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In multi-agent reinforcement learning, multiple agents learn simultaneously while interacting with a
common environment and each other. Since the agents adapt their policies during learning, not only
the behavior of a single agent becomes non-stationary, but also the environment as perceived by the
agent. This renders it particularly challenging to perform policy improvement. In this paper, we propose
to exploit the fact that the agents seek to improve their expected cumulative reward and introduce a
novel Time Dynamical Opponent Model (TDOM) to encode the knowledge that the opponent policies tend
to improve over time. We motivate TDOM theoretically by deriving a lower bound of the log objective of
an individual agent and further propose Multi-Agent Actor-Critic with Time Dynamical Opponent Model
(TDOM-AC). We evaluate the proposed TDOM-AC on a differential game and the Multi-agent Particle
Environment. We show empirically that TDOM achieves superior opponent behavior prediction during
test time. The proposed TDOM-AC methodology outperforms state-of-the-art Actor-Critic methods on
the performed tasks in cooperative and especially in mixed cooperative-competitive environments.
TDOM-AC results in a more stable training and a faster convergence. Our code is available at https://
github.com/Yuantian013/TDOM-AC.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Multi-agent systems have recently found applications in many
different domains, including traffic control [1], games [2–4], con-
sensus tracking control [5,6] and swarm control [7]. The complex-
ity of the tasks in these applications often precludes the usage of
predefined agent behaviors and stipulates the agents to learn a pol-
icy, and to define the problem as multi-agent reinforcement learn-
ing (MARL). In such cases, multiple agents learn simultaneously
while interacting with a common environment. Since the agents
adapt their policies during learning, not only the behavior of a sin-
gle agent becomes non-stationary, but also the environment as
perceived by the agents [8]. Since most of the conventional Rein-
forcement Learning (RL) approaches assume stationary system
dynamics [9], they usually perform poorly when required to inter-
act with multiple adaptive agents in a shared environment [10,8].

A common approach in MARL is to explicitly consider the pres-
ence of opponents by modeling their policies using an opponent
model [11,12] (In the following, the word ‘‘opponents” refers to
other agents in an environment irrespective of the environment’s
cooperative or adversarial nature). An accurate opponent model
can provide informative cues to future behaviors of the opponents.
However, such a precise prediction is challenging as the opponents’
policies are changing over time [12].

In our novel approach, entitled Time Dynamical Opponent Model
(TDOM), we aim to address the challenge of non-stationarity of the
agent’s behavior by modeling the opponent policy parameters as a
dynamical system which are generally used to model the evolution
of systems in time [13]. Here, we build the system dynamics on the
prior knowledge that all agents are concurrently trying to improve
their policies with respect to their individual cumulative reward. It
is worth mentioning that TDOM is highly general and can further
support all kinds of opponent objectives, i.e. cooperative, compet-
itive or mixed settings.

By deriving a lower bound on the log-objective of an individual
agent, we further propose a Multi-agent Actor-Critic with Time
Dynamical Opponent Model (TDOM-AC) for mixed cooperative-
competitive tasks. The proposed TDOM-AC framework comprises
a Centralized Training and Decentralized Execution (CTDE), see
Fig. 1. In this framework, centralized critics provide additional
information to guide the training [14,10]. However, this informa-
tion is not used at execution time. Each agent only has access to
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Fig. 1. An overview of the proposed framework, where i indicates one of the agents and �i refers to the other agents. In the proposed framework, the decision making process
is fully decentralized. Each agent only observes the state s, and then infers the other opponents’ behaviors â�i via its own opponent model /i sð Þ. Based on the state and the
predicted opponent behaviors, the agent selects the action ai via its policy pi s; â�ið Þ.
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the state information and can only select an action based on its
own prediction of other opponents’ actions.

