
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Computational Imaging SPAD Cameras

Andrei ARDELEAN

Thèse n° 9501

2023

Présentée le 12 janvier 2023

Prof. D. Atienza Alonso, président du jury
Prof. E. Charbon, Dr C. Bruschini, directeurs de thèse
Prof. R. Henderson, rapporteur
Prof. M. Gupta, rapporteur
Dr G. Boero, rapporteur

Faculté des sciences et techniques de l’ingénieur
Laboratoire d’architecture quantique
Programme doctoral en microsystèmes et microélectronique

Examine every word you put on paper.

You’ll find a surprising number that don’t serve any purpose.

— William Zinsser

To Andrada. . .

Acknowledgements
I will start by thanking my thesis advisor, Prof. Edoardo Charbon, for giving me the

opportunity to do a PhD in the AQUA laboratory. He allowed me to pursue all of my

curiosities in chip design, encouraged me to take risks and motivated and supported

me when times were tough. I would also like to thank my thesis co-advisor, Dr. Claudio

Bruschini, for his guidance and attention to detail which ensured that my work was of

high quality.

I would like to give special thanks to Arin Can Ulku with whom I worked on the same

research project, co-authored a paper and shared an office for the majority of my

time at AQUA. He guided me at the begining of my PhD and was always there when I

had any questions about our work on FLIM. In addition, I would like to acknowledge

Kazuhiro Morimoto for his collaboration on our first 3D megapixel design and for

teaching me a more methodical aproach to work.

I would like to thank all my colleagues from AQUA EPFL and TUDelft, starting with

Preethi Padmanabhan, Francesco Gramuglia, Scott Lindner, Samuel Burri and Myung-

Jae Lee who were there at the very begining of my PhD and continuing with Augusto

Ximenes, Ivan Michel Antolovic, Chao Zhang, Andrea Ruffino, Jad Benserhir, Ermanno

Bernasconi, Baris Can Efe, Simone Frasca, Utku Karaca, Pouyan Keshavarzian, Ekin

Kizilkan, Yang Lin, Feng Liu, Tommaso Milanese, Paul Mos, Emanuele Ripiccini, Ming-

Lo Wu, Halil Kerim Yildirim, Jiuxuan Zhao, as well as all the ones who have recently

joined but I haven’t had the chance to collaborate with.

I would also like to mention Brigitte Khan and Begonia Tora, who have helped me with

personal issues that extended far beyond their duty as administrative staff. Additionaly,

I would like to thank Michael and Fio for their friendship and support.

I would also like to acknowledge my parents and grandparents for supporting me

throughout my academic career and Yuki, for sitting with me during the sleepless

tapeout nights and reminding me I had to go home.

Last but definitely not least, I would like to thank Andrada for always being by my side

throughout our 11 years of Bachelor, Masters and Doctoral studies and without whom

I would not have been here today.

Neuchâtel, November 2022 Andrei Ardelean

i

Abstract
Vision systems built around conventional image sensors have to read, encode and

transmit large quantities of pixel information, a majority of which is redundant. As a

result, new computational imaging sensor architectures were developed to preprocess

the raw pixel data and reduce the amount of information that needs to be read from

the sensor. With the emergence of large format single-photon avalanche diode (SPAD)

imagers, the need for on-chip processing has become more evident, as the output

data rate of such detectors is pushing the limit of even modern interfaces.

The aim of the thesis is to develop sensor architectures for computational imaging that

overcome limitations of conventional SPAD imagers and can operate at high frame

rates with manageable output data rates. Three sensors are designed in different

technology nodes, from 180 nm 2D to 3D-stacked 45/22 nm and 180/16 nm, backside

and front-side illuminated.

A novel token-based readout technique is developed to improve system frame rate by

reducing the readout time through omission of dark pixels. The technique is imple-

mented in kiloPhase, a 32×32 gated SPAD imager with vector processing capabilities

that can achieve 4.38 ns gates and can operate at 227 fps in 10 bit intensity mode, a

12% increase compared to conventional readout. An improved, massively parallel

version of the architecture is implemented in MegaPhase, a 1-megapixel SPAD imager

consisting of 16384 processing cores that can perform addition and multiplication op-

erations on the raw pixel data. The SPADs can be binned with multiple granularities to

increase the pixel dynamic range and reduce the required exposure time. Simulations

show a frame rate increase of up to 170× when operating as an intensity imager and

56× in gated fluorescence lifetime imaging (FLIM) mode.

Finally, UltraPhase, the first fully reconfigurable SPAD processing architecture is devel-

oped and consists of 18 independent processors running at 140 MOPS with a power

consumption of less than 94.6 GOPS/W. Each processor can execute up to 256 in-

structions per program and contains a reconfigurable front end that can implement a

wide range of combinatorial functions and a timing module that can be configured to

measure photon arrival timestamps.

iii

Abstract

Key words: computational imaging, single-photon avalanche diode (SPAD), fluo-

rescence lifetime imaging microscopy (FLIM), token-readout, parallel processing

iv

Résumé
Les systèmes de vision construits autour de capteurs d’images conventionnelles

doivent lire, encoder et transmettre de grandes quantités d’informations de pixels,

dont la majorité est redondante. Par conséquent, de nouvelles architectures de cap-

teurs d’imagerie computationnelle ont été développées pour prétraiter les données

de pixels brutes et réduire la quantité d’informations qui doivent être lues à partir

du capteur. Avec l’émergence des imageurs grand format avec la diode à avalanche à

photon unique (SPAD), le besoin d’un traitement sur puce est devenu essentiel, car le

débit de données de sortie de ces détecteurs repousse les limites des interfaces, même

modernes.

L’objectif de la thèse est de développer des architectures de capteurs pour l’ima-

gerie numérique qui surmontent les limites des imageurs conventionnels SPAD et qui

peuvent fonctionner à des fréquences d’images élevées avec des débits de données de

sortie gérables. Trois capteurs sont conçus dans différents nœuds technologiques, de

180 nm 2D à 3D empilés 45/22 nm et 180/16 nm, éclairés à l’arrière et à l’avant.

Une nouvelle technique de lecture basée sur des jetons est développée pour améliorer

la fréquence d’images du système en réduisant le temps de lecture par omission de

pixels sombres. La technique est mise en oeuvre en kiloPhase, un imageur SPAD 32×32

avec des capacités de traitement vectoriel qui peut atteindre des portes de 4.38 ns

et peut fonctionner à 227 fps en mode d’intensité de 10 bits, soit 12% d’augmenta-

tion par rapport à la lecture conventionnelle. Une version améliorée et massivement

parallèle à l’architecture est implémentée dans MegaPhase, un imageur SPAD de 1 mé-

gapixel composé de 16384 cœurs de traitement qui peuvent effectuer des opérations

d’addition et de multiplication sur les données de pixels brutes. Les SPAD peuvent être

regroupés avec plusieurs granularités pour augmenter la plage dynamique des pixels

et réduire le temps d’exposition requis. Les simulations montrent une augmentation

de la fréquence d’images jusqu’à 170× lorsqu’ils fonctionnent comme un imageur

d’intensité et 56× en mode de microscopie d’imagerie à durée de vie de fluorescence

(FLIM).

v

Résumé

Enfin, UltraPhase est la première architecture de traitement SPAD entièrement re-

configurable qui se compose de 18 processeurs indépendants et qui fonctionnent

à 140 MOPS, avec une consommation électrique inférieure à 94.6 GOPS/W. Chaque

processeur peut exécuter jusqu’à 256 instructions par programme et contient un

circuit frontal reconfigurable. Ces circuits peuvent implémenter un large éventail de

fonctions combinatoires. De plus, le processeur contient un module de temporisation

configurable pour mesurer les horodatages d’arrivée des photons.

Mots clés : imagerie computationnelle, diode à avalanche à photon unique (SPAD),

microscopie d’imagerie à durée de vie de fluorescence (FLIM), lecture de jeton, traite-

ment parallèle

vi

Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures xi

List of tables xv

List of acronyms xvii

1 Introduction 1

1.1 Computational imaging . 1

1.2 FLIM . 5

1.2.1 Photon counting techniques . 6

1.2.2 Phasor-based FLIM . 8

1.3 SPAD . 11

1.3.1 Technology and implementation 11

1.3.2 Metrology . 12

1.4 Research motivation . 13

1.5 Scientific contributions . 14

1.6 Thesis structure . 15

2 kiloPhase 17

2.1 Motivation . 18

2.2 Processing flow . 20

2.3 Architecture . 22

2.3.1 Pixel . 22

2.3.2 Token-passing readout . 24

2.3.3 Bus manager . 26

2.3.4 Accumulator bank . 26

2.3.5 Computational unit . 27

2.3.6 RAM bank . 28

vii

Contents

2.4 Implementation . 30

2.5 Characterization . 34

2.5.1 Camera system . 34

2.5.2 Breakdown voltage . 35

2.5.3 Dark count rate . 36

2.5.4 Crosstalk . 39

2.5.5 PDP . 40

2.5.6 Power consumption . 40

2.5.7 Gate profile . 41

2.5.8 Frame rate . 43

2.5.9 Data rate . 47

2.5.10 Microlenses . 47

2.6 Conclusion . 49

3 MegaPhase 53

3.1 Motivation . 53

3.2 Processing flow . 55

3.3 Architecture . 56

3.3.1 Pixel . 56

3.3.2 Computational unit . 58

3.3.3 Readout . 59

3.4 Implementation . 62

3.4.1 Top tier . 62

3.4.2 Bottom tier . 63

3.5 Design verification . 68

3.6 Conclusion . 68

4 UltraPhase 73

4.1 Motivation . 73

4.2 Architecture . 74

4.2.1 Reconfigurable front end . 75

4.2.2 Timing module . 76

4.2.3 Processing module . 77

4.2.4 Control module . 80

4.2.5 Processor array . 82

4.3 Implementation . 84

4.3.1 Top tier . 84

4.3.2 Bottom tier . 87

4.4 Programming . 91

4.4.1 Instructions . 91

viii

Contents

4.4.2 Assembler . 94

4.4.3 Compiler . 95

4.5 Characterization . 96

4.5.1 Power consumption . 96

4.5.2 Timing performance . 97

4.6 Applications . 98

4.6.1 ToF histogram compression . 98

4.6.2 LSTM LiDAR . 102

4.7 Conclusion . 107

5 Conclusion 111
5.1 Summary . 111

5.2 Future work . 113

Appendix 115

Bibliography 119

Chip gallery 137

List of publications 139

Curriculum vitae 141

ix

List of Figures
1.1 Analog CVIS architecture . 3

1.2 Digital CVIS architecture . 4

1.3 Bandwidths of common interfaces . 5

1.4 TCSPC vs. time gating. 6

1.5 Phasor FLIM plot . 9

1.6 Phasor FLIM plot for a double-exponential decay 10

1.7 SPAD operation . 11

1.8 Example SPAD cross section . 13

2.1 kiloPhase readout scheme . 18

2.2 kiloPhase theoretical maximum speedup 19

2.3 kiloPhase block diagram . 20

2.4 kiloPhase pixel schematic . 23

2.5 kiloPhase pixel layout . 23

2.6 kiloPhase token-passing schematic . 24

2.7 kiloPhase token-passing principle . 25

2.8 kiloPhase Bus manager circuit schematic for one row of the array . . . 27

2.9 kiloPhase computational unit schematic 28

2.10 kiloPhase RAM schematic . 29

2.11 kiloPhase gate and recharge propagation 31

2.12 kiloPhase gate and recharge tree . 31

2.13 kiloPhase power distribution and decoupling capacitors 32

2.14 kiloPhase CoB PCB . 34

2.15 kiloPhase system . 35

2.16 kiloPhase breakdown voltage . 36

2.17 kiloPhase cooling assembly . 37

2.18 Median kiloPhase DCR . 38

2.19 kiloPhase DCR population distribution 38

2.20 Median kiloPhase DCR across the entire array 39

2.21 Average kiloPhase crosstalk . 40

2.22 Photon detection probability . 41

xi

List of Figures

2.23 Average kiloPhase power consumption 42

2.24 kiloPhase gate edge characteristics . 44

2.25 kiloPhase gate skew . 44

2.26 kiloPhase gate width range . 45

2.27 kiloPhase intensity mode frame rate . 46

2.28 kiloPhase microlenses . 48

2.29 kiloPhase microlense concentration factor 49

3.1 MegaPhase structure . 54

3.2 MegaPhase readout scheme . 55

3.3 MegaPhase pixel schematic . 58

3.4 MegaPhase pixel layout . 59

3.5 MegaPhase computational unit block diagram 60

3.6 MegaPhase SPAD binning . 60

3.7 MegaPhase quadrant readout . 61

3.8 MegaPhase ROI readout . 61

3.9 BSI 3D-stacked SPAD sensor structure . 62

3.10 MegaPhase top tier pixel layout . 63

3.11 MegaPhase processing core layout . 64

3.12 MegaPhase gate distribution . 65

3.13 MegaPhase intensity mode simulation results 70

3.14 MegaPhase computational mode simulation results 71

4.1 UltraPhase processing core block diagram 74

4.2 UltraPhase processing core reconfigurable front end 76

4.3 UltraPhase processing core pixel grouping 77

4.4 UltraPhase Timing module schematic . 78

4.5 UltraPhase Processing module schematic 79

4.6 UltraPhase instruction machine code . 82

4.7 UltraPhase array of processing cores . 83

4.8 UltraPhase 3D structure . 84

4.9 UltraPhase top tier pixel schematic . 85

4.10 UltraPhase top tier pixel layout . 86

4.11 UltraPhase top tier micrograph . 86

4.12 UltraPhase processing core layout . 88

4.13 UltraPhase bottom tier . 88

4.14 UltraPhase assembly language . 95

4.15 UltraPhase power consumption . 97

4.16 UltraPhase timing module single shot measurements 98

4.17 Encoding matrices . 99

xii

List of Figures

4.18 LSTM cell structure . 103

4.19 LSTM scheduling graph . 104

4.20 Clustering of UltraPhase cores for LSTM computation 106

4.21 LSTM execution time . 106

4.22 UltraPhase LSTM setup . 108

5.1 Experimental setup for light-in-flight imaging 116

5.2 Light-in-flight measured data . 117

5.3 Reconstructed 4D light-in-flight path . 117

xiii

List of Tables
2.1 kiloPhase power consumption . 41

2.2 kiloPhase state of the art comparison . 51

3.1 MegaPhase frame rate and throughput 57

3.2 Library corners used for the MegaPhase timing analysis. 67

4.1 UltraPhase Timer module configurations 78

4.2 UltraPhase Byte selector functions . 79

4.3 UltraPhase ALU operations . 80

4.4 Library corners used for the UltraPhase timing analysis. 90

4.5 UltraPhase instruction operands . 92

4.6 UltraPhase CMP instruction effect . 92

4.7 UltraPhase Timing module resolution . 97

4.8 Histogram encoding performance . 101

4.9 UltraPhase LSTM implementation RAM usage 105

4.10 UltraPhase state of the art comparison 109

xv

List of acronyms

ALU arithmetic and logic unit
APD avalanche photodiode
BEOL back-end-of-line
BSI backside illuminated
CCD charge-coupled device
CIS CMOS image sensor
CMOS complementary metal-oxide-semiconductor
CoB chip on board
CPU central processing unit
CVIS CMOS vision sensor
DCR dark count rate
DMUX demultiplexer
ESD electrostatic discharge
FEOL front-end-of-line
FLIM fluorescence lifetime imaging microscopy
FPGA field programmable gate array
FSI front-side illumination
FSM finite state machine
G-APD Geiger-mode avalanche photodiode
GPU graphics processing unit
IRF impulse response function
LiDAR light detection and ranging
LSTM long short-term memory
LUT lookup table
LVS layout versus schematic
MAC multiply-accumulate (operation)
MUX multiplexer
NA numerical aperture
NMOS n-type metal-oxide-semiconductor
PC program counter register
PCB printed circuit board
PDE photon detection efficiency

xvii

List of Tables

PDP photon detection probability
PLL phase-locked loop
QE quantum efficiency
RAM random-access memory
ROI region of interest
ROM read-only memory
SNR signal-to-noise ratio
SoC system on a chip
SPAD single-photon avalanche diode
TDC time-to-digital converter
TEC thermoelectric cooler
ToF time-of-flight
TSV through-silicon via
XOR exclusive or

xviii

1 Introduction

1.1 Computational imaging

Computational imaging can be defined as the process of recovering optically encoded

scene information from measured data through the use of image processing algo-

rithms. The technique has applications in a variety of fields such as fluorescence

lifetime imaging microscopy (FLIM) [1]–[3], compressive imaging [4]–[6], depth imag-

ing [7]–[11], spectral imaging [12]–[14], light field imaging [15]–[17] and computed

tomography [18]–[20], to name only a few. In addition, computational imaging tech-

niques can overcome hardware limitations of both optics and sensors by transferring

the burden to the software domain where algorithm improvements are easier to

come by. Good examples of this are coded aperture imaging systems [21]–[23] or

super-resolution microscopy techniques [24]–[28].

The constant evolution seen by CMOS image sensors (CIS) in the last decades has

resulted in sensors of 71 megapixels, pixel pitch of 1.1 mm, data rates above 10 Gpx/s

and architectures that include preprocessing electronics to enhance image quality

[29]–[33].

However, this increase in speed and resolution comes at a cost when the image

sensors are used in complex hardware-software vision systems where they capture

images that are then delivered for processing to other blocks [34], [35]. Raw pixel

data is largely redundant and reduced subsets of samples can successfully be used to

extract the same information contained in the original data [36]. As a result, a vision

system built around a conventional image sensor needs to read, encode, transmit

and store a large quantity of data, some of which contains no information [29]. For

this reason, a new type of image sensor was developed, the computational imager or

CMOS vision sensor (CVIS), a device that outputs image features or decisions resulting

1

Chapter 1. Introduction

from performing vision tasks right at the imager plane [29].

In general, CVIS can be classified into two categories [29]:

• Specific-purpose architectures that are dedicated to a specific task implemented

in hardware, such as histogramming photon arrival times [37]–[40], kernel

convolutions [41] or biomorphic architectures [42]–[45].

• General-purpose architectures which contain analog and digital circuits capable

of storing and executing user-selectable instruction sequences [46]–[53].

Contemporary general-purpose CVIS are mixed signal designs that try to combine the

best of both worlds. The analog front ends integrate well with the CMOS pixel and

are a fast and low power method of implementing nonlinear functions commonly

used in image processing algorithms. The digital processing blocks are flexible, robust

and can be reconfigured through software. The most efficient architectures so far

employ arrays of multi-functional mixed-signal processing elements that complete

computationally intensive vision tasks in a fully parallel fashion for all the pixels or for

one subsection at a time [29], [54].

Massively parallel vision sensors with image formats of up to 256×256 have already

been developed in academia [47], [48]. These devices can operate at high frame rates

and are very well suited for implementing simple image processing algorithms such

as edge detection, thresholding and median filtering. The disadvantages come from

performing these operations in the analog domain, which requires the use of a large

number of biasing signals, therefore multiple digital to analog converters, and analog

memories. Every operation to and from the memory contains a signal dependent

error component which accumulates with every iteration and limits the maximum

processing speed of the device. In addition, stored analog values degrade over time at

rates of up to 2.8 % per second, which makes it necessary to switch to and from the

digital domain in order to use long term memories for applications where inter-frame

storage is required, such as motion detection [47].

Figure 1.1 is a block diagram of the large format CVIS architecture described in [48].

The design consists of an array of analog processing elements, one for each pixel,

that can communicate with their nearest neighbors and can simultaneously execute

the same instruction. As described before, computing in the analog domain requires

the use of biasing, control and error correction circuitry, which can be seen in this

design as well. The chip has been successfully used in complex applications such as

convolutional neural networks [55], [56].

2

1.1 Computational imaging

Figure 1.1: Block diagram of the large format CVIS architecture from [48]. The design
consist of an array of analog processing elements that can communicate with their
nearest neighbors and can simultaneously execute the same instruction. Biasing,
control and error correction circuitry, typical for analog processing implementations,
can be seen in the design. Figure sourced from [56].

More recent architectures, like the one shown in Figure 1.2, rely on an analog-to-digital

conversion right after the pixel, followed by processing on small digital elements.

These types of CVISs have already been proven capable of running more complex

tasks such as gesture classification with neural networks at frame rates of more than

1000 fps and even facial recognition [49].

Commercial systems such as Teledyne Eye-RIS [46] are currently available for indus-

trial applications in machine vision, automotive and security. Achieving 10 kfps while

processing 176×144 resolution images is now possible and can replace complex vision

systems with a compact and low power alternative.

The CVIS systems previously described were all based on analog pixels consisting of

photodiodes which operate in the linear regime, however, a completely digital pixel

built around single-photon avalanche diodes (SPADs) is arguably better suited for

processing architectures. Initially requiring custom processes, SPADs can now be

fabricated using standard CMOS, allowing the integration of readout circuitry in the

pixel [57]–[62]. SPAD imager architectures are now available with in-pixel digital coun-

ters, active quenching and recharging circuits and even time-to-digital converters

(TDC) [39], [63]–[65]. Developments in deep submicron technology and 3D-stacked

processes have increased pixel complexity even further and the spatial resolution of

3

Chapter 1. Introduction

Figure 1.2: Block diagram of the large format CVIS architecture from [49]. The design
relies on immediate analog-to-digital conversion of the pixel value which is then
processed by an array of small digital elements. In this case, an additional dual-core
CPU is needed to manage the chip. Figure sourced from [49].

SPAD imagers has reached and surpassed the megapixel level [66]–[68]. More details

about the SPAD structure and metrology are given in Chapter 1.3.

The emergence of large format SPAD imagers has made the significant advantage of

the reduced output data rates of computational imagers even more relevant. The

amount of raw data that large format SPAD imagers generate is excessive, as state of

the art pixels can operate at hundreds of Mcps [69], [70], resulting in data rates in the

order of tens of GB/s, a challenge even for modern data interfaces.

Figure 1.3 shows a comparison between the data rates of common interfaces and the

data rate of a 512×512 SPAD imager published in 2019 operating at full speed [71].

Even in this case, convenient interfaces such as USB3.0 and PCIe are either insufficient

or require multiple channels. The interfaces that can natively handle this data rate

are either newly standardized and not yet available or extremely demanding on hard-

ware, requiring for example high speed grade FPGAs and storage solutions. There is a

clear conclusion that in order to take full advantage of the high speed single-photon

capabilities of these types of detectors, data processing needs to take place on chip, to

reduce data rates and, among others, the associated power consumption.

4

1.2 FLIM

1995 2000 2005 2010 2015 2020 2025
Year introduced

0.001

0.01

0.1

1

10
D

at
a

ra
te

 [
G

B
/s

]

USB1.0

USB2.0

USB3.0

USB3.1

USB3.2

USB4.0

USB4.1

PCIe1.0

PCIe2.0

PCIe3.0

PCIe4.0

PCIe5.0

PCIe6.0

SATAe

Ethernet1G

Ethernet10G

Ethernet50G

Ethernet100G

HDMI1.0

HDMI2.0

HDMI2.1

DP1.0

DP1.2
DP1.3

DP2.0

[71] 512x512 SPAD imager

Figure 1.3: Bandwidths of common interfaces compared with the output data rate of
[71], a state of the art large format SPAD imager published in 2019 operating at full
speed.

1.2 FLIM

Fluorescence lifetime imaging microscopy (FLIM) is a computational imaging tech-

nique based on the differences in timing response of fluorescent molecules. The

average delay between the excitation and emission of a fluorophore follows an expo-

nential distribution characterized by a specific decay rate or lifetime that is dependent

on the biochemical environment but immune to signal intensity variations. As a

result, high contrast images with selectively labelled features can be formed even

when background light or photon scattering effects are present. The dependency

on the environment can be used to determine pH levels, viscosity, oxygen and ion

concentrations, as well as conformal changes of molecules and interactions between

them at distances below the diffraction limit [72]–[80].

5

Chapter 1. Introduction

1.2.1 Photon counting techniques

laser pulse

t1 t2
t3

fluorescence
photons

(a)

laser pulse
fluorescence
photons

gate shift gate width

counted

(b)

Figure 1.4: (a) In TCSPC the three distinct photon arrival times t1, t2 and t3 are
recorded w.r.t. the laser pulse. (b) In time gating, only the photon that arrives inside
the gate window is registered and assigned to the time bin corresponding to the
current gate shift.

TCSPC

Time-correlated single-photon counting (TCSPC) is a technique that measures the

difference in arrival times between the excitation pulse and the photons emitted by

the sample (see Figure 1.4a). The process is repeated multiple times until the fluores-

cence decay profile is obtained. Due to the high signal-to-noise ratio (SNR), TCSPC

is the primary reference for many time-resolved measurements, from FLIM to light

detection and ranging (LiDAR) and optical tomography [81].

TCSPC performance is mainly affected by two factors: dead time and timing res-

olution; characteristics of both the photodetector and the electronics. Early TCSPC

hardware was limited to single channel systems that suffered from performance degra-

dation when extended to multi channel versions. However, the invention of laser

scanning confocal microscopes lead to TCSPC-based FLIM becoming widely used at

the start of the XXI-st century [82].

