc.), and includes the combined effect of a range of fluctua-
tion contributions. This is especially true for Phase-Contrast
Imaging (PCI)!~%, which provides information on small-scale
electron-density fluctuations, integrated along the path of a
laser beam that is injected through the plasma. The measure-

ment is an average over various fluctuation contributions, in-
cluding for example those driven by the Ion Temperature Gra-
dient (ITG) or Trapped Electron Modes (TEM) or caused by
Geodesic Acoustic Modes (GAM). Distinguishing the contri-
butions from the different type of modes is difficult, and fur-
ther complicated by the effect of the measurement geometry
and the optical set-up of the diagnostic. PCI measurements
would therefore strongly benefit from a careful comparison
with simulations.

A proper comparison between simulations and experiments
should consist of two steps. The first is to generate realistic
fluctuations accounting for plasma geometry and profiles from
the corresponding experiment. Nowadays, several gyrokinetic
codes”!'! are able to compute turbulent fluctuations including
multiple kinetic species, collisions and electromagnetic fields
as well as experimental MHD geometry and global effects.
The second step is to also model the experimental measure-
ment procedure through a synthetic diagnostic that takes into
account the exact measurement geometry and the response
of diagnostic set-up and optical equipment. The same anal-
ysis procedures can then be applied to both the output of the
synthetic diagnostic and the corresponding experimental data,
so that valid one-to-one comparisons between the two can
be made. In this paper we present the details of a synthetic
diagnostic that has been developed to model measurements
from PCI, by post-processing non-linear flux-tube gyrokinetic
simulations performed with the Eulerian (grid-based) GENE
code”12715 Synthetic PCI diagnostics have been developed
and tested in the past'®'8, but a novel key element included
in this paper is the effect of a spatial filter that is used in ex-
periments to select preferential wave vector components that
contribute to the measurement. Since the measured wave vec-
tor rotates along the laser beam path, the filter leads to a local-
isation of the PCI signal. Optimal localisation is achieved for
a tangentially propagating PCI beam (i.e approximately tan-
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FIG. 1. Principles of PCIL.

gential to the magnetic field), such as the Tangential Phase-
Contrast Image (TPCI) diagnostic installed on TCV and the
one planned for JT-60SA. In this paper we present the imple-
mentation of such a filter and the effect it has on the TPCI
measurement. As an illustrative example we apply the syn-
thetic diagnostic to two TCV discharges with different plasma
triangularity. We also illustrate the features of the TPCI sys-
tem planned for JT-60SA, using the output from relatively
simple electromagnetic non-linear gyrokinetic simulations.

The remainder of this paper is organised as follows. First, in
Section II we present the concept of the turbulence measure-
ment with PCI and the principles of a spatial filter. In Sec-
tion III we then explain the principle of the synthetic diagnos-
tic, including details of the positive and negative triangularity
discharges considered in this paper, and the implementation
of a spatial filter. In Section IV we illustrate the effects of the
spatial filter and compute the localisation from first principles.
Finally, in Section V we apply the synthetic tool to interpret
measurements of the positive and negative triangularity TCV
discharges and make first predictions for PCI measurements
on JT-60S A, before offering a conclusion in Section VI. Note
that throughout this paper the subscript L, 0 refers to a wave
vector perpendicular to the laser beam while L, B refers to the
wave vector perpendicular to the magnetic field.

Il. THE PCI DIAGNOSTIC

The principle of phase-contrast imaging is depicted
schematically in Fig. 1. We consider a laser beam with a fre-
quency @ much larger than the electron plasma frequency and
the electron gyration frequency, and a wavelength A shorter
than the scale of the density fluctuations in the plasma. Under
these conditions, when a laser beam is sent through a plasma,
the amplitude and shape of the beam are preserved, but varia-
tions in the refractive index introduce a small phase shift §¢
that is proportional to the line integral of the density fluctua-
tions over the beam path L, according to the relation

5¢:QM/5WM, (1)
L

where A is the laser wavelength and r, is the classical electron
radius?. In addition to the phase shift §¢ due to fluctuations
(|[k| > 0) there is also a phase shift due to the slow spatial
variation in the background density (|k| = 0). Let ¢ = @y +
0@ be the total phase shift imparted on the laser beam. We
assume that ¢ < . The electric field of the scattered laser

beam wave can be represented by
E, = Ege'®® ~ Ey(1+i59) 2)

where we expanded to first order in 8@, and where the phase
shift due to variation in the background density, ¢, has been
reabsorbed in the electric field component Ey = E;expi¢y,
where E; is the incident electric field. If the scattered and
unscattered components are directly recombined on an image
plane, a set of square-law detector elements would measure
an amplitude |Ey| = E;, which is independent of the fluctuat-
ing phase shift that we try to quantify. However, if the unscat-
tered components of the wave could be phase-shifted by 90°
with respect to the scattered components, the total scattered
field becomes

E; = iEy+iEyS ¢, 3
and the intensity is then a function of §¢
B[ ~ |Eo[*(1+28¢). @)

In this case, by recombining the scattered and unscattered
components in an image plane, the temporal and spatial vari-
ation of the phase shift is transformed linearly into a measur-
able intensity modulation.

The phase shift can in practice be effected since the scat-
tered and phase shifted components travel at a small angle
to the laser beam propagation direction. A transmitting or
reflecting optic, termed a phase plate™'® placed in the focal
plane of a lens, can therefore be used to phase-shift the two
components of the laser beam relative to each other. Such a
phase plate is simply a mirror with a groove of Ay/8 depth at
the optical axis. A lens placed after the object causes the un-
scattered component affected by electron density fluctuations
to pass though the optical axis on the focal plane, and into the
groove, while scattered components are focused onto a dis-
tance S« = Fk /k¢ from the optical axis, where ky is the laser
wave number and F is the focal length. This is illustrated
in Fig. 1. Contrast is achieved by using a partially reflect-
ing material for the groove which decreases the amplitude of
the unscattered part of the wave by a factor \/p such that the
measured intensity becomes |Eo|*(p +2,/p@), and contrast
has been enhanced by /p.

The width of this groove needs to be large enough to ac-
commodate the full diffraction spot of the unscattered compo-
nent. The diffraction limited focal point is ~ (F /a)Ag, where
a is the optical aperture, and is typically 0.15 — 0.5 mm wide
in practical applications, for the most commonly used laser
wavelength, 10.6 um, corresponding to a CO2 laser.



The drawback of the phase plate is that it now acts as a
high-pass filter, preventing the detection of wave numbers for
which the distance from the optical axis |8x| is smaller than
the width of the groove. This is in fact a fundamental limit of
the technique, as the lack of an external reference precludes
the measurement of absolute phase changes: only phase dif-
ferences across the width of the beam can be measured. The
longest perpendicular wavelength that can be resolved is then
of the order of the beam diameter, S« = Fk/ky > AF /a
which implies that |k| > 27 /a.

In practice, the maximum wave number that can be resolved
unambiguously is set by the Nyquist condition on the spatial
sampling, i.e., by the number of detector elements and their
spacing in the object plane. For a given beam width and detec-
tor dimension, spatial resolution can be increased by enhanc-
ing the magnification through a set of lenses placed before the
detector, and projecting only a fraction of the beam onto the
detector. The cost is, however, a reduced field of view and a
reduced diameter of the cylindrical interaction volume in the
plasma.

Because of the line integration, the measured intensity mod-
ulation will be a sum of all fluctuating components along the
beam path. In this setup PCI will therefore not have any lon-
gitudinal localisation (i.e localisation along the laser beam
path). However, by using the anisotropy of turbulent struc-
tures in magnetically confined fusion plasmas along with the
twist of the magnetic field, longitudinal localisation can in fact
be achieved, as discussed next.

A. Longitudinal localisation

Fluctuations with sufficiently large wave number in the di-
rection of beam propagation are averaged out upon integra-
tion. It follows that the measured intensity modulation is
mainly sensitive to wave vectors perpendicular to the beam,
i.e k ~ k| o. Furthermore, the turbulent structures are elon-
gated along the field lines and the wave vector of the turbulent
fluctuations is predominantly perpendicular to the magnetic
field, k; p > k. The wave vector detected by the PCI diag-
nostic, kmeas, 18 therefore due to fluctuation contributions that
are mainly perpendicular to both the beam propagation direc-
tion and the total magnetic field, i.e., kmeas || B X ko. Since
the magnetic field in the fusion device twists, kpeas Will 10-
tate by an angle that is a function of the coordinate ¢ along the
beam path*, as is indicated in Fig. 2.

The scattered components of the beam in the focal plane
and the propagation direction in the image plane will rotate ac-
cordingly. By placing a narrow angular filter in a focal plane,
measurements will be limited only to wave vectors that fall
inside this range, which in turn corresponds to a specific seg-
ment of the full beam path in the plasma. The integration
is then effectively performed over a reduced length, yielding
some degree of spatial localisation. The minimum angle range
that can be selected is again limited by diffraction.

The technique considered in this work for localising the
measurement involves a one-dimensional detector array com-
bined with a rotatable filter. However, it should be noted

that localisation can also be achieved without using an angu-
lar filter, by employing a two-dimensional detector instead.
In this case the selection of the measured wave vector can
be done numerically through a Fourier decomposition of the
wave numbers, and then applying the selection rule kmess ||
B x ky'82. While this two-dimensional technique gives a
complete profile of the fluctuations for each time instant, a
one-dimensional detector array combined with a rotatable fil-
ter usually provides a higher wave-number resolution and dy-
namic range.

B. The equation for the measured fluctuating intensity

In this work we consider a stigmatic C02 laser beam with
a wave length 10.6 um and thus a frequency @ = 28.3THz
which is much larger than the electron plasma frequency
@), and the electron gyro frequency @, in typical fusion de-
vices, such as TCV and JT-60SA. For example, in TCV
@, <90 GHz and @, ~ 40 GHz. The wave length is also
shorter than the typical size of the fluctuations, ~ 5 mm. The
conditions for the PCI system are therefore well satisfied, and
the only effect of the plasma on the laser beam is a phase
shift, as described above. Furthermore for a typical length of
the interaction volume, ~ 1 m, diffraction within the inter-
action volume is negligible, and the laser beam rays deviates
less than 10 um from a straight line. We approximate the inci-
dent laser beam field with a stigmatic Gaussian beam, whose
transverse width is described by the following equation

1/2 ,<M>
Epo(r,p>=<8fP) (2)1e KRSN©)

T ) Wo

where P is the total beam power, and wy is the 1/e half-width
of the laser beam. The Gaussian field is truncated by the pupil
function P,

{1, if V2 p2<a
P, a(r P ) = . (6)
0, otherwise,

representing the effect of the aperture that is the most restric-
tive optical component limiting the perpendicular size of the
laser beam to the diameter, 2a, of the aperture. The coordi-
nates r and p represent the Cartesian space perpendicular to
the laser beam propagation direction, kg, and are introduced
in Fig. 3.

After scattering, the laser beam field is focused onto the fo-
cal plane where a phase plate is used to create the phase con-
trast between scattered and unscattered components. A spatial
filter is also used for longitudinal localisation of the PCI signal
and to select the measured wave-vector direction. The action
of the phase plate and the spatial filter can be described with
the transfer function T that acts on the scattered laser beam
field P,E,o(1+ 8¢) through the circular convolution operator

o: [T o (PuEp(1+ 5(/)))} (r,p). To first order in the fluctuat-
ing phase, 8¢, the measured fluctuating intensity can then be
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where we made use of Eq. (1). The intensity is evaluated at the
coordinates (Mr, M p) in the detector plane that corresponds to
the coordinates (r, p) in the object plane. Here M is the aggre-
gate magnification of the optical set-up. The time delay #,
in Eq. (7), between the scattering event and the measurement
in the detection plane, can for the parameters we consider be
treated as a constant and will therefore henceforth be omitted.

The synthetic diagnostic implements Eq. (7), as will be de-
scribed in the next section.

