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Chapter 1

Introduction

Photorealistic rendering is concerned with the synthesis of images that are indistinguishable for

the human visual system from a photographic reproduction of the actual environment. Many

global illumination algorithms have been developed to meet this goal, yet the majority of these

methods focuses on scenes without participating media, disregarding volumetric e�ects due to

clouds, fog, smoke or �re. These can greatly enhance the realism of a rendered image, however,

and in many application are the decisive factor of the simulation. Visibility analysis for tra�c

or building design, 
ight simulation, �re research and high-quality special e�ects in animation

systems all rely on a realistic depiction of volumetric phenomena [Rus94].

The objective of this thesis is to develop, implement and analyse global illumination algorithms

for scenes with radiatively participating media. We concentrate on algorithms that are

� physically-based

In order to cover a wide range of lighting e�ects, the simulation should be based on

the fundamental equations governing the distribution of light. This ensures that we can

accurately predict the visual appearance of a speci�ed scene.

� general purpose

Many existing approaches are limited to certain classes of geometry, e.g. polygonal sur-

faces, or re
ection models, e.g. perfectly di�use re
ectors. We are interested in algorithms

that are not restricted in this sense, as we want to support the full complexity of real

environments.

� robust

Most global illumination algorithms are speci�cally designed for a certain subclass of

inputs, e.g. they perform well for scenes with strong direct illumination, but need an

excessive amount of resources to handle scenes where indirect ligthing is predominant.

In contrast, a robust algorithm can e�ciently handle a broad range of input scenes and

lighting situations, thus being suitable for many application domains.

Generating an image based on the distribution of radiative energy in a scene is essentially an

integration problem, where the integrand is usually a high-dimensional, discontinuous function.

To comply with the above requirements we set our focus on Monte Carlo algorithms, currently

the most versatile instrument for numerical integration. We extend two existing approaches,

bidirectional path tracing (BDPT) and Metropolis light transport (MLT) [Vea97] both in their
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theoretical framework and algorithmic implementation to incorporate participating media.

1.1 Thesis organization

Chapter 2 provides the theoretical background. It derives the fundamental equation govern-

ing the distribution of light and presents a theoretical framework that allows a broad range

of numerical integration methods to be applied for its evaluation. Chapter 3 is concerned

with di�erent aspects of sampling. It describes how participating media are modeled and light

transport paths are generated. Chapter 4 introduces the BDPT and MLT algorithms for

participating media. It gives a conceptual overview of both methods and discusses some imple-

mentation details. Chapter 5 presents results that were obtained with both algorithms and

provides a comparative analysis of BDPT and MLT. Chapter 6 concludes this thesis with a

summary and some suggestions for future research.
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Chapter 2

Light Transport for Global

Illumination

The goal of any global illumination algorithm is to produce an image of a given scene, based

on the distribution of radiative energy in the speci�ed environment. Section 2.2 presents a

derivation of the light transport equation, which describes this distribution in equilibrium. We

will show how the light transport equation can be transformed from an integro-di�erential

equation to an integral expression by applying the path integral formulation. This formalism

has been introduced in [Vea97] for scenes in vacuum. Section 2.3 presents a generalization of

the method that incorporates participating media.

2.1 Domains and Measures

A scene consists of a collection of objects, described by a number of boundary surfaces; the

space between objects can be �lled with participating media. More precisely:

� V � IR
3 is a �nite volume,

� @V is the boundary of V , i.e the �nite set of surfaces in IR
3 that specify objects,

� V0 := V n @V denotes all points in V that do not lie on a surface, i.e. those points where

volumetric interactions can occur.

A direction is speci�ed by ! 2 S2, where S2 is the unit sphere in IR
3. !xy is the direction

vector that points from x to y and is de�ned through !xy :=
y�x
ky�xk , for x; y 2 IR

3 and k � k the
L2-Norm in IR

3.

Let D2 � @V , D3 � V , 
 � S2. The following measures will be used in this thesis:

� A(D2) is the area measure (Lebesgue measure) on @V .

� V (D3) is the volume measure (Lebesgue measure) on V .

� A?! (D2) :=
R
D2

cos�dA(x) is the projected area measure, where � is the angle between !

and the surface normal at x. This leads to dA?! (x) = cos�dA(x).

For x 2 V0, dA?! (x) is de�ned as the di�erential area measure on the plane through x

that is perpendicular to !. This entails that dV (x) = dA?! (x)ds (see �gure 2.1).
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Figure 2.1: Relations of di�erent measures.

� �(
) is the solid angle of 
, i.e. the ratio of the surface area of 
 on S2 to the area of

the unit square.

� �?x (
) :=
R

 cos�d�(!) is the projected solid angle, hence d�?x (!) = cos�d�(!).

According to �gure 2.1, area measure and solid angle measure are related through

d�?y (!) =
cos�0

kx� yk2 dA
?
! (x);

where x; y 2 V and �0 is the angle between ! and the normal at y for y 2 @V and �0 = 0 for

y 2 V0.

2.2 Light Transport Equation

The following derivation of the light transport equation is based on the theory of radiative

transfer [Cha60], which is concerned with statistical distributions of photons. For the purposes

of photorealistic rendering, the underlying model can be simpli�ed by the following assumptions

[Arv93]:

� The number of photons is large and photons are in�nitely small, i.e. the distribution of

photons can be treated as a continuum.

� Photons do not interact with each other, i.e. interference is not accounted for.

� Polarization and di�raction are neglected.

� Collisions of photons with surfaces or particles of the medium are elastic.

� Photons are not in
uenced by external forces such as gravitation.
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These assumptions entail that a photon is completely described by its state (x; !; �), where x is

the position, ! the direction and � the wavelength of the photon. This leads to a 6-dimensional

phase space

	 = IR
3 � S2 � IR

+

with an associated phase space density function

n : 	� IR
+ ! IR

+
0 ;

such that n(x; !; �; t) is the density of photons with state (x; !; �) at time t. From now on the

wavelength will be kept �xed, so that the �-parameter can be dropped. The phase space 
ux �

is the rate at which photons cross a di�erential surface dA with directions in the di�erential

solid angle d! around the normal of dA in time dt:

�(x; !; t) := vn(x; !; t);

�
1

m2 � sr � s
�

where v = ds=dt is the velocity of the photons. Since the speed of light substantially exceeds

that of any macroscopic motion in the scene environment, it can be assumed that the phase

space 
ux reaches equilibrium instantly. Therefore it is su�cient to only consider the stationary

distribution of �, which leads to a 
ux function � � �(x; !) independent of time.

In global illumination, radiance L is the fundamental quantity of interest. Measured in
�

W
m2�sr

�
,

L(x; !) denotes the power passing perpendicularly through a di�erential surface around x in a

di�erential solid angle around !. Radiance can be related to phase space 
ux by

L(x; !) = h��(x; !);

�
W

m2 � sr
�

where h = 6:626 � 10�34Js is Planck's constant and � is the frequency of the photons.

We will distinguish between incident and exitant radiance (see [Vea97]). Incident radiance Li

describes the radiance that arrives at a point x from direction !, whereas exitant radiance Lo

measures the radiance leaving a point x in direction !. This distinction is mainly relevant on

surfaces as in the volume Li(x; !) = Lo(x; !) holds
1.

To derive the light transport equation, we consider the radiance distribution for an arbitrarily

chosen, �xed V � 
 with V � V0 and 
 � S2. A number of physical processes a�ect the

radiance distribution, either causing an increase or a decrease in radiative energy in V � 
.

These e�ects are depicted in �gure 2.2 and quantitatively de�ned below:

The increase in radiative energy is due to

� Emission:

E :=

Z



Z
V

LVe (x; !) dV (x) d�(!); [W ]

where the volume emittance function LVe , measured in
�

W
m3�sr

�
, de�nes radiation sources

in V0.
1The index will be omitted, whenever this equality is valid.
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In-Scattering IEmission E

Out-Scattering O Streaming S

Energy gains
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Energy losses

V 
�

Figure 2.2: Physical processes that are responsible for changes of radiative energy in a certain
region V �
 of phase space.

