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Abstract
Positron emission tomography is a nuclear imaging technique well known for its use

in oncology for cancer diagnosis and staging. A PET scanner is a complex machine

which comprises photodetectors placed in a ring configuration that detect gamma

photons generated through annihilation between an electron and a positron. The

accuracy with which the gamma photons are detected determines the quality of the

extracted information, which is then further analysed through image reconstruction

algorithms. Therefore, the design and optimization of photodetectors and their read-

out electronics is very important for the advancements of PET scanners. For more

than a decade, silicon photomultipliers have been researched extensively and became

the photodetectors of choice for this application. High performance readout elec-

tronics is essential in order to measure data with high precision and various readout

schemes have been proposed over the years for PET photodetector modules. As PET

scanners are complex systems, research is dedicated individually to different parts.

This thesis focuses on the design of integrated readout electronics for time-of-flight

PET application. Consequently, the readout of three SPAD-based sensors was de-

signed. The first sensor, Blumino represents the first fully integrated analog silicon

photomultiplier with on-chip discrimination and time conversion. The design was

implemented in 350 nm CMOS technology node. The chip serves as a prototype for

future fully integrated A-SiPMs as PET photodetectors due to its simplicity and com-

pactness. The second sensor, Blueberry, advances the previous design by exploring

the benefits of multi-digital silicon photomultipliers and 3D integration. The sensor

was designed in a 3D-stacked FSI CMOS technology node enabling features such as:

improved spatial and timing resolution (a TDC design with on-chip error correction

algorithm of 15 ps LSB). The third sensor, Smarty, is an on-chip fully reconfigurable

neural network with 10 TDCs designed in 16 nm FinFET technology. The chip is capa-

ble of executing 363 MOPS and was designed for pre-processing and data compression

at the sensor level. Various neural network configurations were explored and trained

using genetic algorithms. The architecture was proven to be viable for reconstructing

radioactive source positions in a coincidence setup.
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Résumé
La tomographie à émission de positons (TEP) est une technique d’imagerie nucléaire

bien connue pour son usage en oncologie pour diagnostiquer les cancers et identifier

leur progression. Le scanner TEP est un appareil complexe contenant des photodétec-

teurs placés dans un dispositif circulaire et qui détectent des photons gamma émis

suite à l’interaction entre un électron et un positon. La précision avec laquelle les pho-

tons gammas sont détectés établit la qualité de l’information recueillie, laquelle est

ensuite analysée par des algorithmes de reconstruction d’image. Par conséquent, la

configuration et l’optimisation des photodétecteurs et leurs composants électroniques

de lecture sont très importants pour le développement des scanners TEP. Pendant

plus d’une dizaine d’années, les photomultiplicateurs en silicium ont été l’objet de

nombreuses recherches et sont devenus des photodétecteurs de choix pour la TEP.

Les performances élevées des composants électroniques de lecture sont essentielles

dans la mesure de données de grande précision et des typologies variées de lecture

ont été proposées depuis des années pour les modules photodétecteurs TEP. Etant

donné que les scanners TEP sont des systèmes complexes, les recherches ciblent les

différentes parties du scanner.

Cette thèse a pour objet le design des composants électroniques de lecture inté-

grés pour la TEP incluant le temps de vol. Pour ce faire, la lecture de trois capteurs

basés sur la diode à avalanche de photon unique (SPAD) a été créée. Le premier cap-

teur, Blumino, représente le premier photomultiplicateur analogique intégré avec un

comparateur et un convertisseur de temps (TDC) sur puce. Son design a été réalisé

avec un nœud de technologie de 350 nm CMOS. Le circuit sert de prototype avec un

photomultiplicateur analogique en silicium (A-SiPM) entièrement intégrés pour les

futurs photodétecteurs TEP en raison de sa simplicité et de sa compacité. Le deuxième

capteur, Blueberry, a une conception plus complexe qui a fait avancer le design pré-

cédent en explorant les avantages des photomultiplicateurs multi-numériques en

silicium et de l’intégration 3D. Le capteur a été conçu dans une technologie de nœud

FSI CMOS empilé en 3D permettant la fonctionnalité d’une résolution spatiale et

temporelle avancée (design des TDC sur puce possédant un algorithme de correction

d’erreurs). Le troisième capteur, Smarty, est un réseau sur puce de neurones artificiels
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Résumé

entièrement reconfigurable avec 10 TDCs réalisé en technologie 16 nm FinFET. La

puce est capable d’exécuter 363 méga opérations par seconde (MOPS) et elle a été

configurée pour pré-traiter et compresser des données au niveau du capteur. Diverses

configurations de réseaux neuronaux ont été explorées et entraînées en utilisant des

algorithmes génétiques. La conception a démontré être viable pour reconstruire des

positions de sources radioactives dans une configuration de coïncidence.

Mots clés : tomographie à émission de positons (TEP), temps de vol (ToF), diode

à avalanche de photon unique (SPAD), convertisseur temps-numérique (TDC), réseau

de neurones artificiels (ANN), résolution temporelle de coïncidence (CTR), recons-

truction.
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1 Introduction

Over time, medical imaging techniques have consistently evolved with numerous

high-quality systems being developed to facilitate diagnosis and treatment. Positron

emission tomography (PET) scanners are key medical tools heavily used in oncology.

Unfortunately, the global inequities in access of PET scanners is worrying, especially

in underdeveloped countries. As recently reported in [1], based on the statistical

model the authors developed, it was revealed that at least 96 countries should increase

their number of available PET scanners. The model takes into consideration the needs

of patients with 6 different types of cancer. The high production cost of PET scanners,

along with their limited available number, especially in underdeveloped countries

is an issue addressed in different socio-economic studies and significant effort is

dedicated towards solving it [2]–[4].

This chapter offers an overview of PET and it serves as an introduction for differ-

ent concepts presented in the thesis. The thesis goals and motivation, along with

the thesis contributions and structure are further presented. The main focus of this

thesis is related to electronics developed for photodetectors mainly used for positron-

emission tomography application.

1.1 Medical imaging

Medical imaging techniques are used to image the human body for either clinical

analysis, medical diagnosis, or monitoring health conditions. Conceptually, medi-

cal imaging techniques can be classified as either structural, functional or both [5],

[6]. Structural imaging is used for the visualization and analysis of the anatomical

properties of the body part that is imaged. Information about different geometric

quantifications such as size, volume and thickness of a particular imaged structure
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can be obtained.

Functional imaging is mainly used for detecting and monitoring the metabolic pro-

cesses inside the object tissue or organ being imaged, such as blood flow, chemical

composition, and absorption [7], [8]. Functional imaging modalities, such as PET

and single-photon emission computed tomography (SPECT) make use of different

positron-emitting radiopharmaceuticals (radiotracers). Fluorine-18 fluorodeoxyglu-

cose (18F −F DG) which is a glucose analog, is a frequently used radiotracer in clinical

oncology due to its specificity in some specific cancer types [9], [10].

There are also medical imaging techniques which can be classified as either structural

or functional, for example magnetic-resonance imaging (MRI). This technique is ei-

ther functional or structural, depending on which kind of information is obtained

from the performed scan. In the case of structural MRI scans, the anatomical structure

of a body part is imaged, while in the case of a functional MRI (FMRI) scan, metabolic

process information is obtained.

1.2 Introduction to positron emission tomography

Positron emission tomography is a functional imaging technique which is heavily used

in clinical oncology to diagnose and monitor the evolution of different tumors and to

search for metastases inside the body [9], [10]. PET, as an in vivo functional imaging

technique makes use of tracers labelled with radioisotopes. In order to conduct a PET

scan, the patient is injected with a short-lived radioactive tracer isotope, the most

frequently used one being 18F −F DG . 18F −F DG concentrates in areas with high

metabolic activity, which includes cancerous tumors, and an image of the area of

interest is obtained.

After the patient has been injected, the radioisotope undergoes positron decay, emit-

ting a positron. The positron travels for a short distance within the tissue (positron

range), losing its kinetic energy, and then interacts with an electron in a process called

annihilation as depicted in Figure 1.1. An annihilation event results in two gamma

rays with similar energetic (511 keV) and geometric profiles (180 degrees), emitted in

almost opposite direction in a system.

The back-to-back emission pair of 511 keV annihilation gamma-rays travels in the

body and is then absorbed by scintillators. A conceptual representation of a PET de-

tector ring is depicted in Figure 1.2. The scintillators absorb the annihilation photons,

converting their energy into visible and/or ultraviolet photons. The amount of light
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γ
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ELECTRON
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Figure 1.1: Conceptual representation of the positron range. The positron-emitting
radionuclide emits a positron which travels for a short distance, called the positron
range, until it annihilates with an electron and produces a pair of gamma rays. Adapted
from [11].

Figure 1.2: Conceptual representation of a PET ring detector. The PET detector module
is comprised out of a scintillator and a photodetector.
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produced by the scintillator is proportional to the amount of energy deposited in

it by the incoming particle. On average, this process results in an optical pulse of

approximately 104 photons, with a duration of tens of nanoseconds depending on

the scintillator material [12]. The scintillator’s emitted light corresponds to a specific

emission spectrum [13]. The visible photons are further detected by the photode-

tectors coupled with scintillators whose role is to convert the scintillation light into

electronic signals. A conceptual diagram of a scintillator coupled with a photodetector

is depicted in Figure 1.3.

Considering the emission profile, if two gamma photons of 511 keV are detected

in coincidence, i.e. within a time window of a few ns, the annihilation point is located

along the line-of-response (LOR) between the two crystals whose detectors registered

the electronic signal. A very large number of LORs has to be collected so that a tomo-

graphic image of the tracer distribution within the subject can be reconstructed [12].

Two sample images acquired in clinical studies with the Vereos PET/CT system are

illustrated in Figure 1.4.

Ph
ot
od
et
ec
to
r

Scintillator
Gamma
photon

Figure 1.3: Conceptual representation of a scintillator coupled with a photodetector.
The gamma photon strikes the scintillator and a large number of visible photons are
produced.

1.2.1 Time-of-flight PET systems

In a non time-of-flight (ToF) PET system the annihilation point position is unknown

over the entire LOR due to its uniform probability. Compared to a ToF-PET scanner

where the emission point along the LOR is determined by the difference in the detec-

tion times of the annihilation photons (t2 − t1). PET scanners based on the non-ToF

principle present a significant lack of precision compared to ToF-PET scanners. The
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1.2 Introduction to positron emission tomography

(a)

(b)

Figure 1.4: Sample images acquired in clinical studies with Vereos PET/CT system at
The Ohio State University. Oncology Whole Body - Fast Acquisition a) 75 yo M, 58 kg,
F-18 FDG, 81 sec total acquisition time , b) 102 kg, F-18 FDG, 15 min acquisition [14].

two principles are shown in Figure 1.5.

The position uncertainty ∆x is given by the following equation :

∆x = c × ∆t

2
, (1.1)

where c is the speed of light in vacuum and ∆t is the coincidence timing resolution

(CTR) of the scanner [12]. CTR is one of the key parameter in a PET scanner as it deter-

mines the ability of the detectors to resolve the difference in interaction times of two

gammas. CTR represents the full-width-half-maximum (FWHM) of the differences in

time of the detected coincidences.
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(a) (b)

Figure 1.5: a) non-ToF-PET. Emission point precision uniform distribution along the
LOR. b) ToF-PET. Emission point precision along the LOR determined by t2 − t1.

Over time, CTR values have improved considerably, arriving at around 200 - 300

ps FWHM [15]–[17] in clinical systems by improving the photodetector technology

as well as the scintillation material along with readout electronics. Impressive CTR

values below 100 ps have been reported in experimental measurements in recent

works such as [18]–[23].

1.2.2 Incertitude sources in a PET system

The main objective of a PET scanner is to produce high quality images, facilitating the

correct diagnosis and treatment of different diseases. Various factors can contribute to

PET image quality, such as positron range, photon non-collinearity, detector geometry,

parallax error.

The positron range represents one of the physical limitations of spatial resolution

in PET systems [24]–[26]. The distribution of the end points (the points where the

positron-electron annihilation occurred) contributes to the spatial resolution of a

PET system [25]. The positron range is also dependent on the medium where the

positron is emitted. Depending on which radionuclide is used, the emitted positrons

have different energies, for example 18F has an endpoint energy of 0.64 MeV [26], [27].
18F −F DG is usually preferred due to its specificity. A conceptual representation of

the positron range is depicted in Figure 1.1.
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1.2 Introduction to positron emission tomography

Another possible source of error that can affect the image quality is the non-collinearity

of the annihilation photons. It is not always the case that after annihilation, the two

photons travel in exact opposite directions (a LOR of 180 degrees). In fact, the initial

two particles are often not completely at rest. In such cases, the photons will deviate

slightly from a 180 degree LOR, as to obey conservation of momentum as illustrated

in Figure 1.6. Even a small deviation can significantly deteriorate the image quality.

511 keV

γ
γ

511 keV

POSITRON

ANNIHILATION

RANGE

POSITRON EMITTING 

RADIONUCLIDE

ERROR

Figure 1.6: Non-collinearity representation. Two annihilation photons which travel in
opposite direction with a deviation from the 180 degrees line. Adapted from [11].

Another PET source of error is the parallax error which represents the misplacement of

the LORs. There are events that occur away from the center of the PET scanner [26]. As

a result, these events do not arrive perpendicularly to the scintillators’ entrance face

as illustrated in Figure 1.7. The error of the correct estimation of the corresponding

LOR depends on the depth-of-interaction (DOI) of the gamma inside the crystal.

E
R
R
O
R

Figure 1.7: Parallax error. Misposition of LORs for events that occur away from the
center of the scanner.
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A low signal-to-noise ratio (SNR) can degrade the quality of an image. Assuming

an analytical reconstruction algorithm, no random coincidences and a cylindrical

phantom the gain in SNR is given by the following equation:

G AI NSN R =
p

D/∆x, (1.2)

where D is the size of the object being imaged [28]. The image SNR is affected by

the scattered and random coincidence events [29], [30]. In some cases, the gamma

loses partially its energy by scattering in the environment and this effect is called

Compton scattering. Scattered events are events in which at least one of the photons

has scattered inside the patient’s body before being detected [12]. An energy filter is

applied in order to select the 511 keV events and in some cases, the scattered events

can be detected within the energy filter and registered as valid coincidences. An

example of scattered events is illustrated in Figure 1.8.

Figure 1.8: Example of a scattered event. The two gammas are deviated from a 180
degrees LOR due to scattering.

Another error source comes from the random coincidence events. Random coinci-

dence events do not originate from the same annihilation event, however, they can be

registered as being valid coincidences. An example of how random events can look

like is depicted in Figure 1.9. Statistical fluctuations of these events worsen the image

SNR in a PET scanner.

The image SNR can also be influenced by other factors, such as the scan acquisi-

tion time, the amount of injected radiotracer, and the system sensitivity. System

sensitivity is defined as the detected fraction of coincidence events. A higher system

sensitivity translates into a lower injected radiation dose; a very desirable attribute of

8



1.2 Introduction to positron emission tomography

Figure 1.9: Example of two random events. The events have different origins but they
are accounted for as being part of the same event, resulting in a wrong LOR being
registered by the system.

PET scanners.

1.2.3 Inorganic scintillators for ToF-PET

Over the past several decades, significant effort has been placed into improving scin-

tillator performance for medical imaging [31]–[35]. Inorganic scintillators are high-

density transparent crystals that convert high-energy radiation to near visible or

visible light. They can be cut into small sizes and partitioned into different array

configurations matching the photodetector’s geometrical profile, thus enhancing the

spatial resolution. They can also exhibit very high light yield which is desired in order

to increase the amount of collected photons, while a short scintillation decay time

allows higher count-rate capability at system level [12].

The place where the gamma interacts inside the scintillator affects the timing res-

olution and two extreme cases are presented in Figure 1.10. In the first case, the

interaction occurred near the scintillator surface and the photons travel a longer

distance in order to reach the photodetector. The propagation speed of an optical

photon at a particular wavelength (λ), in a medium with a refractive index n is given

by the following equation:

v(λ) = c/n(λ). (1.3)

In the second case, the interaction occured near the detection surface. Therefore,

the gamma photon travels at the speed of light inside the scintillator until it reached
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Chapter 1. Introduction

the photodetector. The uncertainty that is introduced by the point of interaction of

gamma inside the scintillator is given by the DOI and it is dependent on the scintilla-

tors’ optical properties and size [36]. Evidently, in the case of long scintillators, the

effect of the timing jitter is much more evident than in the case of short scintillators.

This difference translates into jitter that can be reduced by reducing the scintilla-

tor length or by using different detector geometries and DOI-correction algorithms

[12]. Different techniques for DOI estimation have been researched over the years,

for example, dual-sided readout (DSR) in which photodetectors are coupled with

scintillators on their opposite faces or phoswich detector, which is a combination of

scintillators with different pulse shape characteristics optically coupled with each

other. The place where the event occurred is determined by analyzing the scintillators’

resulting pulse shapes. Various techniques, which account for the DOI estimation are

presented in [37]–[40].

(a) (b)

Figure 1.10: a) Gamma interaction occurs at the entrance in the crystal (longer travel-
ling time in the crystal of the optical photons). b) Gamma interaction occurs at the
output surface of the crystal. Travelling time in the crystal of the optical photons is
much shorter. Figure concept derived from [41].

Although they have many advantages, PET scintillators are ultimately integrated into

a system, with various physical constraints, one of which is the requirement that the

emission spectrum should match the photodetector’s photon detection efficiency

profile. Moreover, the refractive index mismatch between the scintillator and pho-

todetector influences the total number of collected photons, which in turn affects

energy resolution. To improve the measurement precision, a large number of collected

photons is required [42].

1.2.4 ToF-PET photodetectors

Ideally, ToF-PET photodetectors should present high internal gain, high photon de-

tection efficiency, low noise and low timing jitter. All of these contribute to the CTR

improvement.
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1.2 Introduction to positron emission tomography

The photodetector cost plays an important role at system level and it should be

taken into consideration. Significant research has been dedicated towards making

PET systems available and accessible worldwide. However, unfortunately the cost of

a PET system is still very high. The cost per unit area is indeed an important consid-

eration that should be accounted for in any PET system [43]. For a very long time,

photomultiplier tubes have been the detectors of choice for PET systems. However,

they have been gradually replaced by semiconductor based photosensors. In the

following sections, these two types of photodetectors are presented.

Photomultiplier tubes

A photomultiplier tube (PMT) consists of a photocathode, several dynodes and an

anode, as depicted in Figure 1.11.

Incident
photon

Photocathode

Focusing
electrode

Electrical
connectors

Anode

Photomultiplier tube (PMT)

Scintillator

Light
photon

Electrons

Dynode

Figure 1.11: Photomultiplier tube block diagram [44].

Due to the photoelectric effect, electrons are produced upon the striking of incident

photons into the photocathode region. The focusing electrode, which is placed right

after the photocathode, directs the emitted photoelectrons towards the first dynode.

Due to secondary emission, more and more low energy electrons are produced. The

dynodes can be biased at different voltages and a large number of photoelectrons are

produced. To improve timing performance, a higher voltage is typically applied to

the first dynode so that the electric field is increased and only small variations are

present in the trajectories of the first photoelectrons [42]. The last stage of a PMT is

represented by the anode that collects all the multiplied secondary electrons emitted

from the last dynode. The output is a sharp current pulse that is then detected by the

readout electronics.