Ill. THE SYNTHETIC PCI DIAGNOSTIC

In this section, we will present the details of the synthetic
diagnostic that models the experimental PCI measurements.
The first step, presented in subsection IIT A, is to generate
electron density fluctuations with gyrokinetic simulations. In
the following examples we will take simulations from the
GENE code, but the synthetic diagnostic can easily be adapted
to other gyrokinetic codes by appropriately modifying the
mapping of the coordinates between the simulation and the
diagnostic volumes. In subsection III B we show how we post-
process these fluctuations to obtain the unfiltered PCI signals,
including how we implement the spatial filtering in the syn-
thetic diagnostic.

Throughout this paper we illustrate the synthetic PCI diag-
nostic by modelling measurements from the PCI system in-
stalled on the TCV tokamak, where the laser beam is sent
nearly tangentially through the plasma. The path of the
laser beam through the plasma, projected on a poloidal cross-
section and subdivided into a set of detector chords, is shown
in Fig. 4. An illustration of the toroidal propagation in TCV is
shown in Fig. 5. In this example the PCI beam covers a radial
coordinate going from edge to midradius, as shown in Fig. 6.
In subsection IV we will see however that the spatial filter-
ing can reduce the contributions to the PCI signals down to
a small segment near midradius, as indicated with the green
lines in Fig. 4. The tangential configuration leads to a fast
rotation of the measured wave-vector, and consequently very
good localisation. This will be confirmed from first principles
in subsection IV.

A. Generating 6n,

Electron density fluctuations dn, are generated with the Eu-
lerian (grid-based) local (flux-tube) version of the GENE"-2!
code, which enables one to carry out kinetic simulations
of plasma turbulence by numerically solving the gyrokinetic
equation for evolving the species distributions in phase space.
The local approximation implies that no radial variation of
profiles and their gradients as well as magnetic geometric
coefficients are taken into account; rather, fluctuations are



FIG. 4. PCI set-up in TCV: laser beam (red) divided into several rays
on top of a snapshot (in the poloidal plane in a flux tube centered
around the tangency point) of electron density fluctuations generated
by GENE. The light green segments illustrate the reduced, localised
segments that can be selected with the spatial filters. In the actual
set-up used until now there are 9 non-equidistant rays corresponding
to 9 non-equidistant detector elements.

FIG. 5. The tangential beam geometry of the PCI system shown on
a toroidal cross-section of TCV. The position of the innermost and
outermost flux surfaces is shown in purple while the magnetic axis is
shown in red.

generated based on input parameters that apply to one ra-
dial position, where the normalised radial variable is typi-
cally chosen as given by p;, the square root of the normalised
toroidal flux. Electron density fluctuations dn, = dn,(x,y,z)
provided by the GENE simulations are represented in field-
aligned coordinates x,y,z where x is the radial and y the bi-
normal coordinate, while z is the straight-field-line poloidal
angle parametrising the position along a given field line (note
that B || Vx X Vy so that x = const and y = const defines a
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FIG. 6. Radial p; coordinate as a function of beam propagation
length ¢ for three PCI rays, for a positive triangularity equilibria (dis-
charge 49052). The position £ = {iangency denotes the tangency point
and coincides with the point along the ray where dp;/d¢ = 0. For
purely radial modes, ky, = 0, it is equal to the position £ , introduced
in Eq. (19), where the wave vector is perpendicular to the laser beam
propagation direction k. Each ray is distinguished by the r coor-
dinate introduced in subsection III B, with r = ry (blue ray), r = rp
(green ray) and r = r3 (red ray).

magnetic line). The curvilinear coordinate system (x,y,z) is
clearly non-orthogonal. The coordinates’ expressions in terms
of the radial position py, the toroidal angle ¢ and the straight-
field line poloidal angle y are given by

X = Pr — P10,
y=C[alp)x - 9], (3
=X,

where g is the safety factor, Cy = ro/qo0, qo = q(ro) and
rg = apy o is the radial position of the centre of the flux tube
with a being the minor radius. Periodicity is assumed in the
radial and binormal directions, so that fluctuations are con-
veniently represented in Fourier space along x and y with as-
sociated wave numbers k, and k, respectively. A linearised
safety factor profile, g(x) = go [1 +8(x— Ax) /ro| with a shift
Ax, is considered in Eq. (8). The shift Ax ensures continuity
in the parallel coordinate z when crossing the inner midplane,
see Appendix A. Toroidal symmetry is reflected in (x,y,z)
coordinates by invariance with respect to y. Linear eigen-
modes thus have fixed ky related to toroidal mode number n
by the relation: k, = ngo/ro. Since microinstabilities are field-
aligned with ngg ~ m, where m is the poloidal mode number,
ky =~ m/ry is an estimate of the poloidal wave number. With
respect to z € [—7, ), fluctuations are however represented in
direct space considering a finite difference scheme based on
mesh {zj—o,...»,—1}. Note that k, might not necessarily corre-
spond to an integer toroidal mode number n if the flux tube
does not cover an integer division of the toroidal angle. How-
ever, in this paper, for properly mapping the flux tube onto
the synthetic volumes in the synthetic diagnostic, in all sim-
ulations L, was chosen such that k, translates to an integer
toroidal mode number .



In this paper we generate electron density fluctuations for
a positive and a negative triangularity TCV discharge. For a
proper modelling of a TCV scenario it is necessary to consider
three kinetic species in our simulations: main deuterium ions,
electrons and carbon impurities. Furthermore, collisions also
have to be retained, here modelled with the linearised Landau
collision operator, while electromagnetic effects can be ne-
glected for these TCV-relevant simulations where 8, ~ 0.1%.
Finally, we consider also an experimental magnetic geometry
provided with the MHD code CHEASE??.

Density and temperature profiles for the positive triangu-
larity scenario #49052 (S cgs = 0.5) and negative triangu-
larity scenario #49051 (S cps = —0.25), both with an equal
amount of 460 kW central ECH power, are shown in Fig. 7.
Here O cgs stands for the triangularity at the Last Closed Flux
Surface (LCFS). These profiles have been generated by us-
ing a Kinetic Equilibrium Reconstruction (KER)?*. The aim
of KER is to identify the plasma state given available mea-
surements of profiles and/or first principle modelling. This
is achieved by iterating over pressure profiles combined with
a calculation of the deposited heat and current drive, and a
reconstruction of the plasma equilibrium. The computation
is run until convergence when all results match the available
constraints in a least-squares sense. As input to KER we pro-
vide the electron pressure measured by the Thomson scatter-
ing diagnostic, while the ion density is estimated from quasi-
neutrality and the ion temperature is estimated using the PRE-
TOR formula.

We center the flux tube in the GENE simulations at p; o =
0.6, corresponding to the magnetic surface to which the cen-
tral ray r = r is tangent, as seen in Fig. 6. Parameters at
this radial position for the two discharges are shown in Ta-
ble I. There, B, = 87n.T, /B% is the normalised plasma ki-
netic to magnetic pressure, r,/Lr,, is the normalised gradi-
ent length scale, Zesr = (n; +36nc¢) /n, is the effective charge
and v, = wlnAe*n,r, /(2% /2T?) is a normalised collision fre-
quency used in GENE, where InA is the Coulomb loga-
rithm. The input parameters differ between the two sce-
narios as a consequence of the equal ECH heating but dif-
ferent transport properties. The experimental heat flux val-
ues are Q, = 658 =70 kW, Q; = 105 kW for 6 > 0 and
Q,=616+70kW,Q; =11£5kW for 6 < 0. Since for 6 <0
the electron heat flux is similar to § > 0, but the electron tem-
perature is larger, it suggests that TEMs are weaker. The sta-
bilisation of TEMs could be due to the increased collisionality
and dilution in the 6 < 0 case due to increased impurity den-
sity. This in turns leads to a more peaked T, profile and thus
an increased electron temperature gradient. Another explana-
tion for the similar heat fluxes but different parameters could
also be a stabilisation of ITG turbulence, also due to impuri-
ties. The contribution of ITG to Q, would then also be lower.

For the non-linear GENE simulations we consider the grid
Ny X Ny X N, XN"H X Ny X Ny =256 X 64 x 48 x 30 x 16 x 3,
where the resolutions refer to the number of discretization
points along the three spatial directions (x,y,z), the two veloc-
ity space directions (v|, ), and the number of particle species
s respectively. The radial and binormal simulation box sizes

— Electron, § > 0 --- Main ion, § > 0
— Electron, § < 0 --- Main ion, < 0

0 02 04 06 08 1
Pt

FIG. 7. Density (a) and temperature (b) profiles for electrons (solid
lines) and ions (dashed lines) for positive (blue) and negative (green)
triangularity cases.

TABLE 1. Parameters of the positive triangularity shot #49052 and
negative triangularity shot #49051 (blue font and in parentheses) at
pr = 0.6 used as input to the GENE simulations, obtained from the
MHD equilibrium code CHEASE?? and species profiles shown in
Fig. 7. The reference magnetic field is provided at the magnetic axis.
The parameter r, is the minor radius and R is the major radius. In
bold we show important parameters undergoing a large change when
changing from positive to negative triangularity.

ne [10°m=3]  2.102.12) | T/T, 0.26 (0.22)
9 147 (1.21) | T, [keV] 0.54 (0.88)
ta/Ln.e 148 (1.14) | § 1.44 (1.22)
By [T] 1.55(1.50) | r4/Ln; 1.48 (1.14)
R/a 3.12(3.17) | ry[m] 0.27 (0.28)
ra/Lre 2.81(3.62) | B.[1073]  0.18(0.34)
ni/ne 0.76 (0.36) | ra/Lr; 3.75 (3.42)
ve [1073] 0.78 (0.27) | Zegr 2.2 (4.2)




are different for the two scenarios, with L, =128 p;, L, = 112
pi for & > 0 (p; is the ion Larmor radius), and L, = 142 p;,
L, =152 p, for 6 < 0 as a consequence of the different values
of § and ¢gg. For the same number of radial and binormal wave
numbers we therefore have max(kyp;) = 3.54, max(k.p;) =
6.24 for 6 > 0 and max(kyp;) = 2.6, max(kyp;) = 5.6 for
0 <0.

Adaptive hyperdiffusivities?* in x and y are used to simu-
late damping provided otherwise by small-scale modes that
are not included in this simulation. All non-linear simulations
are performed for a sufficiently long time, #gy, > 900 a/cq
where ¢; = \/T,/m; is the sound speed, to generate enough
statistics of the density fluctuations.

For the considered parameters, we find the simulated ion
and electron heat flux Q, = 152 kW,Q; = 10 kW for § > 0
and Q, = 504 kW, Q; = 3 kW for 6 < 0. In both cases, but
especially for 8 > 0, we see that GK simulations that used
KER to generate input profiles underestimate the experimen-
tal heat flux values. We can better understand the change in
the heat fluxes by looking also at linear GENE simulations,
and compute the growth rate y and frequency @ of the most
unstable mode, as shown in Fig. 8. For 6 > 0 we see TEMs
(@ < 0) at large scales (kyp; < 0.6) and ITG modes (@ > 0) at
smaller scales (kyp; > 0.6). For now we focus on the modes
for kyp; < 2. If we keep the parameters (such as gradients
and densities) of the § > 0 case but using the equilibrium of
0 < 0 we clearly stabilise both ITG and TEMs at these scales.
Adding also the actual parameters of 0 < 0 leads to a slight
increase of the TEM growth rates, due to the larger 7, and
ra/Lte. The orange line shows the stabilisation due to the in-
creased impurity content in 0 < 0. For this case we kept all
the parameters of 0 > 0, including the equilibrium, but then
took the carbon impurity density n. from the 6 < 0 (adjusting
n; for quasineutrality) case. This clearly stabilises both TEM
and ITG modes. Finally, we yet again illustrate the stabilising
role of triangularity by changing the equilibrium to 6 > 0 but
keeping the parameters of § < 0 case, showing an increase in
the growth rates.

