Supplementary Information

Enantio- and Diastereoselective Construction of Vicinal C(sp ${ }^{3}$) Centers via Nickel-Catalysed Hydroalkylation of Alkenes

Srikrishna Bera ${ }^{1,2}$, Chao Fan ${ }^{1}$, and Xile Hu ${ }^{1 *}$
${ }^{1}$ Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
${ }^{2}$ Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati 517619, Andhra Pradesh, India
* xile.hu@epfl.ch

Table of Contents

Supplementary Methods

1. Instrumentation and chemicals 3-4
2. Optimization of reaction conditions 4-13
3. Synthesis of ligand (L2) 14
4. Synthesis of alkenyl boronic esters 15-20
5. Preparation of racemic alkyl bromides 21-28
6. General Procedure (GP6) for probing the scope of enantioselective alkyl-alkyl cross- coupling reactions 28-51
7. Product diversifications 51-55
8. Synthesis of compound 17, a key intermediate to drug molecules 18 and 19 55-56
9. Mechanistic investigations 57-63
10. Crystallography details 64-75
11. HPLC Spectra 76-128
12. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{11} \mathrm{~B}$ NMR spectra of compounds 129-276
Supplementary Tables. 7-13
Supplementary References 277

Supplementary Methods

1. Instrumentation and chemicals:

All reactions for the Ni-catalysed hydroalkylation were set up in 10 mL Teflon-screw capped test tubes (unless otherwise noted) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. Solvents were either purified using a two-column solid-state purification system (Innovative Technology, NJ, USA) or bought from the commercial sources and transferred to the glovebox without exposure to air.

NMR: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker Advance 400 Spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts were referenced internally to residual solvent peaks relative to TMS $(\delta=0 \mathrm{ppm})$ at 299 K . Chemical shifts $(\delta(\mathrm{ppm}))$ are reported relative to TMS $(\delta(1 \mathrm{H}) 0.0$ $\mathrm{ppm}, \delta(13 \mathrm{C}) 0.0 \mathrm{ppm})$. The solvent's residual proton resonance and the respective carbon resonance (for $\mathrm{CHCl}_{3} ; \delta(1 \mathrm{H}) 7.26 \mathrm{ppm}, \delta(13 \mathrm{C}) 77.0 \mathrm{ppm}$ were used for calibration. The boronbound carbon peaks were very weak due to quadrupolar coupling and were not assigned.

TLC: Merck silica gel 60 F 254 plates; detection with UV light or by dipping into a solution of $\mathrm{KMnO}_{4}\left(1.5 \mathrm{~g}\right.$ in $\left.400 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 5.0 \mathrm{~g} \mathrm{NaHCO}_{3}\right)$ or a solution of $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \mathrm{x}_{2} \mathrm{O}(10 \mathrm{~g})$, phosphomolybdic acid hydrate (25 g), and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(60 \mathrm{~mL})$ in $\mathrm{H}_{2} \mathrm{O}(940 \mathrm{~mL})$, followed by heating.

Flash column chromatography (FC): Flash column chromatography was performed using silica gel (Silicycle, ultra-pure grade). Preparative Thin Layer Chromatography (PTLC) was performed using glass plates from Merck KGaA, Darmstadt, Germany. The eluents for column chromatography and PTLC were presented as ratios of solvent volumes.

GC and GC-MS: All GC analyses were performed on a Perkin-Elmer Clarus 400 GC system with a FID detector. All GC-MS analyses were performed on an Agilent Technologies 7890A GC system equipped with a 5975C MS detector.

IR spectra were recorded on a Bruker Vertex 80 FT-IR spectrometer.
HPLC spectra were recorded on an Agilent HPLC. Column, eluent, and retention times for HPLC analysis used for the determination of enantiomeric excess (ee) are given below in the details of the relevant experiments.

Optical rotations were measured on a Polartronic M polarimeter using a 0.5 cm cell with a Na 589 nm filter.

Melting points (M.P.) were determined on a SMP 30 apparatus (Stuart Scientific) and are uncorrected.

High-resolution mass spectra (HRMS) by electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) method were performed at the EPFL ISIC Mass Spectroscopy Service.

All reagents were either prepared according to reported methods or purchased from Sigma Aldrich, TCI, Acros Organics, Alfa Aesar, Fluorochem, Enamine and ABCR. Anhydrous NiCl_{2}
from $A B C R$, $(\mathrm{MeO})_{3} \mathrm{SiH}$, anhydrous LiCl powder and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ for synthesis from Sigma Aldrich, anhydrous KF from Alfa Aesar, and anhydrous DMA from Acros Organics were used.

2. Optimization of reaction conditions

2.1 General procedure for the screening of racemic alkyl halides and chiral ligands (Supplementary Table 1):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added $\mathrm{NiCl}_{2}(1.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.10$ equiv.) and ligand $\mathbf{L 1}(4.4 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. If additive LiCl (5.0 $\mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) was used then it was added at this time followed by the addition of anhydrous DMA $(0.5 \mathrm{~mL})$. The mixture was stirred for ~ 1.5 hours at room temperature. Then anhydrous KF ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv.) and a racemic alkyl electrophile (0.10 mmol , 1.0 equiv.) followed by (E)-4,4,5,5-tetramethyl-2-(5-phenylpent-1-en-1-yl)-1,3,2-dioxaborolane ($40.8 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.) or trans-1-hexenylboronic acid pinacol ester ($37.5 \mu \mathrm{~L}, 0.15$ mmol, 1.5 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, DEMS ($43.0 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature for 45 hours, maintaining 600 rpm . The reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and EtOAc $(3.0 \mathrm{~mL})$. The organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The combined organic phases were concentrated in vacuum to obtain the crude product which was used for experimental analysis.

2.2 General procedure for the screening of chiral ligands (Supplementary Table 2):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added NiCl_{2} ($1.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.10$ equiv.) and a ligand $\mathbf{L}(15 \mathrm{~mol} \%)$ under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. If additive $\mathrm{LiCl}(5.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) was used then it was added at this time followed by the addition of anhydrous DMA (0.5 mL). The mixture was stirred for ~ 1.5 hours at room temperature. Then racemic 3-bromo-1-phenylpyrrolidin-2-one $\mathbf{2 a}(24.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and anhydrous $\mathrm{KF}(14.5 \mathrm{mg}, 0.25$ mmol, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(37.5 \mu \mathrm{~L}, 0.15$ mmol, 1.5 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, DEMS ($43.0 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature for 45 hours, maintaining 600 rpm .

General procedure (GP1) for work-up and data analysis: The reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and $\mathrm{EtOAc}(3.0 \mathrm{~mL})$. Then internal standard dodecane (23.0 $\mu \mathrm{L}$) was added to this mixture and the resulting mixture was well mixed. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The combined organic phases were concentrated in vacuum. The crude mixture was purified by flash column chromatography. The obtained crude boronic ester product was used for the determination of enantiomeric excess ($e e$) and diastereomeric ratio ($d r$) by chiral HPLC analysis.

2.3 General procedure for the screening of hydride donors (Supplementary Table 3):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added NiCl_{2} ($1.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.10$ equiv.), ligand $\mathbf{L} 2(5.6 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv.), and $\mathrm{LiCl}\left(5.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2\right.$ equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glovebox techniques. Then anhydrous DMA $(0.5 \mathrm{~mL})$ was added and the mixture was stirred for ~ 1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1-phenylpyrrolidin-2-one $\mathbf{2 a}$ ($24.0 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) and anhydrous $\mathrm{KF}(14.5 \mathrm{mg}, 0.25$ mmol, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(37.5 \mu \mathrm{~L}, 0.15$ mmol, 1.5 equiv.) [or racemic 3-bromo-1-phenylpyrrolidin-2-one 2a ($28.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and anhydrous $K F(14.5 \mathrm{mg}, 0.25 \mathrm{mmol}$, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0$ equiv.)] were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, hydride donor/donors $(0.25 \mathrm{mmol}, 2.5$ equiv.) were added dropwise to it [in the case of two hydride donors, the hydrosilane was added first followed by HBpin]. The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred at room temperature or in an ice-water bath at $0{ }^{\circ} \mathrm{C}$ for 45 hours, maintaining 600 rpm . Afterward, the general procedure (GP1) for work-up and data analysis was followed for further analysis.

2.4 General procedure for the evaluation of boron-based Lewis acids (Supplementary Table 4-6):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added NiCl_{2} ($1.3 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.10$ equiv.), ligand $\mathbf{L} 2(5.6 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv.), and $\mathrm{LiCl}\left(5.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2\right.$ equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glovebox techniques. Then anhydrous DMA (0.5 mL) was added and the mixture was stirred for ~ 1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1-phenylpyrrolidin-2-one 2a ($28.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and anhydrous $\mathrm{KF}(14.5 \mathrm{mg}, 0.25$ mmol, 2.5 equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.10$ mmol, 1.0 equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, a hydride donor ($0.25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it followed by the addition of a boron-based Lewis acid ($\mathrm{x} \mathrm{mol} \%$). The test tube was then sealed with airtight electrical tapes, removed from the glove box, and stirred in an ice-water bath at $0^{\circ} \mathrm{C}$ for 45 hours, maintaining 600 rpm . Afterward, the general procedure (GP1) for work-up and data analysis was followed for further analysis.

2.5 General procedure for the screening of Ni-salts (Supplementary Table 7):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added Ni -salt ($0.01 \mathrm{mmol}, 0.10$ equiv.), ligand $\mathbf{L} 2(5.6 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.15$ equiv.), and $\mathrm{LiCl}\left(5.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2\right.$ equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. Then anhydrous DMA (0.5 mL) was added and the mixture was stirred for ~ 1.5 hours at room temperature until it became a clear solution. Then racemic 3-bromo-1-phenylpyrrolidin-2-one $\mathbf{2 a}$ ($28.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.) and anhydrous KF ($14.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0$ equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point,
$(\mathrm{MeO})_{3} \mathrm{SiH}(33.5 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it followed by the addition of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ ($3.6 \mu \mathrm{~L}, 0.03 \mathrm{mmol}, 0.30$ equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at 0 ${ }^{\circ} \mathrm{C}$ for 45 hours, maintaining 600 rpm . Afterward, the general procedure (GP1) for work-up and data analysis was followed for further analysis.

2.6 General procedure (GP2) for the investigation of the effect of different parameters (Supplementary Table 8):

To an oven-dried 10 mL Teflon-screw capped vial equipped with a magnetic stir bar ($6 \times 15 \mathrm{~mm}$) were added Ni -salt ($0.01 \mathrm{mmol}, 0.10$ equiv.), ligand $\mathbf{L}(0.015 \mathrm{mmol}, 0.15$ equiv.), and LiX (0.12 mmol, 1.2 equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. Then anhydrous solvent (0.5 mL) was added and the mixture was stirred for ~ 1.5 hours at room temperature. Then racemic 3-bromo-1-phenylpyrrolidin-2-one 2a ($31.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.) and anhydrous base ($0.25 \mathrm{mmol}, 2.5$ equiv.) followed by trans-1-hexenylboronic acid pinacol ester $\mathbf{1 a}(25.0 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 1.0$ equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, a hydride donor ($0.25 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it followed by the addition of B-based Lewis acid ($0.03 \mathrm{mmol}, 0.30$ equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at $0{ }^{\circ} \mathrm{C}$ for 45 hours, maintaining 600 rpm . Afterward, the general procedure (GP1) for work-up and data analysis was followed for further analysis.

Supplementary Tables

Supplementary Table 1. Evaluation of Secondary Racemic Alkyl Electrophile

56\%, 73\% ee
$73: 27$ dr without LiC

$<5 \%$, ee $=$ n.d. dr $=$ n.d.

$<5 \%$, ee $=$ n.d. $d r=n . d$.

$<5 \%$, ee = n.d. $d r=n . d$.

76\%, 86\% ee $72: 28 \mathrm{dr}$

$<5 \%$, ee = n.d $d r=n . d$.

40\%, 83\% ee 76:24 dr with $\mathrm{R}^{1}=\mathrm{Me}$

Supplementary Table 2. Screening of Ligands (L)

L16

L17

L18

L19

L20

L21

Entry	Ligand (L)	Yield (\%)	ee (\%)	dr
$1^{\text {a }}$	L1	30	82	$54: 46$
2	L1	40	83	$76: 24$
3	$\mathbf{L 2}$	56	95	$80: 20$
4	$\mathbf{L 4}$	trace	n.d.	n.d.
5	$\mathbf{L} 7$	48	72	$61: 39$
6	$\mathbf{L 8}$	16	5	$75: 25$

7	L9	63	72	$65: 35$
8	L10	16	2	$66: 34$
9	L11	22	82	$62: 38$
10	L12	51	80	$75: 25$
11	L13	40	89	$77: 23$
12	L14	33	72	$70: 30$
13	L15	43	88	$84: 16$
14^{b}	L16	39	-83	$74: 26$
15	L17	trace	n.d.	n.d.
16	L18	trace	n.d.	n.d.
17	L19	trace	n.d.	n.d.
18	L20	trace	n.d.	n.d.
19	L21	trace	n.d.	n.d.

${ }^{\text {a }}$ The reaction was conducted without LiCl . DEMS = Diethoxy-methylsilane; DMA = N,N-Dimethylacetamide; RT $=$ room temperature. ${ }^{\mathrm{b}}$ The opposite enantiomer was formed.

Supplementary Table 3. Screening of Hydride Donors

 1a (1.5 equiv.)	 2a (1.0 equiv.)			
Entry	Hydride donor	Yield (\%)	ee (\%)	dr
1	DEMS	56	95	80:20
2	$(\mathrm{EtO}){ }_{3} \mathrm{SiH}$	35	96	84:16
3	PMHS	49	94	85:15
4	DMMS	67	95	86:14
5	HBpin	30	92	94:6
6	DMMS:HBpin (1:1)	49	93	96:4

7	DMMS:HBpin (2:1)	47	94	$95.5: 4.5$
8^{a}	DMMS:HBpin (1:1)	65	89	$93: 7$
9^{b}	DMMS:HBpin (1:1)	57	92	$95: 5$
10^{b}	DMMS:HBpin (1:1.5)	54	92	$95: 5$
11^{b}	DMMS:HBpin (1.5:1)	52	91	$94: 6$
12^{b}	$(\mathrm{MeO})_{3} \operatorname{SiH}$	89	96	$85: 15$
13^{b}	$(\mathrm{MeO})_{3} \mathrm{SiH}:$ HBpin $(2: 0.5)$	75	95	$92: 8$
$14^{\mathrm{b}, \mathrm{c}}$	$(\mathrm{MeO})_{3} \mathrm{SiH}: H B p i n(2: 0.5)$	76	96	$95: 5$
$15^{\mathrm{b}, \mathrm{c}}$	$(\mathrm{MeO})_{3} \mathrm{SiH}: H B p i n(2.0: 0.3)$	82	96	$90.5: 9.5$
$16^{\mathrm{b}, \mathrm{c}}$	$(\mathrm{MeO})_{3} \mathrm{SiH}: H B p i n(2.2: 0.5)$	77	96	$95: 5$

${ }^{\mathrm{a}}$ The reaction was conducted with $\mathbf{1 a}$ (1.0 equiv.) and $\mathbf{2 a}$ (1.5 equiv.). ${ }^{\mathrm{b}}$ The reaction was conducted with $\mathbf{1 a}$ (1.0 equiv.) and $\mathbf{2 a}$ (1.2 equiv.). ${ }^{\mathrm{c}}$ The reaction was conducted at $0^{\circ} \mathrm{C}$.

Supplementary Table 4. Screening of Boron Lewis Acids

$\substack{\text { 1a } \\(1.0 \text { equiv. })}$

Supplementary Table 5. Evaluation of the Effect of LiCl and BF_{3}.OEt ${ }_{2}$ on the Reaction

Supplementary Table 6. The Effect of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ on the Reaction

2	20	84	95	$92: 8$
3	25	80	95	$94: 6$
4	30	78	94	$95: 5$
5	50	74	93	$95: 5$
6	100	50	93	$97: 3$

Supplementary Table 7. Screening of Ni-salts

$\underbrace{\substack{\text { B- }}}_{\substack{1 \mathrm{a} \\(1.0 \text { equiv. })}}$				
Entry	Ni-salt	Yield (\%)	ee (\%)	dr
1	NiCl_{2}	78	94	95:5
$2^{\text {a }}$	$\mathbf{N i C l}_{2}$	80(75)	94	95:5
3	NiBr_{2}	77	92	95:5
4	NiI_{2}	72	93	95:5
5	NiCl_{2}.dme	76	94	95:5
6	NiBr_{2}.dme	49	92	95:5
7	NiBr_{2}.diglyme	75	92	95:5
8	$\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	82	94	86:14
9	$\mathrm{NiCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$	71	96	88:12

${ }^{\mathrm{a}}$ The reaction was conducted with $\mathbf{1 a}$ (1.0 equiv.) and $\mathbf{2 a}$ (1.3 equiv.). Isolated yield in the parenthesis.

Supplementary Table 8. A Concise Summary of the Effects of Different Parameters

${ }^{\mathrm{c}}$ Isolated yield is shown in the parenthesis

3. Synthesis of ligand (L2):

At first (S)-2-amino-2-mesitylethan-1-ol was synthesized according to a known literature procedure. ${ }^{[1]}$ Then it was used for the synthesis of chiral ligand $\mathbf{L} 2$ following a slightly modified version of a reported method. ${ }^{[2]}$ To an oven-dried schlenk tube under N_{2} atmosphere (S)-2-amino-2-mesitylethan-1-ol ($1.51 \mathrm{~g}, 8.46 \mathrm{mmol}, 2.0$ equiv.) and dimethyloxalate ($500 \mathrm{mg}, 4.23 \mathrm{mmol}$, 1.0 equiv.) followed by anhydrous $\mathrm{PhMe}(40 \mathrm{~mL})$ and catalytic acetic acid $(40 \mu \mathrm{~L})$ were added. The reaction mixture was sealed and stirred at $80^{\circ} \mathrm{C}$ for 24 hours. The reaction mixture was then allowed to cool to room temperature and concentrated in vacuum to afford the crude diamide, which was directly used in the next step without further purification. To an oven-dried schlenk tube the diamide ($1.47 \mathrm{~g}, 3.56 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{DCM}\left(50 \mathrm{~mL}\right.$) were added under N_{2} atmosphere. The tube was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry-ice/acetone bath, and diethylaminosulfur trifluoride ($1.39 \mathrm{~mL}, 9.97 \mathrm{mmol}, 2.8$ equiv.) was added dropwise. The reaction mixture was stirred for 1 h , then $\mathrm{K}_{2} \mathrm{CO}_{3}(1.96 \mathrm{~g}, 14.2 \mathrm{mmol}, 4.0$ equiv.) was added slowly. The flask was removed from the cold bath and allowed to warm to room temperature. The stirring was continued for an additional 45 minutes. After that, the reaction mixture was diluted with DCM $(30 \mathrm{~mL})$ and water (30 mL). The organic layer was washed with aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc (2:1) as eluent to afford the ligand $\mathbf{L} 2$ as a white solid ($650 \mathrm{mg}, 48 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 6.84(\mathrm{~s}, 4 \mathrm{H}), 5.85(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=10.8,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.35$ (dd, $J=10.8,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 12 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 155.41, 137.55, 137.09, 132.40, 130.49, 72.90, 66.80, 20.91, 20.36. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$377.2224; Found 377.2219.