6

1.2 FLIM

State-of-the-art commercial TCSPC systems can achieve picosecond timing reso-

lutions and sub nanosecond dead times, however, these devices are bulky pieces of

equipment that can handle only up to 64 channels [83]. Recently, widefield TCSPC

architectures have emerged based on position-sensitive detectors, most commonly

microchannel plates (MCP) coupled with charge-coupled devices (CCD) or CMOS

cameras or arrays of native single-photon detectors such as SPADs or superconducting

nanowires. Unfortunately, MCP-based systems are limited to MHz frame rates, while

SPAD arrays have low fill factor and a limited number of timing channels.[37]

Time gating

Time gating consists of acquiring timing information using square-shaped sampling

windows created in the readout electronics that are phase-shifted with respect to

the excitation pulse (see Figure 1.4b). Initially, heterodyning was used to implement

the required phase shifts and modulation of the photodetector gain was required,

but state of the art electronics can now achieve picosecond shifts with ease through

the use of high frequency phase-locked loops (PLL) or delay lines while keeping the

photodetector bias constant [84].

In addition, multiple sampling windows can be generated simultaneously, achieving

100 % duty cycle w.r.t. the excitation period and as a result, high count rates. Con-

versely, the temporal resolution is inferior to TCSPC because the latter can achieve

narrower time bins. In addition, narrower gates require more parallel channels in

order to maintain the same duty cycle, which leads to fill factor degradation and

substantial data rate increases.

Time-resolved CCD and CMOS cameras implement digital time gates as multitap

pixels and use external voltage modulation to direct photoelectrons to the tap cor-

responding to the current sampling window. On the other hand, SPAD imagers use

gating transistors between the photodiode and the memory cell.

The difficulties of implementing in-pixel time tagging electronics without degrading

the fill factor, coupled with the count rate penalties associated with sharing these

circuits among multiple pixels has caused time-gating to become the main method of

implementing large format time-resolved SPAD imagers [66], [67], [71] and for this

reason was implemented in all the architectures presented in this thesis.

7

Chapter 1. Introduction

1.2.2 Phasor-based FLIM

Both previously mentioned photon counting techniques are capable of reaching video-

rate speeds while detecting sufficient photons to estimate the fluorophore lifetime

with acceptable precision. The bottleneck has historically been the data processing

step that employs slow and resource intensive lifetime estimation methods. Initially,

exponential curves were fitted to the measured photon arrival time histograms using

least squares or maximum likelihood estimation methods. [85], [86] These iterative

tuning methods are computationally complex and perform poorly in terms of speed

when handling multi-exponential decays. In addition, they require a priori informa-

tion about the exponential models, which in some cases is undesirable.

Various methods of improving lifetime estimation speeds have been developed, start-

ing from the use of graphics processing units (GPU) to parallelize algorithm execution

in detriment of power consumption and cost [87], to the use of less complex esti-

mation algorithms such as Laguerre expansion [88], rapid lifetime determination

[89]–[91] and the center of mass method [92]–[94]. Unfortunately, the less complex

algorithms suffer from reduced lifetime precision or require narrow time bins.

Phasor-based FLIM has become a popular method for fast lifetime analysis because it

only involves elementary arithmetic operations, doesn’t require a priori information

and offers a graphical representation of all the lifetimes from the sample [95]. The

method is commercially available in data analysis systems such as [96] used by [97],

[98]. The method consists of using the measured photon count Ik of each time bin

with associated delay tk to compute the phasor given by:

z = g + j s =
∑Nbi ns

k=1 Ik [cos(2π f tk)+ j si n(2π f tk)]∑Nbi ns
k=1 Ik

, (1.1)

where Nbi ns is the total number of bins/gates and f is the phasor frequency, typically

chosen to be equal to the laser repetition frequency. When plotted on the complex

plane, all phasors z corresponding to a single exponential decay are located in the first

quadrant on a semicircle centered at (0.5, 0), with long lifetimes closer to the origin

(see Figure 1.5). The lifetime of a single-exponential decay can be determined as:

τ= 1

2π f

s

g
. (1.2)

8

1.2 FLIM

g

z

s

(1,0)

(0,1)

(0,0) (0.5,0)

Figure 1.5: For a single-exponential decay, phasor z is located on the semicircle
centered at (0.5,0), with lifetimes increasing counterclockwise.

In the case of multi-exponential decays, the phasors are located inside the semicircle,

between the phasors of the single-exponential components. In the simplest case, a

double-exponential, the phasor is located on the chord formed by the phasors of the

two components (see Figure 1.6), splitting it into two segments of length d1 and d2,

the ratio of which can be used to determine the ratio of the two components:

r1 = d1

d1 +d2
, (1.3)

where r1 is the phasor ratio of the first component. This technique was used in [99] to

characterize various mixtures of Rhodamine6G and Cy3B.

It is easy to observe that the implementation of phasor-based FLIM is straightforward,

the most complex operation being the division. The sine and cosine terms can be

computed a priori and treated as constants because tk and f are known. The numera-

tor and denominator from (1.1) can be computed concurrently with the acquisition

and the normalization can be skipped entirely if only τ is of interest.

Another important advantage of this method is the ease with which the impulse

9

Chapter 1. Introduction

g

zz1
d1

d2

z2

s

(1,0)

(0,1)

(0,0) (0.5,0)

Figure 1.6: For a double-exponential decay, phasor z is located on the chord between
the two single exponential components z1 and z2. The ratio of the two segments of
the chord can be used to determine the ratio of two components.

response function (IRF) of the setup can be compensated for. As the phasor-method

is essentialy a normalized discrete Fourier transform, deconvolving the IRF consists

of a division with complex phasor zI RF . This phasor can be obtained by measuring a

single-exponential sample with known lifetime τr e f and dividing the measured phasor

zmeas with the theoretical zr e f mathematically obtained using τr e f . Compensation

phasors zI RF need to be computed for every phasor frequency f and pixel of the

detector.

Phasor-based FLIM can be further sped up by using fewer time bins and under-

sampling the decay. In this case, the single-exponential phasors are no longer on the

semicircle centered at (0.5, 0) and appropriate corrections need to be applied. The

effect of undersampling has been analyzed in [100] and [99].

Because of all of the above mentioned advantages, the phasor-based FLIM method

was chosen as a target application for two of the designs presented in this thesis.

10

1.3 SPAD

1.3 SPAD

1.3.1 Technology and implementation

A single-photon avalanche diode (SPAD) or Geiger-mode avalanche photo diode

(G-APD) is a solid-state device consisting of a pn junction reverse-biased above its

breakdown voltage. Under these conditions, a photon that is absorbed in the deple-

tion region where the electric field is very high, will excite additional electrons due to

its kinetic energy, which in turn will cause a self-sustaining avalanche through impact

ionisations. The avalanche current will quickly rise to levels that can be damaging

to the device, therefore quenching circuitry is normally connected in series with the

diode. The simplest version consists of a ballast resistor, but if the durations of the

quenching and recharging of the SPAD need to be precisely controlled, active imple-

mentations are employed. Figure 1.7 shows the SPAD operating principle.

In contrast to avalanche photo diodes (APDs) operating in linear mode, the mag-

nitude of the avalanche current of a SPAD cannot be used to determine the photon

count and is instead converted into a digital voltage, with virtually no readout noise.

The leading edge of this pulse can be used to indicate the detection of even a single

photon with sub-ns resolution.

IR

VRVB

(1) Avalanche

(2) Quench

(3) Recharge

VB+VE

Photon

Figure 1.7: SPAD operation; VB - breakdown voltage, VE - excess bias voltage [101].

11

Chapter 1. Introduction

1.3.2 Metrology

The overall noise characteristic of a SPAD imager is dominated by dark counts due to

the absence of the readout noise component. A dark count is a spurious avalanche

pulse that was triggered in the absence of an incident photon through thermal gen-

eration, tunneling and/or trap-assisted processes. These effects are aggravated by

increases in temperature or SPAD bias voltage. The average count rate under dark

conditions normalized to one second is referred to as dark count rate (DCR). If a SPAD

pixel has a DCR at least two orders of magnitude greater than the median value of all

the others, it is labelled as hot and usually excluded from further analyses [102], [103].

Both photon and noise generated events can in turn trigger a secondary avalanche,

either in the same pixel or in the neighboring ones in the case of an array. The former

is called afterpulsing and is characterized by the afterpulsing probability, while the

latter constitutes crosstalk, it too reported as a crosstalk probability. The two metrics

can be determined using inter-arrival statistics between photons in the same pixel

for afterpulsing and in neighboring pixels for crosstalk [104]. An additional method

for measuring crosstalk probability is by comparing the DCR of a neigbour of a hot

pixel to the average DCR of the entire array [105]. In the case of gated SPAD sensors,

the afterpulsing probability is significantly reduced by the long periods when the

gate is turned off and the SPAD is insensitive. Conversely, there is no such effect

on crosstalk which has to be reduced either through pixel design or by turning off

possible aggressors, such as hot SPADs.

The light sensitivity of the SPAD is characterised by the photon detection probability

(PDP), a quantity that represents the probability that an impinging photon will trigger

an avalanche [106]–[108]. The metric is dependent on wavelength and can be defined

as:

PDP (λ) =QE(λ)×Pt , (1.4)

where QE is the quantum efficiency of the detector and Pt is the avalanche triggering

probability. By including the geometric characteristics of the SPAD, we can define the

photon detection efficiency (PDE) as:

PDE(λ) = PDP (λ)×F F, (1.5)

where F F is the detector fill factor. PDP can be measured as the ratio between the

number of detected photons and the number of incident photons on the entire pixel

area. The FF is a purely geometric parameter that depends on the pixel pitch and the

distance between two neighboring SPAD active regions. As SPADs operate at high

12

1.4 Research motivation

reverse biases, premature edge breakdown needs to be prevented at the border of the

main junction by using guard rings. In addition, strong contacts to the deeper side of

the junction also need to be implemented, as shown in the example from Figure 1.8.

These regions are insensitive to light and limit the maximum achievable fill factor of a

round SPAD to 78.5%, however, the pixel pitch would need to be very large to achieve

this [109]. A more convenient method is the use of on-chip microlenses [110]–[112], a

method also used for one of the designs in this thesis.

Figure 1.8: Example SPAD cross section: the active region is the junction between the
p+ shallow diffusion and the n well, surrounded by the p-doped guard ring [113].

1.4 Research motivation

With current developments in large format SPAD imagers and the novel applications

that make use of the single photon sensitivity and sub nanosecond resolutions of

these sensors, the need to more efficiently manipulate the pixel data arises. Focus can

be directed towards two major objectives: frame rate increase and output data rate
reduction. The former will allow the monitoring or compensating for short time scale

phenomena [114], [115] while the latter will reduce hardware and system constraints,

as current SPAD imagers have already reached the maximum data rates of modern

interfaces. Both problems can be solved through the use of on-chip processing ele-

ments and the adoption of computational imaging architectures. The digital nature of

SPADs is well suited for these types of architectures as it does not require any analog-

to-digital conversions and the pixels can be directly interfaced with the processing

electronics.

The current trend with SPAD imagers is, as it was with the CIS counterparts, to reach

larger, multi-megapixel formats [68] which implies that the computational architec-

tures will have to be scalable, to not limit future developments, but also flexible to

implement state-of-the-art computational imaging techniques. New, 3D-stacked

13

Chapter 1. Introduction

CMOS technologies allow the use of different nodes for the top, photodetector tier,

and the bottom processing tier, so complex and scalable architectures can be designed

without compromising the optical sensitivity. However, mature 2D technologies are

still relevant and require different design paradigms, so research has to be conducted

in parallel. In the end, a scalable and flexible architecture is needed to take advantage

of SPAD-based imager characteristics, regardless of the technology used for fabrica-

tion.

1.5 Scientific contributions

The aim of this thesis was to develop sensor architectures for computational imaging

that overcome current limitations of SPAD imagers and are capable of running at high

frame rates while maintaining manageable output data rates. Three sensors have

been designed and implemented in this thesis, all containing on-chip processing

capabilities of varying complexities, from application-specific vector processing of

pixel columns to fully customizable pixel clustering. The scientific contributions

found in these architectures can be summarized as follows:

A token-based pixel readout was developed for SPAD imagers fabricated in 2D tech-

nologies and implemented in kiloPhase. As opposed to a conventional array readout,

the token-based implementation only reads the pixels where a photon has been de-

tected during the exposure, using dedicated channels for each row. As a result, readout

time is proportional to the light levels of the scene, which depending on the applica-

tion, can be sufficiently low to result in significant speed-up.

A scalable FLIM processing architecture that takes advantage of advancements in

3D stacking technologies which resulted in MegaPhase, the first 3D megapixel SPAD

imager with on-chip computational imaging capabilities. The detector consists of

multiple processing units operating independently, in parallel, each connected to

clusters of SPADs that can be treated as individual binary pixels or binned together

into pixels with larger dynamic range. The high degree of parallelism that this archi-

tecture employs results in an increase in frame rate of up to two orders of magnitude.

Additionally, processing the SPAD data on chip on such a large scale reduces the

output data rate by up to three orders of magnitude.

A fully reconfigurable processing architecture was developed and implemented

in UltraPhase as a proof of concept non application-specific computational imager.

The design can be easily scaled to larger formats and can implement newly developed

image processing algorithms without the need of hardware redesign. The result is an

14

1.6 Thesis structure

array of independent cores, each with connections to pixel front ends, each capable

of running software programs with inter-core communication at over one hundred

million operations per second.

1.6 Thesis structure

Chapter 2 presents kiloPhase, a 2D chip architecture developed for FLIM. The system

architecture, trade-offs and characterisation results are all discussed. Chapter 3 is

dedicated to MegaPhase, a megapixel imager in 3D CMOS also developed for FLIM,

with the focus on system architecture and comparison with other large format SPAD

imagers. Chapter 4 describes UltraPhase, a fully reconfigurable imager with multicore

processing and presents a couple of applications that can be easily implemented

using the flexibility of the system. Finally, Chapter 5 summarizes the conclusions of

the thesis and also contains future work proposals.

15

2 kiloPhase

kiloPhase is a 32×32 SPAD imager developed in 180 nm 2D CMOS technology, with

a pixel pitch of 28.5 mm and a fill factor of 28%. The chip contains two accumulator

banks each capable of storing one 10 bit image, 32 computational units that each im-

plement one accumulate and two multiply-accumulate (MAC) operations, 3.072 kbit

of ROM and 76.8 kbit of RAM. Readout of the SPAD array can be performed by using

conventional column addressing or a novel token-passing technique that increases

the frame rate by ignoring dark pixels, i.e., pixels that did not fire because no photons

were detected or that are dead.

kiloPhase can execute the operations shown in equation (2.1) for each pixel, without

the need of being read out and can simultaneously process one frame while exposing

another. D =∑128
m=1

(∑1024
n=1 b[n]

)×α[m]

I =∑128
m=1

(∑1024
n=1 b[n]

)
,

(2.1)

where D is a complex output value, I is a real output equivalent to the intensity value of

the pixel, b is the binary value of the pixel after exposure andα is a complex coefficient.

At the moment of writing this thesis, kiloPhase has been fabricated and tested. The

functionality of the token-based pixel readout was successfully validated, together

with all the on-chip processing circuitry. The pixel was completely characterized and

the chip was operated as a 10-bit imager. The firmware required for FLIM operation is

still in development.

17

Chapter 2. kiloPhase

2.1 Motivation

kiloPhase was designed as a proof of concept for real-time computational imaging

architectures when only 2D integration technologies are available. The improvements

brought forward by this implementation target a frame rate increase through the

reduction of the SPAD array readout and off-chip communication along with on-chip

data processing.

The objective was achieved by following a set of design guidelines:

• Only pixels with valid information are read.

• All binary frames are accumulated into grayscale frames on chip.

• Grayscale frames are further processed on chip.

• Coefficients needed for processing are loaded at startup.

• Processing of a frame and accumulation of another are done simultaneously.

Exposure Full readout Full readoutExposure Exposure Full readout

Exposure Full readout

Complete frame

a)

b) Token readout Exposure Exposure Token readout

Figure 2.1: Comparison between the readout schemes of a conventional SPAD imager
operating with global shutter a) and kiloPhase b). In the case of the latter, each binary
exposure is followed by a token-based readout that on average is faster than the
conventional one. A full readout is only required at the end of the acquisition.

The resulting chip operation no longer requires the off-chip readout of binary frames

and instead condenses all the information into a single processed frame, read out at

the end of the computation. Figure 2.1 shows a comparison between conventional

gated SPAD imagers like the ones presented in [66], [71], [116] operating with a global

shutter and kiloPhase. Assuming that the conventional chips are used for gated FLIM

(as described in Chapter 1.2.1), we can compute the total time T f r ame required to

acquire one FLIM frame as:

T f r ame = (NE X P ×Tl aser +Tbi nar yr eadout)×NACC ×NG , (2.2)

18

2.1 Motivation

where NE X P is the number of openings of the gate signal during the exposure of

one binary frame, NACC is the number of binary frames being accumulated into a

grayscale image, NG is the number of gates used for the FLIM computation, Tl aser is

the pulse repetition period of the laser and Tbi nar yr eadout is the total time needed for

the readout of a binary frame.

0 5 10 15 20 25 30

Average number of photons per row

0

1

2

3

4

5

6

7
S

p
e
e
d
u
p

Figure 2.2: Theoretical maximum speedup of kiloPhase compared to conventional
SPAD imagers when operating in gated-FLIM with 128 gates

For kiloPhase, two readout durations need to be taken into account: the time required

to transfer the binary frame into the on-chip accumulator bank Tbi nar yr eadout and

the chip readout Tr eadout . The equation for T f r ame becomes:

T f r ame = (NE X P ×Tl aser +Tbi nar yr eadout)×NACC ×NG +Tr eadout . (2.3)

In practice, Tr eadout >> Tbi nar yr eadout and the latter can be computed using:

Tbi nar yr eadout ≤ Ncol ×TC LK , (2.4)

where TC LK is the period of the system clock and Ncol is the number of columns in

the detector. In the case of conventional detectors with column-parallel readout, the

equation is an equality. However, in kiloPhase each row is read independently and

only the pixels that have fired are used. Similar architectures have been presented in

19

Chapter 2. kiloPhase

literature, however, this is the first autonomous implementation and the first one to

have pixel level granularity [117], [118]. As a result, depending on the illumination, a

binary frame can be read out in fewer clock cycles. This leads to the maximum increase

in gated-FLIM frame rate as shown in Figure 2.2 given for a 128 gate configuration.

2.2 Processing flow
B
u
s

M
an

ag
er

SPAD array

PING
accumulators

PONG
accumulators

Computational
Units

ROM

RAM

kiloPhase

Off-chip controller

(a)

SPAD
array

PING
accumulators

PONG
accumulators

Computational
units

RAM

ROM

B
u
s

m
an

ag
er

(b)

Figure 2.3: (a) kiloPhase block diagram consisting of the SPAD array, a Bus Manager
for token-passing readout, two accumulator banks, a group of 32 Computational
Units and memory blocks. The chip is controlled by an external circuit implemented
on FPGA. (b) The same elements highlighted over the chip micrograph. Die size is
9.5×3.3 mm2.

20

2.2 Processing flow

A high level block diagram of kiloPhase is presented in Figure 2.3. The seven func-

tional blocks and the communication between them are controlled by a separate

external circuit implemented on FPGA. This configuration allows for a high level of

customisation but comes at the cost of simplicity of the chip interface which requires

29 control signals.

Normal sensor operation consists of three stages: exposure, computation and read-

out. The first two can function simultaneously through the use of the PING-PONG

accumulator architecture, but chip readout must be performed separately.

Exposure begins with NE X P openings of the gate signal that result in a 32×32 binary

image being stored in the SPAD array in-pixel memory. This data is then transferred to

one of the accumulators via the Bus manager either one column at a time or through

token-passing (subsection 2.3.2). The cycle is repeated NACC times until a grayscale

image of the desired bit depth is formed in the accumulator. Total exposure TE X P for

one gate configuration can be computed using equation (2.5) as:

TE X P = NACC ×NE X P ×WG , (2.5)

where WG is the width of the gate signal. A new exposure cycle can begin by switching

to the second accumulator bank, which leaves the data that has already been collected

intact.

The computation stage lasts exactly 32 clock cycles TC LK during which the 32 compu-

tational units will process the data stored in the accumulator bank, one array column

at a time, together with the corresponding values from the RAM and ROM. Two MAC

and one accumulation operation are simultaneously computed for each pixel p at

every iteration n of the computation stage:
Dp

G [n] = Dp
ACC ×αG [m]+Dp

G [n −1]

Dp
S [n] = Dp

ACC ×αS[m]+Dp
S [n −1]

Dp
I [n] = Dp

ACC +Dp
I [n −1],

(2.6)

where DG and DS are the 29 bit fixed point real and imaginary parts of the complex

pixel value, D I is the 17 bit integer intensity component, D ACC is the 10 bit integer

value stored in the accumulator and αG and αS are 12 bit fixed point real and imagi-

nary parts of the complex coefficient stored in the ROM at address m. All fixed point

values are signed and have 10 fractional bits. DG , DS and D I are stored in the RAM

and reset to 0 at startup and after chip readout, while D ACC is reset at the begining of

21

Chapter 2. kiloPhase

the exposure cycle. αG and αS are loaded at startup. The widths of the variables were

chosen to accommodate as many accumulations as possible while respecting the area

constrains of the design. The fractional representation results in a relative rounding

error of less than 2% when used to store sine and cosine values.

As long as the duration of the exposure is longer than 32×TC LK , there will be no

dead time of the detector, as the two accumulator banks allow simultaneous pro-

cessing of the previous frame while exposing the current one. The exposure and

computation stages can be repeated multiple times until the desired processing is

completed, the only limitations being the ROM size of 128 coefficients and the bit

widths of the accumulator and RAM. For example, in the case of FLIM, kiloPhase can

accommodate 128 gate positions with 10 bit grayscale images for each, or 32 gate

positions at 12 bit.

Once all the necessary exposure and computation cycles are performed, the RAM can

be read out in 1024×TC LK using a 75 bit parallel bus. The readout stage is incompati-

ble with the normal operation of the chip due to pad multiplexing, therefore, the chip

must be kept idle.

2.3 Architecture

2.3.1 Pixel

The pixel schematic implemented in kiloPhase is shown in Figure 2.4 with the associ-

ated layout in Figure 2.5. A total of 10 NMOS transistors are used, with both thin and

thick oxide variants. The SPAD structure and 28.5 mm pixel pitch is identical to the

one presented in [37] in order to allow the reuse of an existing microlense design for

increasing the 28 % native fill factor.

Cascode transistor T1 is used to extend the bias voltage range of the pixel and increase

the PDP as demonstrated in [119]. Passive quenching of the SPAD is implemented

with transistor T2 and tunable analog voltage VQ , while T3 is used for the clock-driven

active recharge controlled by digital signal RC H . When an avalanche is formed in

the SPAD, the voltage at node A will rise and drive transistor T4 which in turn will

bring node B to ground. Practically, T4 serves as a voltage level shifter between the

thick oxide transistor section (T1 to T4) that operates at 3.3 V and the rest of the 1.8 V

circuitry. When the G AT E signal is asserted, transistor T5 shorts together nodes B and

C which will result in two possible outcomes: if T4 is also active, node C will be pulled

to ground and cause the memory cell formed by T6, T7, T8 and T9 to toggle. Otherwise,

22

2.3 Architecture

VC

VQ RCH

GATE

VHV

RST

SPAD
VDD VDD

T1

T2 T3 T4

T5 T7

T6 T8

T9 T10

PXL

nPXL

A B

C

Figure 2.4: kiloPhase pixel schematic containing 4 thick oxide and 6 thin oxide NMOS
transistors. Cascode transistor T1 is used to extend the SPAD bias voltage range.
T2 acts as a passive quenching method and T3 implements a clock-driven recharge
scheme. A pair of back-to-back inverters that can be reset by T10 form a static memory
cell. Transistor T5 is used to gate the pixel.

5 μm

Figure 2.5: kiloPhase pixel layout. The NMOS transistors are all located in the upper
right corner of the SPAD. Metallisation is patterned so that the pixel can be abutted to
form the desired array with 28.5 mm pitch.

23

Chapter 2. kiloPhase

node C will not change because node B will be at high impedance and the memory

cell will remain in the reset position. At the beginning of each exposure cycle, RC H is

pulsed right before the arrival of the first G AT E which assures that any avalanches

that have occurred before the arrival of the gate signal will be ignored. Transistor T10

is used to reset the memory. Both the pixel output signal P X L and its inverted value

nP X L connect to the token-passing cell presented in the following subsection.

2.3.2 Token-passing readout

AIN

nPXL

PXL

AOUT

OUT

nRSTtarget

T11

Figure 2.6: kiloPhase token-passing schematic consisting of two NOR gates, an inverter
and an NMOS transistor. The pixel output P X L is not allowed to pass unless token
signal AI N is high. In this state, if P X L is driven high, AOU T will be driven low and
cause all further token-passing cells to restrict bus access for their corresponding
pixels. T11 can be used to perform a targeted reset of the pixel if and only if the pixel
currently has access to the output bus.

The token-passing readout mechanism used to reduce the array readout time by skip-

ping pixels that have not fired is implemented independently for each row of the array.

Each pixel is assigned a priority, starting with the leftmost pixel in the row that has

the highest and decreasing all the way to the lowest priority rightmost pixel. Only the

highest priority pixel that has detected a photon can access the row readout bus. In

addition, this is also the only pixel that will react to a targeted reset signal nRSTt ar g et

and will clear its memory and pass the bus access token to the next lower priority pixel

that requests it.

Figure 2.6 shows the schematic for the token-passing logic circuitry. The pixel output

signal P X L and its inverted value nP X L connect to two NOR gates along with the

negated value of token signal Ai n . When Ai n is low, both OU T and AOU T will be kept

low, regardless of the value of P X L. Therefore, the pixel loses access to the bus by

having its output signal gated and in turn also blocks the next pixel by not having

any token to pass. When Ai n is high, the top NOR gate acts as an inverter and the

24

2.3 Architecture

OU T signal has the same value as P X L; in other words, the pixel is granted access to

the bus because it holds the token. If the access is needed, i.e. P X L is high, then the

bottom NOR gate will drive Aout low which will block the next pixel’s access to the bus.