� In-scattering:

I :=

Z



Z
V

�s(x)

Z
S2

fp(!; x; !
0)L(x; !0) d�(!0) dV (x) d�(!); [W ]

where �s(x) is the scattering coe�cient, measured in [m�1], which denotes the probability
of a scattering interaction of a photon per unit distance. fp is the phase function, measured

in [sr�1], which describes the directional aspect of scattering in the medium. It determines
the fraction of scattered radiance arriving at x from direction ! that is scattered in

direction !0. The phase function is normalized, i.e.

Z



fp(!; x; !
0)d�(!0) = 1; 8! 2 
; x 2 V0:

and Helmholtz reciprocal, i.e.

fp(!; x; !
0) = fp(!

0; x; !); 8!; !0 2 
; x 2 V0

The latter relation allows to exchange incoming and outgoing direction. When sampling

a direction (see section 3.3.1) we can thus trace rays from as well as towards the light

sources.

Losses in radiative energy in V �
 are comprised of

� Absorption:

A :=

Z



Z
V

�a(x)L(x; !) dV (x) d�(!); [W ]

with the absorption coe�cient �a(x) with unit [m�1],
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� Out-scattering:

O :=

Z



Z
V

�s(x)

Z
S2

fp(!; x; !
0)L(x; !) d�(!0) dV (x) d�(!) [W ]

and

� Streaming

S :=

Z



Z
@V

L(x; !) dA?! (x) d�(!); [W ]

where @V denotes the boundary of V . We de�ne the normal at point x that is incorporated

in dA?! (x) to point outwards of the volume. Hence a positive S will cause a decrease in

energy in V �
.

Using the theorem of Gauss, S can be transformed to

S =

Z



Z
V

! � rL(x; !) dV (x) d�(!):

Since the system is in a stationary state, the radiance entering and exiting V �
 have to sum

up to zero and thus can be combined to the balance equation for V �
:

S +A+O = E + I (2.1)

Observe that the inner integration in I and O is over the whole sphere of directions. This

includes radiance whose direction is in 
 both before and after scattering, which is neither

contributing to an increase nor a decrease in radiative energy. In the balance equation this

unwanted fraction cancels out, however, as it appears on both sides of the equation.

Because V and 
 have been chosen arbitrarily and the addends of 2.1 all have the same inte-

gration domain, the equality must also hold for the integrands. This leads to the global balance

equation

! � rL(x; !) + �e(x)L(x; !) = LVe (x;w) + �s(x)

Z
S2

fp(!; x; !
0)L(x; !0) d�(!0); (2.2)

for x 2 V0 and ! 2 S2, where �e(x) := �a(x) + �s(x) is the extinction coe�cient.

As boundary conditions for this integro-di�erential equation we de�ne the exitant radiance Lo

on surfaces through the local scattering equation for x 2 @V :

Lo(x; !) = LSe (x; !) +

Z
S2

fs(!; x; !
0)Li(x; !0) d�?x (!

0); (2.3)

where fs is the bidirectional scattering distribution function (BSDF) and LSe de�nes an emittance

on surfaces. fs describes the scattering properties of a surface and is analogous to �sfp in the

medium. Energy conservation demands thatZ



fs(!; x; !
0)d�(!0) � 1; 8! 2 
; x 2 @V ;

which guarantees that no energy is created through scattering. Note that equation 2.3 contains

an integration over the whole sphere of directions, which allows re
ective as well as transmissive

surfaces.
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L(x00; !)

L(x00; !0)

Li(x;!) LVe (x
0; !) Lo(xS ; !)

Li(xS; !
0)

Figure 2.3: The integral form of the light transport equation expresses radiance as the sum of
exitant surface radiance and in-scattered and emitted volume radiance.

2.2.1 Integral Form of the Light Transport Equation

From equation 2.2, an integral equation can be obtained by incorporating the boundary condi-

tions 2.3. This is done by integrating equation 2.2 along a ray until a surface point is reached.

We de�ne the path transmittance � between two points x and x0 as

�(x; x0) := e
�
R kx0�xk

0
�e(x+s!xx0 )ds

Following [Arv93], Li can be expressed as the integral equation:

Li(x; !) = �(xS ; x)Lo(xS ; !) +

Z kxS�xk

0

�(x0; x)�
LVe (x

0; !) + �s(x
0)
Z
S2

fp(!; x
0; !0)L(x0; !0)d�?x (!

0)
�
ds; (2.4)

where x0 := x+s!xxS and xS := h(x; !) with the ray casting function h(x; !), which determines

the closest surface point from x in direction !. Thus the radiance arriving at point x from

direction ! is the sum of three components: The exitant radiance at xS in direction !, the

emitted radiance in direction ! along the ray from xS to x and the radiance that is scattered

in direction ! along the same ray (see �gure 2.3). All three factors are attenuated by the path

transmittance.

Note that for h to be globally de�ned and equations 2.2 and 2.3 to be a complete description of

the radiance distribution, the scene environment has to closed. This means that no radiation is

allowed to leave V , which can be achieved by completely surrounding V with a non-transmissive

surface.

We de�ne the following function and operators with x0 and xS as above:

� Incident emittance:

Li;e(x; !) := �(xS ; x)L
S
e (xS ; !) +

Z kxS�xk

0

�(x0; x)LVe (x
0; !)ds

� Surface light transport operator:

(TSL)(x; !) :=

Z
S2

fs(!; x; !
0)L(x; !0)d�?x (!

0)
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� Volume light transport operator:

(TVL)(x; !) :=

Z kxS�xk

0

�(x0; x)�s(x0)
Z
S2

fp(!; x
0; !0)L(x0; !0) d�?x (!

0)ds

� Light transport operator:

T := TS +TV

Now we can express Li in operator notation:

Li = Li;e +TLi:

This equation can be written as the Neumann series

Li =

1X
i=0

TiLi;e (2.5)

given that kTk < 1. This condition holds for all physically valid scene models where no perfect

re
ectors or transmitters exist.

2.3 Path Integral Formulation

To generate an image of size M , a set of measurements I1; � � � ; IM has to be computed, where

each Ij corresponds to a pixel value. A measurement is de�ned through the response of a sensor

to radiance Li(x; !) incident upon it. This sensor is modeled as part of the scene geometry

and de�ned through the sensor responsivity, a set of functions W
(j)
e (x; !) measured in [W�1]

(for more details see section 3.3.1). Combining W
(j)
e and Li in a scalar product yields the

measurement equation:

Ij :=
D
W (j)

e ; Li

E
:=

Z
V�S2

W (j)
e (x; !)Li(x; !)dA(x)d�

?
x (!): (2.6)

In this form, the computation of Ij requires the solution of the integral equation for Li,

which directly leads to recursive algorithms such as path tracing [Kaj86] or particle tracing,

e.g. [SWH+95]. Alternatively, Ij can be expressed as a pure integral of the form

Ij =

Z



fj(�x)d�(�x); (2.7)

where �x is a light transport path, 
 the set of all �nite-length transport paths, � a measure on


 and fj a function that assigns each path a measurement contribution (see below).

2.3.1 Path Space and Path Space Measure

A path of length k is represented by k + 1 vertices xi, where each xi is either on a surface or

in the volume. Let bi(l) 2 f0; 1g represent the value of the i-th bit of the binary representation

of l 2 IN, where b0 denotes the least signi�cant bit. 

l
k represents all paths of length k, where

l speci�es the combination of vertices on the surfaces or in the volume according to


l
k := fx0x1 � � �xk j xi 2 @V ; if bi(l) = 1 and xi 2 V0; if bi(l) = 0g;
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y2
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Figure 2.4: Two typical transport paths

with 1 � k <1 and 0 � l < 2k+1. Figure 2.4 shows two transport paths; the upper transport

path �x = x0x1x2x3x4 is in 
10111b
4 = 
23

4 , whereas the lower path �y = y0y1y2y3 is in 
1101b
3 =


13
3 . A measure �lk is de�ned on 
l

k by

�lk(D) :=

Z
D

kY
i=0

d�lk;i(�x);

where D � 
l
k and

d�lk;i(�x) :=

�
dA(xi); if bi(l) = 1
dV (xi); if bi(l) = 0

for �x = x0 � � �xk. This product measure is written in its di�erential form as

d�lk(�x) =

kY
i=0

d�lk;i(�x):

Now we can de�ne the path space 
 as the set of all �nite-length paths:


 :=

1[
k=1

2k+1�1[
l=0


l
k;

with the associated path space measure �

�(D) :=

1X
k=1

2k+1�1X
l=0

�lk(D \ 
l
k)

We omit the proof that � is indeed a measure, as this can be veri�ed with a simple check of

the axioms.
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2.3.2 Measurement Contribution Function

We will now introduce the "arrow-notation", which allows us to directly de�ne the measurement

contribution in terms of paths and path vertices. Let x; y; z 2 V . We de�ne:

� L(x! y) := L(x; !xy)

� We(x! y) :=We(x; !xy)

� fs(x! y ! z) := fs(!yx; y; !yz)

� fp(x! y ! z) := fp(!yx; y; !yz)

� �(x$ y) := �(x; y)

� Visibility function :

Vg(x$ y) :=

�
1 kx� yk � kx� h(x; !xy)k
0 otherwise,

which is one if x and y are mutually visible, i.e. if the connecting ray is not blocked by

an object, and zero otherwise.