1a

1 g

1b

1h

1d

$1 i$

1e

1j

$1 f$

1k

11

1m

1n

10

1p

19

$1 r$

1s

$1 \mathbf{t}$

14

1v

1w

Supplementary Figure 1. Alkenyl boronic esters
Alkenyl boronic esters $\mathbf{1 a}$ and $\mathbf{1 b}$ are commercially available. Compound $\mathbf{1 c}-\mathbf{f f}^{[3]}, \mathbf{1} \mathbf{j}-\mathbf{1}{ }^{[3]}, \mathbf{1} \mathbf{p}^{[3]}$, and $\mathbf{1} \mathbf{v}^{[3]}$ were prepared according to previously reported procedures. Alkenyl pinacol boronates $\mathbf{1 g}-\mathbf{1 i}, \mathbf{1 1}-\mathbf{1 0}, \mathbf{1 q}$, and $\mathbf{1 r}$ were synthesized following the general procedure (GP3). Compound $\mathbf{1 w}$ was synthesized following a known literature method. ${ }^{[4]}$

General Procedure (GP3) for the synthesis of alkenyl boronates:

To an oven-dried 30 mL Teflon-screw capped test tube equipped with a magnetic stir were added Schwartz's reagent ($136 \mathrm{mg}, 0.5 \mathrm{mmol}, 0.10$ equiv.), pinacolborane ($0.78 \mathrm{~mL}, 5.25 \mathrm{mmol}, 1.05$ equiv.), alkyne ($5.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(70.0 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 0.10$ equiv.) under an inert nitrogen $\left(\mathrm{N}_{2}\right)$ atmosphere using glove-box techniques. The test tube was then sealed with airtight electrical tapes and removed from the glove box and stirred at $60^{\circ} \mathrm{C}$ for 24 hours. The reaction was allowed to cool to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$, passed through a pad of silica gel, and concentrated under reduced pressure. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

Prepared according to GP3 from 1-bromo-4-(hex-5-yn-1yloxy)benzene ($1.27 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane:EtOAc) afforded the desired product $\mathbf{1 g}$ as a white solid ($1.26 \mathrm{~g}, 66 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.41-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{dt}, J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dt, $J=17.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{tdd}, J=7.5,6.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78$ (dq, $J=8.7,6.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.65-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 158.31,153.95,132.32,116.41,112.74,83.20,68.07,35.46,28.76,24.92,24.70 .{ }^{11}$ B NMR (128 MHz , Chloroform- \boldsymbol{d}) δ 29.85. HRMS (APPI/LTQ-Orbitrap) $\mathbf{m} / \mathbf{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BBrO}_{3}{ }^{+} 380.1153$; Found 380.1155. M.P. $=<40^{\circ} \mathrm{C}$.
(E)-2-(6-(2,4-Dichlorophenoxy)hex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1h):

Prepared according to GP3 from 2,4-dichloro-1-(hex-5-yn-1yloxy)benzene ($1.21 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane:EtOAc) afforded the desired product $\mathbf{1 h}$ as a viscous oil ($1.32 \mathrm{~g}, 71 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.34$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (dd, $J=8.8,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{tdd}, J=7.5,6.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{dq}, J=8.4,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ -1.57 (m, 2H), 1.26 (s, 12H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 153.89,153.53,130.02$, $127.58,125.55,123.85,114.09,83.17,69.29,35.40,28.60,24.90,24.62 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Chloroform- \boldsymbol{d}) δ 29.30. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BCl}_{2} \mathrm{NaO}_{3}{ }^{+}$ 393.1166; Found 393.1148.
(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl tetrahydro-2H-pyran-4carboxylate (1i):

Prepared according to GP3 from but-3-yn-1-yl tetrahydro-2H-pyran-4-carboxylate ($911 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product $\mathbf{1 i}$ as a colorless oil ($1.19 \mathrm{~g}, 77 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 6.54$ (dt, $J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.51 (dt, $J=18.0$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{dt}, J=11.5,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{ddd}, J=11.5,10.5$, $3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.56-2.42(\mathrm{~m}, 3 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 174.52,148.97,83.34,67.19,62.98,40.17,35.01,28.75,24.87 .{ }^{11}$ B NMR (128 MHz, Chloroform-d) δ 29.25. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: [M + H] Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BO}_{5}{ }^{+} 311.2024$; Found 311.2019.
(()-tert-Butyldimethyl((6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1yl)oxy)silane (11):

Prepared according to GP3 from tert-butyl(hex-5-yn-1yloxy)dimethylsilane ($1.0 \mathrm{~g} \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product 11 as a colorless oil ($1.31 \mathrm{~g}, 77 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 6.62$ (dt, $J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.42(\mathrm{dt}, J=17.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.16$ (tdd, $J=6.4,4.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 0.03 (s, 6H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 154.62, 83.12, 63.12, 35.69, 32.47, 26.12, 24.91, 24.60, 18.50, -5.15. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 29.61. HRMS (APCI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{BO}_{3} \mathrm{Si}^{+}$341.2678; Found 341.2674.
(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl furan-2-carboxylate (1m):

Prepared according to GP3 from but-3-yn-1-yl furan-2-carboxylate ($821 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{1 m}$ as a colorless oil ($1.08 \mathrm{~g}, 74 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ 7.55 (dd, $J=1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (dd, $J=3.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.48$ (dd, $J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{qd}, J=$ $6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.25 ($\mathrm{s}, 12 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) δ 158.75, 148.65, 146.39, 144.77, 118.03, 111.90, 83.33, 63.52, 34.99, 24.87. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) δ 29.24. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BNaO}_{5}{ }^{+}$315.1374; Found 315.1383.
(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl thiophene-2-carboxylate (1n):

Prepared according to GP3 from but-3-yn-1-yl thiophene-2carboxylate ($901 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) afforded the desired product $\mathbf{1 n}$ as a colorless oil ($989 \mathrm{mg}, \mathbf{6 4 \%}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.77$ (dd, $J=3.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=5.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=5.0$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dt}, J=18.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.59(\mathrm{qd}, J=6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 162.25$, $148.76,133.94,133.48,132.44,127.78,83.30,63.70,35.03,24.86 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Chloroform-d) δ 29.27. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{BNaO}_{4} \mathrm{~S}^{+}$ 331.1146; Found 331.1150. (10):

Prepared according to GP3 from 2-(pent-4-yn-1-yl)isoindoline-1,3-dione ($1.10 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product $\mathbf{1 0}$ as a white solid ($1.0 \mathrm{~g}, 59 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{dt}, J=18.0,6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{dtd}, J=8.0,6.5,1.7 \mathrm{~Hz}$, 2H), 1.86-1.77 (m, 2H), 1.23 (s, 12H). ${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 168.51, 152.67, 134.00, 132.28, 123.33, 83.18, 37.87, 33.19, 27.19, 24.89. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroformd) δ 30.14. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BNNaO}_{4}{ }^{+} 364.1691$; Found 364.1698. M.P. $=63.7-69.0^{\circ} \mathrm{C}$

() -4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 4-(4-(bis(2chloroethyl)amino)phenyl)butanoate (1q):

Prepared according to GP3 from chlorambucil (1.06 g, 3.00 mmol , 1.0 equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane: EtOAc) afforded the desired product $\mathbf{1 q}$ as a colorless viscous oil (914 $\mathrm{mg}, 63 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.13-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.52(\mathrm{~m}, 3 \mathrm{H}), 5.53$ (dt, J $=18.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-$ 3.67 (m, 4H), $3.63-3.59(\mathrm{~m}, 4 \mathrm{H}), 2.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{qd}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.30$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.89 (p, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - ~}$ d) $\delta 173.65,149.15,144.40,130.75,129.83,112.26,83.32,62.91,53.73,40.63,35.00,34.09$, 33.70, 26.84, 24.89. ${ }^{11}$ B NMR (128 MHz , Chloroform- \boldsymbol{d}) $\delta 29.19$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{BCl}_{2} \mathrm{NO}_{4}{ }^{+}$484.2187; Found 484.2196.
(E)-4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)but-3-en-1-yl 3-(4,5-diphenyloxazol-2yl)propanoate (1r):

Prepared according to GP3 from oxaprozin ($1.04 \mathrm{~g}, 3.00 \mathrm{mmol}$, 1.0 equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 3: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{1 r}$ as a colorless viscous oil ($960 \mathrm{mg}, 68 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroformd) $\delta 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}$, $7 \mathrm{H}), 6.57(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.21$ $-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{dd}, J=8.6,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{qd}, J=6.7,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 172.09,161.86,148.90,145.53,135.25,132.59,129.11$, $128.76,128.67,128.55,128.16,128.03,126.60,83.35,63.43,34.93,31.25,24.90,23.65 .{ }^{11} \mathbf{B}$ NMR (128 MHz, Chloroform-d) δ 29.70. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{BNO}_{5}{ }^{+}$474.2446; Found 474.2459.

To a stirred solution of probenecid ($571 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{DCM}(8.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere was added $N, N^{\prime}-$ diisopropylcarbodiimide ($0.34 \mathrm{~mL}, 2.20 \mathrm{mmol}, 1.10$ equiv.). After 10 minutes, (E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-$5-\mathrm{en}$-1-ol ($452 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv.) was added to it. The resulting reaction mixture was allowed to warm to room temperature and the stirring was continued overnight. The solution was diluted with DCM and filtered through a plug of silica gel. The solvent was removed in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane:EtOAc) to obtain 1 s as a white solid ($649 \mathrm{mg}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroformd) $\delta 8.16-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{dt}, J=17.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{dt}, J=17.9$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.22(\mathrm{tdd}, J=7.6,6.5,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $1.84-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) $\delta 165.38$, 153.59, 144.23, 133.80, 130.29, 127.09, 83.21, 65.57, 50.06, 35.30, 28.27, 24.89, 24.69, 22.05, 11.27. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 29.25$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{BNNaO}_{6} \mathrm{~S}^{+} 516.2562$; Found 516.2569.
(()-6-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl
2-(11-0x0-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (1t):

To a stirred solution of isoxepac ($536 \mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{DCM}(8.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under a N_{2} atmosphere was added N, N^{\prime}-diisopropylcarbodiimide $(0.34 \mathrm{~mL}, 2.20$ $\mathrm{mmol}, 1.1$ equiv.). After 10 minutes, (E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-ol (452 $\mathrm{mg}, 2.00 \mathrm{mmol}, 1.0$ equiv.) was added to it. The resulting reaction mixture was allowed to warm to room temperature and the stirring was continued overnight. The solution was diluted with DCM and filtered through a plug of silica gel. The solvent was removed in vacuo. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) to obtain $\mathbf{1 t}$ as a white solid ($324 \mathrm{mg}, 34 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{td}, J=7.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47$ (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dt}, J=18.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dt}, J=18.0,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.19 (s, 2H), 4.09 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63$ (s, 2H), 2.17 (tdd, $J=7.6,6.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.69 $1.60(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 190.98$, $171.62,160.59,153.80,140.62,136.48,135.70,132.88,132.58,129.64,129.39,128.06,127.92$, $125.25,121.18,83.20,73.78,65.03,40.39,35.33,28.19,24.92,24.61 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Chloroform-d) δ 30.82. HRMS (ESI/QTOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{6}{ }^{+} 479.2428$; Found 479.2423. M.P. $=142.5-144.5^{\circ} \mathrm{C}$.
(8R,9S,13S,14S)-13-Methyl-3-(((E)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hex-5-en-1-yl)oxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (1u):

A mixture of estrone ($405 \mathrm{mg}, 1.50 \mathrm{mmol}, 1.0$ equiv.), (E)-2-(6-bromohex-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($477 \mathrm{mg}, \quad 1.65$ mmol, 1.1 equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(621 \mathrm{mg}, 4.50 \mathrm{mmol}$, 3.0 equiv.) in anhydrous $\mathrm{MeCN}(4.0 \mathrm{~mL})$ under N_{2} atmosphere was heated at $85^{\circ} \mathrm{C}$ for 24 hours. Then the mixture was allowed to cool to room temperature and diluted with EtOAc (15 mL) and water (15 mL). The organic phase was separated and the aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 1\right.$ hexane:EtOAc) to obtain $\mathbf{1 u}$ as a white solid (600 $\mathrm{mg}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.18$ (dd, $J=8.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.72-6.59$ (m, $3 \mathrm{H}), 5.46(\mathrm{dt}, J=18.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.46$ $(\mathrm{m}, 1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28-1.92(\mathrm{~m}, 7 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 5 \mathrm{H})$, $1.49-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 221.12$, $157.24,154.13,137.82,132.00,126.42,114.69,112.27,83.18,67.75,50.57,48.17,44.14,38.53$, $36.03,35.52,31.74,29.79,28.95,26.72,26.07,24.92,24.79,21.74,14.00 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) δ 30.65. HRMS (APPI/LTQ-Orbitrap) m/z: [M] ${ }^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{BO}_{4}{ }^{+}$ 478.3249; Found 478.3257.

(E)-4,4,5,5-Tetramethyl-2-(3-phenylprop-1-en-1-yl-2-d)-1,3,2-dioxaborolane (1w):

The title compound was synthesized from 2-phenylacetaldehyde-1-d following a known literature procedure. ${ }^{[4]}$ At first 2-phenylacetaldehyde-1-d was prepared then it was used in the synthesis of $\mathbf{1 w} .{ }^{[5]}$

In a N_{2} filled glove box, an oven-dried schelnk flask with a magnetic stir bar was charged with LiTMP ($889 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.2$ equiv.). The flask was sealed with a septum cap, and removed from the glovebox. Anhydrous THF (6 mL) was added to the flask under N_{2} atmosphere and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$. A solution of bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane ($1.61 \mathrm{~g}, 6.0 \mathrm{mmol}, 1.2$ equiv.) in THF (10 mL) was added slowly to the solution. The reaction mixture was stirred for 5 minutes at $0{ }^{\circ} \mathrm{C}$. After that, it was cooled to $78^{\circ} \mathrm{C}$. A solution of 2-phenylacetaldehyde-1-d ($606 \mathrm{mg}, 5.0 \mathrm{mmol}$, 1 equiv.) in THF (6 mL) was added to the reaction mixture. After 4 hours of stirring at this temperature, the reaction mixture was concentrated under reduced pressure to remove the volatiles. The crude mixture was purified by flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane: EtOAc) to obtain $\mathbf{1 w}$ as a yellowish oil (370 $\mathrm{mg}, 41 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.24-7.05(\mathrm{~m}, 5 \mathrm{H}), 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.39$ (s, 2 H), 1.17 ($\mathrm{s}, 12 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 152.36, 152.12, 151.88, 137.85, 128.95, 128.45, 126.55, 83.12, 40.37, 24.85. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{DBO}_{2}{ }^{+}$246.1775; Found 246.1779.

5. Preparation of racemic alkyl halides:

$2 f$

$2 g$

2h

2i

2j

20

2t

Supplementary Figure 2. Racemic alkyl bromides
Compounds $\mathbf{2 a} \mathbf{- 2 m}$ were synthesized following a slightly modified literature procedure. ${ }^{[6]}$ Compounds $\mathbf{2 n}-\mathbf{2 q}, \mathbf{2 u}$, and $\mathbf{2 v}$ were prepared according to the general procedure (GP5). $\mathbf{2 w}$ was prepared following a known literature procedure. ${ }^{[6]}$ Alkyl bromides 2r, 2t, and 2x were purchased from commercial sources.

General Procedure (GP4) for the synthesis of 2a-2m:

2,4-Dibromobutyryl chloride ($0.73 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.) was added over 10 minutes to a mixture of an amine ($5.00 \mathrm{mmol}, 1.0$ equiv.) and anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}(504 \mathrm{mg}, 2.50 \mathrm{mmol}, 0.5$ equiv.) in $\mathrm{MeCN}(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was stirred for 1 h , and then freshly prepared aqueous $\mathrm{NaOH}(50 \% ; 1.0 \mathrm{~mL})$ was added. The reaction mixture was left on the ice bath and stirred overnight. The mixture was then filtered, and the solid was washed with DCM (50 mL). The combined organic layers were concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

Prepared according to GP4 using aniline ($0.45 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane:EtOAc) afforded the desired product 2a as a white solid ($807 \mathrm{mg}, 67 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05 (ddd, $J=9.9,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (ddd, $J=9.9,7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72$ (dtd, $J=14.8,7.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddt, $J=14.8,6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~}$ Chloroform-d) δ 169.63, 138.95, 129.12, 125.48, 120.19, 46.83, 45.55, 30.08. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrNNaO}^{+}$261.9838; Found 261.9837. M.P. $=$ $101-102{ }^{\circ} \mathrm{C}$.

3-Bromo-1-(4-methoxyphenyl)pyrrolidin-2-one (2b):

Prepared according to GP4 using aniline ($615 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 4: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 b}$ as a white solid ($800 \mathrm{mg}, 59 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.55-7.50$ (m, 2H), $6.95-6.88$ $(\mathrm{m}, 2 \mathrm{H}), 4.57(\mathrm{dd}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=9.9,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 4 \mathrm{H})$, 2.72 (dtd, $J=14.8,7.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 169.37,157.29,132.10,122.04,114.31,55.63,47.25,45.57,30.18$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{2}{ }^{+}$270.0124; Found 270.0120. M.P. $=109.9-111.9^{\circ} \mathrm{C}$.

3-Bromo-1-(4-fluorophenyl)pyrrolidin-2-one (2c):

Prepared according to GP4 using 4-fluoroaniline ($0.48 \mathrm{~mL}, 5.00 \mathrm{mmol}$,
 1.0 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 c}$ as a white solid ($935 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.64-7.57$ (m, 2H), $7.11-7.04$ (m, 2H), $4.58(\mathrm{dd}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{ddd}, J=9.8,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=9.8,7.9,2.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.73 (dtd, $J=14.8,7.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddt, $J=14.4,6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(\mathbf{1 0 1 ~ M H z}$, Chloroform- $\boldsymbol{d}) \delta 169.62,160.09(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 135.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 122.06$ (d, $J=8.1 \mathrm{~Hz}$), 115.88 (d, $J=22.4 \mathrm{~Hz}$), 47.10, 45.22, 30.06. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~ C h l o r o f o r m - ~}$ d) δ-116.33. HRMS (ESI/Ion Trap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFNO}^{+}$257.9924; Found 257.9923. M.P. $=67.1-72.1^{\circ} \mathrm{C}$.