PMTs exhibit a large gain (approximately 106 or better) and quantum efficiencies

(QE) (i.e. the ratio of the number of photoelectrons emitted from the photocathode

to the number of incident photons [45]) in the range of 1 - 40% in the ultraviolet
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and visible spectral region, with a significant drop in the near-infrared range. The

PMTs which are compatible with PET scintillators’ emission spectrum exhibit a QE of

approximately 30% at 420 nm [42], [45]–[47].

As previously mentioned, the optical coupling between the PMT and scintillator

is crucial because it introduces additional timing variations. Differences of the pho-

toelectrons’ path lengths and fluctuations in the photoelectron multiplication are

factors that influence timing resolution. The PMT fabrication process has been greatly

improved over time and fast PMTs have been developed by multiple manufacturers

[48], [49].

PMTs have been gradually replaced over time by solid-state photodetectors. Their

main limitations are given by the high sensitivity to magnetic fields, bulkiness and the

operation at high voltages. Due to the high interest in combining PET and MRI scan-

ners together, their sensitivity to magnetic fields represents a significant drawback.

Semiconductor-based photodetectors

Semiconductor based photodetectors gained interest during the last decade as a

good replacement of conventional PMTs for ToF-PET photodetectors. Due to their

robustness, high photon detection efficiency (PDE), low noise, low operating voltages,

and, very importantly, insensivity to magnetic fields, solid-state photodetectors are

excellent candidates for PET and PET-MRI systems.

Initially, p-i-n photodiodes and avalanche photodiodes (APDs) were explored as

photodetectors for PET. However, due to their low amplification and large output

capacitance, which results in an output signal rise time of tens of ns [43], a sufficiently

high timing resolution could not be achieved for ToF-PET applications. During the last

decade, single-photon avalanche diodes (SPADs) have proven to be a very attractive

replacement of conventional PMTs.

SPADs are solid-state photodetectors, which are compatible with complementary

metal-oxide-semiconductor (CMOS) technology nodes. A SPAD is reverse biased well

above the breakdown voltage (VBD) with an excess bias voltage Vex so that it operates

in Geiger mode. Due to the high biasing voltage, a single charge carrier arriving in

the depletion region can generate a large avalanche that leads to an exponentially

increasing current. The SPAD current-voltage characteristic is illustrated in Figure

1.12.

In order to stop the avalanche, which can damage the SPAD, quenching circuits are
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1.2 Introduction to positron emission tomography

Figure 1.12: SPAD current-voltage characteristic.

used such as resistors connected in series with the SPAD. In this manner, the avalanche

current self-quenches due to the voltage created across the ballast load resistor. More

complex active quenching circuits can be used as well, which typically comprise dis-

criminators that sense the high current rise and then automatically reduce the bias

voltage below breakdown, thus stopping the avalanche.

There are different parameters that determine the SPADs’ performance. These pa-

rameters are briefly introduced in the following paragraphs. Only the metrics that

are of relevance will be introduced in the following chapters. This thesis makes use

of two chips based on commercial analog silicon photomultipliers which are already

characterized by the foundry and one chip based on a digital silicon photomultiplier.

Therefore, the photodetector design is beyond the scope of this thesis, however, a

short introduction is presented as a basis for further results which are mentioned in

the next chapters.

Dark count rate

Dark counts are the spurious counts that occur in the absence of any photons imping-

ing on the SPAD’s active region. The rate at which these events occur represents the

dark count rate (DCR) and it can be expressed counts per second (cps). Dark counts

can deteriorate the timing resolution of SiPM based photodetectors and readout tech-

niques have to accommodate for this, therefore, different DCR filtering methods have

been proposed in literature [12], [50]–[53]. Significant research is dedicated towards

improving the noise performance of SPADs in different technology nodes. A more
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detailed explanation of the effects of dark counts in SPADs is presented in [54].

Photon detection efficiency

The photon detection efficiency defines the probability of detecting an impinging

photon. The PDE is calculated as follows:

PDE =QE ×Paval anche ×F F, (1.4)

where QE is the quantum efficiency, Paval anche is the probability of having an avalanche

and F F is the fill factor. The QE is the ratio between the number of photocarriers

that are generated in the depletion region, to the total number of photons impinging

on the active area. The F F is defined as the ratio between the sensitive area and the

total device area. Silicon-based photodetectors are chosen differently taking into

consideration the required wavelength sensitivity for each application. In PET, the

photodetector’s sensitivity should ideally match the emission spectrum of the scin-

tillators. A high sensitivity is desired in order to increase the number of collected

photons.

Crosstalk

Crosstalk is caused by the formation of secondary avalanches in the neighboring

SPADs as a result of an initial avalanche. There are two types of crosstalk, optical and

electrical. In the case of optical crosstalk, when a device detects a photon, secondary

photons can be generated by the SPAD itself and can be further detected by the

neighboring SPADs. The optical crosstalk increases with a decrease of the distance

between the SPADs. Due to the high demand of producing more dense arrays, careful

design is needed in order to minimize the optical crosstalk. Electrical crosstalk arises

due to the capacitive coupling between anode or cathode traces of different SPADs.

Through proper chip and PCB design, this type of crosstalk can be reduced. The

crosstalk effect is described into more detail in [55]–[58].

1.2.5 From a single SPAD to an array of SPADs

Silicon photomultipliers (SiPMs) are semiconductor SPAD-based arrays. There are

two main types of SiPMs: analog and digital (A-SiPMs and D-SiPMs). A-SiPMs are

arrays of SPADs, commonly referred to as microcells, connected in parallel and whose

output currents are summed up into one node as illustrated in Figure 1.13.
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R R R R

Vcathode

Vanode

Figure 1.13: Schematic diagram of an analog silicon photomultiplier. All SPADs are
connected in parallel with their corresponding quenching resistors R.

The amplitude of the output pulse is proportional to the number of photons impinging

on the photosensitive area. A quenching resistor is integrated for each SPAD, which

together with the additional spacing between cells reduces the FF compared to PMTs

[42], [48], [49].

A-SiPMs exhibit several noise sources that need to be considered, such as dark counts,

crosstalk and afterpulsing. Afterpulsing is a correlated noise source caused by trapped

charge carriers in the silicon lattice that can be released after a few nanoseconds and

can trigger another avalanche if the SPAD’s excess bias voltage has been recharged.

Despite all of this, an A-SiPM’s transient response to a single-photon, which is tens

of picoseconds, is significantly better compared to PMTs, but it degrades with an

increase in the active area. Single-photon timing resolution (SPTR) state-of-the-art

values smaller than 100 ps FWHM have been reported for analog SiPMs with an active

area of 3 × 3 mm2 and 4 × 4 mm2 [20], [34], [59].

A-SiPMs are available in different sizes and a number of highly developed A-SiPMs can

be sourced off-the-shelf. Because the output pulse has a great influence on the timing

performance of the system, SiPMs which present a sharp rise time and short decay are

preferred for ToF-PET photodetectors. However, in order to handle such a fast pulse,

the readout electronics needs to be carefully designed. Newly developed ToF-PET

scanners based on commercial SiPMs achieve a timing resolution of approximately

200 ps FWHM [43].

D-SiPMs represent a different approach of arrays of SPADs where the output sig-

15



Chapter 1. Introduction

nals are directly processed on-chip by additional readout circuits and converted into

digital signals. A general representation of a D-SiPM is depicted in Figure 1.14.

R R R R

Vcathode

TDC READOUT

Figure 1.14: Schematic diagram of a digital silicon photomultiplier. The output of
each SPAD is digitized and sent to a TDC.

The most common readout circuit encountered in D-SiPMs is the time-to-digital

converter (TDC) which measures the time distance between a start and a stop signal.

Different sensors based on D-SiPMs present various topology architectures with TDCs

coupled in different ways with SPADs: TDCs coupled with a cluster of SPADs, one TDC

per pixel or TDCs coupled with SPADs by column as depicted in Figure 1.15.

D-SiPMs can possess additional noise sources, such as jitter caused by the clock dis-

tribution network. Due to the geometrical arrangement, signal skews in the signal

distribution trees can greatly degrade the timing performance. However, the propaga-

tion delay is deterministic and can be compensated for.

Depending on its architecture and design technology, TDC can occupy a large area.

In 2D designs, this can lead to a large reduction in fill factor. One possible solution is

the design of a 3D architecture, for which the fill factor is preserved, as the readout

electronics and SPADs are placed on different tiers. Philips has developed a commer-

cially available PET scanner based only on D-SiPMs [60]. The digital photon counter
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Figure 1.15: 2D D-SiPM architectures with a) one TDC per pixel, b) one TDC per
column, c) one TDC per cluster.

(DPC) technology is capable of detecting and counting individual SPADs on-chip. The

sensor contains four pixels arranged in a 2 × 2 matrix and each pixel contains 3200 or

6400 cells. A photon counter is present for each of the four pixels and each sensor has

a pair of TDCs which timestamp the first arriving photon. A conceptual diagram of

the Philips DPC is presented in Figure 1.16.

Another attractive sensor implementation based on solid-state photodetectors is

3D-integrated CMOS sensors. Recently, 3D-CMOS integration gained a lot of in-

terest due to the capability of integrating highly optimized dedicated SPAD CMOS

technologies with fast timing electronics developed in smaller CMOS technology

nodes. A conventional 3D CMOS sensor comprises the top tier, which is dedicated
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Figure 1.16: Schematic diagram of the DPC. Figure reproduced from [61].

to the photosensor only and the bottom tier, which is solely dedicated to electronics.

Because all the SPAD circuits are located on the bottom tier, the FF is greatly improved.

There are two ways of implementing 3D CMOS SPAD-based sensors, namely, front-

side illuminated (FSI) and back-side illuminated (BSI) topologies. A conceptual repre-

sentation of the two topologies is depicted in Figure 1.17.

(a) (b)

Figure 1.17: a) Cross-section of 3D-stacked front-side illuminated technology. b)
Cross-section of 3D-stacked back-side illuminated technology.

In the case of the BSI technology, the connection between top tier and bottom tier

is realized through hybrid bonding. This means that the top tier is placed upside

down and the electrical connections are made between the top metals of both tiers

[62]. In this configuration, the incoming light crosses the bulk before it is absorbed

in the depletion region. Because of the absorption coefficient of silicon, only long

wavelengths can reach the photosensitive area and as such, these types of detectors

are well suited for red and infrared imaging.
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In the case of the FSI technology, both the top and bottom tiers have the same orienta-

tion and their connections are done with through-silicon vias (TSVs) implemented

in the top tier. Due to the manufacturing process of the TSVs that fixes a limit on

their form factor, the top tier has to be thinned down significantly if a small pitch is

desired [63]. In this case, the incoming photons need to cross the multiple metal and

dielectric layers before being absorbed in the photosensitive area, unless the layer

stack on top of the SPAD is etched away and a cavity is formed. As a result, higher

energy photons can be detected, which makes this approach better suited for blue

wavelengths, therefore for PET photodetectors.

Both analog and digital silicon photomultipliers have advantages that make them suit-

able PET photodetectors. However, A-SiPMs are frequently used in PET systems due

to their off-the-shelf availability. The specifications of A-SiPMs in different research

fields, not only PET, have been greatly improved over time along with the performance

of readout circuits. All these aspects frequently make the A-SiPMs the photosensors of

choice for PET systems.

1.3 Main parameters of a PET system

The main goal of a PET scanner is to deliver high quality images of the tracer distri-

bution inside the body. The final image quality is influenced by the quality of the

collected data. As previously described, false coincidences can significantly degrade

the image quality, therefore, the system should be able to discriminate and discard

false events. Several parameters contribute to this target and will be described in the

following subsections.

1.3.1 Energy resolution

The energy resolution represents the scanner’s capability of discriminating the 511

keV incident gamma photons and discarding the rest. The energy resolution is mea-

sured by acquiring the energy spectrum of a positron-emitting radioactive source

and determining the ratio between the FWHM of the energy peak and its position as

illustrated in Figure 1.18. A narrow energy filter is applied so that lower energy events

are rejected.
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Figure 1.18: 22N a spectrum acquired with an analog silicon photomultiplier presented
in this thesis in Chapter 2. The 511 keV energy peak is illustrated, along with the energy
filter.

1.3.2 Spatial resolution

The spatial resolution is limited by different individual contributors and it is generally

assumed that all the contributors add in quadrature, although some of the effects,

such as the positron range, are not described by a Gaussian and they may not be

statistically independent. The spatial resolution for a point source located at a radius

r from the center of the ring is described by the equation below:

Γ= 1.25×
√

(d/2)2 + s2 + (0.0044R)2 +b2 + (12.5× r )2/(r 2 +R2), (1.5)

where d is the crystal width, s is the positron range, b is the crystal decoding error

factor, r is the distance between the source position to the center of the ring and R is

the radius of the detector ring [64], [65]. The positron range contributes differently

to the spatial resolution depending on the radioisotope that is used as presented in

[66]. The non-collinearity effect adds a Gaussian blurring effect that is proportional to

the radius of the ring, R. The 0.0044R factor represents the magnitude of this effect.

The parallax error also degrades the spatial resolution as a function of the distance

from the center of the scanner. This is mainly evident in the case of small-animal PET

scanners which have a small ring diameter and use long and narrow crystals in order

to enhance the scanner sensitivity.
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1.4 The importance of timing resolution in PET

1.3.3 Timing resolution

The PET scanner measures the time of arrival of coincidence photons within a co-

incidence timing window, whose FWHM is determined in such a way as to not cut

out valid events. A conceptual diagram of the coincidence measurement technique is

illustrated in Figure 1.19.

1.3.4 Count-rate

The scanner dead time limits the maximum operation rate. It is mainly influenced

by the readout electronics and the time needed by the scintillator to convert the in-

coming gamma photons into visible photons and transfer them to the photodetector.

Scintillators which present short decay times enhance the count-rate capability if they

are coupled with fast photodetectors and readout circuits.

In a system, the dead time can be classified into two types: paralyzable and non-

paralyzable. A paralyzable system is capable of processing additional events while

processing of previous events is done in the background. An example of a paralyzable

dead time in a PET system is the scintillator’s dead time determined by the decay time

constant. Conversely, a non-paralyzable system is not capable of processing multiple

events at the same time and the processing is instead done sequentially and not in real

time. This significantly limits the system count-rate capability. Readout electronics, in

some cases, presents a non-paralyzable dead time. However, for example, a multi-shot

TDC or multiple TDCs that share a detector have paralyzable dead time.

1.4 The importance of timing resolution in PET

At present, available PET scanners already achieve an impressive CTR, for example,

Siemens Biograph Vision which achieves 214 ps [67], [68]. Another example is the

Penn PET Explorer designed for clinical and research uses which achieves a resolution

of 256 ps FWHM [69]. The design and performance characteristics of three different

commercially available PET scanners are presented in Table 1.1.

The timing performance of the detectors is an important parameter in PET. Currently,

it is possible to obtain a better localization of the gamma annihilation point along the

LOR by measuring the difference in time of arrival of a pair of annihilation photons.

Significant research is dedicated towards improving the CTR value which will lead to

better image SNR, and therefore, higher image quality. The timing resolution in PET is

dependent on the timing jitter introduced by different components such as the scin-
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Figure 1.19: 22N a source is placed between two back-to-back detectors (Detector
1 and Detector 2). The spectrum of the radioactive source is measured with each
detector and an energy window which selects the 511 keV is applied. A comparator
is used for each detector to digitize the output pulse and send it to the processing
unit. The processing unit marks the events that correspond to the energy window and
calculates the difference in time between the events.
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1.4 The importance of timing resolution in PET

Table 1.1: Selected commercially available PET scanners.

PET scanner BiographVision
Quadra [70]

Vereos [71] uExplorer [72]

Photodetector A-SiPM DPC A-SiPMs
Scintillator size 3.2 × 3.2 × 20 mm3 4 × 4 × 19 mm3 2.76 × 2.76 ×

18.10 mm3

Scintillator type LSO LYSO LYSO
Axial FoV 106 cm 164 mm 194 cm
ToF ⩽ 228 ps 310 ps 409 ps
Nr. of detectors NA 23040 53760

tillator, the photodetector and the readout electronics. Improvements in all of these

will result in a better CTR value. The replacement of PMTs by SiPMs in commercial

ToF-PET systems already brought a timing resolution improvement. In addition, the

readout electronics plays a major role as well. In the end, the timestamps are read-out

through different electronic circuits such as pixels, comparators, time-to-digital con-

verters and PCB design. This entire chain is subject to noise and it can deteriorate the

measured result.

In this thesis, three different TDCs architectures are presented with a focus on improv-

ing timing resolution. The TDCs are based on ring oscillator architectures and they

are implemented in three different technology nodes, such as 350 nm, 180 nm and

16 nm. Their architectures are discussed extensively in each chapter, along with the

sensors’ design.

Following, the TDC’s metrics that are used in the next chapters are presented.

1.4.1 TDC metrics

In this section, the TDC’s metrics that are discussed in the next chapters will be briefly

introduced.

LSB

The least significant bit (LSB), also known as bin size, represents the minimum time

difference that can be measured in one shot. The LSB representation is depicted in

Figure 1.20 and is an important parameter when determining the overall performance.

The LSB of the TDC can be improved through different design techniques such as pulse

shrinking [73], [74], Vernier delay line [75]–[77] or designs based on ring topologies
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which achieve sub-gate delay resolution [78]–[80]. Another important aspect is the

technology in which the TDC is designed. Advanced technology nodes enable much

faster TDCs with simpler architectures, therefore, better resolution. On the contrary,

in the case of older technology nodes, the transistors are much slower and in order to

achieve a good resolution, more complex designs are necessary.

Measurement range

The range of the TDC is given by its number of bits in combination with LSB. The

TDC range represents the maximum time interval that the TDC can measure and it is

determined as follows:

T DCr ang e = (2n −1)×LSB , (1.6)

where n represents the TDC’s number of bits.

Transfer function

The TDC transfer function shows the corresponding TDC output for all possible values

of the input as presented in Figure 1.20.
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Figure 1.20: Conceptual diagram of the TDC step-plot with highlights on the DNL,
INL and transfer function.
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Non-linear imperfections

The TDC’s nonlinearities represent all the deviations from its expected characteristics

and are expressed in terms of differential nonlinearity (DNL) and integral nonlinearity

(INL). The DNL describes the deviation of the value between two consecutive con-

verter digital codes from the ideal step, while the INL is the cumulative sum of the

DNL and represents the deviation of the TDC’s transfer function from the ideal one. A

DNL and INL representation is shown in Figure 1.20.

1.5 Artificial intelligence benefits for PET systems

The following section offers an overview on different neural network aspects and how

PET could benefit from artificial intelligence based approaches.

In recent history, artificial intelligence (AI) has evolved as a very valuable asset in

many areas such as economics, biology, speech recognition, facial recognition and

automotive, among others [81]–[83]. AI makes use of different tools depending on

the problem at hand, namely, search and optimization algorithms, logic, probabilistic

methods, deep learning, artificial neural networks and others [84]–[86]. Artificial

neural networks (ANNs) were initially inspired by the structure of the human brain

and they were created as an attempt to solve problems that conventional algorithms

struggle with. Neurons are the nervous system’s fundamental structures and the con-

nection between neurons is essential in order to exchange information between one

neuron and another. In general terms, this is the main concept behind ANN.

Over time, neural networks have started being used in many fields, including the

medical one. Healthcare systems deal with large amounts of data that need to be

processed and neural networks are a great tool to perform this task. Neural networks

for image reconstruction have been used for MRI, computed tomography (CT), and

SPECT. Considering for example the emission tomography applications, artificial neu-

ral networks have already been used for a very long time for image processing [87], [88].