If, however, there has been no photon detection and P X L is low, the token is passed

to the next pixel by driving AOU T high. If the pixel has the token and needs access to

the bus, gating transistor T11 will be on, driven by the output signal, and nRSTt ar g et

can be used to reset the in-pixel memory by forcing P X L low.

ti
m

e

Output data

A B C D

nRSTtarget

A B C D

Output data

A B C D

Figure 2.7: kiloPhase token-passing principle. Three states of the same pixel row at
different moments in time are shown, chronologically from top to bottom. Both pixels
A and D have detected an avalanche, but because the former has priority it receives
access to the data bus and blocks the remaining pixels. After the targeted reset signal
is received, pixel A will reset and release the bus. The token is passed directly to pixel
D as it is the next highest priority pixel with a detected avalanche.

Figure 2.7 is a representation of the token-passing principle applied for the readout of

one row in the case of two detected photons. Both pixel A and pixel D have detected

25

Chapter 2. kiloPhase

a photon. However, pixel A has the highest priority and therefore has access to the

output bus and holds the token. When the nRSTt ar g et signal is asserted, only pixel A

will respond by resetting its internal memory and passing the token to pixel B. Because

pixel B does not need bus access, it will automatically pass the token to pixel C, which

for the same reasons, will pass it to pixel D. In this case, bus access is needed and the

token is kept until the arrival of another targeted reset. The entire process takes place

after the exposure, when the pixel gate is closed and the output cannot change. As a

result, there is no risk of corrupting the readout.

2.3.3 Bus manager

The role of the Bus manager circuit block is to convert the pixel output information

that comes in the form of individual addresses for every row into the 1024 bit input

to the accumulator banks. It also needs to accommodate both token-passing and

column addressing readouts.

Each pixel row is connected to the circuitry shown in Figure 2.8. In token-passing

readout, when a pixel has access to the bus, it will transmit its 5 bit address A to the bus

manager where it will be decoded into a one-hot 32 bit representation using a 6-to-32

decoder. The redundant use of 6 bits comes from the fact that all pixel addresses are

offset by 1 in order to use bus address 0 as a representation of the free state of the

bus. When the rising edge of C LK f ast arrives, the output oH of the bus manager is

updated with the one-hot representation of the current token holder pixel through

the use of the OR gate. The process repeats when the token is passed to another pixel

and ends when the bus is free, at which point oH stores a complete representation of

all the pixel states in the row. Asserting C LK f r ame clears oH and prepares the circuit

for a new readout cycle.

When MODE is at logic zero, the bus manager operates in column addressing readout.

Under these conditions, the output of the in-pixel memory is connected to A[4] by a

column select signal. The values for each pixel are then serially loaded into the bus

manager at every rising edge of C LK f ast . Readout is complete after 32 C LK f ast cycles.

2.3.4 Accumulator bank

Each accumulator bank consists of 1024 10 bit counters arranged in a 32×32 grid that

mirrors the pixel array. Each row of 32 counters shares a 10 bit output bus, access to

which is controlled using a 5 bit selector signal common to all the rows. The output

buses for each row are concatenated into a 32×10 bit bank bus.

26

2.3 Architecture

CLKfast

CLKframe

32
oH[0:31]

32

MODE

6 326 to 32
DecoderA[5:0]

A[4]

L/S

R

PARin

SERin

Figure 2.8: kiloPhase Bus manager circuit schematic for one row of the array. The
6 bit pixel output bus A containing the column address of the current token holder
is decoded into a 32 bit one-hot representation and then combined with the Bus
Manager output with an OR gate. C LK f ast is used to update the output with the
new value while C LK f r ame acts as a reset signal. If MODE is held low, conventional
readout is used and the oH output is updated serially by shifting the values on bit 4 of
the input bus.

Each individual counter can be enabled using the corresponding bit from a 1024 bit

input bus, considering that the top left counter has index 0 and the bottom right one

has index 1023. A global synchronous reset signal is used to clear all the counters in

the accumulator banks.

The 1024 bit inputs to the two accumulator banks are driven by a 1-to-2 demulti-

plexer (DMUX) which in turn is driven by the Bus manager. The two 32×10 bit bank

outputs are merged using a 2-to-1 multiplexer (MUX) and then serve as inputs to the

computational units. The DMUX and MUX control signals are independent from each

other, therefore, the accumulator banks can operate in three modes: PING-PONG,

PING only and PONG only.

2.3.5 Computational unit

A total of 32 computational units are used in kiloPhase, one for each row in the ar-

ray/accumulator. Using the accumulator selector signal, the pixel data corresponding

to an entire array column is presented to the computational unit inputs and processed

in parallel.

Figure 2.9 shows the schematic for a single computational unit composed of two

27

Chapter 2. kiloPhase

22

29 29

24

10

22

29 29 17 17

12 12
ROMBus

AccumulatorBus

RAMBus

Figure 2.9: kiloPhase computational unit schematic showing the two 22 bit signed
multipliers and the 29 bit, 29 bit and 17 bit accumulators. The operands for the MAC
and accumulate operations originate from the upstream pixel accumulators and
downstream RAM. The constants required for the two MAC operations are read from
a common ROM.

multipliers and three adders. The operations are signed and represented using a frac-

tional fixed point format with 10 fractional bits. The only exception is the standalone

17 bit integer adder used for intensity imaging.

The 10 bit pixel data stored in the accumulators is provided via the Accumul ator Bus.

The value is multiplied with two 12 bit constants stored in ROM and then accumu-

lated with a 29 bit value read from the RAM. A third adder circuit performs a 17 bit

accumulation operation with the pixel data. The results are written back to the RAM

using the R AMBus.

The ROMBus used to transmit the two multiplication constants is 24 bits wide and

is split between the two multipliers in order to represent a complex number. The

R AMBus consists of a 75 bit input and a 75 bit output signal.

2.3.6 RAM bank

Figure 2.10 shows a high level schematic of the RAM bank implemented in kiloPhase.

The total available memory is 1024×75 bit, organized as 32 slices of 32 units, each

composed of 75 1-bit cells. A cell consists of two back-to-back inverters connected

to a slice bus through two tri-state buffers. The bidirectional slice bus connects to

28

2.3 Architecture

a computational unit through a slice interface block that splits it into a latched read

bus and a buffered write bus. The other end of the slice bus is buffered to a common

OUTPUT BUS that is used for external readout of the RAM.

W
R
IT

E

R
E
A
D

1 bit cell

R
E
A
D

R
A
M

EN

W
R
IT

E
R
A
M

75 bit unit 75 bit unit 75 bit unit
ROWSEL[0]

C
O

LS
E
L[

0
]

C
O

LS
E
L[

1
]

C
O

LS
E
L[

3
1
]

ROWSEL[1]2400 bit RAM slice

ROWSEL[31]2400 bit RAM slice

Slice interface

Slice interface

O
U

T
PU

T
 B

U
S

75

75

75

75

75

75

75

Slice bus

Read bus 0

Write bus 0

Read bus 1

Write bus 1

Read bus 31

Write bus 31

R
A
M

b
u
s

Figure 2.10: kiloPhase RAM schematic illustrating the complex structure consisting
of 32 slices of 32 units. Reading and writing operations are performed using 32
bidirectional buses of 2×75 bit. During chip readout, the RAM is read using a row and
column addressing scheme, one 75 bit unit at a time, on a separate 75 bit tristate bus.

During the computation stage, one unit from each RAM slice is granted access to the

corresponding slice bus and its value is latched into the read bus. At the next clock cy-

cle, the computational unit output which is present on the write bus is propagated to

and then stored into the aforementioned slice. The two steps are repeated until all 32

units from the slice have been processed. This arrangement allows the simultaneous

processing of an entire 32 pixel column of the array.

29

Chapter 2. kiloPhase

During the readout stage, the 1024 RAM units are sequentially given access to the

OUTPUT BUS using a row and column addressing scheme. As this procedure also

utilizes the slice bus, the readout is incompatible with the computational stage and

the chip needs to be kept idle.

2.4 Implementation

kiloPhase was implemented as distinct sections that were then manually integrated

to form the complete system. The design for the pixel array was done by hand while

all of the remaining blocks shown in Figure 2.3 were synthesized with Cadence RTL

Compiler and routed with Cadence Encounter.

Pixel

The various transistors from the pixel were sized using SPICE simulations were the

SPAD was replaced with an equivalent model like the one shown in [120]. With the

layout completed, SPICE simulations with the extracted parasitic components were

run in multiple library corners to ensure the validity of the circuit.

When performing the parasitic extraction, the SPAD had to be replaced with a black

box as the layout versus schematic (LVS) step of the process couldn’t recognize the

structure. This is the only point in the design were manual verification had to be used

to confirm the final layout.

Gate and recharge signals

The gate and recharge signals propagate across the pixel array in two orthogonal direc-

tions in order to reduce the coupling between them and maintain good signal integrity

as the shape of the gate is essential to the operation of the chip. This propagation

scheme, shown in Figure 2.11, results in a diagonal skew in the measured gate signal

as seen in Section 2.5.7, but the small size of the array reduces the significance of the

effect.

The gate and recharge signals connect to the pixel array through two 1− to −32 trees

that minimize the skew between the propagation channels. The schematic is shown

in Figure 2.12. The trees are built using custom inverter cells that are sized to maintain

the propagation delay through the tree as short as possible when driving a 500 fF load

on each output. The load was estimated based on the post layout parasitic report.

30

2.4 Implementation

RCH

GATE

Pixel array

Distribution tree

Figure 2.11: kiloPhase gate and recharge propagation scheme across the array. The
quadrature arrangement reduces the coupling effect between the two signals.

The final tree design was validated through post layout SPICE simulations in a test

bench that used a VerilogA component to act as a load and to measure the delay and

skew across all 32 channels simultaneously. The simulations were run in 5 separate

transistor library corners: Typical, Fast-Fast, Slow-Slow, Fast-Slow and Slow-Fast.

The power distribution network for the two trees was designed to have low impedance

to reduce the voltage drop seen by the inverters in the middle of the tree. A total of

11 pF of decoupling capacitance was added to each tree, in between all the standard

cells.

Figure 2.12: kiloPhase gate and recharge tree. The inverters were sized to drive a 500 fF
load at each of the 32 outputs with minimal propagation delay.

31

Chapter 2. kiloPhase

Timing constraints

As each kiloPhase module was synthesized and routed separately, they each had their

own timing constraints. The accumulator banks, ROM and RAM were designed for an

operation at 200 MHz. The combinational components, namely the MUX, DMUX and

computational units were constrained with a virtual clock of 300 MHz. After timing

closure was confirmed, the histogram of signal slacks was examined to ensure that

the designs were not over or under constrained.

It is important to mention that because the modules were synthesized separately,

the input and output constraints had to be written in such a way as to account for

the extra delay and parasitic loads that result from the manual integration. For this

purpose, all of the designs assumed a minimum sized inverter as their input diver

and the input of an 8× inverter as their load. The RAM was an exception as it drives a

75 bit output bus that is significantly longer than the other interconnects. In this case,

the load was estimated using the interconnect parasitic capacitances reported by the

foundry.

Power distribution

The power grid was routed on the top two available metals that are significantly

thicker compared to the rest and exhibit lower resistance. Each kiloPhase block was

surrounded with a wide power ring that was connected with every standard cell row

to assure uniform power distribution. The rings were then stitched together at the top

hierarchical level with horizontal and vertical metal stripes as shown in Figure 2.13.

The stripes then directly connect to the wide pad ring metals.

Figure 2.13: kiloPhase power distribution network (blue) and decoupling capacitors
(yellow).

All of the empty spaces between the standard cells were filled with decoupling ca-

pacitors shown in Figure 2.13 highlighted in yellow. The core voltage rail decoupling

32

2.4 Implementation

capacitors total 30.5 nF.

The SPAD VHV rail could not be decoupled using MOS capacitors because the re-

quired voltage exceeded the technology capabilities. A different approach was used

where the track-to-track parasitic capacitance of the thick top metals was exploited by

routing the supply in close proximity to a ground connection, thus creating decoupling

capacitors.

Dummy generation

Dummy generation was performed on the entire design once the integration was com-

pleted. The areas above the SPADs contained blocking layers to prevent the dummy

patterns from obstructing the light sensitive areas. Manual tweaking was required to

ensure that the pixel area passed the minimum density requirements because of the

geometric constraints that made it difficult for the tool to successfully generate the

patterns.

A special situation was encountered when generating the top metal patterns. The

structure of the power supply distribution network and the large spacing requirements

of the top metal geometries resulted in the tool failing to make the design pass the

density check. As a workaround, the rule file used for metal generation was manually

changed to force the tool to use the top metal signal layer instead of the dummy one

to create the patterns as this layer allows smaller structures that can fit in the required

gaps.

Validation

The design was validated by running digital simulations in ModelSim. The Verilog

netlist of each module was exported from Cadence Encounter together with the .sdf

file containing the net propagation delays for the Slow-Slow, Fast-Fast and Typical

transistor corners. The pixel circuit was replaced with a custom Verilog model based

on SPICE simulations.

33

Chapter 2. kiloPhase

2.5 Characterization

2.5.1 Camera system

kiloPhase was bonded in a chip on board (CoB) configuration because of the small

40.32 mm staggered pad pitch and to facilitate power dissipation by using the larger

PCB copper planes. A 3D-printed lens mount was designed to fit onto the PCB and act

as a rigid mounting point for the system. Figure 2.14 shows the CoB PCB without the

lens mount. The four layers of angled bonding wires are clearly visible in the bottom

left of the chip. The 32×32 SPAD array can be seen in the center of the PCB.

(a) (b)

Figure 2.14: kiloPhase CoB PCB (a) top and (b) bottom. The bonding wires are visible
in the inset. The rectangular SPAD array can be seen on the left side of the chip, and is
positioned to be in center of the PCB. The component next to the chip is a temperature
sensor coupled with the main heat sink copper plane. All the decoupling capacitors
are placed on the bottom side, as close as possible to the bonding wires. The board is
6×6 cm2.

An Opal Kelly XEM7360 [121] module with a Xilinx Kintex-7 FPGA is used to generate

the gate, recharge and control signals and to readout the data. A total of 16364 75 bit

frames can be stored in the FPGA RAM before all the data is sent to the PC via a USB3.0

connection.

The CoB PCB interfaces with the Opal Kelly module through a custom motherboard

PCB that also provides digitally adjustable power supply channels following a specific

power up sequence and secondary functions such as die temperature and current

consumption measurements. Figure 2.15 shows the complete assembly.

34

2.5 Characterization

(a)

(b)

Figure 2.15: kiloPhase system (a) top and (b) bottom. The custom motherboard
PCB connects kiloPhase to the FPGA board, provides the necessary power rails and
monitors chip current consumption and temperature. A 3D-printed mount is used to
connect the system to the optical setup. The entire assembly is 16×7×6 cm3.

A Dashboard software written in Python 3.6 is used to program the FPGA, run the

measurement according to user defined parameters and then read and process the

output data. External scripts can be run to facilitate measurement repeatability and

validity.

2.5.2 Breakdown voltage

Breakdown voltage measurements were performed by sweeping the SPAD bias voltage

in 10 mV steps between 23 V and 25 V and acquiring dark frames at each value [122].

In total, 128 10 bit frames acquired with a gate width of 13 ns for each binary frame

were accumulated for each bias voltage. The breakdown voltage of a specific pixel was

determined as being 0.7 V less than the lowest bias voltage at which at least one count

was detected. The subtracted voltage corresponds to the nominal threshold voltage of

35

Chapter 2. kiloPhase

the thick oxide transistor used in the pixel.

Figure 2.16 shows the resulting breakdown voltage histogram for a single die. The

average breakdown voltage was determined to be 22.58 V with a standard deviation of

39.7 mV. The results are in accordance with [37] which has the same SPAD and array

size.

22.4 22.5 22.6 22.7 22.8

Breakdown voltage [V]

0

50

100

150

200

250

C
ou
nt
s

Figure 2.16: kiloPhase breakdown voltage measured by sweeping the SPAD bias voltage
in 10 mV steps, acquiring dark frames and then determining when each pixel has fired.

2.5.3 Dark count rate

A custom cooling module was designed to be placed between the kiloPhase PCB and

the motherboard. A 26 W 3×3 cm2 thermoelectric cooler (TEC) was attached to a

custom aluminium block that was in direct contact with the copper plane of the CoB

PCB. An aluminium heat sink was attached to the hot side of the TEC and forced air

flow was used to dissipate the heat into the environment. A Wavelength Electronics

PTC2.5K-CH temperature controller [123] was used to drive the TEC and keep the

temperature stable at the desired value using a thermistor attached to the copper

plane of the PCB. Figure 2.17 shows the complete assembly.

The chip DCR was measured by accumulating 320000 8-bit dark frames with a 12.19 ns

36

2.5 Characterization

Figure 2.17: kiloPhase cooling assembly. The cooling module consists of two PCBs, a
TEC, an aluminium block, a heat sink and a small fan placed on the side. The inset
shows the module by itself, with the custom aluminium block designed to contact the
CoB PCB visible in front.

gate for each binary frame, totaling an exposure time of TE X P = 0.995s. The excess bias

voltage of the SPAD was swept in steps of 0.5 V from 1.5 V to 5.5 V. The die temperature

was stabilized within ±0.02 ◦C from five values between 18 ◦C and 28 ◦C, and checked

with a FLIR ETS320 thermal imaging camera [124]. After each acquisition, the frames

were summed together and the median value across the entire array was reported.

Figure 2.18a shows the median DCR as a function of SPAD excess bias voltage for

multiple temperatures. The median value at 20 ◦C and 5.5 V excess bias was measured

to be 166.4 cps. The dependency of DCR with temperature is shown in Figure 2.18b

for an excess bias voltage of 5.5 V. An average increase in median DCR of 6.8%/◦C was

measured.

Figure 2.19 shows the DCR population distribution for multiple excess bias voltages.

Under the same conditions as previously mentioned, the array exhibits a hot pixel per-

centage of 1.02%. The results are in accordance with the ones for the chip presented in

[37] which has the same SPAD and array size. Changing the SPAD bias conditions does

not significantly affect the percentage of hot pixels, indicating that their DCR values

37

Chapter 2. kiloPhase

1 2 3 4 5 6

Excess bias [V]

0

50

100

150

200

250

300

350

D
C

R
 [c

ps
]

18°C

20°C

22°C

24°C

26°C

28°C

(a)

18 20 22 24 26 28
Temperature [°C]

150

200

250

300

D
C

R
 [c

ps
]

(b)

Figure 2.18: (a) Median kiloPhase DCR as a function of excess bias voltage for tempera-
tures between 18 ◦C and 28 ◦C. (b) Median kiloPhase DCR as a function of temperature
for an excess bias voltage of 5.5 V.

0 10 20 30 40 50 60 70 80 90 100
Population [%]

1

10

100

1k

10k

100k

D
C
R
 [

cp
s]

1.5V
2V
2.5V
3V
3.5V
4V
4.5V
5V
5.5V

Figure 2.19: kiloPhase DCR population distribution for multiple excess bias voltages
at 18 ◦C.

38

2.5 Characterization

change at the same rate as the ones from the normal pixels. Figure 2.20b confirms

that the hot pixels also have lower breakdown voltages compared to the rest.

Figure 2.20a is a 3D map of the DCR across the entire array at 20 ◦C and 5.5 V ex-

cess bias. A uniform spatial distribution of the hot pixels can be observed, similar to

the one presented in [37].

10
100
1k

10k

1M

D
C
R
 [

cp
s]

0

100k

(a)

1 10 100 1k 10k 100k
DCR [cps]

22.45

22.5

22.55

22.6

22.65

22.7

22.75

B
re

ak
d
ow

n
 v

ol
ta

g
e

[V
]

(b)

Figure 2.20: (a) Median kiloPhase DCR across the entire array at 2.5 V excess bias and
18 ◦C. (b) Correlation between the DCR and breakdown voltage of each pixel under
the same conditions. Hot pixels are shown in red.

2.5.4 Crosstalk

The DCR data was also used to measure the crosstalk between neighboring pixels, as

described in Chapter 1.3.2. The 20 ◦C and 5.5 V excess bias voltage operating condi-

tion was chosen and a number of hot pixels were selected as reference. The selection

criteria eliminated hot pixels with very high count rates so as to avoid extreme pile-up

effects and at the same time only kept hot pixels without hot pixel neighbors. The me-

dian array DCR rate was subtracted from all the selected pixels and pile-up correction

[104] was applied to estimate the true photon count. The crosstalk values for all the

selected hot pixels were averaged to eliminate pixel-to-pixel DCR variations.

The crosstalk values are shown in Figure 2.21. The results were aggregated from

50 pixels across 8 samples. The average crosstalk was measured to be below 1.8% for

the nearest pixels, and below 1.1% for the diagonal neighbors. The values suggest

the existence of electrical crosstalk caused by routing the pixel signals in proximity to

39

Chapter 2. kiloPhase

each other.

100

1.72

1.38

1.021.69

1.42

0.72

0.2

0.2

0.2

0.2

0.2

1.1 0.9

0.2

0.2

0.2

0.3 0.3

0.3

0.3

0.03

0.03

0.07

0.04

Figure 2.21: Average kiloPhase crosstalk at 5.5 V excess bias and 20 ◦C

2.5.5 PDP

The SPADs used in kiloPhase are exact copies of the ones from [37] and the same

structure but with different dimensions was used in [71], [116] and [66]. PDP values

for wavelengths between 400 nm and 850 nm at different excess bias voltages were

already reported in [125] using a SPAD with an identical structure and a 11.7 mm active

region diameter. Thus, no PDP measurements were performed with the 15.16 mm

active region diameter kiloPhase SPADs as the same behaviour was expected. Figure

2.22 shows the aforementioned results.

2.5.6 Power consumption

The power consumption of the chip was measured during normal operation as a 10 bit

imager. Data was read out of the chip at the end of every acquisition and the cycle

was restarted. The computational units were configured to multiply the intensity data

from each pixel with a random number. The chip was supplied at nominal voltage

through four channels: 1.8 V for the core circuitry, 3.3 V for the pad ring and the clock

trees used to distribute the gate and recharge signals and a high voltage channel for

the SPAD. The average current was measured for each and the results are summarised

in Table 2.1 and Figure 2.23.

40

2.5 Characterization

Figure 2.22: Photon detection probability reported in [125] for a smaller diameter but
identical SPAD structure to the one used in kiloPhase.

Table 2.1: The power consumption of each voltage rail

Rail Power [mW]
Pad ring 18.15

Clock trees 1.65
Digital cores 5.4
SPAD array <13

TOTAL <38.2

As expected, the majority of the power dissipation takes place in the pad ring be-

cause of the 3.3 V level and the large 75 bit width of the output bus. In future iterations

of the chip, a more efficient serial interface can be implemented, preferably operating

at lower voltage levels. The digital processing logic consumes less than 15% of the

total power because of the system architecture and techniques such as clock gating

that avoid power consumption in inactive circuit blocks. Little to no dependency on

gate length or illumination conditions was observed.

2.5.7 Gate profile

The gate profile characteristics of a gated image sensor have a significant influence on

the timing performance [84]. Significant effort was spent for a complete characteriza-

41

Chapter 2. kiloPhase

Pad ring
48%

Clock trees
4%

Digital cores
14%

SPAD array
34%

Figure 2.23: Average kiloPhase power consumption of every power rail.

tion of kiloPhase, similar to the one for other gated SPAD imagers such as [66], [71],

[116].

The measurement setup was built around a Thorlabs Cerna single channel confocal

microscope system [126] with a WFA2001 epi-illuminator module [127] and a 100 mm

tube lens. A 517 nm pulsed laser [128] with an 80 ps pulse FWHM and timing jitter less

than 3 ps was set to a 40 MHz repetition rate and used as an input for the illuminator

module. An upside-down mirror was placed in the filter cube to redirect the laser

pulse to the chip. The beam width was set using the microscope field stop to a size that

covered the entire array. A 0.5 neutral density filter was used to reduce the laser power

to a value that would not cause saturation of the pixels but would provide enough

signal for an acceptable SNR.

The laser controller generated a 40 MHz trigger signal that was used to synchro-

nize the system. The gate pulse width was kept fixed throughout the acquisition

cycle but was shifted with 15.4 ps steps over multiple laser periods. At each step, 128

10-bit grayscale images were acquired and then the average value for each pixel was

calculated. The data was used to determine the rise and fall times of the gate signal

for each pixel, along with the skew across the entire array.

Figure 2.24 shows the histograms of gate rise and fall times. The average value of

the former is larger than that of the latter because the rising edge is defined by both

42

2.5 Characterization

gate and recharge signals and is affected by the non-zero transition times of the signals,

variations in transient times of the avalanche current and the probability of detecting

photons during the recharge process [84]. Similar behaviour is seen in other SPAD

imagers that have identical gating architectures [66], [71].

Figure 2.25 shows the histograms of rising and falling edge skews across the array,

with insets representing color maps. All the values are relative to the pixel where the

first edge was detected. The rising edge has a diagonal skew starting from the bottom

left corner of the array caused by the orthogonal propagation of the gate and recharge

signals from the bottom and left edges respectively. The vertical gradient of the falling

edge is expected as it is the result of the propagation of a single electrical signal.