� Geometric term :

G(x$ y) = Vg(x$ y)
j!yx � n̂(x)jj!yx � n̂(y)j

kx� yk2 ;

where n̂(x) is the surface normal at x for x 2 @V , or equal to !xy for x 2 V0. n̂(y) is

de�ned analogously.

To derive an expression for fj in equation 2.7 we can expand the Neumann series 2.5 to

Li = Li;e +TSLi;e +TVLi;e +TSTSLi;e +TSTVLi;e +TVTSLi;e + � � �

Inserting this into 2.6 yields

Ij =

1X
k=1

2k+1�1X
l=1

Z



Le(x0 ! x1)G(x0 $ x1)�(x0 $ x1) �

k�1Y
i=1

f̂(xi�1 ! xi ! xi+1)G(xi $ xi+1)�(xi $ xi+1) �

W (j)
e (xk�1 ! xk)d�

l
k(x0 � � �xk);

where

Le(x! x0) :=
�

LSe (x! x0) x 2 @V
LVe (x! x0) x 2 V0

and

f̂(x! x0 ! x00) :=
�

fs(x! x0 ! x00) x0 2 @V
�s(x

0)fp(x! x0 ! x00) x0 2 V0 :
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This leads to the desired form

Ij =

Z



fj(�x)d�(�x);

with

fj(�x) = Le(x0 ! x1)G(x0 $ x1)�(x0 $ x1) �
k�1Y
i=1

f̂(xi�1 ! xi ! xi+1)G(xi $ xi+1)�(xi $ xi+1) �

W (j)
e (xk�1 ! xk)

Equation 2.7 de�nes a measurement as an integral over the in�nite-dimensional path space.

This allows the application of general integration methods for the evaluation of 2.7, as will be

described in the subsequent chapters.

14



Chapter 3

Sampling

This chapter describes some of the methods and techniques we employ in the global illumination

algorithms of chapter 4. Section 3.1 gives a brief introduction to Monte Carlo integration and

the variance reduction methods used in our implementation. Section 3.2 discusses how we model

participating media, followed by a description of our path sampling algorithm in section 3.3.

3.1 Monte Carlo Integration

Our goal is to evaluate an integral of the form

I =

Z



f(�x)d�(�x):

Common quadrature rules such as Newton-Coles rules or Gauss-Legendre rules su�er from the

curse of dimensionality, i.e. the error bound for N sample points is O(N� r
d ) for f 2 Cr, where

d is the dimension of the integrand. A di�erent approach is Monte Carlo (MC) integration,

where I is approximated by generating N random samples X1; : : : ; XN according to a suitable

probability density function (pdf) p and computing the estimate

FN =
1

N

NX
i=1

f(Xi)

p(Xi)
: (3.1)

The expected value E[FN ] is then equal to I and the convergence rate of the RMS error is

O(N� 1
2 ) [KW86]. More speci�cally, the H�older-inequality states that

E[jI � FN j] � �(F1)p
N

; (3.2)

where � denotes the standard deviation. This shows that MC integration converges with the

inverse square root of N , independent of the dimension of f .

Equation 3.2 suggests two principal methods for reducing the error of the estimate. One way is

to increase the number of samples N . This is met with a proportional increase in computation

time, however, while the error diminishes only with 1p
N
. Therefore the second method, reducing

the variance �2(F1), has been a major focus of research. A number of such variance reduction

methods have been developed, the most common of which are:

� Strati�cation
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� Control Variates

� Adaptive Sampling

� Correlated Sampling

� Importance Sampling

For a detailed discussion of these methods see [KW86] and [Kel98]. We will brie
y sketch

the idea of importance sampling, as it will be used extensively in the algorithms of chapter 4.

Consider the estimate of equation 3.1. If p is proportional to f , the variance of FN would be

zero. Since this would require knowledge of I (as a normalization constant for p) this method

is not practical. However, if we can �nd a p that is "roughly proportional" to f , a substantial

reduction of variance can be achieved. A common method is to use factors of f for p, which

is especially bene�cial if these factors dominate the shape of f . As a tradeo� to the decreased

variance we are faced with a potential increase in computation time caused by generating

samples according to p. Thus it is mandatory that p can be sampled e�ciently, preferably with

the inversion method [Sob91], which requires p to be easily integrable.

Multiple Importance Sampling

The gain in variance reduction is greatly dependent on how well p resembles f over the full

integration domain. If the ratio f=p shows a high variation, variance can even increase as

compared to uniform sampling [OZ99]. Multiple importance sampling has been developed to

mitigate this e�ect [Vea97]. Here samples are generated according to a number of di�erent

pdfs. These samples are then combined with carefully chosen weights to yield a combined

sample estimate. Weights are computed according to a heuristic that considers the probability

densities of the generated samples. Thus it is possible to sample the integral with a number of

di�erent techniques, each suitable for a certain part of the integration domain. We will apply

multiple importance sampling to the path integral 2.7 in section 4.1.

3.2 Modeling Participating Media

In our implementation we only consider non-emitting media, i.e. LVe = 0. Furthermore, we

assume that the absorption coe�cient �a and the scattering coe�cient �s are isotropic, i.e.

independent of direction and that the phase function fp is homogeneous, i.e. independent of

location. These are reasonable assumptions for media such as fog or smoke, as they can be

approximated by a distribution of identical, spherical particles1. Thus a participating medium

in a �nite volume V is fully described by specifying �a(x) and �s(x) for each x 2 V and

fp(x; !; !
0) for each !; !0 2 
.

3.2.1 Absorption and Scattering Coe�cient

We distinguish two cases:

� Homogeneous media have constant �a and �s over the whole volume and provide a simple

model for foggy or dusty atmospheres.

1Regular structures such as crystals are not accounted for in this model.
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� Inhomogeneous media allow �a and �s to vary with location and can be used to model

more complex phenomena such as clouds or curls of smoke. Data for clouds and smoke can

be retrieved from physical measurements or computed through simulations. We use data

of the latter kind, which is stored on a discrete three-dimensional grid with intermediate

values being computed through trilinear interpolation.

3.2.2 Phase Function

We use the following scattering models:

� Isotropic scattering is analogous to perfectly di�use re
ection.

� Hazy Mie scattering simulates fog with a small density of dissolved water particles.

� Murky Mie scattering models fog with a higher density.

� Rayleigh scattering provides a scattering model for gas molecules.

Figure 3.1 shows the phase functions and a test image for all four scattering models. The

phase function is depicted on the left, with two possible scattering directions !01 and !
0
2 shown

for an incoming direction !. The value of the phase function is proportional to the length of

the dashed lines for each !0i. � is the angle between incoming and outgoint direction. The

image on the right is a test scene (see �gure 3.4 for the actual image), where the light source

emits light only straight downwards. We excluded all paths except those of the form light

source ! medium ! surface ! sensor and scaled the image in brightness. As illustrated,

Mie scattering describes highly directional forward scattering. Rayleigh scattering is similar to

isotropic scattering, slightly emphasizing the forward and backward directions.

The phase functions of Mie and Rayleigh scattering are too complex for e�cient sampling.