Image reconstruction is a completely different field in which complex algorithms

are used in order to enhance the final image quality and it is a traditional way of using

NNs in PET. Artificial intelligence methods based on deep networks for PET image

reconstruction have been proposed in various works [89]–[92]. The improvement of

the PET image quality is important in applications such as small lesion detection or

early diagnosis of different neurological diseases [92] and intense research is carried

out in this perspective. This will not be further discussed because it requires resource
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intensive implementations that are not fit for on-chip design and therefore, it is be-

yond the scope of the thesis.

In what concerns the process of acquiring the ToF-PET information, conventional

techniques such as leading edge discrimination or constant fraction discrimination

are frequently used [93]. Estimating algorithms based on a statistical approach have

been developed for time-of-flight estimation [94]. Research work is carried out using

neural networks as time-of-flight estimators in PET [95]. For example, more recently,

the authors in [93] present a convolutional neural network (CNN) which uses digitized

waveforms as an input through constant-fraction discriminator in order to estimate

the ToF information. A nine-layer CNN is trained in MATLAB with approximately

1 million coincidence events from a 22N a point source at different timing delays.

Cross-sectional images of a positron-emitting radionuclide were obtained directly

from the coincidence annihilation photons with an average timing precision of 32 ps.

In this approach, the authors make use of digitized waveforms in order to obtain the

ToF information and an off-chip CNN neural network.

The authors in [96] present a study on the current limits of monolithic crystals con-

cerning the timing resolution with the use of AI. The proposed architectures are

implemented in FPGA and the NN input is provided by charges and timestamps pro-

duced by silicon photomultipliers. The proposed NN topologies utilize thousands of

coefficients (10 million for event timestamping NN and 2000-20000 for position esti-

mating NN) along with thousands of neurons (5000 - 8000 for event timestamping NN

and 8000 for position estimation NN) while the readout electronics and programming

is provided by custom developed ASICs.

In the context of the thesis, a different approach is used. An on-chip fully recon-

figurable feed-forward neural network which makes use of TDC timestamps is used.

Due to its on-chip integration, the NN implementation is limited by the available

resources to 1024 coefficients and 128 neurons with the ability of changing its topology

(decide the number of needed layers or neurons) within the limits. The goal of this

design was to advance the use of NN in ToF PET by using raw TDC timestamps to

estimate the 22N a source position along one axis and minimize data throughput. The

implementation of this task is not trivial because the feed-forward NN has to be able

to use the raw TDC timestamps, filter them, and provide the final answer. In addition,

in PET, the processing electronics handles large datasets. NNs are good candidates

that can serve as pre-processing blocks in order to significantly reduce the throughput.

The implemented NN is discussed in detail in Chapter 4. In the following paragraphs,

a short introduction of the NN main parameters that are also used in this thesis is
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1.5 Artificial intelligence benefits for PET systems

presented.

A conceptual diagram of a fully connected ANN is depicted in Figure 1.21. The term

topol og y will be used in this thesis very often and it refers to the neural network’s

structure. A typical neural network consists of several layers which are usually classi-

fied as input, output and hidden layers. The input layer is represented by the neurons

which receive the external data (as presented in Figure 1.21, the input neurons are

O3,O4,O5, and the external data is represented by O0,O1,O2), while the output layer

delivers the final NN result (the output layer is formed by O10,O11, and the output

result is OU T0,OU T1). All the layers in between these two layers are called hidden

layers (hidden layer formed by O6,O7,O8,O9). There are different types of neural

networks which come in different topologies; the one presented in this thesis focuses

on a fully-connected neural network. A fully connected NN presents fully connected

layers, in which each neuron of a certain layer is connected to all the neurons from the

previous layer or the neurons can be organized in groups in such a way that a group of

neurons is connected to one layer, while another group is connected to another layer.

Figure 1.21: Conceptual representation of a fully connected feed-forward artificial
neural network. This example depicts a three-layer NN: one input layer with three
neurons (O3,O4,O5), one hidden layer with four neurons (O6,O7,O8,O9) and one
output layer with two neurons (O10,O11). The weights are represented by w3 to w22,
and biases are b0 to b8.

As in a physiological brain, each neuron’s function is to process the information

received from all the other neurons through synapses, which are generally called con-

nections. In a biological brain, the synapses are responsible for sending information

from one neuron to another. Each neuron processes the signal by using a non-linear
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function and computes an output that is further transmitted to other neurons in

the ANN or is the final ANN result depending on where the neuron is located in the

network. Each neuron has a bias and each connection in the ANN has a weight. The

weights’ role is to decide how much influence the input has on the output value, while

the biases correspond to each neuron and they assure that the neuron is activated

even if its value is 0. The input values are multiplied by their corresponding weights,

accumulated with the neuron bias (pre-activation function), and then passed through

the neuron’s activation function, as depicted in Figure 1.22.
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Figure 1.22: Conceptual representation of an artificial neuron. It contains the input
vector (O0,O1,O2,O3, ...,On), the bias value, the weights vector corresponding to the
weights from each connection arriving at the neuron, and the pre-activation and
activation functions.

There are different activation functions that are frequently used, such as: sigmoid,

rectifier linear unit and hyperbolic tangent [97]–[99]. Mathematically, the neuron

output can be expressed as:

OU T = f

(
bi as +

n∑
i=1

Oi ×wi .

)
(1.7)

Neural networks are capable of performing different learning tasks based on the

knowledge they have from datasets where the solutions are provided beforehand.

Learning is the capacity of a NN to handle a problem and make observations based

on the existing external data. During the learning phase, the weights are adjusted in

order to improve the accuracy of the final result as much as possible. NN learning is a

complex process which is crucial for the NN performance. The learning performance

is evaluated with a loss function defined by the user depending on the application

and it is a measure of the deviation of the NN output from the desired value.
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The learning rate determines how much to change the model in response to the

estimated error in each iteration and, unfortunately, the model is not trivial to choose.

A high learning rate value shortens the computation time, however, it can lead to

unfavorable results. A lower learning rate takes longer time but with a greater chance

of delivering good results. In general, stochastic gradient descent algorithms that

support adaptive learning are available in almost all the NN dedicated libraries.

While there are different types of NN learning, the author focuses on the type which

is applicable on the NN described in Chapter 4, namely, supervised learning. Super-

vised learning uses a set of data where the inputs are paired with their corresponding

outputs. This is a widely used learning technique in different applications such as

pattern and gesture recognition. The goal of the NN is to make a correct prediction for

each input. In the following, some NN main parameters will be briefly presented due

to their frequent appearance in Chapter 4 of the thesis.

Hyperparameters, which are variables that determine the NN’s structure, are im-

portant players in the NN’s learning phase. In general, they are determined before

learning starts, such as the number of hidden layers. However, some of them can be

adjusted during the learning process itself, namely, the learning rate. These parame-

ters have a direct impact on the NN performance. There are no strict rules or values

that apply when quantifying the hyperparameters. Each problem is unique and has to

be handled in different ways and the user has to decide and find out how to set the

correct NN parameters. There are many available libraries and programs, which can

be used in an effort to optimize the NN performance.

1.6 Thesis goals and motivation

Functional imaging technologies have an important role in the medical field serving

for the early diagnosis and treatment follow-up of different diseases, such as can-

cer. The major role of functional imaging is to deliver good quality images that can

later help doctors in the diagnostic process. Positron emission tomography is a fre-

quently used functional imaging technique. PET scanners are complex systems and a

complete design of such a system requires expertise from different fields. Therefore,

research in PET can be tackled from different perspectives such as, detector design,

readout, image processing, mechanical design and so on. However, PET is still an

expensive medical tool with limited accessibility. During the last years, significant re-

search has been devoted to make PET systems available and more accessible. In order

to deliver qualitative information, a PET detector module (crystal and photodetector)

29



Chapter 1. Introduction

should have a good energy, timing and spatial resolution capability. All these can be

achieved through different design approaches either at the crystal or photodetector

level. Another issue is that a PET system is required to handle a large amount of data,

which further has to be processed, therefore the integration of the readout could help

to pre-process the data and reduce the throughput.

This thesis explores different readout and pre-processing techniques for the time-of-

flight sensors required for the PET application. The primary focus has been kept on

the full integration of the readout and processing electronics in order to reduce the

complexity, therefore the cost.

1.7 Thesis contributions

Three different sensors have been designed, implemented and described in this thesis.

Follwing, all the author’s contributions of the thesis are described.

The design of the first fully-integrated analog silicon photomultiplier with on-chip

time conversion was implemented in 350 nm CMOS technology node. A custom ana-

log silicon photomultiplier with enhanced sensitivity in blue spectrum was provided

by On Semiconductor. This sensor represents a combination between a custom SPAD

dedicated CMOS process with a standard CMOS process. The author is responsible for

developing each library component, along with its characterization, the design and

implementation of the time-to-digital converter, the integration of the entire system

and its full characterization. The comparator was a design and implementation work

of a TUDelft master student, Ashish Sachdeva. The sensor is presented in Chapter 2.

A 3D-front-side-illuminated multi-channel digital SiPM for PET was implemented

in 180 nm CMOS technology node. This sensor serves as a prototype towards future

3D-FSI sensors for PET by exploring the advantages of the 3D integration. The design

of this sensor is a collaborative work between the author and Francesco Gramuglia.

The author’s work is related to the design, implementation, integration and readout of

the 64 time-to-digital converters present in the sensor as well as the design, implemen-

tation and integration of the reset trees and SPAD address arbitration tree. The author

was responsible for the characterization of the time-to-digital converter stand-alone

structure. Therefore, it should be noted that the focus of this thesis is not on the SPAD

design itself and pixel circuit, but the control and readout of the previously mentioned

electronic blocks. The design, implementation and testing of the SPADs, pixel circuits,

readout and full chip integration was a work implemented by Francesco Gramuglia.

The full description of this sensor is presented in Chapter 3.
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The first on-chip fully reconfigurable artificial neural network with TDC input chan-

nels for PET was developed in 16 nm FinFET technology node. The neural network is

capable of working with time-of-flight information provided by the TDCs in order to

reconstruct the position of the radioactive source. The first step towards the design of

this sensor is an analytical model which studies the behavior of different feed-forward

neural networks topologies as readout circuits for time-of-flight PET detectors. The

author is responsible for the design, implementation and measurements of this entire

chip. The sensor is fully described in Chapter 4.

1.8 Thesis structure

The thesis is organized as follows: Chapter 2 presents Blumino, a fully integrated

A-SiPM, with a discriminator and a TDC. This chapter details the architecture, the

measurements of each design block, and fully characterizes the entire sensor. Chapter

3 describes Blueberry, a 3D integrated FSI sensor. An overview of the entire archi-

tecture is given, followed by a more detailed description of the TDC’s design and

functionality. Following, measurement results with the TDC are presented. Chapter

4 presents Smarty, the fully integrated and reconfigurable NN with 10 TDCs. The

chapter describes each design block and all measurement results for each component,

along with final source position reconstruction measurements. In Chapter 5, the

conclusions of this thesis are drawn along with future work recommendations.
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2 Blumino: A fully integrated analog
silicon photomultiplier with on-chip
time conversion
2.1 Motivation

The timing performance of a PET detector module is influenced by several factors and

it is one of the key parameters in a ToF-PET system, due to its direct influence on the

image reconstruction quality. Although timing improvements can be observed by, for

example, combining the photodetectors with custom application-specific integrated

circuits (ASICs), the large capacitance between the two systems can significantly de-

grade the overall performance [100].

One alternative solution is to integrate the front-end circuits directly on-chip. This

is very common in the case of D-SiPMs, where all the electronics is placed around

the photodetectors, or in 3D system configurations where the photodetectors are

placed on the top tier and the electronics on the bottom tier [101], [102]. In the case of

A-SiPMs the approach of combining them with discrete ASICs, which comprise the

necessary circuits to read them out, is more frequent [103]–[107]. However, one of the

main limitations of such systems is the compactness, along with long development

and testing cycles. Moreover, the power dissipation of ASICs is large compared to a

fully integrated system [42].

Blumino has been designed in order to investigate the impact of integrating cus-

tom and standard CMOS processes together, improve timing resolution, with the

additional goal of preserving the full original photodetector performance. By integrat-

ing the main optimized electronic blocks necessary to capture the timing information

on-chip, e.g. discriminator and TDC, the overall timing performance of the system is

expected to be improved.

The A-SiPM employed in Blumino has a third terminal in addition to the anode and
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cathode, called fast terminal (FT), which is suitable for fast timing. Another advantage

is represented by the reduction of the capacitive load on the fast output, which, in turn,

is expected to improve the timing performance. The standard terminal (anode) is used

to measure the energy of the gamma photon. The system’s backward compatibility is

preserved through the standard terminal (ST) which is available off-chip.

In order to implement the design, an entire standard cell library had to be created.

It comprises 110 components that were used to design all the blocks of the Blumino

sensor, such as: delay cells, buffers, inverters, load adaptation cells, buffer chains,

latches, counters, IO pads, etc. In addition, test benches were created for each cell

in order to extract their essential properties such as propagation delays and rising

and falling times before utilizing them in the circuit itself. Compared to other design

technologies, where the standard cells and their characterization are already provided

by the foundry or third party vendors, this case required a rigorous characterization of

each design cell in order to assure a predictable circuit performance post-silicon. All

the cells and their layouts were implemented solely by hand, starting with the MOS

transistors. This represented a significant part of the workload, which should be taken

into consideration when analyzing the results. In the following subsections each of

Blumino’s main components is described, along with relevant measurement results.

Part of the work presented in this chapter was published in [80].

2.2 System architecture

As shown in Figure 2.1, Blumino’s architecture comprises three main blocks: an A-

SiPM, a discriminator, and a TDC. The FPGA (Opal Kelly XEM7360 with Xilinx Kintex-7)

is off-chip and serves as an external post-processing unit.

The FT of the A-SiPM is connected to the input of the discriminator through AC cou-

pling while the ST is routed to an exposed pad and it can be coupled with external

electronics. The TDC is based on a START-STOP architecture, where the output from

the comparator serves as a START signal, while the STOP is provided by the FPGA. In

addition, a MUX is provided to allow for the START signal to be applied externally.

A FLAG signal is triggered after every A-SiPM event, which allows the user to se-

lect only the events which trigger the TDC, thereby reducing the readout time. The

TDC’s range can be extended in post-processing by adding an additional counter in

the FPGA that takes as an input the most significant bit of the TDC’s counter.
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Figure 2.1: Blumino block diagram. The three main blocks are A-SiPM, comparator
and TDC. The A-SiPM’s fast terminal is connected to a preamplifer. The output of the
preamplifier triggers the comparator whose threshold can be externally changed (by
adjusting the threshold voltage (Vth)). The common-mode voltage (VC M A) is 1.65 V.
The comparator’s output triggers the TDC. An external trigger is provided through the
START_ELECTRIC signal. The FLAG signal is asserted upon the TDC trigger. Off-chip
post processing is carried out by the FPGA.

2.2.1 Analog SiPM with fast output

On Semiconductor, formerly SensL, developed a unique modification to the standard

A-SiPM by adding a third terminal in addition to the anode and cathode terminals,

called fast terminal. Representing the time derivative of the standard terminal, the FT

is proportional to the number of cells that have fired in the A-SiPM. Its amplitude is

therefore proportional to the number of detected photons. The FT presents a lower

output capacitance (and faster rising edge) than the ST, making it suitable for precise

timing measurements and fast readout systems [108]. Compared to the ST, a signal

with a very sharp rising edge is present at the output of the A-SiPM without the need

of adding extra circuits, as depicted in Figure 2.2.

Blumino is populated with a C-series 3 mm × 3 mm A-SiPM with 4774 microcells

(SPADs) of 35 µm each. The system features 48% PDE at 420 nm wavelength and

6.0 V excess bias. For D-SiPM systems, the associated electronics is placed next to

the photodetectors. In A-SiPM systems, however, the circuits are placed around the

detectors and the fill factor is not affected, as shown in Figure 2.3.

The fill factor, which is the ratio between the photosensitive area and the total chip

area, is 57% due to the presence of test structures around the sensor. If only Blumino

is considered (A-SiPM, comparator and TDC), the fill factor is increased to 71%.
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Figure 2.2: a) A-SiPM standard terminal pulse shape (anode -cathode) with 16Ω series
resistor. b) Fast terminal pulse shape. Results obtained with MicroFJ - 60035 - TSV
series [108].
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Figure 2.3: Blumino micrograph. It comprises an A-SiPM, a comparator, and a TDC.
Three TDC structures are placed around the periphery of the A-SiPM for test purposes.

2.2.2 Discriminator

The interface between the A-SiPM and TDC is a preamplifier, followed by a comple-

mentary self-biased differential amplifier which acts as a comparator. It is a modified

version of the design presented in [109], whereas the concept was introduced in [110]

and [111]. The FT’s output is connected to the preamplifier in order to increase the

absolute threshold resolution with respect to the non-amplified input signal range as

presented in Figure 2.4. These two blocks are described in full detail in [112].
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Figure 2.4: High-speed asynchronous comparator with an amplifying stage, a com-
parator, and a multi-stage buffer. The common-mode voltage can be changed through
VCM and the reference voltage through Vref. A more detailed description of the pream-
plifier and comparator can be found in [112].

2.2.3 Time-to-digital converter

The TDC comprises three main structures: a voltage-controlled ring oscillator (VCO),

an asynchronous ripple counter, and nine transparent phase detectors. The asyn-

chronous ripple counter keeps track of the number of oscillations through the ring

and determines the most significant bits of the TDC. The nine transparent phase

detectors capture the state of each phase when the ring freezes, thus determining the

least significant bits (LSB). The TDC’s main components are illustrated in Figure 2.5.

The transparent phase detectors are implemented as represented in Figure 2.6. The

asynchronous ripple counter architecture along with the counter cell are depicted in

Figure 2.7 and Figure 2.8.

The VCO is based on a multi-path gated ring oscillator (MGRO) topology [80], [113],

[114]. Each MGRO stage consists of a tri-state inverter with three inputs (three parallel

inverters of the same size) as shown in Figure 2.9.

Each delay stage has multiple inputs, i.e., each one is connected to the previous delay
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Figure 2.5: TDC block diagram. The three main components of the TDC are illustrated:
the VCO, the phase detectors and the asynchronous ripple counter. The phase detec-
tors provide 5 bits that represent the LSBs of the TDC and the counter returns 6 bits
which represent the MSBs. A reset signal (nRST) is used in order to reset the TDC after
each measurement cycle.

stage, and the others are connected to different stages along the ring. This structure

allows each delay stage to start transitioning ahead of time, reducing the delay per

stage, and increasing the maximum oscillation frequency, as depicted in Figure 2.10.

The use of tri-state inverters with three inputs limits the minimum number of delay

stages in the ring to nine. As a consequence, 18 phases are represented on 5-bit (LSB)

after decoding, which together with the 6-bit counter (MSB) create a 10-bit result,

with redundancy. As there is no decoder present on-chip, all 15 bits are transferred

outside. The final TDC result is calculated as:

Nr esul t = 18×Ncoar se +N f i ne , (2.1)

where Ncoar se is the counter value and N f i ne is the decoded fine bits value.

The VCO itself comprises nine oscillation phases (Q0 to Q8) that are detected by nine

phase detectors. The last oscillation phase (Q8) represents the input of the ripple

counter as depicted in Figure 2.5. The TDC starts running only when the VCO receives

the START signal from the comparator, which together with a STOP signal sent from

the FPGA forms an enable (EN) signal. The VCO starts oscillating on the rising edge of

the EN signal. At the falling edge, the ring freezes in its current state which is saved

in the phase detectors. After a measurement cycle, the TDC is read out in one of two

ways (serial or parallel). Parallel readout results in higher speed and was used for all
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Figure 2.10: MGRO with nine, three input delay stages. Each input is connected to
three different other locations along the ring.
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Figure 2.11: TDC operating principle. The measured time interval is illustrated along
with the read-out sequence.
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performend measurements. The TDC’s operating principle is illustrated in Figure

2.11.

2.3 Design considerations

The connections of the delay stages are complex due to their placement at different

points in the ring, which makes the design layout cumbersome. Because the MGRO

is very different from the traditional ring oscillators, whose outputs are directly con-

nected to the following delay stage, one of the main design challenges was matching

the propagation delay between all the ring nodes.

The first attempted approach consisted of all the delay stages being arranged in

a conventional ring manner, as depicted in Figure 2.12.

The main advantage is that all three inputs of the inverter arrive in the same order.

However, this topology comes with a few disadvantages. Firstly, the area occupancy

of such a topology is too large. Secondly, and perhaps most importantly, the delay

stages do not present the same load. This results in an unbalanced layout which can

introduce non-linearities in the circuit. Thus, the main focus of this layout was to

carefully size the connections by using two different metal layers, of which only three

in total were available for this particular tapeout. Layers metal 1 and metal 3 were

chosen, with the benefit that the parasitic capacitance between the connections was

reduced due to the larger distance between metal 1 and 3.

Unfortunately, the aforementioned layout design exhibited significant disadvantages,

and a different layout design was implemented. Ultimately, the approach used in

Blumino consists of the delay stages being placed in a line and connected through

paths of almost equal length and same width, as shown in Figure 2.13.

In this way, an almost constant load is kept for each stage of the delay ring. Compared

to the previous approach, this ring topology is much more compact and optimized for

small area, the main difference being the balanced load between the delay stages. One

of the disadvantages is the unequal propagation length between different groups of

delay stages. However, this can be mitigated to some extent by reordering the inverters.

The final TDC layout is presented in Figure 2.14.
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Figure 2.12: a) Layout of the ring topology with unbalanced load. b) Conceptual
reprezentation of the layout in a) for a better visualization of the organization of the
delay stages along the ring [115].
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2.4 Characterization

2.4.1 Testing platform

The chip was encapsulated in a ceramic pin grid array (CPGA) package with a quartz

window. This approach was chosen due to the convenience of changing the chips on

the printed circuit board (PCB) very easily without the need of discarding PCBs in case

one of the chips is damaged. A custom PCB was designed to provide the power and

bias voltages required to operate the chip, as well as to serve as an interface between

the photodetector and field-programmable gate array (FPGA) as presented in Figure

2.15.

Blumino

Figure 2.15: Blumino testing platform, composed of a motherboard, which serves as a
control board for the sensor, along with a small daughterboard where the sensor is
placed.

The custom PCB connects to an Opal Kelly XEM7360 Kintex-7 FPGA board. The chip

input-output pads are directly connected to the FPGA along with the control signals

for the power supplies. The PCB makes use of digital potentiometers which allow the

possibility of sweeping bias voltages for both TDC and comparator. In addition, the

power supply voltages can be digitally adjusted. This is needed especially for the TDC,

whose oscillation frequency is voltage-controlled, as well as for the comparator, whose

threshold voltage is controlled externally. During electrical testing, an additional

START signal is generated with the same frequency but with an adjustable phase with
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respect to the STOP signal; this allows different impulse widths to be fed to the TDC.

The FLAG is issued every time the START arrives at the TDC and it is read together

with the output data. The FLAG was used in post-processing to eliminate invalid

TDC readings during optical test, where there is a possibility of not receiving the

START signal (no photon detection). At the end of the measurement cycle, the data is

accumulated on the FPGA in a large 65535 words first in-first out (FIFO) register and

transferred to the PC vias USB 3.0. The data is then further analysed in Matlab.

2.4.2 Electrical characterization

The main building blocks of the sensor were first characterized individually. An inter-

nal multiplexer allows the FPGA to communicate directly with the TDC and bypasses

the analog front-end, allowing for the TDC to be characterized separately. In order to

measure the VCO’s oscillation frequency, the TDC is set in a free-running mode. The

dependency of the oscillation on the power supply variation is measured by sweep-

ing the VCO’s supply voltage. The TDC’s LSB also changes with power supply. The

oscillation frequency (Tosc ) is read out through the sixth counter bit while manually

changing the power supply of the ring oscillator. Tosc decreases with an increase in

power supply at an average rate of -1.24 ns/V, improving the TDC’s least significant

bit. The test was performed on three different dies, all of them presenting the same

behavior as depicted in Figure 2.16a.

The oscillation period’s temperature dependence was measured with a tempera-

ture chamber. The temperature was varied in steps of 4 ◦C from -12 ◦C to 28 ◦C. The

oscillation period thermal drift was determined to be 0.3125 ns/◦C as depicted in

Figure 2.16b by using the following equation:

ther mal _dr i f t = Tw ar m −Tr e f

tempw ar m − tempr e f
(2.2)

where Tw ar m is the oscillation period at a warm temperature, Tr e f is a reference oscil-

lation period which can be any random chosen point on the diagram, and tempw ar m

and tempr e f are their respective temperatures.

According to the measurement results the temperature variations can be compen-

sated for by changing the power supply of the ring oscillator within a narrow range of

around 300 mV.
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Figure 2.16: a) VCO oscillation frequency dependence on power supply. Measurement
performed at room temperature. b) VCO oscillation frequency dependence on tem-
perature @3.3 V supply voltage.

2.4.3 Optical characterization

The transfer function of the TDC was determined through measurements by gener-

ating START and STOP signals with the FPGA. The rising edge of the START signal

triggers the TDC, while the rising edge of the STOP signal stops it. Consequently, the

time interval between the START and STOP was varied over a range of 80 ns, with 16384

iterations per point which were determined through the FPGA code. The transfer

function of the TDC is shown in Figure 2.17 and it indicates an average TDC LSB of

128 ps. Compared to post-layout simulation of the TDC where the LSB value was 65

ps, measurements indicate a LSB almost twice as large as the simulated one. This

difference is almost certainly due to the presence of inaccuracies in the transistor

models, because the LSB variation is too large in order to be attributed solely to the

layout mismatches and parasitic capacitances. The LSBs of different TDCs in multiple

dies were measured and all the results indicate the same behavior.

The functionality of the entire A-SiPM-comparator-TDC chain was determined through

single-shot precision measurements at multi-photon level by using a 375 nm PiL037-

FC laser for an A-SiPM excess bias voltage of 2.5 V. The laser was synchronized with

the FPGA and the results of three different delays between START (laser trigger) and

STOP signal (from FPGA) are depicted in Figure 2.18.

Due to the comparator’s minimum threshold which, by design, corresponds to 114
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Figure 2.17: TDC transfer function determined through electrical characterization.

fired cells out of 4774 A-SiPM microcells in total, the measurements were performed

in the multi-photon burst detection regime. As depicted in Figure 2.18 a small sigma

variation is present in the TDC output code.

The DNL of the TDC was measured using a code density test where the photode-

tector is illuminated with white light, thus the photons are randomly distributed in

time. When reading out all the timestamps from the TDC over a long period of time,

each code of the TDC should be present in the histogram. In the ideal case scenario,

the resulting histogram is uniform, and any deviations from this behavior are caused

by the non-linearities of the TDC. The DNL can thus be determined by the difference

between a specific bin in the histogram and the expected uniform value. The DNL

and INL results are outlined in Figure 2.19 and present a DNL and INL of -1/+5 LSB

and -2.4/+0.9 LSB respectively, after compensation.

The INL was compensated for by using a lookup table (LUT) created from a large

dataset where

Dcompensated = Dmeasur ed − I N LDmeasur ed . (2.3)

Dmeasur ed is the measured code, I N LDmeasur ed is the INL of the measured code and

Dcompensated is the compensated value of the respective code.

This method is acceptable for a limited range of temperature changes, however, if
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Figure 2.18: Full system single-shot precision of different TDC output codes. a) TDC
output code 407 which corresponds to 52.096 ns measuring time interval. b) TDC out-
put code 409 which corresponds to 52.352 ns measuring time interval. c) TDC output
code 371 which corresponds to 47.488 ns measuring time interval. Measurements
performed with a 375 nm picosecond laser.
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Figure 2.19: TDC’s non-linearities - DNL and INL. Before compensation (blue) and
after compensation (red).

a wide range of temperatures is required, other compensation methods need to be

implemented [116]. This has been demonstrated by measuring at two different tem-

peratures, 26 ◦C and 16 ◦C, where the VCO power supply was set to 3.3 V and 3.25 V,

respectively, to compensate for the change in the oscillation frequency. By using the

same LUT, the compensated INL was noticeably degraded. The DNL was however

almost the same.

The PDP was measured on Pandion, a 400 × 100 SPAD sensor which uses the same

SPAD device as in Blumino [117]. Both sensors, Pandion and Blumino were fabricated

in the same multi-project wafer (MPW), therefore, fabrication variations should not

significantly affect the PDP results , shown in Figure 2.20.

Compared to off-the-shelf standalone SiPMs of the same kind as the ones integrated

on Blumino and developed by On Semiconductor, the PDP shows a slightly decrease

after integration.

Another possible degradation due to the integration of a custom A-SiPM process

with standard electronics process on the same chip was investigated in terms of DCR

as well. The DCR was measured for six different dies at different excess bias voltages

by accumulating hundreds of frames with a 40 GS/s LeCroy oscilloscope that were

further analysed in Matlab. The DCR was measured using the standard A-SiPM termi-

nal connected to a wideband (0.1 to 1000 MHz) amplifier from Mini-Circuits with an
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Figure 2.20: Pandion PDP comparison with off-the-shelf MicroFC-30035 SiPM (this
series comprises the same SPAD size as the one implemented in Pandion) from On-
semi, implemented in the same CMOS technology node.

amplification of 10. By plotting the DCR as a function of the oscilloscope threshold

voltage, a distinct plot with two plateaus as seen in Figure 2.21a is obtained. The

high plateau corresponds to the 0.5 photoelectron (phe) level and contains pulses

originating from both the DCR and crosstalk, whereas the lower plateau contains

pulses that correspond to 1.5 phe level. These originate as a result of crosstalk and

have higher amplitude than the DCR pulses. The DCR was calculated by taking into

account the pulses at the 0.5 phe level and the measurement results are depicted

in Figure 2.21b. Figure 2.21c presents the crosstalk probability defined as the ratio

between the count rate at the 1.5 phe and 0.5 phe levels [118].

2.4.4 CTR measurements performed with standard terminal

The CTR value is critical to evaluate the timing performance of a ToF-PET detector

module. A 22N a source which produces back-to-back 511 keV gamma photons, was

placed between two Blumino sensors in coincidence. The energy of the two gamma

photons is absorbed in the scintillators and is converted into visible photons which

are then detected by the A-SiPM. Two 2.5 × 2.5 × 20 mm 3 LYSO crystals were wrapped

with Teflon tape about 0.5 mm thick and glued to the A-SiPM using optical grease. The

measurement setup is presented in Figure 2.22.
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Figure 2.21: a) DCR as a function of oscilloscope threshold voltage. The first photoelec-
tron level, phe1, is taken as the trigger level at the middle of the drop from one step to
the next. The count rate at the 0.5 × phe1 level is considered as DCR and the rate at
1.5 × phe1 divided by the DCR value is the crosstalk probability. b) A-SiPM dark count
rate versus excess bias voltage. Measurements performed at room temperature using
the standard terminal. c) A-SiPM crosstalk versus excess bias voltage. Measurements
performed at room temperature using the standard terminal.
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Blumino
LYSO

Figure 2.22: CTR measurement setup using the A-SiPM standard output. Two mea-
surement platforms for the Blumino sensor are placed in coincidence with LYSO
scintillators placed on top of the A-SiPMs and a 22N a placed in the middle.

As a first step, the energy resolution was determined by using the charge integration

of the A-SiPM’s standard output, without any additional amplification, at 3 V excess

bias. The energy resolution is defined as the ratio of the FWHM of the energy peak

and the energy value corresponding to the energy peak maximum [119]. The energy

spectrum was analysed and calibrated using Matlab and it shows an energy resolution

of 17.1% as depicted in Figure 2.23.
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Figure 2.23: 22N a spectrum measured with Blumino’s standard output.

Two Blumino sensors were then operated in coincidence and 100.000 frames were

accumulated using a 40 GS/s LeCroy oscilloscope triggered by one of the A-SiPMs.

Only the frames where a pulse was present on both channels were kept for analysis.

All the waveforms were post-processed in Matlab. The frames containing pulses that
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did not correspond to the 511 keV photopeak (using an energy window of 408 keV

to 613 keV) were discarded. The remaining data was analysed for different voltage

thresholds by extracting the absolute timestamps of the impulse for both channels

and computing the difference between them. The FWHM of the resulting distribution

for a specific threshold after the error introduced by the timewalk was accounted for

represents the CTR and is depicted in Figure 2.24.
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Figure 2.24: CTR measured with A-SiPM’s standard output @3 V excess bias using 2.5
× 2.5 × 20 mm 3 LYSO crystals wrapped with Teflon. Timewalk correction was applied.

The timewalk error is introduced when the signal time is measured by using a constant

threshold. As a consequence, the measured times between two different events with

different energies that occur at the same true time are different because the slope of

the pulse is not the same as depicted in Figure 2.25.

Timewalk correction is required in order to improve the timing resolution [120], [121].

The timewalk correction was implemented as follows:

• For each coincidence event, d t = t2 − t1 was measured, where t1 and t2 are

the arrival times of the first detected photons in the two detectors placed in

coincidence.

• Their respective charges q1 and q2 were calculated.

• The d t vs. q1 distribution was plotted and a 5th degree polynomial function

coe f f (q1) was fitted as in Figure 2.26.
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Threshold

Voltage

timetimewalk

Figure 2.25: Conceptual representation of the timewalk. The threshold value is reached
at different times depending on the pulse amplitude, even if all three pulses start at
the same moment in time.

• A new variable was defined as: d t
′ = d t − coe f f (q1). The d t

′
vs. q2 distribu-

tion was plotted as depicted in Figure 2.27 and another polynomial function

coe f f (q2) was fitted to it.

• The corrected timestamp difference is given by d t " = t2 − t1 − coe f f (q1) −
coe f f (q2).

2.4.5 New CTR measurement platform

A dedicated small sensor board which implements time-over-threshold on the ST for

the energy measurement and reads out the timing information from the TDC was

designed as illustrated in Figure 2.28.

In order to perform CTR measurements, timing and energy information needs to be

acquired at the same time. Therefore, a synchronisation between the ST and FT is

necessary. A conceptual block diagram of the small sensor readout board is depicted

in Figure 2.29.

The time-over-threshold technique is implemented on the ST by using discrete com-

ponents. The A-SiPM’s ST signal is amplified by a transimpedance amplifier featuring

a bandwidth of 100 MHz. The output of the transimpedance amplifier provides a

negative pulse, due to its transfer function. Then, the amplifier’s output was inverted

so that a positive threshold could be provide by the microcontroller (µC). The com-
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Figure 2.26: Two dimensional histogram of the measured time difference d t = t2 − t1

of the two timestamps registered by two detectors placed in coincidence as a function
of the energy q1 of the pulse from the first detector. The green line is a 5th degree
polynomial fit. Measurement performed at 3 V excess bias.

x 10-7

12

10

8

6

4

2

0

d
t'
 [

s
]

2000 2500 3000 3500 4000

q2 [a.u.]

60

50

40

30

20

10

0
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Figure 2.28: Blumino small readout sensor board for CTR measurements with the inte-
grated TDC on the fast terminal. The time-over-threshold technique is implemented
on the standard terminal. The board contains pre-processing on the microcontroller.
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Figure 2.29: Blumino small readout sensor board conceptual diagram. The time-
over-threshold technique is implemented with discrete components on the ST. The
integrated TDC timing information is directly sent to the µC. The µC’s internal DAC
is used to control the comparator’s threshold while the ADC is used to read out the
integrator’s value.

56



2.4 Characterization

parator’s threshold voltage is set by the µC’s DAC. The comparator has a latch enable

(LE) which is activated after the first photon arrival which is kept low until the first

photon arrives and then set to high so that the comparator is latched. Therefore, the

on-chip integrator is stopped from measuring the following incoming events. A µC

was used in order to facilitate the data handling among multiple boards and due to

its integrated components (data converters). The µC’s DAC and ADC present a 12 bit

resolution, with an LSB of 0.8 mV and a reference voltage of 3.3 V. The ADC’s input

conditioning limits the voltage range between 0 and 3.3 V in order to avoid damaging

the input due to the integrator’s -16 V supply voltage. At the end of an acquisition cycle,

the energy and timing information is readout by the µC. The small sensor readout

board is coupled to an interface board, as depicted in Figure 2.30, which is further

coupled with a motherboard and then a FPGA in order to read out the information

coming from multiple sensors.

Figure 2.30: Blumino interface readout board. It accomodates 6 ribbon cables each of
them capable of handling tens of mini sensor boards to speed up the readout process.

The interface board provides three different supplies for the mini PCBs: 6 V (mother

board), -16 V (integrator) and SPAD Vop. The width of the traces has been chosen in

such a way that it can handle all the needed currents and the power traces have also

been enlarged. A special tool included with Altium Designer that can equalize the
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lengths of the START_IN and STOP_IN signal was used. The board was designed on 4

layers only and in order to speed up the readout process and minimize the current

that passes through a single ribbon cable, 6 ribbon cables have been used instead of

one. The power consumption of a single small sensor board (considering the interface

board as well) is 277 mW.

The sensor readout board was designed in a small configuration in order to improve

the timing performance by providing amplification and readout right next to the ST. In

addition, the board was designed as well for a future small PET ring prototype based

on the Blumino sensor as presented in Figure 2.31.

66 mm

Figure 2.31: Future small PET ring prototype based on Blumino sensors. All sensors
are controlled by a single interface board. 6 independent channels are available, each
one accomodating tens of small readout boards. The ring diameter is 66 mm and it
is limited by the number of available Blumino sensors. The configuration presented
above is based on 3 × 3 × 25 mm 3 scintillators.

In this small PET ring future prototype, all the boards are controlled by a single inter-

face board as mentioned above. The configuration presented in Figure 2.31 is based

on 3 × 3 × 25 mm 3 scintillators for a 66 mm diameter ring. The ring configuration is

flexible while being limited by the available number of Blumino sensors.

A graphical user interface (GUI) has been designed in order to control all the supply

voltages, thresholds and send various commands to the µC as depicted in Figure 2.32.
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Figure 2.32: Small sensor board GUI interface. The threshold and voltages for all the
components are digitally controlled from the GUI interface. The exposure window
can be set.

CTR measurements

The initial important step is to investigate the CTR measurement performed with only

two small sensor boards placed in coincidence as depicted in Figure 2.33.

Previously, the ST was connected directly to the oscilloscope through long cables

and the threshold was set in the oscilloscope, therefore, the timing performance was

deteriorated. Measurements were also performed with shorter cables in order to

investigate their influence on the CTR value. In the end, no significant change was

observed. An amplification and discrimination right next to the ST implemented on

the small readout sensor board improved the timing performance. The measurements

were performed using the 40 GS/s LeCroy oscilloscope by monitoring the output of

the comparators from both boards. Two different crystal configurations: 2.5 × 2.5 × 3

mm 3 LYSO scintillator coated with B aSO4 and 2.5 × 2.5 × 20 mm 3 LYSO scintillator

wrapped with Teflon were analysed. The CTR measurement results are illustrated in

Figure 2.34.

The results obtained with 2.5 × 2.5 × 20 mm 3 LYSO that correspond to Figure 2.34

b) can be compared with the previous CTR measurements performed in the same

configuration on the ST but without the comparator and amplifier on PCB. As seen in
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Figure 2.33: CTR measurement setup with Blumino small readout sensor boards. A
22N a radioactive source is placed between the two detectors. The photodetectors are
coupled with 2.5 × 2.5 × 3 mm 3 LYSO scintillators and placed at a distance of 32 mm.

Figure 2.24, a CTR of 630 ps was measured in the first case while the current CTR is

484 ps, presenting a 23.17% improvement.

The exposure-based readout of the architecture resulted in a low event rate when

using only two detectors. As a result, the system was inefficient and CTR measure-

ments with the FT could not be performed. A revision of the board is currently under

development, to change the architecture to an event-driven acquisition type which

will drastically increase the efficiency of the system.

2.5 Conclusions

This chapter discussed the design and characterization results of the first fully-integrated

analog SiPM with on-chip discrimination and time conversion. A simple, yet fully

functional and compact sensor was designed by combining a SPAD CMOS dedicated

process with standard CMOS in 350 nm technology node. While such old technology

nodes could be beneficial for the photodetector performance, more complexity needs

to be added in order to develop faster electronics. The designed TDC proposes a

simple architecture based on a multi-path gated ring oscillator capable of speeding
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Figure 2.34: CTR measurements performed on ST with the integrated amplifier and
comparator on the small readout board. a) CTR results after timewalk correction
obtained with 2.5 × 2.5 × 3 mm 3 LYSO scintillator coated with B aSO4. b) CTR results
after timewalk correction obtained with 2.5 × 2.5 × 20 mm 3 LYSO scintillator wrapped
with Teflon. Measurements performed @ 3V excess bias.

up the oscillation frequency, hence, improving the LSB. However, there are multiple

contributors to the overall timing resolution. Blumino aimed to accommodate for this

by integrating the timing circuitry together with the A-SiPM. The sensor’s performance

was determined through optical, electrical and radiation measurements. A measuring

platform suitable for tiling which makes use of both the integrated electronics and the

ST has been implemented for performing CTR measurements and to further serve as a

PET module in a future small PET ring demonstrator. CTR measurements performed

with the new measuring platform on ST indicate an improvement of 23.17% by using

amplification and comparison in close proximity on PCB. The TDC’s LSB is 128 ps

and the system exhibits an energy resolution of 17.1% when coupled to a 2.5 mm

× 2.5 mm × 20 mm LYSO scintillator. Minor degradations due to the integration of

custom CMOS SPAD process with standard CMOS were observed in the DCR with a

measured value of 81.7 kcps / mm 2 at 2.5 V excess bias. Single-shot precision mea-

surement results have a small standard deviation of 0.45 LSB in the best case. Further

improvements such as the design of faster timing circuitry as well as the design of an

event driven measuring platform in order to speed up the measurement time would

improve the overall performance. A comparison between Blumino sensor and other

SPAD-based sensors designed in the same technology node is presented in Table 2.1.

Compared to the designs presented in [122] and [123], Blumino’s fill factor is sig-
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nificantly higher due to the use of an A-SiPM. In addition, Blumino exhibits a larger

PDP of 46% @425 nm for a lower excess bias of just 2.5 V. Compared to the other works,

Blumino has a larger TDC LSB of 128 ps due to the lack of accurate transistor models

during the design phase. Due to the nature of the MGRO TDC, it was expected to have

higher nonlinearities with increases in power consumption for this particular design,

as presented in the comparison table. The lower dynamic range, compared to [122]

and [123], is not a limiting factor because Blumino’s TDC has a feature that allows the

unlimited extension of the dynamic range using off-chip components.

Table 2.1: Blumino comparison with sensors fabricated in the same CMOS technology
node.

Parameters Blumino [122] [123]
Technology [nm] 350 CMOS 350 HV CMOS 350 HV CMOS
SiPM type A-SiPM D-SiPM D-SiPM
Microcell size [µm2] 35× 35 30 × 50 30 × 50
Microcells # 4774 416 416
Fill factor [%] 75 57 57

PDP
46% @ 425 nm

Vex = 2.5 V a
30% @ 425 nm

Vex = 4 V
32.6% @ 420 nm

Vex = 3.5 V
TDC type MGRO GRO coarse + fine GRO coarse + fine
Total # TDCs 1 192 432
TDC LSB [ps] 128 51.8 48.5
Dynamic range [ns] 128 3390 6360
DNL, INL [LSB] -1/+5, -2.4/+0.9 1.97, 2.39 ±0.75, 4/-2.1
TDC area [mm2] 0.0242 0.0136 NA
Power/TDC [mW] < 9 1.65 1.65
a determined based on Pandion measurements [117].
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3 Blueberry: A CMOS 3D-Stacked FSI
Multi-Channel Digital SiPM

3.1 Motivation

Time-of-flight positron emission tomography is an imaging technique used in a wide

range of medical applications. To achieve the best performance, a PET detector mod-

ule should have a large sensitive area that can be coupled with existing scintillators,

high spatial resolution, high timing resolution to measure the arrival times of the

coincidence gamma photons, large energy resolution to discriminate the 511 keV

events and reduced readout time to increase the count-rate capability [124], [125]. Al-

though these requirements are demanding, they can be readily achieved with modern

electronic circuits. The associated electronics can be implemented with either dis-

crete components or integrated electronics; however, each modality presents its own

advantages and disadvantages. In the case of using discrete components, these are

usually easily available and modules of different configurations can be implemented

(for example, the small measurement board of Blumino as presented in Chapter 2). In

addition, modifications can be performed easily and debugging is much easier than in

the case of integrated systems because each signal can be accessed. The use of discrete

components can in general result in an increase of the overall power consumption. By

using an integrated solution, the designs are more compact and additional features

can be implemented. While in Chapter 2 we explored the full integration of an A-SiPM

with a single integrated TDC, the goal of the Blueberry project was to implement a

compact, fully integrated sensor that can accommodate multi-channel digital SiPMs

with multi-timestamping capability through a fully integrated solution. The use of

multiple timestamps is important for the order statistics which has been explored

extensively over the years in [126]–[128].

Blueberry is a 3D-stacked multi-channel photodetector implemented in 180 nm

standard CMOS technology. In order to implement the 3D-stacked FSI process, a
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minimum size for the chip of 6 mm × 3.5 mm was imposed by the foundry. Therefore

the final chip dimension is 7.5 mm × 4.2 mm. In order to decrease the design com-

plexity of such a large detector, the design was divided into two identical parts. The

top tier comprises a detector array, consisting of 64 × 64 front-side illuminated SPADs.

The readout and processing electronics are located on the bottom tier, and the two

layers are connected through TSVs [36], [129]. The 3D-stacked approach was chosen

based on the need of using complex and diverse electronic circuits which process

all the information from all the SPADs. Additionally, a 2D architecture would have

been cumbersome to implement, significantly lowering the final fill factor of the SPAD

array. The use of 3D integration facilitated the implementation of a large sensitive

area which presents a fill factor of approximately 67%. In addition, a large area was

available for the implementation of all the electronic blocks on the bottom tier. Finally,

the TSV manufacturing process represents a challenge in itself. As inserting the TSVs

can oftentime fail, Blueberry aims to serve as a prototype circuit for a fully integrated

3D-stacked FSI ToF-PET photodetector along testing the TSV process as well.

3.2 Core architecture

The Blueberry sensor comprises two independent 64 pixel × 64 pixel SPAD arrays, as

shown in Figure 3.1.

SPAD ARRAY SPAD ARRAY

SQUARED SPAD

STRUCTURE

Figure 3.1: Blueberry micrograph. Two large independent SPAD arrays of 4096 SPADs
each are present on the top tier. Chip size: 7.5 mm × 4.2 mm. Inset: squared SPAD
structure with TSV landing site outlines in the corner [36].

Each SPAD is based on a p-i-n structure, has a square shape with round corners and a
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3.3 Cluster architecture

pitch of 50 µm. Measurement results indicate a photon detection probability of 55%

at 480 nm at 6 V excess bias. More information regarding the implementation and

performance of the SPAD itself is presented in [36]. Each SPAD’s anode is connected

to the bottom tier through a TSV resulting in a total of 8192 TSV connections for both

SPAD arrays.

As shown in Figure 3.2, the SPADs and their corresponding circuits are grouped into

64 clusters. Each cluster contains a TDC which timestamps the time of arrival of the

first firing SPAD. As a result, Blueberry has a total of 64 TDCs.
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Figure 3.2: Core architecture. The core is divided in 64 clusters. The row bus enabling
decoder is used to access the clusters’ data. The calibration circuit is used to calibrate
all 64 TDCs in the array. A masking system is used to mask noisy SPADs. The readout
scheduling controller enables the event driven readout of the chip [36].

Data from the clusters is accessed using a row and a column addressing scheme. The

entire system can be read out in two different modes: user or event driven readout. In

the first case, the user can freely select which cluster to read while in the second case,

the readout scheduling controller is used for reading out only the clusters with data.

In addition, the sensor comprises a calibration and masking system which allows the

calibration of each TDC and the masking of noisy pixels.

3.3 Cluster architecture

Each cluster in the array contains four main blocks: pixel circuits, photon counting

systems, a TDC and a SPAD address circuit. The cluster comprises 8 × 8 pixels. Each
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pixel is based on passive quenching and active recharge circuit with the output of each

pixel connected through an OR tree to the photon counting system. The latter consists

of ripple counters which count the number of pulses generated in a frame. In each

cluster, four 4-bit counters are present in order to increase the counting capability.

The outputs of all of the four counters in a cluster are summed up in an adder and the

final result is a 6-bit word. The final result is then saved in a register and sampled by

the global STOP signal. The output of the OR tree also triggers the TDC and a SPAD

address tree based on a winner-take-all (WTA) approach is implemented to determine

the address of the first firing SPAD in the cluster. The data for the timing, address and

counting systems in each cluster is sampled by a global STOP signal and then saved in

a memory buffer. A conceptual block diagram of the cluster is presented in Figure 3.3.

More detailed information regarding the SPADs’ design, pixel architecture, counting

and readout systems is presented in [36].

3.4 Antiphased time-to-digital converter

The TDC is based on a reconfigurable antiphased topology and contains five main

structures: a VCO, an asynchronous ripple counter, 36 phase detectors, 4 reconfig-

urable delay cells, and an output processing unit (OPU) as depicted in Figure 3.4.

The motivation for choosing this architecture is to compare the performance of the

multi-path gated ring oscillator implemented in 180 nm with the design from Chap-

ter 2 implemented in 350 nm CMOS technology node. I also wanted to investigate

the factor of two decrease in the raw resolution discrepancy between post-layout

simulation and silicon. In this implementation, no such effect was observed. By

using the antiphased structure, the resolution of the TDC was increased by a factor 4

without changing the original design. As a consequence, the design occupies a larger

area and the use of multiple sets of delay cells and phase detectors results in higher

non-linearities.

The most significant bits of the TDC are given by the asynchronous ripple counter

which counts the number of oscillations in the ring. The least significant bits are

determined by the non-transparent phase detectors which capture the state of each

phase. The TDC’s resolution can be tuned by using the reconfigurable delay cell which

will be described later on in this chapter.

The VCO is based on a multi-path gated topology. Each delay stage of the MGRO

is composed out of symmetric tri-state inverters with three inputs as illustrated in

Figure 2.9. The inputs of each delay stage are connected to different places along the

ring in order to help increase the oscillation frequency as depicted in Figure 3.5.
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Figure 3.3: Cluster block diagram. Each cluster is an array of 8 × 8 SPADs with their
corresponding pixel circuits. The output from all of the pixels is processed by a SPAD
address system based on an OR-tree. The SPAD address tree is based on a winner-
take-all implementation. Four 4-bit counters are implemented in each cluster in order
to count the number of pulses. The output of the SPAD address systems triggers the
TDC. The time, energy and address information from each cluster is written on a bus.
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Figure 3.4: Time to digital converter block diagram. The 9 phases of the VCO are
captured by four different sets of phase registers. A delay element is present that
delays the phases in order to adjust the TDC’s resolution. A 12 b counter counts the
oscillation periods. The output processing unit (OPU) provides the final TDC result.
OPU can provide a parallel and serial TDC result.

In this way, each delay stage can start transitioning ahead of time and therefore, the

delay per stage is significantly reduced. There are 9 delays stages in the ring which

result in 9 phases with 18 possible states. An oscillation period is completed only

after the signal passes through all the nine inverters twice. The use of three inputs

limits the minimum number of delay stages to nine. Depending on the position of

the inverters in the ring, the connection lengths can vary drastically. All possible

permutations (362880 in total) were analyzed in Matlab and the configurations with

most balanced connections between all 9 inverters in the ring were determined. In

the end, out of 362880 possible combinations, only 174 have balanced lengths. The

chosen combination is shown in Figure 3.6. The new layout topology presents seven

equal phase connections with the smallest Q8 phase connection (the phase connected

to the counter).

The MGRO oscillates while an enable (EN) signal is high and enters a high-impedance

state when the EN signal is low. The EN signal is formed using an SR latch from a

START signal and one derived from the STOP as seen in Figure 3.4. While the ring is in

high-impedance, nine reset transistors can be used to pull the nodes to a predefined

value which represents the reset state.
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Figure 3.5: MGRO with 9 delay stages of 3 inputs each. Each delay stage has connec-
tions along different places in the ring.

0 1 2 3 4 5 6 7 8

DELAY STAGES

DELAY STAGES

CONNECTIONS

(a)

5 692 18 47 3

DELAY STAGES

DELAY STAGES

CONNECTIONS

(b)

Figure 3.6: a) First layout arrangement of the delays stages with unequal connections.
b) Rearranged delay stages with almost equal metal connections.
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Four banks of nine D-flip-flops act as phase detectors. Each bank is triggered by

a rising edge on a signal derived from the STOP signal. Each flip-flop data input is con-

nected to a corresponding inverter in the MGRO (k-th flip-flop from each bank to the

k-th inverter). The four STOP signals connected to each phase detector bank originate

from the main STOP signal delayed using a digitally controlled delay element cell with

a quarter of a coarse LSB between each other. The digitally controlled delay element

consists of two inverters connected in series with a bank of capacitors connected to

the internal node as depicted in Figure 3.7.

b0 b1 b2 b3

C 3C 12C 40C

GND

Figure 3.7: Digitally controlled delay element. The delay can be adjusted by controlling
the transistors’ gates.

The connection to each capacitor is gated by a transistor whose gate is digitally con-

trolled from the outside. The capacitors are sized in such a way that the desired delay

range between 350 ps and 450 ps can be obtained (with an increment step of 6.25 ps)

in post-layout simulations.

The counter consists of 12 T-flip-flops with an externally controlled reset signal. The

counter clock signal is formed by passing the ninth inverter’s output (Q8) through a

latch referred to as C LK _T AP cell. The purpose of this cell is to bring the Q8 phase

to logic 0 or 1 when the ring is in high-impedance (the EN signal is low) in order to

avoid racing conditions in the counter (uncontrolled oscillations of the T-flip-flops).

The EN signal of the C LK _T AP cell is formed by using an SR latch connected to the

START and the digitally controlled delayed STOP signal as presented in Figure 3.4.

The TDC’s final code is determined by the output processing unit which acts as a

decoder and as an error correction unit. The TDC’s final output is given by the follow-

ing equation:

T DCout = A+B +C +D +72×E (3.1)
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where A, B, C and D are the decoded output values of the phase detectors and E is the

final counter value. The decoding of the phase detectors output consists of assigning

a unique value between 0 and 17 to each state of the MGRO. The 72 factor is given by 4

× 18, where 18 is the number of distinct states of the MGRO and 4, the division factor

of the coarse LSB.

The layout of the standalone TDC test chip and its photomicrograph are shown in

Figure 3.8. The TDC stand-alone structure is identical with the TDCs present on the

bottom tier of Blueberry. For testing purposes, the TDC has a multiplexed START

signal and it can be started electrically or by a SPAD.

3.5 On-chip error correction

An on-chip error correction algorithm was implemented in the output processing unit

in order to eliminate the bubbles resulting from glitches in the counter value.

The final count value E, is determined using the following equation:

E = countervalue + corpoz − corneg (3.2)

where countervalue is the original counter value and corpoz and corneg are two one

bit error correction signals implemented as depicted in Figure 3.9.

There are two scenarios in which the value of the counter might be incorrect, both

caused by the arrival of the STOP signal close to a clock transition:

• When the rising edge of the counter clock signal coincides with the arrival of the

STOP signal as depicted in Figure 3.10.

• When the falling edge of the counter clock signal coincides with the arrival of

the STOP signal as depicted in Figure 3.11.

In the first circumstance, the C LK _T AP cell’s feedback can cause its output to stop

transitioning and fall back to logic ’0’. This results in a short pulse that is not regis-

tered by the counter, and therefore the final result is one less than it should be. To

compensate for this, the corpoz signal goes high if such an event is detected.

The OPU determines the value of the corpoz signal by monitoring the CLKcount

signal and state of the nineth inverter of the MGRO as captured by the first bank of
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TDC CORE STRUCTURE

OPU

1317.08

m

(a)

(b)

Figure 3.8: Stand-alone TDC a) layout and b) photomicrograph. The TDC’s core
structure is composed of the MGRO with the phase registers, counter and delay
elements and OPU for reading out the data.
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Figure 3.9: Output processing unit with detailed on-chip error correction implemen-
tation.

phase registers. In essence, the CLKcount signal has to be one when Q8 is 0. The

relationship between the signals is determined by the following equation:

corpoz =Q8 NOR C LK count . (3.3)

In the second case, the C LK _T AP cell’s feedback can cause its output to stop transi-

tioning and go back to logic ’1’. In some cases, the resulting pulse is large enough to

trigger an additional count in the counter. This is compensated for by setting corneg

to ’1’. Similar to the previous case, the OPU determines the value of the correction

signal but this time by monitoring the counter value immediately after the arrival of

the STOP signal, the settled value of the counter and the value captured by the first

bank of phase detectors. In essence, the least significant bit of the counter should not

settle to a value that is different from the one at the arrival of the STOP signal, unless

the MGRO has completed a full oscillation cycle. In this case, the relationship between

the signals is determined by the following equation:

corneg = (C B(0) XOR CountV al i d) AN D (A > 7), (3.4)

where CB(0) is the least significant bit of the counter (the settled value which is read

out), CountValid is also CB(0) but captured by a flip-flop on the rising edge of the

STOP signal and A is the decoded value of the first bank of phase registers.
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Figure 3.10: On-chip error correction: STOP signal arrives on the rising edge of the
counter clock signal. The positive correction (corpoz) signal is set to high.
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Figure 3.11: On-chip error correction: STOP signal arrives on the falling edge of the
counter clock signal. The negative correction (corneg ) signal is set to high.

74



3.6 TDC calibration

3.6 TDC calibration

Each TDC comprises four sets of delay cells with four transistors and capacitors as

presented in the previous section. In order to create the desired delay through each

cell, 16 calibration bits need to be set for each TDC. The TDC’s calibration system

comprises two row and column shift registers with a serial interaface as depicted in

Figure 3.12.

The calibration bits are sent serially for each TDC using a two wire serial interface

(serial clock (SCK) and a the serial data input (SDI)), distributed using a binary tree.

Due to process variations, a single set of calibration bits cannot suit all 64 TDCs in the

array. In this way, each TDC can be accessed and calibrated independently.

3.7 Decision tree

A decision circuit has been implemented per cluster in order to determine the first

firing pixel within a burst of events. The pixel outputs are connected to the decision

circuit at the first level and a comparison is made between groups of 2 pixels at each

level. The decision circuit is presented in Figure 3.13. When nRST signal is active (’0’

logic), M2 and M5 become active. If I0 switches before I1, M3 is activated, discharging

the gate of M5. In this way, I1 is prevented from propagating through the cell. In the

case in which, I1 switches first, the gate of M2 is discharged and the propagation of I0

is blocked.

The first arriving event is then propagated down to the next level and continues

like this until the sixth level (log2 64, where 64 represents the total number of SPADs in

a cluster) where all SPAD events are analyzed. At the end, a single output is provided

which determines the winning event corresponding to that cluster. The winning event

then triggers the TDC. A SPAD address tree has been implemented in each cluster as

represented in Figure 3.14. At the end, a 6 bit encoder that takes as an input all the

outputs of the decision circuit returns a 6-bit binary code providing the address of the

pixel that fired first.
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Figure 3.12: Conceptual diagram of the TDCs’ calibration system. Two row and column
shif registers are used to load the calibration bits into the TDCs. Two binary trees are
used for serial communication: red tree - serial clock, blue tree - serial data. Serial
interface: SCK - serial clock, SDI - serial bus for the data, OE - output enable to activate
the parallel output of the shift registers, RST - reset signal [36].
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Figure 3.13: Decision circuit based on a WTA approach. The circuit determines which
input fired first (I0 or I1) based on precharged logic.
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Figure 3.14: Decision tree concept presented on 8 pixels. The schematic can be
extended to N pixels. AX@Y is the X-th address bit corresponding to decision element
Y.
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3.8 Characterization results

3.8.1 Time-to-digital converter

The TDC stand-alone structure was characterized by performing electrical and optical

measurements.

First, the transfer function of the TDC was measured by sending START and STOP

signals with a FPGA (Opal Kelly XEM7360 with Xilinx Kintex-7). The rising edge of

the START signal triggers the TDC, while the rising edge of the STOP signal ends the

measurement cycle. Each time interval of the START and STOP signals was sampled

by the TDC 81920 times over a range of 85 ns. The transfer function of the TDC is

shown in Figure 3.15 and it indicates an LSB of 15 ps.
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Figure 3.15: TDC transfer function.

Second, electrical single-shot precision results can be extracted from the TDC’s trans-

fer function. Because each time interval in the transfer function was sampled 81920

times, the standard deviation in the TDC’s output code can be determined. Two differ-

ent single-shot precision measurements are presented in Figure 3.16 and indicate a

sigma of approximately 3 LSBs.

The large sigma can be reduced by proper calibration of the TDC (changing the

calibration bits of the delay cells). An example is shown in Figure 3.17. In this case,
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Figure 3.16: a), b) Single-shot precision of different TDC output codes.

single-shot measurements were performed for an EN width of 52.8 ns where 16000

iterations were run for each point. A total of 100000 calibration code combinations

were checked and the standard deviation was calculated for each of them. In this

particular single-shot configuration, for an EN width of 52.8 ns, the sigma could be

reduced from 28.9 LSBs to 3.8 LSBs.

For the measurements performed on the stand-alone structure a specific combination

of the calibration bits was used. This combination was determined through different

measurements and it proved to be the best choice from all the tested cases. However,

this does not guarantee that this combination can be extended to the TDCs present

on the bottom tier of Blueberry. In the case in which the TDCs present on the bottom

tier are tested, each of them has to be calibrated individually. The calibration part is

time consuming considering a total of 64 TDCs and has to be implemented carefully

for each TDC in order to have a uniform TDC LSB for the entire array. Moreover, this

technique proves to be cumbersome in the case in which the system is scaled up and a

more robust method has to be considered. The code combinations which were tested

for these measurements are present in Table 3.1

The TDC’s non-linearities were measured through a code density test. The TDC’s

START signal is connected to a single SPAD which was illuminated with white light,

thus the photons were randomly distributed in time. The TDC’s timestamps were read

out over a long period of time. In the ideal case scenario, the final histogram should be

uniform, however, this is not possible due to different process and design variations.

The DNL and INL results are shown in Figure 3.18 with 90% of the results presenting a
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Figure 3.17: Pareto diagram of the TDC’s calibration bits. Each blue circle represents a
code combination of the delay cell. The standard deviation was measured on 16000
iteration points for each code combination for an EN width of 52.8 ns. The standard
deviation can be reduced from 28.9 LSBs to 3.8 LSBs in this particular case.

Table 3.1: Calibration code combinations used during the characterization of the
stand-alone TDC.

Register CODE0 CODE1 CODE2 CODE3

CB 0000 0000 0000 0011
A 0000 0000 0111 1011
B 0000 0011 0111 1000
C 0000 0110 0111 0101
D 0000 1001 0111 0001

DNL of -1/2.45 LSB and an INL of -0.26/3.77 LSB. The INL was compensated for by us-

ing a LUT. These measurements were performed in a single control bits configuration

(CB - 0000, A - 0000, B - 0011, C - 0110, D - 1001).

The average power consumption of the TDC stand-alone structure is 1.4 mW which

translates into an estimated total power consumption of 89.6 mW for all 64 TDCs

present on Blueberry’s bottom tier.
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Figure 3.18: TDC’s non-linearities - DNL and INL. Before compensation (blue) and
after compensation (red).

3.9 Conclusions

This chapter presented the design concept and implementation of the first 3D-Stacked

multi-Digital SiPM implemented in a FSI fashion. Considering the FSI implementa-

tion, Blueberry is a suitable photodetector for PET due to its sensitivity in the blue

spectrum. The 3D integration facilitated the use of a separate top tier for the photosen-

sitive area and a dedicated bottom tier which comprises solely the readout electronics.

Different limitations were set by the manufacturing process which limited the de-

tector to 7.5 mm × 4.2 mm. The SPADs present a fill factor of approximately 67%.

An architectural overview of the entire sensor was presented in this chapter with a

focus on the electronic blocks designed by the author. The TDC exhibits an LSB of 15

ps and a DNL of -1/2.45 LSB and an INL of -0.26/3.77 LSB for more than 90% of the

results. An on-chip error correction algorithm was implemented for the TDC readout

which was explained in detail. The TDC’s timing resolution was obtained through a

reconfigurable delay cell whose delay is controlled through different calibration code

combinations. A Pareto diagram example of how the calibration bits influence the

standard deviation of the TDC was presented. The TDC’s timing resolution is an im-

portant parameter which contributes to the overall timing resolution of a PET detector

module. One of the goals for the author was to design a TDC which pushes the limits in

terms of timing resolution considering that the TDC is an important readout element
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for a PET photodetector module. The SPAD address tree circuit implemented in each

cluster was described in detail. The chapter included all the design, analysis and

measurements performed by the author, additional characterization results related

to the SPAD design and performance are presented in [36]. A comparison between

Blueberry sensor and other SPAD-based sensors designed in similar technology nodes

is presented in Table 3.2.

Compared to the other works presented in the table, Blueberry presents a high fill

factor of 67% due to the nature of the 3D integration. The TDC achieves the best LSB

of 15 ps, however with larger integral nonlinearities compared to other works. This

is probably due to the nature of this topology, which is based on delay stages with

three inputs, four sets of phase registers and delay calibration cells. The Blueberry

TDC DNL of -1/2.45 LSB (LSB = 128 ps) is smaller than the ones reported by the other

works. The DNL and INL can in principle be improved by using the delay calibration

cells. Due to the complexity of this TDC, a larger power consumption was expected.

This is visible in the comparison table where [130] and [51] have similar total power

consumptions but more TDCs.
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Table 3.2: Blueberry comparison with SPAD based detectors.

Parameters Blueberry [130] [131] [51] [132] [133]
Technology [nm] 180 CMOS a 180 CMOS 180 CMOS 130 CMOS 150 CMOS 180 CMOS
SiPM type D-SiPM D-SiPM D-SiPM D-SiPM D-SiPM D-SiPM
Microcell size [µm2] 50× 50 28.5 × 28.5 28.5 × 28.5 25.4 × 25.4 b 25 × 25 55.66 × 64 f

Microcells # 4096 1024 36288 92160 3840 3200/6400
Fill factor [%] 67 28 28 35.7 32.1 77.7 f

PDP
55% @ 480 nm

Vex = 6 V
47.8% @ 520 nm

Vex = 5 V
47.8% @ 520 nm

Vex = 5 V
45% @ 450 nm

Vex = 1.5 V
NA

38.9% @ 450 nm
Vex = 3.3 V

TDC type antiphased
MGRO

GRO GRO GRO GRO NA

Total # TDCs 64 128 1728 128 128 2 f

TDC LSB [ps] 15 48.8 48.8 64.5 80 23.5 f

Dynamic range [ns] 3932 204 204 261.59 81.84 12

DNL, INL [LSB]
-1/2.45

-0.26/3.77
-0.07/0.08

-0.38/0.75 c
-0.48/0.48
0.89/-1.67

-0.24/0.28
-3.9/2.3 d

-0.19/0.20
-2.40/0.35 d < 0.5 f

TDC area [mm2] 0.0191 0.004 0.004 NA NA NA
Power/TDC [mW] 1.4 0.73 e 0.3 940 µ NA NA
a 3D-FSI.
b hexagonal arrangement.
c measured over 25% of DR.
d measured over 61% of DR.
e assuming 35.5 Mevents/s [134].
f for DPC3200-22-44 [133].
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4 Smarty: An on-chip neural network

4.1 Motivation

In this chapter, we discuss Smarty, an on-chip neural network. This sensor has been

designed as a proof of concept for a digital front-end that contains both timestamping

circuitry and a neural network. Ten independent channels are directly connected to

a reconfigurable on-chip neural network which can be trained for the desired task.

In this case, the focus is kept on reconstructing the position of a radioactive source

between two photodetectors facing each other. The data from the ten input channels

is reduced to a single word per frame and special cases where not all the channels have

fired are automatically discarded by the neural network through inference. Compared

to other neural networks used in PET, which are mostly implemented in FPGAs or

GPUs [89], [96], [135], the particularity of this chip is based on its full reconfigurability

and on-chip design. The latter imposes more constraints in the design phase, such as

area, architecture, as well as reconfigurability. Most of the neural network approaches

are implemented either in FPGAs or GPUs, while Smarty is a fully integrated neural

network. Besides this, the neural network can be accessed independently so that it

could be trained for different purposes desired by the user.

A potential issue of the PET systems is the large amount of raw data generated during

acquisition. A typical system can consist of tens of thousands of photodetectors [136],

each one representing an independent channel whose data needs to be processed

simultaneously with the rest. In order to implement the image reconstruction algo-

rithm, the processing electronics must be capable of handling the large input data

throughput. In practice, pre-processing of the sensor data is required in order to miti-

gate the effects of random coincidences, scattered and attenuated gamma photons so

that the image quality is improved.
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Neural networks are attractive candidates for image reconstruction [89], [135], as

well as for data acquisition and pre-processing. Neural networks with thousands of

inputs have already been demonstrated [137], [138] in the field of image processing

which makes them very attractive candidates for the high throughput and large num-

ber of channels in a PET system. In addition, because of the nature of the training

procedure, the pre-processing steps such as TDC gain correction or elimination of

invalid frames can be inferred based on the desired training output. In this way, focus

is kept on the desired task, such as coincidence detection. Moreover, because the pre-

processing circuits are integrated, and only the distilled data needs to be forwarded to

the rest of the processing electronics, the throughput is significantly reduced.

4.2 Neural network modelling

The first step towards the implementation of the neural network consisted in creating

a model based on a small fully-reconfigurable neural network. In order to implement

the on-chip neural network, a mathematical description of it is necessary. An example

NN was used to create this model and it can be extended to a larger feed-forward

artificial neural network topology.

In this section the mathematical model of a NN example describing the architec-

ture of Smarty’s neural network is formalized so that it serves as a basis for the on-chip

implementation. Smarty’s neural network is highly reconfigurable; the weights, bi-

ases, and even the network’s topology can be modified on demand. By adjusting

the weights and biases, learning is improved, therefore the NN will generate a more

accurate result. Configuring Smarty is done by simply updating a topology file in

which information regarding the number of input neurons, number of hidden layers

and hidden neurons as well as output neurons is stored. As depicted in Figure 4.1, a

fully-connected artificial neural network example followed by its mathematical model

and the required variables which describe the architecture is depicted. This approach

can be extended to other topologies of feed-forward NNs.
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Figure 4.1: Example of a fully-connected neural network with three neurons in the
input layer: (O3, O4, O5), one hidden layer of four neurons: (O6, O7, O8, O9) and two
output neurons (O10, O11). For each connection, the weights and biases are depicted.

The NN is mathematically described as follows:

O3 = w0 +
1∑

i=1
wi ×Oi−1 = w0 +w1 ×O0

O4 = w2 +
3∑

i=3
wi ×Oi−2 = w2 +w3 ×O1

O5 = w4 +
5∑

i=5
wi ×Oi−3 = w4 +w5 ×O2

O6 = w6 +
9∑

i=7
wi ×Oi−4 = w6 +w7 ×O3 +w8 ×O4 +w9 ×O5

O7 = w10 +
13∑

i=11
wi ×Oi−8 = w10 +w11 ×O3 +w12 ×O4 +w13 ×O5

O8 = w14 +
17∑

i=15
wi ×Oi−12 = w14 +w15 ×O3 +w16 ×O4 +w17 ×O5

O9 = w18 +
21∑

i=19
wi ×Oi−16 = w18 +w19 ×O3 +w20 ×O4 +w21 ×O5

O10 = w22 +
26∑

i=23
wi ×Oi−17 = w22 +w23 ×O6 +w24 ×O7 +w25 ×O8 +w26 ×O9

O11 = w27 +
31∑

i=28
wi ×Oi−22 = w27 +w28 ×O6 +w29 ×O7 +w30 ×O8 +w31 ×O9 (4.1)

87



Chapter 4. Smarty: An on-chip neural network

Any fully-connected NN of any dimension can be described mathematically as in the

above model. Additionally, the layer parameters which describe its architecture can

be derived from the model as such:

• Sant : the index of the first neuron of the layer in front of the current layer,

represented as 7 bit unsigned integer.

• Nant : the number of neurons of the layer in front of the current layer, repre-

sented as 7 bit unsigned integer.

• Sact : the index of the first neuron of the current layer, represented as 7 bit

unsigned integer.

• Nact : the number of neurons of the current layer, represented as 7 bit unsigned

integer.

• Sw : the index of the first weight or bias from the current layer, represented as 10

bit unsigned integer.

An example of the parameters describing the third layer of the neural network pre-

sented in Figure 4.1 are shown in Table 4.1. The topology file describes each layer of

the neural network.

Table 4.1: Parameters describing the third layer of the NN presented in Figure 4.1.

Sant Nant Sact Nact Sw

6 4 10 2 22

All layers parameters are included in the topology file and determine the NN’s archi-

tecture. Parameters which describe the NN topology are stored in a 624 bit memory,

and the weights and biases are stored in a 10.24k bit memory.

A Matlab floating point model of the NN is used as a reference. The outputs of this

model for a specific set of inputs are considered to be correct and will be referred to

from now on as golden outputs. The NN’s golden outputs are obtained through the

Matlab code (it can describe any feed-forward NN topology and it uses floating point),

which allows for simulation of the system’s performance when floating point preci-

sion is used. Floating point precision is important to quantify the NN’s capabilities.

However, due to its large resource requirements, its on-chip integration is discouraged.

High-level synthesis (HLS) is an automated tool that translates a high-level program-

ming language (such as C) into a register transfer level (RTL) hardware description.
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Smarty’s NN has been firstly described in C and HLS was used for its RTL implementa-

tion. The performance of the NN in Matlab is then compared to the C implementation

which is bounded by the use of fixed point precision. The modelling code flow is

depicted in Figure 4.2.

Figure 4.2: Schematic of Smarty neural network modelling procedure. The perfor-
mance of the NN in Matlab (floating point) is compared to that of the HLS-inferred
system (fixed point bounded). At the end, the obtained results are compared.

In order to analyze the NN performance in Matlab, three sets of parameters are needed:

the NN’s layers configuration (the previously described topology file), the input values,

i.e. TDC codes, which are determined by taking into account the TDC range, and a set

of weights, which were randomly chosen in Matlab considering a range of [-1, 1]. At

the end, a file with the output values of each neuron in the NN is obtained.

The number of fractional bits required for the fixed point implementation was deter-

mined by analyzing the rounding error present at each neuron of the neural network

when all the weights are random numbers between [-1, 1], sampled from an uniform

distribution. A large NN considering the limits of this design, of 10 input neurons, 4

hidden layers of 8 neurons and a 6 neuron output layer was analyzed. The 20-bits

TDCs’ values were simulated as random number sampled from an uniform distri-

bution across four different ranges: [0, 300000], [300000, 600000], [600000, 900000],

[900000, 1000000]. The same files for the layer configuration, inputs and weights

are used for the HLS test bench. The two output files, the Matlab-generated golden

outputs and C are compared by checking the relative error of the outputs of the NN

(Matlab - floating point, C - fixed point) as depicted in Figure 4.3.

The resulting relative rounding error is less than 0.03 % across all TDC input ranges,

when an 8 fractional bit representation is used. In conclusion, considering the small
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Figure 4.3: Smarty NN’s outputs relative rounding error obtained by comparing the
golden outputs in floating point and the fixed point outputs. TDC ranges: 0 - [0,
300000], 1 - [300000, 600000], 2 - [600000, 900000], 3 - [900000, 1000000].

error, the on-chip design was implemented with 8 fractional bit representation for the

neurons and coefficients values.

4.3 System architecture

Smarty is part of a SoC developed in TSMC 16 nm FinFET process and comprises ten

TDCs connected with an on-chip fully-connected reconfigurable NN, along with a

stand-alone reference oscillator as presented in Figure 4.4. The photomicrograph of

the entire SoC is illustrated in Figure 4.5.

In the following section, the architecture of the main electronic blocks such as: TDC,

NN and the entire system will be described in detail, along with important considera-

tions that needed to be made in order to meet the area constraints.

4.3.1 Time-to-digital converter

Each of Smarty’s 10 TDCs comprises three main structures: a VCO, an asynchronous

ripple-counter and a thermometer decoder connected as depicted in Figure 4.6.
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Figure 4.4: Smarty block diagram. The outputs of the 10 TDCs represent the inputs to
the neural network. A stand-alone reference oscillator is used for calibration. Two dual
port memories are used for storing the weights and biases and the NN outputs. The
TDCs can be bypassed and the neural network can be used as a stand-alone structure.

The 20-bit counter increments upon each completion of a ring cycle and returns the

most significant bits, while the least significant bits are provided by the four interme-

diate VCO’s outputs (Q < 0 : 3 >) through the thermometer decoder. The VCO consists

of four delay stages as illustrated in Figure 4.7 based on three types of standard cells:

buffers, inverters and NAND gates. The VCO starts oscillating on the rising edge of

the EN signal, which is formed by the SR latch as depicted in Figure 4.8. At the falling

edge of the EN signal, the oscillation stops in its current state which can be read out

using the four outputs Q < 0 : 3 >.

In order to reduce the power consumption, the VCO’s outputs are buffered and are

only available when the EN_read signal is asserted. Signal Q < 3 > is an exception be-

cause it acts as a clock signal for the counter, and therefore always needs to be enabled.

An always-on dummy buffer is present to balance the load across the four stages of the

oscillator. The least significant bits are then interpreted by the thermometer decoder
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Smarty

Figure 4.5: Overall SoC photomicrograph. Approximate representation of Smarty
location is shown in the yellow rectangle.

and the two LSBs of the output code are generated.

The TDC thermometer decoder takes the four VCO bits, signals Q < 0 : 3 >, as an

input and converts them into a 2-bit number. Additionally, the thermometer decoder

checks the validity of each code by setting B2 bit to ′0′ if the code is not valid, and to
′1′ for a valid code. The logic functions of the thermometer decoder along with their

implementation are illustrated in Figure 4.9.

The TDC layout is depicted in Figure 4.10.

The final result of the TDC is calculated as:

Nr esul t = 4×Ncoar se +N f i ne , (4.2)

where Ncoar se is the counter value and N f i ne is the decoded fine bits value.

Each of the ten TDCs can be read out independently by utilizing two different signals:

TDC_START_ELECTRIC and TDC_STOP_ELECTRIC, both generated by a FPGA board

(Opal Kelly XEM7360 with Xilinx Kintex-7). During electrical testing, a START signal is

generated with the same frequency but an adjustable phase with respect to the STOP

signal. This allows different impulse widths to be fed into the TDC, therefore sweeping
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Figure 4.6: Smarty TDC architecture which comprises three main blocks: a VCO that
returns the four phases of the TDC (Q < 0 : 3 >), a 20-bit asynchronous ripple counter
that returns the MSBs of the TDC, and a thermometer decoder which returns the LSBs
of the TDC code.

Figure 4.7: The ring oscillator structure implemented in Smarty TDC based on four
delay stages [139].
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Figure 4.9: Thermometer decoder logic functions.
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Figure 4.10: Smarty TDC layout. Only a portion of the decoupling capacitor bank is
shown.

a larger TDC range. Alternatively, all the TDCs can be electrically measured altogether

by using the TDC_START_ALL and TDC_STOP_ELECTRIC. In this way, the required

measurement time is decreased and the same impulse width can be measured by all

the TDCs so that the testing procedure can be sped up and simplified. In order to

determine the oscillation period, the 7th counter bit of each TDC can be read out by

the TDC_CNT_SEL, so that an analysis of the performance of all TDCs can be made.

The frequency of a reference stand-alone TDC (whose oscillator is identical with

the VCOs of the other TDCs) that continuously oscillates is compared to the fre-

quency of a reference signal. Considering that the supply voltage of the reference TDC

(VDD_RING) is the same as for the other ten, one can assume that the frequency is the

same for all of them. However, the influence on the substrate potential of the output

load due to unequal routing led to body effect in the TDCs’ VCOs. As a result, the

reference TDC oscillates at a higher frequency compared to the other ten. However,

this factor is deterministic and can be accounted for when using the reference TDC.

4.3.2 On-chip neural network

In order to facilitate an easier implementation, Smarty’s neural network was written

in C, and translated by a high-level synthesis tool. Due to its automated design pro-

cess, the NN register-transfer level implementation was built based on an abstract

behavioral specification of the digital system. Moreover, architectural optimizations

such as Kernel optimizations (reduce area and device usage, reduce latency etc.),

loop unrolling (creates multiple copies allowing iterations to occur in parallel), loop

optimizations to reduce latency etc., pipeline are available so that the final design can

be optimized accordingly. The optimizations were introduced in the HLS code that

describes the NN’s design.
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The NN’S main blocks are depicted in Figure 4.11.

Start 0
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Start 2

Start 9

Stop

20

TDC 0

TDC 1

TDC 2

TDC 9

32

10

32
32

32

4 processors 

OUT ANN 

Figure 4.11: 10 TDCs connected to the NN. The NN’s main blocks: weights and biases
memory, neuron memory and the control logic unit. The communication with the
NN is done through an AXI bus.

The NN comprises three main memory blocks. The neuron memory is a dual-port

4.096 k bit memory and contains the values for all the neurons from all the layers in

the NN. The 10.24 k bit dual-port coefficient memory (weights and biases memory)

comprises all the coefficients corresponding to all the connections in the NN. The

coefficients are loaded into the memory after they have been determined by the user

through extensive training. Additionally, a third small 624 bit memory is needed in

order to store the topology of the NN as previously described. The implementation of

an on-chip NN requires the usage of arithmetic and memory blocks which scale with

the NN’s topology. Due to the limited amount of area in this technology, constraints

were imposed and, as a result, a total of maximum 128 neurons was chosen for the

fully-connected NN.

The 4 processors are fully synthesized through HLS and represent hardware digital

blocks meant to accelerate the required operations. The control logic unit implements

all the necessary sequential steps that are described in the behavioral code. This unit

is responsible to control the behavior of the NN and it is a finite-state machine (FSM)

fully inferred from the HLS. Smarty’s layout is illustrated in Figure 4.12. The ANN area

is 89.79 µm × 182.16 µm and the TDC bank is 20 µm × 250 µm.
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Figure 4.12: Smarty layout.

4.3.3 System

Smarty is part of a SoC design and interfaces with a RiscV processor through an AXI

bus. The bus is used for configuration, control and read-out of the TDCs and NN. An

address range of 1152 locations is assigned to the chip, which are then mapped to

the neuron and weights RAM blocks and configuration registers. The TDC reference

oscillator and debug signals have dedicated input-output pads.

The system clock is generated by the SoC PLL and can be configured through software.

The NN was designed to operate at a nominal clock frequency of 500 MHz.

Smarty has its own isolated power domains:

• VDD_RING: one supply voltage assigned only to the VCOs, so that the oscillators’
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frequency can be changed with limited influence to the rest of the electronics.

• VDD_ANN: a supply voltage dedicated solely to the NN. In this way, the NN can

be tested independently.

• VDD_CORE: a dedicated supply voltage for all the rest of the circuits in Smarty.

4.4 Neural network performance characterization

4.4.1 Simulation setup

The performance of the NN was tested by using synthetic data generated with the

Geant4 platform [140]. Geant4 is a platform that is used to simulate the particles

passing through matter by using Monte Carlo simulations. It is heavily used in many

different research areas such as space and medical applications, radiation effects in

microelectronics, nuclear physics and PET [141]. The simulation model emulates the

behavior of the gamma interaction inside a monolithic 20 mm × 4 mm × 4 mm LYSO

scintillator. The 22N a source is a sphere of 3 mm diameter with an intensity of 3.7

MBq. The source case is a disk of 25 mm diameter and 6 mm thickness. The gamma

photons interact with the scintillator and a burst of visible photons is produced. In

this case, the resulting detection times at the reading surface (the surface covered by

the SiPMs) of the crystal are of main interest because they are recorded by the TDCs,

and then further processed by the NN.

4mm

2
0
m
m

200mm

SiPM1

SiPM2

SiPM3

SiPM4

SiPM5

SiPM6

SiPM7

SiPM8

SiPM9

SiPM10

detector1
detector2

LYSO LYSO

Figure 4.13: Simulation setup: two 20 mm × 4 mm × 4 mm LYSO crystals are placed in
coincidence. Each detector comprises five SiPMs of 4 mm × 4 mm which are placed
along the 20 mm surface. The distance between the two crystals is 200 mm. The
black dots represent the radioactive source positions that are simulated in the Geant4
environment one-at-a-time.

The simulation setup is presented in Figure 4.13. A 200 mm distance between the two

detectors was chosen for the Geant4 simulations in order to cover a larger area suitable

98



4.4 Neural network performance characterization

for a TDC’s LSB value of 27 ps (measured reference TDC LSB). The LSB corresponds

to a distance of 8.1 mm. The timestamps datasets that are used for training are only

the ones that reach the crystal surface, everything else being discarded because it

cannot be detected by the SiPMs. At the detection surface, the two monolithic LYSO

scintillators are covered by a group of five A-SiPMs.

The timestamps collected by all the SiPMs for different source positions in space as

presented in Figure 4.13 are recorded. Each source position has its own dataset which

contains information about the space coordinates of the source (Xsour ce , Ysour ce ),

the time of arrival of the photons at the reading output surface and the ID of the

crystal on where these photons arrived (detector 1 or detector 2 as presented in 4.13).

Considering that the two crystals are placed in coincidence, and that the source is

placed in the plane of the detector pair, each detector has an identification ID of

detector 1 or detector 2 so that the spatial information regarding on which detector

the gamma arrived is known.
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Figure 4.14: Simulation setup: Example of different source positions patterns that are
used for the NN analysis.

The source position placements were chosen in such a way that different patterns

such as triangles, rectangles, squares and lines can be used to test the training and

evaluate the NN as presented in Figure 4.14. A large crystal of 4 mm × 4 mm × 20 mm

was chosen for a greater light yield, as well as a larger field of view (FoV) coverage

necessary in order to reconstruct the source position. This setup allows for easy

source position reconstruction while conforming to the stringent requirements of the

hardware implementation.

4.4.2 Neural network training

The NN training has been implemented in Python 3.6 by making use of the PyTorch

open source machine learning framework. The raw data obtained from Geant4 simu-
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lation framework was organized for training as follows:

• All the timestamps are sorted and all their corresponding source position coor-

dinates, Xsour ce , Ysour ce are kept.

• The data is organized in exposure frames of 100 ns in order to increase the

number of frames available for the training process.

• A maximum of 10 timestamps are kept for each frame considering that the

maximum number of A-SiPMs available in the configuration is 10. However,

there might be frames with a fewer number of timestamps. The first timestamp

for each SiPM in one frame is kept.

• The corresponding SiPM number from the system is assigned to each times-

tamp.

• The dataset is then organized in a training set (80% of the entire dataset) and a

validation set (20% of the entire dataset).

The neural network training was performed with the aid of a genetic algorithm. Widely

used for optimization and complex search spaces, genetic algorithms rely on processes

related to evolution and natural selection. Originally formulated by Charles Darwin,

genetic algorithms present different parameters, such as population, chromosomes,

individuals, mutation, crossover, generation. Each of these parameters are described

in the following paragraphs [142]–[144].

The GAs are non-mathematically guided algorithms and their optima evolves from

one generation to another without mathematical formulation. As a result, they are

used in many different areas such as: image processing, speech recognition, sensor

networks, healthcare and machine learning [142], [145]–[148]. The main steps of a

traditional genetic algorithm flow are depicted in Figure 4.15.

The process starts with a set of n individuals which are part of a population. The

population size depends on the nature of the problem that needs to be solved and it

is decided by the user. There are different studies which analyzed the impact of the

population size on the genetic algorithm. Some argue that a very small population

might lead to poor solutions, while a larger population size needs more computation

time to find the desired solution [150]–[152]. However, there is no optimum number

concerning the population size, all being based on the approach of the user in what

concerns the problem solving.
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Figure 4.15: Main steps of a genetic algorithm. Adapted from [149].
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The evolution usually starts from a randomly generated population with a certain

number of individuals. Each solution from each individual is characterized by a set

of variables known as genes which are part of the chromosomes and represent the

solution to the problem that needs to be solved. Each individual in the population is

characterized by a unique chromosome. Starting an iterative process, the loss func-

tions of each individual in the present population are evaluated during the training

and represent the performance quality of each individual in the population. Those in-

dividuals which present the best loss values (the parents) from the current population

are selected and their chromosomes are recombined by using crossover and mutation

parameters.

The main goal of the selection process is that the better an individual is, the higher

are the chances of being a parent [142]. There are different strategies which can be

used in order to determine the parents selection, which should be applied in line

with the problem in question [153], [154]. The result of the mating process or the

so-called reproduction process is a number of offsprings which serve as members of

the next evolved generation. Two main important genetic operators that represent the

fundamental basis of the GAs are the crossover and mutation. These parameters have

a direct impact on the quality of the solution, so that extensive analysis is required in

order to find the desired values.

The crossover represents a stochastic approach of recombining the chromosomes of

two parents to generate a new offspring. The mostly used crossover types are illus-

trated in Figure 4.16, however, there are other evolving crossover techniques that can

be implemented [142], [155].

One-point crossover is a type of crossover in which a random crossover point is

selected along the parents’ chromosomes. Starting from that point, the genes are

exchanged between the parents in order to create two children for the next generation.

The first parent transfers its genes to the second child, and the other way around for

the other one. Two-point crossover is similar to the one-point crossover, the difference

being that two crossover points are selected along the parents’ chromosomes. The

gene exchange takes places between the two crossover points for the production of the

two children. The same exchange principle is applied as in the case of the one-point

crossover. However, the exchange takes place this time only between the two crossover

points. In the case of the uniform crossover, each gene is chosen from either parent

with a certain probability in order to be transferred to one of the two children. As

a result, one of the children will inherit more genetic information from one of the

parents than the other.
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Figure 4.16: a) One-point crossover: on the right of the crossover point, the genes
are interchanged between the two parent chromosomes resulting in two children
who carry the genetic information from the parents. b) Two-point crossover: two
crossover points are randomly selected for the parent chromosomes. The genes are
interchanged between these two points. c) Uniform crossover: genes are changed
randomly from the parents to their children.

Mutation is another genetic operator that, in general, takes place after the crossover

occurred. The mutation represents a random change of one or more genes to produce

a new offspring. The role of the mutation rate is to create new solutions so that the

algorithm converges to better solutions by skipping the local optima. Solely using the

crossover to produce offsprings, the GA can easily get stuck in the local optima, thus,

mutation is essential in order to assure population diversity [142].

After the mutation has taken place, the GA can end by following different termination

conditions which are chosen by the user, such as: a specific number of generations,

the desired loss value was reached, or no improvement in the best loss value was

found [142].

In the following, the GA with the chosen parameters that was implemented for this

application will be described in detail.

Starting from the previously described training dataset which contains all the times-

tamps with their corresponding SiPM number, detector ID and source position, orga-
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nized in frames the GA acts as follows:

• The GA starts with a population of 20 individuals. In this case, each individual

is a neural network with a fixed topology that will be presented along with the

simulation results.

• Each NN is trained by using the Adam optimizer [156], a certain number of

epochs (it was changed across different trainings), and a variable learning rate

which decreases from 0.01 in the first epoch to 0.001 in the last epoch.

• The algorithm is run for a certain number of generations decided by the user.

• From one generation to another, the genetic operators of crossover and muta-

tion are applied. An explanatory picture of the previously described architecture

can be seen in Figure 4.17.

• Each frame has a maximum of 10 timestamps that correspond to a specific SiPM

in the system, a specific detector and source position in the plane as shown

in Figure 4.13. Each individual (NN) is trained by using the aforementioned

described method.

• The value of the loss is calculated for each individual for each frame in each

generation. The loss function is the distance value between the estimated source

position and the actual source position in space as represented in Figure 4.18

and it is calculated as follows:

loss = ||P1P2|| =
√

(X1 −X2)2 + (Y1 −Y2)2 (4.3)

• The average loss value of each individual is calculated for each generation.

• At the end of the algorithm, the individual with the best average loss value from

the last generation is reported.

In this case, the GA is used to train a given neural network with a fixed topology across

all generations and individuals and only acts on the weights and biases. The crossover

and mutation change the weights and biases in order to minimize the loss function.

However, GAs can be given more freedom and allowed to modify the structure of the

neural network as well, such as changing the number of layers or neurons in order to

find the best topology for a given problem. This technique has not been applied in

this work.
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Figure 4.17: A NN example with 10 neurons in the input layer, 13 neurons/hidden
layer, 5 hidden layers and 2 output neurons was chosen. Each circle in the generation
is a NN as represented in the blue squares. Each generation has 20 individuals. In
each generation, each NN is ranked by the loss value. The chosen parents recombine
to create the children of the next generation. Randomly a mutation occurs in the
chromosomes of some individuals in the population as represented by the red circles.

4.4.3 Training results with genetic algorithm

In order to confirm the NN training performance, initially, datasets obtained from

Geant4 simulations were used. A certain number of source positions along with their

corresponding timestamps were recorded and used for the training algorithm as pre-

viously described. In the following, an analysis based on different training scenarios is

presented.

The NN topology can be tuned by the user by taking into consideration its upper

limit constraints: 128 - maximum number of neurons, 1024 - maximum number of

P1

P2

(X1, Y1)

(X2, Y2)

Actual source position

Estimated source position

Figure 4.18: Measurement performed by the neural network. The black point corre-
sponds to the actual source position, while the red point represents the estimate given
by the NN. The loss value is the linear distance between the two points.
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weights and biases, 16 - maximum number of hidden layers. This is one of the impor-

tant features of the NN. As a consequence, the NN’s performance was analyzed by

changing its topology. Two main topologies of different sizes were analyzed: narrow-

deep and wide-shallow as depicted in Figure 4.19a and Figure 4.19b respectively.

In the following, results from the training of the two NN topologies with different

mutation rates are presented. The NNs were trained for 6 different source positions

along the X axis at the -70, -50, -10, 40, 60 and 80 mm positions, with 0 mm denoting

the midpoint between the two detectors. The GA was used with 30 generations with

20 individuals per generation and 30000 epochs each. The learning rate is variable,

changing from 0.01 to 0.001 from the first to the last epoch respectively. The crossover

rate is 50%. The mutation rate was changed during the training for both topologies

and the final loss was reported. This represents the best loss from the final generation.

The effects of the mutation rate are depicted for both NN topologies in Figure 4.20.

The NN’s performance results are illustrated in Figure 4.21 and Figure 4.22. The

narrow-deep topology has a much better performance compared to the wide-shallow

approach, as can be observed from the absolute error on the X coordinate estimation

of the NN with a blind validation set input.

For the remainder of this analysis, only narrow-deep NNs with mutation rates less

than 2% will be considered.

4.4.4 Measurements and evaluation

TDCs’ performance

The TDCs represent the interface between the photodetectors and the ANN, therefore,

their functionality is crucial for the performance of the entire system. All ten TDCs

were tested electrically and their transfer functions are presented in Figure 4.23.

In order to measure the TDC transfer functions, the TDC_STOP_ELECTRIC and

TDC_START_ALL signals were sent by the FPGA board with different phases with

respect to each other so that a larger range of impulse widths could be covered. In

order to determine the LSB of each TDC, the oscillation period of the 7th counter bit

of each TDC was measured with the oscilloscope. As it can be seen from Table 4.2, the

middle TDCs (4 to 6) present a slightly different LSB due to the variations in the output

load caused by unequal distances between the TDCs and the processing electronics.

The nonlinearities of TDC0 are depicted in Figure 4.24. TDC0 exhibits a DNL of -
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Figure 4.19: NN topologies: a) Narrow-deep fully-connected NN consisting of 10 input
neurons, 5 hidden layers of 13 neurons each, and 2 output neurons; b) Wide-shallow
fully-connected NN consisting of 10 input neurons, 1 hidden layer of 70 neurons and
2 output neurons.
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Figure 4.20: Mutation rate effects of a) Narrow-deep NN and b) Wide-shallow NN.
Considering the final loss values, the narrow-deep NN topology clearly performs
better. In both cases, a) and b) the best losses are obtained for mutation rates less
than 2% as indicated in the red caption.
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Figure 4.21: Narrow-deep fully-connected NNs. a), b) Histogram of the X coordinate
estimation at the output of the neural network when presented with never-before-seen
validation input frames for 6 radioactive source positions. Ground truth is shown with
red dots. c), d) The average loss of the best performing individual in each generation
of the GA. e), f) The absolute error of the X coordinate estimation at the output of the
neural network when presented with the never-before-seen validation input frames.
a), c), e) Mutation rate of 1 %, b), d), f) Mutation rate of 0.2 %.
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Figure 4.22: Wide-shallow fully-connected NNs. a), b) Histogram of the X coordinate
estimation at the output of the neural network when presented with never-before-seen
validation input frames for 6 radioactive source positions. Ground truth is shown with
red dots. c), d) The average loss of the best performing individual in each generation
of the GA. e), f) The absolute error of the X coordinate estimation at the output of the
neural network when presented with the never-before-seen validation input frames.
a), c), e) Mutation rate of 1 %, b), d), f) Mutation rate of 0.2 %.
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Figure 4.23: Transfer functions for each of Smarty’s 10 TDCs, measured over a range of
800 ns. Results obtained through electrical measurements.