In view of these observations we can interpret the change of
the non-linearly simulated ion heat flux going from § > 0 to
6 < 0. The reduction in the heat flux is due to a stabilisation
of ITG modes at the considered scales, which is a combined
effect of an increased impurity content and the change in the
plasma shape. Q; underestimates the experimental value for
the & < O case, since the ITG suppression due to carbon is
most likely overestimated for this case. An increased electron
temperature gradient is observed for the § < 0 case, where
TEMs are stabilised by increased collisionality and the neg-
ative triangularity. Better agreement with experiments could
be achieved by varying input parameters within experimental
error bars. This was not done in the present work where the
aim of the simulations was to make a first test of the synthetic
diagnostic, rather than exactly reproducing the experimental
heat flux levels.

Finally, in Fig. 8§ we note that at smaller scales, above
kypi > 2 the effect of changing from & > 0 to § < 0 is very
different, in fact the growth rates have increased substantially.
Even though this mode is propagating in the ion diamagnetic

—§>0
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Equilibrium of § < 0, parameters of 6 > 0
Equilibrium of § > 0, parameters of 6 < 0
Equilibrium of § > 0, n.of 6 <0
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FIG. 8. Linear simulations illustrating the growth rate (top) and fre-
quency (bottom) for the & > 0 case (red) and é < 0 case (blue). We
also show the result (green) we obtain when we take the equilibrium
from & < 0 but take the parameters (gradients, temperatures and den-
sities) from 8 > 0. The opposite is shown in orange. Finally, we
show what we obtain when we take the case of 6 > 0 but the Carbon
impurity density n. from § < 0 (yellow) and also the case of § < 0
but with the ion temperature gradient set to 0 (brown).

direction (@ > 0) this appears to be an instability of differ-
ent nature than the ITG mode seen for kyp; < 2, as it appears
even if the ion temperature gradient r,/Lr; is set to 0. We
did not investigate further the nature of this mode, as in the
non-linear simulations it has little effect given that the heat
fluxes usually peak around y/k,. We confirm this in Fig. 9
where it is clearly seen that the main contribution to the den-
sity fluctuations, apart from the zonal flow k, = 0 component,
is for kyp; < 1 while for larger scales there is a cascade in k,
of decreasing fluctuation amplitude.

Electron density fluctuations obtained from non-linear
GENE simulations are post-processed with a synthetic diag-
nostic to model measurements from TPCI as discussed in the
next section.

B. Generating the synthetic signals

The synthetic diagnostic aims to model the intensity of the
electron density fluctuations measured by the square-law de-
tectors. As described in Section II, the measured fluctuating
intensity originates from an incident laser beam field that is
scattered by the electron density fluctuations, and the mea-
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FIG. 9. ky spectra, averaged over all k, and z, of the electron density
fluctuations simulated with non-linear GENE simulates. In blue is
the & > 0 case while in red is the case with 6 < 0.

sured fluctuating intensity is given by Eq. (7).

We implement Eq. (7) in subsection III B 1 taking into ac-
count a finite aperture, P,(r, p), and a Gaussian distribution of
the incident laser field, Epo(#, p). While this gives the most
proper estimate of the PCI signals, in this approach it is dif-
ficult to see the contribution from individual GENE k, and
ky modes to the PCI signals. It is more insightful to write
the synthetic signals directly in terms of their GENE k, and
ky contributions, as presented in subsection IIIB 2. To make
it computationally efficient, in this approach we simplify, by
assuming the aperture a to be infinite and describing the inci-
dent laser beam as a plane wave. Further simplifications are
made thanks to the separation of scales, with the beam di-
ameter (2wp > 5 cm) being larger than the size of a typical
turbulence eddy (~ 5 mm) which in turn is larger compared
to the size of the detector elements (~ 0.25 mm). As will be
shown in the end of subsection III B 2, these simplifications
do not alter the main signatures of the synthetic signal, yet the
approach reveals useful information on the role of different k,
and ky, modes.

1. Gaussian beam and finite aperture

We consider the proper case first, and describe the laser
beam E),p with a Gaussian function as described by Eq. (5),
truncated by the pupil function in Eq. (6).

From the gyrokinetic GENE simulations we have obtained
the electron density fluctuations 8n,(x,y,z) inside a flux tube,
centred around the radial position py = 0.6, the laser beam
being tangent to the corresponding magnetic surface. These
density fluctuations have to be interpolated onto a coordinate
system aligned with the PCI laser beam before we can conve-
niently compute the measured intensity in the detector plane.

To compute the synthetic PCI signal we represent the laser
beam in the Cartesian coordinate system e, ey, e, where £ is
the coordinate along the beam direction while 7, p represent
the two coordinates perpendicular to the beam, as shown in
Fig. 3.

From the equilibrium generated by CHEASE, we may
transform the detector coordinates r,p,f to the magnetic
coordinates x(r,p,¢),¢(r,p,¢),p:(r,p,£) as well as com-

pute the safety factor, g(r,p,¢) which then through Eq. (8)
can be transformed to the field-aligned GENE coordinates
x(r,p,0),y(r,p,£),z(r,p,£). We then interpolate the electron
density fluctuations generated by GENE to obtain the fluctua-
tions one(x(r, p,£),y(r, p,£),z(r, p,£)) within the laser beam.

The next step is to apply the effect of the phase plate to
obtain the phase contrast between scattered and unscattered
components. As discussed in Section II, the phase plate is
placed in the focal plane where it introduces a 90° phase
change to components of the laser beam passing through a
central groove. In Fourier k,,k, space the phase plate can be
described with the function

fo = 14 P (krky) (i~ 1), ©

where the pupil function Py, is given by Eq. (6) and p <1
is the power transmissivity that enhances the contrast by at-
tenuating the unscattered component of the beam. The hat
is used to indicate that we now consider the Fourier trans-
form of the real space transfer function T appearing in Eq. (7).
The cut-off wave number, k. = koV/F, is related to the half-
width of the groove, v, which is of the order of the diffrac-
tion half-spot of the unscattered component. The role of Tg
for calculating the intensity in Eq. (7) can be understood with
the help of the Fourier-transforming property of lenses. A
lens placed after the object is used to focus scattered and un-
scattered components of the laser beam onto the phase plate.
The unscattered component is given by the term F,Epp in
Eq. (7) whose field distribution in the focal plane is propor-
tional to .7 [P.Ep| (kr,kp), where Z [] (kr,kp) denotes the
spatial Fourier transform. Correspondingly, the distribution in
the focal plane of the scattered part of the beam, which is af-
fected by the electron density fluctuations, is proportional to
F [P.Ep8n] (ky,kp). The effect of the phase plate can thus
be written as a simple multiplication of both scattered and un-
scattered components with 7. In real space this operation is
represented as a convolution, as written in Eq. (7).

We demonstrate the effect of the phase plate on an artifi-
cial density fluctuation composed of three fluctuating compo-
nents, 6n,(r,p) = 10cos(0.25k.p) + cos(10k.p) + cos(5k.r)
as illustrated in the leftmost plot in Fig. 10. When applying
T¢ the part of the density fluctuation with k < k. that scatters
the laser beam into the groove, is filtered out, while the re-
maining components lead to a measurable intensity, as shown
in the central plot in Fig. 10. The reduction of the fluctuation
amplitude towards the borders is a consequence of the Gaus-
sian form of the incident laser beam, while the circular cut is
due to the Pupil function P,

Given the actual density fluctuations generated by GENE,
on.(x(r,p,0),y(r,p,€),z(r,p,f)), the scattered and unscat-
tered field distributions are calculated using the Fourier trans-
form, before applying Eq. (9), transforming back to real space
and finally evaluating the intensity through Eq. (7).

In addition to the phase plate, in this paper we include the
effect of a spatial filter that is also placed in the focal plane.
As discussed in section II such a spatial filter can be used to
restrict the wave vectors that contribute to the PCI signals. If
we assume that the measured wave vector satisfies k || ko x B
and this direction varies along the laser beam, each wave vec-
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FIG. 10. An artificial electron density fluctuation composed of three fluctuation components (a), the corresponding intensity calculated with
Eq. (7) when applying the effect of a phase plate (b) and the intensity when also including a wedge filter (c). The filters are represented in
wave-number space (k;, k) but could equally be represented in real space (r, p), where they would have the same shape.

tor direction translates to a specific position ¢ along the beam.
The spatial filter therefore selects both which wave vector di-
rections contribute to the PCI signal, and where in the plasma
the signal is coming from. Our goal now is to derive the selec-
tion rules naturally by performing the line integration directly,
i.e., by implementing a truly faithful synthetic diagnostic.

We will consider two different spatial filtering configura-
tions, the wedge and the straight filter, which are alternately
used in the PCI set-up. Similarly to the phase plate, the ac-
tion of the spatial filter is included through a multiplication
of the field distribution of unscattered and scattered compo-
nents in Fourier space, with a mask function. In the case of a
straight filter only the part of the focal spot falling inside the
width +kg, of the filter contributes to the PCI signals. Thus kg
is the upper cut-off wave number in this filter configuration.
The straight filter can in Fourier space be represented with the
mask function

1, if |kp| <ks

: (10)
0, otherwise.

TS (kr 3 kp) = {
An example of the straight filter is shown on the right-hand
side of Fig. 11. Optimal localisation is achieved when kg is
minimum, and thus equal to k.. Since the measured wave-
vector rotates along the laser beam path, the straight filter
configuration thus leads to an optimal localisation for each
wave number |k o|. Fluctuations with larger |k o| fall more
quickly outside the filter domain and are therefore more lo-
calised. The filter therefore leads to a non-uniform localisa-
tion of the fluctuation contributions.

The wedge filter configuration instead provides a uniform
localisation by including any contribution falling inside a
wedge, with a wedge half angle Oy . In this case the mask
function is given by
1, if

kr/\/k2+ k2| > cos By

Ty (kr,kp) = (1)

0, otherwise.

Similarly as for the straight filter configuration, the smallest
wedge half angle is limited by diffraction. From the illustra-
tion of the wedge filter in Fig. 11 we see that a given |k, of

Wedge filter Straight filter

& B —
ky ky

FIG. 11. The wedge (left) and straight (right) configurations used
for spatial filtering in the PCI set-up. Fluctuations that scatter the
laser light onto the filter domain (white colors) contributes to the PCI
signals while other components are strongly damped (black).

stays within the filter over a larger angle and thus over a larger
portion of the laser beam. The wedge filter thus provides
uniform localisation for each |k o| that falls inside the filter.
In this fashion, this filtering choice retains the strict imaging
properties of the technique. In this case the localisation will
be limited by the smallest |k o| that is included in the mea-
surement, and thus this leads to a worse localisation compared
to the straight filter case that optimises the integration length
for each [k .

Notice that the straight and wedge filters in Fig. 11 are rep-
resented in wave-number space (k,,k,). They could equally
well be represented in real space r, p on a focal plane, where
they would have the same shape.

Both filter configurations are aligned along e,, meaning
that any rotation of the filter necessarily involves a corre-
sponding rotation of the image and consequently, the detec-
tor elements. The direction of e, can thus be used to se-
lect the preferential (k,,k,) components. Normally we choose
er || Vx(¢ = liangency) Where liangency is the position along the
laser beam where it is tangent to the magnetic surface, which
corresponds to the point in Fig. 6 where the derivative dp, / d¢
goes to zero. The effect of the spatial filter, in this case the
wedge filter, is illustrated in the rightmost plot in Fig. 10. It
filters out the high k component of the artificial density fluctu-



ation, propagating purely in the e, direction. After applying
both the phase plate groove and the spatial filter the remain-
ing part of the artificial density fluctuation is the component
cos(5k.r) that scatters the laser beam both outside the phase
plate groove, and within the spatial filter.

The total effect of the phase plate and spatial filters is thus
given by a multiplication of scattered and unscattered field
distributions in the focal plane with the total transfer function.
In the case of the straight filter configuration it is 7' = T5T
and T' = T Ty in the case of the wedge filter configuration.