Therefore we approximate fp with a convex combination of two Schlick base functions [BLS93],

i.e.

fp(!; !
0) = �1fSchlick(k1;�) + �2fSchlick(k2;�); (3.3)

where �i are weights, � is the angle between ! and !0, and ki are parameters of the base

functions

fSchlick(k;�) :=
1� k2

(1� k cos�)2
: (3.4)

Schlick derived the following parameter choice for approximating the above phase functions:

phase function �1 �2 k1 k2

fHazyMie 0.12 0.88 -0.50 0.70

fMurkyMie 0.19 0.81 -0.65 0.91

fRayleigh 0.50 0.50 -0.46 0.46

The main advantage of the Schlick base functions is that they can be sampled using the inversion

method (see section 3.3).
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Figure 3.1: Scattering models used in our implementation.
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Figure 3.2: A typical transport path including the two arti�cial vertices xR and xI

3.3 Sampling Paths

To evaluate the path integral we need to generate paths and/or sections of paths according to

an appropiate probability density p. Figure 3.2 shows a typical path, where we have included

two additional vertices, xI and xR. These vertices are not part of the "physical" path, i.e.

xR; xI =2 V , but de�ne arti�cial point sources for importance and radiance, respectively [VG94].
This formalism provides a concise description of how paths can be generated: Through a number

of scattering and propagation events.

� Scattering chooses a direction at a given vertex according to pdf pscat.

� Propagation determines the next interaction point in a given direction with pdf pprop.

The pdf of the whole path will then be the product of the pdfs of the scattering and propagation

events. Including xR and xI in our path description allows special cases at the ends of a path

to be treated in the same way as intermediate vertices.

Recall that the integrand of equation 2.7 is the measurement contribution function fj , consisting

of various factors that are potential candidates for importance sampling. pscat and pprop have

been chosen to incorporate as many of these factors as possible, while still enabling e�cient

sampling.

3.3.1 Scattering Event

Given vertex x, we want to generate a direction !0 according to pscat. As illustrated in �g. 3.2,

we have di�erent types of vertices and each type has its own scattering characteristics:

� x = xR: Scattering at xR produces an arti�cial direction, which speci�es the point on

a light source that will be chosen in the next propagation step. In e�ect, we de�ne a

di�erent light transport kernel for this point such that scattering and propagation from

xR produces the desired source emittance Le. pscat(xR; !
0) depends on the sampling

strategy for light sources, e.g. pscat(xR; !
0) = const generates a homogeneous source

emittance.2

2This allows optimisation algorithms, e.g. for a large number of light sources, to be hidden in the scattering
method for the radiance source.
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� x = xI : Scattering at xI is analogous to scattering at xR, only that here we generate We

(in connection with the corresponding propagation event). For our implementation we

use the pinhole camera model, speci�ed through an eyepoint xE 2 V and a rectangular

image plane. Each point x on the image plane is mapped to exactly one pixel of the

image. The sensor responsivity for a pixel P of the image is de�ned as

WP
e (x; !) := �(! � !xEx)fP (x);

where � is a Dirac delta function and fP is a normalized �lter function for pixel P .

More sophisticated camera models can enhance the realism of the produced images. Ef-

fects such as depth of �eld or motion blur can be taken into account by modeling the

sensor with a lens and adapting the measurement equation to include an integration over

a �nite exposure time.

� x is on a light source: !0 is chosen by sampling according to the emissivity function of

the light source, i.e. pscat(x; !
0) / Le(x; !

0).

� x 2 @V : Scattering on surfaces is determined by the BSDF fs. We use the Ward re
ec-

tion model for isotropic scattering [War92] and also support singular scattering. Singular

scattering idealizes highly directional scattering in that it allows only one scattered di-

rection for each incident direction. When de�ning the material properties of a surface,

the user can specify the probability Psing for singular scattering, i.e. regular scattering

occurs with probability Preg := 1� Psing . This leads to

pscat(!; x; !
0) =

�
PregpWard(!; x; !

0) for regular scattering
Psing�(! � !0) for singular scattering,

where ! is the incident direction, pWard is the pdf for regular scattering according to the

Ward model and � is the Dirac delta distribution. As we only consider terms of the form

f=p, in case of singular scattering the delta distribution in the BSDF cancels out with the

one in p.

� x 2 V0 : For vertices in the medium scattering is described by the phase function fp,

which is modeled with Schlick's base functions (see section 3.2). We derive the cumulative

distribution function (cdf) for equation 3.4 as

FSchlick(k;�) =
(1� k)(1 + cos�)

2(1� k cos�)
:

Inverting this expression leads to

� = arccos

�
2� + k � 1

2k� � k + 1

�
;

where � is a uniformly distributed random variable in [0; 1]. This gives us the azimuthal

angle for the scattered direction !0. The polar angle for !0 is chosen uniformly, leading

to the pdf
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homogeneous inhomogeneous

�(x; x0) e�ed e

R
d

0
�e(x+t!)dt

pdf pm(x; !; x
0) �ee

�ed �e(x
0)e
R
d

0
�e(x+t!)dt

cdf Fm(x; !; x
0) 1� e��ed 1� e

R
d

0
�e(x+t!dt)

sample distance d = � ln(1��)
�e

ln(1� �) =
R d
0 �e(x + t!)dt

Table 3.1: Sampling the position of the next interaction point x0 starting from x. � is a uniformly
distributed random variable in [0; 1], d := kx0 � xk and ! := !xx0 :

pSchlick(k;�) =
1� k2

4�(1� k cos�)2
:

As we use a convex combination of two Schlick bases (see equation 3.3), pscat is given

through

pscat(!; x; !
0) = �1pSchlick(k1;�) + �2pSchlick(k2;�);

where � is the angle between ! and !0.

3.3.2 Propagation Event

Given x and !, the next interaction point x0 is determined by sampling according to the pdf

pprop. For x = xR or x = xI the choice of x0 depends on the light source or camera model

(see section 3.3.1). For x 2 V we want to make pprop proportional to the path absorption �

and to sample pprop with the inversion method3. Table 3.1 shows the relevant quantities for

homogeneous and inhomogeneous media. We obtain the pdf pm for sampling a point in the

medium by normalizing � . The cumulative distribution function Fm is derived by integrating

pm. Inverting Fm leads to the equation for the sample distance d.

Homogeneous Medium

Consider the case of a homogeneous medium in �gure 3.3. First we determine the closest surface

point xS = h(x; !) at distance s := kxS � xk. Then we sample d according to the expression

given in table 3.1. If d � s we choose xS as the new interaction point, otherwise we choose

xd := x+ d!. d < s occurs with probability

Pd :=

Z s

0

�ee
��etdt = 1� e��es;

3Incorporating the inverse square of the geometric term yields a pdf that is computationally too expensive
to sample from.
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Figure 3.3: Sampling the next interaction point in a homogeneous medium.

thus the probability of choosing the surface point is

Ps := 1� Pd = e��es:

This leads to

pprop(x; !; x
0) =

�
pm(x; !; x

0) for interaction in the medium
Ps�(xS � x0) for interaction on the surface

The probability Pd cancels out in the �rst row, as it is also the normalization constant for pm

in the interval [x; xS ]. The above equations imply that the whole ray segment from x to xS is

in the medium. If this is not the case, the pdfs have to be adapted accordingly.

Inhomogeneous Medium

Sampling an inhomogeneous medium is more complicated. Here we do not have an explicit

expression for the sampling distance d, but have to compute d from the implicit equation given

in table 3.1. This is done with a ray marching algorithm [PH89], which accumulates �e along

the ray (x; !) until the threshold ln(1 � �) is reached or the surface point xS is hit. In e�ect,

a ray marching algorithm approximates a one-dimensional integral by dividing the ray into a

number of disjunct segments and evaluating �e at certain points within each segment. We have

implemented two versions of the algorithm:

� Equidistant sampling traverses the ray with constant stepsize �, which is derived from a

user-speci�ed base stepsize �base, taking into account various factors such as the extend

of the medium and the distance to the observer.

� Adaptive sampling starts with the same � as equidistant sampling, but alters the stepsize

during the traversal. If the di�erence between subsequent samples is bigger than a user-

speci�ed threshold, the stepsize is halved. If the di�erence falls below a lower threshold,

� is doubled.