0.19/0.15 LSB and an INL of -0.77/0.9 LSB. The DNL and INL values of all ten TDCs

are shown in Table 4.3.

On-chip neural network performance

In order to test the functionality of the entire system, optical measurements were

performed with the Smarty board. First, a dedicated support was 3D-printed for

Smarty so that it could be attached to an optical table and kept in a stable position.

In addition, a scintillator could be attached to the analog silicon photomultipliers as

presented in Figure 4.25. The first optical measurement setup is illustrated in Figure

4.26.

In order to test the entire chain’s functionality (A-SiPMs’ board, Smarty board, control

board and FPGA) an optical measurement was performed by illuminating all the

five A-SiPMs with a 375 nm PiL037-FC laser and performing single-shot measure-

ments. Each A-SiPM board contains five independent channels which comprises the

S14160/S14161 series Hamamatsu A-SiPMs that feature high detection efficiency and

low operation voltage for PET photodetectors, a 100 × amplification stage and a fast

comparator with adjustable threshold voltage. This Hamamatsu series is available in
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Table 4.2: TDC LSBs measured at nominal power supply of 0.8 V.

TDC LSB [ps]

TDC 0 55.9
TDC 1 56.2
TDC 2 55.3
TDC 3 56.4
TDC 4 42.3
TDC 5 47.6
TDC 6 48.9
TDC 7 56.1
TDC 8 58
TDC 9 58.4

Table 4.3: DNL and INL values of all ten TDCs present in Smarty, @ 0.8 V.

TDC DNL [LSB] INL [LSB]

TDC 0 -0.19/0.15 -0.77/0.90
TDC 1 -0.11/0.16 -0.15/1.18
TDC 2 -0.29/0.29 -1.02/2.17
TDC 3 -0.12/0.13 -1.13/0.37
TDC 4 -0.45/0.55 -1.99/0.87
TDC 5 -0.34/0.36 -1.04/1.66
TDC 6 -0.43/0.39 -1.42/1.14
TDC 7 -0.14/0.15 -0.52/0.90
TDC 8 -0.22/0.23 -0.51/0.46
TDC 9 -0.13/0.12 -0.63/0.25

different sizes, the ones chosen for this design have a 4 mm × 4 mm photosensitive

area and a single channel. The pixel pitch is 50 µm with a total number of 6331 pixel-

s/channel. The A-SiPM features 50% PDE @ 450 nm for an excess bias of 2.7 V [157].

In all the experiments, the A-SiPMs were operated at the recommended operating

voltage of 40.7 V (@ 2.7 V excess bias).

The single shot measurements consisted in using a START signal generated by the

FPGA as a trigger for the laser controller and measuring the arrival of the SiPM output

pulse with respect to a STOP signal also generated by the FPGA as illustrated in Figure

4.27. The delay between the START and STOP signals was adjusted by the user in order

to test multiple points from the TDC range. The FPGA acted as a master and the laser

controller was the slave. All 5 TDC output codes, each corresponding to one SiPM

channel were read by Smarty.
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Figure 4.24: DNL and INL of TDC0.

This measurement was performed so that the ANN could be trained to identify the

distance between the START (laser trigger) and STOP signals based on the TDCs’

values read out from all the A-SiPMs during the single-shot measurement. In order

to gather sufficient data for the training, 10000 frames were accumulated for each

single-shot measurement. All the data was then transferred to the aforementioned

Python training flow, this time, the difference being that the ANN was for the first time

trained with measured, rather than simulated data. All 5 TDC output values were used

as inputs for the ANN.

Considering the analysis presented before, the chosen topology for the ANN for train-

ing was narrow-deep. An ANN with 5 inputs, 5 hidden layers with 13 neurons each

and one output was selected for training. The genetic algorithm was used again with

the following parameters: 10 generations, 30 individuals per generation, uniform

crossover, 0.2 % mutation rate and 10000 epochs. The inputs of the ANN are given

by the measured TDCs’ values while the output of the ANN is given by the distance

between the START and STOP signal (called enable pulse width EN width) which is set

from the GUI interface as presented in Figure 4.28. During measurements, the user

can set the EN width from the GUI interface in steps of 5 ns clock cycles.

The results obtained during the training session are presented in Figure 4.29. As it can

be observed, the ANN has been able to identify with very good precision the EN width
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(a) (b)

Figure 4.25: Smarty 3D printed supports. a) Scintillator support that frames the 5
analog silicon photomultipliers. b) Entire 3D-printed frame.

LASER

DIFFUSER

SiPMs

CONTROL BOARDS

Figure 4.26: Optical measurement setup. Five A-SiPMs are illuminated with a 375 nm
picosecond laser. A diffuser is placed in front of the laser.
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Figure 4.27: Optical setup for single-shot measurements. START signal acts as the laser
trigger. START and STOP signals are generated by the FPGA. nRST signal for the TDCs
is generated by the FPGA. Five A-SiPMs are illuminated with a 375 nm picosecond
laser. A DG20-220-MD ThorLabs diffuser is placed in front of the laser.

values set by the user by utilizing solely the TDCs’ output codes. In a conventional

single-shot post-processing analysis, the results are plotted using Matlab and the

histogram’s peak indicates the desired value. In this case, this analysis has been done

solely by the ANN without any pre-processing.

The weights and biases have been obtained by training the neural network in Python.

The goal here is to demonstrate that the ANN implemented on Smarty is working

on-chip, therefore, the coefficients were saved and converted to fixed point values

and uploaded to Smarty. The training has been performed by using weights and

biases in floating point, however, as previously described, floating point cannot be

used on-chip and the conversion to fixed point is necessary, which results in loss of

precision. The coefficients on Smarty are implemented with 2 signed integer and 8

fractional bits. A naive quantization of the coefficients to fixed point obtained solely

by multiplying them with 28 and converting to integer is not sufficient. As depicted in

Figure 4.30 the naive conversion is far from the desired values (yellow line). We can

also observe that three additional never before seen points have been introduced, 28,

33, 47 and successfully interpolated by the neural network.
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Figure 4.28: GUI for the Smarty board. The distance between the START and STOP
signals in terms of clock cycles can be set in the EN width block.

A different quantization method that scales the weights and biases in order to mitigate

the effects of truncation while preserving the output proves better. The motivation be-

hind it comes from the range of the initial coefficients. The fixed point representation

is limited to 2 integer bits and in some cases, the weights exceed this range. The new

quantization method guarantees that the weights and biases stay in the fixed point

range. The method multiplies all the weights of layer i with αi and all the biases with

βi . As long as αi and βi follow:

β1 =α1

βi =αi ×βi−1, i > 1 (4.4)

the output will be scaled by a factor γ:
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Figure 4.29: a) Histogram of the EN width estimation at the output of the neural
network when presented with blind validation input frames for 6 different values of
EN width from the single-shot optical measurements. Ground truth is shown with red
dots. b) The average loss of the best performing individual in each generation of the
GA. The EN width is presented in arbitrary units and it represents the number of clock
cycles.
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Figure 4.30: Coefficient quantization effect on the ANN’s output. Two different quanti-
zation methods were used: a naive quantization method which multiplies the coeffi-
cients by 28 (blue) and a clipping method in which the coefficients are clipped within
the desired range (yellow). (28, 33, 47) are never- before-seen points by the neural
network.
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1

γ
=

n∏
i=1

αi , (4.5)

where n is the number of layers.

Execution time

The execution time of a neural network with 10 input neurons, 5 hidden layers with

13 neurons per hidden layer and 3 output neurons is 22.44 µs when running at a 105

MHz clock. Considering a total of 1710 operations, the NN executes 76.15 MOPS. The

NN was designed to run at a maximum frequency of 500 MHz which results in a 363

MOPS maximum performance.

Power consumption and area

The neural network itself consumes 0.4 mW @ 100 MHz, which is equivalent to 190

GOPS/W.

4.4.5 Source position reconstruction

The measurement setup is shown in Figure 4.31. It comprises two A-SiPM boards as

presented in Figure 4.25 placed in coincidence at a distance of 220 mm from each

other with a 22N a radioactive source in between. The 10 comparator outputs from

the two boards are directly connected to the Smarty board via equal length coaxial

cables and serve as inputs for the 10 TDCs from the chip. The 22N a source is attached

to a Thorlabs RLA2400 dovetail optical rail and can be moved along the axis between

the two SiPM boards to precise positions.

During normal operation, a FPGA is used to create a 600 ns exposure window that

begins with a reset of the TDCs and ends with a STOP signal. The arrival of the first

photon during the exposure window on any of the channels will trigger the corre-

sponding TDC. With the arrival of the STOP signal, the acquired timestamps were

processed by the ANN implemented in Smarty and the results are read out, at which

point a new exposure cycle begins.

In order to perform the training of the ANN, thousands of frames are accumulated

with the TDCs at each source position along the X axis (same principle presented in

the Simulation setup section). In the end, 14000 frames are kept for each source posi-
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(a)

Smarty chip

Source 
supportA-SiPM

boards

Interface
board

(b)

Figure 4.31: Smarty measurement setup a) diagram and b) photo. Two A-SiPM boards
are placed in coincidence at a distance of 220 mm from each other. Each board is
coupled with a LYSO scintillator of 4 mm × 4 mm × 20 mm. A 22N a source can be
moved along the X axis between the two sensor boards on a dovetail optical rail. An
interface board is used between the Smarty and the sensor boards. The comparator
outputs from all 10 A-SiPMs represent the TDC inputs and are connected to Smarty
via equal length coaxial cables.
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tion in order to have an equal number of frames for each point and used as training,

validation and test sets for the NN. The ANN training is performed in Python and the

weights and biases are extracted at the end of the training. The same previously de-

scribed methods were used for the training, including the genetic algorithm, however,

this time, a classification approach was used as it proved to have better performance

when quantized. The output of the NN was divided into a number of classes according

to how many source positions were trained. In this way, the NN did not report the

absolute value of the source position in mm, but the class it corresponds to.

The NN classification results of the two source positions at -57 mm and 65 mm

along the X axis are presented in Figure 4.33 for both floating point and quantized

models in the form of confusion matrices. The average accuracy and precision of the

floating point model is 83.59% and 68.69%. The quantized model has an accuracy

of 83.48% and a precision of 68.59%. The accuracy is defined as the ratio between

the correctly predicted observations to the total observations, while the precision is

defined as the ratio between the correctly predicted positive observations to the total

predicted positive observations. In this case, a neural network with 10 input neurons

(values provided by the TDCs), 5 hidden layers with 13 neurons each and 3 outputs

was used. For the training process, frames in which only the TDCs corresponding to

the left detector or right detector fired were considered non-valid and marked with

-120 mm, a position beyond the left detector, therefore, nonsensical. A conceptual

example of valid and non-valid frames is shown in Figure 4.32.

Figure 4.32: Conceptual representation of valid and non-valid frames. Four different
frames with TDC data are shown. The non-valid frames (frame 0 and frame 1) in
which only the left detector or right detector fired are presented in red and marked
with -120 for the neural network training. The last two frames present TDC data on
both detectors, therefore, are considered as valid frames (frame 2 and frame 3).

The NN clearly distinguished between valid and non-valid frames with high degree of

certainty. The floating point model was able to distinguish between -57 mm and 65

mm positions, however, it favors the former, most likely due to unequal number of

frames in the input dataset and bias in differences between the two detectors that lead

to a slight increase in the count rate on the SiPMs on the left. The effect is exacerbated

when quantizing the model and results in less certainty.
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The analysis was repeated for three source positions, namely -120 mm, -57 mm,

0 mm and 65 mm and the results are presented in Figure 4.34. The average accuracy

and precision of the floating point model is 81.26% and 53.70%. The quantized model

has an accuracy of 81.34% and a precision of 53.88%. Again, the NN was able to suc-

cessfully distinguish between valid and non-valid frames with high degree of certainty.

The quantized implementation performs similarly to the floating point model.

4.5 Conclusions

Smarty is a small, feed-forward, fully integrated and reconfigurable artificial neural

network with 10 input TDCs designed in 16 nm FinFET technology node. This design

aimed to reduce the system complexity and output data throughput when reconstruct-

ing radioactive source positions between two photodetectors placed in coincidence.

The design was validated experimentally by successfully reconstructing 3 distinct

source positions along the axis between the detectors and up to 6 different source

positions in the simulations. Apart from this, the neural network successfully dis-

tinguished between non-valid and valid frames during all of the experiments. This

is important as it has the potential to eliminate the need for a separate coincidence

window preprocessing step.

Reconfigurability is one of the features which should be considered for the on-chip

implementations which do not benefit from the same flexibility as the NNs developed

on FPGAs or GPUs. In the case of Smarty, the NN’s topology can be changed within cer-

tain limits in order to achieve the best performance for the current problem. Various

feed-forward configurations were explored both experimentally and in simulations

for different neural network depths, widths, number of neurons, number of inputs

and with or without classification.

The chip can execute 363 MOPS with a maximum power consumption of 190 GOPS/W.

A comparison with current silicon for neural network implementations is difficult.

Most modern machine learning implementations target image processing which re-

quires the use of other types of neural networks, such as convolutional neural networks

that process high resolution images. As a result, the architectures of such systems are

not always scalable and are designed with high computation power in mind, in the

order of TOPS [158]–[160]. The goal of Smarty was to bring a level of preprocessing

as close as possible to the detector in order to reduce the amount of data that needs

to be read out and the overall system complexity. The different nature of input data,
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Figure 4.33: Confusion matrices of the neural network classification results for 2
different radioactive source positions in a) floating point and b) quantized implemen-
tations.
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Figure 4.34: Confusion matrices of the neural network classification results for 3
different radioactive source positions in a) floating point and b) quantized implemen-
tations.
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timestamps as opposed to 2D images, makes convolutional neural networks ill suited

for this type of application, therefore, Smarty targeted feed-forward NNs.
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5.1 Conclusions

The main goal of this thesis was to develop and characterize different readout and

pre-processing techniques for sensors used in time-of-flight PET. As a result, three

different designs were implemented within the scope of this thesis with the main

focus on full integration.

The first part of the thesis presents the design and characterization of Blumino which

is the first fully-integrated analog silicon photomultiplier with on-chip discrimination

and time conversion. Blumino was designed by combining a CMOS SPAD-dedicated

process with standard CMOS in a 350 nm technology node. The main goal of this

sensor was to create a simple, compact and fully functional design suitable as a PET

photodetector, as well as to study the effects of integrating standard and custom

CMOS processes together. The A-SiPM has a sensitive area of 3 mm × 3 mm and a fill

factor of 75% with a PDP of 46% at 425 nm for an excess bias of 2.5 V. The A-SiPM has

an unique topology which comprises a standard and a fast terminal. The standard

terminal is dedicated to energy measurements, while the fast terminal is suitable for

timing measurements. The fast terminal has been integrated with a discriminator

and TDC, while the standard terminal was connected to external electronics. This

implementation preserves the backward compatibility of the sensor. Blumino was

characterized extensively through electrical and optical measurements as presented

in Chapter 2 and proved to be fully functional. Two different measuring platforms

were implemented, with the last implementation being a dedicated small readout

board of 10 mm × 70 mm designed to improve the timing performance by bringing

the amplification and comparison in close proximity to the standard terminal. The

particular compact design is suitable for tiling. CTR measurements performed using

the standard terminal and the specially designed small measuring platform brought
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23.17% improvement to the CTR compared to the previous implementation when

using 2.5 × 2.5 × 20 mm3 LYSO scintillators.

The second part of this thesis focuses on the design and implementation of Blueberry,

a 3D-Stacked FSI Multichannel D-SiPM implemented in a 180 nm CMOS technology

node for both top and bottom tiers. The FSI implementation optimizes the sensor for

the blue part of the light spectrum which is of interest in PET applications. The top

tier contains solely SPADs, while the bottom tier includes all the electronic circuits.

The goal of this design was to explore the benefits of 3D integration as opposed to

the 2D approach, as well as to push the limits in terms of timing resolution. Due to

the 3D implementation, different functionalities could be included on the bottom

tier while preserving the fill factor. The sensor is divided into two independent cores,

each of them containing 64 clusters. Each cluster is made of an array of 64 SPADs with

their corresponding pixel circuits, a TDC that timestamps the first detected photon,

a SPAD address tree that identifies the address of the first firing SPAD, and a photon

counting system, which counts the number of detected photons. The TDC is based on

an antiphased multi-path gated ring oscillator architecture and it includes an on-chip

error correction algorithm that reduces miscounts in the coarse TDC bits. The TDC

exhibits an LSB of 15 ps. The oscillator’s topology was derived from the TDC design

presented in Chapter 2 and, due to the antiphased approach, it can be concluded that

this implementation advanced the previous design in terms of timing resolution.

The final part of the thesis is dedicated to Smarty, a fully reconfigurable feed-forward

on-chip neural network designed in 16 nm FinFET technology. The goal of this design

was to provide an efficient means of on-chip data pre-processing that could serve PET

applications handling large amounts of data. Smarty can accommodate feed-forward

neural network topologies of up to 128 neurons with a maximum of 1024 weights

and biases. The desired neural network topology can be chosen by the user based on

the researched problem within these limits. The chip can execute 363 MOPS with a

maximum power consumption of 190 GOPS/W. Ten TDCs were designed to be used

as the neural network’s inputs. The system was tested in a coincidence experimental

setup and it successfully distinguished different radioactive source positions along

the X axis by using only TDC timestamps. The floating point models showed its ability

to distinguish up to 6 different positions, while the quantized implementation recon-

structed 3 different source positions. Smarty, a simple implementation and small

on-chip reconfigurable artificial feed-forward neural network, showed the viability of

emission reconstruction.
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5.2 Future work

In terms of future research topics related to the work presented in this thesis, one can

focus on improving the overall performance of the sensors.

With updated transistor models, future iterations of Blumino could exhibit a bet-

ter timing resolution. In addition, the comparator could be modified to become

sensitive to single photon levels which will improve the overall timing performance

of the system. In what concerns the CTR measurements performed with the inte-

grated fast terminal and standard terminal, the small sensor readout board needs to

be redesigned to function in an event-driven configuration. In this way, the system

efficiency would be drastically improved.

At the time of writing this thesis, the full characterization of Blueberry is not complete.

Therefore, more effort needs to be dedicated towards this task. The TDC could benefit

of fine tuning of the delay cell design in order to mitigate the effect of process varia-

tions and improve the linearity.

A significant challenge in the latter stages of the thesis came from choosing the right

quantization methods for the neural network model for Smarty. This can be a stand-

alone research subject of a new thesis. Current tools are tailored towards computer

science applications and are not flexible enough to be used for hardware implemen-

tations where resources are limited. Therefore, it would be very useful to develop

quantized model libraries with custom data formats that can be efficiently used in

training algorithms running on accelerator platforms such as GPUs.

Smarty has paved the way for radioactive source position reconstructions using a

small neural network. Further research into the advantages of using multiple channels

placed in various positions or the addition of energy information as an input to the

neural network should be carried out.
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