Finally, to obtain the synthetic PCI signals we have to av-
erage over the detector area. The synthetic signal for a given
detector element, i centred at r = r; and p = 0 (as illustrated
in Fig. 3)) is given by

Lp/2+r;  rLp/2 -
= [ [ ardpéMrmpa). (12
—L[)/2+r,' —LD/2

where Lp is the square length of the detector elements as is
illustrated in n Fig. 3.

2. Synthetic PCl signal in terms of GENE k, and k, modes

The procedure described in the previous subsection gives
the most proper estimate of the PCI signals. However, start-
ing from the point when we computed the electron density
fluctuations on the Cartesian grid, dn,(r, p,£,t), we lost track
of how the different k, and k, GENE fluctuation components
individually contribute to the PCI signals. Of course, it is pos-
sible to retrieve this information by artificially modifying the
input GENE fluctuations when calculating Eq. (7) (for exam-
ple by removing all but one k,, k, component, and then repeat-
ing the procedure for all k, and k, values), however it is more
convenient and insightful to directly write the synthetic signal
in terms of the GENE k, and k, modes.

To make this computationally efficient, we make several
simplifications. First, instead of a Gaussian we assume the
incident beam to be an infinite plane wave, and thus equal to a
constant, E,o(r, p) = Epo. The aperture is also assumed to be
infinite. In this case the measured intensity in Eq. (7) can be
rewritten as'

VPCcE

éE(MI‘,Mp,l) - 4 M2

Jo/dZT06mMrm) (13)
where the transfer function 7" here is slightly different from 7
appearing in Eq. (7).

Consider then the electron density fluctuations represented
as a Fourier sum with respect to time and summed over the
radial k, and binormal k, GENE components

225’% (t,ky, ky

ke Ky

5]’16(}’ p,g t Z(l’,p,g),t)
Xeikxx(r,p,é)+ikyy(r,p.l)7 (14)

such that the intensity, Eq. (13), averaged over each detector
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element i is given by

LD/2+I‘, LD/2
/ drdp

N,
< >(r ) 4 M2 z{) Lp/2+ri J—Lp/2
XZZG kxakyvrpag) (k)caky»’@pag))

X 8ne(ky, ky,z(r,p,0),t)e tkex(rp L) +ikyy(rp.t) (15)

Here we have introduced the function G that is related to the
Fourier transform of T'(r, p) appearing in Eq. (13) but con-
tains the necessary terms to make the coordinate transforma-
tion from (7, p,¢) to (x,y,z), valid. In the following we will
actually not explicitly compute G by defining T(r,p). Instead
we directly choose G such that it correctly captures the effect
of the various filters on a given k, and k, mode.

To simplify further we assume that the Fourier am-
plitudes of the fluctuations are constant across the trans-
verse width of the detectors, e.g One(ky,ky,z(r,p,1),t) ~
One(ky,ky,2(ri,0,0),1) = Snelky,ky,z(ri,l),1). Further-
more we expand the phase term such that k.x(r,p,f) +
kyy(r paé) xx(rhovg) + kyy(ri707£) + rkr(rho’gvkxaky) +
pk (11,0, €, ky, ky) = kex(ri, £) + kyy(ri, €) + vk (ri, €, ky  ky) +

kp(ri, ¢, ke, ky), meaning that we regard the detector volumes
as one dimensional rays. Both these simplifications are justi-
fied since the size of the detector elements (in the object plane,
thus Lp is magnified by the magnification 1/M) are very small
compared to the typical size of a turbulence structure. In the
end of this subsection we verify that indeed, after these sim-
plifications, the synthetic signals retains the main signatures
that are obtained in the proper case, subsection IIIB 1.

The wave numbers k, and k, appearing here are com-
puted for each GENE wave number, k. and k,, and for ev-
ery position along the laser beam. For a given k, and &y, the
wave numbers k, and k,, are computed using k,(ri, ¢, k., k) =
lig(}’l,g kx,k ) €, and k (V,,g kx,k ) = klg(}"”g kx,k )
ep. The full wave vector is ki p(ri,l ke ky) = kVx(r;, 0) +
kyVy(r;,£) where the radial Vx(r;,¢) and binormal Vy(r;,¢)
unit vectors for the GENE coordinates are evaluated at every
position r;, ¢ along the laser beam. The wave vector is then
projected onto the unit vectors e, and e, in the r and p di-
rections respectively. Unlike Eq. (12) the intensity in Eq. (15)
thus only includes the wave numbers k; and k), that correspond
to a mode k. and k, that actually exists in the GENE simula-
tion. Henceforth, the dependence of k, and kj, on ky, ky,7; and
¢ is assumed, and therefore omitted in writing to simplify the
notation.

Eq. (15) can thus be written as

(1) (rist) =
“UM/wZZG@x Tekr,kep)

ke ky
X 81 (ke, kg 2(ris 0), t)eikﬂ(ri/f)+ikyy(ri,14) , (16)

where the function .7, (k,,k,) takes into account the effect of
averaging the measured intensity over the detector area. It is
derived from the integration of the intensity over the detector



area and is given by

aM? Lp)\ . Lp
Tav(kr,kp) = msm (kr2M> sin <kp2M>' 17

Just as in the previous subsection, the transfer function
G(kr,kp) contains the combined effect of the phase plate and
spatial filters and is given by G(k;,k,) = GGGy for the wedge
filter case and G(k,,kp) = GGy for the straight filter case.
The transfer function of the spatial filters, Gg and GW are
the same as Ts and Ty defined earlier, given by Eq. (11) and
Eq. (10) respectively. The phase plate, however, is in this case
described by the mask function, G, given by

) 1, it JI2+12 >k,
Golkrky) =4 > VTR = (18)

0, otherwise.

To verify the assumptions and approximations made in this
subsection we compare the wave number spectrum calculated
for the synthetic signals when considering the proper synthetic
signals, computed using the approach in subsection IIIB 1,
with the simplified approach described in this subsection. We
consider On, generated for the positive and negative triangu-
larity cases, using the parameters shown in Table I. The result,
shown in Fig. 12, demonstrates that the simplified approach
is able to reproduce the main trends of the synthetic signals:
in particular, the asymmetry in the amplitudes of fluctuations
propagating with k, > 0 and k, < 0, for both positive and nega-
tive triangularity cases. Henceforth we will rely on the results
obtained using the simplified approach only, which allows us
to study the contribution of each k,,k, GENE fluctuation to
the synthetic signals. Since we are mainly interested in re-
producing the relative amplitudes of the fluctuations we have
chosen E in the plane wave approximation Eq. (16) to obtain
similar amplitudes to the Gaussian beam case.

As pointed out in subsection II A, the consequence of se-
lecting the wave vector directions is also a reduction in the
integration length. Under the assumption that the measured
wave vector satisfies Kmeas || Ko X B, each of the fluctuation
components 8n,(ky,ky,z(r;,€)) is a delta function, which is
non-zero only at the point £ = £, where that (ky,k,) compo-
nent is perpendicular to the laser beam. If we set 8 equal to
the fast varying phase in Eq. (14), 0 (ky,ky,r;,£) = kex(ri, £) +
kyy(ri,£), we define £, such that

=,

dx(ri, €) ‘ dy(ri, €)
al =, Y 9¢

= (keVx(ri, 0) + kyVy(ri, 0)) '63’/

':[L

89(kx,ky,r;,£)‘
a¢

k |
* =0,

— k- ‘ =0. 19
L€, n (19)
For purely radial modes with ky, = 0 this position is at the tan-
gency point, £| = liangency as illustrated in Fig. 6. At a given

point ¢ along the laser beam we therefore have contributions
from all (ky,ky) modes that satisfy k,Vx(r,¢) + k,Vy(r,0) ||
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FIG. 12. Comparison of the wave-number spectrum when using ei-
ther the proper approach with a Gaussian laser beam (solid lines)
with the simplified approach of a plane wave (dashed lines). We
show the comparison for both positive (blue) and negative (red) tri-
angularities.

ko x B. When the filter axis is along the radial direction at the
tangency point, wave vectors that are mostly radial will con-
tribute to the PCI signal, meaning that the contribution to the
integral in Eq. (1) should mainly come from a small segment
near the tangency point. In the next section we will ignore
the assumption kpeys || ko x B and seek to rederive it directly,
by estimating the "true" integration length we obtain and its
relation to the dominant k,,k, components in the PCI signals.

IV. LOCALISATION OF THE SYNTHETIC SIGNALS

In this section we compute estimates of the "true" integra-
tion length and localisation. We compare our results with
the theoretical expectation when the measured wave vector
strictly satisfies kmeas || ko X B, as was discussed in the pre-
vious Section II. First in subsection IV A we present the
method we use for computing the localisation. Then in sub-
section IV B we illustrate the localisation for the positive and
and negative triangularity discharges, presented in subsec-
tion IITA.

A. Method for computing the localisation

When computing the localisation of the PCI signals we will
rely on the simplified approach for computing the synthetic
signals, described in subsection IIIB 2. This will allow us to
study the localisation and the contribution of each individual
GENE k, and k, fluctuation components and thus see the ef-
fect of the geometrical mode structure of the various contribu-
tions.

Localisation relies on the two criteria, Kpeas L B and



Kmeas L Ko. The criterion Kpeys L B is already a built-in as-
sumption in gyrokinetics and can be verified by noting that the
variation along the parallel direction is much slower compared
to the variation across a field line dln dn, /dz < dlndn, / dx ~
dln én,/dy. By representing the fluctuations in terms of their
ky and k, wave numbers we therefore automatically consider
fluctuations that satisfy Kmeas = k| g L B. The wave vector
perpendicular to the magnetic field, for every k, and ky, is
given by

kip(l,r)=Vx(l,r)keese(¢,1)
+kycy (qux(E, V) - V¢ (f, r)) ) (20)

where the effective radial wave number is ky cf(4,7) = ke +
X (£)$ky and where the dependence on  shows how the radial
wave number increases as we move in the poloidal direction,
due to the magnetic shear. This wave vector is a function of
the coordinate along the beam due to the gradients, Vx(¢) and
Vy(£). Notice that k| g(¢) is everywhere continuous while
Vy(¢) has a jump once we cross the inner midplane. This is
again a consequence of the parallel boundary conditions and
the connection of the k, modes, since the jumps in Vy and k;
cancel.

The second property that the measured fluctuations have to
satisfy is Kmeas L Ko, and is a consequence of the line averag-
ing. Away from ¢ =/, a given k,,k, mode generates a large
component along ko and is therefore averaged over once we
carry out the integration. This implies that the integral over
the whole laser beam path L in Eq. 13 can be replaced by an
integral over a shorter segment ALy, centred at £ =/, , pro-
vided that the rest term is small compared to the contribution
around ¢ = ¢, . This property should be satisfied in a statis-
tical sense such that the analysis of the PCI signals does not
change when we integrate over the shorter segment. Since the
analysis of the PCI signals is often performed by computing
the Power-Spectral Density (PSD) we aim to find ALy, 4, that
preserves the PSD. We therefore compute the PSD of the cu-
mulative integral around £ = ¢ and sum over the frequency
components to estimate the total power contribution from a
given segment of length AL

2
VPeEg
Skx,ky(riyAL) = <47rp”e)\OM2

2

21

/%L(kx,k)-)JrAL/Z
X

dtG Ty Sney, ,, (@(ri ), f)

f . ‘el(k,wky)*AL/z

where
ey, (273, 0), f) = Bl ky,2(ri ), £t Pk

and where we have carried out a Fourier transform over the
relevant frequencies f of the density fluctuations. In this case
we consider f between 10 and 300 kHz which has been com-
monly used when analysing the PCI signals in this work.

If ALy, , preserves the PSD it implies that for larger inte-
gration lengths, AL > ALy ., the value of Sy, 4, (AL) should
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not change. We therefore define

Aka,ky = mm(AL) .
2

Stk (ALg. 1y
Sty (Alkcly) <eVAL>AL,, — (22)

—1
Sy (AL)

where € = 0.1, meaning that the reduced segment includes at
least 90% of the total signal power. To illustrate this method
we take as an example a purely radial k, = 0 mode. A snap-
shot of the PCI signal from this component is shown in the top
plot in Fig. 13, with and without applying a straight filter. The
considered component is perpendicular to the PCI laser beam
at the tangency point, £; ~ 0.3 m. When evaluating Eq. (21)
for this case we obtain the result in the bottom plot in Fig 13.
The straight red thick lines in both plot shows the chosen in-
tegration length. It is clearly seen how the narrow straight
filter suppresses the considered fluctuation component once
its wave vector falls outside the filter, leading to a much more
localised measurement. For a general PCI geometry we might
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FIG. 13. On the top: Electron density fluctuation, along the central
chord of the PCI beam (r; = r() for a purely radial electron den-
sity fluctuation component k, # 0, ky, = 0 without applying any filter
(blue) and with a straight filter (red). The black dashed line indicates
the ¢, point and the solid line for each component shows the calcu-
lated integration length. On the bottom: the result from Eq. (21) for
both cases.

have multiple values of ¢, and therefore potentially multiple
localised segments that should be taken into account when we
carry out the integration. In this case we compute a value of
ALy, 1, separately for each segment by centering the integra-
tion interval in Eq. (21) around each ¢, . In the next subsec-
tion IV B we will focus on the localisation of the PCI signals
in TCV, where we only have a single segment. The case of
multiple ¢, values will be discussed in detail later in Sec-
tion VB where we will look at the PCI geometry proposed
for JT-60SA.

We will carry out the analysis of the localisation for the
central PCI ray only, with r; = rg, since other rays will lead
to similar results. In the following it is assumed that all quan-



tities are evaluated at r; = rp and we henceforth omit writing
this variable to simplify the notation.

There are three different features of the density fluctuation
in Eq. (14) that can have an effect on the localisation. The
most important is localisation due to the geometrical structure
of a ky and k, mode. To study this we assume that the electron
density fluctuation takes the form

Sne(O) s, = ei(kxx(é)+kyy(£/)) — o0k 0) (23)
XKy

with constant fluctuation amplitude along the laser beam. The
subscript indicates that we now consider just one k,,k, fluc-
tuating component. Fluctuations of the form described by
Eq. (23) have been the basic assumption in the past when
making estimates of the PCI localisation>>~%7. The result in
this case can be compared with an estimate of the integration
length which is derived by performing a second order Tay-
lor expansion of the fast-varying phase 0 around the tangency
point /|

0 (ky,ky,l) ~ 6 (ky,ky,l )

1926 (ky, ky, £) 2
+§T (I —1)7,

where we used Eq. (19) to remove the first order derivative.
For some constant C we thus find

ALy, g, ~ \/ 2C /

The value of C is chosen such that ALy 4 calculated

through Eq. (24) matches Eq. (22) atlow k| ~ 1 cm™!.

In addition to the geometrical structure described by the fast
varying phase in Eq. (23) there are two more features of the
fluctuations that have to be taken into account for a proper
estimate of the localisation. The first is the effect of the phase
of the complex Fourier amplitudes, é(kmky,ﬁ,t), which can
be defined from the relation

‘e:@

(24)

826(kx,ky,£)/8£2‘

=0,

eié(kx,ky,f,t) = 6n€(€7t)kx,ky/ (’5?13(5,1)/%1(),

ei9(/<x-,ky~,f)>(25)

This phase is in general dependent both on time and position
along the beam, and reflects the field aligned nature of the
fluctuations. The more realistic signal thus becomes

Sn, (€7t)kx b = eié(kx,ky,é.t) 10 krky ) (26)

Finally, we can also have a time and spatial variation of the

Fourier amplitude

ne(ﬁ,t)kmk)_‘, which in a local simulation

mainly reflects the ballooning structure of the fluctuations.
The actual simulated fluctuations thus take the form

5’16 (67 l‘)k)(.k(v =
‘ 5%( ke Ky, 2, t) ’ eié(kx,ky,é,r) eiG(kX,ky,(Z)7 27)
which is equal to Eq. (14) when only considering a single
kx,ky mode. The effect of both the phase ¢ and the spatial vari-

ation of the Fourier amplitudes can only be addressed in part
in a local simulation. In reality, both amplitude and phase will
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vary along the laser beam due to variation in the background
profiles and their gradients, as well as change in the magnetic
geometry. These effects could properly be addressed with a
global simulation, but in this work we limit the analysis to the
local case, while a comparison with a global simulation is left
for future work.

B. Localisation for positive and negative triangularity TCV
plasmas

We focus the analysis of the localisation properties for TCV
on the positive triangularity case, and in the end we make a
comparison with results for the negative triangularity case.
We carry out the exercise of calculating ALy, for all three
forms of the density fluctuations, and with and without ap-
plying the filter in Eq. (21). We illustrate the localisation
properties for two different filter angles: 160 degrees and 100
degrees (the angle is calculated relative to the outer plasma
midplane). For the positive triangularity discharge, #49052, a
160 degree filter angle corresponds to the radial direction at
the tangency point. A straight filter with a width equal to the
Gaussian width of the focal spot will be compared with the
wedge filter. The wedge half angle is 8y = 30 degrees, which
has been commonly used in the experiments. We will con-
sider only the main fluctuating components falling inside the
filter, whose power is larger than 1% of the RMS value when
averaging over all k,,k, contributions.

For the positive triangularity case and a 160 degree filter
angle we obtain the power levels as shown in the two first
columns in Fig. 14. The top row (a) includes only geometrical
effects (i.e a density fluctuation given by Eq. (23)) while the
middle row (b) also includes the effect of the phase, Eq. (26).
In the third row (c) we show the result obtained when con-
sidering the true form of the simulated density fluctuation,
Eq. (27), but normalised by its RMS value. Finally, the ac-
tual simulated, unnormalised, fluctuations have been used to
obtain the result in the bottom row (d). For a 160 degree filter
angle the filters clearly preferably select components with low
ky. In the case of Eq. (23) the k, = 0 component is perfectly
symmetrical, while there is a very slight asymmetry appearing
for larger k,. Adding the effect of the phase 6, Eq. (26), leads
to a slight asymmetry in the k, = 0 components that have now
a dominant contribution that is propagating radially outward,
kx > 0. When using Eq. (27), the k, = 0 component stands out
even more and finally, when including the actual amplitude it
clearly becomes the dominant feature in the PCI signal. As
will be shown in the next section, V A, this component in fact
corresponds to a radially outward propagating GAM and is
dominating the synthetic PCI signals for the considered posi-
tive triangularity TCV scenario.

Next, in Fig. 15, we show the corresponding localisation
along the laser beam, after applying Eq. (21) and using the
criterion in Eq. (22), for each type of density fluctuation. In-
stead of AL we show the equivalent segment length in Apy .,
i.e the corresponding extent of the segments across the flux
surfaces. The case without any filter (red circles) tests the
property, kmeas L ko which we can see is poorly satisfied.
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FIG. 14. Total power of each GENE k,,k, component when integrated over the whole laser beam propagation length in the case of a wedge
filter (first column) and a straight filter (second column). The fluctuating data used to generate these plots comes from the positive triangularity
case, discharge #49052. Both filters have a filter angle equal to 160 degrees, which corresponds to the radial direction at the tangency point. The
power levels are shown of a density fluctuation of the form given in Eq. (23), (a), when including the effect of the phase é(kx7 ky,,1), Eq. (26)
(b) when considering the actual simulated density fluctuation but normalised with its RMS value, Eq. (27) (c), and finally when including the
actual amplitude of the simulated density fluctuations (d). The color scale is such that darker green colors indicate large amplitudes.

For k| (¢1) <7 cm™! essentially the whole laser beam path
length, Apy, k, ~ 0.4, is required to be able to reproduce a
power level above 90% of the actual value. For increasing
ky (£1) however we start to see a reduction in the integration
length. This indicates that the spatial variation of the fluctua-
tion is fast enough and the contribution to the PSD away from
¢ =10, (ky,ky) is being averaged out. Applying a wedge filter
(blue squares) leads to only slightly better localisation at low
k. We conclude that while the wedge filter does have the
effect of restricting the wave-vector directions, it has nonethe-
less little effect on the localisation. Very good localisation is
however seen when we consider the optimal case, i.e apply a
straight filter (green asterisks). Most components in this case
have Apy, k, ~ 0.1. In the straight filter case, lighter shades

of green indicates an increase in the k, wave number which
seems to lead to worse localisation. The reason is that the ¢
locations of k, # 0 components are away from the tangency
point, where p and the angle between the fluctuation wave
vector and laser beam is varying the most. For k, 7 0 the same
integration length along the laser beam path thus translates to
a larger Apy, «,. The different values of ky are also responsible
for the large spread seen in the unfiltered case. Finally, with
black crosses we compare our calculated localisation with the
simple estimate given by Eq. (24). We see that it agrees well
with the trend of the unfiltered case, and even with the case of
a wedge filter.

The localisation is similar for all three forms of the density
fluctuation, Eq (23), Eq (26) and Eq (27), with the main dif-
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FIG. 15. The localisation in terms of the radial coordinate Apy_y, af-
ter applying Eq. (21) and using the criterion in Eq. (22) for the com-
ponents. The four boxes correspond to the four rows in Fig. 14. We
show the unfiltered (red circles), the wedge filter (blue squares) and
the straight filter (green stars) case. A comparison is done with the
estimated integration length calculated from Eq. (24) (black crosses).
For the straight filter case, the color gradient indicates different val-
ues of ky; dark colors corresponds to low values of k, while lighter
colors show an increase in ky.
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ference coming from the fact that in the latter two fewer com-
ponents are considered in the calculation of the localisation,
because of their very low amplitudes. In the actual synthetic
signal, as shown in subfigure (d), most components have a
relatively low value of k| p(¢) <8 cm™!.

If we rotate the filter by 60 degrees, to a 100 degrees angle,
we obtain the power levels shown in Fig. 16 and the corre-
sponding localisation as shown in Fig. 17. The k, = 0 com-
ponents are not at all included now and the form of the PCI
signals is essentially dictated by the poloidal k, # 0 fluctu-
ating components. The lighter green colors for the straight
filter case now indicate an increase in k; p(¢;). Thus, un-
like Fig. 15, increasing k| (¢, ) corresponds now to an in-
crease in ky rather than an increase in k, as was previously the
case. The localisation for this filter configuration is consider-
ably worse, than in the case of the other filter configurations,
which included a large fraction of k, values. The absence of
any markers in the case of the filter for k| g(¢,) > 8 cm~!
shows how restrictive this filter configuration is. When in-
cluding the effect of phase and amplitudes, a radially outward
component with k,p; ~ 1 becomes dominant. Although we
get worse localisation, in this configuration TPCI can be used
to study ITG and TEM turbulence. The configuration used in
Fig. 15 is instead more appropriate for studying purely radi-
ally propagating modes with k, = 0, such as the GAM.

All of these results have to this point been computed for the
positive triangularity case only. We illustrate also the corre-
sponding results for the & < 0 case, using a 160 degree filter
angle. Due to the change in the magnetic geometry, this filter
angle no longer corresponds to the radial direction at the tan-
gency point. Consequently, as shown in Fig. 18, the localisa-
tion is worse than for the corresponding positive triangularity
case, Fig. 15. The power levels in Fig. 19 show that the filters
still include k, = 0 components, but poloidal components with
ky # 0, propagating radially inward, are favoured in the mea-
surement. Because of these k, components, the signals in the
negative triangularity case have lesser localisation. Notice that
larger k, values in the case of a straight filter (seen by follow-
ing the green markers with a constant color) lead to slightly
worse localisation. This is because in this particular case the
larger k, components stay within the filter for a slightly longer
length along the laser beam. This effect is most visible for the
larger k, values (lighter green colors). From the plots of the
PSD levels, it is clear that, unless the raw fluctuation data con-
tains a strong purely radial component, the measurement will
be dominated by ky, > 0 components, propagating radially in-
ward.

To conclude, in contrast to past predictions of the PCI local-
isation628-2% we find that the property kmeas L ko is not per-
fectly satisfied and consequently the localisation is not as good
as previously believed when no spatial filter is used. Also,
while in the case of a narrow straight filter the localisation
is indeed very good, especially in the radial coordinate, the
wedge filter, which has also been commonly used in the ex-
periments, provides relatively poor localisation. For this case,
stating that the signal only comes from the tangency point is
therefore inaccurate. It is interesting to note that the increas-
ing complexity in the description of the density fluctuations
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FIG. 16. Same as Fig. 14 but for the case of a 100 degree filter angle.

(including phase and amplitudes) has little effect on the lo-
calisation. This could mean that global effects also will play
little role on the localisation. However, this does not mean
that global effects can be neglected. For example, the contri-
bution to the PCI signals could be localised to a portion of the
plasma where fluctuation levels are small (such as close to the
core) which can only properly be accounted for by making a
global simulation.

V. A FIRST INTERPRETATION AND PREDICTION OF
EXPERIMENTAL PClI MEASUREMENTS WITH THE
SYNTHETIC DIAGNOSTIC

In this section we use the tools presented in the past sec-
tions to interpret and predict actual PCI measurements. First
in subsection V A we use the synthetic diagnostic to interpret
past PCI measurements of two discharges at TCV, carried out
to study the effect of plasma shaping on turbulence. Then in

subsection VB we study the characteristics of the different
PCT set-up that is envisioned for JT-60SA. We will discuss the
localisation properties for this case and make first predictions
of the expected PCI signals.

A. Interpretation of PCl measurements at TCV

We will begin by presenting the results with the synthetic
diagnostic. Then we will show the corresponding experimen-
tal results and make a comparison between the two.

We consider the two discharges #49052 and #49051, with
positive and negative triangularity respectively and equal ECH
power, that were carried out in the past to study the effect
of triangularity in TCV3?. These discharges were already in-
troduced in Section III A. For modelling the TPCI signal we
take the electron density fluctuations obtained from the GENE
simulations when using the parameters in Table I, and post-
process them with the synthetic diagnostic, using the method
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FIG. 17. Same as Fig. 15 but for the case of a 100 degree filter angle.

described in Section III B. The set-up of the diagnostic is
the same as used in the corresponding experiments: nine un-
evenly spaced detector elements (and therefore nine values of
r=ry,r...1r9), with a 5 cm diameter beam. The lower wave-
number cut-off is at k. = 1.01 cm~! and the maximum mea-
surable wave number is at max(k,) ~ 9 cm~!. The spatial
filter is a wedge with half angle Oy = 30 degrees and oriented
along the radial direction at the tangency point (160 degree
filter angle).

First, directly from the analysis carried out in subsection IV
we can conclude that the integration length for this case will
be similar to the unfiltered case, shown in blue in Fig. 15, with
Api, k, = 0.3 which essentially corresponds to the whole laser
beam propagation length 2~ 50 cm, at the maximum (Nyquist)
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FIG. 18. Same as Fig. 15 but for the negative triangularity case.

wave number frequency |k p|. As already mentioned in the
previous section, the consequence of this is that the contribu-
tion to the PCI signal is coming from the whole laser beam
path and not only the tangency point. This both complicates
the interpretation of the TPCI results and makes the flux tube
approximation less appropriate for modelling the PCI signals.
Since a global simulation that would generate sufficient time
statistics is still outside the scope of this paper, we continue
with the flux tube approximation. As we will see, even in this
case the synthetic diagnostic is able to reproduce the main fea-
tures seen in the corresponding experimental signals.

The wave-number spectrum and frequency spectrum of the
synthetic data are shown in Fig. 20 for both the positive and
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FIG. 19. Same as Fig. 14 but for the negative triangularity case.

negative triangularity cases. We use the plane wave approx-
imation and compare between different contributions to the
PCl signals. We either include all k, and k, components in the
sum in Eq (16), only purely radial components with k, = 0
or finally only components with a non-zero binormal wave
number, k, 7 0. This is a convenient way to split the contribu-
tions since k, = 0 corresponds to purely zonal type modes,
while k, # 0 includes contributions from non-zonal modes
only, such as ITG modes and TEM.

The wave-number spectrum in Fig. 20 S(k,) for § > 0 (a)
suggest that the density fluctuations propagate mostly out-
ward, k. > 0 , with most of the contribution coming from
k. ~2 cm~'. We can see that this corresponds to the purely
radial k, = 0 fluctuation contributions. Notice that the dom-
inance of this component in the synthetic result was already
predicted from the plots of the PSD in Fig. 15. The k, =0
components also lead to a peak in frequency at F' ~ 40 kHz,

which is typical for a Geodesic Acoustic Mode (GAM) in
TCV3!. An analysis of the raw GENE output has revealed
that the ky, = O density fluctuation component has indeed the
poloidal m = 1 structure of a GAM. Although k, = O pro-
vides the dominant contribution in the & > 0 case, modes
with &, # 0 are instead responsible for a power cascade in fre-
quency as shown in the frequency spectrum S(f) in Fig. 20.

The asymmetry of the k;, = 0 component is due to the struc-
ture of the complex Fourier amplitudes of the raw density
fluctuations generated by GENE, combined to the effect of
the measurement geometry. This was already suggested by
the rows (b,c) in Fig. 15. If we look at the frequency and k
spectra of the k, = 0 components coming from the raw GENE
density fluctuations we notice that the k, > 0 components are
dominant in the upper midplane, z > 0, as shown in Fig. 21. In
a flux tube the k, = 0 component has to satisfy the symmetry>>
D(ky,z) = P(—ky, —z). Therefore if averaging over the whole
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flux surface the GAM will not have any preferential propa-
gation direction. However, in our case the TPCI laser beam
only passes through the upper midplane of the plasma, as was
shown in Fig. 4. This means that the PCI beam picks up only
the dominant k, > 0 component of the k, = 0 fluctuations, ex-
plaining the asymmetry seen in Fig. 15 and Fig. 20. Instead, if
the TPCI beam passed through the lower midplane, it would
pick up the dominant k, < O component and the wave-number
spectrum S(k) in Fig. 20 (a) would show the opposite propa-
gation direction for the dominant k, = 0 component.

Contrary to 8 > 0, fluctuations seem to propagate radially
inward for the negative triangularity & < 0 case. This is sug-
gested by the wave-number spectrum S(k,) shown in the bot-
tom row in Fig. 20 that has a dominant component now at
kr ~ —2 cm~!. It is also clear that the zonal ky = 0 compo-
nent makes a very modest contribution and the signal is al-
most entirely dominated by fluctuations with k, # 0. Based
on the results in Fig. 18 we can directly conclude that the low
contribution of ky, = 0 components is both due to the different
plasma geometry and different characteristics of the fluctua-
tions. Indeed it is clearly seen in Fig. 22 that the amplitudes of
the k, = 0 component in the upper midplane are significantly
smaller than in the & > 0 case. There is also no clear GAM
structure, which was the reason for the positive k, asymmetry
seen for the § > 0 case. Indeed this explain the synthetic re-
sults, but we stress that we do not yet have an understanding
of what makes the GAM contribution disappear in the 6 < 0
case.

More details on the fluctuations in the PCI signals are
given by the conditional wave-number and frequency spec-
trum S(k.|f) which is shown in Fig. 23, and is defined as the
spatial Fourier transform of the complex coherence function
C(Ar, f). In addition to the plane wave approximation we also
show the synthetic result when using the true, gaussian beam
approach. Apart from a very slight difference in some fre-
quency and wave-number components we see that the two ap-
proaches give very similar results. There is a slightly larger

frequency spread in the Gaussian beam case, and the left leg
with k, < 0 is also more prominent.

We now show the results from the corresponding actual
TPCI measurement. The conditional wave-number and fre-
quency spectra for the § > 0 case and for § < 0 are shown in
Fig. 24. In the § > 0 case the measurement is clearly domi-
nated by fluctuating components with &, > 0, with the largest
component having k, ~ 2 cm™! and F ~ 40 kHz. The negative
triangularity case on the other hand is dominated by compo-
nents with k, < 0. All these observations are in good agree-
ment with the results we saw from the modelling with the syn-
thetic diagnostic in Fig. 23. Our interpretation of the differ-
ence between measurements in § > 0 and § < 0 is therefore
a change in the contribution from the GAM mode. While the
wave number of the dominant contribution is in good agree-
ment with experiments, more analysis is required to under-
stand the larger frequency spread seen in the experimental
case. A potential explanation could be a variation of the GAM
frequency due to global effects, which could not be captured
by the local analysis performed here.

In conclusion we have seen that the synthetic diagnostic
appears to be able to reproduce the main signatures of the
PCI signals, in particular the change in the TPCI S(k,) spec-
tra when we transition from § > 0 to § < 0. More detailed
gyrokinetic simulations, varying input parameters and radial
positions, are required to better understand the difference be-
tween synthetic and experimental results.

B. First prediction of TPCl measurements for JT-60SA

In a recent publication?’ a design for a PCI system for the
JT-60SA tokamak was proposed. The proposed PCI design
features a tangentially viewing geometry, similar to TCV, but
with a laser beam that passes deeper into the plasma cross-
section, as is depicted in Fig. 25. The corresponding radial
coordinate p along the laser beam is shown in Fig. 26 (a).
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In contrast to TCV, the beam in JT-60SA passes entirely, and
multiple times, across the entire cross-section, leading to mul-
tiple locations £, where the considered k, and k, fluctuation
component is perpendicular to the laser beam. These locations
are illustrated in Fig. 26 (b) for k, = 0 modes and correspond
to when the angle between the laser beam and the wave vector
of the fluctuations is 6; Lako ™ 90 degrees. Two of these lo-
cations are near the core, p ~ 0.1, positioned on the LFS and
HEFS respectively, and a third is at p ~ 0.8 on the HFS. These
different regions are also illustrated in Fig. 25. In Fig. 26 (c)
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FIG. 22. The k. and frequency spectra of the raw GENE k, = 0
density fluctuation component, for § < 0, on the upper midplane.

we show the angle between the filter axis and the wave vec-
tor of the fluctuations k| g, O st In the optimal case of a
narrow straight filter a fluctuating k,,k, component requires
Ok, 5.r ~ O to scatter the laser light into the filter. In theory,
to contribute to the PCI measurement we need simultaneously
to satisfy O, , r ~ 0 and 6, ,x, ~ 90 degrees. By changing
the filter orientation this means that we can either include the
two regions near p ~ 0.1 (see blue line) or the single region
near the plasma edge (see green line). In reality, as we will see
in the following, for a given filter configuration there can still
be a non-negligible contribution simultaneously from all three
segments. However, the dominant contribution is still coming
from either the two double segments or the single segmented
region.

Notice the very sharp variation of both angles in Fig. 26 (b)
and (c) in the double segmented regions. A very sharp varia-
tion in O, , r means that the fluctuating component quickly
falls outside the filter and the localisation is therefore very
good. However, a very sharp variation in 6, , x, means, in
principle, that unless k| p is sufficiently large, the contribution
from that location (either of the double segmented regions)
will average out. In contrast, there is a much slower variation
in both angles for the single segmented region near the HFS
edge. This segment is thus better defined both in terms of the
localisation length and in terms of the directions of k| that
contribute to the measurement. As we will see in the follow-
ing, for this case, we select mainly purely radial fluctuating
components

To study the localisation properties and make first predic-
tions of PCI measurements in JT-60SA we focus on a high-
performance discharge, the so-called scenario 1, featuring a
double-null separatrix, 41 MW neutral beam injection (NBI)
and ECH, plasma current 2.3 MA, toroidal field on axis
1.7 T, safety factor at 95% of the minor radius g95 = 5.6,
and normalised ratio of the plasma kinetic to magnetic pres-
sure By = 3.43. The chosen radial location of the simulation
was the result of a compromise: the regions of optimal TPCI
localization are the pedestal and the magnetic axis, the for-
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FIG. 23. The conditional spectrum for § > 0 (left column) and & < 0 (right column). The top row (a,b) shows the synthetic results when using
the plane wave approximation and the bottom row (c,d), shows the synthetic results when using the approach of a Gaussian laser beam.
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FIG. 24. Same as Fig 23 but calculated from the actual TPCI measurement in the 0 > 0 #49052 discharge (a) and 6 < 0 #49051 discharge (b).

mer typically requiring prohibitively large computational re-
sources, and the latter featuring small pressure gradients and
broadly stable conditions; we thus chose the innermost re-
gion with sufficient turbulence levels, roughly corresponding
to mid-radius p;, = 0.6. The simulations for this scenario are
part of a dedicated project with the objective of accurately
modeling the turbulence in JT-60SA. The simulation includes
collisions, Carbon impurities and fast ions modelled with an
equivalent Maxwellian, as well as electromagnetic effects in-
cluding compressional magnetic field fluctuations. The input
parameters to the GENE simulations are summarized in Ta-
ble II. The reference electron density at p; =0.6is n, =5.87 X
10" m—3, the electron temperature is T = 6.27 keV and the
minor radius is r, = 1.58 m. We considered the resolution
N)C><1\7.\,><Nz><NvH X Ny X Ny =192 x 32 x48 x 32 x 10 x 4.

The flux tube has a radial length L, = 127p; and the binormal
length L, = 62p;. A detailed presentation of the gyrokinetic
results for this scenario is planned for a future publication. In
the present analysis we will just use these gyrokinetic results
in the synthetic diagnostic to make a first prediction for PCI
measurements in JT-60SA.

First, we estimate the localisation and compute the contri-
bution from the different k, and k, fluctuating components to
the PSD of the PCI signals. We apply the same method as in
Section IV for a given k, and k, component and consider the
central ray only, r = ry. We consider the two filter orientations
already presented in Fig. 26 to show the results obtained when
the contribution to the PCI signals is coming mostly from the
single segmented region (6 = 0) or from the two double seg-
mented regions (6y = 90 degrees). To simplify, we will only



FIG. 25. The double-null geometry of the considered JT-60SA sce-
nario together with the central ray of the PCI laser beam path shown
in red. The blue segments illustrate the location of the double seg-
mented regions while the green segment shows the single segmented
region.

TABLE II. Parameters of the considered JT60SA scenario at p; =
0.6 used as input to the GENE simulations, obtained from the MHD
equilibrium code CHEASE?? and species profiles. The parameter r,
is the local minor radius and R is the major radius.

/T, 1.0 fa/Lnc 07224 | qo 1.1571
ra/Lre 2512 | rg/Lypp 17231 | § 1.5528
np/ne 0.7671 | ra/LTp 2.931 Trp /T, 8
e=r/R 051 ne/ne 0033 | ro/Ly.  0.867
Zeft 2.0 nep/ne 0033 | a/Ly; 0.86782
Be 24% | ro/LrFp 425 ve[1073] 091

study the effect of geometry, thus using density fluctuations
of the form (23), and compare it to the case when using the
actual simulated density fluctuations of the form of Eq. (27).
Note that the passage of the PCI laser beam through the in-
ner midplane leads to a jump in the ¥ and y coordinates. How-
ever both k| p, given by Eq. (20) and the synthetic signal in
Eq. (16) are in fact continuous as a result of the parallel bound-
ary condition and the correction connection of the k, modes.
Typically, in a non-linear simulation Ny, is large enough that
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FIG. 26. The radial flux coordinate p; as a function of the linear
coordinate ¢ along the proposed JT-60SA PCI laser beam (a). In
(b) we show the angle 6y , k, between the wave vector of the fluc-
tuations k| p and the laser beam direction kg, when considering a
purely radial fluctuating component with k, = 0. The black dashed
line indicates a 90 degree angle. Finally (c) shows the angle 6, , ¢
between the filter axis and the wave vector of the fluctuations, again
just for the ky, = 0 component. Here the dashed black lines indicates a
0 degree angle. The latter is shown for two filter orientations, 6y = 0
(red) and 6 = 90 degrees (blue).

ky modes with large amplitude have at least one connection
between different k, modes. The larger k, modes with smaller
amplitude instead have no connection. For a meaningful es-
timate of the localisation we need a continuous signal when
we cross the midplane, and thus we only consider the k, and
ky components for which there exists a k, connection. In the
considered GENE simulation the maximum binormal wave
number that still has a connection between different &, values
is kyp; = 0.91. Fluctuating components with large k, and k,
have very low fluctuating amplitudes and thus make a negligi-
ble contribution to the PCI signals and can safely be ignored
when analysing the localisation properties of TPCI.

The PSD levels without applying any filter are shown in
Fig. 27. The result is only shown for the &, k, modes with an
existing connection, whereas the other components are set to
zero. As just mentioned, in any case these components only
make a small contribution to the synthetic PCI signals due to
their low fluctuation amplitudes. The remaining components
have a dominant contribution around k, ~ 0.4. From the actual
case, Fig. 27 (b) we see that the simulation is dominated by
modes at ky ~ 0.3.
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FIG. 27. PSD of each ky, k, component when integrating over the full
JT-60S A laser beam path in the unfiltered case. Subfigure (a) shows
the effect of the phase 6 only, thus a density fluctuation of the form
of Eq. (23) while (b) shows the actual simulated case, using Eq. (27).
Only ky,ky, modes with a connection are shown whereas the other
components are set to zero.

We apply then a wedge filter, with a 30 degree half angle
(thus the same as has been generally used in TCV thus far), as
well as the straight filter with a width equal to the width of the
focal spot, thus yielding the optimal localisation as in the case
of TCV in Section IV. First, we choose the filter angle 6, =0
such that we focus on the single segmented region. The PSD
for this case is shown in Fig. 28. Of all the unfiltered compo-
nents we see that this filter configuration favours purely radial
modes, when the amplitude of each mode is equal (case (a)
in Fig. 28). The straight filter, as expected, is more restric-
tive and only allows a few of the modes seen in Fig. 27 to
contribute to the measurement.

If instead, we orient the filter to focus on the double seg-
mented regions, thus 8y = 90 degrees, we get the PSD as
shown in Fig. 29. For a density fluctuation with uniform
amplitude, this filter configuration seems to slightly favour
kyp; ~ 0.4 in the wedge filter case, and kyp; ~ 0.1 —0.2 in
the straight filter case. For the actual GENE simulation we
see that mainly k, # 0 modes remain. These results for the
single segmented and double segmented cases are in agree-
ment with the results from the conceptual design of TPCI at
JT-60SA?’. There it was shown that the PCI measurement in
the single segmented case essentially consists of the contribu-
tion from purely radial modes while the direction of &, p is
less constrained in the double segmented case.

To estimate the localisation we apply the same method as
in Section IV for a given k, and k, component. The integra-
tion, Eq (21), is performed separately around each value of
¢, (ky,ky) to compute the contribution from either the double
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segmented regions, or the single segmented region. Due to
the multiple values of ¢, (ky,ky) it is much more challenging
to compute the localisation as it is difficult to properly dis-
tinguish the different segments from each other. To simplify
we therefore limit the analysis to the unfiltered and straight
filter configuration only. The latter yields in fact the optimal
localisation that can be achieved in JT-60SA. Furthermore we
relax the criterion in Eq. (22) and choose € such that the com-
bined power from the different segments is at least 70% of the
PSD when integrating over the full laser beam length (instead
of 90 % as was used for TCV). If € is too large we other-
wise, wrongly, end up connecting the different segments to-
gether. Finally, we also limit the analysis to the 6 smallest &,
modes considered in the simulation, k,p; = 0,0.1,0.2,0.3,0.4
and kyp; = 0.5. Finally, we limit the integration length around
each segment to ~ 2 m, again to avoid connecting the different
segments together.

We group the localisation into the three following cat-
egories: single segmented region with ¢, € [2.5,5] m as
seen in Fig. 26, the first double segmented region with ¢, €
[1,1.5] m and finally, the second double segmented region,
¢, €1]5.5,6.5] m. As was mentioned before, Ok, y.ky has a
sharp variation in the two double segmented regions. To prop-
erly satisfy the criterion kneas L ko we need sufficiently large
values of k| p that the phase in Eq. (23) varies more rapidly
than the variation of O, , ; and O 1 sko in the double seg-
mented regions. In the current GENE simulation of JT-60SA
the largest value k| p is still too low and we therefore discard
the double segmented regions from the analysis in the unfil-
tered cases. However, it is still possible to include them in the
analysis of the straight filtered cases, as will be done later

The localisation for the single segmented region, in terms of
Apy, , Tor the unfiltered and straight filtered cases, is shown
in Fig. 30. As before, the unfiltered case tests the property
Emeas L ko. In the case of a density fluctuation of the form of
Eq. (23), (top plot, a) we see that this property is well satis-
fied for large enough values of k,, which corresponds to larger
values of k; . We find very good localisation for k; >5cm™!
with Apy, ., < 0.1. At lower values of k; most components
saturate at “Apkx’ky = (.35 which corresponds to the maximum
value of Apy, x, corresponding to the maximum integration
length ALy 4, ~ 2 m considered in the analysis. The actual
integration length for the low values of k; might actually be
longer. There is a slight spread in the localisation due to im-
precision of the underlying algorithm. We therefore include a
cubic spline fit, with tension, through the points (solid lines)
to more clearly illustrate the integration length at each value
Oka.

In the next step we apply the straight filter, using 0 de-
gree filter angle so that we only capture contributions to the
PCI measurement from the single segmented region. We see
that we clearly mainly get contributions from very low ky type
modes, as the larger values of k, lead to negligible contribu-
tions and are therefore not shown. The localisation for the re-
maining low &, components is very similar to the correspond-
ing result in the unfiltered case, with very good localisation for
k; >5cm~!. This means that the averaging effect from the
integration in fact is more restrictive compared to the size of
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FIG. 28. PSD of each ky,k, component when integrating over the full JT-60SA laser beam path, when applying a 30 degree wedge filter (left
column) or a straight filter (right column). The top row (a) shows the effect of the phase 6 only, thus a density fluctuation of the form of
Eq. (23) while the bottom row (b) shows the actual simulated case, using Eq. (27). Here the filter orientation is 8y = 0, focusing on the single

segmented region. Only k., k, modes with a connection are shown whereas the other components are set to zero.
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FIG. 29. Same as 28 but with 87 = 90 degrees, thus focusing on the double segmented regions.

the filter. That is, a fluctuating component is being averaged
out sooner than it falls outside the filter.

If we use the actual form of the density fluctuation we get
the corresponding results for the unfiltered and the filtered
cases, shown in the third (c) and fourth row (d) in Fig. 30 re-
spectively. We can see that only a few fluctuating components
have a non-negligible contribution to the PCI measurement,
and these components have relatively low values of k; and are
therefore poorly localised. Normally components with higher

ky have lower amplitudes which explains the low &, values of
the components that remain in the two bottom plots in Fig. 30.

We then rotate the filter and use a filter angle f, = 90 de-
grees to focus instead on the two double segmented regions.
The corresponding localisation for these cases is shown in
Fig. 31. The top row shows the case of a density fluctua-
tion of the form of Eq. (23) while the bottom row shows the
case when including the actual simulated density fluctuations.
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FIG. 30. Localisation in terms of the radial coordinate Apy_ ,in JT-
60SA, after applying Eq. (21) and using the criterion in Eq. (22) for
the components. The localisation is shown for 6 different values of
the binormal wave number kyp; (circles) and a cubic spline fit (solid
lines) is shown to more clearly illustrate the integration lengths. The
localisation is shown for the case of a density fluctuation of the form
of Eq. (23), (a,b) and when including the actual simulated density
fluctuations (c,d). We show the unfiltered cases (a,c) and the cases
when we apply the straight filter (b,d), using a 0 degree filter angle
to focus on the single segmented regions.

Due to the very fast rotation of the wave vector of the fluctua-
tions, the fluctuations quickly fall outside the narrow straight
filter and are consequently very well localised. Already for
ki, > 1 cm™" we have a very small integration length with
APy, k, < 0.1. The localisation in the second double segment
is slightly better compared to the first double segment. In con-
trast to the single segmented case, the double segmented re-
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gions include contributions from larger values of &y, as was
already shown in Fig. 29. Just as in the case of the single seg-
mented region in Fig. 30, when considering the actual GENE-
simulated case, Eq. (27), we see that fewer components re-
main, and these components have lower values of k. How-
ever, unlike the single segmented region, due to the fast rota-
tion of the wave vector of the fluctuations, these components
remain very well localised. The only exception are some very
large scale modes with k;, < 0.5 cm™! that have APy, > 0.5
in the first double segmented region.

To conclude, we find that in the single segmented region we
obtain well defined segments that are mainly defined by how
rapidly a fluctuating k., k, component is being averaged out,
due to the line integration. We also have a well defined direc-
tion of the wave vector, mostly purely radial, that contributes
to the measurement. When the filter is oriented to mostly fo-
cus on the fluctuating contribution from the two double seg-
ments instead, the localisation is achieved purely by how fast
a given ky, ky, component falls outside the spatial filter. Due to
the rapid variation of 6, , ¢ in the double segmented regions,
as seen in Fig. 26 (c), the k| values in the present GENE sim-
ulation are too to small to be able to see an effect due to the
line average of the fluctuations. The contribution now is dom-
inated by poloidal modes k, # O rather than k, = 0. We should
again stress that these estimates of the localisation, obtained
using a local simulation with the flux tube centred at one ra-
dial position, are by no means final. A more proper estimate
of the localisation could be performed with a global simula-
tion that would take into account the radial variation in the
phases and amplitudes of the fluctuations. This, however, was
outside the scope of this paper, but is planned for future work.
The equations presented in this paper are fully applicable also
to a global case when using the Gaussian beam approach de-
scribed in subsection IIIB 1. The plane wave approach de-
scribed in subsection III B 2 can also be applied after estimat-
ing the k, wave numbers. If we look back at the definition
of the perpendicular wave number in eq. (20) we see that in a
tokamak only k, corresponds to an exact mode number while
ky follows from the periodic boundary conditions used in the
flux tube representation. In experiments, however, k, can be
estimated by computing k, cfr¢, , for example by computing
the local radial correlation length at a given poloidal angle x.
From the knowledge of the magnetic shear and the toroidal
mode number of the considered mode one could then use the
relationship, kyeft(¢,7) = ky + X (€)8ky to infer k.. This would
also be the approach to generalise the equations shown here
for a global gyrokinetic simulation, and to potentially estab-
lish a link between the k, representation and the radial corre-
lation length measured in experiments.

Finally, we will compute the actual synthetic signals for the
two filter orientations and make a first prediction of the tur-
bulence measurement with PCI at JT-60SA. However, since
we are already very limited in the number of components in
the GENE fluctuations we will use a 30 degree wedge filter
instead of the narrow straight filter that otherwise would lead
to very low signal levels. The conditional spectra for the two
filter orientations are shown in Fig. 32. For both filter ori-
entations we see two narrow legs that are essentially straight,
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FIG. 31. Localisation in terms of the radial coordinate Apy, 4 , in JT-60SA, after applying Eg. (21) and using the criterion in Eq. (22) for the
components. Only the results when we apply the straight filters are shown, using a 90 degree filter angle to focus on the first (left column) and
second (right column) double segmented regions. The localisation is shown for 6 different values of the binormal wave number k,p; (circles)
and a cubic spline fit (solid lines) is used to more clearly illustrate the integration lengths. The localisation is shown for the case of a density
fluctuation of the form of Eq. (23), (top row, a) and when including the actual simulated density fluctuations (bottom row, b).

which indicates a large phase velocity AF/3k, of the mea-
sured fluctuations. The legs are slightly wider in the double
segmented case compared to the measurement in the single
single segment near the HFS edge.

The corresponding wave number spectrum is shown in
Fig. 33. We see that the signal amplitudes are essentially sim-
ilar for both filter orientations. However, clearly the single
segmented case has a higher contribution from the purely ra-
dial fluctuating components while the double segmented case
is more dominated by modes with k;, 7 0. This is in agreement
with the PSD levels seen already in Fig. 28 and Fig. 29

VI. SUMMARY AND CONCLUSIONS

In this paper we have presented the details of a synthetic
diagnostic that models measurement with PCI by postpro-
cessing electron density fluctuations generated by gyrokinetic
simulations. In its present state it uses GENE simulations but
can easily be adapted also to other gyrokinetic codes. An
important novel feature included in the synthetic PCI is the
possibility to apply a filter in wave-number space. This filter
selects the measured wave vector direction and this translates
into a longitudinal localisation of the signal in space. Such
a filter must be taken into account when modelling PCI mea-
surements on TCV, and in the future also on JT-60SA. We
implemented two different versions of the synthetic diagnos-
tic. The first properly takes into account the Gaussian form of
the PCI laser beam which is required to accurately compute
the synthetic PCI signals. We also considered a simplified ap-
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FIG. 32. The conditional spectrum calculated for the JT-60SA TPCI
measurement, when using a wedge filter with a 30 degree half angle,
with 87 = 0 thus focusing on the single segmented region (a) or 8y =
90 degrees that focuses on the double segmented regions instead (b).
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FIG. 33. Synthetic JT-60SA wave-number spectrum for the single
segmented case (a) and the double segmented case (b) The result is
shown when including all ky, contributions in Eq. (16) (blue) and only
ky = 0 (red).

proach, approximating the PCI laser beam as an infinite plane
wave which allowed us to write the synthetic signals in terms
of the GENE k, and k, modes. Using the plane wave approx-
imation we have shown from first principles how the spatial
filters affect the PCI signals and the localisation we obtain for
different k, and k, modes. In general we find that the local-
isation is good for large enough k| g but not as good as was
predicted from simplified analytical considerations.

We then performed a comparison between experimental
and synthetic results for positive and negative triangularity
TCV discharges and found good qualitative agreement. We
concluded that the change in propagation direction when
changing the sign of the triangularity is due to a change in
the characteristics of the fluctuations, particularly the GAM,
as well as the effect of measurement geometry. Finally, we
also analysed the localisation properties of PCI on JT-60SA
and made first predictions for PCI measurements, which in
the future might be compared with experiments.
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Appendix A: The parallel boundary condition’-2!

For any fluctuating quantity @, for example the electrostatic
potential, GENE considers coupled radial k, modes

D(ky,ky,z+2m) = D(ky + 27k, S, ky, 2),

which reflects poloidal periodicity in a toroidal system which
in real space reads

D(x,y,z+2m) = P(x,y —27Cyq(x),z). (A1)

However, this periodicity is exactly ensured only when con-
sidering a radial shift Ax in the safety factor profile

— Ax Ax .
ﬂm=%0+5 )=%<r4>+”,mm
ro ro

which can be seen as follows. From the definition of the bi-
normal coordinate in Eq. (8) and by representing a fluctuat-
ing quantity ®(x,y,z) in Fourier space and using the parallel
boundary condition in Eq. (A1) we obtain

q)(x%Z + 275)
- chp(kxaky,z)eikxxeiky (r-Cy2mq(x))
K &

Y Y Bk, )i ha28) gy G20 (1575
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(s
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where we find the familiar coupling between k, modes k, =
kyx + ky27$ as a consequence of the parallel boundary condi-
tion. GENE assumes that the remaining phase factor in the
above equation is unity, and thus that k,C,qo (1 —§Ax/ ro) €
Z. This corresponds to choosing the radial shift such that

C7
Ax = —= (NINT(noqo) — noqo) , (A3)

A

nos

where NINT(y) finds the nearest integer to y. Eq. (A3) in fact
corresponds to shifting the origin of the simulation box to the
nearest mode rational surface. Also, ny corresponds to the
toroidal mode number. Note that in Eq. (A3) ny does not nec-
essarily have to be an integer, meaning that the binormal wave
numbers, ky, = png / C, for p € Z, considered in the simulation
might not correspond to an integer toroidal mode number. We
will therefore always have continuity in the parallel coordinate
even if flux tube does not correspond to a rational fraction of
a full toroidal turn.



1S, Coda, M. Porkolab, and T. N. Carlstrom, Review of Scientific Instru-
ments 63, 4974 (1992).

28. Coda, Ph.D. Thesis, MIT Plasma Science and Fusion Center (1997).

3E. Nelson-Melby et al., Phys. Rev. Lett. 90, 155004 (2003).

4 A. Marinoni, Ph.D. Thesis, EPFL (2009).

SK. Tanaka ef al., Review of Scientific Instruments 79, 10E702 (2008).

SE. M. Edlund ef al., Review of Scientific Instruments 89, 10E105 (2018).

7F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Physics of
Plasmas 7, 1904 (2000).

8E. Highcock, Ph.D. thesis, University of Oxford, 2012.

9Gyrokinetic Simulations Project, http://gyrokinetics.
sourceforge.net/, accessed: 2021-10-11.

10, Lanti et al., Computer Physics Communications 251, 107072 (2020).

1A, Peeters et al., Computer Physics Communications 180, 2650 (2009), 40
YEARS OF CPC: A celebratory issue focused on quality software for high
performance, grid and novel computing architectures.

I2GENE web page, http://genecode.org/, accessed: 2018-04-25.

13T, Gérler et al., Journal of Computational Physics 230, 7053 (2011).

143, Candy and R. E. Waltz, Journal of Computational Physics 186, 545
(2003).

I5SM. Fahey and J. Candy, in SC "04: Proceedings of the 2004 ACM/IEEE
Conference on Supercomputing (PUBLISHER, ADDRESS, 2004), pp. 26—
26.

16D, R. Ernst et al., Proceedings of the 21st IAEA Fusion Energy Confer-
ence, Chengdu, China, 2006 (International Atomic Energy Agency, Vienna,

28

2006), TH/1-3 .

17J. C. Rost, L. Lin, and M. Porkolab, Physics of Plasmas 17, 062506 (2010).

I8N, Kasuya, M. Nunami, K. Tanaka, and M. Yagi, Nuclear Fusion 58,
106033 (2018).

19H. Weisen, Review of Scientific Instruments 59, 1544 (1988).

20C. A. Michael et al., Review of Scientific Instruments 86, 093503 (2015).

21G. Merlo, Ph.D. Thesis, EPFL (2016).

22y, Liitjens, A. Bondeson, and O. Sauter, Computer Physics Communica-
tions 97, 219 (1996).

23F. Carpanese, Ph.D. Thesis, EPFL (2021).

24M. Pueschel, T. Dannert, and F. Jenko, Computer Physics Communications
181, 1428 (2010).

57, Huang, S. Coda, and the TCV Team, Plasma Physics and Controlled
Fusion 61, 014021 (2019).

26C. A. De Meijere, Ph.D. Thesis, EPFL (2013).

27S. Coda et al., Nuclear Fusion 61, 106022 (2021).

287. Huang, Ph.D. Thesis, EPFL (2017).

29A. Marinoni, S. Coda, R. Chavan, and G. Pochon, Review of Scientific
Instruments 77, 10E929 (2006).

307, Huang and S. C. and, Plasma Physics and Controlled Fusion 61, 014021
(2018).

31C. A. de Meijere et al., Plasma Physics and Controlled Fusion 56, 072001
(2014).

32 1. Parra, M. Barnes, and A. G. Peeters, Physics of Plasmas 18, 062501
(2011).