A preliminary experimental comparison of the two methods did not yield signi�cant di�erences

in the quality of the rendered images. Our test data set was very limited, however, and further
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xi = i �� x

�(x)

(a) Equidistant Sampling

�0
�1

�(x)

xxi = (i+ �i)�

(b) Strati�ed Sampling

�

xxi = (i+ �)�

�(x)

�

(c) Random O�est Sampling

Figure 3.4: Di�erent ray marching strategies. The left picture shows the sampling method,
illustrated for box integration. On the right is an image generated with this method. Equidis-
tant sampling clearly reveals aliasing artefacts which are no longer visible in the randomized
versions of the ray marching algorithm.

investigations are necessary for a �nal judgement.

Equidistant and adaptive sampling both sample �e at the beginning of each ray segment. This

produces visible artefacts due to aliasing as depicted in �gure 3.4 (a). The explanation for the

layers in the cloud is simple: Light is emitted downwards from the light source at the ceiling
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and hits the cloud. As the traversal of the cloud data starts at the top surface of its cubic

bounding box, the interactions in the medium occur roughly within the same horizontal layers,

whose thickness is determined by the size of the ray segments, i.e. the stepsize of the traversal.

Consequently, di�erent transport paths that contribute to the same pixel are correlated. These

e�ects can be eliminated by randomly perturbing the sample point within each ray segment,

a method known as jittering. This leads to strati�ed sampling, a Monte Carlo method for

numerical integration. While strati�ed sampling reduces aliasing (see 3.4 (b)), it is not a

particular e�cient sampling method for this kind of integration problem. Recall that Monte

Carlo integration is particularly suitable for high-dimensional integrals with discontinuities in

the integrand. Here we have a one-dimensional, rather smooth continuous function, favouring

deterministic approaches. Therefore we implemented a combination of equidistant and strati�ed

sampling. Instead of using independent random samples in each ray segment, we choose an

initial random o�set that is applied to all subsequent samples (see 3.4 (c)). This breaks the

correlation of di�erent transport paths (and hence reduces aliasing) but keeps the integration

essentially deterministic and thus more e�cient. We found an e�ciency gain of about 30-45%

for random o�set sampling as compared to strati�ed sampling, which leads to a decrease in the

total computation time of about 10% for the cloud scene of �gure 3.4. As with the comparison

of equidistant and adaptive sampling, further studies are necessary to quantify these bene�ts

for a broader range of inhomogenous media.
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Chapter 4

Simulation

In this chapter, we discuss two algorithms that evaluate the measurement equation 2.6 based

on the path integral formulation:

� Bidirectional Path Tracing (BDPT) combines the ideas of path tracing and particle tracing

and has been independently presented by Veach and Guibas [VG94] and Lafortune and

Willems [LW93]. Although both algorithms are similar, they di�er in the underlying

theoretical framework. Veach and Guibas derive their algorithm from the path integral,

whereas Lafortune and Willems base their work on the global re
ectance distribution

function.

� Metropolis Light Transport (MLT) is a new method [VG97] that applies the sampling

technique known as Metropolis sampling to the path integral (see section 4.2).

4.1 Bidirectional Path Tracing

Bidirectional path tracing utilizes multiple importance sampling (see section 3.1) to compute

an unbiased estimate of the path integral 2.7.

Path Psensor, Plight
FOR i=1 TO NumOfPixels DO

FOR j=1 TO Oversampling DO
Psensor = GenerateSensorPath (i)
Plight = GenerateLightPath ()
ConnectPaths (Psensor, Plight)
ComputePixelContribution (i)

END
END

Figure 4.1: Structur of the bidirectional path tracing algorithm

Figure 4.1 shows the pseudocode of the algorithm. For each pixel we generate a pair of

subpaths1; a sensor subpath that starts at the importance source xI and a light subpath starting

at the radiance source xR. These subpaths are connected at certain vertices, possibly producing

1We will call a path a complete or valid path if it starts at the radiance source xR and ends at the importance
source xI , otherwise the expression subpath or path section will be used.
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light subpath

connections

sensor subpath

�x3;0 = xR $ z3z2z1z0xI

�x3;1 = xRy0 $ z2z1z0xI

�x3;2 = xRy0y1 $ z1z0xI

�x3;3 = xRy0y1y2 $ z0xI

�x3;4 = xRy0y1y2y3 $ xI
deterministic

z3

z2

z1

z0

xI xr

y0

y1

y2

y3

Figure 4.2: All methods to generate a path of length three. The $ shows the position of the
deterministic connection.

a number of valid paths whose contribution to the image is stored at the relevant pixel position.

The subpaths are created independently of each other through a series of scattering and prop-

agation events as described in section 3.3. Connecting the two subpaths is done as follows:

Assume that we have generated a sensor subpath �zk = xIz0 : : : zk and a light subpath

�yk = xRy0 : : : yk. We want to compute all valid paths �xk;i of length k, where i + 1 vertices

are taken from the light subpath and k � i+ 2 are taken from the sensor subpath2. Figure 4.2

shows all possible con�gurations for a path of length three. We can distinguish three di�erent

types of connections:

� i = 0, i.e. �xk;0 = xR $ zk : : : z0xI :

This path is only valid if the sensor subpath ends on a light source.

� 0 < i < k + 1, i.e. �xk;i = xRy0 : : : yi $ zk�i�1 : : : z0xI :
Here we have to check with a shadow ray if yi and zk�i�1 are mutually visible, i.e. �xk;i

is valid if no object blocks the connection.

� i = k + 1, i.e. �xk;k+1 = xRy0 : : : yk $ xI :

yk has to be a point on the sensor for this path to be valid.

Note that the connection step is purely deterministic, since once we have chosen the endpoints

of the light and sensor sections, the connecting edge is �xed. The probability density pk;i for

generating a path �xk;i is therefore the product of the pdfs of the two path sections �xk;i consists

of. As an example, consider the path �x3;2 of �gure 4.2. Its pdf is the product of the pdf of the

light section xRy0y1 and the pdf of the sensor section xIz0z1.

Each pk;i describes a distinct method for evaluating the path integral, e.g. pk;0 corresponds to

pure Monte Carlo path tracing. Methods have their characteristic strengths and weaknesses as

illustrated in �gure 4.3. The two upper diagrams show paths that are generated with method

2Note that with the two arti�cial vertices xR and xI a path of length k has k + 3 vertices.
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Figure 4.3: Schematic illustration of the behaviour of two sampling methods. Direct lighting
(top row) is superior where path tracing (bottom row) fails and vice versa.

p2;1, i.e. direct lighting calculation. In the left picture the surface is highly specular and the

solid angle subtended by the light source at z1 is relatively large. Thus by sampling a point y0

on the light source and connecting it with z1, we have a high probability that the BSDF at z1

will have a low value or even be zero. This entails a low measurement contribution and therefore

fj(�x2;1)=p2;1(�x2;1) will be small for such paths. There is, however, a small set of points on the

light source which leads to valid paths with a high measurement contribution. Consequently,

the estimate of method p2;1 will have a high variance for this kind of lighting situations. On

the other hand, method p2;1 performs much better in the upper right picture, where we have a

perfectly di�use surface and a small light source. Here the BSDF is constant for all directions,

so that the position of y0 does not signi�cantly a�ect the measurement contribution. Thus

direct lighting will produce a low-variance estimate for these con�gurations.

The exact opposite is true for method p2;0, shown in the lower row of diagrams. This tech-

nique will perform poorly on right picture, because sampling according to the BSDF at z1 will

generate many re
ected rays that will not hit the light source and thus have zero measurement

contribution. In the situation of the left picture, however, variance of the estimate will be much

lower, as the re
ected rays will all hit the light source in the same small region and thus have

a similar measurement contribution.

The essence of bidirectional path tracing is that it combines all pk;i in a multiple sample

estimate, which preserves the strengths of each single method. The estimate can be expressed

in a weighted sum as

F1 =

kmaxX
k=1

k+1X
i=0

wk;i(�xk;i)
fj(�xk;i)

pk;i(�xk;i)
; (4.1)
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with weights wk;i. The goal is to choose the weights such that the variance of F1 is minimal.

Veach and Guibas have presented various heuristics to compute the weights of 4.1 [Vea97]. In

accordance with their results and the analysis of Kollig in [Kol99], we found the power heuristic

to be most e�ective. The wk;i combine all pdfs for generating a path of length k in

wk;i =
p�k;iP
j p

�
k;j

:

We obtained the most satisfactory results with the parameter choice � = 2; � = 1 leads to the

balance heuristic, which in general is slightly less e�ective.

4.2 Metropolis Light Transport

Metropolis sampling has been developed in the context of computational physics, where high-

dimensional integration problems dominate the computations [MRR+53]. The �rst application

of this sampling method to global illumination, the Metropolis light transport (MLT) algorithm,

has been presented by Veach and Guibas in [VG97]. Contrary to bidirectional path tracing,

the MLT algorithm does not estimate single pixel values, but tries to approximate the intensity

distribution of the whole image at once. To do so, the algorithm generates a random walk

�x0; �x1; : : : through path space, such that all �xi are valid paths from a light source to the sensor.

For each �xi it determines the pixels of the image, whose �lter support contains the image

location of �xi, and updates their value accordingly. The brightness of a pixel thus depends on

the number of paths that cover its �lter support. The desired image is obtained by distributing

the paths according to their contribution to the �nal image, speci�ed in the image contribution

function f(�x) (see below). To generate a random walk distributed according to f(�x), we use

Metropolis sampling, also known as M(RT)2 sampling.

Section 4.2.1 brie
y reviews the basic idea of Metropolis sampling and section 4.2.2 explains

how it can be adapted to the path integral. Then we describe the MLT algorithm in more detail

and present our extensions to incorporate participating media.

4.2.1 Metropolis Sampling

Let 
 be a state space, f : 
 ! IR
+
0 a non-negative function and X0 2 
 an inital state.

The Metropolis sampling algorithm generates a Markov chain X0; X1; : : :, which in the limit is

distributed proportionally to f .

Xi+1 is a random variation of Xi according to the transition function K, where K(X ! Y ) is

the pdf for the transition from X to Y . We can derive the pdf for Xi+1 as

pi+1(X) =

Z



K(Y ! X)pi(Y )d�(Y );

where pi is the density for Xi and � is a measure on 
. This recursively de�nes a series of

density functions, which converges to the stationary distribution p, given that K(X ! Y ) > 0,

8X;Y 2 
. The idea of Metropolis sampling is to construct a transition function K such that

the resulting stationary distribution is proportional to the given f .

A sample Xi+1 of the Markov chain will be generated by �rst proposing a mutation Yi of Xi

according to the tentative transition function T , where T (X ! Y ) denotes the probability

density for mutating X to Y . Then we compute the acceptance probability � and set Xi+1 := Yi
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with probability �(Xi ! Yi) and Xi+1 := Xi with probability 1� �(Xi ! Yi). The transition

function K(Xi ! Yi) is then proportional to f(Xi)T (Xi ! Yi)�(Xi ! Yi), if pi / f . The

acceptance probability is subject to a condition known as detailed balance:

f(X)T (X ! Y )�(X ! Y ) = f(Y )T (Y ! X)�(Y ! X);

which ensures that the stationary distribution p is proportional to f . Making �(X ! Y ) and

�(Y ! X) as large as possible leads to fast convergence of the pi, hence we choose

�(X ! Y ) := min

�
1;
f(X)T (X ! Y )

f(Y )T (Y ! X)

�

Note that the samples generated by the Metropolis sampling algorithm are highly correlated.

While this does not a�ect the expect value, we can no longer apply common Monte Carlo

variance tests.

4.2.2 Metropolis Sampling for the Path Integral

Recall that we want to evaluate the measurement equation

Ij =

Z



fj(�x)d�(�x): (4.2)

The image contribution function f is de�ned through

fj(�x) = hj(�x)f(�x);

where hj contains all factors of fj that depend on the sensor W
(j)
e and f(�x) := 0 for all

incomplete paths. Let b denote the total radiant power passing through the image plane, i.e.

b :=

Z



f(�x)d�(�x):

We can now rewrite equation 4.2 as

Ij =

Z



hj(�x)f(�x)d�(�x)

= b

Z



hj(�x)
f(�x)

b
d�(�x):

If we interpret p := f=b as a density distribution (with normalization constant 1=b) we get

Ij = E

"
b

N

NX
i=1

hj(�xi)d�(�xi)

#

for a path sequence of length N . Thus to compute an image we need to evaluate b and generate

a random walk in 
 according to the density f=b.

One problem of Metropolis sampling is that the samples Xi are only asymptotically distributed

according to p, yet in the estimate we treat all samples as if their pdf was p. This causes an

initialization error, which can be diminished by discarding a suitable number k of samples at

the beginning of the random walk, until the pi have approximately converged to p. Determining

k is di�cult, however; if k is too large, we will needlessly waste computation time, if k is too
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Path �x, �y
double b
Image I
ClearImage(I)
b = ComputeImageBrightness()
�x = GetInitialPath()
FOR i=1 TO NumOfMutations DO

�y = Mutate (�x)
� = AcceptanceProb (�x! �y)
IF Random() < � THEN �x = �y
RecordSample (I, �x, b)

END

Figure 4.4: Metropolis light transport algorithm

small, the estimate will greatly depend on the initial state X0, which introduces to so called

start-up bias. We will show in section 4.2.3 how we can avoid start-up bias by carefully choosing

the initial path of the random walk.

Figure 4.4 gives an overview of the MLT algorithm. First the total image brightness b is

estimated and an intial path �x is chosen (see below). This path is then iteratively mutated

according to one of several mutation strategies (see section 4.2.4) and the corresponding ac-

ceptance probability is computed. The mutated path is either accepted or rejected and the

contribution of the path is recorded at the relevant pixel positon of the image.

4.2.3 Initialization

To compute b we adapt the multiple sample estimate 4.1 as

b1 =

kmaxX
k=1

k+1X
i=0

wk;i(�xk;i)
f(�xk;i)

pk;i(�xk;i)
;

i.e. we use bidirectional path tracing to approximate the total image brightness. For all scenes

that we rendered with the MLT algorithm (see chapter 5) a small number (N 2 [103; 105]) of

sensor and light subpath pairs proved su�cient for a reasonable approximation bN of b.

The initial path for the Metropolis stage of the algorithm is selected randomly from the set of

paths used in calculating bN . The pdf for choosing �x as initial path is

pN(�x) =
f(�x)

bN
:

This means that paths with a high image contribution are more likely to be chosen as intial path.

Note that limN!1 pN = f=b and that if �x0 was distributed according to f=b, all subsequent

samples would be too. Thus by increasing N we not only improve the accuracy of b, but also

diminish the initialization error. Note that the MLT algorithm using the above initialization

step is unbiased, i.e. when averaging over many runs the result will converge towards the correct

solution.

4.2.4 Mutation Strategies

The �rst step in generating the next sample of the random walk is to propose a mutation.

Metropolis light transport uses a set of di�erentmutation strategies and together they specify the
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tentative transition function T . Veach and Guibas identi�ed a number of desirable properties

for mutation strategies in [VG97]:

� Ergodicity

To ensure convergence of the random walk to the same stationary distribution independent

of the initial state, we require T (X ! Y ) > 0 whenever f(X) > 0 and f(Y ) > 0.

� High acceptance probability

A low acceptance probability leads to long path sequences with the same sample, which

increases the variance of the estimate.

� Large changes to the path

To su�ciently cover the path space even for short random walks, mutation strategies

should include substantial changes the current path.

� Changes to the image location

As we are interested in the intensity distribution on the image plane, frequent changes to

the sensor point are desirable.

� Low cost

The e�ciency of a mutation strategy depends on the amount of computation time required

to generate the mutation. Since ray intersections are the most expensive operations in

doing so, we want to minimize their number.

Obviously, some of these properties compete with each other, e.g. large changes to the cur-

rent path will often require many ray intersections and thus entail high computational cost.

Therefore, mutation strategies have to be chosen carefully, always keeping in mind the tradeo�s

between e�ectiveness and e�ciency. By using a set of di�erent mutation strategies, each specif-

ically designed to meet a subset of the above goals, we can balance these tradeo�s. Note that

at least one mutation strategy has to be ergodic to assure convergence to a unique stationary

distribution.

In the following, �x = xRx0 : : : xkxI denotes the current transport path, i.e. x0 is a point on

a light source and xk is a point on the sensor. Similarly, �y = xRy0 : : : ylxI is the proposed

mutation of �x.

Bidirectional Mutation

Bidirectional mutation is central to the algorithm. Since any valid path is created with a

probability bigger than zero it ensures ergodicity and is also responsible for large changes to

the current path. Generating the mutated path can be divided into three steps as depicted in

�gure 4.5. First we choose two vertices of �x and delete the section between these vertices. This

creates a sensor subpath and a light subpath, both of which are extended through a number of

scattering and propagation events. Finally we connect the two subpaths as described in section

4.1 to obtain �y. The mutation is immediately rejected, i.e. the acceptance probability is set

to zero, if the connection is not valid. Note that if xR and xI are chosen in the �rst step, a

completely new path is generated.

The deleted section is determined by importance sampling of all a priori known factors of the

acceptance probability as described in [Kol99]. The length of the inserted path section lins is

sampled according to an empirical pdf pins, depending on the length ldel of the deleted section:
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section to end vertices

3. Connect eye and light

1. Choose a subpath to be
deleted

of deleted subpath

sections with shadowray

x3x2x1x0

y4 = x3

y2

y0 = x0 y1 = x1

y3

y2

y0 = x0 y1 = x1

y3

y4 = x3

2. Append eye and light

Figure 4.5: Three steps of a typical bidirectional mutation.

� pins(ldel) := 0:5

� pins(ldel � 1) := 0:15

� pins(ldel � i) := 0:2 � 2�i for i > 1

As the new section is created by extending both the sensor and the light subpath, we choose

the number of added vertices nsensor and nlight on each section uniformly, subject to nsensor +

nlight = lins.

Perturbations

These mutation strategies exploit the fact that small variations to the path most likely lead to

similar image contributions and hence a high acceptance probability. We distinguish two types

of perturbations:

� Scattering perturbations displace the direction vector at a certain vertex.

� Propagation perturbations displace the interaction point along a certain ray segment.

The mutated path is then created by retracing the original path while preserving the scattering

characteristics. This means that the mutated path �y will consist of the same number of vertices

as the original path �x and each vertex of �y will employ the same scattering mode (singular or

regular) as the corresponding vertex of �x.

1. Scattering Perturbations

We have implemented two scattering perturbations:
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Sensor Perturbation

Light Perturbation

light source
image plane

image plane
light source

light source

light source
image plane

image plane

Figure 4.6: Sensor and light perturbation. The distribution of the directional displacement is
indicated at the perturbed edge. The simple case without singular scattering is depicted on the
left. Paths that include singular scattering are shown on the right.

� Sensor perturbation alters the location xk on the image plane by moving it a distance

D in a uniformly distributed direction. The distance D is sampled according to the

pdf

p(D) / 1

D
; D 2 [Dmin; Dmax];

where Dmin and Dmax specify the minimal and maximal distance, respectively. In-

tegrating and inverting p(D) (with an adequate normalization constant) leads to

D = Dmaxe
� ln(Dmax

Dmin
)�
;

with � uniformly distributed in [0; 1].

� Light perturbation perturbs the direction vector from xk�2 to xk�1 using the same

distribution as sensor perturbation. The path is then retraced towards the eye and

the new sensor location yk is determined through the ray from yk�1 to the eye point.

Figure 4.6 illustrates the two types of scattering perturbations. The top right picture

shows a sensor perturbation of a path with two singular scatterings. Starting from the

eye the ray hits the surface of the water and is singularly refracted towards the di�use

pool bottom. As the subsequent scattering is singular as well, we enforce this scattering

mode on the corresponding vertex of �y, in this case creating a completely new path.
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2. Propagation Perturbation

This mutation strategy is speci�cially designed for participating media. If xk�1 2 V0, it
moves this interaction point along the line from xk�2 to xk�1 and connects the new point

yk�1 with the eye to determine the sensor point yk. xk�1 is moved in either direction along
xk�2xk�1, using the same distribution as for the scattering perturbations (see �gure 4.7).

If yk�1 falls outside the medium or xk�1 =2 V0 the mutation is rejected.

light source
image plane

Figure 4.7: Propagation perturbation. The interaction point is displaced according to the
indicated distribution.

In a sense, scattering and propagation mutations are complementary. The �rst perturbs a

direction hoping to obtain a similiar interaction point, while the latter perturbs an interaction

point hoping to obtain a similar direction. The idea of both is to sample path space locally.

Once an important path has been found, neighbouring paths are explored as well. This is

especially bene�cial for bright areas of the image, such as caustics.

An important feature of perturbations is that they alter the image location. This leads to a

better distribution of paths over the image plane and signi�cantly reduces the variance of the

generated images.

34



Chapter 5

Results and Discussion

We have implemented both bidirectional path tracing and Metropolis light transport in C++,

based on the experimental ray tracing kernel McRender [Kel98]. Central to both algorithms

is a class library that provides the sampling methods described in chapter 3. The formalism

introduced in section 3.3 directly matches the implementation. Camera model, emittance func-

tions and scattering models are treated as black boxes with clearly de�ned interfaces and can

easily be extended or improved.

We will �rst discuss some aspects of Metropolis light transport and then compare the algorithm

with bidirectional path tracing. More information on the latter in the context of participating

media can be found in [LW96] and [Arn97].

5.1 Metropolis Light Transport

After computing the total image brightness in the initialization step, the actual Metropolis stage

generates the random walk through path space. We split this second stage into two phases; the

contribution of paths of length one is calculated in a separate pass, as these can be estimated

more e�ciently using standard ray tracing techniques. Metropolis sampling is thus only applied

for paths of length two or more.

As described in section 4.2.4, we use a set of di�erent mutation strategies to propose a mutation

of the current path of the random walk. For each mutation we randomly choose a mutation

strategy by sampling according to a discrete pdf that assigns each strategy a constant proba-

bility. For scenes without participating media, Kollig investigated the e�ects of di�erent pdfs

on the RMS-error and maximum pixel distance1 for a series of test images [Kol99]. He found

that a balanced pdf, i.e one that uses the same weight for each mutation strategy produces

the most satisfactory results. We can generally con�rm these �ndings for the extended set of

mutation strategies. Since we have included the propagation perturbation, there are additional

aspects that need to be considered. Recall that this mutation strategy can only be applied if

the �rst interaction point of the transport path from the sensor lies within a medium. Thus the

acceptance probability will highly depend on the scene environment. If only a small fraction

of the relevant scene volume is occupied by a medium and/or the medium is optically thin,

the acceptance probability will be low on average, which increases the variance of the image.

On the other hand, propagation perturbation is a computationally cheap mutation strategy,

1i.e. the maximal L2-Norm distance of the color value of any pixel with respect to a reference image
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Mutation Set 1: Bidirectional Mutation Mutation Set 2: Bidirectional Mutation &
Propagation Perturbation

Mutation Set 3: Bidirectional Mutation &
Scattering Perturbations

Mutation Set 4: Bidirectional Mutation,
Scattering & Propagation Perturbations

Set 4

Set 3

Set 1

Set 2

Set 4

Set 3

Set 1

Set 2

normalized time
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0
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maximum pixel distance

0
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Figure 5.1: Four di�erent sets of mutation strategies, where all strategies are weighted equally
within each set. The images correspond to a normalized time of 0.25.

at most requiring one ray intersection and one occlusion test. We have analysed the perfor-

mance of di�erent mutation strategies for a test scene with a room that is completely �lled

with a homogeneous medium (see �gure 5.1). The mutation set consisting of all four mutation
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strategies clearly produces the best results. In particular, the RMS error is about 10-20% lower

as compared to mutation set 3. This gain in e�ciency is speci�c to this scene, however. The

decision whether to include propagation perturbation in the set of mutation strategies or not

will depend on the input data.

A potential weakness of MLT is the strati�cation of the samples on the image plane. In contrast

to BDPT, where samples are evenly strati�ed, we have no explicit control over the distribution

of paths across the image plane. Designing a mutation strategy that speci�cally addresses this

issue is problematic: recall that a mutation must always be symmetric, i.e. we need a positive

transition probability for mutating X to Y and vice versa (see section 4.2.1). This symmetry

in connection with the locality of a mutation makes it di�cult to achieve a globally even dis-

tribution of paths on the image plane.

5.2 Comparison of BDPT and MLT

Bidirectional path tracing and Metropolis light transport both evaluate the path integral 2.7, i.e.

are based on the same physical simulation model. For both algorithms there are no restrictions

in the geometry and scattering models that can be supported. The memory requirements of both

methods are similar: Apart from the scene description and the image matrix, there is minimal

additional overhead. In particular, no complex data structures are required and no data needs

to be stored on the geometrical primitives (as with radiosity algorithms, for example). In our

comparison we will therefore concentrate on the quality of the images or, in other words, on

the computation time needed to generate images of comparable quality.

Figure 5.2 gives an example of a volume caustic, generated by light being refracted from a glass

sphere into an isotropic homogeneous medium. The ceiling is indirectly illuminated through

re
ection from the sphere and the medium. These images clearly illustrate the above mentioned

Figure 5.2: A volume caustic rendered with BDPT (left) and MLT (right) in approximately
the same computation time.

unevenness in the sample distribution of the MLT algorithm. More samples are concentrated

in the bright regions of the image, whereas the darker parts are visited by fewer transport

paths. This characteristic feature of MLT is particularly noticable on the ceiling. Immediately

around the light source the MLT image is less noisy than its BDPT counterpart. If we move
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further towards the darker regions, however, this e�ect is reversed and the BDPT image is much

smoother.

Figure 5.3 shows an inhomogeneous medium, where we use hazy Mie scattering to model the

phase function of the cloud. Most of the scene is directly illuminated by a single light source.

For this simple scene, BDPT clearly produces the better image.

Figure 5.3: A cloud rendered with BDPT (left) and MLT (right) in approximately the same
computation time.

Figure 5.4: 100 interconnected rooms rendered with MLT.

Figure 5.5 shows a test scenes with a more di�cult lighting situation. The room is entirely

illuminated by indirect light passing through the half-open door. The scene contains glossy

surfaces, e.g. the 
oor, transparent objects, e.g. the glass ball, and an inhomogeneous medium

"streaming" through the door. Bidirectional path tracing performs poorly in this scene, because

very few connections between the light and sensor subpaths will be valid. Thus for most paths

the measurement contribution will be zero, which appears as noise in the image. Metropolis

light transport is far superior in this setting. The locality of the perturbation strategies leads

to a better coverage of the relevant transport paths. MLT will in general perform better if
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substantial amounts of the transport paths with a high measurement contribution are clustered

in a "small region" of path space. The strong correlation of subsequent samples of the ran-

dom walk ensures that these regions are sampled adequately. This observation is con�rmed in

�gure 5.4. The scene consists of 100 identical interconnected rooms �lled with a homogeneous

medium. Each room has its own light source, yet only very few of these contribute noticably to

the perceived illumination. MLT automatically detects these important light sources without

requiring speci�c optimization methods for such con�gurations.

A possible application in building design is given in �gure 5.6, where the top image shows a

conference room without participating medium. In the lower image the room is �lled with ho-

mogeneous medium to analyse the visibility of the �re exit signs in case of smoke development.

Figure 5.7 illustrates that Metropolis light transport is well suited for scenes with high geo-

metrical and lighting complexity. The scene Candlestick Theatre contains 102 light sources,

thousands of geometrical primitives a variety of surface materials. The scene Naval Cruiser is

even more complex and consists of 595 light source and hundreds of thousands of surfaces. An

inhomogeneous medium is included in both scenes. While rendering times would be prohibitive

for BDPT, MLT produces high-quality images within acceptable time bounds (see table 5.1).

Scene Image Rendering Oversampling/ Computation

Resolution Algorithm Mutationrate Time (min.)

Volume Caustic 352�288 BDPT 100 17.3

MLT 250 17.5

Cloud 352�288 BDPT 100 20.9

MLT 200 23.2

Table Room 352�288 MLT 570 18.6

100 Table Rooms 352�288 MLT 570 52.2

Invisible Date 768�576 BDPT 160 692.4

MLT 700 652.8

Conference Room (no medium) 768�576 MLT 800 510.0

(with homogeneous medium) 768�576 MLT 1000 546.4

Candlestick Theatre 768�576 MLT 1000 1036.8

Naval Cruiser 768�576 MLT 700 601.9

Table 5.1: Computation times for the images of this chapter. All images were rendered on a
DEC Alpha Station with 333 MHz. Oversampling denotes the number of samples per pixel for
BDPT, Mutationrate is the number of mutations per pixel for MLT.
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Figure 5.5: The scene Invisible Date rendered with BDPT (top) and MLT (bottom) in approx-
imately the same computation time.
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Figure 5.6: A conference room with and without participating medium rendered with MLT.
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Figure 5.7: Two complex scene models rendered with MLT: Candlestick Theater (top), Naval
Cruiser (bottom).
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Chapter 6

Conclusions

6.1 Summary

We have given a derivation of the light transport equation for participating media in the context

of radiative transfer. Based on this equation we generalized the path integral formulation for

light transport to incorporate volumetric scattering interactions. To e�ciently sample inho-

mogeneous media we improved the standard ray marching algorithm by combining equidistant

and strati�ed sampling. We implemented two global illumination algorithms, bidirectional path

tracing and Metropolis light transport, and analysed their behaviour for a wide range of inputs.

Both methods are physically based, general-purpose, robust Monte Carlo algorithms that are

capable of generating high-quality photorealistic images. We found that Metropolis light trans-

port is an essential improvement over bidirectional path tracing, due to its ability to e�ciently

handle di�cult lighting situations and scenes with high geometrical complexity.

6.2 Improvements and Future Research

As described in section 5.1, separating the calculation of paths of length one from the actual

Metropolis stage yields a better performance of the algorithm. This approach could be taken

further to include direct lighting. To this point, we have not implemented explicit direct lighting

calculations, as we want to keep the algorithm robust for scenes with many light sources,

a setting generally considered di�cult for standard direct lighting methods. Shirley et al.

presented a method for dealing with this situation [SWZ96] and it might be worthwhile to

integrate this approach into our implementation.

Various extensions to our light source model are possible:

� a generalization of the di�use emitters to support more sophisticated emittance functions

such as directional light sources.

� a realistic simulation of daylight to render outdoor scenes with clouds, fog or smoke with

a high degree of realism.

� emitting media such as 
ames or plasma.

More work needs to be done to optimize the ray marching algorithm. A hierarchical approach

may be suitable for large data sets, e.g. using a wavelet representation to store the medium

data. The relevant ray section could then be traversed adaptively at di�erent levels of detail.
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The propagation perturbation is just one possible mutation strategy that is speci�cally de-

signed for participating media. Other variations are conceivable, e.g. perturbation of di�erent

interaction points or a mutation strategy that takes into account the density gradient of inho-

mogeneous media.

Further research is necessary to determine the optimal choice for the various parameters of

the MLT algorithm. The e�ects of the empirical pdfs used in the mutation strategies (see

section 4.2.4) and the weights for selecting from di�erent strategies need to be studied in more

detail.

Parallelizing both algorithms is straightforward, e.g. di�erent processes could compute separate

images that are then averaged to obtain the �nal result.
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Appendix A

List of Symbols

IR set of real numbers
V closed volume in IR

3

@V boundary of V
V0 All points of V not on the boundary
S2 unit sphere in IR

3

A area measure
V volume measure
A?! projected area measure
� solid angle
�?x projected solid angle
	 phase space
� phase space 
ux
L radiance
Li incident radiance
Lo exitant radiance
LVe volume emittance
LSe surface emittance
Le emittance
Li;e incident emittance
fp phase function
fs bidirectional scattering distribution function (BSDF)

f̂ scattering function
�s scattering coe�cient
�a absorption coe�cient
�e extinction coe�cient
� path transmittance
h ray casting function
TV volume light transport operator
TS surface light transport operator
T light transport operator
Ij measurement of sensor j

W
(j)
e sensor responsivity


l
k set of paths of length k


 set of all �nite length paths
�lk measure on 
l

k

� path space measure
Vg visibility function
G geometric term
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