3-Bromo-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one (2d):

Prepared according to GP4 using 4-(trifluoromethyl)aniline (0.73 mL , $5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product $2 \mathbf{d}$ as a white solid (986 mg, 64\%). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.82-7.77$ (m, 2H), $7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=9.7,7.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=9.7,7.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (dtd, $J=14.8,7.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (ddt, $J=14.8,6.9,2.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 170.09,141.89,127.02(\mathrm{q}, J=32.9 \mathrm{~Hz}), 126.30$ $(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.07(\mathrm{q}, J=271.7 \mathrm{~Hz}), 119.59,46.56,44.94,29.89 .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$,

Chloroform- \boldsymbol{d}) δ-62.27. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{NO}^{+}$ 307.9892; Found 307.9898. M.P. $=55.1-60.2^{\circ} \mathrm{C}$.

3-Bromo-1-(4-(trifluoromethoxy)phenyl)pyrrolidin-2-one (2e):

Prepared according to GP4 using 4-(trifluoromethoxy)aniline (0.68 $\mathrm{mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography (SiO_{2}, 6:1 hexane:EtOAc) afforded the desired product 2e as a white solid ($876 \mathrm{mg}, 54 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.72$ - 7.67 (m, 2H), $7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05$ (ddd, $J=9.8,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83 (ddd, $J=9.8,7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ (dtd, $J=14.8,7.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.47 (ddt, $J=14.8,6.7$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 169.79,146.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}$), 137.56, 121.77, 121.28, 120.55 (d, $J=257.2 \mathrm{~Hz}$), 46.81, 45.06, 29.96. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z , ~}$ Chloroform-d) δ-58.07. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{NO}_{2}{ }^{+} 323.9842$; Found 323.9836. M.P. $=40.0-40.8^{\circ} \mathrm{C}$.

Methyl 4-(3-bromo-2-oxopyrrolidin-1-yl)benzoate (2f):

Prepared according to GP4 using methyl 4-aminobenzoate (756 $\mathrm{mg}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography (SiO_{2}, 3:1 hexane:EtOAc) afforded the desired product $\mathbf{2 f}$ as a white solid ($939 \mathrm{mg}, \mathbf{6 3 \%}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.08-8.02$ (m, 2H), $7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=9.8,7.9,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94-3.83(\mathrm{~m}, 4 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 170.03,166.55,142.88,130.73,126.56,119.04,52.26,46.56,45.08,29.89$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}_{3}{ }^{+}$298.0073; Found 298.0079. M.P. $=129.0-130.2^{\circ} \mathrm{C}$.

3-Bromo-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin-2-one (2g):

Prepared according to GP4 using methyl 4-aminophenylboronic acid pinacol ester ($547 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 4: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{2 g}$ as a white solid ($676 \mathrm{mg}, 74 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.88-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=7.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=9.8,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (ddd, $J=9.8,7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dtd, $J=14.7,7.8,7.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.45 (ddt, $J=14.7,6.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroformd) $\delta 169.73,141.48,135.78,118.90,83.99,46.64,45.49,30.03,25.00 .{ }^{11} \mathbf{B} \mathbf{N M R}(\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 31.78. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{BBrNNaO}_{3}{ }^{+}$ 388.0690; Found 388.0691. M.P. $=141.5-147.3^{\circ} \mathrm{C}$.

1-(3-Acetylphenyl)-3-bromopyrrolidin-2-one (2h):

Prepared according to GP4 using ${ }^{\prime}$ '-aminoacetophenone ($676 \mathrm{mg}, 5.00$ mmol, 1.0 equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, \quad 3: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{2 h}$ as a white solid (857 mg , 61%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 8.12$ - 8.11 (m, 1H), 8.02 $-7.99(\mathrm{~m}, 1 \mathrm{H}), 7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$
(ddd, $J=9.8,7.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.88 (ddd, $J=9.8,7.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dtd, $J=14.4,7.8,7.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.47$ (ddt, $J=14.4,6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroformd) $\delta 197.74,169.95,139.43,137.84,129.42,125.25,124.68,119.09,46.73,45.16,29.95,26.83$. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrNO}_{2}{ }^{+}$282.0124; Found 282.0118. M.P. $=49.8-52.6^{\circ} \mathrm{C}$.

3-Bromo-1-(o-tolyl)pyrrolidin-2-one (2i):

Prepared according to GP4 using 2-toluidine ($0.53 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 i}$ as a colorless viscous oil ($987 \mathrm{mg}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 4.59$ (dd, $J=6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (ddd, $J=10.2,8.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (ddd, $J=10.2,7.9,2.1 \mathrm{~Hz}$, 1 H), 2.83 (dtd, $J=14.8,8.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddt}, J=14.8,6.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz Chloroform-d) δ 169.88, 136.44, 135.84, 131.40, 128.48, 127.03, 126.58, 48.81, 44.66, 31.19, 17.72. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}^{+}$254.0175; Found 254.0174.

3-Bromo-1-mesitylpyrrolidin-2-one ($\mathbf{2} \mathbf{j}$):

Prepared according to GP4 using 2,4,6-trimethylaniline ($0.70 \mathrm{~mL}, 5.00$ mmol, 1.0 equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{2} \mathbf{j}$ as a white solid (990 mg , 76%). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 6.91$ (s, 2H), 4.55 (dd, $J=$ $6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, J=10.4,8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{ddd}, J=10.4,7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dddd, $J=14.6,8.7,7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddt}, J=14.6,6.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, 3H), 2.15 (s, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) $\delta 169.94,138.53,136.27,135.38$, 132.08, 129.70, 129.43, 47.08, 44.45, 31.41, 21.10, 17.68, 17.52. HRMS (ESI/QTOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}^{+}$282.0488; Found 282.0491. M.P. $=93.0-96.6^{\circ} \mathrm{C}$.

3-Bromo-1-(2-fluorophenyl)pyrrolidin-2-one (2k):

Prepared according to GP4 using 2-fluoroaniline ($0.37 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 5: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 k}$ as a white solid ($873 \mathrm{mg}, 68 \%$). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}$, $2 \mathrm{H}), 4.56(\mathrm{dd}, J=7.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=10.0,7.7,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.78 (dq $J=15.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddt, $J=14.4,6.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 170.41,157.12(\mathrm{~d}, J=250.8 \mathrm{~Hz}), 129.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 127.70(\mathrm{~d}, J=1.6$ $\mathrm{Hz}), 125.65(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 124.69(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 116.82(\mathrm{~d}, J=19.8 \mathrm{~Hz}), 48.09(\mathrm{~d}, J=4.6$ Hz), 43.96, 31.05. ${ }^{19}$ F NMR (376 MHz , Chloroform-d) δ-120.16. HRMS (nanochip-ESI/LTQ-Orbitrap) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFNO}^{+} 257.9924$; Found 257.9922. M.P. $=77.0-80.5^{\circ} \mathrm{C}$.

Prepared according to GP4 using 3,5-dimethoxyaniline ($766 \mathrm{mg}, 5.00$ mmol, 1.0 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, \quad 2: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 I}$ as a white solid (1.12 g , 75%). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 6.88$ (d, $J=2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $6.31(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=7.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 7 \mathrm{H})$, 2.71 (dtd, $J=14.3,7.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.43 (ddt, $J=14.3,6.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z , ~}$ Chloroform- \boldsymbol{d}) $\delta 169.81,161.08,140.73,98.61,97.52,55.61,47.04,45.68,29.94$. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}_{3}{ }^{+}$300.0230; Found 300.0224. M.P. $=72.5-80.5^{\circ} \mathrm{C}$.

3-Bromo-1-(1-methyl-1H-indol-5-yl)pyrrolidin-2-one (2m):

Prepared according to GP4 using 1-methyl-1H-indol-5-amine (438 mg , $3.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 2: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{2 m}$ as a white solid (643 $\mathrm{mg}, 73 \%) .{ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.73$ - $7.70(\mathrm{~m}, 1 \mathrm{H})$, $7.52-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.61 (dd, $J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (ddd, $J=10.1,7.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (ddd, $J=10.1,7.8,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{ddt}, J=14.3,6.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 169.50,134.89,131.27,130.11,128.49,116.13,113.76,109.56,101.35$, 48.22, 46.02, 33.11, 30.39. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrN}_{2} \mathrm{O}^{+}$293.0284; Found 293.0277. M.P. $=124.0-127.2^{\circ} \mathrm{C}$.

General Procedure (GP5) for the synthesis of $2 \mathrm{n}-\mathbf{2 q}, \mathbf{2 u}$, and 2 v :

To a solution of an alkyl amine ($5.00 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(1.34 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2.0$ equiv.) in DCM (20 mL) was added 2,4-dibromobutyryl chloride ($0.73 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.) over 10 minutes at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. The reaction mixture was stirred for 2 h until the full conversion of amine as checked by TLC. The mixture was then diluted with DCM $(20 \mathrm{~mL})$ and water (30 mL) and the organic layer was separated. The aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude amide was directly used in the next step without further purification.

An oven dried schlenk tube was charged with a crude amide ($\sim 5.00 \mathrm{mmol}, 1.0$ equiv.) and anhydrous DMF (15 mL) at $0^{\circ} \mathrm{C}$ under N_{2} atmosphere. Then NaH (60% in mineral oil, 260 mg , $6.50 \mathrm{mmol}, 1.3$ equiv.) was added portion-wise over 10 minutes. The reaction mixture was stirred for 4 h at this temperature until the full conversion of the amide as was checked by TLC. The mixture was then carefully quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with $\mathrm{EtOAc}(20 \mathrm{~mL})$ and water
$(60 \mathrm{~mL})$, and the organic layer was separated. The aqueous phase was extracted with DCM (3×20 $\mathrm{mL})$. The combined organic layers were washed with water (50 mL), brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuum. The crude mixture was purified by flash column chromatography on silica gel using a mixture of hexane/EtOAc as eluent to afford the desired compound.

3-Bromo-1-phenethylpyrrolidin-2-one (2n):

Prepared according to GP5 using phenethylamine $(0.63 \mathrm{~mL}, 5.00 \mathrm{mmol}$, 1.0 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 n}$ as a white solid ($756 \mathrm{mg}, 56 \%$ over two steps). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.33-7.27$ (m, 3H), 7.23 $-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{dd}, J=7.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=13.9,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{tdd}, J=9.4,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=10.1,7.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}$), $2.53-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.22$ (ddt, $J=14.4,6.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 170.63,138.45,128.79,128.70,126.71,45.98,44.91,44.46,33.60,30.48$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrNNaO}^{+}$290.0151; Found 290.0160. M.P. $=50.7-52.5^{\circ} \mathrm{C}$.

3-Bromo-1-(4-methoxybenzyl)pyrrolidin-2-one (20):

Prepared according to GP5 using 4-methoxybenzylamine ($0.65 \mathrm{~mL}, 5.00$ mmol, 1.0 equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, \quad 2: 1\right.$ hexane:EtOAc) afforded the desired product $\mathbf{2 0}$ as a white solid (646 mg , 45% over two steps). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.21$ - 7.14 (m, 2H), $6.91-6.84(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{ddd}, J=10.0,7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{ddd}, J=10.0,7.9,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54 (dq, $J=14.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (ddt, $J=14.5,6.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 170.69,159.41,129.62,127.81,114.30,55.42,46.71,44.56,30.28$. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}_{2}{ }^{+}$284.0281; Found 284.0276. M.P. $=65.6-68.3^{\circ} \mathrm{C}$.

3-Bromo-1-(2,3-dihydro-1H-inden-2-yl)pyrrolidin-2-one (2p):

Prepared according to GP5 using 2-aminoindan ($0.67 \mathrm{~mL}, 5.00 \mathrm{mmol}$, 1.0 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 p}$ as a white solid ($586 \mathrm{mg}, 42 \%$ over two steps). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.26-7.16$ (m, 4H), 5.06 (tt, $J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=7.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.19(\mathrm{~m}, 3 \mathrm{H}), 3.07(\mathrm{ddd}, J=10.2$, $7.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$ (ddd, $J=20.7,16.5,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dtd}, J=14.4,7.8,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.24 (ddt, $J=14.4,6.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 170.55,140.78$, $140.75,127.10,127.06,124.53,124.40,52.16,44.82,41.59,37.11,36.52,30.40$. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrNO}^{+}$280.0332; Found 280.0327. M.P. $=95.0-98.4^{\circ} \mathrm{C}$.

3-Bromo-1-(tert-butyl)pyrrolidin-2-one (2q):

Prepared according to GP5 using tert-butylamine ($0.54 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 q}$ as a white solid ($410 \mathrm{mg}, 37 \%$ over two steps). ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- \boldsymbol{d}) $\delta 4.33$ (dd, $J=6.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.60-3.53$ (m, 1 H), 3.43 (ddd, $J=10.0,7.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.21$ (ddt, $J=14.3,6.4,2.6 \mathrm{~Hz}$, 1H), 1.41 (s, 9H). ${ }^{13}$ C NMR (101 MHz , Chloroform-d) $\delta 170.88,54.72,47.37,43.86,30.15$, 27.44. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{BrNNaO}^{+} 242.0151$; Found 242.0147. M.P. $=<40^{\circ} \mathrm{C}$.
tert-Butyl 2-((4R,6R)-6-(2-(3-bromo-2-oxopyrrolidin-1-yl)ethyl)-2,2-dimethyl-1,3-dioxan-4-yl)acetate (2u):

Prepared according to GP5 using tert-butyl 2-[(4R,6R)-6-(2-Aminoethyl)-2,2-dimethyl-1,3-dioxan-4-yl]acetate (1.39 g , $5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 u}$ as a sticky oil ($820 \mathrm{mg}, 57 \%$ over two steps). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$
MHz, Chloroform-d) $\delta 4.38$ (ddd, $J=7.3,4.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.24-4.19$ (m, 1H), $3.93-3.84$ $(\mathrm{m}, 1 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (ddd, $J=15.1,7.3$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{ddt}, J=17.5,12.7,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45-1.41(\mathrm{~m}, 12 \mathrm{H}), 1.34-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.24-1.13(\mathrm{~m}, 1 \mathrm{H}) . \mathbf{1 3 C} \mathbf{N M R}(\mathbf{1 0 1 ~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 170.71,170.26,98.91,80.74,66.82,66.72,66.21,45.61,45.39,44.69,42.78$, 42.76, 39.93, 39.82, 36.56, 36.38, 33.81, 33.63, 30.51, 30.48, 30.19, 28.20, 19.82, 19.79. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{BrNNaO}_{5}{ }^{+} 442.1200$; Found 442.1206.

1-Benzyl-3-bromopyrrolidin-2-one (2v):

Prepared according to GP5 using benzylamine ($0.55 \mathrm{~mL}, 5.00 \mathrm{mmol}, 1.0$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 2: 1$ hexane: EtOAc) afforded the desired product $\mathbf{2 v}$ as a white solid ($663 \mathrm{mg}, 52 \%$ over two steps). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.27-7.12$ (m, 5H), 4.44 (d, $J=14.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.32$ (ddd, $J=10.1,7.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{ddd}, J=10.1,8.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{ddt}, J=14.5,6.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 170.79,135.71,128.91,128.16,127.95,47.22,44.67,44.38,30.25$. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}^{+} 254.0175$; Found 254.0171. M.P. $=40.0-45.8^{\circ} \mathrm{C}$.

Synthesis of 3-bromo-5,5-dimethyldihydrofuran-2(3H)-one (2s):

The title compound was synthesized from the corresponding γ, γ-dimethyl γ butyrolactone. To a solution of lithium diisopropylamide ($1 \mathrm{M}, 10.5 \mathrm{~mL}, 10.5 \mathrm{mmol}$, 1.05 equiv.) in anhydrous THF (10 mL) at $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere was added a solution of γ, γ-dimethyl- γ-butyrolactone ($1.14 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (5 mL) dropwise over 3 minutes. After 45 minutes of stirring at -78 ${ }^{\circ} \mathrm{C}, \mathrm{TMSCl}(1.36 \mathrm{~mL}, 10.8 \mathrm{mmol}, 1.08$ equiv.) was added dropwise via syringe over 1 min . The
reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h , then it was allowed to slowly warm to room temperature over $\sim 2 \mathrm{~h}$. Next, the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and NBS $(2.66 \mathrm{~g}, 15.0$ $\mathrm{mmol}, 1.5$ equiv.) was added as a solid in five portions. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , and then the reaction was quenched by the addition of a saturated aq. $\mathrm{NaS}_{2} \mathrm{O}_{3}(20 \mathrm{~mL})$. The mixture was extracted with DCM ($2 \times 25 \mathrm{~mL}$), and the combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude mixture was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane: EtOAc$)$ to afford the desired compound 2 s as a brownish oil ($990 \mathrm{mg}, 52 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - ~} \boldsymbol{d}$) $\delta 4.61$ (dd, $J=8.7,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=14.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}$, 3H). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 172.38,84.38,45.39,38.32,28.51,28.39$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrNaO}_{2}{ }^{+}$214.9678; Found 214.9681.

Synthesis of 3-bromo-1-phenylpiperidin-2-one (2w):

The title compound was synthesized from the corresponding 1-phenylpiperidin-2-one. ${ }^{[6]}$ To a solution of 1-phenylpiperidin-2-one (876 mg , $5.0 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (100 mL) at $-78{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere was added sec-BuLi ($1.4 \mathrm{M}, 3.9 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.1$ equiv.) dropwise over 5 minutes. After 30 minutes of stirring at $-78^{\circ} \mathrm{C}$, the mixture further cooled down to $-100^{\circ} \mathrm{C}$ and $\mathrm{Br}_{2}(0.26 \mathrm{~mL}, 5.0 \mathrm{mmol}, 5.0$ equiv.) was added over 2 minutes. The reaction was immediately quenched at $-100^{\circ} \mathrm{C}$ by the addition of water (5 mL). The reaction mixture was allowed to slowly warm to room temperature, and then it was washed with saturated aq. $\mathrm{NaS}_{2} \mathrm{O}_{3}$ $(20 \mathrm{~mL})$ and then with aq. $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude mixture was purified by flash column chromatography (SiO_{2}, 2:1 hexane:EtOAc) to afford the desired compound $\mathbf{2 w}$ as a white solid ($1.13 \mathrm{~g}, 89 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.59-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.73$ $-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.81(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, Chloroform-d) δ 166.36, 142.77, 129.31, 127.21, 125.88, 51.37, 45.90, 31.52, 19.52. HRMS (nanochip-ESI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}^{+}$254.0175; Found 254.0172.

6. General Procedure (GP6) for probing the scope of enantio- and diastereoselective alkylalkyl cross-coupling reaction:

To an oven-dried 10 mL Teflon-screw capped vial was added $\mathrm{NiCl}_{2}(2.6 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.10$ equiv.) and ligand $\mathbf{L 2}$ ($11.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.15$ equiv.). The vial was introduced in a nitrogenfilled glovebox. A magnetic stir bar ($6 \times 15 \mathrm{~mm}$), $\mathrm{LiCl}(10.0 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and anhydrous DMA (1.0 mL) were added and the mixture was stirred for ~ 1.5 hours at room temperature until it became a clear blue solution. Then racemic electrophile $2(0.26 \mathrm{mmol}, 1.3$
equiv.) and anhydrous KF ($29.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ equiv.) followed by alkenyl boronic acid pinacol ester $\mathbf{1}(0.20 \mathrm{mmol}, 1.0$ equiv.) were added to it and the resulting mixture was stirred for approximately 1 minute. At this point, $(\mathrm{MeO})_{3} \mathrm{SiH}(67.0 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.5$ equiv.) was added dropwise to it followed by the addition of $\mathrm{BF}_{3} . \mathrm{OEt}_{2}(7.2 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 0.30$ equiv.). The test tube was then sealed with airtight electrical tapes, removed from the glove box immediately, and stirred in an ice-water bath at $0^{\circ} \mathrm{C}$ for 45 hours, maintaining 600 rpm . After that, the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and $\mathrm{EtOAc}(3.0 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 3.0 \mathrm{~mL}$). The combined organic phases were concentrated in vacuum. The crude reaction mixture was then subjected to flash column chromatography by using a mixture of hexane and EtOAc as eluent to obtain 3-9.
(R)-1-Phenyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3aa):

Prepared according to GP6 with $\mathbf{1 a}$ ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.) and 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3aa as a white solid ($56 \mathrm{mg}, 75 \%$) in 95:5 diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.66-7.59$ (m, 2H), $7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{td}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.28-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{dq}, J=12.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.25(\mathrm{~m}, 7 \mathrm{H})$, $1.20(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 176.34,140.07$, 128.79, 128.76, 124.05, 119.83, 119.68, 83.15, 46.99, 44.53, 32.12, 28.89, 28.41, 24.92, 24.83, 23.25, 22.70, 14.17. ${ }^{11}$ B NMR (128 MHz , Chloroform- \boldsymbol{d}) δ 33.41. FTIR (neat): $\tilde{v}=2923.6$, $2854.9,1693.9,1499.3,1388.2,1311.7,1267.4,1224.2,1142.5,757.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{BNO}_{3}{ }^{+} 372.2705$; Found 372.2699. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+42.0$ $\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=50.0-54.8^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=9.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=15.0$ min.
(R)-1-(4-Methoxyphenyl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ab):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 b}$ ($70.2 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3ab as a white solid ($66 \mathrm{mg}, 82 \%$) in $94: 6$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.52-7.49(\mathrm{dd}, J=8.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.77$ ($\mathrm{s}, 3 \mathrm{H}$), $3.77-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.62$ $-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.26(\mathrm{~m}, 7 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 175.94, 156.27, 133.37, 121.56, 113.97, 83.10, 55.51, 47.35, 44.23, 32.10, 28.87, 28.43, 24.89, 24.84, 23.24, 22.67, 14.14. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 32.99$. FTIR (neat): $\tilde{v}=2924.0,2854.9,1686.7,1510.8,1388.7,1319.4,1246.0,1143.1,1036.1,829.0$ cm^{-1}. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNO}_{4}{ }^{+} 402.2810$; Found 402.2817. $[\alpha]_{\mathrm{D}}^{20}=+39.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=82.9-87.8^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=13.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 38.2 min.
(R)-1-(4-Fluorophenyl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ac):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2c ($67.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ac as a white solid ($59 \mathrm{mg}, 76 \%$) in $97: 3$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.59$ - 7.54 (m, 2H), $7.05-6.96(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.78$ (td, $J=9.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.24$ $(\mathrm{m}, 7 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}$, Chloroform- $\left.\boldsymbol{d}\right) \delta 176.28$, 160.51, 158.10, 136.18, 136.15, 121.52, 121.45, 115.49, 115.27, 83.17, 47.24, 44.27, 32.10, 28.86, 28.38, 24.90, 24.83, 23.15, 22.68, 14.15. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 33.27$. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ-118.59. FTIR (neat): $\tilde{v}=2922.5,2853.2,1680.9$, 1508.6, 1394.3, 1317.8, 1223.5, 1143.5, 829.9 cm^{-1}. HRMS (ESI/QTOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BFNO}_{3}{ }^{+} 390.2610$; Found 390.2612. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+33.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=78.9$ $-82.5^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=5.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=6.6$ min.
(R)-3-((S)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-(trifluoromethyl)phenyl)pyrrolidin-2-one ((+) 3ad):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{d}$ ($80.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 20: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ad as a white solid ($57 \mathrm{mg}, 65 \%$) in $97: 3$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.77$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.72(\mathrm{~m}, 2 \mathrm{H})$, $2.82(\mathrm{td}, J=9.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.45-1.26(\mathrm{~m}, 7 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroformd) $\delta 177.00,142.96,126.04,126.00,125.96,125.92,125.75,125.70,125.42,125.10,83.27$, 46.81, 44.57, 32.10, 28.86, 28.35, 24.94, 24.81, 23.05, 22.71, 14.18. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.29. ${ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ-62.06. FTIR (neat): $\tilde{v}=$ 2924.9, 2856.8, 1686.4, 1611.4, 1518.9, 1388.6, 1315.1, 1268.5, 1161.8, 1145.3, 1115.9, 842.5 cm^{-1}. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{BF}_{3} \mathrm{NO}_{3}{ }^{+} 440.2578$; Found 440.2588. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=+43.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=107.7-112.5^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (92\%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=5.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=6.4$ min.

(R)-3-((S)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-

 (trifluoromethoxy)phenyl)pyrrolidin-2-one ((+) 3ae):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 e}$ ($84.3 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3ae as a white solid ($59 \mathrm{mg}, 65 \%$) in 96:4 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ $7.70-7.61$ (m, 2H), $7.23-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.68(\mathrm{~m}, 2 \mathrm{H})$, $2.80(\mathrm{td}, J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.49(\mathrm{~m}, 2 \mathrm{H})$, $1.47-1.27(\mathrm{~m}, 7 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroformd) $\delta 176.58,145.16,138.71,121.91,121.53,120.77,120.68,119.36,83.25,47.06,44.42,32.13$, 28.89, 28.36, 24.94, 24.85, 23.15, 22.72, 14.19. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 33.84$. ${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform-d) $\delta-58.08$. FTIR (neat): $\tilde{v}=2924.9,2856.6,1682.4$, 1508.2, 1390.2, 1321.4, 1257.2, 1221.4, 1161.1, 1118.6, $848.0 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{BF}_{3} \mathrm{NNaO}_{4}{ }^{+} 478.2347$; Found 478.2356. $[\alpha]_{\mathrm{D}}^{20}=+31.0(\mathrm{c}=1.00$ in CHCl_{3}). M.P. $=81.5-86.0^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=12.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 14.0 min .

Prepared according to GP6 with $\mathbf{1 a}(50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 f}$ ($77.5 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 15: 1$ hexane:EtOAc) afforded the desired product (+) 3af as a white solid ($59 \mathrm{mg}, 69 \%$) in 98:2 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $8.03-7.97$ (m, 2H), $7.74-7.69$ (m, 2H), 3.87 (s, 3H), 3.79 $3.75(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{td}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddt}, J=12.7,9.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dq}, J=$ $12.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 7 \mathrm{H}), 1.17(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=6.1 \mathrm{~Hz}$, 3H). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 176.98$, 166.81, 144.00, 130.47, 125.09, 118.54, 83.20, 52.02, 46.79, 44.61, 32.06, 28.82, 28.31, 24.89, 24.76, 22.97, 22.66, 14.14. ${ }^{11}$ B NMR (128 MHz, Chloroform-d) δ 32.69. FTIR (neat): $\tilde{v}=2955.8,2922.6,2854.0,1715.4,1689.2$, $1605.2,1514.7,1428.5,1384.3,1321.4,1272.8,1223.2,1189.5,1140.1,1112.7,964.8,850.1$, $772.7 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{BNO}_{5}{ }^{+} 430.2759$; Found 430.2768. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+63.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=124.2-130.5^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (95\%) and diastereomeric ratio (98:2) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=9.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=10.6$ min.
(R)-3-((S)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrolidin-2-one ((+) 3ag):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$, 1.0 equiv.), $\mathbf{2 g}$ ($94.9 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, \quad 15: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ag as a white solid (51 mg , $51 \%)$ in 90:10 diastereomeric ratio. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.82-7.74$ (m, 2H), $7.69-7.57$ (m, 2H), $3.79-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.26(\mathrm{~m}, 19 \mathrm{H}), 1.18(\mathrm{~s}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 176.62,142.64,135.55,135.52,118.55,83.77,83.18,46.84,44.64,32.11$, $28.88,28.45,24.98,24.95,24.92,24.81,23.12,22.70,14.18 .{ }^{11} \mathbf{B} \mathbf{N M R}(\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 30.50. FTIR (neat): $\tilde{v}=2976.4,2924.6,2855.5,1684.1,1605.5,1387.2$, 1359.5, 1313.8, 1268.8, 1218.2, 1142.3, 1087.5, $963.6,860.8,830.4 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{~B}_{2} \mathrm{NNaO}_{5}{ }^{+} 520.3376$; Found 520.3396. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+37.7(\mathrm{c}=1.00$ in CHCl_{3}). M.P. $=143.1-147.2^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (91\%) and diastereomeric ratio (90:10) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=15.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 19.6 min .
(R)-1-(3-Acetylphenyl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ah):

Prepared according to GP6 with $\mathbf{1 a}$ ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 h}$ ($73.3 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product (+) 3ah as a sticky oil ($42 \mathrm{mg}, 51 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 8.11$ (s, 1H), 8.03 $7.98(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.73$ (m, 2H), $2.81(\mathrm{td}, J=9.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.27(\mathrm{~m}, 7 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, Chloroform- \boldsymbol{d}) δ 198.16, 176.81, 140.49, 137.66, 129.06, 124.49, 123.94, 118.90, 83.23, $46.99,44.48,32.09,28.85,28.40,26.82,24.93,24.82,23.13,22.70,14.17 .{ }^{11}$ B NMR (128 MHz , Chloroform- d) δ 35.03. FTIR (neat): $\tilde{v}=2923.4,2854.5,1684.2,1598.6,1582.9,1485.5$, 1445.6, 1380.4, 1317.9, 1247.0, 1215.9, 1142.6, 965.6, 858.3, $792.2 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{BNNaO}_{4}{ }^{+} 436.2630$; Found 436.2633. $[\alpha]_{\mathrm{D}}^{20}=+37.8(\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=37.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 50.3 min .

(R)-3-((S)-1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-(o-tolyl)pyrrolidin-2one ((+) 3ai):

Prepared according to GP6 with $\mathbf{1 a}$ ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{2 i}(66.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3ai as a sticky oil ($53 \mathrm{mg}, 69 \%$) in 92:8 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0}$
MHz, Chloroform-d) $\delta 7.28-6.97(\mathrm{~m}, 4 \mathrm{H}), 3.71-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.77$ (td, $J=9.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.62-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.28(\mathrm{~m}, 8 \mathrm{H}), 1.23(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, Chloroform- d) δ 176.27, 138.25, 135.87, 131.10, 127.53, 126.69, 126.65, 83.17, 48.98, 43.04, 32.11, 28.79, 28.56, 25.00, 24.86, 24.68, 22.70, 18.17, 14.18. ${ }^{11} \mathbf{B} \mathbf{N M R}(\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- d) δ 32.64. FTIR (neat): $\tilde{v}=2923.2,2855.1,1693.4,1494.4,1460.7,1371.9$, 1313.5, 1267.1, 1142.1, 966.0, 857.0, $763.2 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{BNNaO}_{3}{ }^{+}$408.2680; Found 408.2670. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{20}=+15.3$ ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=21.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 26.4 min .
(R)-1-Mesityl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3aj):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 j}$ ($73.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3aj as a sticky oil ($60 \mathrm{mg}, 73 \%$) in 89:11 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 6.88$ (d, $J=3.8 \mathrm{~Hz}$, 2H), $3.53-3.43$ (m, 2H), 2.74 (ddd, $J=10.6,8.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ $(\mathrm{s}, 3 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 4 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.28(\mathrm{~m}, 7 \mathrm{H}), 1.22$ $(\mathrm{s}, 12 \mathrm{H}), 0.89(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.20, 137.52, 136.08, $135.93,133.84,129.20,129.18,83.14,47.23,42.73,32.16,28.79,28.62,25.09,24.98,24.76$, $22.70,21.05,17.84,17.81,14.18 .{ }^{\mathbf{1 1}} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 33.27$. FTIR (neat): $\tilde{v}=2924.4,2857.4,1689.8,1489.8,1405.2,1378.5,1316.1,1268.4,1144.1,966.0,851.6,752.6$ cm^{-1}. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BNO}_{3}{ }^{+} 414.3174$; Found 414.3186. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+16.3\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90%) and diastereomeric ratio (89:11) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=18.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 22.8 min .
(R)-1-(2-Fluorophenyl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3ak):

Prepared according to GP6 with $\mathbf{1 a}$ ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2k ($67.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane: EtOAc) afforded the desired product $(+)$ 3ak as a sticky oil ($55 \mathrm{mg}, 71 \%$) in 91:9 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.45$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.05$ (m, $3 \mathrm{H}), 3.81(\mathrm{tdd}, J=9.3,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{td}, J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.76(\mathrm{dt}, J=9.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{dq}, J=12.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.56$ $(\mathrm{m}, 2 \mathrm{H}), 1.51-1.28(\mathrm{~m}, 7 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 0.89(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 176.88,158.41,155.93,128.05,128.03,127.88,127.83,127.80,127.75$, $127.13,127.02,124.39,124.36,116.70,116.50,83.24,48.33,48.29,42.87,32.14,28.84,28.55$, 25.09, 24.98, 24.91, 24.43, 22.74, 14.20. ${ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 35.25 .{ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ-120.08. FTIR (neat): $\tilde{v}=2923.3,2854.7,1701.2,1611.2$, $1589.5,1503.7,1458.4,1379.4,1318.9,1267.7,1240.1,1143.2,1109.0,966.4,857.4,755.7 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{BFNNaO}_{3}{ }^{+} 412.2430$; Found 412.2423. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+29.4\left(\mathrm{c}=0.94\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) and diastereomeric ratio (91:9) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=17.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 23.5 min .
(R)-1-(3,5-Dimethoxyphenyl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((+) 3al):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{2 l}$ ($78.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane: EtOAc) afforded the desired product (+) 3al as a sticky oil ($64 \mathrm{mg}, 76 \%$) in $97: 3$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 6.89$ (s, 2H), 6.24 (s, $1 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{td}, J=9.3,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 7 \mathrm{H}), 1.19(\mathrm{~s}$, $12 \mathrm{H}), 0.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 176.61,160.85,141.88$, 98.20, $96.39,83.19,55.48,47.25,44.86,32.09,28.89,28.47,24.93,24.81,23.11,22.70,14.17$. ${ }^{11}$ B NMR (128 MHz , Chloroform- \boldsymbol{d}) δ 34.13. FTIR (neat): $\tilde{v}=2924.1,2854.5,1696.2,1596.0$, 1459.9, 1388.0, 1321.1, 1271.0, 1245.3, 1206.9, 1151.8, 1060.9, $967.0,833.5 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{BNNaO}_{5}{ }^{+} 454.2735$; Found 454.2740. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=$ +42.7 ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=9.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=24.2$ min.
(R)-1-(1-Methyl-1H-indol-5-yl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ($(+$) 3am):

Prepared according to GP6 with $\mathbf{1 a}(50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 m}$ ($76.2 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3am as a white solid ($54 \mathrm{mg}, 64 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.67$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55 (dd, $J=$ $8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.44 (dd, $J=3.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dt, $J=9.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 4 \mathrm{H}), 2.82$ (td, $J=$ $9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.29(\mathrm{~m}$, $7 \mathrm{H}), 1.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 12 \mathrm{H}), 0.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.01, 134.34, 132.65, 129.57, 128.42, 116.39, 113.06, 109.19, 101.13, 83.15, 48.32, 44.34, $33.05,32.18,28.96,28.58,24.95,23.54,22.75,14.21 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 35.05. FTIR (neat): $\tilde{v}=2923.6,2855.4,1681.9,1574.5,1490.8,1454.3,1422.9,1402.3,1371.8$, 1313.1, 1269.2, 1247.0, 1234.7, 1143.2, $966.5,854.7,799.8,755.9 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{BN}_{2} \mathrm{O}_{3}{ }^{+} 425.2970$; Found 425.2971. $[\alpha]_{\mathrm{D}}^{20}=+37.6(\mathrm{c}=0.94$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=112.0-115.8^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (91\%) and diastereomeric ratio (90:10) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=85: 15$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=12.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 35.7 min.
(R)-1-Phenethyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2one ((+) 3an):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 n}$ ($71.8 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 4: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3an as a sticky oil ($58 \mathrm{mg}, 73 \%$) in 93:7 diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.57(\mathrm{dt}, J=14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dt}, J=$ $14.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{td}, J=9.1,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.28(\mathrm{~m}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 12 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 3H). ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 176.77, 139.27, 128.83, 128.56, 126.40, 83.05, $46.14,44.32,42.87,34.04,32.12,28.90,28.38,24.89,23.73,22.69,14.16 .{ }^{11} \mathbf{B} \mathbf{N M R}(\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 33.30$. FTIR (neat): $\tilde{v}=2922.8,2854.6,1682.1,1604.2,1494.1,1455.5$, 1426.3, 1371.2, 1318.0, 1268.0, 1214.5, 1144.0, 967.2, 880.2, 857.9, 832.3, $748.2 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{BNNaO}_{3}{ }^{+}$422.2837; Found 422.2839. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=$ +2.8 ($\mathrm{c}=1.00$ in CHCl_{3}).

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=22.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 29.9 min .

(R)-1-(4-Methoxybenzy)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)hexyl)pyrrolidin-2-one ((-) 3ao):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 20 ($73.9 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 4: 1$ hexane:EtOAc) afforded the desired product (-) 3ao as a sticky oil ($61 \mathrm{mg}, 73 \%$) in $92: 8$ diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.19-7.14$ (m, 2H), $6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{td}, J=9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.82$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.26(\mathrm{~m}, 9 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 176.76, 158.96, 129.43, 129.21, 113.95, 83.08, 55.34, 46.01, 44.87, 43.00, $32.09,28.83,28.53,24.90,24.82,23.56,22.68,14.15 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.22. FTIR (neat): $\tilde{v}=2922.7,2853.9,1681.6,1611.2,1512.6,1458.0,1437.3,1418.4,1371.6$, 1318.1, 1302.7, 1245.1, 1174.6, 1143.7, 1034.9, $967.1,847.4 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{BNNaO}_{4}{ }^{+}$438.2786; Found 438.2794. $[\alpha]_{\mathrm{D}}^{20}=-11.9(\mathrm{c}=0.95$ in CHCl_{3}).

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=44.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 37.8 min.
(R)-1-(2,3-Dihydro-1H-inden-2-yl)-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidin-2-one ((-) 3ap):

Prepared according to GP6 with 1a ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 p}$ ($72.8 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$ hexane: EtOAc) afforded the desired product (-) 3ap as a sticky oil ($54 \mathrm{mg}, 66 \%$) in $91: 9$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.23$ - $7.12(\mathrm{~m}, 4 \mathrm{H})$, $5.07(\mathrm{td}, J=8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.09-3.03(\mathrm{~m}$, 2H), 2.89 (dt, $J=16.2,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.69(\mathrm{~m}$, $1 \mathrm{H}), 1.47-1.27(\mathrm{~m}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, Chloroform-d) $\delta 176.61,141.42,141.34,126.73,126.71,124.41,124.29,83.07,51.21,43.10$, $41.68,36.85,36.35,32.09,28.84,28.44,24.93,24.89,23.53,22.68,14.15 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 33.32$. FTIR (neat): $\tilde{v}=2922.9,2853.5,1681.1,1457.9,1424.7$, 1371.0, 1316.8, 1265.4, 1214.0, 1143.3, 966.8, 857.2, $743.0 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{BNNaO}_{3}{ }^{+}$434.2837; Found 434.2852. $[\alpha]_{\mathbf{D}}^{20}=-9.6\left(\mathrm{c}=0.90\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) and diastereomeric ratio (91:9) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=37.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 26.3 min .
(\boldsymbol{R})-1-(tert-Butyl)-3-((S)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-2-one ((+) 3dq):

Prepared according to GP6 with $\mathbf{1 d}$ ($54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{q}$ ($57.2 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography (SiO_{2}, 10:1 hexane:EtOAc) afforded the desired product (+) 3dq as a sticky oil ($56 \mathrm{mg}, 68 \%$). ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 7.38$ - 7.31 (m, $2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{q}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dt}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.01(\mathrm{~m}$, $1 \mathrm{H}), 1.88-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 177.22,143.00,128.57,128.30,125.61,83.03,53.70,44.57,43.95,36.01$, 31.71, 28.88, 28.77, 27.83, 24.99, 24.89, 23.59. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 34.71$. FTIR (neat): $\tilde{v}=2973.1,2923.9,2854.0,1680.5,1455.2,1404.3,1370.0,1318.3,1285.1$, 1247.4, 1215.7, 1143.8, 967.2, 860.4, $746.5 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{BNO}_{3}{ }^{+}$414.3174; Found 414.3183. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+7.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (88\%) and diastereomeric ratio (83:17) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=14.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 14.2 min .
(R)-3-((S)-5-Phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 3dr):

Prepared according to GP6 with $\mathbf{1 d}$ ($54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 r}$ (29.0 $\mu \mathrm{L}, 0.30 \mathrm{mmol}, 1.5$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 7: 1$ hexane:EtOAc) afforded the desired product (+) 3dr as a sticky oil (49 mg , 68\%) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.36$ $-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 4.42(\mathrm{td}, J=8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{td}, J$ $=8.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.58(\mathrm{~m}$, $4 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}$, Chloroform- $\boldsymbol{d}) \delta 179.86,142.70,128.51,128.32,125.69,83.51,66.63,40.23,35.85,31.48$, 28.57, 28.53, 27.26, 24.86, 24.73. ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 33.56$. FTIR (neat): $\tilde{v}=2976.4,2924.4,2854.8,1766.9,1602.9,1453.9,1378.9,1324.0,1263.6,1212.6,1140.8$, 1025.3, 967.4, 859.0, $748.0 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{BNaO}_{4}{ }^{+}$ 381.2208; Found 381.2215. $[\alpha]_{\mathbf{D}}^{20}=+6.7\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=93: 7$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=16.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 19.3 min .
(R)-5,5-Dimethyl-3-((S)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 3ds:

Prepared according to GP6 with $\mathbf{1 d}$ ($54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2s (57.9 $\mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3ds as a sticky oil (56 mg , 72%) in 92:8 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.28$ $-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 2 \mathrm{H})$, $2.09-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.41-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, Chloroform- \boldsymbol{d}) δ 179.10, 142.73, 128.54, 128.34, 125.71, 83.48, 82.08, 41.60, 39.60, 35.85, 31.48, 28.96, 28.65, 28.51, 27.52, 24.96, 24.73. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 34.49. FTIR (neat): $\tilde{v}=2975.3,2925.9,2855.1,1759.8,1454.0,1371.8,1322.8,1263.4,1140.8$, 1029.8, 954.7, $925.2,865.5,847.2,748.6 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{BNaO}_{4}{ }^{+} 409.2521$; Found 409.2529. $[\alpha]_{\mathrm{D}}^{20}=+7.5\left(\mathrm{c}=0.60\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=93: 7$ at a flow rate $0.3 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=22.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 27.0 min .

Ethyl (2R,3S)-2-ethyl-7-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptanoate ((-) 3dt):

Prepared according to GP6 with $\mathbf{1 d}(54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 t}$ ($44.8 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 30: 1$ hexane:EtOAc) afforded the desired product (-) 3dt as a clear oil (46 mg , 59%) in 65:35 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 3 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.54$ $(\mathrm{m}, 2 \mathrm{H}), 2.44-2.33(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.28$ $-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ $176.54,176.43,142.89,142.83,128.55,128.32,125.65,83.28,83.12,60.10,59.97,49.36,48.43$, 35.96, 35.89, 31.77, 31.68, 29.50, 28.84, 28.73, 28.67, 25.39, 25.02, 24.96, 24.92, 24.79, 23.89, 14.54, 14.51, 12.35, 11.76. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 35.45$. FTIR (neat): $\tilde{v}=$ 2975.6, 2927.0, 2855.9, 1729.1, 1603.9, 1496.1, 1455.7, 1370.1, 1318.7, 1264.5, 1229.9, 1212.9, 1141.2, 1111.0, 1029.1, $965.7,847.3,746.2 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{BNaO}_{4}{ }^{+}$411.2677; Found 411.2681. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-9.1\left(\mathrm{c}=0.95\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess of the major isomer (88%) and diastereomeric ratio (65:35) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=99.2: 0.8$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=14.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=13.8 \mathrm{~min}$.

The enantiomeric excess of the minor isomer (47%) was determined (after stereospecific oxidation of the boronate to alcohol using $\mathrm{NaBO}_{3} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ in THF/H2O) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=97: 3$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at the 210 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=10.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=12.1 \mathrm{~min}$.
(R)-1-Phenyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)piperidin-2-one ((+) 3aw):

Prepared according to GP6 with $1 \mathbf{1 a}$ ($50.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2w ($66.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3aw as a sticky oil ($21 \mathrm{mg}, 27 \%$) in 60:40 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.19(\mathrm{~m}, 3 \mathrm{H}), 3.76$ $-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.24-1.87$ $(\mathrm{m}, 3 \mathrm{H}), 1.83-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.29(\mathrm{~m}, 7 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}$, Chloroform- \boldsymbol{d}) $\delta 174.45,173.23,144.22,143.45,128.96,128.84,126.32,126.27$, $125.88,82.90,82.31,51.65,51.11,45.30,43.54,32.50,32.20,29.04,28.95,28.86,27.52,26.52$, $25.90,25.28,25.25,25.22,24.85,23.53,23.25,22.79,22.77,14.26,14.25 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 32.89$. FTIR (neat): $\tilde{v}=2952.7$, 2925.6, 2857.2, 1645.0, 1594.9, 1493.4, 1458.0, 1417.6, 1376.8, 1350.3, 1302.6, 1144.2, $967.1,840.5,757.1 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{BNNaO}_{3}{ }^{+} 408.2680$; Found 408.2687. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+17.6$ (c $=0.98$ in CHCl_{3}).

HPLC: The enantiomeric excess of the major isomer (89\%) and diastereomeric ratio (60:40) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with
hexane:isopropanol $=99: 1$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=31.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=38.5 \mathrm{~min}$.

The enantiomeric excess of the minor isomer (52\%) was determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=99: 1$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=24.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=27.2 \mathrm{~min}$.

(R)-1-Phenyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl)pyrrolidin-2one ($(+)$ 3ba):

Prepared according to GP6 with $\mathbf{1 b}$ ($40.0 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a $\left(62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3\right.$ equiv.). Flash column chromatography (SiO_{2}, 15:1 hexane:EtOAc) afforded the desired product (+) 3ba as a white solid $(46 \mathrm{mg}, 70 \%)$ in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.83-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1}$ MHz, Chloroform- \boldsymbol{d}) δ 176.38, 140.07, 128.82, 124.14, 119.92, 83.22, 47.06, 44.42, 24.96, 24.88, 23.31, 21.57, 13.91. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 34.62$. FTIR (neat): $\tilde{v}=$ 2978.1, 2955.7, 2925.6, 2870.8, 1681.0, 1596.8, 1503.1, 1485.4, 1458.6, 1390.5, 1310.7, 1268.1, 1215.3, 1144.8, 966.9, 891.3, 858.2, $757.7 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BNNaO}_{3}{ }^{+}$352.2054; Found 352.2061. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+40.6\left(\mathrm{c}=0.66\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=$ n.d.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=27.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 34.2 min .
(R)-3-((S)-2-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-1-phenylpyrrolidin-2-one ((+) 3ca):

Prepared according to GP6 with 1c $(47.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 8: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ca as a white solid ($50 \mathrm{mg}, 63 \%$) in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.63$ $7.61(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{td}, J=9.5$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.38-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.22-1.14(\mathrm{~m}, 14 \mathrm{H}), 0.88(\mathrm{q}, J=10.5,9.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.31, 140.07, 128.76, 124.04, 119.81, 83.13, 46.99, 44.55, 36.58, 35.75, 33.57, 33.47, 26.81, 26.57, 26.52, 24.91, 24.82, 23.05. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.80. FTIR (neat): $\tilde{v}=2975.3,2919.4,2848.9,1693.1,1598.3,1500.0,1448.3,1388.3,1310.5$, 1267.9, 1224.8, 1141.9, $966.9,890.3,857.5,757.4 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{BNNaO}_{3}{ }^{+}$420.2680; Found 420.2689. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+20.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=99.9-105.3^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=5.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=8.6$ min.
(R)-1-Phenyl-3-((S)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-2-one ((+) 3da):

Prepared according to GP6 with $\mathbf{1 d}(54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{2 a}(62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 15: 1$ hexane:EtOAc) afforded the desired product (+) 3da as a white solid ($63 \mathrm{mg}, 73 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}$, Chloroform-d) $\delta 7.73-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.37$ $-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.75(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{td}, J=$ $9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.63$ $(\mathrm{m}, 4 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.22, 142.84, 140.01, 128.75, 128.51, 128.27, 125.61, 124.07, 119.81, 83.17, 46.95, 44.52, 35.92, 31.64, 28.84, 28.28, 24.87, 24.81, 23.28. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 33.96$. FTIR (neat): $\tilde{v}=2974.8,2925.3,2854.8,1693.5,1598.4,1496.2,1456.5,1388.9,1312.3,1266.6$, 1226.0, 1142.8, 967.0, 857.4, $757.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{BNO}_{3}{ }^{+} 434.2861$; Found 434.2877. $[\alpha]_{\mathrm{D}}^{20}=+31.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=88.5-93.4$ ${ }^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (91\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=10.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 13.4 min .
(\boldsymbol{R})-3-((S)-6-Chloro-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ($(+$) 3ea):

Prepared according to GP6 with $\mathbf{1 e}(49.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product $(+)$ 3ea as a white solid ($59 \mathrm{mg}, 73 \%$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{td}$, $J=9.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.40$ $(, 5 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 176.15,139.98,128.77,124.12$, 119.84, 83.23, 46.96, 45.17, 44.53, 32.59, 28.44, 28.17, 27.11, 24.90, 24.84, 23.30. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 33.92$. FTIR (neat): $\tilde{v}=2975.0,2926.4,2856.2,1692.7,1598.1$, 1497.9, 1460.1, 1388.9, 1311.2, 1268.6, 1225.9, 1142.8, $966.8,856.1,758.6 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BClNO}_{3}{ }^{+} 406.2315$; Found 406.2324. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+28.0$ ($\mathrm{c}=1.00$ in CHCl_{3}). M.P. $=61.2-64.9^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=92: 8$ at a flow
rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=7.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=11.9$ min.
(R)-3-((S)-6-Phenoxy-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ($(+$ 3fa):

Prepared according to GP6 with $\mathbf{1 f}$ ($60.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product $(+) \mathbf{3 f a}$ as a white solid ($69 \mathrm{mg}, 74 \%$) in 98:2 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.31-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.86(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{td}, J=9.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 176.21,159.19,140.00,129.46,128.76,124.09,120.49,119.83,114.56,83.20$, $67.85,46.97,44.54,29.28,28.96,28.29,26.28,24.89,24.82,23.26 .{ }^{11} \mathrm{~B}$ NMR (128 MHz , Chloroform- \boldsymbol{d}) δ 34.09. FTIR (neat): $\tilde{v}=2974.6,2926.8,2856.7$, 1693.4, 1598.4, 1495.9, 1388.9, 1311.6, 1243.9, 1143.0, 1032.6, 967.3, 856.7, $755.6 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{BNO}_{4}{ }^{+} 464.2967$; Found 464.2967. $[\alpha]_{\mathrm{D}}^{20}=+26.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=62.3-69.2{ }^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (98:2) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=15.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 42.2 min.

(R)-3-((S)-6-(4-Bromophenoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one (+) 3ga):

Prepared according to GP6 with $\mathbf{1 g}(76.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product (+) 3ga as a white solid ($68 \mathrm{mg}, 63 \%$) in 97:3 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.65-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H})$, $6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.69(\mathrm{~m}$, 2 H), 2.80 (td, $J=9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}$, 2H), $1.54-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 176.19, 158.33, $139.98,132.24,128.77,124.12,119.83,116.39,112.59,83.22,68.23,46.97,44.52,29.12,28.89$, 28.25, 26.19, 24.90, 24.84, 23.30. ${ }^{\mathbf{1 1}} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 34.34$. FTIR (neat): $\tilde{v}=2974.6,2926.7,2856.6,1692.3,1597.5,1488.3,1388.6,1311.1,1286.2,1241.9,1169.4$, 1142.6, 1112.9, 1071.3, 1001.3, 967.4, 856.5, 822.4, $758.5 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{BBrNO}_{4}{ }^{+} 542.2072$; Found 542.2089. $[\alpha]_{\mathrm{D}}^{20}=+23.5\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=80.9-84.5^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=92: 8$ at a flow
rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=13.1 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 18.9 min .
(R)-3-((S)-6-(2,4-Dichlorophenoxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 3ha):

Prepared according to GP6 with $\mathbf{1 h}(74.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ha as a white solid ($86 \mathrm{mg}, 81 \%$) in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.05(\mathrm{~m}$, $2 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.68$ $(\mathrm{m}, 2 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H})$, 1.54 - 1.42 (m, 5H), 1.20 ($\mathrm{s}, 12 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform-d) δ 176.18, 153.55, 139.95, 129.92, 128.74, 127.55, 125.39, 124.10, 123.74, 119.82, 114.09, 83.19, 69.45, 46.96, 44.51, 28.96, 28.83, 28.21, 26.10, 24.87, 24.81, 23.26. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 34.21. FTIR (neat): $\tilde{v}=2974.9,2926.4,2856.4,1691.8,1598.0,1484.0,1467.2,1388.5,1310.8$, 1288.8, 1265.3, 1227.0, 1142.5, 1103.8, 1060.4, $967.5,857.5,804.1,758.0 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{BCl}_{2} \mathrm{NNaO}_{4}{ }^{+} 554.2007$; Found 554.2021. $[\alpha]_{\mathbf{D}}^{20}=$ $+22.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=82.4-84.8^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=18.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 22.2 min .
(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)butyl tetrahydro-2H-pyran-4-carboxylate ((+) 3ia):

Prepared according to GP6 with $\mathbf{1 i}(62.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 3: 1$ hexane: EtOAc) afforded the desired product (+) 3ia as a sticky oil ($71 \mathrm{mg}, 75 \%$) in 96:4 diastereomeric ratio. ${ }^{1} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.63-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H})$, $4.10(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.99-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.70(\mathrm{~m}$, $2 \mathrm{H}), 3.42(\mathrm{td}, J=11.1,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{tt}, J=10.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-$ $2.17(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.74(\mathrm{~m}, 5 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.46(\mathrm{~m}$, 2H), 1.21 ($\mathrm{s}, 12 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 175.92, 174.66, 139.95, 128.86, 124.27, 119.91, 83.42, 67.26, 64.87, 47.00, 44.63, 40.29, 28.83, 28.40, 24.94, 24.92, 24.72, 23.36. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 35.01. FTIR (neat): $\tilde{v}=2953.0,2926.6,2851.0$, 1728.1, 1692.7, 1598.0, 1496.7, 1459.0, 1388.7, 1313.1, 1278.2, 1239.8, 1227.1, 1183.9, 1168.1, 1141.1, 1092.1, 1040.6, 983.7, $967.3,857.9,759.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{BNNaO}_{6}{ }^{+}$494.2684; Found 494.2685. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+19.8\left(\mathrm{c}=0.83\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=94: 6$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=29.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 38.4 min.
(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexanenitrile ((+) 3ja):

Prepared according to GP6 with $\mathbf{1 j}$ ($44.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $2 \mathbf{2 a}(62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 4: 1$ hexane:EtOAc) afforded the desired product $(+) \mathbf{3 j a}$ as a white solid ($58 \mathrm{mg}, 76 \%$) in 96:4 diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31$ (m, 2H), 7.13 $-7.09(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.46$ (m, 5H), 1.22 (s, 12H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 175.95,139.91,128.83,124.25,119.92$, 119.90, 83.44, 46.96, 44.49, 28.25, 27.39, 25.58, 24.92, 24.90, 23.46, 17.14. ${ }^{11}$ B NMR (128 MHz, Chloroform- \boldsymbol{d}) δ 34.45. FTIR (neat): $\tilde{v}=2975.6,2928.9$, 2863.7, 1689.0, 1597.7, 1496.0, 1460.2, 1389.5, 1312.6, 1266.2, 1226.1, 1166.1, 1142.3, 1111.9, 966.9, 856.1, $760.4 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BN}_{2} \mathrm{NaO}_{3}{ }^{+} 405.2320$; Found 405.2323. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+31.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=94: 6$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=30.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 42.7 min .

Methyl (S)-6-((R)-2-oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexanoate ($(+$) 3ka):

Prepared according to GP6 with $\mathbf{1 k}$ ($50.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3ka as a sticky oil ($58 \mathrm{mg}, 70 \%$) in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$
MHz, Chloroform-d) $\delta 7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.78$ $(\mathrm{td}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.70$ $-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.12, 174.28, 139.96, 128.75, 124.11, 119.84, 83.22, 51.49, 46.96, 44.48, 34.10, 28.73, 27.97, 25.21, 24.88, 24.81, 23.23. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 33.97$. FTIR (neat): $\tilde{v}=$ 2975.2, 2927.7, 2858.6, 1735.2, 1692.6, 1598.1, 1496.6, 1459.6, 1389.3, 1371.8, 1311.6, 1266.2, 1226.1, 1213.9, 1166.7, 1142.8, 1115.6, 967.2, 856.1, $759.2 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{BNNaO}_{5}{ }^{+} 438.2422$; Found 438.2432. $[\alpha]_{\mathrm{D}}^{20}=+29.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow
rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=15.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 18.9 min .
(R)-3-((S)-6-((tert-Butyldimethylsilyl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 31a):

Prepared according to GP6 with $\mathbf{1 1}$ ($68.1 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 15: 1\right.$ hexane:EtOAc) afforded the desired product (+) 31a as a sticky oil ($70 \mathrm{mg}, 70 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.65-7.58$ (m, 2H), $7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.14$ $-7.05(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{td}$, $J=9.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.63-$ $1.47(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.30(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 0 1 ~ M H z}$, Chloroform-d) $\delta 176.27,140.03,128.76,124.07,119.83,83.16,63.39,46.99,44.54,32.95$, 29.11, 28.41, 26.10, 24.91, 24.83, 23.22, 18.47, -5.15. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) δ 33.83. FTIR (neat): $\tilde{v}=2927.2,2855.2,1694.9,1598.6,1500.3,1461.3,1388.5,1312.3,1254.5$, 1226.6, 1143.4, 1099.7, 967.6, 834.9, 777.7, $757.8 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{BNNaO}_{4} \mathrm{Si}^{+} 524.3338$; Found 524.3357. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{20}=+24.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=5.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=6.9$ min.
(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)butyl furan-2-carboxylate ((+) 3ma):

Prepared according to GP6 with $\mathbf{1 m}(58.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 7: 1$ hexane:EtOAc) afforded the desired product (+) 3ma as a sticky oil ($72 \mathrm{mg}, 79 \%$) in 96:4 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ $7.63-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H})$, $7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=3.5,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{dtd}, J=15.9,9.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.25$ $-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) δ 175.92, 158.94, 146.26, 145.00, 139.94, 128.82, 124.22, 119.92, 117.83, 111.88, 83.39, 65.32, 47.00, 44.66, 28.43, 24.90, 24.88, 24.67, 23.28. ${ }^{11}$ B NMR (128 MHz, Chloroform- \boldsymbol{d}) $\delta 34.71$. FTIR (neat): $\tilde{v}=2975.3,2928.4,2869.0,1715.8,1690.8$, $1597.9,1580.5,1496.4,1475.0,1372.7,1294.8,1229.5,1178.7,1142.8,1118.1,1076.0,1013.0$, 967.2, 937.9, 884.7, 856.6, $757.9 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BNNaO}_{6}{ }^{+} 476.2215$; Found 476.2227. $[\alpha]_{\mathrm{D}}^{20}=+32.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow
rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=34.8 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 47.4 min.

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)butyl thiophene-2-carboxylate ((+) 3na):

Prepared according to GP6 with $\mathbf{1 n}(61.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 8: 1$ hexane:EtOAc) afforded the desired product (+) 3na as a white solid ($77 \mathrm{mg}, 82 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.81-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.85-3.69(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{td}, J=9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}$, $1 \mathrm{H}), 1.97-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , Chloroform- \boldsymbol{d}) $\delta 175.89,162.34,139.89,134.17,133.31,132.23,128.76,127.75$, 124.16, 119.86, 83.33, 65.41, 46.95, 44.61, 28.40, 24.86, 24.83, 24.65, 23.21. ${ }^{11}$ B NMR (128 MHz, Chloroform- \boldsymbol{d}) δ 33.93. FTIR (neat): $\tilde{v}=2974.8$, 2928.7, 2870.3, 1693.0, 1597.8, $1524.7,1496.6,1459.4,1417.6,1389.1,1310.9,1259.1,1226.0,1142.4,1096.1,1076.3,1037.1$, 966.4, 901.6, $857.8,752.6 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BNNaO}_{5} \mathrm{~S}^{+} 492.1986$; Found 492.1993. $[\alpha]_{\mathrm{D}}^{\mathbf{2 0}}=+20.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=80.1-$ $90.1^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=28.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 54.6 min .

2-((S)-5-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)isoindoline-1,3-dione ((+) 30a):

Prepared according to GP6 with $\mathbf{1 0}(68.2 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, \quad 5: 1\right.$ hexane:EtOAc) afforded the desired product (+) 3oa as a white solid (85 $\mathrm{mg}, 84 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{td}, J=7.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{td}$, $J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.36$ $(\mathrm{m}, 3 \mathrm{H}), 1.17$ (s, 12H). ${ }^{13}$ C NMR (101 MHz , Chloroform-d) δ 176.13, 168.54, 140.03, 133.94, $132.32,128.80,124.15,123.26,119.92,83.27,47.03,44.60,38.09,28.92,27.92,26.59,24.89$, 24.85, 23.26. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.54. FTIR (neat): $\tilde{v}=2974.2,2924.8$, $2855.3,1770.6,1708.5,1598.0,1496.8,1464.6,1437.1,1393.6,1371.2,1311.8,1269.4,1215.3$, 1142.6, 1034.9, $966.3,858.0,758.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{BN}_{2} \mathrm{NaO}_{5}{ }^{+} 525.2531$; Found 525.2547. $[\alpha]_{\mathrm{D}}^{20}=+25.0\left(\mathrm{c}=0.80\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (93\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=94: 6$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=43.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 49.9 min .
(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexyl benzoate ((+) 3pa):

Prepared according to GP6 with $\mathbf{1 p}(66.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product (+) 3pa as a white solid ($75 \mathrm{mg}, 76 \%$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\mathbf{M H z}$, Chloroform-d) $\delta 8.07-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57$ $-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.81-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{td}, J=$ $9.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.57(\mathrm{~m}$, 2H), $1.50-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.15, 166.71, 139.96, 132.83, 130.57, 129.59, 128.73, 128.37, 124.07, 119.80, 83.19, 65.11, 46.93, 44.51, 28.87, 28.72, 28.23, 26.30, 24.87, 24.80, 23.25. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta 33.45$. FTIR (neat): $\tilde{v}=2974.6,2926.6,2856.5,1715.5,1693.5,1598.5,1497.7,1451.7,1388.8$, 1312.5, 1271.8, 1227.0, 1142.8, 1112.6, 1070.4, 1026.6, $966.8,857.0,758.5 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{BNNaO}_{5}{ }^{+} 514.2735$; Found 514.2753. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=$ $+24.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=82.8-86.9^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=18.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 30.2 min.
(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)butyl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate ((+) 4):

Prepared according to GP6 with $\mathbf{1 q}$ (48.4 $\mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.), 2a (31.2 mg , $0.13 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product (+) 4 as a sticky oil (40 mg, 62\%) in 96:4 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.38$ - $7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.65-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.72$ (m, 2H), 3.72-3.67 (m, 4H), $3.63-3.58(\mathrm{~m}, 4 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ 1.48 (m, 5H), 1.21 (s, 12H). ${ }^{13}$ C NMR ($101 \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 175.93, 173.77, 144.41, $139.94,130.80,129.82,128.83,124.23,119.90,112.26,83.38,64.72,53.72,46.98,44.63,40.65$, 34.13, 33.82, 28.40, 26.93, 24.91, 24.74, 23.28. ${ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform-d) $\delta 35.19$.

FTIR (neat): $\tilde{v}=2973.5,2926.2,2857.3,1727.8,1691.7,1614.8,1598.0,1518.2,1497.3$, 1457.6, 1388.9, 1370.5, 1311.8, 1270.5, 1246.8, 1227.2, 1179.6, 1142.2, 966.4, 856.5, 827.0, 803.1, $758.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{48} \mathrm{BCl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$645.3028; Found 645.3041. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=+18.3\left(\mathrm{c}=1.00 \mathrm{in} \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=80: 20$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=23.0 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 33.9 min .

(S)-4-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)butyl 3-(4,5-diphenyloxazol-2-yl)propanoate ((+) 5):

Prepared according to GP6 with $\mathbf{1 r}(47.3 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1.0 equiv.), 2a ($31.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 3: 1\right.$ hexane:EtOAc) afforded the desired product (+) 5 as a sticky oil (41 mg , $\mathbf{6 5 \%}$) in 97:3 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z ,}$ Chloroform-d) $\delta 7.66-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.28$ (m, $8 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-$ 3.67 (m, 2H), 3.19 (dd, $J=8.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{dd}, J=8.5,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.79$ (ddd, $J=10.0$, $8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.21(\mathrm{~s}, 12 \mathrm{H})$. ${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 175.93, 172.17, 161.96, 145.51, 139.97, 135.25, 132.62, 129.12, 128.82, 128.76, 128.66, 128.55, 128.16, 128.02, 126.58, 124.20, 119.89, 83.38, 65.23, 46.97, 44.62, 31.32, 28.32, 24.92, 24.90, 24.69, 23.69, 23.23. ${ }^{11}$ B NMR (128 MHz, Chloroform- \boldsymbol{d}) δ 34.24. FTIR (neat): $\tilde{v}=2975.1,2925.1,2854.9,1732.8,1692.5,1597.8$, 1499.0, 1389.9, 1371.3, 1312.4, 1267.8, 1216.6, 1165.8, 1142.4, 1072.0, 1057.8, 1025.6, 963.1, 856.2, $758.4 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{BN}_{2} \mathrm{O}_{6}{ }^{+}$635.3287; Found 635.3288. $[\boldsymbol{\alpha}]_{\mathrm{D}}^{\mathbf{2 0}}=+14.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (93\%) and diastereomeric ratio (97:3) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=28.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 37.2 min.

(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexyl 4-(N,N-dipropylsulfamoyl)benzoate ($(+$) 6):

Prepared according to GP6 with $\mathbf{1 s}(49.3 \mathrm{mg}$, $0.10 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 a}$ ($31.2 \mathrm{mg}, 0.13$ mmol, 1.3 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product (+) 6 as a sticky oil ($45 \mathrm{mg}, 69 \%$) in $95: 5$ diastereomeric ratio. ${ }^{1} \mathbf{H}$ NMR (400 MHz, Chloroform- \boldsymbol{d}) $\delta 8.19-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.90-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}$, 2H), $7.38-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.12$ $-3.06(\mathrm{~m}, 4 \mathrm{H}), 2.80(\mathrm{td}, J=9.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-$
$1.76(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.41(\mathrm{~m}, 11 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 176.20, 165.44, 144.21, 139.99, 133.92, 130.31, 128.82, 127.10, 124.19, $119.88,83.30,65.83,50.07,47.00,44.54,28.87,28.70,28.26,26.28,24.93,24.88,23.39,22.07$, 11.28. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 34.56. FTIR (neat): $\tilde{v}=2969.5,2927.9,2874.3$, $2857.0,1719.5,1693.0,1598.2,1497.5,1459.8,1389.1,1341.7,1311.1,1271.3,1227.4,1157.5$, 1143.4, 1107.3, 1087.5, 1017.0, 991.7, 858.5, $759.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{35} \mathrm{H}_{51} \mathrm{BN}_{2} \mathrm{NaO}_{7} \mathrm{~S}^{+} 677.3402$; Found 677.3420. $[\alpha]_{\mathrm{D}}^{20}=+17.8\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=85: 15$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=14.6 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 21.2 min.
(S)-6-((R)-2-Oxo-1-phenylpyrrolidin-3-yl)-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)hexyl 2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate ((+) 7):

Prepared according to GP6 with $\mathbf{1 t}(47.6 \mathrm{mg}$, $0.10 \mathrm{mmol}, 1.0$ equiv.), 2a ($31.2 \mathrm{mg}, 0.13$ mmol, 1.3 equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 6: 1$ hexane:EtOAc) afforded the desired product (+) 7 as a sticky oil ($40 \mathrm{mg}, 64 \%$) in 94:6 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 8.11(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H})$, $7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.82-3.69$ (m, 2H), 3.63 (s, 2H), 2.78 (td, $J=9.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.95(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 190.96,176.23,171.64,160.57,140.60,140.03,136.52,135.70,132.87,132.57,129.61$, 129.37, 128.81, 128.12, 127.92, 125.23, 124.14, 121.15, 119.88, 83.26, 73.76, 65.24, 47.01, 44.57, 40.40, 28.84, 28.60, 28.24, 26.15, 24.98, 24.94, 24.88, 23.30. ${ }^{11}$ B NMR (128 MHz, Chloroform- \boldsymbol{d}) δ 33.37. FTIR (neat): $\tilde{v}=2973.9,2923.1,2854.2,1731.2,1691.4,1647.2$, 1611.0, 1597.8, 1490.1, 1457.3, 1389.1, 1299.7, 1256.4, 1223.5, 1163.0, 1140.3, 1120.8, 1015.0, 967.0, 856.7, 830.3, $757.7 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{BNNaO}_{7}{ }^{+}$660.3103; Found 660.3109. $[\alpha]_{\mathrm{D}}^{20}=+16.5\left(\mathrm{c}=0.94\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (94:6) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=80: 20$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=33.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 40.1 min.
(3R)-3-((1S)-6-(($8 R, 9 S, 13 S)-13-M e t h y l-17-o x 0-7,8,9,11,12,13,14,15,16,17-d e c a h y d r o-6 H-$ cyclopenta[a]phenanthren-3-yl)oxy)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)hexyl)-1-phenylpyrrolidin-2-one ((+) 8):

Prepared according to GP6 with $\mathbf{1 u}(47.8 \mathrm{mg}, 0.10$ mmol, 1.0 equiv.), $2 \mathbf{a}(31.2 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 6: 1\right.$ hexane:EtOAc) afforded the desired product (+) $\mathbf{8}$ as a white solid ($40 \mathrm{mg}, 63 \%$) in $96: 4$ diastereomeric ratio. ${ }^{1} \mathrm{H}$ NMR $(\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.07(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{dt}, J=$ $13.2,9.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{td}, J=9.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=18.8,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29-1.91(\mathrm{~m}, 7 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.42(\mathrm{~m}, 11 \mathrm{H}), 1.32$ $-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) $\delta 221.10$, 176.26, 157.27, 140.03, 137.77, 131.90, 128.80, 126.38, 124.14, 119.88, 114.65, 112.27, 83.24, 67.98, 50.54, 48.14, 47.01, 44.55, 44.11, 38.51, 36.00, 31.71, 29.77, 29.37, 29.00, 28.31, 26.70, 26.33, 26.04, 24.94, 24.87, 23.30, 21.71, 13.98. ${ }^{11}$ B NMR (128 MHz , Chloroform- d) $\delta 34.21$. FTIR (neat): $\tilde{v}=2974.3,2924.8,2856.4,1736.3,1692.7,1598.5,1574.7,1498.1,1457.3$, $1380.0,1311.0,1281.1,1253.8,1232.7,1214.7,1142.5,1054.6,1006.1,966.2,857.5,818.5$, $752.9 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{BNNaO}_{5}{ }^{+}$662.3987; Found 662.4007. $[\alpha]_{\mathrm{D}}^{20}=+90.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The diastereomeric ratio (96:4) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=85: 15$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=19.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=32.9 \mathrm{~min}$.
tert-Butyl 2-((4R,6R)-2,2-dimethyl-6-(2-((R)-2-oxo-3-((S)-5-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)pyrrolidin-1-yl)ethyl)-1,3-dioxan-4-yl)acetate ((+) 9):

Prepared according to GP6 with $\mathbf{1 d}(27.2 \mathrm{mg}, 0.10$ $\mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 u}(50.4 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography $\left(\mathrm{SiO}_{2}, 3: 1\right.$ hexane: EtOAc) afforded the desired product (+) 9 as a sticky oil ($39 \mathrm{mg}, 64 \%$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.27$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.17(\mathrm{~m}$, $1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.21(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.39(\mathrm{dd}, J=15.1,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.28(\mathrm{dd}, J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.50(\mathrm{~m}$, $7 \mathrm{H}), 1.48-1.27$ (m, 19H), 1.18 (s, 12H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 176.75,170.33$, 142.97, 128.57, 128.30, 125.63, 98.83, 83.12, 80.69, 67.26, 66.29, 45.90, 42.89, 42.86, 39.33, $36.56,35.98,34.19,31.71,30.24,30.22,28.93,28.30,28.23,24.94,24.89,23.72,19.85 .{ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 35.54$. FTIR (neat): $\tilde{v}=2975.8,2924.1,2855.1,1728.8$, 1682.8, 1494.6, 1455.2, 1431.1, 1378.7, 1316.2, 1260.3, 1200.6, 1144.1, 966.6, 951.2, 860.8, $844.9,749.5 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{57} \mathrm{BNO}_{7}{ }^{+} 614.4223$; Found 614.4243. $[\alpha]_{\mathrm{D}}^{20}=+7.1\left(\mathrm{c}=0.94\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 210 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=41.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=36.6 \mathrm{~min}$.

7. Product diversification:

Supplementary Figure 3. Functional group transformations of the products.
(R)-3-((R)-Oct-1-en-3-yl)-1-phenylpyrrolidin-2-one ((+) 10):

The title compound was prepared following a reported method with a slight modification. ${ }^{[7]}$ A Schlenk flask was charged with $\mathbf{3 a a}$ (37.1 mg , $0.10 \mathrm{mmol}, 1.0$ equiv.), backfilled with N_{2}, dissolved in anhydrous THF (1.5 ml) and cooled to $-78^{\circ} \mathrm{C}$. vinylmagnesium bromide (1 M , $400 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 4.0$ equiv.) was added dropwise, and the mixture was stirred for 0.5 h . A solution of iodine ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 4.0$ equiv.) in anhydrous methanol (1.0 mL) was added dropwise, and the mixture was stirred for 0.5 h . A solution of $\mathrm{NaOMe}(30.4 \mathrm{mg}, 0.80 \mathrm{mmol}, 8$ equiv.) in anhydrous methanol (1.5 mL) was added dropwise, and the mixture was stirred for 1.5 h. The mixture was monitored by TLC, quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{~mL})$ at this temperature, and extracted with EtOAc ($3 \times 20 \mathrm{ml}$). The combined organic phases were washed with brine (60 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude mixture was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane:EtOAc) to obtain the desired product (+) $\mathbf{1 0}$ as a colorless oil $(23 \mathrm{mg}, 85 \%)$ in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.74-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.06(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.07$ $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, Chloroform-d) δ 175.15, 139.57, 138.21, 128.77, 124.39, 119.97, 117.26, 47.34, 47.07, 43.38, 31.91, 31.86, 26.99, 22.64, 19.81, 14.09. FTIR (neat): $\tilde{v}=2953.8,2923.4$, 2854.6, 1692.9, 1637.9, 1598.1, 1498.0, 1459.2, 1392.0, 1300.0, 1226.3, 1185.4, 1115.3, 1074.4,
998.6, 916.2, $757.3 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}^{+}$272.2009; Found 272.2017. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=+62.8\left(\mathrm{c}=0.90\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (92\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ AD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=11.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 19.8 min .

(R)-3-((S)-1-Hydroxyhexyl)-1-phenylpyrrolidin-2-one ((+) 11):

The title compound was prepared following a previous literature procedure. ${ }^{[8]}$ Compound 3aa ($18.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv.) was dissolved in a $1: 1$ mixture of THF and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at room temperature. Then $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(19.2 \mathrm{mg}, 0.125 \mathrm{mmol}, 2.5$ equiv.) was added to it. The resulting mixture was stirred for 6 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water $(5.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 5: 1\right.$, hexane/EtOAc) to obtain the desired product (+) $\mathbf{1 1}$ as a colorless oil ($12.0 \mathrm{mg}, \mathbf{9 2 \%}$) in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\delta 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 3 \mathrm{H}), 2.78$ (td, $J=9.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38$ (brs, 1H), $2.28-2.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 5 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 174.91,139.31,128.84,124.67,119.97,69.89,49.17,47.16,34.08,31.78$, 25.73, 22.64, 18.13, 14.06. FTIR (neat): $\tilde{v}=3418.3,2952.3,2920.1,2852.2,1672.3,1597.9$, 1496.1, 1460.8, 1403.6, 1377.5, 1308.7, 1276.5, 1229.4, 1138.4, 1122.1, 1091.6, 993.6, 923.0, $757.9 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}{ }^{+}$284.1621, Found 284.1629. $[\alpha]_{\mathrm{D}}^{20}=+16.1\left(\mathrm{c}=0.28\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=10.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 12.5 min .

(R)-3-((S)-1-Hydroxyheptan-2-yl)-1-phenylpyrrolidin-2-one ((+) 12):

The title compound was prepared following a previous procedure. ${ }^{[8]} \mathrm{A}$ mixture of $\mathbf{3 a a}(37.1 \mathrm{mg}, \quad 0.10 \mathrm{mmol}, 1.0$ equiv.) and chloroiodomethane ($14.6 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.0$ equiv.) in THF (1.0 mL) was cooled to $-78^{\circ} \mathrm{C}$ under N_{2} atmosphere. Then n-butyllithium (2.4 M , $83.3 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 2.0$ equiv.) was added slowly to it. The resulting reaction mixture was stirred for 30 mins at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature overnight. The reaction flask was then transferred to an ice bath and $\mathrm{NaOH}(1.0 \mathrm{~mL}, 2.0 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.50 \mathrm{~mL},>30 \% \mathrm{w} / \mathrm{v})$ were added. The reaction mixture was stirred for an additional 2 hours at this temperature and was then diluted with $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and $\mathrm{EtOAc}(5.0 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 4.0 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 2: 1\right.$ hexane:EtOAc) to obtain the
desired product (+) $\mathbf{1 2}$ as a colorless oil ($21 \mathrm{mg}, \mathbf{7 5 \%}$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.89$ $-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{dd}, J=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{td}, J=9.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H})$, $2.11-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 6 \mathrm{H}), 0.95-0.85$ $(\mathrm{m}, \mathbf{3 H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 176.35,139.18,128.87,124.95,120.35,64.33$, $47.60,47.47,41.40,32.04,27.22,26.60,24.86,22.64,21.62,14.08$. FTIR (neat): $\tilde{v}=3364.6$, 2953.1, 2923.0, 2855.3, 1668.3, 1597.7, 1496.9, 1459.5, 1396.1, 1302.1, 1226.8, 1116.1, 1046.4, 970.6, 897.7, $758.4 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NNaO}_{2}{ }^{+}$ 298.1777; Found 298.1783. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=+4.2\left(\mathrm{c}=0.88\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=13.7 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 20.0 min .

(R)-1-Phenyl-3-((S)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexyl)pyrrolidone ((-) 13):

The title compound was prepared following a reported method with a slight modification. ${ }^{[9]}$ A solution of $\mathbf{3 a a}(18.6 \mathrm{mg}, 0.05 \mathrm{mmol}, 1 \mathrm{eq}$. in THF (1.0 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Then DIBAL- $\mathrm{H} \cdot \mathrm{BH}_{3}$ complex ($0.75 \mathrm{M}, 270 \mu \mathrm{~L}, 0.20 \mathrm{mmol}, 4.0$ equiv.) was added dropwise to the solution. The reaction mixture was stirred for 1 h at this temperature and monitored by TLC. Then the reaction was quenched with $\mathrm{MeOH}(1 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 4 \mathrm{~mL})$. The organic extract was concentrated in vacuum. The crude product was purified by preparative thin layer chromatography $\left(\mathrm{SiO}_{2}, 10: 1\right.$ hexane: EtOAc) to obtain the desired product $(-) \mathbf{1 3}$ as a colorless oil ($16 \mathrm{mg}, 91 \%$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) δ $7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.34$ $(\mathrm{td}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.15$ $-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.21(\mathrm{~m}, 17 \mathrm{H}), 1.07(\mathrm{td}, J=9.7$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) $\delta 147.95,129.10$, $115.15,111.38,83.12,53.64,47.62,40.57,32.16,31.29,30.63,29.13,24.90,24.88,22.58$, 14.05. ${ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 37.19. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{BNO}_{2}{ }^{+} 358.2912$; Found 358.2921. $[\alpha]_{\mathrm{D}}^{20}=-0.5\left(\mathrm{c}=0.66\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined after stereospecific oxidation (boronate to alcohol by NaBO_{3}) via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=94: 6$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=20.5 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=23.7 \mathrm{~min}$.

The title compound was prepared in two steps. At first the alkyl boronate was oxidized to obtain the secondary alcohol. Then the lactone was reduced to the diol. Compound $\mathbf{3 d r}(71.6 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) was dissolved in a $1: 1$ mixture of THF and $\mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~mL})$ at room temperature. Then $\mathrm{NaBO}_{3} \bullet 4 \mathrm{H}_{2} \mathrm{O}(78.0 \mathrm{mg}, 0.50 \mathrm{mmol}, 2.5$ equiv.) was added to it. The resulting mixture was stirred for 8 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water $(5.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$. The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5.0 \mathrm{~mL})$, and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 3: 1\right.$, hexane/EtOAc) to obtain the desired alcohol as a colorless oil ($42 \mathrm{mg}, 84 \%$). Then this product was used in the next step. To a solution of alcohol (30.0 mg , $0.12 \mathrm{mmol}, 1.0$ equiv.) in anhydrous THF (1.5 mL) under N_{2} atmosphere was added LiAlH_{4} ($22.8 \mathrm{mg}, 0.60 \mathrm{mmol}, 5.0$ equiv.) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 6 hours and quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(1.0 \mathrm{~mL})$ and diluted with $\mathrm{EA}(3.0 \mathrm{~mL})$. The layers were separated, the aqueous phase was extracted with EA ($5 \times 3.0 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 1: 1 \quad 1: 2\right.$, hexane/EtOAc) to obtain the desired product () $\mathbf{1 4}$ as a colorless oil ($24 \mathrm{mg}, \mathbf{7 9 \%}$) in $95: 5$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.88-3.62(\mathrm{~m}, 5 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$, $2.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 5 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathrm{MHz}$, Chloroform- \boldsymbol{d}) $\delta 142.64,128.52,128.41,125.81,74.57,64.99,60.89,42.87,36.01$, 34.00, 31.55, 29.03, 25.98. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{3}{ }^{+}$ 275.1618; Found 275.1621. $[\boldsymbol{\alpha}]_{\mathbf{D}}^{\mathbf{2 0}}=-3.2\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=33.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 40.7 min.

(R)-3-((S)-5-Phenyl-1-(thiophen-2-yl)pentyl)dihydrofuran-2(3H)-one ((+) 15):

The title compound was prepared following a literature procedure with a slight modification. ${ }^{[8]}$ To a solution of thiophene ($10.4 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 1.3$ equiv.) in THF (1.0 mL) at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane; $81.0 \mu \mathrm{~L}, 0.13$ $\mathrm{mmol}, 1.3$ equiv.) dropwise under an inert atmosphere. The mixture was then warmed to room temperature and stirred for 30 min . Then the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ again. A solution of $\mathbf{3 d r}(35.8 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) in THF (1.0 mL) was added dropwise to it. The reaction mixture was further stirred for 1.5 hours at this temperature. Then a solution of N-bromosuccinimide ($23.4 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv.) in THF (1.0 mL) was added dropwise and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for additional 1.5 hours. Then the reaction was quenched with a saturated aqueous sodium thiosulfate solution $(2.0 \mathrm{~mL})$ and the reaction mixture was
allowed to warm to room temperature. The resulting mixture was diluted with water (5.0 mL) and ethyl acetate $(5.0 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate ($3 \times 5 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, 30: 1\right.$ 7:1 hexane:EtOAc) to obtain the desired product (+) $\mathbf{1 5}$ as a colorless oil ($17 \mathrm{mg}, \mathbf{5 4 \%}$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$ (400 MHz , Chloroform- \boldsymbol{d}) $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.89$ $-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{td}, J=8.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=9.5,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.79(\mathrm{td}, J=9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 178.24,144.01,142.52,128.49,128.41,126.93,126.16,125.82,124.16,66.62$, 45.33, 40.72, 35.81, 34.90, 31.25, 27.24, 24.91. FTIR (neat): $\tilde{v}=2923.4,2854.8,1763.3$, $1602.5,1495.0,1453.5,1372.4,1212.5,1157.2,1025.4,952.2,849.5,748.7 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{~S}^{+} 337.1233$; Found 337.1232. $[\alpha]_{\mathbf{D}}^{\mathbf{2 0}}=+28.0$ ($c=0.75$ in CHCl_{3}).

HPLC: The enantiomeric excess (94\%) and diastereomeric ratio (95:5) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OJ-H column, with hexane:isopropanol $=75: 25$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 215 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=39.4 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 28.7 min.
8. Synthesis of compound 17, a key intermediate to drug molecules 18 and 19:

(R)-1-Benzyl-3-((S)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butyl)pyrrolidin-2-one ((-) 16):

Prepared according to GP6 with $\mathbf{1 v}$ ($39.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), $\mathbf{2 v}$ ($66.1 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.). Flash column chromatography (SiO_{2}, 7:1 hexane:EtOAc) afforded the desired product (-) $\mathbf{1 6}$ as a sticky oil (48 $\mathrm{mg}, 65 \%$) in $93: 7$ diastereomeric ratio. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform-d) $\delta 7.34-7.21(\mathrm{~m}, 5 \mathrm{H}), 4.64(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}$, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{td}, J=9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ $-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}$, 1 H), $1.21(\mathrm{~s}, 12 \mathrm{H}), 0.90$ (dd, $J=6.6,3.9 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~ C h l o r o f o r m}-\boldsymbol{d}$) δ 176.82,
137.11, 128.55, 128.09, 127.33, 83.06, 46.60, 44.98, 42.89, 37.49, 26.78, 24.88, 24.80, 23.37, 22.80, 22.77. ${ }^{11} \mathbf{B}$ NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.73. FTIR (neat): $\tilde{v}=2952.3,2924.3$, 2866.7, 1682.6, 1605.5, 1494.7, 1454.2, 1428.5, 1371.3, 1318.8, 1259.9, 1203.6, 1166.1, 1141.7, 1111.9, 1080.1, $967.3,858.9,834.0 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{BNO}_{3}{ }^{+}$372.2705; Found 372.2699. $[\alpha]_{\mathrm{D}}^{20}=-10.0\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (90\%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=98: 2$ at a flow rate $0.5 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=27.3 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 32.7 min.

(R)-1-Benzyl-3-((S)-1-hydroxy-3-methylbutyl)pyrrolidin-2-one ((-) 17):

Compound 16 ($37.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was dissolved in a $1: 1$ mixture of THF and $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at room temperature. Then $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ($39.0 \mathrm{mg}, 0.25 \mathrm{mmol}, 2.5$ equiv.) was added to it. The resulting mixture was stirred for 8 hours. After the completion of the reaction as checked by TLC, the reaction mixture was diluted with water $(5.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(5.0$ mL). The organic layer was separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3×5.0 mL), and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography ($\mathrm{SiO}_{2}, 2: 1$, hexane/EtOAc) to obtain the desired product (-) $\mathbf{1 7}$ as a colorless oil ($21 \mathrm{mg}, 80 \%$) in 95:5 diastereomeric ratio. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0}$ MHz, Chloroform-d) $\boldsymbol{\delta} 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.30$ (ddt, $J=9.3,7.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{td}, J=9.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 1 \mathrm{H}), 0.96$ $(\mathrm{dd}, J=6.7,4.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, Chloroform-d) δ 175.55, 136.45, 128.83, 128.12, 127.69, 68.10, 48.01, 46.79, 45.31, 43.01, 24.75, 23.63, 22.12, 18.47. FTIR (neat): $\tilde{v}=$ 3383.4, 2952.0, 2922.2, 2867.2, 1663.2, 1494.6, 1454.0, 1436.4, 1364.7, 1291.8, 1261.3, 1172.2, 1143.4, 1080.6, 1029.1, $994.8,978.4,953.7 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}_{2}{ }^{+}$284.1621; Found 284.1625. $[\alpha]_{\mathrm{D}}^{20}=-0.93\left(\mathrm{c}=0.72\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric excess (87\%) and diastereomeric ratio (93:7) were determined via HPLC analysis using a CHIRALPAK ${ }^{\circledR}$ IA column, with hexane:isopropanol $=90: 10$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 214 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=14.2 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=$ 12.7 min .

9. Mechanistic Investigations.

9a. Radical Clock Experiment.

The reaction was conducted in a 0.2 mmol scale following GP6, with $\mathbf{1 d}(54.4 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.0 equiv.) and ethyl 2-bromo-2-cyclopropyl ester ($\mathbf{2 v}$) ($43.8 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.5$ equiv.) as coupling partners. Purification by preparative TLC ($\mathrm{SiO}_{2}, 20: 1$ hexane:EtOAc) afforded the mixture of ring-opening products $\mathbf{2 0}$ and $\mathbf{2 1}$ as a colorless oil ($19 \mathrm{mg}, \sim 24 \%$). These two products cannot be purified separately. The supporting spectra (NMR and GC-MS) are shown below. For 20, HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{BNaO}_{4}{ }^{+}$423.2677; Found 423.2679. For 21, HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{39} \mathrm{BNaO}_{4}{ }^{+}$425.2834; Found 425.2845 .

Supplementary Figure 4. NMR spectra of 20 and 21.

Supplementary Figure 5. GC-MS spectra of 20 and 21.

9b. TEMPO Trapping Experiment.

22
detected by HRMS no C-C coupling product (<1\%)

The reaction was conducted in a 0.1 mmol scale following GP6. TEMPO $(20.7 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1.3 equiv.) was added after the addition of all reagents. The C-C coupling was not detected and an alkyl-TEMPO adduct $\mathbf{2 2}$ was detected by HRMS. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$317.2224; Found 317.2220.

Supplementary Figure 5. High Resolution Mass Spectrometric analysis of 22.

9c. Time-Dependent Reaction Study.

Seven parallel experiments of our model reaction between 1a and 2a at a 0.1 mmol scale with respect to $\mathbf{1 a}$ were performed following GP6. The reactions were stopped at the indicated reaction time. After that, the reaction was quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1.0 \mathrm{~mL})$ and $\mathrm{EtOAc}(3.0 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 3.0 \mathrm{~mL}$). Dodecane (23.0 $\mu \mathrm{L}$) was added as an internal standard for GC FID analysis to this mixture and the resulting mixture was mixed well. A small organic aliquot was used for the GC FID analysis to determine the yield. The remaining organic phase was separated and the aqueous phase was extracted with EtOAc ($2 \times 3.0 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the volatiles were removed to afford the crude product. The crude product was purified using flash column chromatography to obtain unreacted 2a and crude 3aa which were subjected to chiral HPLC analysis to determine the ee of $\mathbf{2 a}$ and dr of 3aa.

Entry	Time (h)	Yield (\%) of 3aa	ee (\%) of recovered 2a	dr
1	1	14	0	$95: 5$
2	3	29	0	$95: 5$
3	6	42	0	$95: 5$
4	10	49	0	$95: 5$
5	20	69	0	$95: 5$
6	29	74	n.d.	$95: 5$
7	45	80	n.d.	$95: 5$

Supplementary Figure 6. Reaction profile of the model reaction.

9d. D-Labelling Experiment to Probe the Origin of Enantio-Determining Step.

23
single D-diastereomer 63\%, 89\% ee, >99\% D

23'
other D-diastereomer not observed

A deuterium-labelling experiment using a deuterium-labelled alkene substrate was conducted to evaluate the enantio-determining step. The reaction was performed following GP6 with Dlabelled alkenyl pinacol boronate $\mathbf{1 w}$ ($49.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.00$ equiv.) and 2-bromolactam 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.30$ equiv.). Flash column chromatography ($\mathrm{SiO}_{2}, 10: 1$ hexane:EtOAc) afforded the desired product $\mathbf{2 3}$ as a sticky oil ($51 \mathrm{mg}, 63 \%$) in $92: 8$ diastereomeric ratio. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 3}$ revealed the formation of the single D-labelled diastereomer $\mathbf{2 3}$ with $>99 \%$ D-incorporation where deuterium and Bpin group are on the same side. This result confirmed that the syn-selective Ni-H insertion step is the enantio-determining step. The formation of the other diastereomer $\mathbf{2 3}{ }^{\prime}$ in the product was not observed. Note that the diastereoselectivity ($\mathrm{dr}=$ $92: 8)$ refers to the diastereomeric cross-coupled products.
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) $\delta 7.54$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.30-7.01$ (m, 8H), 3.60-3.76 $(\mathrm{m}, 2 \mathrm{H}), 2.80(\mathrm{td}, J=9.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=13.4,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, 2H), $1.31-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z , ~ C h l o r o f o r m - d) ~} \delta$ 177.31, 142.19, $139.89,129.70,128.47,128.30,126.30,124.78,119.81,84.12,50.26,45.00,37.31,29.72,24.85$, 24.83, 22.69. ${ }^{11}$ B NMR ($\mathbf{1 2 8} \mathbf{~ M H z}$, Chloroform- \boldsymbol{d}) δ 33.61. FTIR (neat): $\tilde{v}=2974.4,2923.4$, 2854.2, 1692.6, 1598.1, 1495.8, 1454.3, 1389.9, 1371.9, 1311.4, 1265.8, 1214.8, 1165.0, 1142.2, 1111.9, 1030.3, 966.4, 852.3, $756.6 \mathrm{~cm}^{-1}$. HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{32}\left[{ }^{2} \mathrm{H}\right] \mathrm{BNO}_{3}{ }^{+} 407.2611$; Found 407.2612. $[\alpha]_{\mathrm{D}}^{20}=+42.1\left(\mathrm{c}=1.00\right.$ in $\left.\mathrm{CHCl}_{3}\right)$. M.P. $=71.1-$ $74.0^{\circ} \mathrm{C}$.

HPLC: The enantiomeric excess (89%) and diastereomeric ratio (92:8) were determined via HPLC analysis using a CHIRALCEL ${ }^{\circledR}$ OD-H column, with hexane:isopropanol $=95: 5$ at a flow rate $1.0 \mathrm{~mL} / \mathrm{min}$ detected at 254 nm wavelength. Retention time: $\mathrm{t}_{\text {major }}=9.9 \mathrm{~min}$ and $\mathrm{t}_{\text {minor }}=12.9$ min.

9e. Control Experiment.

Product 3aa with 87% ee and $75: 25 \mathrm{dr}(37.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv.) was subjected to a reaction containing substrates $\mathbf{1 d}$ ($54.4 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.), 2a ($62.4 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.3$ equiv.) under the standard reaction conditions following GP6. No change in enantioselectivity and diastereoselectivity of 3aa was observed after 45 hours of reaction time.

10. Crystallography details

Compound (+) 3aa:

Experimental details. Single clear pale colourless prism-shaped crystals of 3aa were used as supplied. A suitable crystal with dimensions $0.86 \times 0.13 \times 0.07 \mathrm{~mm}^{3}$ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=139.98(10) \mathrm{K}$ during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Supplementary Figure 7. Crystal structure of 3aa.

Compound 3aa

Formula $\quad \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{BNO}_{3}$
Dcalc
1.153
μ / mm^{-1}
0.584

Formula Weight
 371.31

Colour clear pale
colourless

Shape	prism-shaped
Size/mm ${ }^{3}$	$0.86 \times 0.13 \times 0.07$
T/K	139.98(10)
Crystal System	orthorhombic
Flack Parameter	-0.11(5)
Hooft Parameter	-0.11(5)
Space Group	$P 2{ }_{12} 2_{1}$
$a / A ̊$	6.41165(6)
$b / A ̊$	13.24029(12)
$c / A ̊$	25.2063(2)
$\alpha /^{\circ}$	90
$\beta 1^{\circ}$	90
$\gamma 1^{\circ}$	90
V/A ${ }^{3}$	2139.81(3)
Z	4
Z^{\prime}	1
Wavelength/A	1.54184
Radiation type	$\mathrm{CuK}{ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	3.507
$\Theta_{\max } /^{\circ}$	75.470
Measured Refl's.	40226
Indep't Refl's	4306
Refl's $1 \geq 2$ (I)	4191
$R_{\text {int }}$	0.0396
Parameters	250
Restraints	0
Largest Peak	0.187
Deepest Hole	-0.128

GooF	1.025
$w R_{2}$ (all data)	0.0719
$w R_{2}$	0.0715
R_{1} (all data)	0.0292
R_{1}	0.0285

Structure Quality Indicators

A clear pale colourless prism-shaped-shaped crystal with dimensions $0.86 \times 0.13 \times 0.07 \mathrm{~mm}^{3}$ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at $T=139.98(10) \mathrm{K}$.

Data were measured using ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The maximum resolution that was achieved was $\Theta=75.470^{\circ}(0.80 \AA$) $)$.

The unit cell was refined using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021) on 30693 reflections, 76% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The final completeness is 100.00% out to 75.470° in Θ. A gaussian absorption correction was performed using CrysAlisPro 1.171.41.119a (Rigaku Oxford Diffraction, 2021). The numerical absorption correction was based on gaussian integration over a multifaceted crystal model. The empirical absorption correction was carried out using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this crystal is $0.584 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=$ $1.54184 \AA ̊$) and the minimum and maximum transmissions are 0.632 and 1.000 .

The structure was solved and the space group $P 2{ }_{1} 2_{1} 2_{1}$ (\# 19) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

The Flack parameter was refined to $-0.11(5)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in $-0.11(5)$. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be
near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2165076 contains the supplementary crystallographic data for 3aa. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound (+) 3ab:

Experimental details. Single clear pale colourless prism-shaped crystals of 3ab were used as supplied. A suitable crystal with dimensions $0.47 \times 0.13 \times 0.06 \mathrm{~mm}^{3}$ was selected and mounted on a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer. The crystal was kept at a steady $T=139.92$ (14) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Supplementary Figure 8. Crystal structure of 3ab.

Compound 3ab

Formula
$\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{BNO}_{4}$
Dcalc
1.184

μ / mm^{-1}	0.626
Formula Weight	401.34
Colour	clear pale
	colourless
Shape	prism-shaped
Size/mm ${ }^{3}$	$0.47 \times 0.13 \times 0.06$
T/K	139.92(14)
Crystal System	monoclinic
Flack Parameter	0.0(2)
Hooft Parameter	0.13(9)
Space Group	$P 2_{1}$
a/Å	9.9317(2)
b / \AA	6.3863(2)
$c / A ̊$	17.7667(5)
$\alpha /{ }^{\circ}$	90
$\beta 1^{\circ}$	92.939(3)
$\gamma 1^{\circ}$	90
V/Å ${ }^{3}$	1125.40(5)
Z	2
Z'	1
Wavelength/Å	1.54184
Radiation type	Cu K ${ }_{\alpha}$
$\Theta_{\text {min }} /{ }^{\circ}$	4.458
$\Theta_{\max } /^{\circ}$	72.665
Measured Refl's.	10367
Indep't Refl's	4110
Refl's l ≥ 2 (I)	3903
$R_{\text {int }}$	0.0298
Parameters	269
Restraints	1
Largest Peak	0.252
Deepest Hole	-0.157
GooF	1.048
$w R_{2}$ (all data)	0.0842
$w R_{2}$	0.0826
R_{1} (all data)	0.0346
R_{1}	0.0324

Reflections:	d min (Cula)	0.81	V/()	29.9	Rint	2.98\%	CAP 133.9 99\% to 145.3°	100
Refinement:	Shift						GooF	

A clear pale colourless prism-shaped-shaped crystal with dimensions $0.47 \times 0.13 \times 0.06 \mathrm{~mm}^{3}$ was mounted. Data were collected using a SuperNova, Dual, Cu at home/near, AtlasS2 diffractometer operating at $T=139.92(14) \mathrm{K}$.

Data were measured using ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The maximum resolution that was achieved was $\Theta=72.665^{\circ}(0.81 \AA$) $)$.

The unit cell was refined using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021) on 6201 reflections, 60% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.119a (Rigaku OD, 2021). The final completeness is 100.00% out to 72.665° in Θ. A gaussian absorption correction was performed using CrysAlisPro 1.171.41.119a (Rigaku Oxford Diffraction, 2021). The numerical absorption correction was based on gaussian integration over a multifaceted crystal model. The empirical absorption correction was obtained using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this crystal is $0.626 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.54184 \AA$) and the minimum and maximum transmissions are 0.807 and 1.000.

The structure was solved and the space group $P 2_{1}$ (\# 4) determined by the ShelXT (Sheldrick, 2015) structure solution program using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.
_refine_special_details: Refined as a 2-component inversion twin.
There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z ' is 1 .

The Flack parameter was refined to $0.0(2)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.13(9). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2165081 contains the supplementary crystallographic data for 3ab. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound (+) 3ad:

Experimental details. Single colourless needle-shaped crystals of 3ad were used as supplied. A suitable crystal with dimensions $0.47 \times 0.04 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=$ 140.00(10) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$.

Supplementary Figure 9. Crystal structure of 3ad.

Compound	3ad
Formula	$\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{BF}_{3} \mathrm{NO}_{3}$
$D_{\text {calc. } / \mathrm{g} \mathrm{cm}^{-3}}$	1.242
μ / mm^{-1}	0.802
Formula Weight	439.31
Colour	colourless
Shape	needle-shaped
Size/mm	$0.47 \times 0.04 \times 0.04$
T / K	$140.00(10)$
Crystal System	orthorhombic
Flack Parameter	$0.04(7)$
Space Group	$P 2_{1} 2_{1} 2_{1}$
a/Å	$7.53258(13)$
b/Å	$16.0539(3)$

$c / \AA ̊$	$19.4319(4)$
$\alpha /^{\circ}$	90
$\beta /^{\circ}$	90
γl°	90
V/Å $^{\circ}$	$2349.85(8)$
Z	4
Z^{\prime}	1
Wavelength/Å	1.54184
Radiation type	CuK α
$\Theta_{\text {min }} /^{\circ}$	3.571
$\Theta_{\text {max }} /^{\circ}$	75.594
Measured Refl's.	26611
Indep't Refl's	4836
Refl's I $\geq 2 \sigma(\mathrm{I})$	4274
$R_{\text {int }}$	0.0477
Parameters	286
Restraints	0
Largest Peak/e \AA^{-3}	0.249
Deepest Hole/e \AA^{-3}	-0.195
GooF	1.070
$w R_{2}$ (all data)	0.1016
$w R_{2}$	0.0987
R_{1} (all data)	0.0458
R_{1}	0.0394
$C C D C$ number	2118223

Structure Quality Indicators

\section*{Reflections:

A colourless needle-shaped-shaped crystal with dimensions $0.47 \times 0.04 \times 0.04 \mathrm{~mm}^{3}$ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at $T=140.00(10) \mathrm{K}$.

Data were measured using ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The maximum resolution achieved was $\Theta=75.594^{\circ}(0.80 \AA)$.

The unit cell was refined using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021) on 15225 reflections, 57% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The final completeness is 100.00% out to 75.594° in Θ. A Gaussian absorption correction was performed using CrysAlisPro 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is $0.802 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.54184 \AA$) and the minimum and maximum transmissions are 0.725 and 1.000.

The structure was solved and the space group $P 2{ }_{12}{ }_{12} 2_{1}$ (\# 19) determined by the ShelXT 2018/2 (Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on \boldsymbol{F}^{2} using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

The Flack parameter was refined to 0.04(7). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in None. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2118223 contains the supplementary crystallographic data for 3ad. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Compound (+) 3af:

Experimental detail. Single colourless needle-shaped crystals of $\mathbf{3 a f}$ were used as supplied. A suitable crystal with dimensions $0.46 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$ was selected and mounted on a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer. The crystal was kept at a steady $T=$ 140.00(10) K during data collection. The structure was solved with the ShelXT 2018/2 (Sheldrick, 2015) solution program using dual methods and by using Olex2 1.5 (Dolomanov et al., 2009) as the graphical interface. The model was refined with ShelXL 2018/3 (Sheldrick, 2015) using full matrix least squares minimisation on \boldsymbol{F}^{2}.

Supplementary Figure 10. Crystal structure of 3af.

Compound	3af
Formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{BNO}_{5}$
$D_{\text {calc./ } \mathrm{g} \mathrm{cm}^{-3}}$	1.190
μ / mm^{-1}	0.654
Formula Weight	429.35
Colour	colourless
Shape	needle-shaped
Size/mm ${ }^{3}$	$0.46 \times 0.05 \times 0.04$
T/K	$140.00(10)$
Crystal System	monoclinic
Flack Parameter	$0.07(16)$
Space Group	$P 21$
a / \AA	$11.9500(2)$
b / \AA	$6.33351(11)$
c / \AA	$16.6233(4)$
$\alpha /^{\circ}$	90
$\beta /^{\circ}$	$107.788(2)$
$\gamma /^{\circ}$	90
V/Å	$1198.00(4)$
Z	2
$Z \prime$	1
Wavelength $/ \AA$	1.54184
Radiation type	$C u K \alpha$
$\Theta_{\text {min }} /^{\circ}$	3.885

$\Theta_{\text {max }} l^{\circ}$	75.588
Measured Refl's.	18105
Indep't Refl's	4843
Refl's $I \geq 2 \sigma(\mathrm{I})$	4352
$R_{\text {int }}$	0.0682
Parameters	287
Restraints	1
Largest Peak/e \AA^{-3}	0.231
Deepest Hole/e \AA^{-3}	-0.150
GooF	1.053
$w R_{2}$ (all data)	0.1150
$w R_{2}$	0.1126
R_{1} (all data)	0.0485
R_{1}	0.0435
$C C D C$ number	2118224

Structure Quality Indicators

A colourless needle-shaped-shaped crystal with dimensions $0.46 \times 0.05 \times 0.04 \mathrm{~mm}^{3}$ was mounted. Data were collected using a XtaLAB Synergy R, DW system, HyPix-Arc 150 diffractometer operating at $T=140.00(10) \mathrm{K}$.

Data were measured using ω scans with $\mathrm{Cu} \mathrm{K}_{\alpha}$ radiation. The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The maximum resolution achieved was $\Theta=75.588^{\circ}(0.80 \AA$).

The unit cell was refined using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021) on 12151 reflections, 67% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro 1.171.41.118a (Rigaku OD, 2021). The final completeness is 100.00% out to 75.588° in Θ. A Gaussian absorption correction was performed using CrysAlisPro 1.171.41.118a (Rigaku Oxford Diffraction, 2021) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm. The absorption coefficient μ of this material is $0.654 \mathrm{~mm}^{-1}$ at this wavelength ($\lambda=1.54184 \AA$) and the minimum and maximum transmissions are 0.718 and 1.000.

The structure was solved and the space group P21 (\# 4) determined by the ShelXT 2018/2
(Sheldrick, 2015) structure solution program using using dual methods and refined by full matrix least squares minimisation on $\boldsymbol{F}^{\mathbf{2}}$ using version 2018/3 of ShelXL 2018/3 (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z ' is 1 .

The Flack parameter was refined to $0.07(16)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in None. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

CCDC- 2118224 contains the supplementary crystallographic data for 3af. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
11. HPLC Spectra:

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$	Height [mAU]	Area \%
1	5.655		0.1590	8647.90332	906.51489	96.2977
2	6.896		0.2368	332.48178	23.40563	3.7023

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	5.674	MM	0.1577	2899.86646	306.42374	50.1911
2	6.888	MM	0.2132	2877.78369	224.92429	49.8089

12. NMR spectra

NMR spectra of L2

NMR spectra of 1 g

NMR spectra of $\mathbf{1 h}$:
(

NMR spectra of 1i:

NMR spectra of 11:

NMR spectra of 1m:

NMR spectra of 1n:

NMR spectra of $\mathbf{1 0}$:

NMR spectra of 1q:

NMR spectra of 1 r :

NMR spectra of 1s:

NMR spectra of $\mathbf{1 t}$:
(1)

NMR spectra of 1u:

220	210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{f} 1(\mathrm{ppm}) \end{array}$	100	90	80	70	60	50	40	30	20	10

NMR spectra of 1w:

NMR spectra of 2a:

NMR spectra of 2b:

NMR spectra of 2c:

NMR spectra of 2d:

NMR spectra of 2 e :

NMR spectra of 2e:

NMR spectra of 2g:

NMR spectra of $\mathbf{2 h}$:

NMR spectra of 2 i :

NMR spectra of $\mathbf{2 j}$:

NMR spectra of $\mathbf{2 k}$:

NMR spectra of 21:

NMR spectra of 2m:

NMR spectra of 2n:

NMR spectra of $\mathbf{2 0}$:

NMR spectra of $\mathbf{2 p}$:

NMR spectra of 2q:

NMR spectra of 2s:

NMR spectra of 2u:

NMR spectra of 2v:

NMR spectra of 2w:

NMR spectra of 3aa:

NMR spectra of 3ab:

NMR spectra of 3ac:

NMR spectra of 3ad:

[^0]| 落8 | |
| :---: | :---: |
| \ldots | －．．．x．．．．．．．．．．．．．．． |
| | |
| | |

NMR spectra of 3af:

(10

NMR spectra of 3ag:

NMR spectra of 3ah:

NMR spectra of 3ah:

NMR spectra of 3ai:

NMR spectra of 3ak:
(10)

NMR spectra of 3al:

NMR spectra of 3am:

NMR spectra of 3an:

苟80

NMR spectra of 3ao:

NMR spectra of 3ap:

NMR spectra of 3dq:

NMR spectra of 3dr:

NMR spectra of 3ds:

NMR spectra of 3dt:

NMR spectra of 3aw:

NMR spectra of 3ba:

NMR spectra of 3ca:

NMR spectra of 3da:

NMR spectra of 3ea:

NMR spectra of 3fa:

NMR spectra of 3ga:

NMR spectra of 3ha:

NMR spectra of 3ia:

(

NMR spectra of 3ja:

NMR spectra of 3ka:

NMR spectra of 3la:

NMR spectra of 3ma:
(10)

NMR spectra of 3na:

NMR spectra of 3oa:

NMR spectra of 3pa:

NMR spectra of 4:

NMR spectra of 5:

NMR spectra of 6:
(10)

(
Whand

NMR spectra of 8:
(

NMR spectra of 9:
(10)

NMR spectra of 10:

NMR spectra of 11:

NMR spectra of 12:

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
				160						f1 (ppm)	90	80					30	20	10

NMR spectra of 13:

NMR spectra of 14:

NMR spectra of 15:

NMR spectra of 23:

(10)

Supplementary References

[1] Tyrol, C. C., Yone, N. S., Gallina, C. F. \& Byers, J. A. Iron-catalysed enantioconvergent Suzuki-Miyaura cross-coupling to afford enantioenriched 1,1-diarylalkanes. Chem. Commun. 56, 14661-14664 (2020).
[2] Woods, B. P., Orlandi, M., Huang, C.-Y., Sigman, M. S. \& Doyle, A. G. NickelCatalyzed Enantioselective Reductive Cross-Coupling of Styrenyl Aziridines. J. Am. Chem. Soc. 139, 5688-5691 (2017)
[3] Bera, S. \& Hu, X. Nickel-Catalyzed Regioselective Hydroalkylation and Hydroarylation of Alkenyl Boronic Esters. Angew. Chem. Int. Ed. 58, 13854-13859 (2019).
[4] Coombs, J., Zhang, L. \& Morken, J. Synthesis of Vinyl Boronates from Aldehydes by a Practical Boron-Wittig Reaction. Org. Lett. 17, 1708-1711 (2015).
[5] Zhao, B.-Y. et al. Aerobic Oxidative Dehydrogenation of Ketones to 1,4-Enediones. Org. Lett. 23, 1216-1221 (2021).
[6] Bartoszewicz, A., Matier, C. D. \& Fu, G. C. Enantioconvergent Alkylations of Amines by Alkyl Electrophiles: Copper-Catalyzed Nucleophilic Substitutions of Racemic α-Halolactams by Indoles. J. Am. Chem. Soc. 141, 14864-14869 (2019).
[7] Rodgers, G., Wilson, E. J., Robertson, C. C., Cox, D. J. \& Partridge, B. M. Synthesis of Boronic Ester γ-Lactam Building Blocks. Adv. Synth. Catal. 363, 2392-2395 (2021).
[8] Bera, S., Mao, R. Z. \& Hu, X. L. Enantioselective C(sp $\left.{ }^{3}\right)$-C(sp $\left.{ }^{3}\right)$ Cross-Coupling of NonActivated Alkyl Electrophiles Via Nickel Hydride Catalysis. Nat. Chem. 13, 270-277 (2021).
[9] Amberchan, G. et al. Reaction of Diisobutylaluminum Borohydride, a Binary Hydride, with Selected Organic Compounds Containing Representative Functional Groups. J. Org. Chem. 86, 6207-6227 (2021).

[^0]: | 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{array}{c}100 \\ f 1(\mathrm{ppm})\end{array}$ |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