Figure 2.26a shows the median gate profile of the entire array for multiple gate width

settings. The minimum achievable gate width was measured to be 4.38 ns, larger than

expected. The reason was determined to be a combination of the undersizing of the

input buffer of the gate signal and low signal integrity due to PCB routing. The latter

will be improved in future versions of the board. The maximum gate width is firmware

limited to 19.48 ns or approximately 80% of the laser repetition period. The variation

across the array has a standard deviation of less than 38 ps. The associated histograms

are shown in Figure 2.26b and 2.26c. The slight increase in counts immediately after

the deassertion of the reset is attributed to afterpulsing from photons which arrive

shortly before the application of the reset pulse. Residual charge from these events

can persist inside the diode and be released at a later time. Increasing the duration of

the reset pulse lowers the amplitude of the bump with an approximate reduction of a

factor of 2 when changing the pulse duration from 5 ns to 10 ns.

2.5.8 Frame rate

The token-based pixel readout was validated by measuring the frame rate of the chip

when operating as an intensity imager with various bit depths at reduced light levels.

The aperture of a F1.4 8 mm lens was used to limit the average number of photons

detected in a binary frame to approximately 7% of the number of pixels, resulting

in an average of 6 detections per row. The binary depth of the intensity frame was

varied between 1 and 10 bit and 128 frames were acquired at each point. The frame

rate was measured by monitoring the frequency of a synchronization signal with an

oscilloscope and finding the average over all 128 frames. The frame rate increase was

reported relative to the frame rate obtained under the same conditions with the token

readout disabled.

43

Chapter 2. kiloPhase

100

C
ou

n
ts

80

60

40

20

0
0 500

Rise time [ps]
1000

(a)

100

C
ou

n
ts

80

60

40

20

0
0 500

Fall time [ps]
1000

(b)

Figure 2.24: kiloPhase gate (a) rise and (b) fall time histograms. The average rise time
is longer because the rising edge is defined by two signals and it also depends on the
probability of detecting photons during the recharge process. Conversely, the falling
edge is defined by a single electrical signal.

Rising edge skew [ps]

C
ou

n
ts

0
0

50

50

100

100

150

250

350

150

200

300

200 0

ps

50

100

150

(a)

Falling edge skew [ps]

C
ou

n
ts

0
0

50

50

100

100

150

250

350

150

200

300

200 0

ps

50

100

150

(b)

Figure 2.25: Histograms of kiloPhase (a) rising and (b) falling gate edge skews. The
insets represent color maps of the values. A diagonal skew is observed on the rising
edge due to the orthogonal propagation of the gate and recharge signals that form
it. Only a vertical skew is present for the falling edge because it only depends on the
propagation of the gate signal.

44

2.5 Characterization

100

C
ou

n
ts

80

60

40

20

0
0 10 20 30 40

Gate shift [ns]

120

50

4.3ns
6.0ns
7.7ns
9.1ns
10.6ns
12.2ns
13.7ns
19.5ns

(a)

250

C
ou

n
ts 200

150

100

50

0
4.25 4.3 4.35 4.4 4.45

Gate width [ns]

350

300

(b)

250
C
ou

n
ts

200

150

100

50

0
19.35 19.4 19.45 19.5 19.55 19.6

Gate width [ns]

(c)

Figure 2.26: (a) kiloPhase gate width range. The slight increase in counts at the
beginning of the gates is attributed to afterpulsing from photons which arrive shortly
before the application of the SPAD recharge pulse before the gate. (b),(c) Histograms
of gate widths across the entire array for the shortest (4.38 ns) and longest (19.48 ns)
achievable configurations.

45

Chapter 2. kiloPhase

Figure 2.27 shows the average frame rate as a function of image bit depth. As ex-

pected, the frame rate doubles with every 1 bit reduction of the depth but saturates at

the lower end of the range when the fixed chip readout time becomes the dominant

factor. Maximum frame rates of 46340 fps and 227 fps were measured for 1 bit and

10 bit grayscale modes, respectively.

The inset represents the gain in frame rate when token-based pixel readout is en-

abled. A significant decrease is observed when operating at lower bit widths caused

by the same fixed chip readout time. A maximum gain of 12% is obtained when oper-

ating in 10-bit mode. Future optimisations of the control firmware and an increase

of the system clock frequency can be used to operate the system at higher gains. As

described in Section 2.1 this gain is dependent on the illumination and is significant

when operating in low light level conditions.

1 2 3 4 5 6 7 8 9 10
Bit depth [bit]

0.1

1

10

100

Fr
am

e
ra

te
 [

kf
p
s]

1 2 3 4 5 6 7 8 9 10
Bit depth [bit]

2
4
6
8

10
12
14

Fr
am

e
ra

te
 g

ai
n
 [

%
]

Figure 2.27: kiloPhase frame rate when operating as an intensity imager for multiple
bit depths. As expected, the frame rate doubles with every reduction in bit depth and
saturates at the lower end of the range when the fixed chip readout time becomes
the dominant factor. The inset represents the relative frame rate increase obtained
by using the token-based array readout. The effect of the fixed chip readout time is
visible for low bit depths when the gain drops significantly.

46

2.5 Characterization

2.5.9 Data rate

The chip output data rate was measured when operating as a 10 bit imager at 227 fps as

in Chapter 2.5.8. Under these conditions, the data rate was measured to be 2.32 Mb/s,

equivalent to 0.29 MB/s. A conventional binary SPAD imager would require an output

data rate of 237.8 Mb/s to provide the same grayscale bit depth, indicating a 99%

reduction for kiloPhase.

2.5.10 Microlenses

As discussed in Chapter 1.3, one of the main limitations of SPAD-based imagers is the

decrease in PDE that comes from guard ring dimensions and minimum spacing rules

in the technology. A widely used method for improving the PDE by increasing the fill

factor is the use of microlenses deposited on each pixel in the array that concentrate

the incoming light onto the pixel active area. Their performance is indicated by the

concentration factor defined as [129]:

C F (θ,λ) = Cµl (θ,λ)

C
µl (θ,λ)

, (2.7)

where Cµl and C
µl are the measured photon count rates with and without microlenses,

λ is the light wavelength and θ is the angle of incidence. By multiplying the average

concentration factor for all incidence angles in the system C Fav g (λ) with the native

fill factor F F of the array, we can obtain the effective fill factor:

F Fµl (λ) = F F ×C Fav g (λ). (2.8)

Under ideal conditions, a convex lens can focus all collimated light at normal inci-

dence (θ = 0o) into a single focal point and produce an effective fill factor of 100%.

In practice, there is a minimum distance between adjacent microlenses which is a

fabrication constraint that does not scale with the pixel pitch and which causes fill

factor degradation. In addition, other fabrication non-idealities such as variations in

microlense shape can reduce the expected C F [84].

As C F is heavily dependent on the angle of incidence θ, microlenses are designed for

specific setups, in this case for microscopy. Due to the available space and the lack

of need for a large angle of view, microscopy setups are telecentric lens systems with

an average angle of incidence of θ = 0o for all the pixels. This is because while the

numerical aperture (NA) of the objective lens is usually very high in order to collect

47

Chapter 2. kiloPhase

as much light as possible, the tube lens can have a low NA that results in a very small

angle of incidence.

Figure 2.28 shows the low NA microlense array imprinted onto kiloPhase. The mi-

crolenses are exact copies of the ones for the detector presented in [37] to which I have

made no contribution. Four pixels from the top row were left without microlenses

so that they can be used to determine C
µl under the same conditions as Cµl . The

distance from the bottom of the microlenses to the substrate surface is 65.8 mm and

was chosen based on ray tracing simulations to maximise C F .

Figure 2.28: kiloPhase microlenses, detail of array corner. Three pixels without mi-
crolenses are visible on the top row.

The C F measurement setup was built around a Thorlabs Cerna single channel con-

focal microscope system [126] with a WFA2001 epi-illuminator module [127] and a

100 mm tube lens. A 517 nm pulsed laser [128] was used as an input for the illuminator

module. An upside-down mirror was placed in the filter cube to redirect the laser

pulse to the chip and the beam width was set using the microscope field stop to a size

that covered the entire array. A 0.5 neutral density filter was used to reduce the laser

power to a value that would not cause saturation of the pixels with microlenses and

would provide enough signal for those without.

kiloPhase was operated asynchronously from the laser as a 10 bit intensity imager.

48

2.6 Conclusion

A total of 3000 images were acquired and C F was calculated for each microlensed

pixel average value w.r.t. the average value of the 4 reference pixels. The resulting

histogram and 2D map are shown in Figure 2.29. The average concentration factor

was measured to be 2.44, 20% less than the expected value of 3.05, indicating slight

discrepancies between the designed and fabricated lenses.
C
ou

n
ts

Concentration factor

μ=2.45
σ=0.23

120

100

80

3.4

60

40

20

0
2 3 3.22.2 2.4 2.6 2.8

3.0

2.6

2.2

1.8

Figure 2.29: Measured kiloPhase microlense concentration factor histogram and
corresponding 2D map.

2.6 Conclusion

kiloPhase, a 32×32 SPAD imager with vector processing capabilities was designed and

characterised. The chip contains two 10 bit accumulator banks that can operate in a

PING-PONG mode to eliminate system dead time by accumulating a new grayscale

frame while processing the previous one. A group of 32 computational units can

execute 2 MAC and one accumulation operation for each pixel, one column at a time.

Two memory banks are used to store 128 multiplication coefficients and the 75 bit

computational result for each pixel.

The system frame rate is increased by using a token-passing technique that only

reads the pixels with detected photons. A 12% frame rate increase was measured when

operating in 10 bit grayscale mode at 227 fps. Readout of the chip is only required

at the end of the processing cycle when processed data is available for every pixel

49

Chapter 2. kiloPhase

instead of raw pixel counts, reducing the output data rate of the system by 99% when

operating in the same mode as previously mentioned.

A comparison between kiloPhase and other state-of-the-art SPAD imagers with com-

putational capabilities is presented in Table 2.2. The power consumption is slightly

better compared to the rest but it is also worth taking into account that kiloPhase was

designed in an older technology node and is at a slight disadvantage. The output data

rate is the key parameter at which kiloPhase excels. If normalized to the number of

pixels, the data rate of [39] is better, however, currently kiloPhase has only been used

as a 10 bit imager so the full advantage of the computational architecture has not been

reported. When the FLIM firmware is complete, the chip will accumulate up to 128

10 bit images before readout is necessary, which will result in a drastic improvement

in output data rate.

50

Table 2.2: kiloPhase state of the art comparison.

kiloPhase [37] [63] [130] [64] [39] [65]
Format 32×32 32×32 32×32 252×144 256×128 256×256 64×32

Pixel pitch 28.5 mm 28.5 mm 50 mm 28.5 mm 7 mm 9.18 mm 54/114 mm
Native

fill factor
28% 28% 1.5% 28% N/A 51% 16.3%

Technology 180 nm 180 nm 130 nm 180 nm 45/22 nm 90/40 nm 40 nm

DCR
0.54 cps/mm2

@ 5 V
0.49 cps/mm2

@ 5 V
0.59 cps/mm2

@ 1.4 V
0.85 cps/mm2

@ 5 V
0.34 cps/mm2

@ 2.5 V
0.59 cps/mm2

@ 1.5 V
N/A

Power 38 mWa 310 mWb 38.9 mWc 2.54 W 51.9 mW 77.6 mW 70 mW

Time resolving
method

Gate
Column

TDC
Pixel
TDC

Column
TDC

Pixel cluster
TDC

Pixel cluster
TDC

Pixel
TDC

Timing
resolution

4.18 ns
(15.4 ps)d 48.8 ps 50 ps 48.8 ps 60 ps 35 ps 71 pse

Operations
2× MAC

and
accumul.

Timestamp.
or

accumul.

Timestamp.
or

accumul.

Histogram
or

accumul.

Histogram
and

Coincidence
Histogram Histogram

Data rate 12.53 Mb/sa 4.76 Gb/s 5.12 Gb/s 10.7 Gb/s 800 Mb/s 31.4 Mb/s N/A
a Operating as a 10 bit imager with MACs active.
b Measured at a global throughput of 35.5 Mevents/s.
c Without ancillary and IO cells, measuring 10 ns intervals.
d Minimum gate shift.
e Operating at 14 GS/s.51

3 MegaPhase

MegaPhase is a 1024× 1024 SPAD imager developed in BSI 3D CMOS technology,

with the top tier in 45 nm and the bottom tier in 22 nm. The pixel is built around an

N+/PWELL SPAD at a 6.93 mm pitch. The chip contains 16384 computational units

(see Figure 3.1) that each process 64 SPAD inputs and can perform two MAC and one

accumulate operations per pixel. The 8×8 group of SPADs, referred to as a macropixel,

assigned to each computational unit can be binned with multiple granularities to

increase the effective dynamic range. All the computational units are independent

from each other and can simultaneously function in different modes, resulting in a

non-uniform imager that can have multiple regions with different spatial resolutions.

The chip can be reconfigured at runtime, from one image acquisition to the next, with

no dead time in between.

At the moment of writing this thesis, the MegaPhase fabrication process was com-

pleted. Initial tests have revealed an issue with two transistors in the pixel front end

that were undersized because of inaccurate library models. A corrected layout was

designed and will be fabricated in a future run. The chip functionality could only

be partially verified and as a result, only simulation results will be presented in this

chapter.

3.1 Motivation

MegaPhase was designed as an extension of kiloPhase taking advantage of the signif-

icant improvements that can be achieved by changing to a 3D integrated solution.

The new technology allowed the design of a parallel and scalable architecture that

operates at frame rates orders of magnitude higher than the previous implementation

and at variable and non-uniform image resolutions that can optimize the output data

53

Chapter 3. MegaPhase

64 x 64
Computational Units

64 x 64
Computational Units

64 x 64
Computational Units

64 x 64
Computational Units

Figure 3.1: MegaPhase structure consisting of four quadrants of 4096 computational
units each. The computational units are connected to groups of 8×8 SPADs and form
a uniform pitch 1024×1024 pixel imager where each group can be independently
processed either in intensity or computational mode.

rate.

The fundamental element of the MegaPhase architecture is the computational unit,

a circuit block containing adders, a multiplier and RAM, that processes the outputs

from 64 SPADs. At every processing iteration n, the computational unit can perform:

DG [n] = DP X L ×αG +DG [n −1]

DS[n] = DP X L ×αS +DS[n −1]

D I [n] = DP X L +D I [n −1],

(3.1)

where DG and DS are the real and imaginary parts of the complex pixel value, D I is

the integer intensity component, DP X L is the integer result of accumulating a specific

group of SPADs and αG and αS are the real and imaginary components of the complex

coefficient. Depending on the operation mode, DP X L can be computed using 64, 16, 4

or 1 SPAD outputs for every exposure, resulting in a gray pixel with a dynamic range

of 6, 4, 2 and 1 bit respectively. As a consequence, the required exposure time TE X P

scales down exponentially:

T (b)
E X P = T (1)

E X P

2b
, (3.2)

54

3.2 Processing flow

where b > 1 is the dynamic range of the pixel in bits and T (1)
E X P is the total exposure

required for a conventional 1 bit SPAD pixel. The binning method is the same as

the one used for processing the output data from quanta image sensors [131], [132],

however, in that case there is no benefit in terms of speed or data rate.

Each computational unit functions independently from the rest and as a result, tiling

multiple units to form a large format array does not increase the computation du-

ration, the only frame rate limitation coming from the readout. In order to mitigate

this, MegaPhase is read out using four 32 bit buses each assigned to a quadrant of the

chip using a row and column addressing scheme that requires at most 8 clock cycles

per computational unit. If a further increase in frame rate is desired, read out can be

limited to a rectangular region of interest (ROI) centered in the middle of the array.

Finally, the independent nature of the computational units allows for multiple modes

of operation to be present across the array at the same time. Various regions of dif-

ferent resolutions can be configured from one frame to the next which reduces the

output data rate of the chip and as a consequence further increases the frame rate.

3.2 Processing flow

Exposure Full readout Exposure Exposure Full readout

Exposure Full readout

Complete frame

a)

b) Proc. Proc.Exposure Exposure

Figure 3.2: Comparison between the readout schemes of a conventional SPAD imager
operating with a global shutter a) and MegaPhase b). In the latter case, every binary
exposure is followed by a fast processing step. A full chip readout is only required at
the end of the entire acquisition.

Normal sensor operation consists of three stages: exposure, computation and readout.

The exposure begins with NE X P openings of the gate signal that result in four possible

images at the input of each computational unit: an 8×8 binary image if the 1 bit

dynamic range is selected or a 4×4 or 2×2 or 1×1 grayscale image if the 2, 4, or 6 bit

modes are selected. After exposure, the computation stage proceeds automatically

and equations (3.1) are implemented simultaneously. Depending on the mode of

operation, this step requires either 1 or 4 TC LK clock cycles to complete. The exposure

- computation sequence is then repeated as many times as desired. The operation

55

Chapter 3. MegaPhase

terminates with chip readout which can take a maximum of 32768 TC LK cycles to

complete if the full array is read out at the most memory intensive operation modes.

Figure 3.2 is a schematic representation of the operation of MegaPhase and a conven-

tional SPAD binary imager operating with global shutter. Compared to the operation

of kiloPhase described in Chapter 2.1, MegaPhase does not require any binary frame

readout time due to the parallel architecture. The resulting time T f r ame required to

obtain either an intensity or computational frame with the entire pixel array is given

by:

T f r ame = NE X P ×T (b)
E X P +32768×TC LK , (3.3)

where T (b)
E X P depends on the pixel dynamic range b, the desired output image bit

format, the operating mode of MegaPhase and the scene exposure duration.

Table 3.1 summarizes the 6 operating modes of each MegaPhase computational unit

and the corresponding full array resolution if all the units were identically configured.

For specific modes, the output can consist of up to 16 intensity or 4 computational

frames, but it is up to the user to decide on the exact number. Also depending on

the mode, the format of an output frame can be 1 bit, 8 bit or 16 bit when operating

in intensity mode, and 64 bit when in computational mode, consisting of two 24 bit

complex and a 16 bit intensity component.

Assuming TC LK = 10 ns and NE X P = 1, the resulting frame rate for operating the

entire MegaPhase array is presented together with the resulting speed-up. The former

is obtained when compared with the frame rate of a 1024×1024 SPAD binary imager

that can be read out in quadrants at 1 TC LK per line. Under the same assumptions, the

resulting data rate for operating the entire MegaPhase array is also reported in Table

3.1. The reduction in data rate is obtained when compared with a 1024×1024 SPAD

binary imager operating at the same frame rate as MegaPhase.

3.3 Architecture

3.3.1 Pixel

Figure 3.3 represents the pixel schematic implemented in MegaPhase, with the corre-

sponding layout shown in Figure 3.4. A total of 10 thin oxide MOS transistors and one

thick oxide PMOS are used on the bottom tier to implement the pixel circuitry, while

the N+/PWELL SPAD is placed on the top tier at a 6.93 mm pitch.

56

3.3 Architecture

Table 3.1: MegaPhase frame rate and data rate compared to a theoretical 1024×1024
SPAD binary imager that can be read out in quadrants at 1 TC LK per line. Both rates are
computed assuming that the maximum RAM capacity is used in every configuration
and that each exposure of a binary frame lasts one clock cycle.

Resolution
1024×1024 512×512 256×256 128×128

Type Int. Int. Int. Comp. Int. Comp.

Pixel dynamic
range [bit]

1 2 4 4 6 6

Output frame
format [bit/pixel]

1 8 8 64a 16 64a

Number of
output frames

4 1 4 1 16 4

Maximum
frame rate [fps]

12200 3000 12200 2000 32500 10800

Speed-upb ×0.06 ×1 ×1 ×42 ×170 ×56

Data rate[MB/s] 1600 1600 1600 1070 1070 1430

Data rate
reductionc ÷1 ÷16 ÷16 ÷1024 ÷4096 ÷1024

a 24 bit for real and imaginary components, 16 bit for the intensity image.
b Speed-up is calculated by comparing the frame rate of MegaPhase with a conventional
1024×1024 SPAD binary imager that is read out in quadrants at a rate of 1 line per TC LK cycle.
c The data rate reduction is calculated by comparing with the same binary imager
assuming the two detectors operate at an identical frame rate.

57

Chapter 3. MegaPhase

VHV

VDD

VDD
VDD VDD

nRCH

nGATE

Top tier

nRST

PXL

T2

VC T1
B

A

D

T7T3

T4

T5

VDD

T9

T8T6

VDD

T10

T11

C

Figure 3.3: MegaPhase pixel schematic consisting of 7 PMOS and 3 NMOS thin ox-
ide transistors along with a thick oxide PMOS cascode T1. The N+/PWELL SPAD is
implemented on the top tier wafer. The pixel has a clock-driven recharge (T2) and a
static memory cell consisting of two back to back inverters. The pixel is gated through
transistor T4.

Similarly to kiloPhase, cascode transistor T1 and bias signal VC are used to extend the

bias voltage range of the pixel and T2 implements a clock-driven recharge controlled

by the nRC H signal. When an avalanche occurs, the voltage at point A will drop,

causing transistor T3 to drive point B to VDD . If the nG AT E signal is asserted, T4 will

short nodes B and C together, forcing the back to back inverter pair formed by T5, T6,

T7 and T8 to toggle. Transistors T10 and T11 form an inverter that produces the output

signal P X L based on the state of the memory cell. When the pixel is reset for a new

exposure, T9 controlled by nRST will drive node D high and cause the memory cell to

toggle back to the initial state before the avalanche. If during exposure an avalanche

does not occur, node B will be floating as T3 is not driven, and an opening of the gate

will not cause a toggling of the memory cell.

3.3.2 Computational unit

The block diagram of a computational unit is shown in Figure 3.5. The 64 pixel outputs

are connected to an adder tree that can be configured to sum only specific subgroups

of its inputs, thus implementing pixel binning as shown in Figure 3.6. The output of

the adder tree is processed by a group of two signed 24 bit multipliers and four signed

8 bit adders that can be reconfigured, depending on the mode, to simultaneously

perform:

• two 24 bit MACs and one 16 bit accumulation

58

3.3 Architecture

1μm

Figure 3.4: MegaPhase pixel layout. The thin oxide MOS transistors are all located in
the upper section of the pixel. The large thick oxide PMOS occupies the entire middle
and bottom sections. The pixel was designed to occupy 3 standard cell rows so that it
can be used by the digital place-and-route tool without any issues. The large green
square is a metal contact designed to connect to the top tier SPAD cathode.

• four 8 bit accumulations

• a single 16 bit accumulation

All the computation results are stored in a 256 bit RAM that also provides the addi-

tional operand for the MAC and accumulate operations. The structure of the RAM

changes from 4×64 bit during normal operation to 8×32 bit for chip readout.

The 8 bit signed constants needed for MAC operations, as well as the configuration

bits that determine the operational mode of the computational unit are stored in

a 19 bit register. A three wire serial interface is used to load the register and then

latch the current state. This behaviour allows the loading of new configurations and

constants while the current frame is still being exposed/processed, which can result

in no chip dead time.

3.3.3 Readout

As previously mentioned, the entire array is divided into four independent quadrants

of 4096 computational units each. Chip readout is implemented simultaneously for

59

Chapter 3. MegaPhase

Q

S
D

O
S
D

I

E
N

Pixel [0:63]

S
D

I

SDO

Dout [31:0]

Misc.

RAM

S
S
A
V
E

S
C
LK

16

Config.

Figure 3.5: MegaPhase computational unit block diagram consisting of an adder tree
that processes the 64 SPAD pixel outputs (Pixel[0:63]) in user selectable subgroups,
signed integer MAC and accumulate units and a RAM block. Configuration data and
mathematical constants are stored in a latched shift register that can receive new data
using a three wire interface (SDI/SDO, SCLK, SSAVE) without interfering with current
processing operations. Readout is performed using 32 bit output bus Dout. Additional
miscellaneous circuitry is used for the configuration and control of the unit.

Figure 3.6: MegaPhase SPAD binning allows for larger dynamic ranges to be used at a
cost of image resolution. Each computational unit can be configured to process 8×8,
4×4, 2×2 or 1×1 pixels as intensity or computational frames.

60

3.3 Architecture

Dout

C
[0
]

C
[1
]

C
[6
0
]

C
[6
1
]

C
[6
2
]

C
[6
3
]

R[0]

R[1]

R[60]

R[61]

R[62]

R[63]

Figure 3.7: MegaPhase quadrant readout is implemented using a row and column
addressing scheme. The order of the addresses is different for each quadrant so that
the first unit is nearest to the center of the array. The schematic shown in this figure
represents the upper left quadrant and has unit (0,0) in the lower left.

128 x 128
Computational units

M x N
ROI

Figure 3.8: MegaPhase ROI readout can be used to increase the frame rate by limiting
the operational section of the chip to a M ×N rectangular group of computational
units centered in the middle of the array.

61

Chapter 3. MegaPhase

each quadrant through a 32 bit parallel bus. A row and column addressing scheme

is used to access the targeted computational unit from each quadrant as shown in

Figure 3.7. The address bus is common to all four quadrants, but the order of the

columns and/or rows is different; for example, the upper left quadrant has the (0,0)

computational unit in the bottom right corner, whereas the upper right quadrant has

it in the bottom left position. As a result, if only the first M
2 columns and N

2 rows are

read out, a rectangular ROI of M ×N computational units is formed in the center of

the array as shown in Figure 3.8 which leads to an increase in frame rate.

3.4 Implementation

Figure 3.9: BSI 3D-stacked SPAD sensor structure similar to the one used for
MegaPhase. Figure sourced from [133].

MegaPhase was designed as a 3D-stacked BSI imager, with hybrid bonds used to

connect contacts on the top tier to corresponding exposed metal pads on the bottom

tier [134]–[136]. Figure 3.9 shows a similar BSI 3D-stacked SPAD sensor structure

presented in [133].

3.4.1 Top tier

The top tier was designed in a 45 nm technology node and consists of only an array

of 1024×1024 SPADs. Each pixel is 6.93×6.93 mm2 with a drawn fill factor of 18% as

shown in Figure 3.10. An array of metal contacts is distributed across the top tier and

62

3.4 Implementation

electrically connected to the SPAD cathodes, designed to be used for the 3D-stacking

procedure.

1μm

Figure 3.10: MegaPhase top tier pixel layout, showing the drawn SPAD active region in
the middle and the metal routing used to connect to the anode. There is no additional
circuitry on the top tier. The pixel is designed to be abutted to form the desired array
size. The pitch is 6.93 mm

The SPAD structure was designed entirely by the foundry and appeared as a black box

on our end. So far, its characteristics and performance have not been disclosed. The

top tier layout consists of only 2 metals, the array of hybrid bonds and the I/O pads.

3.4.2 Bottom tier

The bottom tier was implemented in a hierarchical approach by firstly creating the

processing core, then an array and finally the full design. The size and complexity of

MegaPhase required the use of both manual and automatic techniques along with

custom models developed for specific process steps. The completed design contains

approximately 490 million transistors and the final design rule verification required 8

days of processor time to complete.

Design assembly

The pixel front end shown in Figure 3.4 was manually created using Cadence Virtuoso

and was designed to occupy 3 standard cell rows so that it could be used by the digital

place-and-route tools without issues. The transistors were sized using post-layout

SPICE simulations where the SPAD was replaced by a model similar to the one pre-

63

Chapter 3. MegaPhase

sented in [120].

When the layout of the pixel front end was complete, an abstract .lef file representa-

tion was created using Cadence Abstract Generator along with a manually written .lib

timing file. All the required delays and input loads were taken from the post-layout

parasitic extraction. The pixel front end was then used as a standard component

throughout the design.

The processing core was synthesized using Cadence Genus and the layout was created

using Cadence Innovus. Figure 3.11 shows the MegaPhase processing core layout.

Each core is 54.57×54.33 mm2 and was designed to connect with its neighbor through

abutment. A grid of 8×8 metal contacts are distributed across the layout and connect

with the top tier SPAD cathodes via hybrid bonds. A combination of the top tier pixel

pitch and the shrink factor of the 22 nm process resulted in an irrational pitch for the

hybrid bonds on the bottom tier. In order to circumvent the issue, placement of the

metal contacts is not uniform and has clusters of 2×2 elements as seen in Figure 3.11.

Figure 3.11: MegaPhase processing core layout. The 8×8 grid of metal pads for 3D
integration is shown in green. The core is 54.57×54.33 mm2 in size.

The layout for the processing core was limited to the first 5 metals. The core was

64

3.4 Implementation

exported as a hard macro and 16384 copies were tiled into the 128×128 array that

forms MegaPhase. At this stage, the design became too large to be analyzed using

the full .lib model exported by Innovus. Therefore, the model was overwritten by

using directives that only specified the minimum information required for the timing

analysis. The array was then exported as another hard macro.

The miscellaneous logic surrounding the array was fully synthesized and built using

the same Cadence tools and then exported as a macro. The two parts were then

combined and routed together using Cadence Innovus to form the MegaPhase core.

Finally, the core was manually routed to the pad ring that contained only I/O cells as

the pads were located on the top tier.

Gate and recharge distribution

Gate and recharge signal distribution across an array the size of MegaPhase had to be

carefully designed to assure good signal integrity that preserved the shape of the gate

and to minimize the propagation skew. A schematic of the final distribution network is

shown in Figure 3.12 where three distinct sections are visible. Inside each processing

core, the gate distribution was implemented by designing an H tree network using

Cadence Innovus that minimized the skew and targeted a signal frequency of 125 MHz,

corresponding to a minimum gate width of 4 ns.

Figure 3.12: MegaPhase gate distribution network with the 3 stages shown in separate
colors: top level tree (blue), propagation lines (red) and processing core H trees (black).

At the array level, the gate and recharge signals were propagated along dedicated lines

65

Chapter 3. MegaPhase

for each row from two sides so that the horizontal skew between the processing cores

was reduced. An H tree could not be used at this level due to the previously mentioned

issues with modelling a design of this size. The simplified timing models were not

good enough to be used for the generation of the tree using the design tools. All of

the attempts to use slightly more complex models resulted in a complete crash of

Cadence Innovus even when running on a machine with 675 GB of RAM and 64 Intel

Xeon processing cores.

The propagation lines were designed with increased spacing from neighboring signals

and had a larger width. Routing was kept on metal M6, above the processing cores,

to ensure no obstacles were in the way. The signals were sandwiched between the

M5 power distribution network of the cores and the M7 metal of the complete design

power network. Both were routed as dense and uniform patterns of metal strips that

preserved the uniformity of the parasitic elements attached to the propagation lines.

At the highest hierarchical level, the gate and recharge signals are distributed to

the horizontal propagation lines by a tree that was synthesized and routed using the

Cadence tools for the same target frequency as the H tree in the processing core. This

ensured that the vertical skew was minimized and that the propagation to the two

array halves was balanced.

Power distribution

Due to the hierarchical assembly method of the design, the power distribution net-

work was also executed in multiple steps. At the processing core level, metal M5 was

used to implement a dense pattern of vertical strips across the entire core that were

periodically connected to the M1 metal of the standard cells to ensure uniform power

distribution. The same technique was used for the digital logic surrounding the array

where the gate and recharge distribution trees were located.

The chip power distribution network was created using the top 4 metals that are

significantly thicker and wider than the rest. The M5 patterns from the processing

cores and electronics were connected together with large and periodic metal strips in

orthogonal directions to create a chip-wide grid. The edges of the grid were connected

to a ring made with metals M9 and M10 that covered the entire perimeter of the chip.

Finally, the ring was then connected to 8 pairs (VDD and GND) of pads distributed

along all 4 edges of the chip.

MOS decoupling capacitors were placed in all the empty spaces in between the stan-

66

3.4 Implementation

dard cells. The leakage current was reduced by more than one order of magnitude by

replacing the foundry provided cells with custom-made ones where the transistors

were replaced with their low power versions from a different library.

Clock distribution and timing

The system clock was synthesized for a maximum operating frequency of 100 MHz.

The distribution network mirrored the one used for the gate and recharge signals.

Timing closure was obtained in separate post-layout analyses for each block of the

design. Due to the advanced technology node, a total of 8 library corners (summarized

in Table 3.2) were used to take into account multiple operating conditions and process

variations.

Table 3.2: All the library corners used for the MegaPhase timing analysis.

Corner Transistor model Voltage Temperature Interconnect
1 Slow-Slow 1.08 V 125 oC RC-worst
2 Slow-Slow 1.08 V 0 oC RC-worst
3 Fast-Fast 1.32 V 125 oC RC-worst
4 Fast-Fast 1.32 V 125 oC RC-best
5 Fast-Fast 1.32 V 0 oC RC-worst
6 Fast-Fast 1.32 V 0 oC RC-best
7 Typical-Typical 1.2 V 85 oC RC-worst
8 Typical-Typical 1.2 V 85 oC RC-best

Dummy generation

Dummy metal generation was performed in two steps. First, after the processing core

layout was complete, dummy generation was run up until metal M5. This ensured that

the timing performance of the design would not be affected by subsequent changes

at the top level of the chip. The final dummy metal generation was then run on the

assembled design for all metal layers.

Due to a technology specific issue, front-end-of-line (FEOL) dummy patterns were

generated using a separate rule file which required the entire procedure to be done

separately from the one for the back-end-of-line (BEOL). The same two step approach

was used here as well, with the patterns for the processing cores being generated first,

followed by a chip level generation.

67

Chapter 3. MegaPhase

3.5 Design verification

The architecture was validated throughout the design process, starting with behav-

ioral simulations of the computational unit and ending with post layout simulations

of the entire chip. Cadence Innovus was used to export the final Verilog netlist and

.sdf file for corners 1, 4 and 7. The pixel front end was replaced by a custom Verilog

model based on its standalone post layout SPICE simulations. Real and generated

8 bit grayscale images were used to simulate photon detections in the front end that

would serve as inputs for the simulation model.

The intensity mode was tested for all 4 resolution modes described in Table 3.1 at the

maximum frame rates. The results were then compared with the original 1024×1024

grayscale image and the binned versions of it for the other resolution modes. All

output images were identical to the references. Figure 3.13 shows the 4 output images

of different resolutions from one of the tests. The 1024× 1024 output image was

accumulated off-chip from the MegaPhase binary frames.

The computational mode was tested for both resolution modes described in Table 3.1

at the maximum frame rates. Random coefficient values were assigned to each core

and the 3 components of the output DG , DS and D I were compared with reference val-

ues computed from the same input image and coefficient combination. As expected,

no discrepancies were observed in any of the tests. Figure 3.14 shows the results from

one of the tests where a generated input image consisting of various geometrical

patterns was used. The output resolution is 128×128. The 4 quadrants of the detector

were configured to multiply the input with 4 complex numbers: 2−2 j , 0, −3+3 j and

−1+1 j , simulating a FLIM experiment with complex coefficients determined using

equation (1.1). The chip was configured to only process the third output frame from

the available four so that the memory access circuitry could be validated with the

same test.

3.6 Conclusion

MegaPhase, a 1024×1024 SPAD imager with massively parallel processing capabilities

was designed in a 45 nm/22 nm 3D stacked technology. The chip consists of an array

of 128×128 processing cores, each capable of simultaneously processing 64 pixels by

performing two MAC and one accumulate operations. The 64 pixels can be binned

with multiple granularities to increase the dynamic range and reduce the required

exposure time. Every processing core can operate independently, at different formats,

resulting in a nonuniform imager that can optimize the output data rate. The chip

68

3.6 Conclusion

can be reconfigured at runtime, form one image acquisition to the next, with no dead

time in between. Depending on the mode of operation, the detector frame rate can be

increased by a factor of 170 compared to a conventional SPAD imager of the same size

and the output data rate can be as much as 4096 times smaller.

69

Chapter 3. MegaPhase

(a) (b)

(c) (d)

Figure 3.13: MegaPhase intensity mode simulation results: (a) 1024×1024; (b) 512×512;
(c) 256×256; (d) 128×128. The lower resolution images were upscaled to 1024×1024
for display purposes. Image (a) was accumulated off-chip from the MegaPhase binary
frames.

70

3.6 Conclusion

250

200

150

100

50

0
(a)

400

200

0

-200

-400
(b)

400

200

0

-200

-400
(c)

Figure 3.14: MegaPhase 128×128 computational mode simulation results: (a) intensity
component D I ; (b,c) real and imaginary components DG and DS .

71

4 UltraPhase

UltraPhase is a 12×24 SPAD imager developed in 180 nm CMOS and 16 nm FinFET

3D stacked technologies. The top tier consists of 28.5 mm pitch front-side illuminated

(FSI) pixels which have a native fill factor of 29.5 %. Every pixel output is connected to

the bottom tier with an 8 mm through-silicon via (TSV). The bottom tier consists of a

3×6 array of independent processing cores that each have 4096 kbit of RAM, 6144 kbit

of instruction memory, a fully reconfigurable front end, a timing module and a custom

32 bit CPU. The processing cores can share information with their direct neighbors

and can synchronize with each other through the use of internal and external hand-

shaking signals.

At the moment of writing this thesis, the UltraPhase bottom tier has been successfully

fabricated and tested. All the functionality was validated. The top tier has also been

fabricated but the 3D stacking procedure is still taking place. All of the tests and

applications presented in this chapter were performed using the bottom tier and

bypass signals in place of the SPADs.

4.1 Motivation

UltraPhase is a proof of concept reconfigurable and scalable computational imaging

sensor. It was designed around a fully autonomous processing core, copies of which

can be tiled to form large format imagers. The flexibility of the architecture stems not

only from the ability to run custom programs in each core but also from the recon-

figurable hardware at the pixel interface that can be customized through software at

runtime.

The bottom tier contains only digital processing electronics and as a result the pixel

73

Chapter 4. UltraPhase

front end needs to be implemented together with the SPAD on the top tier. This

offers the possibility of using the bottom tier architecture as a generic readout IC

coupled with custom detector technologies not limited to SPADs. However, the digital

nature of SPAD pixels simplifies the interface because they can connect directly to the

processing elements.

The bottom tier was designed for 3D integration performed by a third party, with

large TSV landing sites similar in structure to traditional flip-chip ball bonding pads.

This again adds a layer of customization when it comes to the choice of detector.

4.2 Architecture

R
ec

on
fi
g
u
ra

b
le

fr
on

t
en

d

Timing/counting
Oscillator

16 bit Counter
ENS

R

Processing

ALU

32 bit Registers

Scratchpad
RAM

Control

Instruction
ROM

FSM Instruction
decoder

Fr
om

 t
h
e

p
ix

el
s

Fr
om

 t
h
e

n
ei

g
h
b
or

s

From the neighbors

To
 t

h
e

n
ei

g
h
b
or

s
To

 t
h
e

n
ei

g
h
b
or

s

Processing core

Figure 4.1: UltraPhase processing core block diagram showing its four main modules.
Input signals coming from 16 pixels connect to a Reconfigurable combinational logic
front end that can preprocess the data before forwarding it to the Timing or Processing
modules. The entire core is run by a Control module where the program is stored and
decoded. Additional connections to neighboring cores can be used to transfer data,
as timing signals or to synchronize multiple cores with each other or external signals.

Figure 4.1 shows the block diagram of a processing core. Each core is connected

to 16 pixels on the top tier arranged in a 4× 4 pattern. The input signals coming

from the pixel circuitry on the top tier connect to a Reconfigurable front end circuit

74

4.2 Architecture

block that consists of combinational logic and lookup tables (LUT). This block can

preprocess the input data before it reaches the Timing or Processing modules. The

former is a specialized circuit that can perform various timing functions such as pulse

width or phase shift measurements. The latter is a set of general purpose registers, an

arithmetic and logic unit (ALU) and RAM. The entire operation of the processing core

is coordinated by the Control module, where the instruction ROM and instruction

decoder are located.

The Control module can receive inputs from neighboring processing cores and can

in turn provide software controlled outputs used for synchronization. Similarly, the

Timing module can receive inputs from the neighboring cores and can provide fast

propagating signals through dedicated channels.

4.2.1 Reconfigurable front end

Figure 4.2 shows the schematic of the reconfigurable front end block. Sixteen pixel

outputs are connected to a group of 4 LUTs (LUT0 to LUT3) in groups of 4 according

to the diagram shown in figure 4.3. The purpose is to create binning of the 4×4 pixels

into groups of 2×2. Each LUT can be programmed by the Control module using 4

instruction cycles to implement any logic function of the type:

Q3Q2Q1Q0 = a[0]P3P2P1P0 +a[1]P3P2P1P0 + ...+a[15]P3P2P1P0 (4.1)

where P and Q are the 4 bit LUT input and output and a is an array of 16 values of 0

and 1.

The outputs of the first layer of LUTs are connected to a secondary layer of circuits

consisting of an adder and LUT4. The adder sums together the 16 bits of the LUT

outputs into a single 5 bit number, essentially counting the number of 1s. LUT4 is

a larger version of the other four, having an 8 bit input and a 1 bit output. Contrary

to the adder, only two bits from the outputs of the previous LUTs are connected to

it. LUT4 can also be configured by the Control module in 16 instruction cycles to

implement any function of the type:

Q0 = a[0]P7P6P5P4P3P2P1P0+a[1]P7P6P5P4P3P2P1P0+...+a[255]P7P6P5P4P3P2P1P0

(4.2)

where P is the 8 bit input, Q is the 1 bit output and a is an array of 256 values of 0 and 1.

The 16 pixel outputs also connect to two OR trees and can be individually masked

using a set of AND gates. This secondary path is designed with a separate set of

75

Chapter 4. UltraPhase

PXL[0]
4

4 5

4

4

16
16

2

2
2

PXL[1]
PXL[4]
PXL[5]

OUT

LUT0

PXL[2]
PXL[3]
PXL[6]
PXL[7]

LUT1

PXL[8]
PXL[9]

PXL[12]
PXL[13]

LUT2

PXL[10]
PXL[11]
PXL[14]
PXL[15]

LUT3

+

LUT4

FAST OUT

2

4

4
4

4

PXL[0..15]

16
16PXL[0..15]

Figure 4.2: UltraPhase processing core reconfigurable front end. The 16 pixel outputs
are connected to multiple LUTs and an adder that combined can implement a wide
range of combinational functions which can be updated at runtime through software.
An additional path consisting of two OR trees with maskable inputs is designed to
allow propagation of fast signals that can be used by the timing module or broadcast
to the neighboring cores.

constraints to allow for fast signal propagation and can serve as input to the Timing

module or the other neighboring cores.

Various signals from the front end block such as but not limited to the LUT, adder

outputs and raw pixel values are connected to a DMUX. The Control module man-

ages the DMUX which results in a software flexibility to select various pre-processed

versions of the inputs without the need to reconfigure the front end.

4.2.2 Timing module

Figure 4.4 shows the schematic of the timing module implemented in each processing

core. A 16 bit counter serves as the central element of the module, with its value used

as the module output. A set of multiplexers are used to select which sources act as the

counter clock and enable signals with a wide selection available for both cases. Table

4.1 summarizes some of the configuration options.

The enable signal can be sourced directly from the front end outputs or through

76

4.2 Architecture

PXL[0]

LUT group

PXL[1] PXL[2] PXL[3]

PXL[4] PXL[5] PXL[6] PXL[7]

PXL[8] PXL[9] PXL[10] PXL[11]

PXL[12] PXL[13] PXL[14] PXL[15]

Figure 4.3: UltraPhase processing core pixels are connected in groups of 4 to the
reconfigurable front end to allow spatial binning.

a SR latch which can combine two separate input signals. In addition, pulses gener-

ated by neighboring cores or the Control module can also be used as clock or enable

signals for the counter.

A local oscillator consisting of a ring of 7 NAND gates can be used to generate a

higher frequency clock reference for the counter with the caveat that it is not PLL-

stabilized and will present significant phase noise if the measurement interval is large.

The timing module generates two flags that can be used by the Control module for

conditional instructions: a counter overflow and a latch set. The former is set when

an overflow is detected in the counter and is essentially a latched 17th counter bit.

The latter is the state of the input SR latch and can be used to detect the arrival of an

input. The Control module is capable of reconfiguring the functionality of the timing

module by setting all the multiplexers and resetting the counter and the two flags. A

full reconfiguration requires two instruction cycles but for the majority of cases, a

single cycle will suffice.

4.2.3 Processing module

As shown in figure 4.5 the Processing module consists of 6 general purpose 32 bit

registers, a byte selector block, an ALU and RAM. The input of the processing module

connects to the front end, the timing module and neighboring cores through a set of

multiplexers managed by the control module. The output is the RAM memory itself

77

Chapter 4. UltraPhase

Fr
om

 F
ro

n
t

en
d
 &

 N
ei

g
h
b
or

s

Flag

16

OUTEN
CounterS

R

Flag

Figure 4.4: UltraPhase Timing module schematic. The central element is a 16 bit
counter that can use multiple inputs as either clock or enable signals. The counter
output can be used locally or forwarded to the neighboring cores. The first overflow
of the counter will set a flag that can be used by the control logic for conditional
instructions. A local oscillator can provide a higher frequency module clock. The
inputs coming from the front end or other cores can be used directly or passed through
a SR latch that also serves as a flag signal for the control logic. The entire timing module
can be reconfigured in a maximum of two instruction cycles at runtime.

Table 4.1: A subset of the possible Timer module configurations and resulting func-
tions

Reference Input A Input B Function
System clock Front end - Coarse pulse width measurement

Local oscillator Front end - Fine pulse width measurement
System clock Front end Front end Coarse phase difference measurement

Local oscillator Front end Front end Fine phase difference measurement
Software controlled signal - - Pulse counter

Front end - - Pulse counter
Neigbouring core - - Pulse counter / Range extension

that can be read out by external system circuitry or a set of registers that connect to

the neighboring cores.

The general purpose registers can be loaded with data coming from the input, the ALU

or RAM. A special case is when the data is provided directly by the control module,

when two separate instruction cycles are required: one for the lower and one for

the upper 16 bits. The load signals for the registers are independently driven by the

control module in order to enable writing of the same data into multiple locations

simultaneously if required.

The byte selector is a specialized circuit used to shift or extract specific bytes from the

32 bit data word I present at its input. It can be used either by itself with a specialized

78

4.2 Architecture

RAM

Din DoutALU

32

32
32

32

32 32

Fl
ag

Fl
ag

32

32

Byte selector

RegisterRegisterRegisterRegisterRegisterRegister

Raddr
Waddr

7

7

Figure 4.5: UltraPhase Processing module schematic showing the 6 32 bit general
purpose registers, the signed 32 bit ALU, the byte selector module and the scratchpad
RAM. The byte selector is a specialized circuit used to shift or extract specific bytes
from a data word, and can be used either by itself or during other instructions. A set
of multiplexers changes the data path depending on the current instruction, while
two flag bits set by the ALU can be used for conditional instructions ran by the con-
trol module. The RAM write and read addresses Waddr and Raddr are controlled
independently which results in extra flexibility when choosing the data source and
destination.

instruction or in combination with other operations. Table 4.2 summarizes the 8

manipulations that the byte selector can perform.

The ALU is a combinatorial circuit block with three 32 bit inputs and a single output

of the same length. All the values are treated as signed integers for all the arithmetic

operations. A 5 bit signal selects which one of the 25 possible operations is used to

compute the output. Table 4.3 shows the 16 base operations of the ALU, omitting the

9 that are variations of ADD, SUB, MAC, SL and SR for clarity purposes.

Table 4.2: The 8 functions implemented by the Byte selector circuit

Function # Output Effect
0 I[31:0] No operation
1 I[7:0] Byte 0
2 I[15:8] Byte 1
3 I[23:16] Byte 2
4 I[31:24] Byte 3
5 I[15:0] Lower half
6 I[31:16] Upper half
7 I[0:31] Inverted bit order

79

Chapter 4. UltraPhase

Table 4.3: The 16 base operations performed by the ALU

Operation Result
NOT O = NOT Ain
AND O = Ain AND Bin
OR O = Ain OR Bin

XOR O = Ain XOR Bin
NEG O = - Cin
ADD O = Ain + Cin
SUB O = Ain - Cin
MUL O = Ain × Bin
MAC O = Ain × Bin + Cin
CMP Ain < Bin ?

RL O = Ain[30:0] & Ain[31]
RR O = Ain[0] & Ain[31:1]
SL O = Ain << 1
SR O = Ain >> 1

MAX O = max(Ain, Bin)
MIN O = min(Ain, Bin)

In addition to the integer output, the ALU also generates two flags used for con-

ditional jumps or instruction calls: the Zero and the Carry. Depending on the result of

the arithmetic operation, these flags are either set or cleared and remain in the same

state until another operation acts on them. As an exception, all of the logic operations

reset the Carry flag.

The inputs to the ALU can be provided from multiple sources, either from the general

purpose registers, an explicit RAM address, a pointer to a RAM address or a hard coded

value in the instruction code. Similarly, the operation result can be written to a register

or an explicit or pointed RAM location.

The memory is a dual port RAM block organized as 128×32 bit locations. The read

and write address ports are independently controlled in order to allow the use of

different data source and destination. In addition, the RAM can be accessed externally

by overriding all the connections, a feature used for debugging and extracting the

processor outputs.

4.2.4 Control module

The control module consists of an instruction memory, an instruction decoder circuit

and finite state machine (FSM) logic. A 1 bit synchronization signal from each of the

80

4.2 Architecture

neighboring cores can be used at runtime for conditional instructions. Similarly, a

1 bit output signal is connected to each of the neighbors and can be either strobed

or set through software. In addition, two 1 bit inputs and a 1 bit output that can be

operated in the same fashion as the connections to the neighbors are present and are

designed for synchronization with modules external to the design.

The instruction memory is a 256× 24 bit dual port RAM block. In contrast to the

scratchpad RAM from the processing module, only the read port of the instruction

memory can be accessed by the processing core and as a result, from now on it will be

referred to as a ROM. The write port is connected to a chip-level AXI bus and is only

used during setup or in special cases where program execution is suspended and the

instruction memory is rewritten at runtime.

UltraPhase follows a fetch - decode - execute sequence that takes exactly 3 clock cycles

for every instruction. During the fetch stage, the instruction pointed to by the program

counter register (PC) is read from the ROM and passed to the instruction decoder, a

combinatorial circuit that drives all the processing core control signals. At the decode

stage, in addition to setting the control signals, data that is needed from the RAM is

fetched, either by directly driving the RAM address bus or by using a general purpose

register as a pointer. At the end of the final stage, the operation result is written to the

requested destination and the PC is incremented.

Each instruction is 24 bits long and starts with a variable length opcode followed

by the payload. Figure 4.6 shows three examples of instructions with their correspond-

ing machine codes. The XOR instruction performs the operation on the data stored in

general purpose registers R0 and R1 and writes the result to register R2. In this case,

the payload consists of the 3 bit addresses for the registers. The multiplication (MUL)

instruction uses register R4 for the first operand, an explicit value for the second and

stores the result back into R4. The machine code consists of a 5 bit opcode, the 3 bit

register address and a 16 bit representation of the second operand. Finally, the return

from subroutine (RET) instruction is showed as a special case where the opcode is the

only information encoded and the payload is ignored.

Due to the lack of available silicon area, instruction pipelining which would require

more advanced techniques such as operand forwarding, out-of-order execution or

branch prediction has not been implemented [137]–[145]. The PC always starts from

0x00 after a system reset and will loop back to this value if the program is not properly

written and an increment beyond 0xFF is encountered.

A call stack is used to store information about active subroutines of the program.

81

Chapter 4. UltraPhase

XOR R0, R1, R2

XOR opcode

R0

R1

0001 0000 0000 0100 0000 1010

R2

MUL R4, $53

MUL opcode 53

0100 1100 0000 0000 0011 0101

R4

RET

RET opcode

0000 0000 0010 0010 0001 xxxx

ignored

Figure 4.6: UltraPhase instruction machine code. Three different instruction types are
presented to showcase the variable length of the opcode and the multiple uses of the
payload.

Contrary to conventional CPU architectures, the stack is implemented as a standalone

register bank with automatic push and pop functionality instead of using part of the

data RAM [146]. Therefore, there is no need for a stack pointer register or stack man-

agement in the program and there is no risk of corrupting the execution by overwriting

data. The small depth of the stack limits the number of nested subroutine calls to 4,

with the return information for any further calls being lost.

4.2.5 Processor array

UltraPhase comprises 18 processing cores arranged in a 6×3 grid as shown in Figure

4.7. Each core is connected to its four direct neighbors through a 32 bit bidirectional

data bus and a 1 bit bidirectional timing signal. In case one or more neighbors are

missing, the corresponding signals are connected to a register.

Programming and readout is performed through a conventional AXI bus, each core

being mapped to 400 memory locations which include the instruction ROM, RAM and

any accompanying registers when required.

Two input signals are distributed to all 24 cores and can be used for synchroniza-

tion. An output signal from the second core on the second row is directly connected to

an I/O pad, while the corresponding ones from the rest of the cores are read through

a register. In addition, this core has all 16 pixel inputs connected to I/O pads for

debugging and integration with other detectors.

82

4.2 Architecture

R
eg
is
te
rs

Registers Registers Registers

Registers Registers Registers

R
eg
is
te
rs

R
eg
is
te
rs

R
eg
is
te
rs

R
eg
is
te
rs

R
eg
is
te
rs

Figure 4.7: UltraPhase 6×3 array of interconnected processing cores. In case one or
more neighbors are missing, the corresponding signals are connected to registers that
can be accessed via the SoC AXI bus. Both data (black arrows) and synchronization
signals (white arrows) can be shared between direct neighbors. The global synchro-
nization signals and the external connections to the second core of the second row
are omitted from the diagram for clarity.

83

Chapter 4. UltraPhase

4.3 Implementation

UltraPhase was designed as a 3D-stacked FSI imager, with the top tier smaller than the

bottom one to allow access to I/O pads. Figure 4.8 is a representation of the assembled

chip.

I/
O

Pa
ds

Bo
tto

m
 ti

er

I/
O

Pa
ds

Top tier

I/O Pads
Processing

core

TSVSPAD array

Figure 4.8: UltraPhase 3D structure. The top tier is smaller than the bottom to allow
access to I/O pads. TSVs provide the connection between landing sites on the bottom
tier and the SPADs on the top.

4.3.1 Top tier

The top tier was fabricated in 180 nm CMOS. Due to the lack of any pixel front end

circuitry on the bottom tier, the top tier contains both the SPAD and the transistors

required to operate it. In addition, a voltage level translation was required to adapt

from the 1.8 V pixel to the 0.8 V logic.

Figure 4.9 shows the pixel schematic. Similarly to kiloPhase and MegaPhase, cascode

transistor T1 is used to extend the bias voltage range of the pixel while transistor T2

implements the clock-driven active recharge controlled by the RST signal. When an

avalanche takes place, the voltage at point A will rise and depending on the state of

gate transistor T3 can act on point B and transistor T5. If node B is high, T5 will drive

the gate of oversized transistor T8 that discharges the large parasitic capacitance of the

84

4.3 Implementation

VC
GATE

VHV

VDD

VDDBOT

TSV
RST

T1

T2 T4 T6

T7

T8
T3

T5

A

B

Figure 4.9: UltraPhase top tier pixel schematic. All the transistors are thick oxide
NMOS which reduces the size of the layout by eliminating the large spacing require-
ments between wells. Transistor T1 is used to extend the SPAD bias voltage range. T2

implements a clock-driven recharge scheme and T3 is used to gate the pixel. Tran-
sistors T7 and T8 are used to charge and discharge the large parasitic capacitance
of the TSV that is used as a 1 bit pixel memory. T4 and T6 are reset transistors for
intermediate nodes. VDDBOT is used to implement voltage translation, as the bottom
tier operates at a lower supply voltage.

TSV. The RST signal also drives transistors T4, T6 and T7 used to reset node B and the

gate of T8 and to recharge the TSV capacitance. Voltage level translation is achieved

by setting supply voltage VDDBOT to 0.8 V plus the threshold voltage of the thick oxide

transistor.

The same SPAD model as the one used in Chapter 2.4 was used here as well for

all of the pixel simulations. The parasitic capacitance of the TSV was estimated based

on the work presented in [147] that uses the same technology and process. The large

parasitic capacitance of the TSV was used as a memory cell for the pixel and was

validated in the Fast-Fast library simulation corner to assure that data retention is long

enough to not compromise sensor operation. Transistors T7 and T8 were sized so that

charging and discharging the TSV capacitance takes less than 400 ps in all simulation

corners (Typical, Fast-Fast and Slow-Slow). All of the simulations were performed in

SPICE using post layout parasitic values.

Figure 4.10 shows the pixel layout, designed for a 28.5 mm pitch at a 29.5 % fill factor.

The octagonal shape at the bottom left is the metal contact for the 8 mm diameter TSV.

All the transistors are located in the bottom and left side rectangular sections. Due

to the small area and spacing requirements, the transistors are all thick oxide NMOS.

The SPAD structure is identical to the one used for kiloPhase but with a slightly larger

active area diameter of 15.45 mm. Validation of the layout was done manually because

85

Chapter 4. UltraPhase

Figure 4.10: UltraPhase top tier pixel layout, showing the SPAD in the middle, with the
TSV in the bottom left. All the transistors are contained in the bottom and left sections.
The pixel is designed to be abutted to form the desired array size at a 28.5 mm pitch.

Figure 4.11: UltraPhase top tier micrograph. The SPAD array is clearly visible on the
right, together with the 4 cross-shaped alignment markers used for 3D stacking. The
left side contains the IO pads for the supply and bias voltages as well as connections
dedicated to a standalone test pixel. The die measures 864×954 mm2.

86

4.3 Implementation

the LVS tool could not recognize the SPAD structure and it had to be replaced by a

black box.

A micrograph of the fabricated top tier is shown in Figure 4.11. The 12×24 SPAD array

is visible on the right, together with the 4 cross-shaped alignment markers used for

the 3D stacking procedure. The supply and bias voltages for the top tier, along with

the gate and reset signals are provided through 15 I/O pads. A standalone test pixel

with its own dedicated pads was placed on the top tier for pixel characterization. The

final size of the top tier die is 864×954 mm2. Dummy metal generation was performed

on the entire design with the areas above the SPADs being blocked by special-purpose

layers to prevent any obstructions.

4.3.2 Bottom tier

The bottom tier was fully synthesized with Cadence Genus and then placed and routed

with Cadence Innovus. A hierarchical approach was used in order to simplify the pro-

cess and reduce the tool resource requirements. The processing core was synthesized

and routed as a stand-alone structure which was then imported as a hard macro into

the UltraPhase top level which also contained additional glue logic such as an AXI

interface and registers. The complete design was then delivered as a macro and was

integrated together with other contributions from EPFL and Bar-Ilan University into

a SoC built around a Pulpino RISC-V core [148]. A system-wide AXI bus provides

connections with all the contributions for reading and writing data, but apart from

this, UltraPhase is completely independent and does not require any external circuitry.

The processing core layout is shown in Figure 4.12. Each core is 107×107 mm2 and

has a 4×4 28.5 mm pitch grid of metal pads drawn on top. The pads are designed to

act as landing sites for the TSVs used in the 3D integration process and are electrically

connected to the pixel inputs of the core and ESD protection diodes placed using the

Cadence tool.

Figure 4.13 shows a micrograph of the entire SoC die with the inset showing a corner

of the UltraPhase bottom tier, where the TSV landing sites can be seen next to the

normal size bonding pads. The placement of the cores followed a pitch that would

ensure uniformity of the resulting 12×24 grid of 16×16µm2 rectangular aluminium

contacts for the TSVs. The cross shaped element is an alignment marker used during

the 3D stacking procedure.

87

Chapter 4. UltraPhase

Figure 4.12: UltraPhase processing core layout. The two memories are visible at
the left and right edges of the layout, occupying approximately 30% of the available
area. The 4×4 grid of metal pads for 3D integration is shown in green. The core is
107×107 mm2 in size.

U
lt
ra
Ph
as
e

1000μm

140μm

Figure 4.13: Bottom tier SoC micrograph with UltraPhase visible in the bottom right.
The inset is a close-up of the chip corner containing TSV landing sites and standard
I/O pads. The cross-shaped element is an alignment marker.

88

4.3 Implementation

Memory blocks

All the digital processing elements are located in the middle of the core with the two

memory blocks occupying approximatively 30% of the available area placed along

the left and right edges of the core. The memories were generated as macros using

a tool provided by the foundry based on the UltraPhase design specifications. Their

placement in the core reduces the risk of routing congestion at the memory interface

caused by the large number of connections and the routing restrictions above the

memory cells. Placement of the standard cells was restricted to a density of 50% in the

area surrounding the memory ports as a method of reducing congestion even further.

Clock distribution and timing

Routing of the processing core was limited to the first 5 metals. The system clock was

routed using metals M3 and M4 with double spacing constraints to limit parasitic

coupling to any neighboring signals. Timing closure was obtained at 500 MHz in all 20

library corners shown in Table 4.4. The complete UltraPhase array of processing cores

was routed using the first 7 metals in the stack and targeted a maximum operating

frequency of 400 MHz that was achieved in all corners.

Power distribution

A dense grid of M5 strips was used to distribute power across the entire processing

core and to shield it from any possible interference from signals routed above it. The

M5 strips periodically connect to the M1 metal in the standard cells to assure a low

impedance connection. The UltraPhase array was then built by tiling the processing

core macros and routing another dense power distribution grid using metals M6 and

M7 that directly connected to the M5 stripes from each core. Finally, at the SoC level,

the UltraPhase power grid was connected to wide metal rings routed around the

macro that provided the necessary low impedance path to the power pads.

As this is an advanced technology node, leakage currents in the decoupling capacitors

are non-negligible and have to be carefully mitigated. In this case, decoupling cells

were placed only in key points of the design: around the memory macros and in close

proximity to the clock distribution network. The majority of the remaining space in

the design was left empty.

89

Chapter 4. UltraPhase

Table 4.4: All the library corners used for the UltraPhase timing analysis.

Corner Transistor model Voltage Temperature Interconnect Coupling
1 Slow-Slow 0.72 V 125 oC C-worst worst
2 Slow-Slow 0.72 V 125 oC RC-worst worst
3 Slow-Slow 0.72 V 0 oC C-worst worst
4 Slow-Slow 0.72 V 0 oC RC-worst worst
5 Slow-Slow 0.72 V 125 oC C-worst worst
6 Slow-Slow 0.72 V 125 oC RC-worst worst
7 Slow-Slow 0.72 V 0 oC C-worst worst
8 Slow-Slow 0.72 V 0 oC RC-worst worst
9 Fast-Fast 0.88 V 125 oC C-worst worst

10 Fast-Fast 0.88 V 125 oC C-best best
11 Fast-Fast 0.88 V 125 oC RC-worst worst
12 Fast-Fast 0.88 V 125 oC RC-best best
13 Fast-Fast 0.88 V 0 oC C-worst worst
14 Fast-Fast 0.88 V 0 oC C-best best
15 Fast-Fast 0.88 V 0 oC RC-worst worst
16 Fast-Fast 0.88 V 0 oC RC-best best
17 Typical-Typical 0.8 V 85 oC C-worst worst
18 Typical-Typical 0.8 V 85 oC RC-worst worst
19 Typical-Typical 0.8 V 85 oC C-best best
20 Typical-Typical 0.8 V 85 oC RC-best best

Dummy generation

Dummy metal generation required special attention because the parasitic elements

in such an advanced technology node could have a drastic impact on the timing

performance of the design. Once the processing core layout was complete and the

static timing analysis reported no violations across all 20 corners, the signals with a

slack below a certain threshold were marked as victims and the dummy metal spacing

rules around them were doubled. Dummy generation was performed up to metal M5,

after which the timing analysis was repeated.

At the array level, the processing core macros each containing their own dummy

patterns were covered with blocking layers on the first 5 metals so that the next

dummy generation step would not change the timing performance. Dummy gener-

ation was performed up to metal M7 with no risk of affecting the processing cores

as they were shielded from M6 and M7 patterns by their dense power distribution

network. The UltraPhase design was then delivered as a macro for integration into

the SoC and the process was repeated for the remaining metal stack.

90

4.4 Programming

Validation

The design was validated by running digital simulations in Cadence SimVision. The

Verilog netlist of the entire SoC was exported from Cadence Innovus together with the

.sdf file containing the net propagation delays for corners 2, 16 and 18. SPAD inputs

were provided by a Verilog testbench. Multiple test programs were run on UltraPhase

to confirm the validity of the architecture. The same simulations were repeated at

various stages of the design, starting with behavioral simulations and ending with

gate level simulations with parasitics.

4.4 Programming

Programming of each core is performed by uploading the program into the ROM

through the AXI bus. In order to avoid any unexpected behaviour, the targeted core

should be kept in the reset state during this procedure. However, there are two

exceptions when a core can be reprogrammed at runtime: if there is certainty that the

execution of a certain part of the program will not take place until reprogramming

has finished or if the core is kept frozen waiting for an external stimulus using the

special-purpose WAIT instruction.

4.4.1 Instructions

In total, there are 44 instruction types that can be classified into 5 categories: logic,

arithmetic, manipulation, flow and special. The majority of instructions have multiple

variants depending on the source of the operands and the destination of the result.

Table 4.5 details all the possibilities. When counting all the possible variants, there are

292 instructions. The shift and compare instructions were inspired from the Xilinx

PicoBlaze instruction set [149].

Logic instructions

Logic instructions can have one or two operands sourced from either a register or a

RAM location. The result can be written to any register or RAM location, including

one that acted as a source. This type of operation does not support explicit operands

because it would require a 32 bit payload, larger than the instruction width. After

execution, the ALU carry flag will be cleared regardless of the result, these instructions

replacing a dedicated clear flag command. The ALU zero flag functions as normal.

The four bitwise logical operations supported by the architecture are: NOT, AND, OR

91

Chapter 4. UltraPhase

Table 4.5: The possible operand source and result destination for UltraPhase instruc-
tions.

Operand A Operand B Result
Register Register Register
Register Register Absolute RAM Address
Register Register Relative RAM Address
Register Absolute RAM Address Register
Register Absolute RAM Address Absolute RAM Address
Register Absolute RAM Address Relative RAM Address
Register Relative RAM Address Register
Register Relative RAM Address Absolute RAM Address
Register Relative RAM Address Relative RAM Address
Register Explicit value Register
Register - Neighbor

Neighbor - Register

and XOR.

Arithmetic instructions

There are a total of 8 arithmetic instructions that can be performed by the ALU: sign

inversion, addition, subtraction, multiplication, MAC, MAX, MIN and value compari-

son. There is no dedicated operation for division or nonlinear functions. Similarly to

the logical instructions, they can act on data from the general purpose registers or the

RAM, but can also use three operands (MAC instruction) or explicit values (ADD and

SUB instructions).

All the operations act on both the carry and zero flags, but the compare (CMP) instruc-

tion is a special case because the flags do not maintain their normal behaviour and

there is no instruction output. Table 4.6 shows the behaviour of the two flags when

the CMP instruction is used on operands A and B .

Table 4.6: The effects of the CMP instruction on the ALU flags.

Condition Zero flag Carry flag
A <B 0 1
A = B 1 0
A >B 0 0

92

4.4 Programming

Manipulation instructions

Manipulation instructions act on a single operand and are used to apply rotations

and shifts or select specific bytes from the 32 bit word. The category also contains

the RAM STORE and FETCH instructions that transfer data from a general purpose

register to the RAM or, in reverse, the latter option supporting multiple destinations at

the same time. In addition, a LOAD instruction is provided to write an explicit value

to any of the general purpose registers. However, because the width of the instruction

code is smaller than that of the register, the instruction only writes two bytes at a time

and must be called twice for a complete register initialization.

Flow instructions

Flow instructions influence the execution of the program by changing the PC register.

The JUMP instruction can be used to jump to any address in the instruction memory

either unconditionally, or depending on the status of the available flags. The CALL

and RET instructions are used to execute subroutines. The former acts exactly like the

JUMP instruction and its variants, but will push the PC value to the stack so that when

RET is called, program execution can resume from the same point.

Special instructions

The highly customized architecture requires a special set of instructions that are not

normally encountered with other CPUs. Communication with the neighbors and the

external circuits is done through the SAVEN, GETN, PUTN and TELL instructions. The

first two are used to sample the neighbor data bus and transfer the value to the general

purpose registers. Both instructions support multiple sources and destinations at

the same time. The PUTN instruction will latch the value from a general purpose

register onto one or multiple neighbor data buses. Finally, TELL is used to strobe or

set synchronisation signals for the neighboring control modules or the external I/O

pads.

Data from the timing module or the front end can be read using dedicated GETC

and GETP instructions that support simultaneous byte selection and multiple desti-

nations.

All the combinational logic paths have their own configuration instructions, starting

with the front end multiplexers (SETFM, SETTM) and the LUT functionality (SETLUT)

and ending with the fast path OR tree (SETOR) and timing module (SETTIME).

93

Chapter 4. UltraPhase

Finally, a special WAIT instruction is provided to facilitate the simultaneous syn-

chronisation of the cores with an asynchronous external trigger condition. When

running this instruction, the Control module is frozen in the execute stage until the

specified condition is met, after which operation resumes immediately, at the next

clock cycle. The condition is verified by monitoring the neighbor and external syn-

chronization signals and is only met when a pulse has been detected from all of the

requested sources, regardless of order.

4.4.2 Assembler

An assembler software was written in Python 3.6. It takes as input a .txt file containing

the program code written in the custom UltraPhase assembly language and outputs a

.csv file with the corresponding machine code that serves as the memory initialization

file. As a safety feature, any unused memory locations contain a jump instruction to

themselves, causing the core to remain stuck in an infinite loop, thus eliminating the

possibility of corrupt program execution.

Syntax of the assembly language was kept as simple as possible by using a standard

structure for each line:

l abel : I N ST RUC T ION oper and1, oper and2, oper and3 −−comment

Label is the address in the ROM where the instruction will be written to, and must

be manually determined by the programmer, the only restriction being that the first

instruction in the program must have the label equal to 0. I N ST RUC T ION is a

keyword specific to each operation described in section 4.4.1 and can be used by itself

or followed by one, two or three operands. An optional comment can be written after

the special character sequence −−.

Multiple special #de f i ne directives can be placed at the beginning of the assem-

bly file to designate suggestive names to constants and registers used in the program.

The syntax to replace every alias in the program with value is:

#de f i ne al i as value −−comment

There are three special characters recognised by the assembler that change the inter-

pretation of a specific instruction:

• The $ character written in front of an operand signifies that it represents an

94

4.4 Programming

explicit numerical value instead of a register address.

• The @ character indicates that the following operand is an absolute address in

the RAM.

• If an operand is enclosed between () it will be used as a pointer i.e. the value

stored in the register is treated as a RAM address.

In order to improve legibility of the assembly code, a user-defined language XML file

was written for Notepad++ users. Importing the file into the text editor will highlight

key assembly words such as the instruction names and operands as shown in Figure

4.14.

Figure 4.14: UltraPhase assembly language as seen in Notepad++ when the custom
language XML file is used. Instructions are highlighted in blue, comments in green,
define statements in black and numerical values in red.

4.4.3 Compiler

While the assembler provides an efficient way to optimize programs due to the abil-

ity to interact directly with the hardware, it is not a preferable solution for quickly

implementing code that is easy to read and to debug. For this task, a higher level

programming language is better suited.

A C compiler was written in Python 3.6, based on the open source ShivyC Linux

x86-84 architecture compiler [150]. All the work was done by Yining Zhu from Queen

Mary University of London, as part of his bachelor internship, under the author’s

95

Chapter 4. UltraPhase

supervision.

The compiler only supports int8, int16 and int32 data types due to hardware limita-

tions. Division is currently not handled and should be avoided. The limited hardware

stack size was enforced by dedicating one of the general purpose registers to act as a

counter for recursive subroutine calls. In case the limit is exceeded, the PC will jump

to the end of the program and stop.

The custom instructions are accessed in C by using setter and getter functions, such

as set_time_mux(val) to call SETTM or get_pixel(&val, source) to call GETP, or by using

the __asm directive followed by the assembler instruction.

Future improvements of the compiler should focus on a more efficient way of devel-

oping parallel code that can run on the 3×6 array of processors. The task is currently

being performed by writing code for each individual core and manually taking care of

all the inter-core communication, which makes it prone to errors.

4.5 Characterization

4.5.1 Power consumption

Processor power consumption was measured for multiple test cases by running a

continuous code loop. Leakage power was measured by gating the global clock signal

and then the value was subtracted from the other measurements. Standby power was

measured during execution of an empty while loop. Two types of MAC instructions,

one operating only with data from the registers and the other with data from the

RAM were measured in order to characterize the ALU power consumption. Finally,

the timing module was configured to count the number of oscillations of the local

oscillator and the periods of the system clock. The results are presented in Figure 4.15.

As expected, the largest power consumption is observed when executing the MAC

instruction that requires reading from and writing to the RAM. The other operations

display similar power consumption, apart from broadcasting the data to the direct

neighbors, which is two orders of magnitude more efficient. This is due to the signif-

icant design effort made to keep the wide interconnect buses between the cores as

short as possible, reducing the load on the output buffers.

Each core can operate at a maximum performance of 140 MOPS resulting in a worst

case power consumption of 94.6 GOPS/W/core.

96

4.5 Characterization

Standby

A
ve

ra
g
e

p
ow

er
 [

m
W

]

WAIT MAC
Register

MAC
RAM

Timer
GCLK

Timer
Internal

Oscillator

Broadcast
NWSE

0

0.2

0.98

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.16 1.19

1.48

1.08
0.98

0.01

Figure 4.15: Average UltraPhase core power consumption for multiple test cases.

4.5.2 Timing performance

The timing module was characterized by measuring the number of completed os-

cillations of the internal oscillator during a well-defined time interval referenced to

the 420 MHz global clock. The measurement was performed at the nominal supply

voltage of 0.8 V and at the two extreme values of 0.88 V and 0.72 V. The results are

summarized in Table 4.7.

Table 4.7: Timing module resolution obtained with the internal reference oscillator.

Supply voltage [V] LSB [ps]
0.72 649
0.8 433

0.88 340

Single-shot measurements were performed with the timing module configured to

measure the delay between two input pulses generated by an FPGA. Two cases were

analyzed, with the local oscillator and the global clock serving as references. The

significant difference between the two is the fact that the latter is generated by a PLL

and as a result has much lower phase noise. The delay between the input signals was

changed from 45 ns to 570 ns. 1270 measurements were performed at each step.

Figure 4.16 shows the resulting transfer functions and the standard deviations of

the outputs for each input width. As expected, the unregulated oscillation of the

internal reference accumulates phase error at large input pulse widths, but performs

97

Chapter 4. UltraPhase

similarly to the PLL-stabilized global clock when operating in the short range.

45 95 145 270 370 470 570
Input width [ns]

0

200

400

600

800

1000

1200

1400

T
im

in
g
 m

od
u
le

 o
u
tp

u
t

co
d
e

LSB = 2.39 ns, GCLK reference
LSB = 0.43 ns, internal reference

(a)

45 95 145 270 370 470 570
Input width [ns]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

O
u
tp

u
t

st
an

d
ar

d
 d

ev
ia

ti
on

 [
n
s]

LSB = 2.39 ns, GCLK reference
LSB = 0.43 ns, internal reference

(b)

Figure 4.16: UltraPhase timing module single shot measurements: (a) Transfer func-
tions of the timing module for the two reference clocks. (b) Standard deviation of
the timing module outputs for each input width. Phase noise accumulation causes a
performance degradation when operating with the fast internal oscillator and large
input pulse widths. All of the measurements were performed at room temperature.

4.6 Applications

4.6.1 ToF histogram compression

The following application was developed in collaboration with WISIONLab, University

of Wisconsin-Madison, based on [151]. I was responsible for porting the algorithm to

the UltraPhase architecture and as a result, the chapter will only present information

relevant to my work.

Direct time of flight measurements consist of illuminating scenes with pulses of

light and collecting arrival timestamps from photons reflected off of the items in the

scene. The timestamps are then used to build histograms which are further processed

to extract information such as depth.

As the resolution of timing circuits increases, the number of bins in the histograms

grows larger and becomes difficult to handle. Advanced sensor architectures have

already been developed to mitigate the problem by using peak detection or gating

algorithms that only preserve histogram sections of interest [38], [64], [130], [152],

98

4.6 Applications

[153].

A different approach is being investigated, where the histogram data is encoded

into a smaller number of variables that can then be used to extract the relevant infor-

mation from the original histogram [151], [154]–[157]. UltraPhase is a good candidate

platform for testing and developing the encoding algorithms because of its flexibility

and parallel computational power.

For demonstration purposes, the timing module of each core was configured to

function as a time to digital converter (TDC) and measure the number of clock cycles

between the arrival of a photon at any of the associated 16 pixel inputs and a known

reference signal. The exposure window was chosen such that the TDC range was

limited to 8 bit.

The encoding algorithm works by converting 8 bit timestamp t into 8 variables bi

which are then accumulated separately. After a large number of cycles, the 8 accumu-

lated results are read from the chip and processed to recover the scene information

[151], [154], [155]. The encoding function is represented in this case by an 8×256 ma-

trix of 16 bit numbers. Timestamp t is used as an index to extract a column from the

matrix that contains the 8 encoding elements that have to be accumulated. Selecting

the appropriate encoding matrix is a subject of its own, but two common examples

are Gray or Fourier codes, as shown in Figure 4.17 [151].

(a) (b)

Figure 4.17: Gray (a) and Fourier (b) 8×256 16 bit encoding matrices. An 8 bit times-
tamp is used as a column index to select a group of 8 values that are used for further
processing.

99

Chapter 4. UltraPhase

If the matrices shown in Figure 4.17 were to be used in hardware, they would each

occupy 32.768 kbit of RAM, far exceeding the available resources from an UltraPhase

core. The problem can be mitigated by distributing one matrix across multiple cores

and using inter-core communication to transmit the timestamps to the core that

contains the relevant section for processing. However, a better solution is to take

advantage of the processing power in each core and compute the necessary encoding

coefficients for the current timestamp at every cycle, eliminating the need for storing

the encoding matrix all together.

The 8 bit Gray code representation tg r ay of timestamp t can be easily computed

using:

tg r ay = t XOR (t >> 1), (4.3)

where >> represents the shift right operation. From this value, the 8 encoding vari-

ables bi are given by:

bi =
 1, when tg r ay [i] = 1

−1, el se.

The Gray encoding-based implementation in UltraPhase occupies 12.5% of the avail-

able instruction ROM and 1.56% of the RAM. It requires 507.1 ns to run a full cycle,

21% of which is the exposure time, assuming that the fast local oscillator in the timing

module is used. As each core operates independently, the processing time remains

constant regardless of the size of the array, the only frame rate limitation being the

core readout time which is approximately 571 ns/core.

The Fourier encoding is more demanding as it requires the use of trigonometric

functions and normalization of timestamp t to the [0,2π] interval:

b2k = cos

(
2(k +1)πt

255

)
b2k+1 =−si n

(
2(k +1)πt

255

)
, (4.4)

where k ∈ [0,3]. The normalization and trigonometric functions can be implemented

as a LUT. However, due to the timestamp range, the total memory required to store

even an 8 bit LUT would be 4.096 kbit, or the entire core RAM. The solution in this case

is to limit the LUT to cosine values for the input range [0, π2] and use trigonometric

identities to compute the remaining ones:

100

4.6 Applications

cos(t) =

cos(t), when t ∈ [0, π2]

−cos(π− t), when t ∈ (π2 ,π]

−cos(t −π), when t ∈ (π, 3π
2]

cos(2π− t), when t ∈ (3π
2 ,2π].

(4.5)

The sine value can also be determined from the same LUT based on:

−si n(t) = cos(t + π

2
). (4.6)

The Fourier encoding-based implementation in UltraPhase occupies 29.3% of the

available ROM. The LUT requires 50% of the RAM but can be packed more efficiently

if needed. The total runtime for a full cycle is 607.1 ns, out of which 17.6% is the

exposure time, under the same assumptions as before.

Table 4.8: Gray and Fourier code histogram encoding performance

Gray code Fourier code
Number of
coefficients

8 16 8 16

Exposure time 107.1 ns 27.4 ms 107.1 ns 107.1 ns

Processing time 400 ns 757.1 ns 500 ns 785.7 ns

Frame ratea 19.5 kfps 354.7 fps 16.3 kfps 11 kfps

Core output
data ratea 5 Mb/s 181.6 kb/s 4.2 Mb/s 5.6 Mb/s

Data rate
reductiona,b ÷3.1 ÷3.1 ÷3.1 ÷1.6

Data compression
factora,c 8 1024 8 4

a Assuming 100 cycles per frame.
b Compared with outputting the raw TDC timestamps at the same frame rate on a parallel bus.
c Compared with storing all the bins of the 8 bit histogram.

In both cases, extension to 16 coefficients is trivial and does not change the length of

the programs, just the execution times. Table 4.8 summarizes the results for both Gray

101

Chapter 4. UltraPhase

and Fourier code encoding, for 8 and 16 coefficients. Extending the Gray code imple-

mentation to 16 coefficients requires the use of a 16 bit TDC and a larger exposure

time. This is not needed for the Fourier implementation where more coefficients can

be calculated using the same 8 bit timestamp. As a result, the benefits in terms of com-

pression and data rate reduction are not as large for the 16 bit Fourier implementation

example.

4.6.2 LSTM LiDAR

The following application was developed in collaboration with Tommaso Milanese

from EPFL and I was responsible for porting the algorithm to the UltraPhase architec-

ture. As a result, the chapter will only present information relevant to my work.

A long short-term memory (LSTM) is a special type of artificial neural network that

contains feedback connections which allow the processing of data sequences such

as audio or video signals [158]. Recently, an idea of extending the use of LSTM to

LiDAR applications has emerged, where the data stream generated by the time of flight

(ToF) image sensor is processed by such a network to determine the depth map of a

scene, eliminating the need for histogramming. The unique properties of UltraPhase

make it a very good candidate for this application for a couple of reasons: firstly, the

ability of the processing cores to share information between them allows for a high

degree of parallelisation and secondly, the reconfigurable front end can implement

preprocessing techniques such as coincidence detection with no speed or processing

penalty.

For demonstration purposes, the following scenario was chosen: the sensor acts as a

single point ToF detector used in an X-Y scanning setup and implements an LSTM

cell of size 20. All the computations are performed using signed fixed point represen-

tations with 3 fractional bits. The front end is configured to trigger the timing module

with the first detected input pulse within an exposure window.

Figure 4.18 shows the diagram of a LSTM cell, the state of which is described at

102

4.6 Applications

σ tanh

c[t-1]

h[t-1] h[t]

x[t]

gf gi1 gi2

go

c[t]

+

σ

σ +

tanh

++

Figure 4.18: LSTM cell structure. At every time moment t , two system variables c and
h are computed based on their value in the previous cycle at time t −1 and new input
data x. Two nonlinear functions, the sigmoid and hyperbolic tangent, are used as
activations.

time step t by the following equations:

g f =σ
(
W f ×x[t]||h[t −1]+b f

)
gi 1 =σ (Wi 1 ×x[t]||h[t −1]+bi 1)

gi 2 = tanh(Wi 2 ×x[t]||h[t −1]+bi 2)

go =σ (Wo ×x[t]||h[t −1]+bo)

c[t] = g f · c[t −1]+ gi 1 · gi 2

h[t] = go · tanh(c[t]), (4.7)

where g f , gi 1, gi 2 and go are 20×1 arrays of values for the forget, input and output

gates, h and c are 20×1 vectors representing the hidden and cell states that are saved

from one LSTM iteration to the next, x is the input value given by the TDC, W f , Wi 1,

Wi 2 and Wo are 20×21 weight matrices and b f , bi 1, bi 2 and bo are 20×1 bias arrays. All

the W and b values are constant and determined before runtime during the training of

the LSTM.σ and tanh are the sigmoid and hyperbolic tangent functions while ||, × and

· represent the concatenation, matrix multiplication and Hadamard multiplication.

Figure 4.19 presents the scheduled graph for equations (4.7). Step S0 is trivial, as the

concatenation operation can be replaced by a memory write. Steps S1 and S2 are the

most resource intensive, requiring a total of 420 fixed point MACs. Steps S4, S5 and S7

only require 40 fixed point multiplications and 20 fixed point additions/multiplica-

tions respectively. The nonlinear tanh and σ functions can be implemented as LUTs,

i.e. simple memory read operations. In order to increase the execution speed, steps

103

Chapter 4. UltraPhase

x[t]h[t-1]c[t-1]

Wf Wi1 Wi2 Wo

bf bi1 bi2 bo

S0

S1

S2

S3

S4

S5

S6

S7

σ tanh

tanh

σ

c[t] h[t]

σ

Figure 4.19: LSTM scheduling graph

104

4.6 Applications

S1 and S2 are distributed across 4 separate slave cores, while the remaining steps are

assigned to a single master core.

The total available RAM in each core is 512 bytes and as a result, all weight and bias

coefficients have to be stored as 8 bit signed fixed point numbers with 3 fractional

bits, as 4 coefficients per RAM word. The g f , gi 1, gi 2, go , h and c values have a 16 bit

signed fixed point representation with 3 fractional bits and are stored in pairs at each

RAM location. The LUTs used for the nonlinear activation functions have the same

data format as the previous variables. Table 4.9 summarizes the total RAM usage for

the master and slave core.

Table 4.9: RAM usage per core for the LSTM implementation.

Master core RAM Slave core RAM
Variable Size Variable Size

c 40 byte 7.81 % h 40 byte 7.81 %
h 40 byte 7.81 % x 2 byte 0.39 %
g f 40 byte 7.81 % b 20 byte 3.91 %
gi 1 40 byte 7.81 % W 420 byte 82.03 %
gi 2 40 byte 7.81 %
go 40 byte 7.81 %

tanh & σ LUTs 256 byte 50 %

Total 496 byte 96.88 % Total 482 byte 94.14 %

Figure 4.20a shows the arrangement of the 5 computational units used for the LSTM

implementation. The master core is surrounded by the slave cores in the four cardinal

directions in order to allow the fastest data transfer possible. Once the master core

finishes the exposure period, it will transfer the x[t] variable to the four slaves and will

wait until all the matrix multiplications and additions are finalized. The master will

then read the results and perform all of the remaining operations.

Figure 4.20b shows a possible way of arranging the 5-core clusters in order to form a

large format image. In this case, the clusters at the edges of the array have a different

arrangement of cores because of the geometric constraints. Two cores cannot be used

and are represented by black squares. It must be noted that the current setup can be

extended so that the master core also performs the computations for the timestamps

from its corresponding slave cores, essentially creating a uniform LSTM imager. How-

ever, the size of the LSTM cell must be reduced in order to free up the RAM required

to store the four extra c and h variables.

The final implementation uses 92% of the core instruction memory and has an execu-

105

Chapter 4. UltraPhase

c, h, tanh, σ

Master

gf, bf, Wf

Slave

go, bo, Wo

Slave

gi1, bi1, Wi1

Slave

gi2, bi2, Wi2

Slave

(a) (b)

Figure 4.20: Clustering of UltraPhase cores for LSTM computation (a) and possible
tiling of said cluster to create a large format array (b). Master cores identified with a
dot. Missing cores shown as black squares.

Matrix
multiplications

22%

Scalar operations &
Activations

50%

Data transfer
28%

Figure 4.21: LSTM execution time when running on UltraPhase. The scalar operations
and activations take up the majority of the execution time because they run sequen-
tially on the master core. In contrast, the matrix multiplications are distributed to the
4 slave cores and require significantly less processing time.

106

4.7 Conclusion

tion time of approximately 600 ms per cycle for each cluster of cores. The execution

time will not change at larger format images because of the high level of paralleliza-

tion. Figure 4.21 shows a breakdown of the execution time. The scalar operations and

activations take up 50% of the total time because they run entirely on a single core,

sequentially. Conversely, the matrix multiplications take the least amount of cycles

because the operations are distributed across the four slave cores.

The setup used for the experiment is shown in Figure 4.22. At the beginning of

every cycle, a synchronization pulse is emitted by the master core and used to trigger

a 780 nm 70 ps FWHM PicoQuant VisIR laser [159]. A target is placed at a known

distance from a PCB with a SPAD detector characterized in [160]. The output from the

SPAD is connected to one of the inputs that are directly routed inside the SoC to the

master core.

The data required to train the LSTM can also be acquired with UltraPhase in the

same setup, eliminating the need for simulated data or the errors introduced by using

training data obtained under different conditions. The master core (the central core

from Figure 4.20a) is programmed to run a loop that reads the output from the timing

module and stores it into RAM. After 128 cycles, when the memory is full, the chip is

read out and the process restarts until enough data has been collected.

4.7 Conclusion

UltraPhase, a 12×24 SPAD imager in 180 nm and 16 nm 3D stacked technology was

designed and the bottom tier fully characterized. The chip consists of a 3×6 grid of

independent 32 bit processors that each interface with 16 SPAD pixels and can share

data and synchronization signals with each other. The pixel outputs are connected

to a reconfigurable combinational logic circuit that can implement a wide range of

functions and preprocess the data before it reaches the main processing core. A sepa-

rate path connects the pixels to a reconfigurable timing block that can act as a TDC

and measure pulse widths and delays. Each core can execute programs of up to 256

instructions in length and has access to 4.096 kbit of scratchpad RAM.

Each core can execute 140 MOPS, beating the state of the art by an order of mag-

nitude, at a maximum power consumption of 94.6 GOPS/W. The system offers the

widest range of instructions compared to the other available alternatives and is a fully

scalable architecture that does not require a control processor to operate.

Table 4.10 compares UltraPhase with other state of the art general-purpose com-

107

Chapter 4. UltraPhase

Target

SPAD

Tr
igg
er

Pulse

UltraPhase

Laser

(a)

(b) (c)

Figure 4.22: UltraPhase LSTM setup (a), a picture of the main board (b) and the PCB
containing the standalone SPAD.

108

4.7 Conclusion

putational imagers.

Table 4.10: UltraPhase state of the art comparison

UltraPhase [48] [49] [46]
Format 12×24 256×256 256×256 176×144

Pixel pitch 28.5 mm 32.26 mm 10 mm 33.6 mm

Fill factor 29.5% 6.2% 60% 3.19%

Detector type SPAD PD PD PD

Pixel
processing cores

18 65536 4160 25344

Processing
type

32 bit analog
4096×1 bit

64×8 bit
analog

Controller
processor

- -
1×32 bit
dual core

1×32 bit

Pixels per core 16 1 - 1

Technology 180 nm/16 nm 180 nm 180 nm N/A

Performancea 140 MOPS 10 MOPS 2.8 MOPS N/A

Powera 94.6 GOPS/W 525.5 GOPS/W 19 GOPS/W <2 Wb

RAM 4.096 kbit/core
13 bit/core

7 analog/core
64 bit/core N/A

ROM 6.144 kbit/core 79 bit N/A 17.9 kbit
a Per core.
b Total per chip, at 10 kfps acquiring and reading out images to external memory.

109

5 Conclusion

5.1 Summary

Vision systems built around conventional image sensors need to read, encode and

transmit a large quantity of redundant pixel information that is then processed offline

to extract features of interest. The constant evolution seen by CMOS image sensors

that has resulted in multi-megapixel imagers with output data rates in the order of

Gpx/s has made it necessary to develop a new type of sensor - the computational

imager. These new architectures contain processing electronics that manipulate the

raw pixel data and implement various image preprocessing algorithms to reduce the

amount of redundant information that needs to be read from the sensor.

The emergence of large format single-photon SPAD-based imagers has emphasized

the need for on-chip processing even more. If one wants to take advantage of the full

capabilities of such a detector, a large amount of data needs to be handled in a short

amount of time, with 4-year old designs already requiring output data rates of more

than 3 GB/s, pushing the limit of current interfaces.

The aim of this thesis was to develop sensor architectures for computational imaging

that overcome current limitations of SPAD imagers and can operate at high frame rates

but with manageable output data rates. Multiple approaches were taken, for both 2D

and 3D-stacked technologies, in mature 180 nm and modern 16 nm FinFET nodes,

with various degrees of data processing parallelization and architecture customization.

The concepts were implemented in 3 sensor architectures.

The first sensor, kiloPhase, is designed in a mature 2D technology and contains a

novel token-based pixel readout scheme that ignores dark pixels and increases the

system frame rate. The binary data collected from the SPAD array is accumulated in 2

111

Chapter 5. Conclusion

separate accumulator banks that allow dead time free system operation. A group of

computational units can simultaneously process the data from an entire array column

and compute 2 MAC and one accumulate operation for each pixel. The architecture

is very well suited for gated-FLIM as it can achieve a 4.38 ns gate and can handle up

to 128 10 bit gate bins without the need for chip readout. When operating as a 10 bit

intensity imager, the chip can achieve 227 fps but it is possible to extend the bit depth

to 17 bit and increase the frame rate even further by using the computational units for

accumulations. The output data rate of the detector is less than 10 Mb/s and despite

the large amount of digital processing elements, the chip consumes less than 38 mW

in normal operation.

The second design, MegaPhase is a megapixel SPAD imager fabricated in a 3D-stacked

BSI technology and is an evolution of kiloPhase into a massively parallel and scalable

architecture. The system consists of 16384 cores that each handle 64 SPADs and can

simultaneously perform 2 MAC and one accumulate operation. Each group of 64

SPADs can be binned with multiple granularities to act as a pixel with non-unitary

dynamic range, reducing the exposure time needed to obtain an image. The cores

can operate in multiple modes, at different resolutions or processing operations and

can be reconfigured from one frame to the next, without the need to stop the acqui-

sition. The imager can support non-uniform resolution and operating modes, thus

optimizing the amount of output data. Comparisons to conventional large format

SPAD imagers show an increase in frame rate of up to 170× when operating as an

intensity imager and 56× when in gated-FLIM mode. In addition, the output data rate

is reduced by up to 3 orders of magnitude.

The final design, UltraPhase is the first fully reconfigurable SPAD processing archi-

tecture and consists of 18 independent processors connected in a grid, each capable

of running at 140 MOPS with a power consumption of less than 94.6 GOPS/W. The

chip is a 3D-stacked FSI imager, with the bottom tier containing the processing elec-

tronics developed in 16 nm FinFET and the top tier with the SPAD and pixel circuitry

in 180 nm CMOS. Each processor is connected to 16 SPADs and contains a reconfig-

urable front end that can preprocess the pixel data by implementing a wide range

of combinational functions and a timing module that can be configured to measure

counts, pulse widths or pulse delays. The design is fully customisable through soft-

ware and can reconfigure itself at runtime. A custom assembly language is used to

write programs of up to 256 instructions in length that can then be independently

run by the processing cores. Two algorithms were ported to the design, showing both

frame rate acceleration through parallel processing and output data rate reduction

through compression.

112

5.2 Future work

Through the design process of the three previously described sensors, various tech-

nologies were explored, from 180 nm 2D to 3D-stacked 45/22 nm and 180/16 nm,

backside and front-side illuminated. A few observations can be made regarding the

best suited approach for future computational imagers. Firstly, while the 16 nm node

allows for a significant amount of computational power to be included on the chip,

the economics of using such an expensive technology for large format imagers makes

it less attractive. Secondly, mature technology nodes such as the 180 nm one used in

kiloPhase tend to have well performing SPADs but the amount of digital logic that can

be included is fairly limited. The best compromise seems to be the use of technologies

such as the 22/45 nm used for MegaPhase or similar nodes such as 40 nm and 55 nm.

For the latter case, good quality SPADs are now being reported [160] and foundries

can now offer in-house 3D stacking procedures that are much more attractive than

the use of third parties like in the UltraPhase project.

5.2 Future work

Future research efforts are primarily focused on improving the performance of the

architectures presented in this work.

The importance of core-to-core communication was emphasized in the applications

implemented on UltraPhase, which makes it appealing to find ways of integrating sim-

ilar features in massively parallel, albeit more simple, architectures such as MegaPhase

or even vector processing systems such as kiloPhase. In addition, more complex inter-

core communication networks not limited to direct neighbors should be studied and

implemented in order to reduce the cost of sharing data across multiple processing

elements.

With the development of parallel hardware comes the need for the development

of software tools that can be used to program it. Assemblers and/or compilers that

can take advantage of the parallel resources offered by computational imaging archi-

tectures such as UltraPhase are a must if complex algorithms need to be implemented

in a reasonable amount of time and with little to no errors.

Methods for improving detector sensitivity, such as the use of microlenses, can benefit

from more work, as there is currently a discrepancy between designed and measured

performance. In addition, the continuous shrinking of pixel pitch has made mi-

crolenses less effective, and new techniques are needed either for their manufacturing

or their design.

113

Appendix

Superluminal motion-assisted 4D light-in-flight imaging

The work summarized in this chapter was published in [161]. Apart from participating

in the development of the method, I contributed to the creation and validation of the

mathematical model.

Advances in high-speed imaging techniques has allowed the capturing of ultrafast

phenomena such as light propagation in air or other media. While recording light-in-

flight in 3D xyt coordinates has already been reported, reconstructing the fourth z

coordinate has been difficult. The authors demonstrated the four dimensional light-

in-flight imaging based on observation of superluminal motion captured with a large

format SPAD imager.

The experimental setup consisted of a picosecond laser and SPAD camera [66] con-

trolled by a pulse generator. A set of mirrors confined the light path inside an acrylic

box filled with artificial fog to create a scattering medium. The optical center of the

camera lens was considered as the origin of the Carthesian coordinate system. Figure

5.1 shows the experimental setup.

As light propagates between the mirrors at a finite speed, scattered photons from each

point along the path reach the camera after an amount of time dependent on the

distance between said point and the camera. As a result, depending on the position of

the camera, light may appear to travel faster in some points and slower in others. In

some cases, the light appears to travel at superluminal speeds, a phenomenon already

observed in astronomy. The apparent velocity can then be used to estimate the light

propagation vector in the 3D Carthesian space.

Figure 5.2a is a color-coded plot of observation time of the light path. Red points are

observed earlier and blue later. The time data needs to be subdivided into straight

paths so that the corresponding vectors can be extracted. A 2D Gaussian mixture

115

Appendix

Picosecond
laser

SPAD camera

Pulse generator

x

y

z

Mirror

Figure 5.1: The experimental setup used for light-in-flight imaging. A picosecond laser
and a SPAD camera are controlled by a pulse generator. The scene consists of a light
path confined by a set of mirrors inside an acrylic box (not shown) filled with artificial
fog [161].

model was used to fit the data for clustering, a common unsupervised machine-

learning technique. Figure 5.2b shows the separated data points according to their xy

coordinates. Figure 5.2c indicates the coordinate system for the analysis that was used

to derive a theoretical formula for performing least-square regression to estimate the

light trajectory. Finally, figure 5.3 shows the 4D point cloud reconstructed from the

measured data without any prior knowledge. The results are in good accordance with

the ground truth.

116

Appendix

Cluster 1

Cluster 2
Cluster 3

Cluster 4

Cluster 5

0

1

2

3

4

5
t´ (ns)

(a)

Cluster 1

Cluster 2
Cluster 3

Cluster 4

Cluster 5

(b)

Light path
Origin

Image sensor
Lens

0 0 0 0(, ,)r x y z

n

()r t

(, ,)p p px y z
x

y
z

()pz z

(c)

Figure 5.2: (a) Color-coded plot of observation times along the propagation path, with
red being observed earlier; (b) Light path divided into clusters using a 2D Gaussian
mixture model; (c)Coordinate system used for light-in-flight reconstruction [161].

Figure 5.3: Reconstructed 4D light-in-flight path represented as a point cloud in 3D
Carthesian coordinates with color denoting the time coordinate [161].

117

Bibliography

[1] P. Pande and J. A. Jo, “Automated Analysis of Fluorescence Lifetime Imaging

Microscopy (FLIM) Data Based on the Laguerre Deconvolution Method”, IEEE

Transactions on Biomedical Engineering, vol. 58, no. 1, pp. 172–181, 2011. DOI:

10.1109/TBME.2010.2084086.

[2] Y. Won and S. Lee, “Real-Time Confocal Fluorescence Lifetime Imaging Mi-

croscopy (FLIM) for Spectroscopic Sensing of Cancer Tissues”, in 2018 Confer-

ence on Precision Electromagnetic Measurements (CPEM 2018), 2018, pp. 1–2.

DOI: 10.1109/CPEM.2018.8500984.

[3] K. Suhling, P.-H. Chung, and J. Levitt, “Advances in time-resolved fluorescence

microscopy: Simultaneous FRAP, FLIM and tr-FAIM to image rotational and

translation diffusion in living cells”, in 2011 Functional Optical Imaging, 2011,

pp. 1–1. DOI: 10.1109/FOI.2011.6154838.

[4] E. Vargas, J. N. P. Martel, G. Wetzstein, and H. Arguello, Time-Multiplexed Coded

Aperture Imaging: Learned Coded Aperture and Pixel Exposures for Compressive

Imaging Systems, 2021. DOI: 10.48550/ARXIV.2104.02820. [Online]. Available:

https://arxiv.org/abs/2104.02820.

[5] A. Yu, T. Jiang, W. Chen, and X. Tan, “A hyperspectral image fusion algorithm

based on Compressive Sensing”, in 2012 4th Workshop on Hyperspectral Image

and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2012, pp. 1–4.

[6] V. Duran, F. Soldevila, E. Irles, P. Clemente, E. Tajahuerce, P. Andres, and J.

Lancis, “Compressive imaging in scattering media”, Opt. Express, vol. 23, no. 11,

pp. 14 424–14 433, 2015. DOI: 10.1364/OE.23.014424.

[7] R. R. Deshpande, M. R. Bhatt, and C. H. R. Madhavi, “Accuracy in Depth

Recovery and 3D Image Synthesis From Single Image Using Multi-Color Filter

Aperture and Shallow Depth of Field”, IEEE Access, vol. 9, pp. 123 528–123 540,

2021. DOI: 10.1109/ACCESS.2021.3109865.

119

https://doi.org/10.1109/TBME.2010.2084086
https://doi.org/10.1109/CPEM.2018.8500984
https://doi.org/10.1109/FOI.2011.6154838
https://doi.org/10.48550/ARXIV.2104.02820
https://arxiv.org/abs/2104.02820
https://doi.org/10.1364/OE.23.014424
https://doi.org/10.1109/ACCESS.2021.3109865

Bibliography

[8] X. Yang, J. Sun, and W. Diao, “Depth Image Inpainting for RGB-D Camera Based

on Light Field EPI”, in 2018 IEEE 3rd International Conference on Image, Vision

and Computing (ICIVC), 2018, pp. 214–219. DOI: 10.1109/ICIVC.2018.8492912.

[9] L. Zhao, J. Liang, H. Bai, A. Wang, and Y. Zhao, “Convolutional neural network-

based depth image artifact removal”, in 2017 IEEE International Conference on

Image Processing (ICIP), 2017, pp. 2438–2442. DOI: 10.1109/ICIP.2017.8296720.

[10] K. Uruma, K. Konishi, T. Takahashi, and T. Furukawa, “High resolution depth

image recovery algorithm based on the modeling of the sum of an average

distance image and a surface image”, in 2016 IEEE International Conference on

Image Processing (ICIP), 2016, pp. 2836–2840. DOI: 10.1109/ICIP.2016.7532877.

[11] W. Chantara and Y.-S. Ho, “Initial depth estimation using adaptive window size

with light field image”, in 2018 International Workshop on Advanced Image

Technology (IWAIT), 2018, pp. 1–3. DOI: 10.1109/IWAIT.2018.8369722.

[12] N. Diaz, J. Ramirez, E. Vera, and H. Arguello, “Adaptive Multisensor Acquisition

via Spatial Contextual Information for Compressive Spectral Image Classifica-

tion”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing, vol. 14, pp. 9254–9266, 2021. DOI: 10.1109/JSTARS.2021.3111508.

[13] C. V. Correa, H. Arguello, and G. R. Arce, “Spatio-spectral uniform multi-frame

coded apertures for compressive spectral imaging”, in 2015 IEEE Global Con-

ference on Signal and Information Processing (GlobalSIP), 2015, pp. 614–618.

DOI: 10.1109/GlobalSIP.2015.7418269.

[14] L. Huang, R. Luo, X. Liu, and X. Hao, “Spectral imaging with deep learning”,

Light: Science and Applications, vol. 11, no. 61, 2022. DOI: 10.1038/s41377-022-

00743-6.

[15] W. Chantara and Y.-S. Ho, “Initial depth estimation using adaptive window size

with light field image”, in 2018 International Workshop on Advanced Image

Technology (IWAIT), 2018, pp. 1–3. DOI: 10.1109/IWAIT.2018.8369722.

[16] M. Lamba, K. K. Rachavarapu, and K. Mitra, “Harnessing Multi-View Perspec-

tive of Light Fields for Low-Light Imaging”, IEEE Transactions on Image Pro-

cessing, vol. 30, pp. 1501–1513, 2021. DOI: 10.1109/TIP.2020.3045617.

[17] G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light

Field Image Processing: An Overview”, IEEE Journal of Selected Topics in Signal

Processing, vol. 11, no. 7, pp. 926–954, 2017. DOI: 10.1109/JSTSP.2017.2747126.

120

https://doi.org/10.1109/ICIVC.2018.8492912
https://doi.org/10.1109/ICIP.2017.8296720
https://doi.org/10.1109/ICIP.2016.7532877
https://doi.org/10.1109/IWAIT.2018.8369722
https://doi.org/10.1109/JSTARS.2021.3111508
https://doi.org/10.1109/GlobalSIP.2015.7418269
https://doi.org/10.1038/s41377-022-00743-6
https://doi.org/10.1038/s41377-022-00743-6
https://doi.org/10.1109/IWAIT.2018.8369722
https://doi.org/10.1109/TIP.2020.3045617
https://doi.org/10.1109/JSTSP.2017.2747126

Bibliography

[18] G. H. Jin, G. R. Choi, H. H. Park, T. S. Lee, and S. B. Lee, “Defining gross tu-

mor volume using positron emission tomography/computed tomography

phantom studies”, in 2013 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC), 2013, pp. 2473–2476. DOI:

10.1109/EMBC.2013.6610041.

[19] Y. Kuang, G. Pratx, M. Bazalova, B. Meng, J. Qian, and L. Xing, “First Demon-

stration of Multiplexed X-Ray Fluorescence Computed Tomography (XFCT)

Imaging”, IEEE Transactions on Medical Imaging, vol. 32, no. 2, pp. 262–267,

2013. DOI: 10.1109/TMI.2012.2223709.

[20] P. J. L. Riviere, P. Vargas, G. Fu, and L. J. Meng, “Accelerating X-ray fluorescence

computed tomography”, in 2009 Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2009, pp. 1000–1003. DOI: 10.

1109/IEMBS.2009.5333568.

[21] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and Depth from

a Conventional Camera with a Coded Aperture”, ACM Trans. Graph., vol. 26,

no. 3, 70–es, 2007. DOI: 10.1145/1276377.1276464.

[22] V. Paramonov, I. Panchenko, V. Bucha, A. Drogolyub, and S. Zagoruyko, “Depth

Camera Based on Color-Coded Aperture”, in 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2016, pp. 910–918.

DOI: 10.1109/CVPRW.2016.118.

[23] Y. Sekikawa, S.-w. Leigh, and K. Suzuki, “Coded Lens: Using Coded Aperture

for Low-Cost and Versatile Imaging”, in ACM SIGGRAPH 2014 Posters, ser. SIG-

GRAPH ’14, Vancouver, Canada: Association for Computing Machinery, 2014,

ISBN: 9781450329583. DOI: 10.1145/2614217.2614227.

[24] Y. Hirano, A. Matsuda, and Y. Hiraoka, “Recent advancements in structured-

illumination microscopy toward live-cell imaging”, Microscopy, vol. 64, no. 4,

pp. 237–249, 2015. DOI: 10.1093/jmicro/dfv034.

[25] M. J. Huttunen, A. Abbas, J. Upham, and R. W. Boyd, “Label-Free Super-Resolution

Microscopy with Coherent Nonlinear Structured-Illumination”, in 2018 20th

International Conference on Transparent Optical Networks (ICTON), 2018,

pp. 1–4. DOI: 10.1109/ICTON.2018.8473971.

[26] Y. Terui, “Image processing for structured illumination microscopy”, in 2015

14th Workshop on Information Optics (WIO), 2015, pp. 1–3. DOI: 10.1109/WIO.

2015.7206919.

121

https://doi.org/10.1109/EMBC.2013.6610041
https://doi.org/10.1109/TMI.2012.2223709
https://doi.org/10.1109/IEMBS.2009.5333568
https://doi.org/10.1109/IEMBS.2009.5333568
https://doi.org/10.1145/1276377.1276464
https://doi.org/10.1109/CVPRW.2016.118
https://doi.org/10.1145/2614217.2614227
https://doi.org/10.1093/jmicro/dfv034
https://doi.org/10.1109/ICTON.2018.8473971
https://doi.org/10.1109/WIO.2015.7206919
https://doi.org/10.1109/WIO.2015.7206919

Bibliography

[27] L. Zhao, C. Han, Y. Shu, M. Lv, Y. Liu, T. Zhou, Z. Yan, and X. Liu, “Improved

Imaging Performance in Super-Resolution Localization Microscopy by YALL1

Method”, IEEE Access, vol. 6, pp. 5438–5446, 2018. DOI: 10.1109/ACCESS.2018.

2793847.

[28] T.-a. Pham, E. Soubies, D. Sage, and M. Unser, “Closed-Form Expression Of

The Fourier Ring-Correlation For Single-Molecule Localization Microscopy”,

in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019),

2019, pp. 321–324. DOI: 10.1109/ISBI.2019.8759279.

[29] A. Rodríguez-Vázquez, J. Fernández-Berni, J. A. Leñero-Bardallo, I. Vornicu,

and R. Carmona-Galán, “CMOS Vision Sensors: Embedding Computer Vision

at Imaging Front-Ends”, IEEE Circuits and Systems Magazine, vol. 18, no. 2,

pp. 90–107, 2018. DOI: 10.1109/MCAS.2018.2821772.

[30] CHR71000, 2022. [Online]. Available: https://ams.com/en/chr71000.

[31] GJ01611, 2022. [Online]. Available: https://www.gigajot.tech/qis.

[32] I. Takayanagi and J. Nakamura, “High-Resolution CMOS Video Image Sensors”,

Proceedings of the IEEE, vol. 101, no. 1, pp. 61–73, 2013. DOI: 10.1109/JPROC.

2011.2178569.

[33] S. Kawahito, J.-H. Park, K. Isobe, S. Shafie, T. Iida, and T. Mizota, “A CMOS

Image Sensor Integrating Column-Parallel Cyclic ADCs with On-Chip Digital

Error Correction Circuits”, in 2008 IEEE International Solid-State Circuits Con-

ference - Digest of Technical Papers, 2008, pp. 56–595. DOI: 10.1109/ISSCC.2008.

4523054.

[34] A. B. R. Vazquez, R. C. Galan, J. F. Berni, V. B. Sanchez, and J. A. L. Bardallo, “In

the quest of vision-sensors-on-chip: Pre-processing sensors for data reduc-

tion”, in Image Sensors and Imaging Systems, 2017, pp. 96–101. DOI: 10.2352/

ISSN.2470-1173.2017.11.IMSE-195.

[35] A. N. Belbachir, in Smart Cameras, Springer, 2009, pp. 312–347, ISBN: 9781441909527.

DOI: 10.1007/978-1-4419-0953-4.

[36] A. Torralba, “How many pixels make an image?”, Visual Neuroscience, vol. 26,

no. 1, pp. 123–131, 2009. DOI: 10.1017/S0952523808080930.

[37] C. Zhang, S. Lindner, I. M. Antolovic, M. Wolf, and E. Charbon, “A CMOS

SPAD imager with collision detection and 128 dynamically reallocating TDCs

for single-photon counting and 3D time-of-flight imaging”, Sensors, vol. 18,

no. 11, 2018, ISSN: 1424-8220. DOI: 10.3390/s18114016. [Online]. Available:

https://www.mdpi.com/1424-8220/18/11/4016.

122

https://doi.org/10.1109/ACCESS.2018.2793847
https://doi.org/10.1109/ACCESS.2018.2793847
https://doi.org/10.1109/ISBI.2019.8759279
https://doi.org/10.1109/MCAS.2018.2821772
https://ams.com/en/chr71000
https://www.gigajot.tech/qis
https://doi.org/10.1109/JPROC.2011.2178569
https://doi.org/10.1109/JPROC.2011.2178569
https://doi.org/10.1109/ISSCC.2008.4523054
https://doi.org/10.1109/ISSCC.2008.4523054
https://doi.org/10.2352/ISSN.2470-1173.2017.11.IMSE-195
https://doi.org/10.2352/ISSN.2470-1173.2017.11.IMSE-195
https://doi.org/10.1007/978-1-4419-0953-4
https://doi.org/10.1017/S0952523808080930
https://doi.org/10.3390/s18114016
https://www.mdpi.com/1424-8220/18/11/4016

Bibliography

[38] R. K. Henderson, N. Johnston, S. W. Hutchings, I. Gyongy, T. A. Abbas, N.

Dutton, M. Tyler, S. Chan, and J. Leach, “5.7 A 256×256 40nm/90nm CMOS 3D-

Stacked 120dB Dynamic-Range Reconfigurable Time-Resolved SPAD Imager”,

in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), 2019,

pp. 106–108. DOI: 10.1109/ISSCC.2019.8662355.

[39] S. W. Hutchings, N. Johnston, I. Gyongy, T. Al Abbas, N. A. W. Dutton, M. Tyler,

S. Chan, J. Leach, and R. K. Henderson, “A Reconfigurable 3-D-Stacked SPAD

Imager With In-Pixel Histogramming for Flash LIDAR or High-Speed Time-of-

Flight Imaging”, IEEE Journal of Solid-State Circuits, vol. 54, no. 11, pp. 2947–

2956, 2019. DOI: 10.1109/JSSC.2019.2939083.

[40] F. Mattioli Della Rocca, H. Mai, S. W. Hutchings, T. A. Abbas, K. Buckbee, A.

Tsiamis, P. Lomax, I. Gyongy, N. A. W. Dutton, and R. K. Henderson, “A 128 ×

128 spad motion-triggered time-of-flight image sensor with in-pixel histogram

and column-parallel vision processor”, IEEE Journal of Solid-State Circuits,

vol. 55, no. 7, pp. 1762–1775, 2020. DOI: 10.1109/JSSC.2020.2993722.

[41] M. Suarez, V. M. Brea, J. Fernandez-Berni, R. Carmona-Galan, D. Cabello, and

A. Rodriguez-Vazquez, “Low-Power CMOS Vision Sensor for Gaussian Pyramid

Extraction”, IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 483–495,

2017. DOI: 10.1109/JSSC.2016.2610580.

[42] L. Nielsen, M. Mahowald, and C. Mead, SeeHear (Technical Reports TFRT-7355),

English. Department of Automatic Control, Lund Institute of Technology (LTH),

1987.

[43] J. E. Tanner and C. Mead, “A Correlating Optical Motion Detector”, in Proceed-

ings, Conference on Advanced Research in VLSI, 1984, ISBN: 089006136X.

[44] M. A. Mahowald and C. Mead, “The Silicon Retina”, Scientific American, vol. 264,

no. 5, pp. 76–83, 1991, ISSN: 00368733, 19467087.

[45] C. Mead, Analog VLSI and Neural Systems. Addison-Wesley Publishing Com-

pany, 1989, ISBN: 0201059924.

[46] teledyne e2v.com, Eye-RIS VSoC, 2022. [Online]. Available: https://imaging.

teledyne-e2v.com/content/uploads/2019/01/33613-AnaFocus_Eye-RIS-

VSoC_v3_AW_WEB.pdf.

[47] G. Linan, R. Dominguez-Castro, S. Espejo, and A. Rodriguez-Vazquez, “ACE16K:

An advanced focal-plane analog programmable array processor”, in Proceed-

ings of the 27th European Solid-State Circuits Conference, 2001, pp. 201–204.

[48] S. J. Carey, A. Lopich, D. R. Barr, B. Wang, and P. Dudek, “A 100,000 fps vision

sensor with embedded 535GOPS/W 256×256 SIMD processor array”, in 2013

Symposium on VLSI Circuits, 2013, pp. C182–C183.

123

https://doi.org/10.1109/ISSCC.2019.8662355
https://doi.org/10.1109/JSSC.2019.2939083
https://doi.org/10.1109/JSSC.2020.2993722
https://doi.org/10.1109/JSSC.2016.2610580
https://imaging.teledyne-e2v.com/content/uploads/2019/01/33613-AnaFocus_Eye-RIS-VSoC_v3_AW_WEB.pdf
https://imaging.teledyne-e2v.com/content/uploads/2019/01/33613-AnaFocus_Eye-RIS-VSoC_v3_AW_WEB.pdf
https://imaging.teledyne-e2v.com/content/uploads/2019/01/33613-AnaFocus_Eye-RIS-VSoC_v3_AW_WEB.pdf

Bibliography

[49] C. Shi, J. Yang, Y. Han, Z. Cao, Q. Qin, L. Liu, N.-J. Wu, and Z. Wang, “A 1000

fps Vision Chip Based on a Dynamically Reconfigurable Hybrid Architecture

Comprising a PE Array Processor and Self-Organizing Map Neural Network”,

IEEE Journal of Solid-State Circuits, vol. 49, no. 9, pp. 2067–2082, 2014. DOI:

10.1109/JSSC.2014.2332134.

[50] J. Poikonen, M. Laiho, and A. Paasio, “MIPA4k: A 64×64 cell mixed-mode

image processor array”, in 2009 IEEE International Symposium on Circuits and

Systems, 2009, pp. 1927–1930. DOI: 10.1109/ISCAS.2009.5118161.

[51] A. Rodriguez-Vazquez, R. Dominguez-Castro, F. Jimenez-Garrido, S. Morillas,

A. Garcia, C. Utrera, M. D. Pardo, J. Listan, and R. Romay, “A CMOS Vision

System On-Chip with Multi-Core, Cellular Sensory-Processing Front-End”, in

Cellular Nanoscale Sensory Wave Computing, C. Baatar, W. Porod, and T. Roska,

Eds. Boston, MA: Springer US, 2010, pp. 129–146, ISBN: 9781441910110. DOI:

10.1007/978-1-4419-1011-0_6.

[52] A. Zarandy, C. Rekeczky, P. Foldesy, R. Carmona-Galan, G. L. Cembrano, S.

Gergely, A. Rodriguez-Vazquez, and T. Roska, “VISCUBE: A Multi-Layer Vision

Chip”, in Focal-Plane Sensor-Processor Chips, A. Zarandy, Ed. New York, NY:

Springer New York, 2011, pp. 181–208, ISBN: 9781441964755. DOI: 10.1007/978-

1-4419-6475-5_8.

[53] P. Foldesy, A. Zarandy, C. Rekeczky, and T. Roska, “High performance processor

array for image processing”, in 2007 IEEE International Symposium on Circuits

and Systems, 2007, pp. 1177–1180. DOI: 10.1109/ISCAS.2007.378260.

[54] A. Zarandy, Ed., Focal-plane sensor-processor chips. New York: Springer Sci-

ence+Business Media BV, 2011.

[55] Y. Liu, L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas, “High-speed

Light-weight CNN Inference via Strided Convolutions on a Pixel Processor

Array”, in BMVC, 2020.

[56] L. Bose, J. Chen, S. J. Carey, P. Dudek, and W. Mayol-Cuevas, Fully Embedding

Fast Convolutional Networks on Pixel Processor Arrays, 2020. DOI: 10.48550/

ARXIV.2004.12525. [Online]. Available: https://arxiv.org/abs/2004.12525.

[57] A. Rochas, M. Gosch, A. Serov, P. Besse, R. Popovic, T. Lasser, and R. Rigler,

“First fully integrated 2-d array of single-photon detectors in standard cmos

technology”, IEEE Photonics Technology Letters, vol. 15, no. 7, pp. 963–965,

2003. DOI: 10.1109/LPT.2003.813387.

124

https://doi.org/10.1109/JSSC.2014.2332134
https://doi.org/10.1109/ISCAS.2009.5118161
https://doi.org/10.1007/978-1-4419-1011-0_6
https://doi.org/10.1007/978-1-4419-6475-5_8
https://doi.org/10.1007/978-1-4419-6475-5_8
https://doi.org/10.1109/ISCAS.2007.378260
https://doi.org/10.48550/ARXIV.2004.12525
https://doi.org/10.48550/ARXIV.2004.12525
https://arxiv.org/abs/2004.12525
https://doi.org/10.1109/LPT.2003.813387

Bibliography

[58] C. Niclass, A. Rochas, P. Besse, and E. Charbon, “A cmos single photon avalanche

diode array for 3d imaging”, in 2004 IEEE International Solid-State Circuits

Conference (IEEE Cat. No.04CH37519), 2004, 120–517 Vol.1. DOI: 10 . 1109 /

ISSCC.2004.1332623.

[59] C. Niclass, A. Rochas, P.-A. Besse, R. Popovic, and E. Charbon, “Cmos im-

ager based on single photon avalanche diodes”, in The 13th International

Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest

of Technical Papers. TRANSDUCERS ’05., vol. 1, 2005, 1030–1034 Vol. 1. DOI:

10.1109/SENSOR.2005.1496631.

[60] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon, “Design and characterization

of a cmos 3-d image sensor based on single photon avalanche diodes”, IEEE

Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1847–1854, 2005. DOI: 10.1109/

JSSC.2005.848173.

[61] C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array

fabricated in deep-submicron cmos technology”, in Proceedings of the Design

Automation and Test in Europe Conference, vol. 1, 2006, pp. 1–6. DOI: 10.1109/

DATE.2006.243987.

[62] C. Niclass, M. Sergio, and E. Charbon, “A cmos 64×48 single photon avalanche

diode array with event-driven readout”, in 2006 Proceedings of the 32nd Euro-

pean Solid-State Circuits Conference, 2006, pp. 556–559. DOI: 10.1109/ESSCIR.

2006.307485.

[63] J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M.

Gersbach, and R. Henderson, “A 32×32 50ps Resolution 10 bit Time to Digital

Converter Array in 130nm CMOS for Time Correlated Imaging”, Sep. 2009,

pp. 77–80. DOI: 10.1109/CICC.2009.5280890.

[64] P. Padmanabhan, C. Zhang, M. Cazzaniga, B. Efe, A. R. Ximenes, M.-J. Lee,

and E. Charbon, “7.4 A 256×128 3D-Stacked (45nm) SPAD FLASH LiDAR with

7-Level Coincidence Detection and Progressive Gating for 100m Range and

10klux Background Light”, in 2021 IEEE International Solid- State Circuits

Conference (ISSCC), vol. 64, 2021, pp. 111–113. DOI: 10.1109/ISSCC42613.2021.

9366010.

[65] I. Gyongy, A. T. Erdogan, N. A. W. Dutton, G. M. Martín, A. Gorman, H. Mai,

F. M. Della Rocca, and R. K. Henderson, A direct time-of-flight image sensor

with in-pixel surface detection and dynamic vision, 2022. DOI: 10.48550/ARXIV.

2209.11772. [Online]. Available: https://arxiv.org/abs/2209.11772.

125

https://doi.org/10.1109/ISSCC.2004.1332623
https://doi.org/10.1109/ISSCC.2004.1332623
https://doi.org/10.1109/SENSOR.2005.1496631
https://doi.org/10.1109/JSSC.2005.848173
https://doi.org/10.1109/JSSC.2005.848173
https://doi.org/10.1109/DATE.2006.243987
https://doi.org/10.1109/DATE.2006.243987
https://doi.org/10.1109/ESSCIR.2006.307485
https://doi.org/10.1109/ESSCIR.2006.307485
https://doi.org/10.1109/CICC.2009.5280890
https://doi.org/10.1109/ISSCC42613.2021.9366010
https://doi.org/10.1109/ISSCC42613.2021.9366010
https://doi.org/10.48550/ARXIV.2209.11772
https://doi.org/10.48550/ARXIV.2209.11772
https://arxiv.org/abs/2209.11772

Bibliography

[66] K. Morimoto, A. Ardelean, M.-L. Wu, A. C. Ulku, I. M. Antolovic, C. Bruschini,

and E. Charbon, “Megapixel time-gated SPAD image sensor for 2D and 3D

imaging applications”, Optica, vol. 7, no. 4, pp. 346–354, 2020. DOI: 10.1364/

OPTICA.386574.

[67] T. Okino, S. Yamada, Y. Sakata, S. Kasuga, M. Takemoto, Y. Nose, H. Koshida,

M. Tamaru, Y. Sugiura, S. Saito, S. Koyama, M. Mori, Y. Hirose, M. Sawada, A.

Odagawa, and T. Tanaka, “5.2 A 1200×900 6µm 450fps Geiger-Mode Vertical

Avalanche Photodiodes CMOS Image Sensor for a 250m Time-of-Flight Rang-

ing System Using Direct-Indirect-Mixed Frame Synthesis with Configurable-

Depth-Resolution Down to 10cm”, in 2020 IEEE International Solid- State

Circuits Conference - (ISSCC), 2020, pp. 96–98. DOI: 10.1109/ISSCC19947.2020.

9063045.

[68] C. Inc., 3.2-megapixel SPAD sensor, 2022. [Online]. Available: https://global.

canon/en/news/2021/20211215.html.

[69] F. Severini, I. Cusini, D. Berretta, K. Pasquinelli, A. Incoronato, and F. Villa,

“SPAD Pixel With Sub-NS Dead-Time for High-Count Rate Applications”, IEEE

Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2: Optical Detec-

tors, pp. 1–8, 2022. DOI: 10.1109/JSTQE.2021.3124825.

[70] P. Keshavarzian, F. Gramuglia, E. Kizilkan, C. Bruschini, S. S. Tan, M. Tng, D.

Chong, E. Quek, M.-J. Lee, and E. Charbon, “Low-noise high-dynamic-range

single-photon avalanche diodes with integrated PQAR circuit in a standard

55nm BCD process”, in Advanced Photon Counting Techniques XVI, M. A. Itzler,

J. C. Bienfang, and K. A. McIntosh, Eds., International Society for Optics and

Photonics, vol. 12089, SPIE, 2022, 120890B. DOI: 10.1117/12.2618349.

[71] A. C. Ulku, C. Bruschini, I. M. Antolović, Y. Kuo, R. Ankri, S. Weiss, X. Michalet,

and E. Charbon, “A 512 × 512 SPAD image sensor with integrated gating for

widefield FLIM”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 25,

no. 1, pp. 1–12, 2019. DOI: 10.1109/JSTQE.2018.2867439.

[72] M. Y. Berezin and S. Achilefu, “Fluorescence Lifetime Measurements and Bio-

logical Imaging”, Chemical Reviews, vol. 110, no. 5, pp. 2641–2684, 2010, PMID:

20356094. DOI: 10.1021/cr900343z.

[73] C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, “Single-

photon avalanche diode imagers in biophotonics: review and outlook”, Light:

Science and Applications, vol. 8, p. 87, 2019. DOI: 10.1038/s41377-019-0191-5.

[74] L. Marcu, “Fluorescence Lifetime Techniques in Medical Applications”, