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Abstract. The linear scattering theory of short pulse reflectometry is presented. An

expression for the scattering signal is obtained by applying the perturbation theory

approach for solving the Helmholtz equation. Based on these analytical results, a

method for measuring the radial wavenumber spectrum of the turbulence is suggested.

Analytical results are validated against full-wave numerical modelling.

1. Introduction

Microwave diagnostics are widely used in fusion research for both routine measurements

of electron density profiles [1] and the study of plasma turbulence [2, 3, 4, 5]. While they

benefit from simplicity of use, interpretation of the measurements is often challenging

due to the complex propagation of electromagnetic waves in plasmas. In particular,

the radar pulse reflectometry technique was proposed and employed for density profile

measurements [6].The diagnostic has the benefit of operating in the time-domain,

making it possible to directly measure the delay of the reflected pulses and to separate

them from parasitic reflections and scattering away from the cut-off.

Considerable experimental [7, 8, 9] and theoretical [10, 11] work was carried out

to develop the diagnostic, most of it focused on density profile measurements rather

than turbulence studies. Recently, a short-pulse reflectometry (SPR) system has been

developed and employed on the TCV tokamak [12, 13]. It is capable of using very short

(< ns) microwave probing pulses and digitally recording the envelope of the reflected

pulse.

So far, the interpretation of the corresponding experimental measurements has not

taken into account the presence of electron density fluctuations induced by the plasma

turbulence. These density fluctuations could potentially influence the measured delays,

affecting the reconstructed density profile. Moreover, if the properties of the pulse can

be directly linked to those of the turbulence, as was theorized for the radar enhanced

scattering technique [14], the diagnostic could potentially be used for turbulence studies.
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The goal of this work is an investigation of the possibility of using the SPR pulse

shape to obtain the turbulence properties. The scattering SPR pulse is analyzed

theoretically using perturbation theory applied to the Helmholtz equation, similar to

analysis performed previously for other reflectometry diagnostics [15, 16]. The novelty

of the current paper lies in considering pulse reflectometry specifically and obtaining

expressions for the scattering signal in the temporal domain. Temporal domain was

considered in [14], however the analysis was done in the presence of the upper hybrid

resonance rather than a cut-off, qualitatively changing expressions for the scattered

wave.

To validate the results of the theoretical analysis, full-wave numerical modelling is

employed.

This paper is organised as follows. Details of the derivation and final expressions

are presented in Section 2 (with additional details in Appendix A). Section 3 covers full-

wave numerical modelling carried out to validate the linear theory results. A discussion

on the model’s limitations, experimental relevance and future prospects is presented in

Section 4. Lastly, the main points of the paper are summarized in the final section.

2. Theoretical analysis

The application of perturbation theory to the Helmholtz equation is a well-established

approach for analyzing microwave scattering [15, 16, 17]. Similar to other works, we will

consider a slab geometry and ordinary (O) polarization of the probing wave. A Cartesian

coordinate system (illustrated in figure 1) will be employed. The background density

profile will be assumed to be linear along the radial coordinate x and uniform along

the poloidal coordinate y. Variations along the z-direction, aligned with the applied

magnetic field, are neglected in this work.
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Figure 1. An illustration of the model geometry. The emitter/receiver antenna is

located at the bottom left corner of the figure and the red line illustrates the path of

the probing beam.

The value L(ky) in Fig. 1 designates the radial (x) coordinate of the turning point

corresponding to the probing beam’s Fourier component with poloidal wavenumber

ky. We will consider a monostatic antenna configuration, which is a conventional

reflectometry setup.

2.1. Basic equations

The Helmholtz equation for a single frequency O-mode can be written as [18]:

d2

dx2
Ez(x, y) +

d2

dy2
Ez(x, y) +

ω2

c2

(
1− n(x, y)

nc

)
Ez(x, y) = 0, (1)

where ω is the probing frequency, n(x, y) = nbg(x) + δn(x, y) is the plasma electron

density and nc = meω
2/(4πe2) is the critical cut-off density (in cgs units). We are

assuming that the background density profile has linear dependence nbg(x) = nc
x
Lω

,

where Lω is the density profile gradient scale length at the cut-off (as well as the cut-off

position). It should be noted that the value of Lω depends quadratically on the probing

frequency, which is why we use the subscript ω.

In the case of a linear density profile, the analytical solution of the unperturbed

Eq. (1) for each poloidal harmonic is expressed in terms of the Airy function Ai(x):

E0(x, y, ω) = 2
√
πAin(ω)

∫ ∞

−∞

(
Lω (ky)

α

)1/4
dky
2π

f (ky) e
ikyy ×



Linear scattering theory of Short-Pulse Reflectometry 4

Ai

(
x− L (ky)

α

)
exp

i2
3

(
L (ky)

α

)3/2

− iπ

4

 ; (2)

Lω (ky) =

(
1− c2

ω2
k2
y

)
Lω. (3)

Here, α = (Lωc
2/ω2)1/3 is the Airy scale and ky is the poloidal wavenumber

corresponding to a specific harmonic of the probing wave. Due to quadratic dependence

of Lω on the probing frequency, α does not depend on the probing frequency. Next,

Lω(ky) designates the radial position of the turning point for a specific poloidal

wavenumber ky. In the case of normal probing, ky = 0, the turning point position

coincides with the plasma cut-off Lω(0) = Lω. This solution is normalized to have

amplitude Ain(ω) of its incident component at the probing antenna (x = 0) and the

coefficient in front of the integral is determined by the asymptotic form of the Airy

function. We will consider a Gaussian probing pulse, which means the factor Ain(ω)

takes the following form:

Ain(t) = A0 exp

(
−iω0t−

(t− t0)
2

t2p

)
; (4)

Ain(ω) =
√
πtpA0 exp

(
−(ω − ω0)

2

4
t2p + i (ω − ω0) t0

)
. (5)

In Eq. (5) ω0 corresponds to the central probing frequency. t0 is the pulse launching

time and tp is the pulse half-waist. To further simplify the following derivation, we will

assume that the probing antenna generates a Gaussian pattern:

f (ky, ω) =
√
2
√
πρ exp

(
− (ky −K)2 ρ2/2

)
. (6)

The valueK corresponds to the central poloidal wavenumber of the antenna pattern

and ρ is the half-waist of the beam. In our model, K is related to antenna tilt angle θ

(Fig. 1) and is defined as Kω = ω
c
sin θ.

Using Eq. (2), we can directly obtain the 0th order approximation corresponding

to unperturbed reflected pulse. The details of the derivation are given in Appendix

A. After employing additional assumptions t2p >> ρ2/c2 >> Lω0/(ω0c), which seem

reasonable for experimental parameters [12], we arrive at the final result for the main

beam harmonic ky = K:

Arefl(t) ∝ A0 exp

(
−(t− td)

2

t2p

)
; (7)

td = t0 + 4
L0

c
cosϑ. (8)

Here, we introduced a designation L0 = Lω0 for the cut-off position corresponding

to the central probing frequency. Eq. (8) for the delay is in agreement with a simple

geometrical optics estimate and is appropriate for comparison with the next section.
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2.2. Linear scattering signal

Within this chapter, we will follow the approach introduced in [15] and employ the

same notations as in its previous applications [16, 19]. To obtain the first order (linear

with regard to density fluctuations) solution of the Helmholtz equation for monostatic

configuration in ordinary (O) polarization, the reciprocity theorem [20] can be employed

in the following form:

As(ω + Ω) =
ie2

4meω2
ω
√
P
∫ ∞

−∞

∫ ∞

−∞
δnΩ(x, y)E0(x, y)

2dxdy. (9)

Here, As represents the amplitude of the scattering signal recorded by the receiver

antenna. P corresponds to the power of the probing beam and δnΩ is the density

perturbation possessing characteristic frequency Ω. This characteristic frequency for

realistic parameters is much smaller than the width of the frequency envelope (5) and

can be neglected.

This integral for a linear background density profile has been well studied in the

literature, and in particular was shown in Red. [15] to have the following form (obtained

by utilizing Eq. (2) and Fourier representation of the Airy function):

As ∝ Ain(ω)
∫ ∞

−∞

dκ

2π

∫ ∞

−∞

dq

2π
δn(κ, q)

∫ ∞

−∞

dky
2π

f (ky) f (q − ky)C (κ, q, ky)×

exp (iΦ (ky) + iΦ (q − ky)) ;

(10)

C (κ, q, ky) =

√
iπ3

κα
exp

i
(κα)3

12
+

(q − ky)
2 α2 + k2

yα
2 − 2Lω/α

2
κα− α4q2 (2ky − q)2

4κα

 ;
Φ (ky) =

2

3

(
Lω (ky)

α

)3/2

. (11)

The integral over ky can be estimated by applying the saddle-point method [16,

19]:

As ∝ Ain(ω)F (ω) = Ain(ω)
e2α2

mec2

√
iπ

α
P
∫ ∞

−∞

∫ ∞

−∞

dκdq

2π
δn(κ, q)×

exp
[
i (κα)

3

12
− iκLω

(
q
2

)
+ i4

3

(
Lω(q/2)

α

)3/2
− (q−2Kω)2ρ2

4

]
√
κ+ i

[
κLωc
ωρ2

2−(qc/ω)2√
1−(qc/2ω)2

+ Lωc2

ω2ρ2
(q2 − κ2)

] . (12)

Up to this point, our results mostly repeat those available in the literature. Now,

adapting the theory to the case of pulse reflectometry, we will return to the temporal

domain by utilizing Fourier transform.
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As(t) = A0

∫ ∞

−∞

F (ω)

2π
exp

[
−(ω − ω0)

2

4
t2p + i (ω − ω0) t0 − iωt

]
dω, (13)

we will assume ∆ω << ω0 and approximate ω ≈ ω0 in the denominator:

A(t) ∝
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δn(κ, q)

exp
[
i (κα)

3

12
− (q−2Kω)2ρ2

4
+ i4

3

(
Lω(q/2)

α

)3/2]
√
κ+ i

[
κL0c
ω0ρ2

2−(qc/ω0)
2√

1−(qc/2ω0)
2
+ L0c2

ω2
0ρ

2 (q2 − κ2)
] ×

exp

[
− iκLω

(
q

2

)
− (ω − ω0)

2

4
t2p + i (ω − ω0) t0 − iωt

]
dκdqdω. (14)

If we take a look at the exponential in the integral, particularly the part that

depends on ω, we can see that all but one term are the same as in the case of simple

reflection. The only new term iLω (q/2)κ depends on the radial wavenumber κ of the

turbulence. This term is proportional to the square of the frequency and thus provides

a change both in the time delay of the pulse and its width:

iκLω

(
q

2

)
≃ iκL0

(
q

2

)
+ 2iκL0

∆ω

ω0

+ iκL0

(
∆ω

ω0

)2

. (15)

As for the other phase terms, the expansion into Taylor series over ∆ω is the same

as in Eq. (A.3).

4

3

Lω

(
q
2

)
α

3/2

≃ 4

3

L0

(
q
2

)
α

3/2

+ 4

L0

(
q
2

)
α

1/2

L0(0)

α

∆ω

ω0

+

2
L0(0)

α

L0(0)

α

L0

(
q
2

)
α

−1/2

+

L0

(
q
2

)
α

1/2
(∆ω

ω0

)2

; (16)

Assuming that the beam is much wider than the poloidal correlation length

characterizing the ky spectrum of the turbulence ρ >> lcy, we can once again assume

that the integral over q is dominated by the antenna pattern:

As(t) ∝
∫ ∞

−∞

∫ ∞

−∞
δn(κ, 2Kω)

exp
[
i (κα)

3

12
− iκL0(cosϑ)

2 − iω0t+ i4
3
L0ω0

c
(cosϑ)3

]
√
κ+ i

(
κL0c
ω0ρ2

2−(2Kωc/ω0)
2√

1−(2Kωc/2ω0)
2
+ L0c2

ω2
0ρ

2 (4K2
ω − κ2)

) ×

exp

[
−iκL0

(
∆ω

ω0

)2

−
∆ω2t2p

4
+ 2i

L0

cω0

(
cosϑ+

1

cosϑ

)
∆ω2 − ρ2(sinϑ)2

c2
∆ω2

]
×

exp
[
−2iκL0

∆ω

ω0

+ 4i
L0

c
cosϑ∆ω − i(t− t0)∆ω

]
dκd(∆ω); (17)

Terms that do not depend on κ are the same as the ones obtained in 0th order

of perturbation theory described in Appendix A and not connected to the scattering.
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The term 4iL0

c
cosϑ∆ω is responsible for the delay in Eq. (8) and corresponds to the

time it takes the probing pulse to return after reflecting off the cut-off. The term

2i L0

cω0

(
cosϑ+ 1

cosϑ

)
∆ω2 describes dispersive broadening, which can be neglected when

the condition t2p >> L0/(ω0c) is fulfilled. The phase terms proportional to κ in the

exponent provide a change both in the delay time of the pulse and its width. Carrying

out the integration over frequency, we arrive to the final expression for the amplitude

of the scattering signal:

As(t) ∝ A0

∫ ∞

−∞
δn(κ, 2K0)

exp
[
i (κα)

3

12
− iκL0(cosϑ)

2 + iω0t+ i4
3
L0ω0

c
(cosϑ)3

]
√
κ+ i

[
κL0c
ω0ρ2

2 cos(2θ)
cos θ

+ L0c2

ω2
0ρ

2 (4K
2
0 − κ2)

] ×

exp

[
−iω0t−

(t− td + 2κL0/ω0)
2

t2p + 4iκL0/ω2
0

]
dκ.

td = t0 + 4
L

c
cosϑ; (18)

Here, same as in Appendix A, we have neglected all the pulse broadening terms

(given by A.5) not connected to scattering, according to the condition t2p >> ρ2/c2 >>

L0/(ω0c). Due to the fact that that |κ| < 2ω/c (for Bragg resonance to be possible),

the broadening term depending on κ can also be neglected.

This expression is impossible to interpret further due to the randomness of

the density perturbation δn(κ, 2K0). One way to move forward is to consider the

statistical average of the previous formula, i.e. by considering the statistical average

of the scattering signal power. If we assume that density fluctuations are random

and statistically homogeneous so that harmonics with different wavenumbers are

independent:

Ps(t) ∝ P0

∫ ∞

−∞
|δn(κ, 2K0)|2

exp
[
−2(t−td+2κL0/ω0)

2

t2p

]
√
κ2 +

[
κL0c
ω0ρ2

2 cos(2θ)
cos θ

+ L0c2

ω2
0ρ

2 (4K
2
0 − κ2)

]2dκ. (19)

There are three distinct parts in the above integral: the radial wavenumber

spectrum of the turbulence |δn(κ)|2, the time-dependent exponential in the numerator

and the denominator.

If the denominator can be neglected, the final pulse shape will be determined

by the ”broader” of the two remaining terms. This implies that for the case of

4
√
2L0 >> lcxw0tp, the time dependent exponential in (19) essentially corresponds to a

Dirac δ distribution centered at κ = (td−t)ω0

2L0
and the scattering pulse will reproduce the

shape of the turbulence radial wavenumber spectrum:

Ps(t) ∝ |δn((td − t)
ω0

2L0

, 2K0)|2. (20)
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The pulse broadening would be observable even for a less strict condition 4
√
2L0 >

lcxw0tp, but in that case the exact shape of the radial wavenumber spectrum (assuming

it is not Gaussian) may not be reproduced perfectly. Such a case will be presented in

the next chapter.

However, in most cases, the denominator in the integrand cannot be neglected.

This denominator is commonly attributed to poorly localised forward scattering, which

provides a disproportionately high contribution to the scattering signal [16]. This

term, possessing a singularity, will result in a particular κfs = − 2K2
0c

ω0

[
cos(2θ)
cos θ

±i
ρ2ω0
2L0c

] radial

wavenumber being selected, in which case the resulting integral can be roughly evaluated

by its value at κ = κfs:

Ps(t) ∝ |δn(Re[κfs], 2K0)|2 exp
[
−2 (t− td + 2Re[κfs]L0/ω0)

2

t2p

]
. (21)

In this scenario, the scattered pulse shape coincides with the reflected pulse, but

the delay is slightly different. From the experimental standpoint, Eq. (20) corresponds

to the case of larger probing angles, when small-angle scattering is naturally suppressed,

while Eq. (21) corresponds to smaller probing angles. That includes the case of normal

probing, for which κfs = 0 and Eq. (21) predicts that the scattered pulse will coincide

with the reflected one (Eqs. (A.5) and (7)).

3. Numerical validation

To confirm the analytical results, we employed full-wave numerical modelling with the

GPU-enabled code CUWA [21].

3.1. Computational setup

The computations were carried out on a 2D grid, using frozen density perturbations

and a linear background density profile in slab (x,y) geometry as shown in Fig. 1. The

source term was adapted for pulsed operation and the scattering signal was recorded

throughout all timesteps to obtain the returning pulses.

Similar to previous works [17, 22], a Gaussian turbulence spectrum was used to

produce random density perturbations:

δn (κ, q)2 ∝ exp

(
−κ2l2cx

4
−

q2l2cy
4

+ i∆ϕ(κ, q)

)
. (22)

Each sample was obtained by performing the Fourier transform of the spectrum,

including a random phase ∆ϕ(κ, q) sampled uniformly over [0, 2π]. A separate full-wave

computation was carried out for each sample and the resulting average scattering pulse

power was obtained by averaging over 1000 random samples. This amount of samples

was found to be sufficient for the average pulse shapes to converge (e.g. the difference
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between average pulses computed with 500 and 1000 samples was about 2%). An ex-

ample of a CUWA computation is given in Fig. 2.

Figure 2. An example of the CUWA computation. The filled contours correspond

to the density profile (on the left) and its perturbation (on the right). Blue contour

lines correspond to electric field.

The emitting antenna was simulated at the computation boundary (x = 0) with a

Gaussian pattern. The emitted power was modulated to produce a Gaussian pulse

described by Eq. (4) with t0 = 3tp. This offset was used to avoid fast variations

of the emitted power that would generate additional frequencies in the probing field’s

frequency spectrum. To obtain the signal from the computation a receiving antenna

was simulated by integrating the electric field at the grid boundary (corresponding

to antenna position) with antenna pattern. Due to the fact that we are interested

specifically in the scattering pulse, the reflected pulse (obtained from simulation with no

fluctuations) was numerically removed from the computations by subtracting it from the

recorded complex signals. Accounting for the reflected signal in this way was important

for the computations at low probing angles presented later in this section. Finally,

to ensure that the linear scattering theory was applicable, the amplitude of density

perturbations was kept at r.m.s.(δn) = 2× 10−4nc, which is expected to be low enough

to not enter the nonlinear scattering regime [23, 17]. Additionally, computations at

different turbulence amplitudes were carried out to confirm the linearity of the scattering
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signal. An example of such computations will be presented in section 4.

3.2. Pulse broadening

First, to verify the concept of the measurement of the radial wavenumber of the

turbulence, we selected a set of parameters which would satisfy both the condition

of pulse broadening 4
√
2L0 > lcxw0tp and the condition for small-angle scattering

suppression given in [16]. The parameters selected were f = 50GHz, L0 = 40 cm, ρ =

3 cm, ϑ = 35◦, tp = 0.8 ns, lcx = 0.5 cm and lcy = 0.6 cm. In this case, according to Eq.

(21) we would expect the average (over all samples) scattering pulse to reproduce the

radial wavenumber spectrum of the turbulence. The result of the full-wave computation

is given in Fig. 3.

Figure 3. The case of Gaussian turbuelnce spectrum. The average scattering power

computed with full-wave code (blue line) and with Eqs. (20) and (22) (red dashed

line). The yellow dashed line illustrates the width of the initial probing pulse used in

the computation.

The full-wave computation demonstrates good agreement with analytical expectations

(given by Eq. (20)) and reproduces the Gaussian turbulence spectrum. Small differences

in delay (1.6%) and pulse waist (2%) are likely caused by small-angle scattering. Despite

being mostly suppressed, small angle scattering will still make radial wavenumbers

closer to κfs provide slightly larger contribution into the scattering signal resulting in a

shift. This effect is much more pronounced when small-angle scattering dominates the

scattering signal. Overall, the full-wave modelling confirms the possibility to determine

the turbulence radial wavenumber spectrum from the scattered pulse.
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Next, a computation for the same set of parameters but a different radial

wavenumber spectrum was carried out. The spectrum used in this case has two distinct

parts - constant level for large scales and power law for smaller scales:

|δn (κ)|2 ∝


l3cx
π3

for |κ| ≤ π
lcx

1

|κ|3
for |κ| > π

lcx

(23)

In this case, the pulse does not perfectly reproduce the shape of the radial

wavenumber spectrum. This is explained by the fact that for this type of spectrum,

small-angle scattering plays a significant role. Due to the slower decay of the spectrum

over radial wavenumbers, the criterion introduced in [16] is no longer sufficient to

eliminate the influence of the small-angle scattering.

Figure 4. The case of non-Gaussian spectrum.The average scattering power

computed with full-wave code (blue line) and with Eqs. (20) and (23) (red dashed line).

Yellow dashed line illustrated the width of the probing pulse used in the computation.

The pulse presented in Fig. 4 corresponds to an intermediate case with regards

to the small-angle scattering, which has enough of an effect to cause asymmetry of the

pulse in the vicinity of κfs = − 2K2
0c

ω0(
cos[2θ]
cos θ

±i
ρ2ω0
2L0c

)
, but is not strong enough to dominate the

scattering signal completely and results in the scattering signal simply reproducing the

shape of the input pulse [given by Eq. (21)].
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3.3. Normal probing

To study the case of small-angle scattering dominated signal, modelling was carried out

for the case of normal probing. This case should be well described by Eq. (21). In

the case of normal probing (standard SPR measurement), we can expect the scattering

signal to reproduce the probing pulse and to have the same delay as the reflected pulse.

The parameters selected for this computation were f = 30 GHz, L = 40 cm, ρ =

8 cm, ϑ = 0◦, tp = 0.9 ns, lcx = 0.1 cm and lcy = 2 cm. In this case, the following radial

wavenumber spectrum was selected:

|δn (κ)|2] ∝

 1 for |κ| ≤ π
lcx

0 for |κ| > π
lcx

(24)

The small value of lcx was selected to guarantee that the broadening condition

4
√
2L0 >> lcxw0tp was fulfilled. That way, the absence of broadening could be

attributed directly to the small-angle scattering. The resulting computation is presented

in Fig. 5.

Figure 5. The case of normal probing. The average scattering power computed

with the full-wave code (blue line) and with Eqs. (20) and (24) (red dashed line). The

yellow dashed line illustrates the width of the probing pulse used in the computation.

From this figure, it is clear that the significant broadening predicted by Eq. (20)

(red curve) is not realised and the scattering signal reproduces the probing pulse given

by Eq. (21) (yellow curve) instead. It should also be noted that in this case the pulse

delay is exactly 4L0

c
, the same as for the reflected pulse. This means that in the case of

standard SPR configuration, linear scattering would not affect the shape or delay of the

pulses, making the diagnostic robust to linear scattering effects.

Further considering normal probing, a computation with a radial wavenumber spectrum

designed to compensate for the effects of small-angle scattering (all other parameters
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unchanged) was carried out to reinforce the conclusion about the influence of small-angle

scattering on the pulse shape. The spectrum had the following shape:

|δn (κ)|2 ∝

 |κ| for |κ| ≤ π
lcx

0 for |κ| > π
lcx

(25)

This spectrum was expected to counteract the denominator in Eq. (19) (which in

the case of normal probing takes the simple form 1
|κ|), resulting in a very broad scattering

pulse, similar to the red curve in Fig. 5. The results of the full-wave computation for

this case are presented in figure 6:

Figure 6. The case of compensated small-angle scattering. The average scattering

power computed with the full-wave code (blue line) and with Eqs. (20) and (25) (red

dashed line). The yellow dashed line illustrates the width of the probing pulse used in

the computation.

While the computed pulse indeed demonstrates significant broadening, there is a

noticeable gap at its center (corresponding to the scattering signal for κ = 0). This gap

is explained by the fact that the scattering efficiency, given by the Eq. (11), is only an

approximation and does not correctly describe the special point κfs = 0 in the case of

normal probing. The saturation of the scattering efficiency for large scales [15, 24] is not

accounted for in our model, which results in the spectrum of Eq. (25) ”over-correcting”

and suppressing the scattering on the turbulence with the largest scale. Nevertheless,

Fig. 6 demonstrates that small-angle scattering is the effect behind the absence of the

pulse broadening in Fig. 5.
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4. Discussion of the model and results

4.1. Model limitations

Before discussing the obtained results and their implications, it would be useful to

outline a few factors limiting the applicability of the results.

First of all, O-mode was considered within the presented paper. In the case of

X-mode, the wave vector has a more complicated dependence on the plasma electron

density. It is, however, possible to account for the difference by introducing an additional

factor in Eq. (11), similar to an approach presented in [23]. Such an approach would

make it possible to generalize the method to X-mode polarization.

A second, the simplification we used is the assumption t2p >> ρ2/c2 >> L0/(ω0c),

which allowed us to neglect the broadening of the pulse not associated with the scattering

[25]. This broadening was partially described in Eq. (A.5), but is neglected in the rest

of the analytical derivation. A potential analytical generalization is possible, but it

was not explored within this paper since the condition t2p >> ρ2/c2 >> L0/(ω0c) is

reasonable for the relevant experimental parameters [12].

One more unrealistic assumption of the model is the linear density profile, which

made it possible to use the Airy function as the solution for the unperturbed Helmholtz

equation. However, while the pulse delay will change when a realistic profile is used, the

shape of the pulse and the delay variations are determined by the region in immediate

vicinity of the turning point. Thus, the results can easily be generalized to the case of

an arbitrary density profile by interpreting L0 as the density gradient scale length at the

turning point.

Another simplification is the use of the slab geometry and thus discarding the

curvature of magnetic surfaces. This approach is justified when considering large

magnetic confinement devices (for which the curvature radius of magnetic surface is

larger than L0), but in the case of smaller machines the geometry effects might play a

significant role. Nevertheless, previous linear studies in cylindrical geometry [26] have

shown no qualitative difference compared to slab geometry. Thus, one can expect the

technique to still be applicable in smaller devices.

Finally, the most important simplification of the model is the use of linear scattering

theory. To validate it, one has to justify both the exclusion of the zeroth order reflected

part of the signal and higher order nonlinear scattering effects.

In the case of SPR, separating reflected and scattering signals is a non-trivial task

due to the fact that measurements do not necessarily contain information about the

frequency composition of the scattering signal. However, as shown in the previous

sections, the turbulence radial wavenumber spectrum measurements can only be carried

out at oblique incidence of the probing beam with respect to magnetic surface, which

naturally eliminates the reflected part of the signal from the measurements in monostatic

configuration.

When it comes to nonlinear scattering effects, the turbulence amplitudes at which they

can be neglected are well-defined in the literature [17, 22, 23, 27]. Unfortunately,
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benchmarking of experimental Doppler reflectometry measurements with numerical

modelling results [28, 29] suggests that it is quite common for the back-scattering

diagnostics to operate in the nonlinear scattering regime.

While our theoretical model does not cover the nonlinear regime, we have carried out full-

wave computations, which make no assumptions with regards to density fluctuations’

amplitude. Thus, our computations are able provide information regarding nonlinear

scattering regime. In the following figures we show the results of full-wave modelling for

different r.m.s. values of density perturbation (the same fluctuation samples multiplied

by a constant value were used). The parameters for this case were chosen to be

computationally inexpensive (due to smaller grid): f = 50 GHz, L = 20 cm, ρ =

8 cm, ϑ = 0◦, tp = 0.9 ns, lcx = 0.5 cm and lcy = 2 cm. For these parameters

the computation was carried out for a set of density perturbation amplitudes, and

the average scattered pulse amplitude (corresponding to square root of pulse power) is

presented in Fig. 7.

Figure 7. The amplitude of the average pulse depending on the amplitude of density

perturbations (blue curve). The red line represents linear dependence and the dashed

yellow line is the nonlinearity threshold available in literature [23].

In the linear scattering regime, the pulse amplitude should depend linearly on the

amplitude of the input density perturbations. This was verified to be the case for all

the results presented in the previous section. In the case plotted in Fig. 7 however, only

the first five points demonstrate a linear dependence. The following points related to

higher fluctuation amplitude demonstrate a lower order dependence, which corresponds

to a saturated nonlinear regime [23], which is expected for normal probing [17]. While

in the linear regime there is no change to the pulse shape or delay in the case of normal

probing, that is not necessarily true in the nonlinear regime. To investigate this point,

the average signal powers (including both reflected and scattered parts) corresponding

to different amplitudes are presented in Fig. 8:
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Figure 8. The shape of the average pulse depending on the amplitude of density

perturbations. Different colors represent different amplitudes.

It can be seen from the figure that as the scattering regime becomes more nonlinear,

the pulse delay decreases and the pulse width increases. The decrease of delay is

expected, as in the nonlinear regime the probing pulse power is partially exhausted

before it reaches cut-off. As a result the front slope of the scattered pulse will have

higher amplitude than the back one, effectively decreasing the delay. Additionally, in a

strongly nonlinear regime, the cut-off position will on average be shifted outwards due

to density perturbations.

As for the pulse broadening, there is no clear explanation for this effect, but it was

found to be consistent (in the case of normal probing) among all the computations in

the nonlinear regime. Thus, the change of the pulse shape with respect to the probing

pulse in the case of normal probing can be a marker of the nonlinear scattering regime

in SPR measurements.

4.2. Discussion

Overall, the full-wave computations are in agreement with the conclusions drawn in

section 2. It seems that the SPR diagnostic in its ”Doppler” (non-normal probing)

configuration could be used to measure the radial wavenumber spectrum of the

turbulence. However, several conditions need to be fulfilled for that:

4
√
2L0 > lcxω0tp; Pulse broadening

ρ >> lcy; Antenna pattern selecting precisely q = 2K0

(sinϑ)2 >
c

2ω0lcx

√√√√1 +
ρ4ω2

0

(2L0c)
2 . Small-angle scattering suppression [16]

(26)

While the condition on the beam waist usually holds true in experiment, the other

two conditions are less straightforward. The pulse broadening condition requires the
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plasma to have a relatively flat density profile and thus could only be used in particular

discharges and at particular radial positions.

Finally, the small-angle scattering suppression condition requires a particular set of

probing parameters, but with enough flexibility of the probing angle and narrow enough

beam, it would be possible to fulfill.

All three conditions require one to have a prior estimate of the correlation lengths lcx/cy,

which is not necessarily possible. One advantage of this method is that if the optimal

conditions are not fulfilled, it would be immediately obvious from the fact that the shape

of the measured scattered pulse would coincide with that of the probing pulse.

We can use the TCV SPR system [12, 13] to give a quantitative example. The possible

probing beam parameters for the TCV SPR are f = 50 GHz, ρ ≈ 4 cm and tp =0.7 ns.

We will assume that the radial and poloidal correlation lengths of the turbulence are of

the order of 1 cm. This means that the broadening condition in this case requires us to

have L0 > 39 cm. The L-mode profile given in [13] has values of L0 varying between 10

and 20 cm, making it not suitable for such measurements. The H-mode profile on the

other hand can reach L0 of 35 cm, which is close to fulfilling the broadening condition.

Using an even shorter pulse tp=0.5 ns (which is possible with the current hardware),

would lead to the broadening condition L0 > 28, making the measurement in the H-

mode pedestal top viable.

The condition ρ >> lcy is fulfilled without significantly limiting the measurements.

To simplify the derivation, we have also used a condition t2p >> ρ2/c2 >> L0/(ω0c). In

the case of the experimental parameters we have just outlined, this becomes 2.5×10−19

s >> 1.8×10−20 s >> 3.7×10−21 s and is thus justified.

Finally, for L0 = 35 cm, the small-angle suppression criterion gives us the condition

(sinϑ)2 > 0.12 resulting in a required angle of 21◦, which is well within the capabilities

of the diagnostic.

As can be seen from this example, very specific experimental parameters, mainly

dictated by the pulse broadening condition, are necessary for the method to be viable.

Nevertheless, if using lower probing frequencies and shorter probing pulses becomes

possible, the method could be used in a wider range of density profiles.

As far as the available alternatives to SPR go, the most similar diagnostics seem

to be radial correlation reflectometry [3, 2] and radial correlation Doppler reflectometry

(RCDR)[30]. These diagnostics also suffer from the influence of the small-angle scat-

tering, but a mathematical method was suggested to account for it [31, 19]. A similar

method could be derived for the SPR pulse analysis, as part of the future theoretical

development. While the potential Doppler SPR shares some disadvantages of RCDR,

its main appeal is the simplicity of the setup. Instead of having to probe plasma with

multiple continuous frequencies (possibly over multiple discharges), the measurement

is done with a single probing frequency within one discharge. Moreover, with a mod-

ern setup, such as the one used at the TCV tokamak [12], it is possible to perform

the measurements at several probing frequencies, allowing one to compare the radial

wavenumber spectra corresponding to several radial positions.
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Next, let us still point out that the numerical validation performed within the paper

only confirms the basic feasibility of the method without taking into account the full

complexity of the experimental setup. This work is meant to introduce the concept of

the Doppler SPR approach to turbulence studies. Further validation for the case of re-

alistic geometry and physical turbulence spectrum will be the subject of future studies,

including potential experimental implementation.

Another subject for future work is the possible use of additional information

provided by the SPR for studying plasma turbulence, such as the statistical properties

of pulse delays and their correlation. While this paper focuses specifically on the pulse

shape, other characteristics could also provide insight into amplitude and correlation

lengths of turbulent density profile perturbations.

Conclusions

Within this paper, perturbation theory was applied to the Helmholtz equation to obtain

the linear scattering signal for the conditions of short pulse reflectometry. The particular

interest lay in investigating the shape of the scattering pulse and its delay. Expressions

describing both have been derived for an arbitrary probing angle.

The potential of the diagnostic to measure radial wavenumber spectrum of the

turbulence was demonstrated and the necessary conditions, in particular the use of

a ”Doppler” configuration, were outlined. Additionally, robustness of the classic SPR

to scattering effects was demonstrated.

Analytical results have been validated with full-wave modelling. The modelling was

also employed to illustrate and quantify nonlinear scattering effects and their impact

on the SPR measurements. A potential experimental indicator for having reached the

nonlinear scattering regime was suggested. Finally, possible directions of future studies

were outlined.

Appendix A. Delay of the reflected pulse

The complex signal recorded by the antenna, following the reciprocity theorem, can be

expressed as the integral of the electric field with the one that would be generated by

the receiver antenna:

Ar(t) ∝
∫ ∞

−∞

∫ ∞

−∞
f(y)E0(x = 0, y, ω)e−iωtdy

dω

2π
=

2A0

∫ ∞

−∞
exp

[
−(ω − ω0)

2

4
t2p + i (ω − ω0) t0

] ∫ ∞

−∞

dky
2π

f (ky) f (−ky)×

sin

2
3

(
Lω (ky)

α

)3/2

+
π

4

 exp
i2
3

(
Lω (ky)

α

)3/2

− iπ

4

 eiωtdω
2π

; (A.1)
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To obtain this expression, we have used the asymptotic limit of the Airy

function. Separating the sine function into two exponential terms (Euler’s formula),

one immediately notices that one of them corresponds to the original probing pulse.

The second term corresponds to the returning pulse and the integral for it takes the

form:

A2(t) = −iA0

∫ ∞

−∞
exp

[
−(ω − ω0)

2

4
t2p + i (ω − ω0) t0 − iωt

]
×

∫ ∞

−∞

dky
2π

f (ky) f (−ky) exp

i4
3

(
Lω (ky)

α

)3/2
 dω (A.2)

Accounting for the quadratic dependence of Lω over probing frequency as well as

the fact that the pulse is centered around the carrying frequency (∆ω << ω0), we can

expand the last phase term into Taylor series:

4

3

(
Lω (ky)

α

)3/2

≃ 4

3

(
L0 (ky)

α

)3/2

+ 4

(
L0 (ky)

α

)1/2
L0(0)

α

ω − ω0

ω0

+

2
L0(0)

α

L0(0)

α

(
L0 (ky)

α

)−1/2

+

(
L0 (ky)

α

)1/2
(ω − ω0

ω0

)2

; (A.3)

Here, we designated by L0 the position of the turning point corresponding to the central

probing frequency ω0. To estimate the integral over ky, we can assume that the antenna

pattern dominates the integral, i.e. ρ2 >> L0c/ω, corresponding to the near field of

the probing antenna. Under such conditions, the integral over poloidal wavenumbers is

determined entirely by the antenna patterns f(ky)f(−ky), which select ky = 0 and we

get:

A2(t) ∝ A0

∫ ∞

−∞
exp

[
−(ω − ω0)

2

4
t2ρ + i (ω − ω0) t0 + i

4

3

L0ω0

c
− iωt

]

exp
[
4i
L0

c
(ω − ω0) + 4i

L0

cω0

(ω − ω0)
2 −K2

ωρ
2
]
dω (A.4)

The opposite case of antenna far field can be considered by employing the paraxial

approximation (as in [16]). It will not result in a qualitatively different conclusion and

we will not consider it within this work. Integrating over frequencies and multiplying

by the complex conjugate to obtain power, we get the final expression for the reflected

pulse and its delay within our model:

Pr(t) ∝ A2
0 exp

− 2 (t− td)
2

t2p +
K2

0ρ
2

ω2
0

+
(
16 L0

cω0

)2
/
(
t2p +

K2
0ρ

2

ω2
0

) − 2K2
0ρ

2

 ; (A.5)

td = t0 + 4
L0

c
; (A.6)
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Here, we have neglected smaller exponential terms according to the condition ρ2 >>

L0c/ω. Given the typical experimental parameters [12], we can also assume tp > ρ/c

and neglect the modification of the reflected pulse width. A detailed description of the

reflected pulse width modification can be found in [25].

When probing under an oblique angle, the reflected signal is significantly attenuated

by the antenna pattern, which corresponds to the factor K2ρ2 in the exponential of

Eq. (A.5). If the receiving antenna was instead aligned to receive the main harmonic

(ky = K) of the probing beam, the resulting pulse would instead have the form:

A2(t) ∝ A0 exp

(
−(t− td)

2

t2p

)
; (A.7)

td = t0 + 4
L0

c
cosϑ; (A.8)

The conditions t2p >> ρ2/c2 >> L0/(ω0c) that we used are not strictly necessary

to obtain the expression for the reflected or the linear scattering pulses. However, they

allow us to neglect all the pulse broadening not associated with scattering and they

generally hold true in experiment. Without using these conditions one would have to

use a cumbersome expression similar to Eq. (A.5) and account for the modification of

the reflected pulse compared to the probing one [25].
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