Supplementary Information

Enantio- and Diastereoselective Construction of Vicinal C(sp³) Centers via Nickel-Catalysed Hydroalkylation of Alkenes

Srikrishna Bera^{1,2}, Chao Fan¹, and Xile Hu^{1*}

¹Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland

²Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati 517619, Andhra Pradesh, India

* <u>xile.hu@epfl.ch</u>

Table of Contents

Supplementary Methods

1. Instrumentation and chemicals
2. Optimization of reaction conditions4–13
3. Synthesis of ligand (L2)14
4. Synthesis of alkenyl boronic esters15–20
5. Preparation of racemic alkyl bromides
6. General Procedure (GP6) for probing the scope of enantioselective alkyl–alkyl cross- coupling reactions
7. Product diversifications
8. Synthesis of compound 17, a key intermediate to drug molecules 18 and 19
9. Mechanistic investigations
10. Crystallography details64–75
11. HPLC Spectra76–128
12. ¹ H, ¹³ C and ¹¹ B NMR spectra of compounds
Supplementary Tables7–13
Supplementary References

Supplementary Methods

1. Instrumentation and chemicals:

All reactions for the Ni-catalysed hydroalkylation were set up in 10 mL Teflon-screw capped test tubes (unless otherwise noted) under an inert nitrogen (N_2) atmosphere using glove-box techniques. Solvents were either purified using a two-column solid-state purification system (Innovative Technology, NJ, USA) or bought from the commercial sources and transferred to the glovebox without exposure to air.

NMR: ¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded on a Bruker Advance 400 Spectrometer. ¹H and ¹³C{¹H} chemical shifts were referenced internally to residual solvent peaks relative to TMS ($\delta = 0$ ppm) at 299 K. Chemical shifts (δ (ppm)) are reported relative to TMS (δ (1H) 0.0 ppm, δ (13C) 0.0 ppm). The solvent's residual proton resonance and the respective carbon resonance (for CHCl₃; δ (1H) 7.26 ppm, δ (13C) 77.0 ppm were used for calibration. The boronbound carbon peaks were very weak due to quadrupolar coupling and were not assigned.

TLC: Merck silica gel 60 F 254 plates; detection with UV light or by dipping into a solution of KMnO₄ (1.5 g in 400 mL H₂O, 5.0 g NaHCO₃) or a solution of Ce(SO₄)₂ x H₂O (10 g), phosphomolybdic acid hydrate (25 g), and conc. H₂SO₄ (60 mL) in H₂O (940 mL), followed by heating.

Flash column chromatography (FC): Flash column chromatography was performed using silica gel (Silicycle, ultra-pure grade). Preparative Thin Layer Chromatography (PTLC) was performed using glass plates from Merck KGaA, Darmstadt, Germany. The eluents for column chromatography and PTLC were presented as ratios of solvent volumes.

GC and GC-MS: All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with a FID detector. All GC-MS analyses were performed on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector.

IR spectra were recorded on a Bruker Vertex 80 FT-IR spectrometer.

HPLC spectra were recorded on an *Agilent* HPLC. Column, eluent, and retention times for HPLC analysis used for the determination of enantiomeric excess (*ee*) are given below in the details of the relevant experiments.

Optical rotations were measured on a *Polartronic M* polarimeter using a 0.5 cm cell with a Na 589 nm filter.

Melting points (M.P.) were determined on a *SMP 30 apparatus* (*Stuart Scientific*) and are uncorrected.

High-resolution mass spectra (HRMS) by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) method were performed at the EPFL ISIC Mass Spectroscopy Service.

All reagents were either prepared according to reported methods or purchased from *Sigma Aldrich*, *TCI*, *Acros Organics*, *Alfa Aesar*, *Fluorochem*, *Enamine* and *ABCR*. Anhydrous NiCl₂

from *ABCR*, (MeO)₃SiH, anhydrous LiCl powder and BF₃·OEt₂ for synthesis from *Sigma Aldrich*, anhydrous KF from *Alfa Aesar*, and anhydrous DMA from *Acros Organics* were used.

2. Optimization of reaction conditions

2.1 General procedure for the screening of racemic alkyl halides and chiral ligands (Supplementary Table 1):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6 x 15 mm) were added NiCl₂ (1.3 mg, 0.01 mmol, 0.10 equiv.) and ligand L1 (4.4 mg, 0.015 mmol, 0.15 equiv.) under an inert nitrogen (N₂) atmosphere using glove-box techniques. If additive LiCl (5.0 mg, 0.12 mmol, 1.2 equiv.) was used then it was added at this time followed by the addition of anhydrous DMA (0.5 mL). The mixture was stirred for ~1.5 hours at room temperature. Then anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) and a racemic alkyl electrophile (0.10 mmol, 1.0 equiv.) followed by (*E*)-4,4,5,5-tetramethyl-2-(5-phenylpent-1-en-1-yl)-1,3,2-dioxaborolane (40.8 mg, 0.15 mmol, 1.5 equiv.) or *trans*-1-hexenylboronic acid pinacol ester (37.5 μ L, 0.15 mmol, 1.5 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, DEMS (43.0 μ L, 0.25 mmol, 2.5 equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature for 45 hours, maintaining 600 rpm. The reaction was quenched by the addition of aqueous NH₄Cl (0.5 mL) and EtOAc (2x3.0 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (2x3.0 mL). The combined organic phases were concentrated in vacuum to obtain the crude product which was used for experimental analysis.

2.2 General procedure for the screening of chiral ligands (Supplementary Table 2):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6x15 mm) were added NiCl₂ (1.3 mg, 0.01 mmol, 0.10 equiv.) and a ligand **L** (15 mol%) under an inert nitrogen (N₂) atmosphere using glove-box techniques. If additive LiCl (5.0 mg, 0.12 mmol, 1.2 equiv.) was used then it was added at this time followed by the addition of anhydrous DMA (0.5 mL). The mixture was stirred for ~1.5 hours at room temperature. Then racemic 3-bromo-1-phenylpyrrolidin-2-one **2a** (24.0 mg, 0.10 mmol, 1.0 equiv.) and anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) followed by *trans*-1-hexenylboronic acid pinacol ester **1a** (37.5 μ L, 0.15 mmol, 1.5 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, DEMS (43.0 μ L, 0.25 mmol, 2.5 equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature for 45 hours, maintaining 600 rpm.

General procedure (GP1) for work-up and data analysis: The reaction was quenched by the addition of aqueous NH₄Cl (0.5 mL) and EtOAc (3.0 mL). Then internal standard dodecane (23.0 μ L) was added to this mixture and the resulting mixture was well mixed. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc (2x3.0 mL). The combined organic phases were concentrated in vacuum. The crude mixture was purified by flash column chromatography. The obtained crude boronic ester product was used for the determination of enantiomeric excess (*ee*) and diastereomeric ratio (*dr*) by chiral HPLC analysis.

2.3 General procedure for the screening of hydride donors (Supplementary Table 3):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6 x 15 mm) were added NiCl₂ (1.3 mg, 0.01 mmol, 0.10 equiv.), ligand L2 (5.6 mg, 0.015 mmol, 0.15 equiv.), and LiCl (5.0 mg, 0.12 mmol, 1.2 equiv.) under an inert nitrogen (N₂) atmosphere using glovebox techniques. Then anhydrous DMA (0.5 mL) was added and the mixture was stirred for ~1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1phenylpyrrolidin-2-one 2a (24.0 mg, 0.10 mmol, 1.0 equiv.) and anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester 1a (37.5 µL, 0.15 mmol, 1.5 equiv.) [or racemic 3-bromo-1-phenylpyrrolidin-2-one 2a (28.8 mg, 0.12 mmol, 1.2 equiv.) and anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester 1a (25.0 µL, 0.10 mmol, 1.0 equiv.)] were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, hydride donor/donors (0.25 mmol, 2.5 equiv.) were added dropwise to it [in the case of two hydride donors, the hydrosilane was added first followed by HBpin]. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature or in an ice-water bath at 0 °C for 45 hours, maintaining 600 rpm. Afterward, the general procedure (GP1) for work-up and data analysis was followed for further analysis.

2.4 General procedure for the evaluation of boron-based Lewis acids (Supplementary Table 4-6):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6x15 mm) were added NiCl₂ (1.3 mg, 0.01 mmol, 0.10 equiv.), ligand L2 (5.6 mg, 0.015 mmol, 0.15 equiv.), and LiCl (5.0 mg, 0.12 mmol, 1.2 equiv.) under an inert nitrogen (N₂) atmosphere using glove-box techniques. Then anhydrous DMA (0.5 mL) was added and the mixture was stirred for ~1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1-phenylpyrrolidin-2-one **2a** (28.8 mg, 0.12 mmol, 1.2 equiv.) and anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) followed by *trans*-1-hexenylboronic acid pinacol ester **1a** (25.0 μ L, 0.10 mmol, 1.0 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, a hydride donor (0.25 mmol, 2.5 equiv.) was added dropwise to it followed by the addition of a boron-based Lewis acid (x mol%). The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred in an ice-water bath at 0 °C for 45 hours, maintaining 600 rpm. Afterward, the general procedure (**GP1**) for work-up and data analysis was followed for further analysis.

2.5 General procedure for the screening of Ni-salts (Supplementary Table 7):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6x15 mm) were added Ni-salt (0.01 mmol, 0.10 equiv.), ligand L2 (5.6 mg, 0.015 mmol, 0.15 equiv.), and LiCl (5.0 mg, 0.12 mmol, 1.2 equiv.) under an inert nitrogen (N₂) atmosphere using glove-box techniques. Then anhydrous DMA (0.5 mL) was added and the mixture was stirred for ~1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1-phenylpyrrolidin-2-one **2a** (28.8 mg, 0.12 mmol, 1.2 equiv.) and anhydrous KF (14.5 mg, 0.25 mmol, 2.5 equiv.) followed by *trans*-1-hexenylboronic acid pinacol ester **1a** (25.0 µL, 0.10 mmol, 1.0 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point,

(MeO)₃SiH (33.5 μ L, 0.25 mmol, 2.5 equiv.) was added dropwise to it followed by the addition of BF₃.OEt₂ (3.6 μ L, 0.03 mmol, 0.30 equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at 0 °C for 45 hours, maintaining 600 rpm. Afterward, the general procedure (**GP1**) for work-up and data analysis was followed for further analysis.

2.6 General procedure (GP2) for the investigation of the effect of different parameters (Supplementary Table 8):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar (6x15 mm) were added Ni-salt (0.01 mmol, 0.10 equiv.), ligand L (0.015 mmol, 0.15 equiv.), and LiX (0.12 mmol, 1.2 equiv.) under an inert nitrogen (N₂) atmosphere using glove-box techniques. Then anhydrous solvent (0.5 mL) was added and the mixture was stirred for ~1.5 hours at room temperature. Then racemic 3-bromo-1-phenylpyrrolidin-2-one **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.) and anhydrous base (0.25 mmol, 2.5 equiv.) followed by *trans*-1-hexenylboronic acid pinacol ester **1a** (25.0 μ L, 0.10 mmol, 1.0 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, a hydride donor (0.25 mmol, 2.5 equiv.) was added dropwise to it followed by the addition of B-based Lewis acid (0.03 mmol, 0.30 equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at 0 °C for 45 hours, maintaining 600 rpm. Afterward, the general procedure (**GP1**) for work-up and data analysis was followed for further analysis.

Supplementary Tables

Supplementary Table 1. Evaluation of Secondary Racemic Alkyl Electrophile

Supplementary Table 2. Screening of Ligands (L)

1^a	L1	30	82	54:46
2	L1	40	83	76:24
3	L2	56	95	80:20
4	L4	trace	n.d.	n.d.
5	L7	48	72	61:39
6	L8	16	5	75:25

7	L9	63	72	65:35
8	L10	16	2	66:34
9	L11	22	82	62:38
10	L12	51	80	75:25
11	L13	40	89	77:23
12	L14	33	72	70:30
13	L15	43	88	84:16
14 ^b	L16	39	-83	74:26
15	L17	trace	n.d.	n.d.
16	L18	trace	n.d.	n.d.
17	L19	trace	n.d.	n.d.
18	L20	trace	n.d.	n.d.
19	L21	trace	n.d.	n.d.

^a The reaction was conducted without LiCl. DEMS = Diethoxy-methylsilane; DMA = N, N-Dimethylacetamide; RT = room temperature. ^b The opposite enantiomer was formed.

Supplementary Table 3. Screening of Hydride Donors

Entry	Hydride donor	Yield (%)	ee (%)	dr
1	DEMS	56	95	80:20
2	(EtO) ₃ SiH	35	96	84:16
3	PMHS	49	94	85:15
4	DMMS	67	95	86:14
5	HBpin	30	92	94:6
6	DMMS:HBpin (1:1)	49	93	96:4

7	DMMS:HBpin (2:1)	47	94	95.5:4.5
8 ^a	DMMS:HBpin (1:1)	65	89	93:7
9 ^b	DMMS:HBpin (1:1)	57	92	95:5
10 ^b	DMMS:HBpin (1:1.5)	54	92	95:5
11 ^b	DMMS:HBpin (1.5:1)	52	91	94:6
12 ^b	(MeO) ₃ SiH	89	96	85:15
13 ^b	(MeO) ₃ SiH:HBpin (2:0.5)	75	95	92:8
14 ^{b,c}	(MeO) ₃ SiH:HBpin (2:0.5)	76	96	95:5
15 ^{b,c}	(MeO) ₃ SiH:HBpin (2.0:0.3)	82	96	90.5:9.5
16 ^{b,c}	(MeO) ₃ SiH:HBpin (2.2:0.5)	77	96	95:5

^a The reaction was conducted with **1a** (1.0 equiv.) and **2a** (1.5 equiv.). ^b The reaction was conducted with **1a** (1.0 equiv.) and **2a** (1.2 equiv.). ^c The reaction was conducted at 0 °C.

Supplementary Table 4. Screening of Boron Lewis Acids

Entry	Boron-based Lewis acid (mol%)	Yield (%)	ee (%)	dr
17 ^{b,c}	(MeO) ₃ SiH + BF ₃ .OEt ₂ (100 mol%)	50	92	96:4
18 ^{b,c}	(MeO) ₃ SiH + BF ₃ .OEt ₂ (50 mol%)	74	92	95:5
19 ^{b,c}	$(MeO)_{3}SiH + BF_{3}.OEt_{2} (30 \text{ mol}\%)$	78	94	95:5
20 ^{b,c}	$(MeO)_3SiH + BF_3.OEt_2 (20 mol\%)$	83	97	92:8
21 ^{b,c}	$(MeO)_3SiH + BPh_3 (30 mol\%)$	16	96	95:5

Supplementary Table 5. Evaluation of the Effect of LiCl and BF3.OEt2 on the Reaction

Entry	Variation of Li-salt and BF3.OEt2	Yield (%)	ee (%)	dr
1	No variation	78	94	95:5
2	Without LiCl and BF ₃ .OEt ₂	74	82	75:25
3	With LiCl and without BF ₃ .OEt ₂	90	95	88:12
4	Without LiCl and with BF ₃ .OEt ₂	73	86	88:12
5	With LiCl (30 mol%) and with $BF_3.OEt_2$	76	88	84:16
6	With LiBr and BF ₃ .OEt ₂	70	86	87:13
7	With LiI and BF ₃ .OEt ₂	63	85	88:12
8	With KCl and BF ₃ .OEt ₂	74	88	84:16
9	LiBF ₄ (1.2 equiv.) instead LiCl + BF ₃ .OEt ₂	77	90	78:12

Supplementary Table 6. The Effect of BF3.OEt2 on the Reaction

1a (1.0 equiv.)	$ \frac{1}{2a} $ $ \frac{2a}{(1.2 \text{ equiv.})} $	NiCl ₂ (10 mol%) L2 (15 mol%) BF ₃ •OEt ₂ (x mol%) (MeO) ₃ SiH (2.5 equiv.) LiCl (1.2 equiv.) KF (2.5 equiv.), DMA 0 °C, 45 h	3aa	\sim
Entry	BF3.OEt ₂ (mol%)	Yield (%)	ee (%)	dr
1	0	90	95	88:12

	20	0.4	05	02.0
2	20	84	95	92:8
3	25	80	95	94:6
1	30	78	04	95:5
4	50	78	94	95:5
5	50	74	93	95:5
6	100	50	02	97:3
6	100	50	93	97.5

Supplementary Table 7. Screening of Ni-salts

Entry	Ni-salt	Yield (%)	ee (%)	dr
1	NiCl ₂	78	94	95:5
2ª	NiCl ₂	80(75)	94	95:5
3	NiBr ₂	77	92	95:5
4	NiI ₂	72	93	95:5
5	NiCl ₂ .dme	76	94	95:5
6	NiBr ₂ .dme	49	92	95:5
7	NiBr ₂ .diglyme	75	92	95:5
8	Ni(NO ₃) ₂ .6H ₂ O	82	94	86:14
9	NiCl ₂ .6H ₂ O	71	96	88:12

^a The reaction was conducted with **1a** (1.0 equiv.) and **2a** (1.3 equiv.). Isolated yield in the parenthesis.

Supplementary Table 8. A Concise Summary of the Effects of Different Parameters

Entry	Deviation	Yield (%)	ee (%)	dr
1 ^a	none	80 (75)	94	95:5
2	L1	40	87	84:16
3	L3	22	0	40:60
4	L4	trace	n.d.	n.d.
5	L5	trace	n.d.	n.d.
6	L6	trace	n.d.	n.d.
7	w/o LiCl	73	86	88:12
8	w/o BF ₃ ·OEt ₂	90	95	88:12
9	w/o $LiCl + BF_3 \cdot OEt_2$	73	82	75:25
10	NiBr ₂ .diglyme	75	92	95:5
11	NiCl ₂ .6H ₂ O	71	96	88:12
12	DEMS	73	93	87:13
13	LiBr	69	86	87:13
14	BPh ₃	16	96	95:5
15	K_2CO_3	18	84	88:12
16	DMF	23	68	82:18

^cIsolated yield is shown in the parenthesis

At first (S)-2-amino-2-mesitylethan-1-ol was synthesized according to a known literature procedure.^[1] Then it was used for the synthesis of chiral ligand L2 following a slightly modified version of a reported method.^[2] To an oven-dried schlenk tube under N₂ atmosphere (S)-2-amino-2-mesitylethan-1-ol (1.51 g, 8.46 mmol, 2.0 equiv.) and dimethyloxalate (500 mg, 4.23 mmol, 1.0 equiv.) followed by anhydrous PhMe (40 mL) and catalytic acetic acid (40 µL) were added. The reaction mixture was sealed and stirred at 80 °C for 24 hours. The reaction mixture was then allowed to cool to room temperature and concentrated in vacuum to afford the crude diamide, which was directly used in the next step without further purification. To an oven-dried schlenk tube the diamide (1.47 g, 3.56 mmol, 1.0 equiv.) and DCM (50 mL) were added under N₂ atmosphere. The tube was cooled to -78 °C in a dry-ice/acetone bath, and diethylaminosulfur trifluoride (1.39 mL, 9.97 mmol, 2.8 equiv.) was added dropwise. The reaction mixture was stirred for 1 h, then K₂CO₃ (1.96 g, 14.2 mmol, 4.0 equiv.) was added slowly. The flask was removed from the cold bath and allowed to warm to room temperature. The stirring was continued for an additional 45 minutes. After that, the reaction mixture was diluted with DCM (30 mL) and water (30 mL). The organic layer was washed with aqueous NaHCO₃ (30 mL) and brine (30 mL), dried over Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc (2:1) as eluent to afford the ligand L2 as a white solid (650 mg, 48%). ¹H NMR (400 MHz, **Chloroform-***d*) δ 6.84 (s, 4H), 5.85 (t, *J* = 10.8 Hz, 2H), 4.76 (dd, *J* = 10.8, 8.7 Hz, 2H), 4.35 (dd, J = 10.8, 8.7 Hz, 2H), 2.30 (s, 12H), 2.25 (s, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 155.41, 137.55, 137.09, 132.40, 130.49, 72.90, 66.80, 20.91, 20.36. HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for C₂₄H₂₉N₂O₂⁺ 377.2224; Found 377.2219.

4. Synthesis of alkenyl boronic esters

Supplementary Figure 1. Alkenyl boronic esters

Alkenyl boronic esters **1a** and **1b** are commercially available. Compound **1c**–**1f**^[3], **1j**–**1k**^[3], **1p**^[3], and **1v**^[3] were prepared according to previously reported procedures. Alkenyl pinacol boronates **1g**–**1i**, **1l**–**1o**, **1q**, and **1r** were synthesized following the general procedure (**GP3**). Compound **1w** was synthesized following a known literature method.^[4]

General Procedure (GP3) for the synthesis of alkenyl boronates:

To an oven-dried 30 mL Teflon-screw capped test tube equipped with a magnetic stir were added Schwartz's reagent (136 mg, 0.5 mmol, 0.10 equiv.), pinacolborane (0.78 mL, 5.25 mmol, 1.05 equiv.), alkyne (5.0 mmol, 1.0 equiv.) and Et₃N (70.0 μ L, 0.50 mmol, 0.10 equiv.) under an inert nitrogen (N₂) atmosphere using glove-box techniques. The test tube was then sealed with airtight electrical tapes and removed from the glove box and stirred at 60 °C for 24 hours. The reaction was allowed to cool to room temperature, diluted with Et₂O, passed through a pad of silica gel, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

(E)-2-(6-(4-Bromophenoxy)hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1g):

Br B

according to GP3 from 1-bromo-4-(hex-5-yn-1-Prepared yloxy)benzene (1.27 g, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 30:1 hexane:EtOAc) afforded the desired product 1g as a white solid (1.26 g, 66%). ¹H NMR (400 MHz, **Chloroform-***d*) δ 7.41 – 7.31 (m, 2H), 6.79 – 6.72 (m, 2H), 6.63 (dt, *J* = 17.9, 6.4 Hz, 1H), 5.46 (dt, J = 17.9, 1.6 Hz, 1H), 3.91 (t, J = 6.4 Hz, 2H), 2.22 (tdd, J = 7.5, 6.3, 1.6 Hz, 2H), 1.78 (dq, J = 8.7, 6.2 Hz, 2H), 1.65 - 1.55 (m, 2H), 1.26 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d)

δ 158.31, 153.95, 132.32, 116.41, 112.74, 83.20, 68.07, 35.46, 28.76, 24.92, 24.70. ¹¹B NMR (128 MHz, Chloroform-d) δ 29.85. HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for $C_{18}H_{26}BBrO_3^+$ 380.1153; Found 380.1155. **M.P.** = < 40 °C.

(E)-2-(6-(2,4-Dichlorophenoxy)hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1h):

Prepared according to GP3 from 2,4-dichloro-1-(hex-5-yn-1yloxy)benzene (1.21 g, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 30:1 hexane:EtOAc) afforded the desired product 1h as a viscous oil (1.32 g, 71%). ¹H NMR (400 MHz, **Chloroform-***d*) δ 7.34 (d, *J* = 2.5 Hz, 1H), 7.14 (dd, *J* = 8.8, 2.6 Hz,

1H), 6.80 (d, J = 8.8 Hz, 1H), 6.63 (dt, J = 18.0, 6.4 Hz, 1H), 5.46 (dt, J = 18.0, 1.6 Hz, 1H), 3.98 (t, J = 6.4 Hz, 2H), 2.23 (tdd, J = 7.5, 6.4, 1.6 Hz, 2H), 1.83 (dq, J = 8.4, 6.5 Hz, 2H), 1.68- 1.57 (m, 2H), 1.26 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 153.89, 153.53, 130.02, 127.58, 125.55, 123.85, 114.09, 83.17, 69.29, 35.40, 28.60, 24.90, 24.62. ¹¹B NMR (128 MHz, **Chloroform-***d*) δ 29.30. **HRMS (ESI/QTOF) m/z:** $[M + Na]^+$ Calcd for C₁₈H₂₅BCl₂NaO₃⁺ 393.1166; Found 393.1148.

(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl tetrahydro-2H-pyran-4carboxylate (1i):

Prepared according to GP3 from but-3-yn-1-yl tetrahydro-2Hpyran-4-carboxylate (911 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product 1i as a colorless oil (1.19 g, 77%). ¹H NMR (400 MHz, **Chloroform-***d*) δ 6.54 (dt, *J* = 18.0, 6.4 Hz, 1H), 5.51 (dt, *J* = 18.0,

1.6 Hz, 1H), 4.16 (t, J = 6.6 Hz, 2H), 3.93 (dt, J = 11.5, 3.8 Hz, 2H), 3.41 (ddd, J = 11.5, 10.5, 3.2 Hz, 2H), 2.56 – 2.42 (m, 3H), 1.83 – 1.72 (m, 4H), 1.25 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) & 174.52, 148.97, 83.34, 67.19, 62.98, 40.17, 35.01, 28.75, 24.87. 11B NMR (128 MHz, Chloroform-d) δ 29.25. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₆H₂₈BO₅⁺ 311.2024; Found 311.2019.

(*E*)-*tert*-Butyldimethyl((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl)oxy)silane (11):

Prepared according to **GP3** from *tert*-butyl(hex-5-yn-1-yloxy)dimethylsilane (1.0g g, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product **11** as a colorless oil (1.31 g, 77%). ¹H NMR (400 MHz,

Chloroform-*d***)** δ 6.62 (dt, *J* = 17.9, 6.4 Hz, 1H), 5.42 (dt, *J* = 17.9, 1.6 Hz, 1H), 3.59 (t, *J* = 6.2 Hz, 2H), 2.16 (tdd, *J* = 6.4, 4.6, 1.6 Hz, 2H), 1.55 – 1.43 (m, 4H), 1.25 (s, 12H), 0.88 (s, 9H), 0.03 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.62, 83.12, 63.12, 35.69, 32.47, 26.12, 24.91, 24.60, 18.50, -5.15. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.61. HRMS (APCI/QTOF) m/z: [M + H]⁺ Calcd for C₁₈H₃₈BO₃Si⁺ 341.2678; Found 341.2674.

(*E*)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl furan-2-carboxylate (1m):

Prepared according to **GP3** from but-3-yn-1-yl furan-2-carboxylate (821 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product **1m** as a colorless oil (1.08 g, 74%). ¹**H NMR (400 MHz, Chloroform-***d*) δ

7.55 (dd, J = 1.8, 0.9 Hz, 1H), 7.15 (dd, J = 3.5, 0.9 Hz, 1H), 6.60 (dt, J = 18.0, 6.4 Hz, 1H), 6.48 (dd, J = 3.5, 1.8 Hz, 1H), 5.56 (dt, J = 18.0, 1.6 Hz, 1H), 4.36 (t, J = 6.8 Hz, 2H), 2.59 (qd, J = 6.8, 1.6 Hz, 2H), 1.25 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 158.75, 148.65, 146.39, 144.77, 118.03, 111.90, 83.33, 63.52, 34.99, 24.87. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.24. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₂₁BNaO₅⁺ 315.1374; Found 315.1383.

(*E*)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl thiophene-2-carboxylate (1n):

Prepared according to **GP3** from but-3-yn-1-yl thiophene-2carboxylate (901 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 20:1 hexane:EtOAc) afforded the desired product **1n** as a colorless oil (989 mg, 64%). ¹**H** NMR (**400 MHz**,

Chloroform-*d*) δ 7.77 (dd, J = 3.8, 1.3 Hz, 1H), 7.53 (dd, J = 5.0, 1.3 Hz, 1H), 7.07 (dd, J = 5.0, 3.8 Hz, 1H), 6.61 (dt, J = 18.0, 6.5 Hz, 1H), 5.57 (dt, J = 18.0, 1.6 Hz, 1H), 4.35 (t, J = 6.8 Hz, 2H), 2.59 (qd, J = 6.8, 1.6 Hz, 2H), 1.25 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.25, 148.76, 133.94, 133.48, 132.44, 127.78, 83.30, 63.70, 35.03, 24.86. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.27. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₅H₂₁BNaO₄S⁺ 331.1146; Found 331.1150.

(*E*)-2-(5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)pent-4-en-1-yl)isoindoline-1,3-dione (10):

Prepared according to **GP3** from 2-(pent-4-yn-1-yl)isoindoline-1,3-dione (1.10 g, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product **10** as a white solid (1.0 g, 59%). ¹**H NMR**

(400 MHz, Chloroform-*d*) δ 7.85 – 7.79 (m, 2H), 7.73 – 7.67 (m, 2H), 6.60 (dt, *J* = 18.0, 6.3 Hz, 1H), 5.46 (dt, *J* = 18.0, 1.6 Hz, 1H), 3.69 (t, *J* = 6.5 Hz, 2H), 2.22 (dtd, *J* = 8.0, 6.5, 1.7 Hz, 2H), 1.86 – 1.77 (m, 2H), 1.23 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 168.51, 152.67, 134.00, 132.28, 123.33, 83.18, 37.87, 33.19, 27.19, 24.89. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.14. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₄BNNaO₄⁺ 364.1691; Found 364.1698. M.P. = 63.7 – 69.0 °C

(*E*)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate (1q):

Prepared according to **GP3** from chlorambucil (1.06 g, 3.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product **1q** as a colorless viscous oil (914 mg, 63%). ¹**H NMR (400 MHz, Chloroform-d)** δ 7.13 – 7.03 (m, 2H), 6.64 – 6.52 (m, 3H), 5.53 (dt, *J* = 18.0, 1.5 Hz, 1H), 4.14 (t, *J* = 6.7 Hz, 2H), 3.72 –

3.67 (m, 4H), 3.63 – 3.59 (m, 4H), 2.55 (t, J = 7.5 Hz, 2H), 2.48 (qd, J = 6.7, 1.6 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 1.89 (p, J = 7.5 Hz, 2H), 1.26 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.65, 149.15, 144.40, 130.75, 129.83, 112.26, 83.32, 62.91, 53.73, 40.63, 35.00, 34.09, 33.70, 26.84, 24.89. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 29.19. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₇BCl₂NO₄⁺ 484.2187; Found 484.2196.

(*E*)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 3-(4,5-diphenyloxazol-2-yl)propanoate (1r):

Prepared according to **GP3** from oxaprozin (1.04 g, 3.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **1r** as a colorless viscous oil (960 mg, 68%). ¹H NMR (400 MHz, Chloroform-d) δ 7.65 – 7.61 (m, 2H), 7.58 – 7.55 (m, 2H), 7.39 – 7.29 (m,

7H), 6.57 (dt, J = 18.0, 6.4 Hz, 1H), 5.54 (dt, J = 18.0, 1.6 Hz, 1H), 4.21 (t, J = 6.8 Hz, 2H), 3.21 – 3.14 (m, 2H), 2.91 (dd, J = 8.6, 6.7 Hz, 2H), 2.50 (qd, J = 6.7, 1.6 Hz, 2H), 1.26 (s, 12H). ¹³C **NMR (101 MHz, Chloroform-d)** δ 172.09, 161.86, 148.90, 145.53, 135.25, 132.59, 129.11, 128.76, 128.67, 128.55, 128.16, 128.03, 126.60, 83.35, 63.43, 34.93, 31.25, 24.90, 23.65. ¹¹B **NMR (128 MHz, Chloroform-d)** δ 29.70. **HRMS (ESI/QTOF) m/z:** [M + H]⁺ Calcd for C₂₈H₃₃BNO₅⁺ 474.2446; Found 474.2459.

(*E*)-6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl dipropylsulfamoyl)benzoate (1s):

To a stirred solution of probenecid (571 mg, 2.00 mmol, 1.0 equiv.) in dry DCM (8.0 mL) at 0 °C under a N₂ atmosphere was added N,N'-diisopropylcarbodiimide (0.34 mL, 2.20 mmol, 1.10 equiv.). After 10 minutes, (*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-ol (452 mg, 2.00 mmol, 1.0 equiv.) was added to it. The resulting reaction mixture was allowed to warm to room temperature and the stirring was continued overnight. The solution was diluted with DCM and filtered through a plug of silica gel. The solvent was

removed in vacuo. The crude product was purified by flash column chromatography (SiO₂, 10:1 hexane:EtOAc) to obtain **1s** as a white solid (649 mg, 66%). ¹H NMR (**400 MHz, Chloroform**-*d*) δ 8.16 – 8.11 (m, 2H), 7.88 – 7.83 (m, 2H), 6.61 (dt, *J* = 17.9, 6.4 Hz, 1H), 5.45 (dt, *J* = 17.9, 1.6 Hz, 1H), 4.33 (t, *J* = 6.5 Hz, 2H), 3.12 – 3.04 (m, 4H), 2.22 (tdd, *J* = 7.6, 6.5, 1.6 Hz, 2H), 1.84 – 1.73 (m, 2H), 1.62 – 1.47 (m, 6H), 1.25 (s, 12H), 0.86 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (**101 MHz, Chloroform**-*d*) δ 165.38, 153.59, 144.23, 133.80, 130.29, 127.09, 83.21, 65.57, 50.06, 35.30, 28.27, 24.89, 24.69, 22.05, 11.27. ¹¹B NMR (**128 MHz, Chloroform**-*d*) δ 29.25. HRMS (**ESI/QTOF**) m/z: [M + Na]⁺ Calcd for C₂₅H₄₀BNNaO₆S⁺ 516.2562; Found 516.2569.

(*E*)-6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl 2-(11-oxo-6,11dihydrodibenzo[b,e]oxepin-2-yl)acetate (1t):

To a stirred solution of isoxepac (536 mg, 2.00 mmol, 1.0 equiv.) in dry DCM (8.0 mL) at 0 °C under a N₂ atmosphere was added *N*,*N'*-diisopropylcarbodiimide (0.34 mL, 2.20 mmol, 1.1 equiv.). After 10 minutes, (*E*)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-ol (452 mg, 2.00 mmol, 1.0 equiv.) was added to it. The resulting

reaction mixture was allowed to warm to room temperature and the stirring was continued overnight. The solution was diluted with DCM and filtered through a plug of silica gel. The solvent was removed in vacuo. The crude product was purified by flash column chromatography (SiO₂, 10:1 hexane:EtOAc) to obtain **1t** as a white solid (324 mg, 34%). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 8.11 (d, *J* = 2.4 Hz, 1H), 7.89 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.55 (td, *J* = 7.6, 1.4 Hz, 1H), 7.47 (td, *J* = 7.6, 1.4 Hz, 1H), 7.42 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.36 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.59 (dt, *J* = 18.0, 6.4 Hz, 1H), 5.43 (dt, *J* = 18.0, 1.6 Hz, 1H), 5.19 (s, 2H), 4.09 (t, *J* = 6.6 Hz, 2H), 3.63 (s, 2H), 2.17 (tdd, *J* = 7.6, 6.4, 1.6 Hz, 2H), 1.69 – 1.60 (m, 2H), 1.52 – 1.41 (m, 2H), 1.26 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.98, 171.62, 160.59, 153.80, 140.62, 136.48, 135.70, 132.88, 132.58, 129.64, 129.39, 128.06, 127.92, 125.25, 121.18, 83.20, 73.78, 65.03, 40.39, 35.33, 28.19, 24.92, 24.61. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.82. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₉H₃₅O₆⁺ 479.2428; Found 479.2423. M.P. = 142.5 – 144.5 °C.

(8R,9S,13S,14S)-13-Methyl-3-(((E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (1u):

A mixture of estrone (405 mg, 1.50 mmol, 1.0 equiv.), (*E*)-2-(6-bromohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (477 mg, 1.65 mmol, 1.1 equiv.) and K_2CO_3 (621 mg, 4.50 mmol, 3.0 equiv.) in anhydrous MeCN (4.0 mL) under N₂

atmosphere was heated at 85 °C for 24 hours. Then the mixture was allowed to cool to room temperature and diluted with EtOAc (15 mL) and water (15 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc (3x10 mL). The combined organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (SiO₂, 30:1 hexane:EtOAc) to obtain **1u** as a white solid (600 mg, 84%). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.18 (dd, *J* = 8.7, 1.1 Hz, 1H), 6.72 – 6.59 (m, 3H), 5.46 (dt, *J* = 18.0, 1.5 Hz, 1H), 3.92 (t, *J* = 6.4 Hz, 2H), 2.92 – 2.86 (m, 2H), 2.55 – 2.46 (m, 1H), 2.43 – 2.35 (m, 1H), 2.28 – 1.92 (m, 7H), 1.82 – 1.73 (m, 2H), 1.66 – 1.52 (m, 5H), 1.49 – 1.39 (m, 3H), 1.27 (s, 12H), 0.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 221.12, 157.24, 154.13, 137.82, 132.00, 126.42, 114.69, 112.27, 83.18, 67.75, 50.57, 48.17, 44.14, 38.53, 36.03, 35.52, 31.74, 29.79, 28.95, 26.72, 26.07, 24.92, 24.79, 21.74, 14.00. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.65. HRMS (APPI/LTQ-Orbitrap) m/z: [M]⁺ Calcd for C₃₀H₄₃BO₄⁺ 478.3249; Found 478.3257.

(*E*)-4,4,5,5-Tetramethyl-2-(3-phenylprop-1-en-1-yl-2-d)-1,3,2-dioxaborolane (1w):

The title compound was synthesized from 2-phenylacetaldehyde-1-d following a known literature procedure.^[4] At first 2-phenylacetaldehyde-1-d was prepared then it was used in the synthesis of 1w.^[5]

In a N₂ filled glove box, an oven-dried schelnk flask with a magnetic stir bar was charged with LiTMP (889 mg, 6.0 mmol, 1.2 equiv.). The flask was sealed with a septum cap, and removed from the glovebox. Anhydrous THF (6 mL) was added to the flask under N₂ atmosphere and the mixture was cooled to 0 °C. A solution of bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane (1.61 g, 6.0 mmol, 1.2 equiv.) in THF (10 mL) was added slowly to the solution. The reaction mixture was stirred for 5 minutes at 0 °C. After that, it was cooled to - 78 °C. A solution of 2-phenylacetaldehyde-1-d (606 mg, 5.0 mmol, 1 equiv.) in THF (6 mL) was added to the reaction mixture. After 4 hours of stirring at this temperature, the reaction mixture was purified by flash column chromatography (SiO₂, 10:1 hexane:EtOAc) to obtain **1w** as a yellowish oil (370 mg, 41%). **¹H NMR (400 MHz, Chloroform-d**) δ 7.24 – 7.05 (m, 5H), 5.36 (s, 1H), 3.39 (s, 2H), 1.17 (s, 12H). ¹³C NMR (101 MHz, Chloroform-d) δ 152.36, 152.12, 151.88, 137.85, 128.95, 128.45, 126.55, 83.12, 40.37, 24.85. **HRMS (ESI/QTOF) m/z:** [M + H]⁺ Calcd for C₁₅H₂₀DBO₂⁺ 246.1775; Found 246.1779.

5. Preparation of racemic alkyl halides:

Supplementary Figure 2. Racemic alkyl bromides

Compounds 2a-2m were synthesized following a slightly modified literature procedure.^[6] Compounds 2n-2q, 2u, and 2v were prepared according to the general procedure (GP5). 2w was prepared following a known literature procedure.^[6] Alkyl bromides 2r, 2t, and 2x were purchased from commercial sources.

General Procedure (GP4) for the synthesis of 2a-2m:

2,4-Dibromobutyryl chloride (0.73 mL, 5.00 mmol, 1.0 equiv.) was added over 10 minutes to a mixture of an amine (5.00 mmol, 1.0 equiv.) and anhydrous K_3PO_4 (504 mg, 2.50 mmol, 0.5 equiv.) in MeCN (50 mL) at 0 °C under N₂ atmosphere. The reaction mixture was stirred for 1 h, and then freshly prepared aqueous NaOH (50%; 1.0 mL) was added. The reaction mixture was left on the ice bath and stirred overnight. The mixture was then filtered, and the solid was washed with DCM (50 mL). The combined organic layers were concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

3-Bromo-1-phenylpyrrolidin-2-one (2a):

Prepared according to **GP4** using aniline (0.45 mL, 5.00 mmol, 1.0 equiv.). Br \rightarrow Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product **2a** as a white solid (807 mg, 67%). ¹**H NMR (400 MHz, Chloroform-d)** δ 7.66 – 7.60 (m, 2H), 7.42 – 7.36 (m, 2H), 7.23 – 7.17 (m, 1H), 4.58 (dd, J =7.0, 2.9 Hz, 1H), 4.05 (ddd, J = 9.9, 7.9, 6.7 Hz, 1H), 3.83 (ddd, J = 9.9, 7.9, 2.7 Hz, 1H), 2.72 (dtd, J = 14.8, 7.9, 7.0 Hz, 1H), 2.45 (ddt, J = 14.8, 6.7, 2.8 Hz, 1H). ¹³C NMR (101 MHz, **Chloroform-d)** δ 169.63, 138.95, 129.12, 125.48, 120.19, 46.83, 45.55, 30.08. HRMS (**ESI/QTOF) m/z:** [M + Na]⁺ Calcd for C₁₀H₁₀BrNNaO⁺ 261.9838; Found 261.9837. **M.P.** = 101 – 102 °C.

3-Bromo-1-(4-methoxyphenyl)pyrrolidin-2-one (2b):

Prepared according to **GP4** using aniline (615 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 4:1 hexane:EtOAc) afforded the desired product **2b** as a white solid (800 mg, 59%). ¹**H NMR (400 MHz, Chloroform-***d***) \delta 7.55 – 7.50 (m, 2H), 6.95 – 6.88**

(m, 2H), 4.57 (dd, J = 7.0, 2.8 Hz, 1H), 4.01 (ddd, J = 9.9, 7.8, 6.7 Hz, 1H), 3.82 – 3.74 (m, 4H), 2.72 (dtd, J = 14.8, 7.9, 7.0 Hz, 1H), 2.49 – 2.40 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.37, 157.29, 132.10, 122.04, 114.31, 55.63, 47.25, 45.57, 30.18. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₁H₁₃BrNO₂⁺ 270.0124; Found 270.0120. M.P. = 109.9 – 111.9 °C.

3-Bromo-1-(4-fluorophenyl)pyrrolidin-2-one (2c):

Prepared according to **GP4** using 4-fluoroaniline (0.48 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product **2c** as a white solid (935 mg, 72%). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.57 (m, 2H), 7.11 – 7.04 (m, 2H),

4.58 (dd, J = 7.0, 2.8 Hz, 1H), 4.03 (ddd, J = 9.8, 7.9, 6.7 Hz, 1H), 3.80 (ddd, J = 9.8, 7.9, 2.8 Hz, 1H), 2.73 (dtd, J = 14.8, 7.8, 7.0 Hz, 1H), 2.45 (ddt, J = 14.4, 6.7, 2.8 Hz, 1H). ¹³C NMR (**101 MHz, Chloroform-***d*) δ 169.62, 160.09 (d, J = 245.5 Hz), 135.03 (d, J = 3.0 Hz), 122.06 (d, J = 8.1 Hz), 115.88 (d, J = 22.4 Hz), 47.10, 45.22, 30.06. ¹⁹F NMR (**376 MHz, Chloroform-***d*) δ -116.33. **HRMS (ESI/Ion Trap) m/z:** [M + H]⁺ Calcd for C₁₀H₁₀BrFNO⁺ 257.9924; Found 257.9923. **M.P.** = 67.1 – 72.1 °C.

3-Bromo-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (2d):

Prepared according to **GP4** using 4-(trifluoromethyl)aniline (0.73 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product **2d** as a white solid (986 mg, 64%). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.82 – 7.77 (m, 2H),

7.66 – 7.62 (m, 2H), 4.60 (dd, J = 6.9, 2.8 Hz, 1H), 4.08 (ddd, J = 9.7, 7.9, 6.9 Hz, 1H), 3.86 (ddd, J = 9.7, 7.8, 2.7 Hz, 1H), 2.76 (dtd, J = 14.8, 7.9, 6.9 Hz, 1H), 2.48 (ddt, J = 14.8, 6.9, 2.8 Hz, 1H). ¹³**C NMR (101 MHz, Chloroform-***d*) δ 170.09, 141.89, 127.02 (q, J = 32.9 Hz), 126.30 (q, J = 3.8 Hz), 124.07 (q, J = 271.7 Hz), 119.59, 46.56, 44.94, 29.89. ¹⁹**F NMR (376 MHz,**

Chloroform-*d***)** δ -62.27. **HRMS (ESI/QTOF) m/z:** [M + H]⁺ Calcd for C₁₁H₁₀BrF₃NO⁺ 307.9892; Found 307.9898. **M.P.** = 55.1 – 60.2 °C.

3-Bromo-1-(4-(trifluoromethoxy)phenyl)pyrrolidin-2-one (2e):

Prepared according to **GP4** using 4-(trifluoromethoxy)aniline (0.68 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product **2e** as a white solid (876 mg, 54%). ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.72 – 7.67

(m, 2H), 7.28 – 7.22 (m, 2H), 4.59 (dd, J = 7.0, 2.8 Hz, 1H), 4.05 (ddd, J = 9.8, 7.9, 6.7 Hz, 1H), 3.83 (ddd, J = 9.8, 7.9, 2.8 Hz, 1H), 2.74 (dtd, J = 14.8, 7.9, 7.0 Hz, 1H), 2.47 (ddt, J = 14.8, 6.7, 2.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.79, 146.13 (d, J = 2.1 Hz), 137.56, 121.77, 121.28, 120.55 (d, J = 257.2 Hz), 46.81, 45.06, 29.96. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.07. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₀BrF₃NO₂⁺ 323.9842; Found 323.9836. M.P. = 40.0 – 40.8 °C.

Methyl 4-(3-bromo-2-oxopyrrolidin-1-yl)benzoate (2f):

Prepared according to **GP4** using methyl 4-aminobenzoate (756 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2f** as a white solid (939 mg, 63%). ¹**H NMR (400 MHz, Chloroform-d)** δ 8.08 – 8.02

(m, 2H), 7.78 - 7.71 (m, 2H), 4.59 (dd, J = 7.0, 2.9 Hz, 1H), 4.08 (ddd, J = 9.8, 7.9, 6.7 Hz, 1H), 3.94 - 3.83 (m, 4H), 2.81 - 2.68 (m, 1H), 2.52 - 2.43 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.03, 166.55, 142.88, 130.73, 126.56, 119.04, 52.26, 46.56, 45.08, 29.89. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₁₂H₁₃BrNO₃⁺ 298.0073; Found 298.0079. M.P. = 129.0 - 130.2 °C.

3-Bromo-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin-2-one (2g):

Prepared according to **GP4** using methyl 4-aminophenylboronic acid pinacol ester (547 mg, 2.50 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 4:1 hexane:EtOAc) afforded the desired product **2g** as a white solid (676 mg, 74%). ¹**H NMR (400 MHz,**

Chloroform-*d***)** δ 7.88 – 7.80 (m, 2H), 7.69 – 7.63 (m, 2H), 4.59 (dd, J = 7.0, 3.0 Hz, 1H), 4.06 (ddd, J = 9.8, 7.8, 6.7 Hz, 1H), 3.85 (ddd, J = 9.8, 7.8, 3.0 Hz, 1H), 2.73 (dtd, J = 14.7, 7.8, 7.0 Hz, 1H), 2.45 (ddt, J = 14.7, 6.7, 3.0 Hz, 1H), 1.34 (s, 12H). ¹³C NMR (101 MHz, Chloroform*d***)** δ 169.73, 141.48, 135.78, 118.90, 83.99, 46.64, 45.49, 30.03, 25.00. ¹¹B NMR (128 MHz, Chloroform-*d***)** δ 31.78. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₁BBrNNaO₃⁺ 388.0690; Found 388.0691. M.P. = 141.5 – 147.3 °C.

1-(3-Acetylphenyl)-3-bromopyrrolidin-2-one (2h):

Prepared according to **GP4** using 3'-aminoacetophenone (676 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2h** as a white solid (857 mg, 61%). ¹**H NMR (400 MHz, Chloroform-***d*) δ 8.12 – 8.11 (m, 1H), 8.02

-7.99 (m, 1H), 7.77 - 7.74 (m, 1H), 7.48 (t, J = 8.0 Hz, 1H), 4.59 (dd, J = 7.1, 2.8 Hz, 1H), 4.09

(ddd, J = 9.8, 7.8, 6.7 Hz, 1H), 3.88 (ddd, J = 9.8, 7.8, 2.8 Hz, 1H), 2.75 (dtd, J = 14.4, 7.8, 7.1 Hz, 1H), 2.61 (s, 3H), 2.47 (ddt, J = 14.4, 6.7, 2.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform*d*) δ 197.74, 169.95, 139.43, 137.84, 129.42, 125.25, 124.68, 119.09, 46.73, 45.16, 29.95, 26.83. **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: $[M + H]^+$ Calcd for C₁₂H₁₃BrNO₂⁺ 282.0124; Found 282.0118. **M.P.** = 49.8 – 52.6 °C.

3-Bromo-1-(o-tolyl)pyrrolidin-2-one (2i):

Prepared according to GP4 using 2-toluidine (0.53 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product 2i as a colorless viscous oil (987 mg, 78%). ¹H NMR (**400 MHz, Chloroform-d**) δ 7.33 – 7.25 (m, 3H), 7.21 – 7.16 (m, 1H), 4.59 (dd, J = 6.9, 2.1 Hz, 1H), 3.96 (ddd, J = 10.2, 8.3, 6.3 Hz, 1H), 3.68 (ddd, J = 10.2, 7.9, 2.1 Hz, 1H)1H), 2.83 (dtd, J = 14.8, 8.3, 6.9 Hz, 1H), 2.50 (ddt, J = 14.8, 6.3, 2.0 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.88, 136.44, 135.84, 131.40, 128.48, 127.03, 126.58,

3-Bromo-1-mesitylpyrrolidin-2-one (2j):

C₁₁H₁₃BrNO⁺ 254.0175; Found 254.0174.

Prepared according to GP4 using 2,4,6-trimethylaniline (0.70 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product 2j as a white solid (990 mg, 76%). ¹H NMR (400 MHz, Chloroform-d) δ 6.91 (s, 2H), 4.55 (dd, J =

6.8, 1.6 Hz, 1H), 3.87 (ddd, J = 10.4, 8.7, 6.1 Hz, 1H), 3.47 (ddd, J = 10.4, 7.9, 1.6 Hz, 1H), 2.80 (dddd, J = 14.6, 8.7, 7.9, 6.8 Hz, 1H), 2.48 (ddt, J = 14.6, 6.0, 1.6 Hz, 1H), 2.28 (s, 3H), 2.25 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 169.94, 138.53, 136.27, 135.38, 132.08, 129.70, 129.43, 47.08, 44.45, 31.41, 21.10, 17.68, 17.52. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for $C_{13}H_{17}BrNO^+$ 282.0488; Found 282.0491. **M.P.** = 93.0 - 96.6 °C.

48.81, 44.66, 31.19, 17.72. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for

3-Bromo-1-(2-fluorophenyl)pyrrolidin-2-one (2k):

Prepared according to GP4 using 2-fluoroaniline (0.37 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product 2k as a white solid (873 mg, 68%). ¹H NMR (400 MHz, **Chloroform-***d*) δ 7.46 – 7.42 (m, 1H), 7.33 – 7.24 (m, 1H), 7.22 – 7.12 (m,

2H), 4.56 (dd, J = 7.0, 2.6 Hz, 1H), 4.05 – 3.96 (m, 1H), 3.80 (ddd, J = 10.0, 7.7, 2.6 Hz, 1H), 2.78 (dq, J = 15.2, 7.7 Hz, 1H), 2.46 (ddt, J = 14.4, 6.5, 2.6 Hz, 1H). ¹³C NMR (101 MHz, **Chloroform-***d*) δ 170.41, 157.12 (d, J = 250.8 Hz), 129.04 (d, J = 8.0 Hz), 127.70 (d, J = 1.6Hz), 125.65 (d, J = 11.5 Hz), 124.69 (d, J = 3.6 Hz), 116.82 (d, J = 19.8 Hz), 48.09 (d, J = 4.6 Hz), 43.96, 31.05. ¹⁹F NMR (376 MHz, Chloroform-d) δ -120.16. HRMS (nanochip-**ESI/LTQ-Orbitrap**) m/z: $[M + H]^+$ Calcd for C₁₀H₁₀BrFNO⁺ 257.9924; Found 257.9922. M.P. = 77.0 - 80.5 °C.

3-Bromo-1-(3,5-dimethoxyphenyl)pyrrolidin-2-one (2l):

Prepared according to **GP4** using 3,5-dimethoxyaniline (766 mg, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 2:1 hexane:EtOAc) afforded the desired product **2l** as a white solid (1.12 g, 75%). ¹**H NMR (400 MHz, Chloroform-***d*) δ 6.88 (d, *J* = 2.2 Hz, 2H),

6.31 (t, J = 2.2 Hz, 1H), 4.58 (dd, J = 7.1, 3.0 Hz, 1H), 4.03 – 3.96 (m, 1H), 3.83 – 3.79 (m, 7H), 2.71 (dtd, J = 14.3, 7.8, 7.1 Hz, 1H), 2.43 (ddt, J = 14.3, 6.8, 3.0 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.81, 161.08, 140.73, 98.61, 97.52, 55.61, 47.04, 45.68, 29.94. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₂H₁₅BrNO₃⁺ 300.0230; Found 300.0224. M.P. = 72.5 – 80.5 °C.

3-Bromo-1-(1-methyl-1H-indol-5-yl)pyrrolidin-2-one (2m):

Prepared according to **GP4** using 1-methyl-1H-indol-5-amine (438 mg, 3.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 2:1 hexane:EtOAc) afforded the desired product **2m** as a white solid (643 mg, 73%). ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.73 – 7.70 (m, 1H),

7.52 – 7.48 (m, 1H), 7.34 – 7.29 (m, 1H), 7.07 (d, J = 3.1 Hz, 1H), 6.48 (dd, J = 3.1, 0.9 Hz, 1H), 4.61 (dd, J = 7.1, 2.8 Hz, 1H), 4.09 (ddd, J = 10.1, 7.8, 6.6 Hz, 1H), 3.86 (ddd, J = 10.1, 7.8, 2.8 Hz, 1H), 3.79 (s, 3H), 2.80 – 2.70 (m, 1H), 2.46 (ddt, J = 14.3, 6.6, 2.8 Hz, 1H). ¹³C NMR (101 MHz, **Chloroform-***d*) δ 169.50, 134.89, 131.27, 130.11, 128.49, 116.13, 113.76, 109.56, 101.35, 48.22, 46.02, 33.11, 30.39. **HRMS (nanochip-ESI/LTQ-Orbitrap) m/z:** [M + H]⁺ Calcd for C₁₃H₁₄BrN₂O⁺ 293.0284; Found 293.0277. **M.P.** = 124.0 – 127.2 °C.

General Procedure (GP5) for the synthesis of 2n-2q, 2u, and 2v:

To a solution of an alkyl amine (5.00 mmol, 1.0 equiv.) and Et_3N (1.34 mL, 10.0 mmol, 2.0 equiv.) in DCM (20 mL) was added 2,4-dibromobutyryl chloride (0.73 mL, 5.00 mmol, 1.0 equiv.) over 10 minutes at 0 °C under N₂ atmosphere. The reaction mixture was stirred for 2 h until the full conversion of amine as checked by TLC. The mixture was then diluted with DCM (20 mL) and water (30 mL) and the organic layer was separated. The aqueous phase was extracted with DCM (3x20 mL). The combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude amide was directly used in the next step without further purification.

An oven dried schlenk tube was charged with a crude amide (~5.00 mmol, 1.0 equiv.) and anhydrous DMF (15 mL) at 0 °C under N₂ atmosphere. Then NaH (60% in mineral oil, 260 mg, 6.50 mmol, 1.3 equiv.) was added portion-wise over 10 minutes. The reaction mixture was stirred for 4 h at this temperature until the full conversion of the amide as was checked by TLC. The mixture was then carefully quenched with aq. NH₄Cl and diluted with EtOAc (20 mL) and water

(60 mL), and the organic layer was separated. The aqueous phase was extracted with DCM (3x20 mL). The combined organic layers were washed with water (50 mL), brine (50 mL), dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

3-Bromo-1-phenethylpyrrolidin-2-one (2n):

Prepared according to **GP5** using phenethylamine (0.63 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2n** as a white solid (756 mg, 56% over two steps). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.27 (m, 3H), 7.23

-7.20 (m, 3H), 4.37 (dd, J = 7.2, 2.6 Hz, 1H), 3.68 -3.56 (m, 1H), 3.51 (dt, J = 13.9, 7.3 Hz, 1H), 3.36 (tdd, J = 9.4, 7.3, 6.4 Hz, 1H), 3.12 (ddd, J = 10.1, 7.9, 2.6 Hz, 1H), 2.87 (t, J = 7.3 Hz, 2H), 2.53 -2.42 (m, 1H), 2.22 (ddt, J = 14.4, 6.7, 2.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.63, 138.45, 128.79, 128.70, 126.71, 45.98, 44.91, 44.46, 33.60, 30.48. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₂H₁₄BrNNaO⁺ 290.0151; Found 290.0160. M.P. = 50.7 -52.5 °C.

3-Bromo-1-(4-methoxybenzyl)pyrrolidin-2-one (20):

Prepared according to **GP5** using 4-methoxybenzylamine (0.65 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 2:1 hexane:EtOAc) afforded the desired product **20** as a white solid (646 mg, 45% over two steps). ¹**H NMR (400 MHz, Chloroform-***d***)** δ 7.21 – 7.14 (m, 2H), 6.91 – 6.84 (m, 2H), 4.52 – 4.43 (m, 2H), 4.36 (d, *J* = 14.5 Hz,

1H), 3.80 (s, 3H), 3.40 (ddd, J = 10.0, 7.7, 6.7 Hz, 1H), 3.18 (ddd, J = 10.0, 7.9, 2.4 Hz, 1H), 2.54 (dq, J = 14.5, 7.9 Hz, 1H), 2.27 (ddt, J = 14.5, 6.7, 2.5 Hz, 1H). ¹³C NMR (101 MHz, **Chloroform-***d*) δ 170.69, 159.41, 129.62, 127.81, 114.30, 55.42, 46.71, 44.56, 30.28. **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₂H₁₅BrNO₂⁺ 284.0281; Found 284.0276. **M.P.** = 65.6 – 68.3 °C.

3-Bromo-1-(2,3-dihydro-1H-inden-2-yl)pyrrolidin-2-one (2p):

Prepared according to **GP5** using 2-aminoindan (0.67 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2p** as a white solid (586 mg, 42% over two steps). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.16 (m, 4H), 5.06

(tt, J = 7.8, 4.6 Hz, 1H), 4.42 (dd, J = 7.1, 2.5 Hz, 1H), 3.33 – 3.19 (m, 3H), 3.07 (ddd, J = 10.2, 7.8, 2.5 Hz, 1H), 2.92 (ddd, J = 20.7, 16.5, 4.7 Hz, 2H), 2.48 (dtd, J = 14.4, 7.8, 7.1 Hz, 1H), 2.24 (ddt, J = 14.4, 6.6, 2.5 Hz, 1H). ¹³C NMR (101 MHz, **Chloroform-***d*) δ 170.55, 140.78, 140.75, 127.10, 127.06, 124.53, 124.40, 52.16, 44.82, 41.59, 37.11, 36.52, 30.40. **HRMS** (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₃H₁₅BrNO⁺ 280.0332; Found 280.0327. **M.P.** = 95.0 – 98.4 °C.

3-Bromo-1-(*tert*-butyl)pyrrolidin-2-one (2q):

Prepared according to **GP5** using *tert*-butylamine (0.54 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2q** as a white solid (410 mg, 37% over two steps). ¹H NMR (**400 MHz, Chloroform-***d*) δ 4.33 (dd, J = 6.9, 2.6 Hz, 1H), 3.60 – 3.53 (m,

1H), 3.43 (ddd, J = 10.0, 7.7, 2.3 Hz, 1H), 2.50 – 2.39 (m, 1H), 2.21 (ddt, J = 14.3, 6.4, 2.6 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.88, 54.72, 47.37, 43.86, 30.15, 27.44. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₈H₁₄BrNNaO⁺ 242.0151; Found 242.0147. M.P. = < 40 °C.

tert-Butyl 2-((4R,6R)-6-(2-(3-bromo-2-oxopyrrolidin-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (2u):

Prepared according to **GP5** using *tert*-butyl 2-[(4R,6R)-6-(2-Aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl]acetate (1.39 g, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product **2u** as a sticky oil (820 mg, 57% over two steps). ¹H NMR (400

MHz, Chloroform-*d***)** δ 4.38 (ddd, J = 7.3, 4.8, 2.5 Hz, 1H), 4.24 – 4.19 (m, 1H), 3.93 – 3.84 (m, 1H), 3.61 – 3.43 (m, 2H), 3.33 – 3.28 (m, 2H), 2.60 – 2.51 (m, 1H), 2.39 (ddd, J = 15.1, 7.3, 1.5 Hz, 1H), 2.32 – 2.25 (m, 2H), 1.71 – 1.64 (m, 2H), 1.57 (ddt, J = 17.5, 12.7, 2.5 Hz, 1H), 1.45 – 1.41 (m, 12H), 1.34 – 1.33 (m, 3H), 1.24 – 1.13 (m, 1H). 13C NMR (101 MHz, Chloroform-*d***)** δ 170.71, 170.26, 98.91, 80.74, 66.82, 66.72, 66.21, 45.61, 45.39, 44.69, 42.78, 42.76, 39.93, 39.82, 36.56, 36.38, 33.81, 33.63, 30.51, 30.48, 30.19, 28.20, 19.82, 19.79. **HRMS** (**ESI/QTOF**) **m/z:** [M + Na]⁺ Calcd for C₁₈H₃₀BrNNaO₅⁺ 442.1200; Found 442.1206.

1-Benzyl-3-bromopyrrolidin-2-one (2v):

Prepared according to **GP5** using benzylamine (0.55 mL, 5.00 mmol, 1.0 equiv.). Flash column chromatography (SiO₂, 2:1 hexane:EtOAc) afforded the desired product **2v** as a white solid (663 mg, 52% over two steps). ¹**H NMR (400 MHz, Chloroform-d)** δ 7.27 – 7.12 (m, 5H), 4.44 (d, *J* = 14.7

Hz, 1H), 4.40 - 4.29 (m, 2H), 3.32 (ddd, J = 10.1, 7.7, 6.7 Hz, 1H), 3.10 (ddd, J = 10.1, 8.0, 2.5 Hz, 1H), 2.51 - 2.40 (m, 1H), 2.18 (ddt, J = 14.5, 6.7, 2.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.79, 135.71, 128.91, 128.16, 127.95, 47.22, 44.67, 44.38, 30.25. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₃BrNO⁺ 254.0175; Found 254.0171. M.P. = 40.0 - 45.8 °C.

Synthesis of 3-bromo-5,5-dimethyldihydrofuran-2(3H)-one (2s):

The title compound was synthesized from the corresponding γ , γ -dimethyl- γ butyrolactone. To a solution of lithium diisopropylamide (1M, 10.5 mL, 10.5 mmol, 1.05 equiv.) in anhydrous THF (10 mL) at -78 °C under N₂ atmosphere was added a solution of γ , γ -dimethyl- γ -butyrolactone (1.14 g, 10.0 mmol, 1.0 equiv.) in anhydrous THF (5 mL) dropwise over 3 minutes. After 45 minutes of stirring at -78

°C, TMSCl (1.36 mL, 10.8 mmol, 1.08 equiv.) was added dropwise via syringe over 1 min. The

reaction mixture was stirred at -78 °C for 1 h, then it was allowed to slowly warm to room temperature over ~2 h. Next, the reaction mixture was cooled to 0 °C and NBS (2.66 g, 15.0 mmol, 1.5 equiv.) was added as a solid in five portions. The mixture was stirred at 0 °C for 2 h, and then the reaction was quenched by the addition of a saturated aq. NaS₂O₃ (20 mL). The mixture was extracted with DCM (2x25 mL), and the combined organic layers were washed with brine (50 mL), dried over Na₂SO₄, and concentrated in vacuo. The crude mixture was purified by flash column chromatography (SiO₂, 6:1 hexane:EtOAc) to afford the desired compound **2s** as a brownish oil (990 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.61 (dd, *J* = 8.7, 6.6 Hz, 1H), 2.72 (dd, *J* = 14.2, 8.7 Hz, 1H), 2.45 (dd, *J* = 14.2, 6.6 Hz, 1H), 1.60 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.38, 84.38, 45.39, 38.32, 28.51, 28.39. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₆H₉BrNaO₂⁺ 214.9678; Found 214.9681.

Synthesis of 3-bromo-1-phenylpiperidin-2-one (2w):

Br

The title compound was synthesized from the corresponding 1-phenylpiperidin-2-one.^[6] To a solution of 1-phenylpiperidin-2-one (876 mg, 5.0 mmol, 1.0 equiv.) in anhydrous THF (100 mL) at -78 °C under N_2 atmosphere was added sec-BuLi (1.4 M, 3.9 mL, 5.5 mmol, 1.1 equiv.)

dropwise over 5 minutes. After 30 minutes of stirring at -78 °C, the mixture further cooled down to -100 °C and Br₂ (0.26 mL, 5.0 mmol, 5.0 equiv.) was added over 2 minutes. The reaction was immediately quenched at -100 °C by the addition of water (5 mL). The reaction mixture was allowed to slowly warm to room temperature, and then it was washed with saturated aq. NaS₂O₃ (20 mL) and then with aq. NH₄Cl (10 mL). The organic layer was dried over Na₂SO₄, and concentrated in vacuo. The crude mixture was purified by flash column chromatography (SiO₂, 2:1 hexane:EtOAc) to afford the desired compound **2w** as a white solid (1.13 g, 89%). ¹H NMR (**400 MHz, Chloroform-d**) δ 7.32 – 7.24 (m, 2H), 7.19 – 7.11 (m, 3H), 4.59 – 4.57 (m, 1H), 3.73 – 3.64 (m, 1H), 3.62 – 3.55 (m, 1H), 2.40 – 2.22 (m, 3H), 1.86 – 1.81 (m, 1H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 166.36, 142.77, 129.31, 127.21, 125.88, 51.37, 45.90, 31.52, 19.52. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H]⁺ Calcd for C₁₁H₁₃BrNO⁺ 254.0175; Found 254.0172.

6. General Procedure (GP6) for probing the scope of enantio- and diastereoselective alkylalkyl cross-coupling reaction:

To an oven-dried 10 mL Teflon-screw capped vial was added NiCl₂ (2.6 mg, 0.02 mmol, 0.10 equiv.) and ligand **L2** (11.2 mg, 0.03 mmol, 0.15 equiv.). The vial was introduced in a nitrogen-filled glovebox. A magnetic stir bar (6x15 mm), LiCl (10.0 mg, 0.24 mmol, 1.2 equiv.) and anhydrous DMA (1.0 mL) were added and the mixture was stirred for ~1.5 hours at room temperature until it became a clear blue solution. Then racemic electrophile **2** (0.26 mmol, 1.3

equiv.) and anhydrous KF (29.0 mg, 0.50 mmol, 2.5 equiv.) followed by alkenyl boronic acid pinacol ester **1** (0.20 mmol, 1.0 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, (MeO)₃SiH (67.0 μ L, 0.50 mmol, 2.5 equiv.) was added dropwise to it followed by the addition of BF₃.OEt₂ (7.2 μ L, 0.06 mmol, 0.30 equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at 0 °C for 45 hours, maintaining 600 rpm. After that, the reaction was quenched by the addition of aqueous NH₄Cl (1.0 mL) and EtOAc (3.0 mL). The aqueous phase was extracted with EtOAc (3x3.0 mL). The combined organic phases were concentrated in vacuum. The crude reaction mixture was then subjected to flash column chromatography by using a mixture of hexane and EtOAc as eluent to obtain **3** – **9**.

(*R*)-1-Phenyl-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3aa):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.) and **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3aa** as a white solid (56 mg, 75%) in 95:5 diastereomeric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 7.66 – 7.59 (m, 2H),

7.36 – 7.32 (m, 2H), 7.15 – 7.04 (m, 1H), 3.84 – 3.69 (m, 2H), 2.79 (td, J = 9.4, 4.4 Hz, 1H), 2.28 – 2.13 (m, 1H), 2.02 (dq, J = 12.6, 9.4 Hz, 1H), 1.63 – 1.55 (m, 2H), 1.45 – 1.25 (m, 7H), 1.20 (s, 12H), 0.88 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.34, 140.07, 128.79, 128.76, 124.05, 119.83, 119.68, 83.15, 46.99, 44.53, 32.12, 28.89, 28.41, 24.92, 24.83, 23.25, 22.70, 14.17. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.41. FTIR (neat): $\tilde{v} = 2923.6$, 2854.9, 1693.9, 1499.3, 1388.2, 1311.7, 1267.4, 1224.2, 1142.5, 757.3 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₅BNO₃⁺ 372.2705; Found 372.2699. [α]²⁰_D = +42.0 (c = 1.00 in CHCl₃). M.P. = 50.0 – 54.8 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 9.0$ min and $t_{minor} = 15.0$ min.

(*R*)-1-(4-Methoxyphenyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ab):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2b** (70.2 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ab** as a white solid (66 mg, 82%) in 94:6 diastereomeric ratio. ¹H **NMR** (**400 MHz, Chloroform-***d*) δ 7.52 – 7.49 (dd, *J* = 8.8, 1.4 Hz, 2H), 6.91 – 6.82 (m, 2H), 3.77

(s, 3H), 3.77 - 3.63 (m, 2H), 2.83 - 2.67 (m, 1H), 2.24 - 2.11 (m, 1H), 2.07 - 1.94 (m, 1H), 1.62 - 1.50 (m, 2H), 1.47 - 1.26 (m, 7H), 1.19 (s, 12H), 0.87 (t, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.94, 156.27, 133.37, 121.56, 113.97, 83.10, 55.51, 47.35, 44.23, 32.10, 28.87, 28.43, 24.89, 24.84, 23.24, 22.67, 14.14. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.99. FTIR (neat): $\tilde{\nu} = 2924.0$, 2854.9, 1686.7, 1510.8, 1388.7, 1319.4, 1246.0, 1143.1, 1036.1, 829.0 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₃H₃₇BNO₄⁺ 402.2810; Found 402.2817. [α]²⁰_p = +39.5 (c = 1.00 in CHCl₃). M.P. = 82.9 - 87.8 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 97:3 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 13.1$ min and $t_{minor} = 38.2$ min.

(*R*)-1-(4-Fluorophenyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ac):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2c** (67.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3ac** as a white solid (59 mg, 76%) in 97:3 diastereomeric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 7.59 – 7.54 (m, 2H), 7.05 – 6.96 (m, 2H), 3.79 – 3.64 (m, 2H), 2.78 (td,

J = 9.3, 4.1 Hz, 1H), 2.24 – 2.14 (m, 1H), 2.07 – 1.95 (m, 1H), 1.61 – 1.54 (m, 2H), 1.40 – 1.24 (m, 7H), 1.19 (s, 12H), 0.87 (t, *J* = 6.1 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 176.28, 160.51, 158.10, 136.18, 136.15, 121.52, 121.45, 115.49, 115.27, 83.17, 47.24, 44.27, 32.10, 28.86, 28.38, 24.90, 24.83, 23.15, 22.68, 14.15. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.27. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -118.59. FTIR (neat): $\tilde{v} = 2922.5$, 2853.2, 1680.9, 1508.6, 1394.3, 1317.8, 1223.5, 1143.5, 829.9 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₄BFNO₃⁺ 390.2610; Found 390.2612. [α]²⁰_D = +33.7 (c = 1.00 in CHCl₃). M.P. = 78.9 – 82.5 °C.

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 5.4$ min and $t_{minor} = 6.6$ min.

(*R*)-3-((*S*)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ((+) 3ad):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2d** (80.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 20:1 hexane:EtOAc) afforded the desired product (+) **3ad** as a white solid (57 mg, 65%) in 97:3 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 3.83 – 3.72 (m, 2H),

2.82 (td, J = 9.5, 4.4 Hz, 1H), 2.26 – 2.18 (m, 1H), 2.10 – 2.00 (m, 1H), 1.64 – 1.53 (m, 2H), 1.45 – 1.26 (m, 7H), 1.19 (s, 12H), 0.88 (t, J = 6.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 177.00, 142.96, 126.04, 126.00, 125.96, 125.92, 125.75, 125.70, 125.42, 125.10, 83.27, 46.81, 44.57, 32.10, 28.86, 28.35, 24.94, 24.81, 23.05, 22.71, 14.18. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.29. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.06. FTIR (neat): $\tilde{v} =$ 2924.9, 2856.8, 1686.4, 1611.4, 1518.9, 1388.6, 1315.1, 1268.5, 1161.8, 1145.3, 1115.9, 842.5 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₃H₃₄BF₃NO₃⁺ 440.2578; Found 440.2588. [α]²_p = +43.8 (c = 1.00 in CHCl₃). M.P. = 107.7 – 112.5 °C.

HPLC: The enantiomeric excess (92%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 5.8$ min and $t_{minor} = 6.4$ min.

(*R*)-3-((*S*)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-(trifluoromethoxy)phenyl)pyrrolidin-2-one ((+) 3ae):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2e** (84.3 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ae** as a white solid (59 mg, 65%) in 96:4 diastereomeric ratio. ¹H **NMR** (**400 MHz, Chloroform-d**) δ 7.70 – 7.61 (m, 2H), 7.23 – 7.11 (m, 2H), 3.81 – 3.68 (m, 2H),

2.80 (td, J = 9.4, 4.6 Hz, 1H), 2.25 – 2.16 (m, 1H), 2.10 – 1.97 (m, 1H), 1.65 – 1.49 (m, 2H), 1.47 – 1.27 (m, 7H), 1.20 (s, 12H), 0.88 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 176.58, 145.16, 138.71, 121.91, 121.53, 120.77, 120.68, 119.36, 83.25, 47.06, 44.42, 32.13, 28.89, 28.36, 24.94, 24.85, 23.15, 22.72, 14.19. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.84. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.08. FTIR (neat): $\tilde{v} = 2924.9$, 2856.6, 1682.4, 1508.2, 1390.2, 1321.4, 1257.2, 1221.4, 1161.1, 1118.6, 848.0 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₃BF₃NNaO₄⁺ 478.2347; Found 478.2356. [α]²⁰_D = +31.0 (c = 1.00 in CHCl₃). M.P. = 81.5 – 86.0 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 12.1$ min and $t_{minor} = 14.0$ min.

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2f** (77.5 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3af** as a white solid (59 mg, 69%) in 98:2 diastereomeric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 8.03 – 7.97 (m, 2H), 7.74 – 7.69 (m, 2H), 3.87 (s, 3H), 3.79 –

3.75 (m, 2H), 2.80 (td, J = 9.4, 4.3 Hz, 1H), 2.20 (ddt, J = 12.7, 9.4, 5.1 Hz, 1H), 2.03 (dq, J = 12.7, 9.3 Hz, 1H), 1.62 – 1.51 (m, 2H), 1.42 – 1.23 (m, 7H), 1.17 (s, 12H), 0.86 (t, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.98, 166.81, 144.00, 130.47, 125.09, 118.54, 83.20, 52.02, 46.79, 44.61, 32.06, 28.82, 28.31, 24.89, 24.76, 22.97, 22.66, 14.14. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.69. FTIR (neat): $\tilde{v} = 2955.8$, 2922.6, 2854.0, 1715.4, 1689.2, 1605.2, 1514.7, 1428.5, 1384.3, 1321.4, 1272.8, 1223.2, 1189.5, 1140.1, 1112.7, 964.8, 850.1, 772.7 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₇BNO₅⁺ 430.2759; Found 430.2768. [α]²⁰_p = +63.0 (c = 1.00 in CHCl₃). M.P. = 124.2 – 130.5 °C.

HPLC: The enantiomeric excess (95%) and diastereomeric ratio (98:2) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 9.1$ min and $t_{minor} = 10.6$ min.

(*R*)-3-((*S*)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin-2-one ((+) 3ag):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2g** (94.9 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3ag** as a white solid (51 mg, 51%) in 90:10 diastereomeric ratio. ¹H **NMR** (**400 MHz**, **Chloroform-d**) δ 7.82 – 7.74 (m, 2H), 7.69 – 7.57 (m, 2H),

3.79 – 3.73 (m, 2H), 2.85 – 2.74 (m, 1H), 2.21 – 2.16 (m, 1H), 2.09 – 1.95 (m, 1H), 1.65 – 1.51 (m, 2H), 1.38 – 1.26 (m, 19H), 1.18 (s, 12H), 0.88 (t, J = 6.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.62, 142.64, 135.55, 135.52, 118.55, 83.77, 83.18, 46.84, 44.64, 32.11, 28.88, 28.45, 24.98, 24.95, 24.92, 24.81, 23.12, 22.70, 14.18. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 30.50. FTIR (neat): $\tilde{v} = 2976.4$, 2924.6, 2855.5, 1684.1, 1605.5, 1387.2, 1359.5, 1313.8, 1268.8, 1218.2, 1142.3, 1087.5, 963.6, 860.8, 830.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₈H₄₅B₂NNaO₅⁺ 520.3376; Found 520.3396. [α]²⁰_D = +37.7 (c = 1.00 in CHCl₃). M.P. = 143.1 – 147.2 °C.

HPLC: The enantiomeric excess (91%) and diastereomeric ratio (90:10) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 15.1$ min and $t_{minor} = 19.6$ min.

(*R*)-1-(3-Acetylphenyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ah):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2h** (73.3 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3ah** as a sticky oil (42 mg, 51%) in 94:6 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (s, 1H), 8.03 – 7.98 (m, 1H), 7.70 – 7.68 (m, 1H), 7.45 – 7.40 (m, 1H), 3.90 – 3.73

(m, 2H), 2.81 (td, J = 9.4, 4.3 Hz, 1H), 2.60 (s, 3H), 2.27 – 2.16 (m, 1H), 2.09 – 1.99 (m, 1H), 1.69 – 1.50 (m, 2H), 1.42 – 1.27 (m, 7H), 1.19 (s, 12H), 0.87 (t, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 198.16, 176.81, 140.49, 137.66, 129.06, 124.49, 123.94, 118.90, 83.23, 46.99, 44.48, 32.09, 28.85, 28.40, 26.82, 24.93, 24.82, 23.13, 22.70, 14.17. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.03. FTIR (neat): $\tilde{v} = 2923.4$, 2854.5, 1684.2, 1598.6, 1582.9, 1485.5, 1445.6, 1380.4, 1317.9, 1247.0, 1215.9, 1142.6, 965.6, 858.3, 792.2 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₆BNNaO₄⁺ 436.2630; Found 436.2633. [α]²⁰_p = +37.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 37.7$ min and $t_{minor} = 50.3$ min.

(*R*)-3-((*S*)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(o-tolyl)pyrrolidin-2-one ((+) 3ai):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2i** (66.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ai** as a sticky oil (53 mg, 69%) in 92:8 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-***d*) δ 7.28 – 6.97 (m, 4H), 3.71 – 3.55 (m, 2H), 2.77 (td, *J* = 9.5, 4.7 Hz, 1H), 2.28 – 2.19 (m, 4H), 2.16 – 2.02 (m, 1H),

1.62 – 1.56 (m, 1H), 1.50 – 1.28 (m, 8H), 1.23 (m, 12H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.27, 138.25, 135.87, 131.10, 127.53, 126.69, 126.65, 83.17, 48.98, 43.04, 32.11, 28.79, 28.56, 25.00, 24.86, 24.68, 22.70, 18.17, 14.18. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.64. FTIR (neat): $\tilde{v} = 2923.2$, 2855.1, 1693.4, 1494.4, 1460.7, 1371.9, 1313.5, 1267.1, 1142.1, 966.0, 857.0, 763.2 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₆BNNaO₃⁺ 408.2680; Found 408.2670. [α]²⁰_p = +15.3 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 21.2$ min and $t_{minor} = 26.4$ min.

(*R*)-1-Mesityl-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3aj):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2j** (73.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3aj** as a sticky oil (60 mg, 73%) in 89:11 diastereomeric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 6.88 (d, *J* = 3.8 Hz, 2H), 3.53 – 3.43 (m, 2H), 2.74 (ddd, *J* = 10.6, 8.5, 4.9 Hz, 1H), 2.25

(s, 3H), 2.22 – 2.17 (m, 4H), 2.15 – 2.09 (m, 4H), 1.67 – 1.52 (m, 2H), 1.51 – 1.28 (m, 7H), 1.22 (s, 12H), 0.89 (t, J = 6.1 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 176.20, 137.52, 136.08, 135.93, 133.84, 129.20, 129.18, 83.14, 47.23, 42.73, 32.16, 28.79, 28.62, 25.09, 24.98, 24.76, 22.70, 21.05, 17.84, 17.81, 14.18. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.27. FTIR (neat): $\tilde{v} = 2924.4, 2857.4, 1689.8, 1489.8, 1405.2, 1378.5, 1316.1, 1268.4, 1144.1, 966.0, 851.6, 752.6 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₅H₄₁BNO₃⁺ 414.3174; Found 414.3186. [<math>\alpha$]²⁰_p = +16.3 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (89:11) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 18.5$ min and $t_{minor} = 22.8$ min.

(*R*)-1-(2-Fluorophenyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ak):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2k** (67.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ak** as a sticky oil (55 mg, 71%) in 91:9 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.45 (td, *J* = 7.7, 1.8 Hz, 1H), 7.23 – 7.05 (m, 3H), 3.81 (tdd, *J* = 9.3, 7.8, 1.6 Hz, 1H), 3.68 (td, *J* = 9.3, 2.8 Hz, 1H),

2.76 (dt, J = 9.3, 4.6 Hz, 1H), 2.27 – 2.19 (m, 1H), 2.05 (dq, J = 12.4, 9.0 Hz, 1H), 1.62 – 1.56 (m, 2H), 1.51 – 1.28 (m, 7H), 1.23 (s, 12H), 0.89 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.88, 158.41, 155.93, 128.05, 128.03, 127.88, 127.83, 127.80, 127.75, 127.13, 127.02, 124.39, 124.36, 116.70, 116.50, 83.24, 48.33, 48.29, 42.87, 32.14, 28.84, 28.55, 25.09, 24.98, 24.91, 24.43, 22.74, 14.20. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.25. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -120.08. FTIR (neat): $\tilde{r} = 2923.3$, 2854.7, 1701.2, 1611.2, 1589.5, 1503.7, 1458.4, 1379.4, 1318.9, 1267.7, 1240.1, 1143.2, 1109.0, 966.4, 857.4, 755.7 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₂H₃₃BFNNaO₃⁺ 412.2430; Found 412.2423. [α]²⁰_B = +29.4 (c = 0.94 in CHCl₃).

HPLC: The enantiomeric excess (92%) and diastereomeric ratio (91:9) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 17.3$ min and $t_{minor} = 23.5$ min.

(*R*)-1-(3,5-Dimethoxyphenyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3al):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2l** (78.0 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3al** as a sticky oil (64 mg, 76%) in 97:3 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.89 (s, 2H), 6.24 (s, 1H), 3.77 (s, 6H), 3.73 – 3.70 (m, 2H), 2.77 (td, *J* = 9.3, 4.5 Hz,

1H), 2.21 – 2.13 (m, 1H), 2.05 – 1.95 (m, 1H), 1.62 – 1.53 (m, 2H), 1.43 – 1.28 (m, 7H), 1.19 (s, 12H), 0.87 (t, J = 6.3 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 176.61, 160.85, 141.88, 98.20, 96.39, 83.19, 55.48, 47.25, 44.86, 32.09, 28.89, 28.47, 24.93, 24.81, 23.11, 22.70, 14.17. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.13. FTIR (neat): $\tilde{v} = 2924.1$, 2854.5, 1696.2, 1596.0, 1459.9, 1388.0, 1321.1, 1271.0, 1245.3, 1206.9, 1151.8, 1060.9, 967.0, 833.5 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₈BNNaO₅⁺ 454.2735; Found 454.2740. [α]²⁰_p = +42.7 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 9.4$ min and $t_{minor} = 24.2$ min.

(*R*)-1-(1-Methyl-1H-indol-5-yl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3am):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2m** (76.2 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3am** as a white solid (54 mg, 64%). ¹**H NMR** (**400 MHz, Chloroform-***d*) δ 7.67 (d, *J* = 2.0 Hz, 1H), 7.55 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.03 (d, *J* = 3.1 Hz, 1H),

6.44 (dd, J = 3.1, 0.8 Hz, 1H), 3.86 (dt, J = 9.1, 7.9 Hz, 1H), 3.80 – 3.73 (m, 4H), 2.82 (td, J = 9.4, 4.9 Hz, 1H), 2.26 – 2.18 (m, 1H), 2.10 – 1.96 (m, 1H), 1.67 – 1.56 (m, 2H), 1.51 – 1.29 (m, 7H), 1.22 (d, J = 2.0 Hz, 12H), 0.89 (t, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.01, 134.34, 132.65, 129.57, 128.42, 116.39, 113.06, 109.19, 101.13, 83.15, 48.32, 44.34, 33.05, 32.18, 28.96, 28.58, 24.95, 23.54, 22.75, 14.21. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.05. FTIR (neat): $\tilde{v} = 2923.6, 2855.4, 1681.9, 1574.5, 1490.8, 1454.3, 1422.9, 1402.3, 1371.8, 1313.1, 1269.2, 1247.0, 1234.7, 1143.2, 966.5, 854.7, 799.8, 755.9 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₅H₃₈BN₂O₃⁺ 425.2970; Found 425.2971. [α]²⁰_D = +37.6 (c = 0.94 in CHCl₃). M.P. = 112.0 – 115.8 °C.$

HPLC: The enantiomeric excess (91%) and diastereomeric ratio (90:10) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 85:15 at a flow rate 1.0 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 12.9$ min and $t_{minor} = 35.7$ min.

(R) - 1 - Phenethyl - 3 - ((S) - 1 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) hexyl) pyrrolidin - 2 - one ((+) 3an):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2n** (71.8 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 4:1 hexane:EtOAc) afforded the desired product (+) **3an** as a sticky oil (58 mg, 73%) in 93:7 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.34 – 7.28 (m, 2H), 7.26 – 7.21 (m, 3H), 3.57 (dt, *J* = 14.6, 7.5 Hz, 1H), 3.45 (dt, *J* =

14.6, 7.5 Hz, 1H), 3.26 - 3.08 (m, 2H), 2.84 (t, J = 7.6 Hz, 2H), 2.58 (td, J = 9.1, 5.0 Hz, 1H), 2.12 - 2.00 (m, 1H), 1.91 - 1.76 (m, 1H), 1.54 - 1.28 (m, 9H), 1.24 (s, 12H), 0.90 (t, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.77, 139.27, 128.83, 128.56, 126.40, 83.05, 46.14, 44.32, 42.87, 34.04, 32.12, 28.90, 28.38, 24.89, 23.73, 22.69, 14.16. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.30. FTIR (neat): $\tilde{v} = 2922.8$, 2854.6, 1682.1, 1604.2, 1494.1, 1455.5, 1426.3, 1371.2, 1318.0, 1268.0, 1214.5, 1144.0, 967.2, 880.2, 857.9, 832.3, 748.2 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₈BNNaO₃⁺ 422.2837; Found 422.2839. [α]²⁰_p = +2.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 22.8$ min and $t_{minor} = 29.9$ min.

(*R*)-1-(4-Methoxybenzyl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((-) 3ao):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2o** (73.9 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 4:1 hexane:EtOAc) afforded the desired product (-) **3ao** as a sticky oil (61 mg, 73%) in 92:8 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.19 – 7.14 (m, 2H), 6.85 – 6.79 (m, 2H), 4.52 (d, *J* = 14.6 Hz, 1H), 4.18 (d, *J* = 14.6 Hz,

1H), 3.77 (s, 3H), 3.19 - 3.04 (m, 2H), 2.61 (td, J = 9.2, 3.8 Hz, 1H), 2.08 - 1.97 (m, 1H), 1.82 - 1.74 (m, 1H), 1.50 - 1.26 (m, 9H), 1.20 (s, 12H), 0.86 (t, J = 6.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.76, 158.96, 129.43, 129.21, 113.95, 83.08, 55.34, 46.01, 44.87, 43.00, 32.09, 28.83, 28.53, 24.90, 24.82, 23.56, 22.68, 14.15. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.22. FTIR (neat): $\tilde{v} = 2922.7$, 2853.9, 1681.6, 1611.2, 1512.6, 1458.0, 1437.3, 1418.4, 1371.6, 1318.1, 1302.7, 1245.1, 1174.6, 1143.7, 1034.9, 967.1, 847.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₈BNNaO₄⁺ 438.2786; Found 438.2794. [α]²⁰_D = -11.9 (c = 0.95 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 44.4$ min and $t_{minor} = 37.8$ min.

(*R*)-1-(2,3-Dihydro-1H-inden-2-yl)-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((-) 3ap):

Prepared according to **GP6** with **1a** (50.0 µL, 0.20 mmol, 1.0 equiv.), **2p** (72.8 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product (-) **3ap** as a sticky oil (54 mg, 66%) in 91:9 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.12 (m, 4H), 5.07 (td, *J* = 8.1, 4.0 Hz, 1H), 3.20 – 3.12 (m, 2H), 3.09 – 3.03 (m,

2H), 2.89 (dt, J = 16.2, 4.7 Hz, 2H), 2.61 – 2.56 (m, 1H), 2.06 – 1.94 (m, 1H), 1.84 – 1.69 (m, 1H), 1.47 – 1.27 (m, 9H), 1.23 (s, 12H), 0.86 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.61, 141.42, 141.34, 126.73, 126.71, 124.41, 124.29, 83.07, 51.21, 43.10, 41.68, 36.85, 36.35, 32.09, 28.84, 28.44, 24.93, 24.89, 23.53, 22.68, 14.15. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.32. FTIR (neat): $\tilde{v} = 2922.9$, 2853.5, 1681.1, 1457.9, 1424.7, 1371.0, 1316.8, 1265.4, 1214.0, 1143.3, 966.8, 857.2, 743.0 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₅H₃₈BNNaO₃⁺ 434.2837; Found 434.2852. [α]²⁰_p = -9.6 (c = 0.90 in CHCl₃).

HPLC: The enantiomeric excess (92%) and diastereomeric ratio (91:9) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 37.4$ min and $t_{minor} = 26.3$ min.

(*R*)-1-(tert-Butyl)-3-((*S*)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-2-one ((+) 3dq):

Prepared according to **GP6** with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2q** (57.2 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3dq** as a sticky oil (56 mg, 68%). ¹**H NMR (400 MHz, Chloroform-***d*) δ 7.38 – 7.31 (m, 2H), 7.26 – 7.22 (m, 3H), 3.54 – 3.45 (m, 1H), 3.36 (q, *J* = 8.4 Hz, 1H), 2.68 (t, *J* = 7.7 Hz, 2H), 2.56 (dt, *J* = 9.6, 4.8 Hz, 1H), 2.11 – 2.01 (m,

1H), 1.88 - 1.63 (m, 4H), 1.61 - 1.48 (m, 4H), 1.46 (s, 9H), 1.28 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 177.22, 143.00, 128.57, 128.30, 125.61, 83.03, 53.70, 44.57, 43.95, 36.01, 31.71, 28.88, 28.77, 27.83, 24.99, 24.89, 23.59. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.71. FTIR (neat): $\tilde{v} = 2973.1$, 2923.9, 2854.0, 1680.5, 1455.2, 1404.3, 1370.0, 1318.3, 1285.1, 1247.4, 1215.7, 1143.8, 967.2, 860.4, 746.5 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₅H₄₁BNO₃⁺ 414.3174; Found 414.3183. [α]²⁰_p = +7.5 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (88%) and diastereomeric ratio (83:17) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 14.9$ min and $t_{minor} = 14.2$ min.

(*R*)-3-((*S*)-5-Phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 3dr):

Prepared according to **GP6** with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2r** (29.0 μ L, 0.30 mmol, 1.5 equiv.). Flash column chromatography (SiO₂, 7:1 hexane:EtOAc) afforded the desired product (+) **3dr** as a sticky oil (49 mg, 68%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.33 (m, 2H), 7.26 – 7.22 (m, 3H), 4.42 (td, *J* = 8.7, 2.8 Hz, 1H), 4.22 (td, *J* = 8.7, 7.3 Hz, 1H), 2.76 – 2.66 (m, 3H), 2.38 – 2.16 (m, 2H), 1.78 – 1.58 (m,

4H), 1.52 - 1.41 (m, 2H), 1.37 - 1.32 (m, 1H), 1.28 (d, J = 2.8 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.86, 142.70, 128.51, 128.32, 125.69, 83.51, 66.63, 40.23, 35.85, 31.48, 28.57, 28.53, 27.26, 24.86, 24.73. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.56. FTIR (neat): $\tilde{v} = 2976.4$, 2924.4, 2854.8, 1766.9, 1602.9, 1453.9, 1378.9, 1324.0, 1263.6, 1212.6, 1140.8, 1025.3, 967.4, 859.0, 748.0 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₁H₃₁BNaO₄⁺ 381.2208; Found 381.2215. [a]²⁰_p = +6.7 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALPAK[®] AD-H column, with hexane:isopropanol = 93:7 at a flow rate 0.5 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 16.5$ min and $t_{minor} = 19.3$ min.

(*R*)-5,5-Dimethyl-3-((*S*)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 3ds:

Prepared according to **GP6** with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2s** (57.9 mg, 0.30 mmol, 1.5 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ds** as a sticky oil (56 mg, 72%) in 92:8 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 – 7.24 (m, 2H), 7.18 – 7.14 (m, 3H), 2.89 – 2.83 (m, 1H), 2.63 – 2.59 (m, 2H), 2.09 – 1.92 (m, 2H), 1.67 – 1.62 (m, 2H), 1.57 – 1.51 (m, 2H), 1.45 (s, 3H),

1.41 – 1.37 (m, 2H), 1.35 (s, 3H), 1.28 – 1.25 (m, 1H), 1.20 (d, J = 4.5 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 179.10, 142.73, 128.54, 128.34, 125.71, 83.48, 82.08, 41.60, 39.60, 35.85, 31.48, 28.96, 28.65, 28.51, 27.52, 24.96, 24.73. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.49. FTIR (neat): $\tilde{v} = 2975.3$, 2925.9, 2855.1, 1759.8, 1454.0, 1371.8, 1322.8, 1263.4, 1140.8, 1029.8, 954.7, 925.2, 865.5, 847.2, 748.6 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₅BNaO₄⁺ 409.2521; Found 409.2529. [α]²⁰_p = +7.5 (c = 0.60 in CHCl₃).

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALPAK[®] AD-H column, with hexane:isopropanol = 93:7 at a flow rate 0.3 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 22.9$ min and $t_{minor} = 27.0$ min.

Ethyl (2*R*,3*S*)-2-ethyl-7-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanoate ((-) 3dt):

Prepared according to **GP6** with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2t** (44.8 μ L, 0.30 mmol, 1.5 equiv.). Flash column chromatography (SiO₂, 30:1 hexane:EtOAc) afforded the desired product (-) **3dt** as a clear oil (46 mg, 59%) in 65:35 diastereometric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.21 (m, 2H), 7.17 – 7.12 (m, 3H), 4.17 – 4.08 (m, 2H), 2.63 – 2.54 (m, 2H), 2.44 – 2.33 (m, 1H), 1.70 – 1.50 (m, 4H), 1.49 – 1.30 (m, 4H), 1.28

- 1.22 (m, 4H), 1.20 (s, 12H), 0.88 – 0.84 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.54, 176.43, 142.89, 142.83, 128.55, 128.32, 125.65, 83.28, 83.12, 60.10, 59.97, 49.36, 48.43, 35.96, 35.89, 31.77, 31.68, 29.50, 28.84, 28.73, 28.67, 25.39, 25.02, 24.96, 24.92, 24.79, 23.89, 14.54, 14.51, 12.35, 11.76. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.45. FTIR (neat): $\tilde{\nu} =$ 2975.6, 2927.0, 2855.9, 1729.1, 1603.9, 1496.1, 1455.7, 1370.1, 1318.7, 1264.5, 1229.9, 1212.9, 1141.2, 1111.0, 1029.1, 965.7, 847.3, 746.2 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₇BNaO₄⁺ 411.2677; Found 411.2681. [α]²⁰_p = -9.1 (c = 0.95 in CHCl₃).

HPLC: The enantiomeric excess of the major isomer (88%) and diastereomeric ratio (65:35) were determined via HPLC analysis using a CHIRALPAK[®] AD-H column, with hexane:isopropanol = 99.2:0.8 at a flow rate 0.5 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 14.9$ min and $t_{minor} = 13.8$ min.

The enantiomeric excess of the minor isomer (47%) was determined (after stereospecific oxidation of the boronate to alcohol using NaBO₃•4H₂O in THF/H₂O) via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 97:3 at a flow rate 1.0 mL/min detected at the 210 nm wavelength. Retention time: $t_{major} = 10.9$ min and $t_{minor} = 12.1$ min.

(*R*)-1-Phenyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)piperidin-2-one ((+) 3aw):

Prepared according to **GP6** with **1a** (50.0 μ L, 0.20 mmol, 1.0 equiv.), **2w** (66.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product (+) **3aw** as a sticky oil (21 mg, 27%) in 60:40 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.42 – 7.33 (m, 2H), 7.31 – 7.19 (m, 3H), 3.76 – 3.65 (m, 1H), 3.64 – 3.56 (m, 1H), 2.73 – 2.57 (m, 1H), 2.24 – 1.87

(m, 3H), 1.83 - 1.47 (m, 3H), 1.44 - 1.29 (m, 7H), 1.25 (s, 12H), 0.93 - 0.87 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.45, 173.23, 144.22, 143.45, 128.96, 128.84, 126.32, 126.27, 125.88, 82.90, 82.31, 51.65, 51.11, 45.30, 43.54, 32.50, 32.20, 29.04, 28.95, 28.86, 27.52, 26.52, 25.90, 25.28, 25.25, 25.22, 24.85, 23.53, 23.25, 22.79, 22.77, 14.26, 14.25. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 32.89. FTIR (neat): $\tilde{v} = 2952.7$, 2925.6, 2857.2, 1645.0, 1594.9, 1493.4, 1458.0, 1417.6, 1376.8, 1350.3, 1302.6, 1144.2, 967.1, 840.5, 757.1 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₆BNNaO₃⁺ 408.2680; Found 408.2687. [α]²⁰_D = +17.6 (c = 0.98 in CHCl₃).

HPLC: The enantiomeric excess of the major isomer (89%) and diastereomeric ratio (60:40) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with

hexane:isopropanol = 99:1 at a flow rate 0.5 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 31.3$ min and $t_{minor} = 38.5$ min.

The enantiomeric excess of the minor isomer (52%) was determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 99:1 at a flow rate 0.5 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 24.4$ min and $t_{minor} = 27.2$ min.

(*R*)-1-Phenyl-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)pyrrolidin-2-one ((+) 3ba):

Prepared according to **GP6** with **1b** (40.0 μ L, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3ba** as a white solid (46 mg, 70%) in 94:6 diastereomeric ratio. ¹H **NMR** (**400 MHz**, **Chloroform-***d*) δ 7.65 – 7.59 (m, 2H), 7.38 – 7.31 (m, 2H), 7.14 – 7.08

(m, 1H), 3.83 - 3.70 (m, 2H), 2.86 - 2.77 (m, 1H), 2.25 - 2.17 (m, 1H), 2.08 - 1.97 (m, 1H), 1.65 - 1.58 (m, 1H), 1.56 - 1.48 (m, 2H), 1.21 (s, 12H), 1.00 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.38, 140.07, 128.82, 124.14, 119.92, 83.22, 47.06, 44.42, 24.96, 24.88, 23.31, 21.57, 13.91. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.62. FTIR (neat): $\tilde{r} = 2978.1, 2955.7, 2925.6, 2870.8, 1681.0, 1596.8, 1503.1, 1485.4, 1458.6, 1390.5, 1310.7, 1268.1, 1215.3, 1144.8, 966.9, 891.3, 858.2, 757.7$ cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₈BNNaO₃⁺ 352.2054; Found 352.2061. [α]²⁰_p = +40.6 (c = 0.66 in CHCl₃). M.P. = n.d.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 27.3$ min and $t_{minor} = 34.2$ min.

(*R*)-3-((*S*)-2-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-1-phenylpyrrolidin-2-one ((+) 3ca):

Prepared according to **GP6** with **1c** (47.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 8:1 hexane:EtOAc) afforded the desired product (+) **3ca** as a white solid (50 mg, 63%) in 95:5 diastereometric ratio. ¹H NMR (400 MHz, Chloroform-d) δ 7.63 –

7.61 (m, 2H), 7.36 – 7.32 (m, 3H), 7.12 – 7.08 (m, 1H), 3.79 - 3.71 (m, 2H), 2.76 (td, J = 9.5, 5.1 Hz, 1H), 2.20 – 2.15 (m, 1H), 2.11 – 1.97 (m, 1H), 1.82 – 1.60 (m, 6H), 1.48 – 1.42 (m, 1H), 1.38 – 1.26 (m, 3H), 1.22 – 1.14 (m, 14H), 0.88 (q, J = 10.5, 9.9 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.31, 140.07, 128.76, 124.04, 119.81, 83.13, 46.99, 44.55, 36.58, 35.75, 33.57, 33.47, 26.81, 26.57, 26.52, 24.91, 24.82, 23.05. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.80. FTIR (neat): $\tilde{v} = 2975.3$, 2919.4, 2848.9, 1693.1, 1598.3, 1500.0, 1448.3, 1388.3, 1310.5, 1267.9, 1224.8, 1141.9, 966.9, 890.3, 857.5, 757.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₆BNNaO₃⁺ 420.2680; Found 420.2689. [α]²⁰_D = +20.8 (c = 1.00 in CHCl₃). M.P. = 99.9 – 105.3 °C.

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 5.6$ min and $t_{minor} = 8.6$ min.

(*R*)-1-Phenyl-3-((*S*)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-2-one ((+) 3da):

Prepared according to **GP6** with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3da** as a white solid (63 mg, 73%) in 94:6 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.73 – 7.66 (m, 2H), 7.46 – 7.39 (m, 2H), 7.37 – 7.30 (m, 2H), 7.28 – 7.14 (m, 4H), 3.90 – 3.75 (m, 2H), 2.86 (td, *J* =

9.3, 4.5 Hz, 1H), 2.70 (t, J = 7.6 Hz, 2H), 2.29 – 2.22 (m, 1H), 2.13 – 2.03 (m, 1H), 1.79 – 1.63 (m, 4H), 1.59 – 1.47 (m, 3H), 1.26 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.22, 142.84, 140.01, 128.75, 128.51, 128.27, 125.61, 124.07, 119.81, 83.17, 46.95, 44.52, 35.92, 31.64, 28.84, 28.28, 24.87, 24.81, 23.28. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.96. FTIR (neat): $\tilde{v} = 2974.8$, 2925.3, 2854.8, 1693.5, 1598.4, 1496.2, 1456.5, 1388.9, 1312.3, 1266.6, 1226.0, 1142.8, 967.0, 857.4, 757.3 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₇BNO₃⁺ 434.2861; Found 434.2877. [α]²⁰_D = +31.2 (c = 1.00 in CHCl₃). M.P. =88.5 – 93.4 °C.

HPLC: The enantiomeric excess (91%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 10.9$ min and $t_{minor} = 13.4$ min.

(*R*)-3-((*S*)-6-Chloro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3ea):

Prepared according to **GP6** with **1e** (49.0 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3ea** as a white solid (59 mg, 73%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.68 – 7.59 (m, 2H), 7.38 – 7.29 (m, 2H), 7.14 – 7.05 (m, 1H), 3.82 – 3.69 (m, 2H), 3.52 (t, *J* = 6.8 Hz, 2H), 2.79 (td,

J = 9.3, 4.5 Hz, 1H), 2.25 – 2.14 (m, 1H), 2.06 – 1.96 (m, 1H), 1.82 – 1.75 (m, 2H), 1.58 – 1.40 (, 5H), 1.20 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.15, 139.98, 128.77, 124.12, 119.84, 83.23, 46.96, 45.17, 44.53, 32.59, 28.44, 28.17, 27.11, 24.90, 24.84, 23.30. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.92. FTIR (neat): $\tilde{v} = 2975.0$, 2926.4, 2856.2, 1692.7, 1598.1, 1497.9, 1460.1, 1388.9, 1311.2, 1268.6, 1225.9, 1142.8, 966.8, 856.1, 758.6 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₄BClNO₃⁺ 406.2315; Found 406.2324. [α]²⁰_D = +28.0 (c = 1.00 in CHCl₃). M.P. = 61.2 – 64.9 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane: isopropanol = 92:8 at a flow

rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 7.9$ min and $t_{minor} = 11.9$ min.

(*R*)-3-((*S*)-6-Phenoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3fa):

Prepared according to **GP6** with **1f** (60.4 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3fa** as a white solid (69 mg, 74%) in 98:2 diastereomeric ratio. ¹H **NMR** (**400 MHz, Chloroform-d**) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.33 (m, 2H), 7.31 – 7.24 (m, 2H), 7.18 – 7.06 (m, 1H), 6.98 – 6.86 (m, 3H), 3.96 (t,

J = 6.6 Hz, 2H), 3.84 – 3.69 (m, 2H), 2.82 (td, *J* = 9.4, 4.2 Hz, 1H), 2.27 – 2.16 (m, 1H), 2.09 – 1.99 (m, 1H), 1.86 – 1.78 (m, 2H), 1.55 – 1.42 (m, 5H), 1.21 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.21, 159.19, 140.00, 129.46, 128.76, 124.09, 120.49, 119.83, 114.56, 83.20, 67.85, 46.97, 44.54, 29.28, 28.96, 28.29, 26.28, 24.89, 24.82, 23.26. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.09. FTIR (neat): $\tilde{v} = 2974.6$, 2926.8, 2856.7, 1693.4, 1598.4, 1495.9, 1388.9, 1311.6, 1243.9, 1143.0, 1032.6, 967.3, 856.7, 755.6 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₉BNO₄⁺ 464.2967; Found 464.2967. [α]²⁰_D = +26.5 (c = 1.00 in CHCl₃). M.P. = 62.3 – 69.2 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (98:2) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 90:10 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 15.1$ min and $t_{minor} = 42.2$ min.

(*R*)-3-((*S*)-6-(4-Bromophenoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3ga):

Prepared according to **GP6** with **1g** (76.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product (+) **3ga** as a white solid (68 mg, 63%) in 97:3 diastereomeric ratio. ¹H **NMR** (**400 MHz**, **Chloroform-d**) δ 7.65 – 7.59 (m, 2H), 7.37 – 7.32 (m, 4H), 7.15 – 7.07 (m, 1H), 6.80 – 6.72 (m, 2H), 3.91 (t, *J* = 6.4 Hz, 2H), 3.83 – 3.69 (m,

2H), 2.80 (td, J = 9.4, 4.6 Hz, 1H), 2.26 – 2.14 (m, 1H), 2.07 – 1.98 (m, 1H), 1.82 – 1.75 (m, 2H), 1.54 – 1.39 (m, 5H), 1.20 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.19, 158.33, 139.98, 132.24, 128.77, 124.12, 119.83, 116.39, 112.59, 83.22, 68.23, 46.97, 44.52, 29.12, 28.89, 28.25, 26.19, 24.90, 24.84, 23.30. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.34. FTIR (neat): $\tilde{v} = 2974.6$, 2926.7, 2856.6, 1692.3, 1597.5, 1488.3, 1388.6, 1311.1, 1286.2, 1241.9, 1169.4, 1142.6, 1112.9, 1071.3, 1001.3, 967.4, 856.5, 822.4, 758.5 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₈H₃₈BBrNO₄⁺ 542.2072; Found 542.2089. [α]²⁰_D = +23.5 (c = 1.00 in CHCl₃). M.P. = 80.9 – 84.5 °C.

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane: isopropanol = 92:8 at a flow

rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 13.1$ min and $t_{minor} = 18.9$ min.

(*R*)-3-((*S*)-6-(2,4-Dichlorophenoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3ha):

Prepared according to **GP6** with **1h** (74.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3ha** as a white solid (86 mg, 81%) in 95:5 diastereometric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.31 (m, 3H), 7.19 – 7.05 (m, 2H), 6.86 – 6.78 (m, 1H), 3.98 (t, *J* = 6.5 Hz, 2H), 3.83 – 3.68

(m, 2H), 2.87 - 2.74 (m, 1H), 2.25 - 2.15 (m, 1H), 2.07 - 1.99 (m, 1H), 1.87 - 1.80 (m, 2H), 1.54 - 1.42 (m, 5H), 1.20 (s, 12H). ¹³**C NMR** (**101 MHz**, **Chloroform**-*d*) δ 176.18, 153.55, 139.95, 129.92, 128.74, 127.55, 125.39, 124.10, 123.74, 119.82, 114.09, 83.19, 69.45, 46.96, 44.51, 28.96, 28.83, 28.21, 26.10, 24.87, 24.81, 23.26. ¹¹**B NMR** (**128 MHz**, **Chloroform**-*d*) δ 34.21. **FTIR** (**neat**): $\tilde{v} = 2974.9$, 2926.4, 2856.4, 1691.8, 1598.0, 1484.0, 1467.2, 1388.5, 1310.8, 1288.8, 1265.3, 1227.0, 1142.5, 1103.8, 1060.4, 967.5, 857.5, 804.1, 758.0 cm⁻¹. **HRMS** (**ESI/QTOF**) **m/z**: [M + Na]⁺ Calcd for C₂₈H₃₆BCl₂NNaO₄⁺ 554.2007; Found 554.2021. [α]²⁰_p = +22.2 (c = 1.00 in CHCl₃). **M.P.** = 82.4 - 84.8 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 18.6$ min and $t_{minor} = 22.2$ min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl tetrahydro-2H-pyran-4-carboxylate ((+) 3ia):

Prepared according to **GP6** with **1i** (62.0 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product (+) **3ia** as a sticky oil (71 mg, 75%) in 96:4 diastereomeric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 7.63 – 7.53 (m, 2H), 7.39 – 7.30 (m, 2H), 7.15 – 7.07 (m, 1H), 4.10 (t, *J* = 6.3 Hz, 2H), 3.99 – 3.91 (m, 2H), 3.84 – 3.70 (m,

2H), 3.42 (td, J = 11.1, 3.0 Hz, 2H), 2.86 – 2.77 (m, 1H), 2.53 (tt, J = 10.6, 4.5 Hz, 1H), 2.25 – 2.17 (m, 1H), 2.06 – 1.93 (m, 1H), 1.88 – 1.74 (m, 5H), 1.74 – 1.62 (m, 2H), 1.60 – 1.46 (m, 2H), 1.21 (s, 12H). ¹³**C NMR (101 MHz, Chloroform-***d***)** δ 175.92, 174.66, 139.95, 128.86, 124.27, 119.91, 83.42, 67.26, 64.87, 47.00, 44.63, 40.29, 28.83, 28.40, 24.94, 24.92, 24.72, 23.36. ¹¹**B NMR (128 MHz, Chloroform-***d***)** δ 35.01. **FTIR (neat):** $\tilde{\nu} = 2953.0$, 2926.6, 2851.0, 1728.1, 1692.7, 1598.0, 1496.7, 1459.0, 1388.7, 1313.1, 1278.2, 1239.8, 1227.1, 1183.9, 1168.1, 1141.1, 1092.1, 1040.6, 983.7, 967.3, 857.9, 759.3 cm⁻¹. **HRMS (ESI/QTOF) m/z:** [M + Na]⁺ Calcd for C₂₆H₃₈BNNaO₆⁺ 494.2684; Found 494.2685. **[a]**²⁰_p = +19.8 (c = 0.83 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 94:6 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 29.7$ min and $t_{minor} = 38.4$ min.

(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) hexanenitrile ((+) 3ja):

Prepared according to **GP6** with **1j** (44.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 4:1 hexane:EtOAc) afforded the desired product (+) **3ja** as a white solid (58 mg, 76%) in 96:4 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.65 – 7.56 (m, 2H), 7.39 – 7.31 (m, 2H), 7.13 – 7.09 (m, 1H), 3.84 – 3.70 (m, 2H), 2.86 – 2.75 (m, 1H), 2.35 (t, *J* =

7.0 Hz, 2H), 2.26 – 2.18 (m, 1H), 2.06 – 1.94 (m, 1H), 1.73 – 1.65 (m, 2H), 1.64 – 1.46 (m, 5H), 1.22 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.95, 139.91, 128.83, 124.25, 119.92, 119.90, 83.44, 46.96, 44.49, 28.25, 27.39, 25.58, 24.92, 24.90, 23.46, 17.14. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.45. FTIR (neat): $\tilde{v} = 2975.6$, 2928.9, 2863.7, 1689.0, 1597.7, 1496.0, 1460.2, 1389.5, 1312.6, 1266.2, 1226.1, 1166.1, 1142.3, 1111.9, 966.9, 856.1, 760.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₂H₃₁BN₂NaO₃⁺ 405.2320; Found 405.2323. [α]²⁰_p = +31.0 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 94:6 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 30.7$ min and $t_{minor} = 42.7$ min.

Methyl (S)-6-((R)-2-oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate ((+) 3ka):

Prepared according to **GP6** with **1k** (50.8 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3ka** as a sticky oil (58 mg, 70%) in 95:5 diastereomeric ratio. ¹H NMR (400 **MHz, Chloroform-d**) δ 7.60 (d, *J* = 8.1 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 3.81 – 3.69 (m, 2H), 3.64 (s, 3H), 2.78

(td, J = 9.4, 4.4 Hz, 1H), 2.31 (t, J = 7.5 Hz, 2H), 2.24 – 2.14 (m, 1H), 2.05 – 1.95 (m, 1H), 1.70 – 1.52 (m, 4H), 1.47 – 1.35 (m, 3H), 1.19 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.12, 174.28, 139.96, 128.75, 124.11, 119.84, 83.22, 51.49, 46.96, 44.48, 34.10, 28.73, 27.97, 25.21, 24.88, 24.81, 23.23. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.97. FTIR (neat): $\tilde{\nu} = 2975.2$, 2927.7, 2858.6, 1735.2, 1692.6, 1598.1, 1496.6, 1459.6, 1389.3, 1371.8, 1311.6, 1266.2, 1226.1, 1213.9, 1166.7, 1142.8, 1115.6, 967.2, 856.1, 759.2 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₃H₃₄BNNaO₅⁺ 438.2422; Found 438.2432. [α]²⁰_p = +29.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane: isopropanol = 95:5 at a flow

rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 15.8$ min and $t_{minor} = 18.9$ min.

(*R*)-3-((*S*)-6-((tert-Butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3la):

Prepared according to **GP6** with **11** (68.1 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 15:1 hexane:EtOAc) afforded the desired product (+) **3la** as a sticky oil (70 mg, 70%) in 94:6 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.65 – 7.58 (m, 2H), 7.38 – 7.30 (m, 2H), 7.14 – 7.05 (m, 1H), 3.85 – 3.68 (m, 2H), 3.59 (t, *J* = 6.6 Hz, 2H), 2.79 (td, *J* = 9.4, 3.9 Hz, 1H), 2.24 – 2.14 (m, 1H), 2.08 – 1.96 (m, 1H), 1.63 –

1.47 (m, 4H), 1.46 – 1.30 (m, 5H), 1.20 (s, 12H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.27, 140.03, 128.76, 124.07, 119.83, 83.16, 63.39, 46.99, 44.54, 32.95, 29.11, 28.41, 26.10, 24.91, 24.83, 23.22, 18.47, -5.15. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.83. FTIR (neat): $\tilde{v} = 2927.2$, 2855.2, 1694.9, 1598.6, 1500.3, 1461.3, 1388.5, 1312.3, 1254.5, 1226.6, 1143.4, 1099.7, 967.6, 834.9, 777.7, 757.8 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₈H₄₈BNNaO₄Si⁺ 524.3338; Found 524.3357. [α]²⁰_p = +24.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (92%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 5.6$ min and $t_{minor} = 6.9$ min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl furan-2-carboxylate ((+) 3ma):

Prepared according to **GP6** with **1m** (58.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 7:1 hexane:EtOAc) afforded the desired product (+) **3ma** as a sticky oil (72 mg, 79%) in 96:4 diastereometric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 – 7.58 (m, 2H), 7.56 – 7.55 (m, 1H), 7.37 – 7.31 (m, 2H), 7.18 – 7.16 (m, 1H), 7.13 – 7.08 (m, 1H), 6.49 (dd, *J* = 3.5, 1.8

Hz, 1H), 4.31 (t, J = 6.6 Hz, 2H), 3.77 (dtd, J = 15.9, 9.3, 6.9 Hz, 2H), 2.89 – 2.79 (m, 1H), 2.25 – 2.17 (m, 1H), 2.08 – 1.98 (m, 1H), 1.95 – 1.66 (m, 3H), 1.63 – 1.55 (m, 2H), 1.20 (s, 12H). ¹³C **NMR (101 MHz, Chloroform-***d*) δ 175.92, 158.94, 146.26, 145.00, 139.94, 128.82, 124.22, 119.92, 117.83, 111.88, 83.39, 65.32, 47.00, 44.66, 28.43, 24.90, 24.88, 24.67, 23.28. ¹¹B **NMR (128 MHz, Chloroform-***d*) δ 34.71. **FTIR (neat):** $\tilde{v} = 2975.3$, 2928.4, 2869.0, 1715.8, 1690.8, 1597.9, 1580.5, 1496.4, 1475.0, 1372.7, 1294.8, 1229.5, 1178.7, 1142.8, 1118.1, 1076.0, 1013.0, 967.2, 937.9, 884.7, 856.6, 757.9 cm⁻¹. **HRMS (ESI/QTOF) m/z:** [M + Na]⁺ Calcd for C₂₅H₃₂BNNaO₆⁺ 476.2215; Found 476.2227. [α]²⁰_p = +32.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane: isopropanol = 95:5 at a flow

rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 34.8$ min and $t_{minor} = 47.4$ min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl thiophene-2-carboxylate ((+) 3na):

Prepared according to **GP6** with **1n** (61.6 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 8:1 hexane:EtOAc) afforded the desired product (+) **3na** as a white solid (77 mg, 82%) in 94:6 diastereometric ratio. ¹H NMR (**400** MHz, Chloroform-*d*) δ 7.81 – 7.80 (m, 1H), 7.63 – 7.61 (m, 2H), 7.54 – 7.53 (m, 1H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.15 – 7.05 (m, 2H), 4.31 (t, *J* = 6.5

Hz, 2H), 3.85 - 3.69 (m, 2H), 2.85 (td, J = 9.5, 4.3 Hz, 1H), 2.28 - 2.18 (m, 1H), 2.09 - 1.97 (m, 1H), 1.97 - 1.77 (m, 2H), 1.74 - 1.68 (m, 1H), 1.65 - 1.56 (m, 2H), 1.22 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.89, 162.34, 139.89, 134.17, 133.31, 132.23, 128.76, 127.75, 124.16, 119.86, 83.33, 65.41, 46.95, 44.61, 28.40, 24.86, 24.83, 24.65, 23.21. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.93. FTIR (neat): $\tilde{v} = 2974.8$, 2928.7, 2870.3, 1693.0, 1597.8, 1524.7, 1496.6, 1459.4, 1417.6, 1389.1, 1310.9, 1259.1, 1226.0, 1142.4, 1096.1, 1076.3, 1037.1, 966.4, 901.6, 857.8, 752.6 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₅H₃₂BNNaO₅S⁺ 492.1986; Found 492.1993. [α]²⁰_D = +20.8 (c = 1.00 in CHCl₃). M.P. = 80.1 - 90.1 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 28.2$ min and $t_{minor} = 54.6$ min.

$\label{eq:solution} \begin{array}{l} 2 \cdot ((S) - 5 \cdot ((R) - 2 \cdot Oxo - 1 \cdot phenylpyrrolidin - 3 \cdot yl) - 5 \cdot (4,4,5,5 \cdot tetramethyl - 1,3,2 \cdot dioxaborolan - 2 \cdot yl) pentyl) isoindoline - 1,3 \cdot dione ((+) 3 oa): \end{array}$

Prepared according to **GP6** with **10** (68.2 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 5:1 hexane:EtOAc) afforded the desired product (+) **30a** as a white solid (85 mg, 84%) in 94:6 diastereometic ratio. ¹H NMR (400

MHz, Chloroform-*d*) δ 7.84 – 7.80 (m, 2H), 7.74 – 7.67 (m, 2H), 7.63 – 7.55 (m, 2H), 7.37 – 7.30 (m, 2H), 7.13 – 7.07 (m, 1H), 3.82 – 3.72 (m, 2H), 3.69 (td, J = 7.1, 1.9 Hz, 2H), 2.80 (td, J = 9.5, 4.5 Hz, 1H), 2.24 – 2.16 (m, 1H), 2.06 – 1.95 (m, 1H), 1.73 – 1.54 (m, 4H), 1.51 – 1.36 (m, 3H), 1.17 (s, 12H). ¹³C **NMR (101 MHz, Chloroform-***d*) δ 176.13, 168.54, 140.03, 133.94, 132.32, 128.80, 124.15, 123.26, 119.92, 83.27, 47.03, 44.60, 38.09, 28.92, 27.92, 26.59, 24.89, 24.85, 23.26. ¹¹B **NMR (128 MHz, Chloroform-***d*) δ 33.54. **FTIR (neat):** $\tilde{r} = 2974.2, 2924.8, 2855.3, 1770.6, 1708.5, 1598.0, 1496.8, 1464.6, 1437.1, 1393.6, 1371.2, 1311.8, 1269.4, 1215.3, 1142.6, 1034.9, 966.3, 858.0, 758.3 cm⁻¹.$ **HRMS (ESI/QTOF) m/z:**[M + Na]⁺ Calcd for C₂₉H₃₅BN₂NaO₅⁺ 525.2531; Found 525.2547. [α]²⁰_D = +25.0 (c = 0.80 in CHCl₃).

HPLC: The enantiomeric excess (93%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 94:6 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 43.5$ min and $t_{minor} = 49.9$ min.

(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl benzoate ((+) 3pa):

Prepared according to **GP6** with **1p** (66.0 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **3pa** as a white solid (75 mg, 76%) in 95:5 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 8.07 – 8.02 (m, 2H), 7.62 – 7.60 (m, 2H), 7.57 – 7.50 (m, 1H), 7.45 – 7.40 (m, 2H), 7.38 – 7.30 (m, 2H), 7.13 – 7.07 (m, 1H), 4.31 (t, *J* = 6.6 Hz, 2H), 3.81 – 3.68 (m, 2H), 2.80 (td, *J* =

9.5, 4.2 Hz, 1H), 2.25 – 2.14 (m, 1H), 2.06 – 1.96 (m, 1H), 1.82 – 1.75 (m, 2H), 1.65 – 1.57 (m, 2H), 1.50 – 1.42 (m, 5H), 1.20 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.15, 166.71, 139.96, 132.83, 130.57, 129.59, 128.73, 128.37, 124.07, 119.80, 83.19, 65.11, 46.93, 44.51, 28.87, 28.72, 28.23, 26.30, 24.87, 24.80, 23.25. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.45. FTIR (neat): $\tilde{v} = 2974.6$, 2926.6, 2856.5, 1715.5, 1693.5, 1598.5, 1497.7, 1451.7, 1388.8, 1312.5, 1271.8, 1227.0, 1142.8, 1112.6, 1070.4, 1026.6, 966.8, 857.0, 758.5 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₉H₃₈BNNaO₅⁺ 514.2735; Found 514.2753. [α]²⁰_p = +24.8 (c = 1.00 in CHCl₃). M.P. = 82.8 – 86.9 °C.

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 18.6$ min and $t_{minor} = 30.2$ min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate ((+) 4):

Prepared according to **GP6** with **1q** (48.4 mg, 0.10 mmol, 1.0 equiv.), **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **4** as a sticky oil (40 mg, 62%) in 96:4 diastereomeric ratio. ¹H NMR (400 MHz, **Chloroform-d**) δ 7.65 – 7.58 (m, 2H), 7.38

-7.32 (m, 2H), 7.15 -7.03 (m, 3H), 6.65 -6.59 (m, 2H), 4.08 (t, *J* = 6.3 Hz, 2H), 3.83 -3.72 (m, 2H), 3.72 -3.67 (m, 4H), 3.63 -3.58 (m, 4H), 2.88 -2.78 (m, 1H), 2.56 (t, *J* = 7.6 Hz, 2H), 2.32 (t, *J* = 7.5 Hz, 2H), 2.24 -2.17 (m, 1H), 2.08 -1.97 (m, 1H), 1.96 -1.86 (m, 2H), 1.80 -1.48 (m, 5H), 1.21 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.93, 173.77, 144.41, 139.94, 130.80, 129.82, 128.83, 124.23, 119.90, 112.26, 83.38, 64.72, 53.72, 46.98, 44.63, 40.65, 34.13, 33.82, 28.40, 26.93, 24.91, 24.74, 23.28. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.19.

FTIR (neat): $\tilde{v} = 2973.5, 2926.2, 2857.3, 1727.8, 1691.7, 1614.8, 1598.0, 1518.2, 1497.3, 1457.6, 1388.9, 1370.5, 1311.8, 1270.5, 1246.8, 1227.2, 1179.6, 1142.2, 966.4, 856.5, 827.0, 803.1, 758.3 cm⁻¹.$ **HRMS**(**ESI/QTOF**)**m/z** $: [M + H]⁺ Calcd for C₃₄H₄₈BCl₂N₂O₅⁺ 645.3028; Found 645.3041. [<math>\alpha$]²⁰_p = +18.3 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 80:20 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 23.0$ min and $t_{minor} = 33.9$ min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl 3-(4,5-diphenyloxazol-2-yl)propanoate ((+) 5):

Prepared according to **GP6** with **1r** (47.3 mg, 0.10 mmol, 1.0 equiv.), **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product (+) **5** as a sticky oil (41 mg, 65%) in 97:3 diastereomeric ratio. ¹H NMR (400 MHz, **Chloroform-d**) δ 7.66 – 7.55 (m, 6H), 7.40 – 7.28 (m, 8H), 7.14 – 7.08 (m, 1H), 4.15 (t, *J* = 6.4 Hz, 2H), 3.79 –

3.67 (m, 2H), 3.19 (dd, J = 8.5, 6.7 Hz, 2H), 2.92 (dd, J = 8.5, 6.7 Hz, 2H), 2.79 (ddd, J = 10.0, 8.9, 4.6 Hz, 1H), 2.22 – 2.11 (m, 1H), 2.04 – 1.92 (m, 1H), 1.84 – 1.48 (m, 5H), 1.21 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.93, 172.17, 161.96, 145.51, 139.97, 135.25, 132.62, 129.12, 128.82, 128.76, 128.66, 128.55, 128.16, 128.02, 126.58, 124.20, 119.89, 83.38, 65.23, 46.97, 44.62, 31.32, 28.32, 24.92, 24.90, 24.69, 23.69, 23.23. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.24. FTIR (neat): $\tilde{v} = 2975.1$, 2925.1, 2854.9, 1732.8, 1692.5, 1597.8, 1499.0, 1389.9, 1371.3, 1312.4, 1267.8, 1216.6, 1165.8, 1142.4, 1072.0, 1057.8, 1025.6, 963.1, 856.2, 758.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₃₈H₄₄BN₂O₆⁺ 635.3287; Found 635.3288. [α]²⁰_p = +14.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (93%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 90:10 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 28.3$ min and $t_{minor} = 37.2$ min.

(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl 4-(N,N-dipropylsulfamoyl)benzoate ((+) 6):

Prepared according to **GP6** with **1s** (49.3 mg, 0.10 mmol, 1.0 equiv.), **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **6** as a sticky oil (45 mg, 69%) in 95:5 diastereomeric ratio. ¹**H**

NMR (400 MHz, Chloroform-*d***)** δ 8.19 – 8.12 (m, 2H), 7.90 – 7.84 (m, 2H), 7.66 – 7.58 (m, 2H), 7.38 – 7.31 (m, 2H), 7.16 – 7.07 (m, 1H), 4.34 (t, *J* = 6.6 Hz, 2H), 3.83 – 3.70 (m, 2H), 3.12 – 3.06 (m, 4H), 2.80 (td, *J* = 9.5, 4.9 Hz, 1H), 2.26 – 2.15 (m, 1H), 2.06 – 1.95 (m, 1H), 1.82 –

1.76 (m, 2H), 1.65 – 1.41 (m, 11H), 1.20 (s, 12H), 0.86 (t, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.20, 165.44, 144.21, 139.99, 133.92, 130.31, 128.82, 127.10, 124.19, 119.88, 83.30, 65.83, 50.07, 47.00, 44.54, 28.87, 28.70, 28.26, 26.28, 24.93, 24.88, 23.39, 22.07, 11.28. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 34.56. FTIR (neat): $\tilde{v} = 2969.5$, 2927.9, 2874.3, 2857.0, 1719.5, 1693.0, 1598.2, 1497.5, 1459.8, 1389.1, 1341.7, 1311.1, 1271.3, 1227.4, 1157.5, 1143.4, 1107.3, 1087.5, 1017.0, 991.7, 858.5, 759.3 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₃₅H₅₁BN₂NaO₇S⁺ 677.3402; Found 677.3420. [α]²⁰_p = +17.8 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 85:15 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 14.6$ min and $t_{minor} = 21.2$ min.

(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate ((+) 7):

Prepared according to **GP6** with **1t** (47.6 mg, 0.10 mmol, 1.0 equiv.), **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **7** as a sticky oil (40 mg, 64%) in 94:6 diastereomeric

ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.11 (d, J = 2.4 Hz, 1H), 7.89 (dd, J = 7.7, 1.4 Hz, 1H), 7.63 – 7.59 (m, 2H), 7.55 (td, J = 7.5, 1.4 Hz, 1H), 7.49 – 7.40 (m, 2H), 7.38 – 7.32 (m, 3H), 7.13 – 7.09 (m, 1H), 7.03 (d, J = 8.4 Hz, 1H), 5.18 (s, 2H), 4.09 (t, J = 6.7 Hz, 2H), 3.82 – 3.69 (m, 2H), 3.63 (s, 2H), 2.78 (td, J = 9.6, 4.5 Hz, 1H), 2.23 – 2.14 (m, 1H), 2.06 – 1.95 (m, 1H), 1.69 – 1.53 (m, 4H), 1.48 – 1.32 (m, 5H), 1.20 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 190.96, 176.23, 171.64, 160.57, 140.60, 140.03, 136.52, 135.70, 132.87, 132.57, 129.61, 129.37, 128.81, 128.12, 127.92, 125.23, 124.14, 121.15, 119.88, 83.26, 73.76, 65.24, 47.01, 44.57, 40.40, 28.84, 28.60, 28.24, 26.15, 24.98, 24.94, 24.88, 23.30. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.37. FTIR (neat): $\tilde{v} = 2973.9, 2923.1, 2854.2, 1731.2, 1691.4, 1647.2, 1611.0, 1597.8, 1490.1, 1457.3, 1389.1, 1299.7, 1256.4, 1223.5, 1163.0, 1140.3, 1120.8, 1015.0, 967.0, 856.7, 830.3, 757.7 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₃₈H₄₄BNNaO₇⁺ 660.3103; Found 660.3109. [α]²⁰_p = +16.5 (c = 0.94 in CHCl₃).$

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 80:20 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 33.9$ min and $t_{minor} = 40.1$ min.

(3*R*)-3-((1*S*)-6-(((8*R*,9*S*,13*S*)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 8):

Prepared according to **GP6** with **1u** (47.8 mg, 0.10 mmol, 1.0 equiv.), **2a** (31.2 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 6:1 hexane:EtOAc) afforded the desired product (+) **8** as a white solid (40 mg, 63%) in 96:4 diastereomeric ratio. ¹H NMR (400 MHz,

Chloroform-*d*) δ 7.62 (d, *J* = 7.9 Hz, 2H), 7.39 – 7.30 (m, 2H), 7.18 (d, *J* = 8.6 Hz, 1H), 7.14 – 7.07 (m, 1H), 6.76 – 6.69 (m, 1H), 6.65 – 6.61 (m, 1H), 3.92 (t, *J* = 6.6 Hz, 2H), 3.75 (dt, *J* = 13.2, 9.3 Hz, 2H), 2.91 – 2.87 (m, 2H), 2.80 (td, *J* = 9.5, 4.3 Hz, 1H), 2.50 (dd, *J* = 18.8, 8.6 Hz, 1H), 2.43 – 2.35 (m, 1H), 2.29 – 1.91 (m, 7H), 1.79 – 1.74 (m, 2H), 1.66 – 1.42 (m, 11H), 1.32 – 1.25 (m, 2H), 1.20 (s, 12H), 0.91 (s, 3H). ¹³**C NMR (101 MHz, Chloroform-***d*) δ 221.10, 176.26, 157.27, 140.03, 137.77, 131.90, 128.80, 126.38, 124.14, 119.88, 114.65, 112.27, 83.24, 67.98, 50.54, 48.14, 47.01, 44.55, 44.11, 38.51, 36.00, 31.71, 29.77, 29.37, 29.00, 28.31, 26.70, 26.33, 26.04, 24.94, 24.87, 23.30, 21.71, 13.98. ¹¹B NMR (128 MHz, **Chloroform-***d*) δ 34.21. **FTIR (neat):** $\tilde{\nu} = 2974.3$, 2924.8, 2856.4, 1736.3, 1692.7, 1598.5, 1574.7, 1498.1, 1457.3, 1380.0, 1311.0, 1281.1, 1253.8, 1232.7, 1214.7, 1142.5, 1054.6, 1006.1, 966.2, 857.5, 818.5, 752.9 cm⁻¹. **HRMS (ESI/QTOF) m/z:** [M + Na]⁺ Calcd for C₄₀H₅₄BNNaO₅⁺ 662.3987; Found 662.4007. [α]²⁰ = +90.0 (c = 1.00 in CHCl₃).

HPLC: The diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 85:15 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 19.9$ min and $t_{minor} = 32.9$ min.

tert-Butyl 2-((4*R*,6*R*)-2,2-dimethyl-6-(2-((*R*)-2-oxo-3-((*S*)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-1-yl)ethyl)-1,3-dioxan-4-yl)acetate ((+) 9):

Prepared according to **GP6** with **1d** (27.2 mg, 0.10 mmol, 1.0 equiv.), **2u** (50.4 mg, 0.13 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 3:1 hexane:EtOAc) afforded the desired product (+) **9** as a sticky oil (39 mg, 64%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.27 – 7.22 (m, 2H), 7.18 – 7.11 (m, 3H), 4.28 – 4.17 (m,

1H), 3.88 - 3.84 (m, 1H), 3.39 - 3.21 (m, 4H), 2.61 - 2.54 (m, 3H), 2.39 (dd, J = 15.1, 7.3 Hz, 1H), 2.28 (dd, J = 15.1, 5.8 Hz, 1H), 2.12 - 2.02 (m, 1H), 1.84 - 1.77 (m, 1H), 1.73 - 1.50 (m, 7H), 1.48 - 1.27 (m, 19H), 1.18 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.75, 170.33, 142.97, 128.57, 128.30, 125.63, 98.83, 83.12, 80.69, 67.26, 66.29, 45.90, 42.89, 42.86, 39.33, 36.56, 35.98, 34.19, 31.71, 30.24, 30.22, 28.93, 28.30, 28.23, 24.94, 24.89, 23.72, 19.85. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 35.54. FTIR (neat): $\tilde{\nu} = 2975.8, 2924.1, 2855.1, 1728.8, 1682.8, 1494.6, 1455.2, 1431.1, 1378.7, 1316.2, 1260.3, 1200.6, 1144.1, 966.6, 951.2, 860.8, 844.9, 749.5$ cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₃₅H₅₇BNO₇⁺ 614.4223; Found 614.4243. [α]²⁰_p = +7.1 (c = 0.94 in CHCl₃).

HPLC: The diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 210 nm wavelength. Retention time: $t_{major} = 41.2$ min and $t_{minor} = 36.6$ min.

Supplementary Figure 3. Functional group transformations of the products.

(*R*)-3-((*R*)-Oct-1-en-3-yl)-1-phenylpyrrolidin-2-one ((+) 10):

The title compound was prepared following a reported method with a slight modification.^[7] A Schlenk flask was charged with **3aa** (37.1 mg, 0.10 mmol, 1.0 equiv.), backfilled with N₂, dissolved in anhydrous THF (1.5 ml) and cooled to -78 °C. vinylmagnesium bromide (1M,

400 µL, 0.40 mmol, 4.0 equiv.) was added dropwise, and the mixture was stirred for 0.5 h. A solution of iodine (102 mg, 0.40 mmol, 4.0 equiv.) in anhydrous methanol (1.0 mL) was added dropwise, and the mixture was stirred for 0.5 h. A solution of NaOMe (30.4 mg, 0.80 mmol, 8 equiv.) in anhydrous methanol (1.5 mL) was added dropwise, and the mixture was stirred for 1.5 h. The mixture was monitored by TLC, quenched with saturated aqueous Na₂S₂O₃ (15 mL) at this temperature, and extracted with EtOAc (3×20 ml). The combined organic phases were washed with brine (60 mL), dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude mixture was purified by flash column chromatography (SiO₂, 10:1 hexane:EtOAc) to obtain the desired product (+) **10** as a colorless oil (23 mg, 85%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, **Chloroform-d**) δ 7.65 – 7.58 (m, 2H), 7.39 – 7.32 (m, 2H), 7.13 (t, *J* = 7.4 Hz, 1H), 5.74 – 5.62 (m, 1H), 5.16 – 5.06 (m, 2H), 3.80 – 3.68 (m, 2H), 2.78 – 2.68 (m, 2H), 2.17 – 2.07 (m, 1H), 2.02 – 1.92 (m, 1H), 1.55 – 1.44 (m, 1H), 1.40 – 1.25 (m, 4H), 0.92 – 0.85 (m, 3H). ¹³C NMR (101 MHz, **Chloroform-d**) δ 175.15, 139.57, 138.21, 128.77, 124.39, 119.97, 117.26, 47.34, 47.07, 43.38, 31.91, 31.86, 26.99, 22.64, 19.81, 14.09. **FTIR (neat):** \tilde{v} = 2953.8, 2923.4, 2854.6, 1692.9, 1637.9, 1598.1, 1498.0, 1459.2, 1392.0, 1300.0, 1226.3, 1185.4, 1115.3, 1074.4,

998.6, 916.2, 757.3 cm⁻¹. **HRMS (ESI/QTOF) m/z:** $[M + H]^+$ Calcd for C₁₈H₂₆NO⁺ 272.2009; Found 272.2017. $[\alpha]_{p}^{20} = +62.8$ (c = 0.90 in CHCl₃).

HPLC: The enantiomeric excess (92%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALPAK[®] AD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 11.9$ min and $t_{minor} = 19.8$ min.

(*R*)-3-((*S*)-1-Hydroxyhexyl)-1-phenylpyrrolidin-2-one ((+) 11):

The title compound was prepared following a previous literature procedure.^[8] Compound **3aa** (18.6 mg, 0.05 mmol, 1.0 equiv.) was dissolved in a 1:1 mixture of THF and H₂O (1.0 mL) at room temperature. Then NaBO₃•4H₂O (19.2 mg, 0.125 mmol, 2.5 equiv.)

was added to it. The resulting mixture was stirred for 6 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water (5.0 mL) and Et₂O (5.0 mL). The organic layer was separated and the aqueous phase was extracted with Et₂O (3x5.0 mL), and the combined organic phases were dried over Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography (SiO₂, 5:1, hexane/EtOAc) to obtain the desired product (+) **11** as a colorless oil (12.0 mg, 92%) in 95:5 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.65 – 7.61 (m, 2H), 7.39 – 7.33 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 4.27 – 4.21 (m, 1H), 3.86 – 3.75 (m, 3H), 2.78 (td, *J* = 9.5, 2.9 Hz, 1H), 2.38 (brs, 1H), 2.28 – 2.07 (m, 2H), 1.61 – 1.43 (m, 3H), 1.40 – 1.28 (m, 5H), 0.93 – 0.87 (m, 3H). ¹³C NMR (**101** MHz, **Chloroform-d**) δ 174.91, 139.31, 128.84, 124.67, 119.97, 69.89, 49.17, 47.16, 34.08, 31.78, 25.73, 22.64, 18.13, 14.06. **FTIR (neat):** \tilde{v} = 3418.3, 2952.3, 2920.1, 2852.2, 1672.3, 1597.9, 1496.1, 1460.8, 1403.6, 1377.5, 1308.7, 1276.5, 1229.4, 1138.4, 1122.1, 1091.6, 993.6, 923.0, 757.9 cm⁻¹. **HRMS (ESI/QTOF) m/z:** [M + Na]⁺ Calcd for C₁₆H₂₃NNaO₂⁺ 284.1621, Found 284.1629. [**α**]^{**n**}_{**p**} = +16.1 (c = 0.28 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OJ-H column, with hexane:isopropanol = 90:10 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 10.2$ min and $t_{minor} = 12.5$ min.

(*R*)-3-((*S*)-1-Hydroxyheptan-2-yl)-1-phenylpyrrolidin-2-one ((+) 12):

The title compound was prepared following a previous procedure.^[8] A mixture of **3aa** (37.1 mg, 0.10 mmol, 1.0 equiv.) and chloroiodomethane (14.6 μ L, 0.20 mmol, 2.0 equiv.) in THF (1.0 mL) was cooled to -78°C under N₂ atmosphere. Then n-butyllithium (2.4M,

 $83.3 \ \mu$ L, 0.20 mmol, 2.0 equiv.) was added slowly to it. The resulting reaction mixture was stirred for 30 mins at -78°C and then allowed to warm to room temperature overnight. The reaction flask was then transferred to an ice bath and NaOH (1.0 mL, 2.0 M) and H₂O₂ (0.50 mL, >30% w/v) were added. The reaction mixture was stirred for an additional 2 hours at this temperature and was then diluted with H₂O (5.0 mL) and EtOAc (5.0 mL) and extracted with EtOAc (3x4.0 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography (SiO₂, 2:1 hexane:EtOAc) to obtain the

desired product (+) **12** as a colorless oil (21 mg, 75%) in 95:5 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.62 – 7.58 (m, 2H), 7.42 – 7.33 (m, 2H), 7.20 – 7.10 (m, 1H), 3.89 – 3.71 (m, 4H), 3.57 (dd, *J* = 7.7, 3.9 Hz, 1H), 2.95 (td, *J* = 9.7, 2.9 Hz, 1H), 2.28 – 2.16 (m, 1H), 2.11 – 1.96 (m, 2H), 1.64 – 1.54 (m, 1H), 1.53 – 1.39 (m, 1H), 1.37 – 1.21 (m, 6H), 0.95 – 0.85 (m, 3H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 176.35, 139.18, 128.87, 124.95, 120.35, 64.33, 47.60, 47.47, 41.40, 32.04, 27.22, 26.60, 24.86, 22.64, 21.62, 14.08. FTIR (neat): \tilde{v} = 3364.6, 2953.1, 2923.0, 2855.3, 1668.3, 1597.7, 1496.9, 1459.5, 1396.1, 1302.1, 1226.8, 1116.1, 1046.4, 970.6, 897.7, 758.4 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₇H₂₅NNaO₂⁺ 298.1777; Found 298.1783. [**a**]²⁰_p = +4.2 (c = 0.88 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OJ-H column, with hexane:isopropanol = 90:10 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 13.7$ min and $t_{minor} = 20.0$ min.

(*R*)-1-Phenyl-3-((*S*)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidone ((-) 13):

The title compound was prepared following a reported method with a slight modification.^[9] A solution of **3aa** (18.6 mg, 0.05 mmol, 1 eq.) in THF (1.0 mL) was cooled to 0 °C under N₂ atmosphere. Then DIBAL-H•BH₃ complex (0.75M, 270 μ L, 0.20 mmol, 4.0 equiv.) was added dropwise to the solution. The reaction mixture was stirred for 1 h at this temperature and monitored by TLC. Then the reaction was

quenched with MeOH (1 mL) and water (2 mL). The mixture was extracted with Et₂O (3x4 mL). The organic extract was concentrated in vacuum. The crude product was purified by preparative thin layer chromatography (SiO₂, 10:1 hexane:EtOAc) to obtain the desired product (-) **13** as a colorless oil (16 mg, 91%) in 95:5 diastereomeric ratio. ¹H NMR (**400 MHz, Chloroform-d**) δ 7.24 – 7.17 (m, 2H), 6.63 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 7.6 Hz, 2H), 3.52 – 3.43 (m, 1H), 3.34 (td, *J* = 8.8, 2.1 Hz, 1H), 3.28 – 3.20 (m, 1H), 2.91 (t, *J* = 9.0 Hz, 1H), 2.39 – 2.26 (m, 1H), 2.15 – 2.05 (m, 1H), 1.73 – 1.59 (m, 1H), 1.52 – 1.40 (m, 2H), 1.37 – 1.21 (m, 17H), 1.07 (td, *J* = 9.7, 4.8 Hz, 1H), 0.92 – 0.85 (m, 3H). ¹³C NMR (**101 MHz, Chloroform-d**) δ 147.95, 129.10, 115.15, 111.38, 83.12, 53.64, 47.62, 40.57, 32.16, 31.29, 30.63, 29.13, 24.90, 24.88, 22.58, 14.05. ¹¹B NMR (**128 MHz, Chloroform-d**) δ 37.19. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₇BNO₂⁺ 358.2912; Found 358.2921. [α]²⁰ = -0.5 (c = 0.66 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined after stereospecific oxidation (boronate to alcohol by NaBO₃) via HPLC analysis using a CHIRALCEL[®] OJ-H column, with hexane:isopropanol = 94:6 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 20.5$ min and $t_{minor} = 23.7$ min.

(3*S*,4*S*)-3-(Hydroxymethyl)-8-phenyloctane-1,4-diol ((-) 14):

The title compound was prepared in two steps. At first the alkyl boronate was oxidized to obtain the secondary alcohol. Then the lactone was reduced to the diol. Compound **3dr** (71.6 mg, 0.20 mmol, 1.0 equiv.) was dissolved in a 1:1 mixture of THF and H₂O (2.0 mL) at room temperature. Then NaBO₃•4H₂O (78.0 mg, 0.50 mmol, 2.5 equiv.) was added to it. The resulting

mixture was stirred for 8 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water (5.0 mL) and Et₂O (5.0 mL). The organic layer was separated and the aqueous phase was extracted with Et₂O (3x5.0 mL), and the combined organic phases were dried over Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography (SiO₂, 3:1, hexane/EtOAc) to obtain the desired alcohol as a colorless oil (42 mg, 84%). Then this product was used in the next step. To a solution of alcohol (30.0 mg, 0.12 mmol, 1.0 equiv.) in anhydrous THF (1.5 mL) under N₂ atmosphere was added LiAlH₄ (22.8 mg, 0.60 mmol, 5.0 equiv.) at 0 °C. The reaction mixture was stirred for 6 hours and quenched with saturated aq. NH₄Cl solution (1.0 mL) and diluted with EA (3.0 mL). The layers were separated, the aqueous phase was extracted with EA (5×3.0 mL), the combined organic phases were dried over Na_2SO_4 and concentrated in vacuo. The crude product was purified by flash column chromatography (SiO₂, 1:1 1:2, hexane/EtOAc) to obtain the desired product (-) 14 as a colorless oil (24 mg, 79%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, **Chloroform-***d*) δ 7.30 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 3.88 – 3.62 (m, 5H), 3.36 (s, 3H), 2.62 (t, J = 7.7 Hz, 2H), 1.78 - 1.59 (m, 5H), 1.58 - 1.41 (m, 3H), 1.39 - 1.30 (m, 1H). ¹³C NMR (**101 MHz, Chloroform-d**) & 142.64, 128.52, 128.41, 125.81, 74.57, 64.99, 60.89, 42.87, 36.01, 34.00, 31.55, 29.03, 25.98. **HRMS (ESI/QTOF)** m/z: $[M + Na]^+$ Calcd for $C_{15}H_{24}NaO_3^+$ 275.1618; Found 275.1621. $[\alpha]_{p}^{20} = -3.2$ (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 33.9$ min and $t_{minor} = 40.7$ min.

(*R*)-3-((*S*)-5-Phenyl-1-(thiophen-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 15):

The title compound was prepared following a literature procedure with a slight modification.^[8] To a solution of thiophene (10.4 μ L, 0.13 mmol, 1.3 equiv.) in THF (1.0 mL) at -78 °C was added n-BuLi (1.6 M in hexane; 81.0 μ L, 0.13 mmol, 1.3 equiv.) dropwise under an inert atmosphere. The mixture was then

warmed to room temperature and stirred for 30 min. Then the mixture was cooled to -78 °C again. A solution of **3dr** (35.8 mg, 0.10 mmol, 1.0 equiv.) in THF (1.0 mL) was added dropwise to it. The reaction mixture was further stirred for 1.5 hours at this temperature. Then a solution of *N*-bromosuccinimide (23.4 mg, 0.13 mmol, 1.3 equiv.) in THF (1.0 mL) was added dropwise and the mixture was stirred at -78 °C for additional 1.5 hours. Then the reaction was quenched with a saturated aqueous sodium thiosulfate solution (2.0 mL) and the reaction mixture was

allowed to warm to room temperature. The resulting mixture was diluted with water (5.0 mL) and ethyl acetate (5.0 mL). The aqueous layer was extracted with ethyl acetate (3x5 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography (SiO₂, 30:1 7:1 hexane:EtOAc) to obtain the desired product (+) **15** as a colorless oil (17 mg, 54%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 – 7.23 (m, 2H), 7.20 – 7.12 (m, 4H), 6.97 – 6.94 (m, 1H), 6.89 – 6.86 (m, 1H), 4.15 – 4.06 (m, 1H), 3.96 (td, *J* = 8.7, 4.2 Hz, 1H), 3.51 (dt, *J* = 9.5, 5.5 Hz, 1H), 2.79 (td, *J* = 9.2, 5.4 Hz, 1H), 2.64 – 2.52 (m, 2H), 2.22 – 2.13 (m, 1H), 2.12 – 1.92 (m, 2H), 1.85 – 1.75 (m, 1H), 1.71 – 1.60 (m, 2H), 1.41 – 1.33 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.24, 144.01, 142.52, 128.49, 128.41, 126.93, 126.16, 125.82, 124.16, 66.62, 45.33, 40.72, 35.81, 34.90, 31.25, 27.24, 24.91. FTIR (neat): $\tilde{v} = 2923.4$, 2854.8, 1763.3, 1602.5, 1495.0, 1453.5, 1372.4, 1212.5, 1157.2, 1025.4, 952.2, 849.5, 748.7 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₉H₂₂NaO₂S⁺ 337.1233; Found 337.1232. [α]²⁰_p = +28.0 (c = 0.75 in CHCl₃).

HPLC: The enantiomeric excess (94%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL[®] OJ-H column, with hexane:isopropanol = 75:25 at a flow rate 1.0 mL/min detected at 215 nm wavelength. Retention time: $t_{major} = 39.4$ min and $t_{minor} = 28.7$ min.

8. Synthesis of compound 17, a key intermediate to drug molecules 18 and 19:

(*R*)-1-Benzyl-3-((*S*)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)pyrrolidin-2-one ((-) 16):

Prepared according to **GP6** with **1v** (39.2 mg, 0.20 mmol, 1.0 equiv.), **2v** (66.1 mg, 0.26 mmol, 1.3 equiv.). Flash column chromatography (SiO₂, 7:1 hexane:EtOAc) afforded the desired product (-) **16** as a sticky oil (48 mg, 65%) in 93:7 diastereomeric ratio. ¹H **NMR** (**400 MHz**, **Chloroform-***d*) δ 7.34 – 7.21 (m, 5H), 4.64 (d, *J* = 14.9 Hz, 1H), 4.23 (d, *J* = 14.9 Hz, 1H), 3.22 – 3.08 (m, 2H), 2.62 (td, *J* = 9.3, 5.1 Hz, 1H), 2.08

- 2.00 (m, 1H), 1.90 - 1.80 (m, 1H), 1.70 - 1.57 (m, 2H), 1.49 - 1.42 (m, 1H), 1.31 - 1.26 (m, 1H), 1.21 (s, 12H), 0.90 (dd, J = 6.6, 3.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.82,

137.11, 128.55, 128.09, 127.33, 83.06, 46.60, 44.98, 42.89, 37.49, 26.78, 24.88, 24.80, 23.37, 22.80, 22.77. ¹¹B NMR (128 MHz, Chloroform-*d*) δ 33.73. FTIR (neat): $\tilde{v} = 2952.3$, 2924.3, 2866.7, 1682.6, 1605.5, 1494.7, 1454.2, 1428.5, 1371.3, 1318.8, 1259.9, 1203.6, 1166.1, 1141.7, 1111.9, 1080.1, 967.3, 858.9, 834.0 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + H]⁺ Calcd for C₂₂H₃₅BNO₃⁺ 372.2705; Found 372.2699. [α]²⁰_p = -10.0 (c = 1.00 in CHCl₃).

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALPAK[®] OD-H column, with hexane:isopropanol = 98:2 at a flow rate 0.5 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 27.3$ min and $t_{minor} = 32.7$ min.

(*R*)-1-Benzyl-3-((*S*)-1-hydroxy-3-methylbutyl)pyrrolidin-2-one ((-) 17):

Compound **16** (37.1 mg, 0.10 mmol, 1.0 equiv.) was dissolved in a 1:1 mixture of THF and H₂O (1.0 mL) at room temperature. Then NaBO₃•4H₂O (39.0 mg, 0.25 mmol, 2.5 equiv.) was added to it. The resulting mixture was stirred for 8 hours. After the completion of the

reaction as checked by TLC, the reaction mixture was diluted with water (5.0 mL) and Et₂O (5.0 mL). The organic layer was separated and the aqueous phase was extracted with Et₂O (3x5.0 mL), and the combined organic phases were dried over Na₂SO₄ and concentrated. The crude product was purified by flash column chromatography (SiO₂, 2:1, hexane/EtOAc) to obtain the desired product (-) **17** as a colorless oil (21 mg, 80%) in 95:5 diastereomeric ratio. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.27 (m, 3H), 7.26 – 7.21 (m, 2H), 4.54 – 4.42 (m, 2H), 4.30 (ddt, J = 9.3, 7.1, 3.8 Hz, 1H), 3.30 – 3.15 (m, 2H), 2.64 (td, J = 9.3, 3.0 Hz, 1H), 2.38 (d, J = 5.5 Hz, 1H), 2.12 – 1.92 (m, 2H), 1.86 – 1.77 (m, 1H), 1.51 – 1.44 (m, 1H), 1.22 – 1.15 (m, 1H), 0.96 (dd, J = 6.7, 4.3 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.55, 136.45, 128.83, 128.12, 127.69, 68.10, 48.01, 46.79, 45.31, 43.01, 24.75, 23.63, 22.12, 18.47. FTIR (neat): $\tilde{v} = 3383.4, 2952.0, 2922.2, 2867.2, 1663.2, 1494.6, 1454.0, 1436.4, 1364.7, 1291.8, 1261.3, 1172.2, 1143.4, 1080.6, 1029.1, 994.8, 978.4, 953.7 cm⁻¹. HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₃NNaO₂⁺ 284.1621; Found 284.1625. [<math>\alpha$]²⁰ = -0.93 (c = 0.72 in CHCl₃).

HPLC: The enantiomeric excess (87%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALPAK[®] IA column, with hexane:isopropanol = 90:10 at a flow rate 1.0 mL/min detected at 214 nm wavelength. Retention time: $t_{major} = 14.2$ min and $t_{minor} = 12.7$ min.

9. Mechanistic Investigations.

9a. Radical Clock Experiment.

The reaction was conducted in a 0.2 mmol scale following **GP6**, with **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.) and ethyl 2-bromo-2-cyclopropyl ester (**2v**) (43.8 μ L, 0.30 mmol, 1.5 equiv.) as coupling partners. Purification by preparative TLC (SiO₂, 20:1 hexane:EtOAc) afforded the mixture of ring-opening products **20** and **21** as a colorless oil (19 mg, ~24%). These two products cannot be purified separately. The supporting spectra (NMR and GC-MS) are shown below. For **20**, HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₇BNaO₄⁺ 423.2677; Found 423.2679. For **21**, HRMS (ESI/QTOF) m/z: [M + Na]⁺ Calcd for C₂₄H₃₉BNaO₄⁺ 425.2834; Found 425.2845.

Supplementary Figure 4. NMR spectra of 20 and 21.

Supplementary Figure 5. GC-MS spectra of 20 and 21.

9b. TEMPO Trapping Experiment.

The reaction was conducted in a 0.1 mmol scale following **GP6**. TEMPO (20.7 mg, 0.13 mmol, 1.3 equiv.) was added after the addition of all reagents. The C-C coupling was not detected and an alkyl-TEMPO adduct **22** was detected by HRMS. **HRMS** (**ESI/QTOF**) **m/z**: $[M + H]^+$ Calcd for C₁₉H₂₉N₂O₂⁺ 317.2224; Found 317.2220.

Supplementary Figure 5. High Resolution Mass Spectrometric analysis of 22.

9c. Time-Dependent Reaction Study.

Seven parallel experiments of our model reaction between **1a** and **2a** at a 0.1 mmol scale with respect to **1a** were performed following **GP6**. The reactions were stopped at the indicated reaction time. After that, the reaction was quenched by the addition of aqueous NH₄Cl (1.0 mL) and EtOAc (3.0 mL). The aqueous phase was extracted with EtOAc (3x3.0 mL). Dodecane (23.0 μ L) was added as an internal standard for GC FID analysis to this mixture and the resulting mixture was mixed well. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc (2x3.0 mL). The combined organic phases were dried over Na₂SO₄, and the volatiles were removed to afford the crude product. The crude product was purified using flash column chromatography to obtain unreacted **2a** and crude **3aa** which were subjected to chiral HPLC analysis to determine the ee of **2a** and dr of **3aa**.

Entry	Time (h)	Yield (%) of 3aa	ee (%) of recovered 2a	dr
1	1	14	0	95:5
2	3	29	0	95:5
3	6	42	0	95:5
4	10	49	0	95:5
5	20	69	0	95:5
6	29	74	n.d.	95:5
7	45	80	n.d.	95:5

Supplementary Figure 6. Reaction profile of the model reaction.

9d. D-Labelling Experiment to Probe the Origin of Enantio-Determining Step.

A deuterium-labelling experiment using a deuterium-labelled alkene substrate was conducted to evaluate the enantio-determining step. The reaction was performed following **GP6** with D-labelled alkenyl pinacol boronate **1w** (49.0 mg, 0.20 mmol, 1.00 equiv.) and 2-bromolactam **2a** (62.4 mg, 0.26 mmol, 1.30 equiv.). Flash column chromatography (SiO₂, 10:1 hexane:EtOAc) afforded the desired product **23** as a sticky oil (51 mg, 63%) in 92:8 diastereomeric ratio. The ¹H NMR spectra of **23** revealed the formation of the single D-labelled diastereomer **23** with >99% D-incorporation where deuterium and Bpin group are on the same side. This result confirmed that the syn-selective Ni-H insertion step is the enantio-determining step. The formation of the other diastereomer **23**' in the product was not observed. Note that the diastereoselectivity (dr = 92:8) refers to the diastereomeric cross-coupled products.

¹**H NMR** (**400 MHz**, **Chloroform**-*d*) δ 7.54 (d, J = 7.5 Hz, 2H), 7.30 – 7.01 (m, 8H), 3.60 – 3.76 (m, 2H), 2.80 (td, J = 9.4, 5.1 Hz, 1H), 2.70 (dd, J = 13.6, 10.6 Hz, 1H), 2.58 (dd, J = 13.4, 5.9 Hz, 1H), 2.20 – 2.08 (m, 1H), 2.02 – 1.90 (m, 1H), 1.69 – 1.61 (m, 1H), 1.55 (d, J = 16.3 Hz, 2H), 1.31 – 1.22 (m, 2H), 1.16 (s, 12H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 177.31, 142.19, 139.89, 129.70, 128.47, 128.30, 126.30, 124.78, 119.81, 84.12, 50.26, 45.00, 37.31, 29.72, 24.85, 24.83, 22.69. ¹¹**B NMR** (128 MHz, Chloroform-*d*) δ 33.61. **FTIR** (neat): $\tilde{v} = 2974.4$, 2923.4, 2854.2, 1692.6, 1598.1, 1495.8, 1454.3, 1389.9, 1371.9, 1311.4, 1265.8, 1214.8, 1165.0, 1142.2, 1111.9, 1030.3, 966.4, 852.3, 756.6 cm⁻¹. **HRMS** (**ESI/QTOF**) m/z: [M + H]⁺ Calcd for C₂₅H₃₂[²H]BNO₃⁺ 407.2611; Found 407.2612. [α]²⁰_D = +42.1 (c = 1.00 in CHCl₃). **M.P.** = 71.1 – 74.0 °C.

HPLC: The enantiomeric excess (89%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL[®] OD-H column, with hexane:isopropanol = 95:5 at a flow rate 1.0 mL/min detected at 254 nm wavelength. Retention time: $t_{major} = 9.9$ min and $t_{minor} = 12.9$ min.

9e. Control Experiment.

Product **3aa** with 87% ee and 75:25 dr (37.1 mg, 0.10 mmol, 1.0 equiv.) was subjected to a reaction containing substrates **1d** (54.4 mg, 0.20 mmol, 1.0 equiv.), **2a** (62.4 mg, 0.26 mmol, 1.3 equiv.) under the standard reaction conditions following **GP6**. No change in enantioselectivity and diastereoselectivity of **3aa** was observed after 45 hours of reaction time.

10. Crystallography details

Compound (+) 3aa:

Experimental details. Single clear pale colourless prism-shaped crystals of **3aa** were used as supplied. A suitable crystal with dimensions $0.86 \times 0.13 \times 0.07 \text{ mm}^3$ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 139.98(10) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^2 .

Supplementary Figure 7. Crystal structure of 3aa.

Compound	3 aa
Formula	$C_{22}H_{34}BNO_3$
Dcalc	1.153
μ/mm ⁻¹	0.584
Formula Weight	371.31
Colour	clear pale colourless

Shape	prism-shaped
Size/mm ³	0.86×0.13×0.07
Т/К	139.98(10)
Crystal System	orthorhombic
Flack Parameter	-0.11(5)
Hooft Parameter	-0.11(5)
Space Group	P2 ₁ 2 ₁ 2 ₁
a/Å	6.41165(6)
b/Å	13.24029(12)
c/Å	25.2063(2)
$\alpha/^{\circ}$	90
βſ°	90
γl°	90
V/Å ³	2139.81(3)
Ζ	4
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu Κ _α
Θ_{min} /°	3.507
⊖max/°	75.470
Measured Refl's.	40226
Indep't Refl's	4306
Refl's I≥2 <i>σ</i> (I)	4191
R _{int}	0.0396
Parameters	250
Restraints	0
Largest Peak	0.187
Deepest Hole	-0.128

GooF	1.025
wR ₂ (all data)	0.0719
wR ₂	0.0715
R₁ (all data)	0.0292
<i>R</i> ₁	0.0285

Structure Quality Indicators

Reflections:	d min (Cu∖a) 2⊖=150.9°	0.80 ^{Ι/σ(Ι)}	66.8	Rint	3.96% CA	P 133.9° % to 150.9°	100
Refinement :	Shift -0.0	01 Max Peak	0.2 Min Peak	-0.1 God	^{oF} 1.025	Hooft -	11 <mark>(5)</mark>

A clear pale colourless prism-shaped-shaped crystal with dimensions $0.86 \times 0.13 \times 0.07 \text{ mm}^3$ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at *T* = 139.98(10) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The maximum resolution that was achieved was Θ = 75.470° (0.80 Å).

The unit cell was refined using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021) on 30693 reflections, 76% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The final completeness is 100.00 % out to 75.470° in Θ . A gaussian absorption correction was performed using CrysAlisPro 1.171.41.119a (Rigaku Oxford Diffraction, 2021). The numerical absorption correction was based on gaussian integration over a multifaceted crystal model. The empirical absorption correction was carried out using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this crystal is 0.584 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.632 and 1.000.

The structure was solved and the space group $P2_12_12_1$ (# 19) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

The Flack parameter was refined to -0.11(5). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.11(5). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be

near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2165076 contains the supplementary crystallographic data for **3aa**. These data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

Compound (+) 3ab:

Experimental details. Single clear pale colourless prism-shaped crystals of **3ab** were used as supplied. A suitable crystal with dimensions $0.47 \times 0.13 \times 0.06 \text{ mm}^3$ was selected and mounted on a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer. The crystal was kept at a steady T = 139.92(14) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^2 .

Buppienieniur, inguie of erystar stracture of eust	Supplementary	Figure 8.	Crystal	structure of 3ab .
--	---------------	-----------	---------	---------------------------

Compound	3ab
Formula	$C_{23}H_{36}BNO_4$
Dcalc	1.184

μ/mm ⁻¹	0.626
Formula Weight	401.34
Colour	clear pale
	colourless
Shape	prism-shaped
Size/mm ³	0.47×0.13×0.06
<i>Т/</i> К	139.92(14)
Crystal System	monoclinic
Flack Parameter	0.0(2)
Hooft Parameter	0.13(9)
Space Group	P21
a/Å	9.9317(2)
b/Å	6.3863(2)
<i>c</i> /Å	17.7667(5)
$\alpha/^{\circ}$	90
β/°	92.939(3)
γl°	90
V/Å ³	1125.40(5)
Ζ	2
Ζ'	1
Wavelength/Å	1.54184
Radiation type	Cu Kα
Θ_{min} /°	4.458
$\Theta_{max}/°$	72.665
Measured Refl's.	10367
Indep't Refl's	4110
Refl's I≥2 <i>σ</i> (I)	3903
R _{int}	0.0298
Parameters	269
Restraints	1
Largest Peak	0.252
Deepest Hole	-0.157
GooF	1.048
wR ₂ (all data)	0.0842
wR ₂	0.0826
R1 (all data)	0.0346
R_1	0.0324

Structure Quality Indicators

Reflections:	d min (Cu∖a) 2Θ=145.3°	0.81	I/σ(I)	29.9	Rint	2.98%	CAP 133.9° 99% to 145.	_{3°} 100
Refinement :	Shift	0.000	Max Peak	0.2	Min Peak	-0.2	GooF	1.048

A clear pale colourless prism-shaped-shaped crystal with dimensions $0.47 \times 0.13 \times 0.06 \text{ mm}^3$ was mounted. Data were collected using a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer operating at *T* = 139.92(14) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The maximum resolution that was achieved was Θ = 72.665° (0.81 Å).

The unit cell was refined using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021) on 6201 reflections, 60% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The final completeness is 100.00 % out to 72.665° in Θ . A gaussian absorption correction was performed using CrysAlisPro 1.171.41.119a (Rigaku Oxford Diffraction, 2021). The numerical absorption correction was based on gaussian integration over a multifaceted crystal model. The empirical absorption correction was obtained using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this crystal is 0.626 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.807 and 1.000.

The structure was solved and the space group $P2_1$ (# 4) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

_refine_special_details: Refined as a 2-component inversion twin.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

The Flack parameter was refined to 0.0(2). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.13(9). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2165081 contains the supplementary crystallographic data for **3ab**. These data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

Compound (+) 3ad:

Experimental details. Single colourless needle-shaped crystals of **3ad** were used as supplied. A suitable crystal with dimensions $0.47 \times 0.04 \times 0.04$ mm³ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 140.00(10) K during data collection. The structure was solved with the **ShelXT** 2018/2 (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^2 .

Supplementary Figure 9. Crystal structure of 3ad.

Compound	3ad
Formula	$C_{23}H_{33}BF_3NO_3$
D _{calc.} / g cm ⁻³	1.242
μ/mm ⁻¹	0.802
Formula Weight	439.31
Colour	colourless
Shape	needle-shaped
Size/mm ³	0.47×0.04×0.04
<i>Т/</i> К	140.00(10)
Crystal System	orthorhombic
Flack Parameter	0.04(7)
Space Group	P212121
a/Å	7.53258(13)
b/Å	16.0539(3)

19.4319(4)
90
90
90
2349.85(8)
4
1
1.54184
Cu <i>Kα</i>
3.571
75.594
26611
4836
4274
0.0477
286
0
0.249
-0.195
1.070
0.1016
0.0987
0.0458
0.0394
2118223

Structure Quality Indicators

Reflections:	d min (Cu\a) 2©=151.2°	0.80 I/ơ(I)	29.3	Rint 4.7	77% Full 135.4°	100
Refinement :	Shift CIF 0.0	00 Max Peak	0.2 Min Peak	-0.2 GooF	1.070 Hooft	.04 <mark>(7)</mark>

A colourless needle-shaped-shaped crystal with dimensions $0.47 \times 0.04 \times 0.04$ mm³ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at *T* = 140.00(10) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The maximum resolution achieved was Θ = 75.594° (0.80 Å).

The unit cell was refined using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021) on 15225 reflections, 57% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The final completeness is 100.00 % out to 75.594° in Θ . A Gaussian absorption correction was performed using CrysAlisPro 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 0.802 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.725 and 1.000.

The structure was solved and the space group $P2_12_12_1$ (# 19) determined by the ShelXT 2018/2 (Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of **ShelXL** 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

The Flack parameter was refined to 0.04(7). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in None. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2118223 contains the supplementary crystallographic data for **3ad**. These data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

Compound (+) 3af:

Experimental detail. Single colourless needle-shaped crystals of **3af** were used as supplied. A suitable crystal with dimensions $0.46 \times 0.05 \times 0.04$ mm³ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady T = 140.00(10) K during data collection. The structure was solved with the **ShelXT** 2018/2 (Sheldrick, 2015) solution program using dual methods and by using **Olex2** 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with **ShelXL** 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on F^2 .

Supplementary Figure 10. Crystal structure of 3af.

Compound	3af			
Formula	$C_{24}H_{36}BNO_5$			
D _{calc.} / g cm ⁻³	1.190			
μ/mm⁻¹	0.654			
Formula Weight	429.35			
Colour	colourless			
Shape	needle-shaped			
Size/mm ³	0.46×0.05×0.04			
<i>Т/</i> К	140.00(10)			
Crystal System	monoclinic			
Flack Parameter	0.07(16)			
Space Group	P21			
a/Å	11.9500(2)			
b/Å	6.33351(11)			
c/Å	16.6233(4)			
$\alpha/^{\circ}$	90			
βſ°	107.788(2)			
γl°	90			
V/Å ³	1198.00(4)			
Ζ	2			
Ζ'	1			
Wavelength/Å	1.54184			
Radiation type	Cu <i>Ka</i>			
$\Theta_{min}/°$	3.885			

$\Theta_{max}/°$	75.588
Measured Refl's.	18105
Indep't Refl's	4843
Refl's I≥2 <i>o</i> (I)	4352
R _{int}	0.0682
Parameters	287
Restraints	1
Largest Peak/e Å ⁻³	0.231
Deepest Hole/e Å ⁻³	-0.150
GooF	1.053
wR ₂ (all data)	0.1150
wR ₂	0.1126
R₁ (all data)	0.0485
<i>R</i> ₁	0.0435
CCDC number	2118224

Structure Quality Indicators

Reflections:	d min (Cu\a) 2@=151.2°	0.80 Ι/σ(Ι) _{CIF}	19.4	Rint CIF	6.82	Full 135.4° 98% to 151.	_{2°} 100
Refinement :	Shift 0.0	100 Max Peak	0.2 Min Peak	-0.1	GooF CIF	1.053 Hooft	.07 <mark>(16)</mark>

A colourless needle-shaped-shaped crystal with dimensions $0.46 \times 0.05 \times 0.04$ mm³ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at *T* = 140.00(10) K.

Data were measured using ω scans with Cu K_{α} radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The maximum resolution achieved was Θ = 75.588° (0.80 Å).

The unit cell was refined using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021) on 12151 reflections, 67% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The final completeness is 100.00 % out to 75.588° in Θ . A Gaussian absorption correction was performed using CrysAlisPro 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is 0.654 mm⁻¹ at this wavelength (λ = 1.54184Å) and the minimum and maximum transmissions are 0.718 and 1.000.

The structure was solved and the space group $P2_1$ (# 4) determined by the ShelXT 2018/2

(Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on F^2 using version 2018/3 of **ShelXL** 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

The Flack parameter was refined to 0.07(16). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in None. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2118224 contains the supplementary crystallographic data for **3af**. These data can be obtained free of charge from *The Cambridge Crystallographic Data Centre via* www.ccdc.cam.ac.uk/data_request/cif.

12. NMR spectra

NMR spectra of L2

NMR spectra of 1g

NMR spectra of 1h:

NMR spectra of 1i:

NMR spectra of 11:

NMR spectra of 1m:

NMR spectra of 1n:

NMR spectra of 1o:

NMR spectra of 1q:

NMR spectra of 1r:

NMR spectra of 1s:

NMR spectra of 1t:

NMR spectra of 1u:

NMR spectra of 1w:

NMR spectra of 2a:

NMR spectra of 2c:

NMR spectra of 2d:

NMR spectra of 2e:

NMR spectra of 2g:

NMR spectra of 2h:

NMR spectra of 2j:

NMR spectra of 2m:

NMR spectra of 2n:

NMR spectra of 20:

NMR spectra of 2p:

NMR spectra of 2u:

NMR spectra of 2v:

NMR spectra of 2w:

NMR spectra of 3aa:

NMR spectra of 3ab:

NMR spectra of 3ac:

NMR spectra of 3ad:

NMR spectra of 3ae:

NMR spectra of 3af:

NMR spectra of 3ag:

NMR spectra of 3ah:

NMR spectra of 3ah:

NMR spectra of 3ai:

NMR spectra of 3ak:

NMR spectra of 3al:

NMR spectra of 3am:

NMR spectra of 3an:

NMR spectra of 3ap:

NMR spectra of 3dq:

NMR spectra of 3ds:

NMR spectra of 3dt:

NMR spectra of 3aw:

NMR spectra of 3ba:

NMR spectra of 3ca:

NMR spectra of 3da:

NMR spectra of 3ea:

NMR spectra of 3fa:

NMR spectra of 3ga:

NMR spectra of 3ha:

NMR spectra of 3ia:

NMR spectra of 3ja:

NMR spectra of 3ka:

NMR spectra of 3la:

NMR spectra of 3ma:

NMR spectra of 3na:

NMR spectra of 3oa:

NMR spectra of 3pa:

NMR spectra of 4:

NMR spectra of 5:

NMR spectra of 6:

NMR spectra of 7:

NMR spectra of 8:

NMR spectra of 9:

NMR spectra of 10:

NMR spectra of 11:

NMR spectra of 12:

NMR spectra of 13:

NMR spectra of 14:

NMR spectra of 15:

NMR spectra of 16:

NMR spectra of 17:

NMR spectra of 23:

Supplementary References

[1] Tyrol, C. C., Yone, N. S., Gallina, C. F. & Byers, J. A. Iron-catalysed enantioconvergent Suzuki–Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes. *Chem. Commun.* **56**, 14661–14664 (2020).

[2] Woods, B. P., Orlandi, M., Huang, C.-Y., Sigman, M. S. & Doyle, A. G. Nickel-Catalyzed Enantioselective Reductive Cross-Coupling of Styrenyl Aziridines. *J. Am. Chem. Soc.* **139**, 5688–5691 (2017)

[3] Bera, S. & Hu, X. Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. *Angew. Chem. Int. Ed.* **58**, 13854–13859 (2019).

[4] Coombs, J., Zhang, L. & Morken, J. Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron–Wittig Reaction. *Org. Lett.* **17**, 1708–1711 (2015).

[5] Zhao, B.-Y. et al. Aerobic Oxidative Dehydrogenation of Ketones to 1,4-Enediones. *Org. Lett.* **23**, 1216–1221 (2021).

[6] Bartoszewicz, A., Matier, C. D. & Fu, G. C. Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles. *J. Am. Chem. Soc.* 141, 14864–14869 (2019).

[7] Rodgers, G., Wilson, E. J., Robertson, C. C., Cox, D. J. & Partridge, B. M. Synthesis of Boronic Ester γ-Lactam Building Blocks. *Adv. Synth. Catal.* **363**, 2392–2395 (2021).

[8] Bera, S., Mao, R. Z. & Hu, X. L. Enantioselective C(sp³)-C(sp³) Cross-Coupling of Non-Activated Alkyl Electrophiles Via Nickel Hydride Catalysis. *Nat. Chem.* **13**, 270–277 (2021).

[9] Amberchan, G. et al. Reaction of Diisobutylaluminum Borohydride, a Binary Hydride, with Selected Organic Compounds Containing Representative Functional Groups. *J. Org. Chem.* **86**, 6207–6227 (2021).