We evaluate the proposed TDOM-AC on a Differential Game and
a Multi-agent Particle Environment and compare the performance
to two state-of-the-art actor-critic algorithms, namely Regularized
Opponent Model with Maximum Entropy Objective (ROMMEO) [12]
and Probabilistic Recursive Reasoning (PR2) [15]. We demonstrate
empirically that the proposed TDOM algorithm achieves superior
opponent behavior prediction during execution time. The proposed
TDOM-AC outperforms the considered baselines on the performed
tasks and considered measures. TDOM-AC results in a more stable
training, faster convergence and especially a superior perfor-
mance in mixed cooperative-competitive environments.

The remainder of this paper is organized as follows: Section 2
provides a brief overview of the related works of this study. Sec-
tion 3 and 4 introduces the proposed opponent model and
TDOM-AC. Section 5 interprets and compares the results of the
simulations. In Section 6, the conclusion and future work are
presented.
2. Related work

Multi-Agent systems (MAS) encompass decision-making of
multiple agents interacting in a shared environment [16]. For com-
plex tasks where using predefined agent behaviors is not possible,
MARL enables the agent to learn from the interaction with the
environment [17]. One of the main challenges in MARL is the
inherent non-stationarity. To address this challenge, one direction
has been to account for the behaviors of other agents through a
centralized critic by adopting the CTDE framework [18,19]. For
value-based approaches in the CTDE framework, methods usually
rely on restrictive structural constraints or network architectures,
such as QDPP [20], QMIX [21], FOP [22], QTRAN [23], and VDN
[24]. For actor-critic based methods, these approaches usually
include an additional policy with supplementary opponent models
that can reason about other agents’ believes [15], private informa-
tion [25], behavior [10], strategy [26] and other characteristics.
With the supplementary opponent models, these works can also
be linked to the field of opponent modeling (OM) [27,11].

There are several ways to model the behavior of opponents. One
of them is to factorize the joint policy p a�i; a�ijs� �

in different ways.
This has been done in previous works [11,12,15]. Also, different
objective functions for the opponent model have been imple-
mented. Multi-agent Deep Deterministic Policy Gradient (MADDPG)
[10] approximates opponents’ policy by maximizing the log prob-
ability of other agents’ actions with an entropy regularizer; PR2
[15] considers an optimization-based approximation to infer the
unobservable opponent policy via variational inference [28] and
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ROMMEO adopts the regularized opponent model with maximum
entropy objective, which can be interpreted as a combination of
MADDPG and PR2. However, the existing approaches either suffer
from high computational cost due to the recursive reasoning policy
gradient [15], or are limited to specific types of environments [12].
In this work, we propose an alternative opponent model motivated
by a temporal improvement assumption to overcome these
limitations.

An earlier approach that explicitly addresses opponent-learning
awareness is Learning with Opponent Learning Awareness (LOLA)
[29]. When performing the policy update, any agent optimises its
return under a one-step-look-ahead of the opponent learning.
However, it is limited by strong assumptions. Specifically, these
subsume access to both exact gradients and Hessians of the value
function. Furthermore, a specific network design is required.
Although the authors have subsequently proposed a variant of
their approach, the policy gradient-based naive learner (NL-PG) with
fewer assumptions, the intrinsic on-policy design inherently suf-
fers from data inefficiency. Also, LOLA only supports two-agent
systems, while we are considering approaches that allow for arbi-
trarily many agents.

3. Method

3.1. Assumptions

In this work, we aim to tackle the mentioned limitations out-
lined in Section 2. For fair comparison, we adopt the same observ-
ability assumptions from previous work [15,12,10]. Since in
cooperative games all the agents receive the same reward and in
zero-sum games the opponents’ rewards can easily be inferred
from ones own reward, we assume all agents can access each
other’s rewards, just like in LOLA [29]. In contrast to vanilla LOLA,
we do not make the assumption of the observability of opponent
policies.

3.2. Markov game

An N-agents Markov game [30], also referred to as N-agents
stochastic game [31], is defined by a tuple
S;A1 . . .An; r1 . . . rn; p;T; c
� �

, where S is the state space, and Ai

is the action space. At at time step t, agent i chooses its action
ait 2Ai according to the policy conditioning on the observed state
st 2S. And rit 2 R is the corresponding rewards assigned to agent i,
which is obtained from the pre-defined reward function
rit ¼ rit st ; ait ; a

�i
t

� �
, where the a�it refers to the set of opponent

actions. T : S�A!S is the state transition function, p is the
initial state distribution and c is the discount factor. At each time



1 When parameterizing a function for agent j, we will always write e.g. pj
h instead

of pj
hj
.
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step t, actions are taken simultaneously by all agents. Each agent
aims to maximize its own expected discounted sum of rewards.
Thus, for each individual agent i, the objective for its policy pi

can be expressed as:

J pið Þ ¼ maxpi

X1
t¼0

E ctri st; ait; a
�i
t

� �� � ð1Þ

We note that since multiple adaptive agents interact in a shared
environment, each agent’s rewards and the environment transitions
depend also on the actions of the opponents [8]. Thus, the unob-
servable dynamic policies of the opponents induce non-
stationarity in the environment dynamics from the perspective of
a single agent. To address this challenge, we propose to consider
the agent policy parameters as a dynamical system in which we
encode the prior knowledge that all agents are concurrently trying
to improve their policies.

3.3. Time dynamical opponent model

To introduce our methodology, we begin by deriving a lower
bound for the maximization objective in Eq. 1, in which we omit
some of the parameterization notation for less cluttering:

maxpi ; qiEait�pi �jâ�itð Þ; â�it �qi ; a�it �~p�i
Q i st ; ait ;a

�i
t

� �h i
; ð2Þ

where for lighter notation we omit the st � dp, which means sam-
pling a state from the discounted state visitation distribution dp

using current policies p :¼ pj
� �

j, where pj �ja�j; s� �
. qi �jsð Þ refers to

the belief of agent i about opponents �i, also known as opponent
model. Furthermore, we define ~pj �jsð Þ to be

~pj ajjs� �
:¼
Z
A�j

pj ajja�j; s� �
qj a�jjs� �

da�j; ð3Þ

which can be interpreted as the marginal policy of agent j. Then we
can formulate the marginal opponent policies to be ~p�i :¼ ~pj

� �
j2�i

The presented maximization objective means that agent i aims
to maximize its Q-function given that all agents play their current
policies ~p�it which are unknown to agent i.

We can now derive a lower bound of the log objective of agent i:

log Eait�pi
t �jâ�itð Þ; â�it �qi

t ; a
�i
t �~p�it

Q i st ;ait ; a
�i
t

� �h i
¼ log

R
Ai

R
A�i
R
A�i Q

i st ;ait;a
�i
t

� �
~p�it a�it jst
� �

qi
t â�it jst
� �

pi
t ait jâ�it ; st
� �

dâ�it da�it dait

¼ log
R
Ai

R
A�i
R
A�i Q

i st ;ait;a
�i
t

� � ~p�it a�it jstð Þ
qi
t a�it jstð Þ q

i
t a�it jst
� �

qi
t â�it jst
� �

pi
t ait jâ�it ; st
� �

dâ�it da�it dait

P Eait�pi
t �jâ�itð Þ; â�it �qi

t ; a
�i
t �qi

t
log Qi st ;ait;a

�i
t

� � þ log
~p�i a�it jstð Þ
qi
t a�it jstð Þ

� 	
 �

¼ Eait�~pi
t ; a
�i
t �qi

t
log Qi st;ait ;a

�i
t

� �h i
� KL qi

t �jstð Þ jj ~p�it �jstð Þ� �
:

ð4Þ
If we furthermore make the assumption that:

Qopt ¼maxai Q
i st; ai; a�i
� � 8a�i 2A�i; ð5Þ

for some fixed Qopt, we see that we can maximize this lower bound
by minimizing the Kullback–Leibler Divergence KL qi

t �jsð Þ jj ~p�it �jstð Þ� �
w.r.t. qi

t and then maximizing the Q-function w.r.t. pi
t:

maxpi
t
Eait�pi

t �ja�itð Þ; a�it �qi
t

Q i st; ait; a
�i
t

� �h i
: ð6Þ

However, the method proposed above has an obvious issue:
How can we minimize KL qi

t �jsð Þ jj ~p�it �jstð Þ� �
if ~p�it is not available

to agent i?
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In order to address this question, we propose to utilize prior
information about the opponents’ learning process. Using this
information would enable to better model their non-stationary
behavior. Specifically, there exists one aspect that to the best of
our knowledge has not been considered before in opponent mod-
elling: Over time, each agent j is expected to improve its policy
using policy network parameters hjt

1 in order to maximize its
expected cumulative reward under the given system dynamics and
opponent policies. This can be expressed as an ordinary differential
equation (ODE):

d
dt h

j
t � rhj Epj

ht
; p�jt

X1
t¼0

ct rjt ajt ; a
�j
t ; st

� " #

¼ rhj Epj
h
; p�jt

Q j ajt ; a
�j
t ; st

� h i
;

ð7Þ

where p�j :¼ pk
� �

k2�j.

We propose to encode this knowledge in the opponent model
design. We would like to make explicit here that unlike in policy
improvement, the opponent model is designed to simulate the pol-
icy optimization process for all opponents instead of maximizing
their expected Q-value. It is worth to point out that unlike LOLA
[29] which considers the opponent’s policy update to optimize
the agent’s policy, our agent takes the opponents’ policy improve-
ment assumption into account to optimize its opponent model
instead of the policy directly.

In order to minimize KL qi �jsð Þ jj ~p�i �jstð Þ� �
, we exploit the tem-

poral improvement assumption for discrete time dynamics,
parameterized by h�i:

h�it � h�it�1 þ grh�i E~pi
t�1 ; ~p�i

h
Q�i ai; a�i; s
� �h i

; ð8Þ

for some g > 0. However, the opponent model cannot be updated
like this since neither ~p�iht

nor h�it are directly available to agent i.

Hence, we take our best approximation qi
wt

which is our opponent

model which is parameterized by wi
t and update as

wi
t  wi

t�1 þ grwi Eai�~pi
t�1 ; a

�i�q
wi
t

Q�i ai; a�i; s
� �h i

: ð9Þ

We point out that the Q mentioned above can represent any type of
critic function, such as Q-function, soft Q-function or advantage
function.

To summarize, firstly, we derive a learning objective for agent
i’s policy pi. We show that a good opponent model can alleviate
the non-stationarity problem of policy updates in MARL. With an
accurate opponent prediction, each agent can access a more reli-
able Q estimation, which provides better guidance for its own pol-
icy update and further allows the agent to become a better
collaborator or stronger adversary to influence other agents in
cooperative and competitive settings, respectively. Secondly, we
propose a novel approach that exploits the temporal improvement
assumption to guide the opponent model evolution. Since each
agent dose not have access to the opponent’s policy in the general
MARL setup, it is not feasible to explicitly minimize the KL-
Divergence between the opponent model and the underlying
opponent policy. However, evolving the opponent model by simu-
lating the policy optimization process can implicity minimize the
corresponding KL-Divergence. We experimentally demonstrate
the effectiveness and accuracy of the proposed TDOM in the
Section 5.
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4. Multi-agent actor-critic with time dynamical opponent
model (TDOM-AC)

With the proposed TDOM, we introduce Multi-Agent Actor-
Critic with Time Dynamical Opponent Model (TDOM-AC). TDOM-
AC follows the CTDE framework [14,10]. There are three main
modules in the proposed TDOM-AC: Centralized Q-function
Q s; ai; a�i
� �

, opponent model q �jsð Þ and policy p �js; â�i� �
. We further

use neural networks (NNs) as function approximators, particularly
applicable in high-dimensional and/or continuous multi-agent
tasks. For an individual agent, i, the three modules are parameter-
ized by /i; hi and wi, respectively. The functions are updated using
stochastic gradient based optimization with learning rates g�:

/i
tþ1  /i

t þ g/r̂/i J /i
t

� 
hitþ1  hit þ ghr̂hi J hit

�  ð10Þ

and as elucidated in Section 3.3,

wi
tþ1  wi

t þ gwr̂wi J wi
t

� 
: ð11Þ

We would like to clarify that although Eqs. 10 and 11 perform sim-
ilar operations, their underlying idea is different. We can interpret
Eq. 10 as an approximation of a policy improvement and evaluation
step without running it until convergence. However, Eq. 11 does not
follow this idea. Instead, this update is based on the temporal
improvement assumption with the underlying goal of minimizing
the Kullback–Leibler divergence to the true marginal opponent poli-
cies ~p�i instead of policy improvement.

In the proposed TDOM-AC, experience replay buffer D is used
[32], where the off-policy experiences of all agents are recorded.
In a scenario with N agents, at time step t, a tuple
st ; stþ1; a1

t ; . . . ; a
N
t ; r

1
t ; . . . ; r

N
t

� �
is recorded.

We adopt the maximum entropy reinforcement learning
(MERL) framework [33] to enable a richer exploration and a better
learning stability. It is easy to see that the derivation still holds. We
merely omit the adjustments in the previous sections for the pur-
pose of readability. The centralized soft Q-function parameters can
be trained to minimize the soft Bellman residual:

J /i
� 

¼ E st ;at ;a�it ;stþ1ð Þ�D 1
2 Qi

/ st ; at ;a�it

� �� rit þ cV stþ1ð Þ� �h i2
; ð12Þ

where the value function V is implicitly parameterized by the soft
Q-function [33] parameters. The objective function becomes:

J /i
� 

¼ �E st ;at ;stþ1ð Þ�D; â�itþ1�qi
w
; âi

tþ1�pi
h

Qi
/ st ;ait ;a

�i
t

� �� ri st ;ait ;a
�i
t

� ���h
þc Qi

/ stþ1; âitþ1; â
�i
tþ1

� ��a logpi âi
tþ1jstþ1; â�itþ1

� ��
�a logqi

w â�itþ1jstþ1
� �2�

:

ð13Þ

The Qi
/ is the target soft Q-network that has the same structure as

Qi and is parameterized by /i, but updated through exponentially
moving average of the soft Q-function weights [32].

According to the MERL objective, the TDOM-based policy is
learned by directly minimizing the expected KL-divergence
between normalized centralized soft Q-function:

J hi
� 

¼ Es�D; â�i
tþ1�qi

w
Qi

/ s; ai; â�i
� �� a logpi

h aijs; â�i� �h i
; ð14Þ

where a is the temperature parameter that determines the relative
importance of the entropy term versus the reward, thus controls the
stochasticity of the optimal policy. In order to achieve a low vari-
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ance estimator of J hi
� 

, we apply the reparameterization trick

[34] for modeling the policy:

ait ¼ f ih �; s; a
�i� �

; ð15Þ
where �t is a noise vector that is sampled from a fixed distribution.
A common choice is a Gaussian distributionN. We can now rewrite
the objective in Eq. 14 as

J hi
� 

¼ Es�D; â�i
tþ1�qi

w
; ��N

� Qi s; f ih �; s;a
�i� �

; a�i
� 

� a logpi
h f ih �; s; a

�i� �js; a�i� h i
:

ð16Þ
Let Q�i s; ai; â�i

� �
:¼ P

j2�iQ
j
/ s; ai; â�i
� �

. Then, according to Eq. 9, the
objective for the TDOM model can be written as

J wi
� 

¼ Es�D; â�i�qi
w
; ai�pi

h
Q�i s; ai; â�i

� �� a logqi
w â�ijs� �h i

: ð17Þ

However, in mixed cooperative-competitive environments, agents
may have conflicting interests which can neutralize the gradient in
this formulation. We illustrate this by an example of a two-player
zero-sum Markov game:

r1 s; a1; a2
� � ¼ �r2 s; a1; a2

� �
; 8s 2S; a1; a2

� � 2A2: ð18Þ

Assumption 1. The Q-function approximations Q1
/ and Q2

/ for
agent 1 and agent 2 respectively, have converged to their true

functions Q1
p1
h
;p2

h
and Q2

p1
h
;p2

h
.

Theorem 1. In this setting, the gradient rwi J wi
� 

is exclusively

determined by entropy terms.
Proof 1. With p sð Þ denoting the trajectory distribution, observe
that the structure of the true Q1

p1
h
;p2

h
is:

Q1
p1
h
;p2

h
s0;a1

0;a
2
0

� �
, r1 s0;a1

0;a
2
0

� �þEs�p s1 ja10 ;a20ð Þ cV1
p1
h
;p2

h
s1ð Þ

� 

, r1 s0;a1
0;a

2
0

� �þEs�p sð Þ
X1
t¼1

ct r1t st ;a1t ;a
2
t

� �
H p1

h a1
t jst ;a2t

� �
q1

w a2t jst
� �� � " #

¼ �r2 s0;a10;a
2
0

� ��Es�p sð Þ
X1
t¼1

ct r2t st ;a1
t ;a

2
t

� �þH p1
h a1

t jst ;a2t
� �

q1
w a2t jst
� �� � " #

¼
X1
t¼1

ctH p2
h a2t jst ;a1

t

� �
q2

w a1
t jst

� �� 
�ctH p1

h a1
t jst ;a2t

� �
q1

w a2
t jst

� ��  !

�Q2
p1
h
;p2

h
s0;a10;a

2
0

� �
;

ð19Þ
where H �ð Þ denotes Shannon entropy. For lighter notation, let

E ¼
X1
t¼1

ctH p2 a2t jst ; a1t
� �

q2
w a1t jst
� �� 

� ctH p1 a1t jst ; a2t
� �

q1
w a2

t jst
� ��  !

:

ð20Þ
Then, we can determine the gradient as:

rwi J wi
� 

¼ Es�p; ��N rwi Q2
p1 ;p2 s0; f

i
w �;s0ð Þ

� 
�rwi Q2

p1 ;p2 s0; f
i
w �;s0ð Þ

� h
þrwiE�arwi log qi

w f iw �;s0ð Þjs0
� � i

¼ Es�p; ��N rwiE�arwi log qi
w f iw �;s0ð Þjs0
� � h i

¼ Es�p rwiEþarwiH qi
w �; �js0ð Þ

� h i
:

ð21Þ
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To alleviate the potential issue of neutralized gradients, we pro-
pose to modify the TDOM objective to be based on empirical data.
Specifically, we modify the objective function as

J wi
� 

¼ E s;a�jð Þ�D; âj�qi
w

X
j2�i

Q j
/ s; âj; a�in jf g; ai
� �� a logqj

w â�jjs� �" #
:

ð22Þ
Note that again we use the reparameterization trick [33] in order to
be able to exchange expectation and gradient, while still sampling
from the opponent model qi

w. The pseudo-code can be found below
1.

Algorithm1: Multi-agent Actor-Critic with Time Dynamical
Opponent Model (TDOM-AC)

Initialize replay buffer D and randomly initialize N soft Q

networks Q1::n
/i::n

;N policy networks p1::n
h1::n

, and opponent

model q1::n
w1::n

with parameters /i::n; h1::n and w1::n.

Initialize the parameters of target networks with Q1::n
/1::n

for each iteration do
Sample s0 according to p0 �ð Þ
while Not done do
for each agent do
Sample â�it from qi �jstð Þ and ait from pi �jst ; â�it

� �
Combine the true actions at ¼ a1t ; . . . ; a

n
t

� �
and take one

step forward
end for
Observe stþ1; rt ¼ r1t ; . . . ; r

n
t

� �
and store st ; at; rt; stþ1ð Þ in D

Sample minibatches of N transitions from D
for each agent do
Estimate policy gradient according to Eqs. 13, 16, and 22:

/i
tþ1  /i

t þ g/r̂/i J /i
t

� 
hitþ1  hit þ ghr̂hi J hit

� 
wi

tþ1  wi
t þ gwr̂wi J wi

t

� 
:

Update the parameters of target networks Q1::n
/1::n

end for
end while

end for
Fig. 2. Reward surface and learning path of agents trained by TDOM-AC. Scattered
points are actions taken at each step, the lighter points are sampled later during
training.
5. Simulation results

We compare the proposed TDOM-AC to two state-of-the-art
algorithms based on opponent modelling: PR2 [15] and ROMMEO
[12], which have shown a better performance with respect to the
considered measures compared to Multi-Agent Soft Q-Learning
MASQL [35] and MADDPG [10] in previous studies. We evaluate
the performance of the proposed TDOM-AC methods on a differen-
tial game [35,15,12] and the multi-agent particle environments
[10]. Those tasks contain fully cooperative and mixed
cooperative-competitive objectives with challenging non-trivial
equilibria [15] and continuous action space. All the tasks are
adopted from PR2 and ROMMEO for adequate comparison.

To reduce the performance difference caused solely by entropy
regularization, we add an entropy term to the PR2 objective and
equip it with a stochastic policy since both TDOM-AC and ROM-
MEO employ the maximum entropy reinforcement learning frame-
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work. This has been shown to yield better exploration and sample
efficiency [33].

For the simulation settings, all policies and opponent models
use a fully connected multi-layer perceptron (MLP) with two hid-
den layers of 256 units each, outputting the mean l and standard
deviation r of a univariate Gaussian distribution. All hidden layers
use the leaky-RelU activation function and we adopt the same
invertible squashing function technique as [33] for the output
layer. For the Q-network, we use a fully-connected MLP with two
hidden layers of 256 units with leaky-Relu activation function, out-
putting the Q-value. We employ the Adam optimizer with the
learning rate 3e� 4 and batch size 256. The target smoothing coef-
ficient s, entropy control parameter a and the discount factor c are
0:01;1, and 0:95 respectively. All training hyper-parameters are
derived from the SAC algorithm (as published in [33]) without
any additional adaptations.
5.1. Differential game

The differential Max-of-Two Quadratic Game is a single step
continuous action space decision making task, where the gradient
update tends to direct the training agent to a sub-optimal point
[12]. The reward surface is displayed in the Fig. 2. There exists a
local maximum 0 at �5;�5ð Þ and a global maximum 10 at 5;5ð Þ,
with a deep valley positioned in the middle. The agents are
rewarded by their joint actions, following the rule:

r1 ¼ r2 ¼ max f 1; f 2ð Þ, where f 1 ¼ 0:8 � � a1þ5
3

� �2 � a2þ5
3

� �2h i
and

f 1 ¼ � a1�5
1

� �2 � a2�5
1

� �2h i
þ 10. Both of the agents have the same

continuous action space in the range �10;10½ �. Compared to other
state-of-the art approaches, TDOM-AC shows a superior perfor-
mance. In Fig. 3, the learning path of the proposed TDOM-AC is dis-
played, where the lighter (yellow) dots are sampled later. This
indicates a stable and fast convergence. In Fig. 3, the learning
curves of all considered algorithms are displayed. Both TDOM-AC
and ROMMEO show a fast and stable convergence. However, ROM-
MEO fails for some random seeds, resulting in a lower average per-
formance. We note that the maximum-entropy version of PR2
indeed converges faster than the original version [15]. Neverthe-
less, the learning process fluctuates significantly and it suffers from
substantial computational cost, see Table 1.



Fig. 3. Average performance of TDOM-AC and other baselines, where the shaded
areas show the 1-SD confidence intervals over multiple random seeds.

Table 1
Average running time (seconds) per update of different methods.

Methods TDOM-AC ROMMEO PR2

Running time 0:068s 0:089s 0:436s

Fig. 5. The test time opponents’ behaviors prediction error of TDOM-AC and other
baselines.

Table 2
Comparison of different model settings (Agent vs. Adversaries). The values are the
normalized average episode advantage scores.

Ag vs. Ads TDOM-AC ROMMEO PR2 Mean

TDOM-AC 0.967 1.000 0.999 0.989
ROMMEO 0.674 0.997 0.981 0.884
PR2 0.000 0.722 0.313 0.345

Mean 0.547 0.906 0.764 N/A
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5.2. Cooperative navigation

Cooperative Navigation is a three-agent fully cooperative task.
The three agents should learn to cooperate to reach and cover three
randomly generated landmarks. The agents can observe the rela-
tive positions of other agents and landmarks and are collectively
rewarded based on the proximity of any agent to each landmark.
Besides this, the agents are being penalized when colliding with
each other. The expected behavior is to ‘‘cover” the three land-
marks as fast as possible without any collision. The result shows
that TDOM-AC outperforms all other considered baseline algo-
rithms in terms of both faster convergence and a better perfor-
mance, see Fig. 4. Also, the TDOM-AC attains more accurate
opponent behavior prediction, despite the fact that the agents do
not have direct access to any opponent action distribution, see
Fig. 5. This is in contrast to ROMMEO, which utilizes a regularized
opponent model, the regularization being the KL divergence
between the opponent model and the empirical opponent
distribution.
Fig. 4. Moving average of total reward of TDOM-AC and other baselines on
Cooperative Navigation.
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5.3. Predator and prey

Predator and Prey is a challenging four-agent mixed
cooperative-competitive task. There are three slower cooperating
adversaries that try to chase the faster agent in a randomly gener-
ated environment with two large landmarks impeding the way.
The cooperative adversaries are rewarded for every collision with
the agent, while the agent is being penalized for any such collision.
All agents can observe the relative positions and velocities of other
agents and the positions of the landmarks.

For this task, we train all the algorithms for 0.6 M steps and
compare the normalized average episode advantage score (the
sum of agent’s rewards in an episode - the sum of adversaries’
rewards in an episode [15,10]. We evaluate the performance of
the different algorithms by letting the cooperative adversaries
trained by one algorithm play against an agent trained by another
algorithm and vice versa. A higher score means the agent (prey)
performs better than the cooperative adversaries (predators),
while a lower score means that the cooperative adversaries have
a superior policy over the agent. Table 2 shows that the TDOM-
AC performs best on both prey 0:999ð Þ and predator 0:547ð Þ side.

6. Conclusion

In this work, we propose a novel time dynamical opponent
model called TDOM. It supports mixed cooperative-competitive
tasks with a low computational cost. Furthermore, we introduce
the TDOM-AC algorithm and demonstrate the superior perfor-
mance compared to other state-of-the-art methods on multiple
challenging benchmarks. In the future, we plan to omit the central-
ized training and instead also model opponent Q-function param-
eters as time dynamical latent variables, thereby relying
exclusively on past opponent actions for training. Also, we would
like to evaluate the proposed approach on more complicated tasks,
such as SMAC [36] and investigate the capability on partially
observable environments where the agent does not share its obser-
vation space with all opponents.
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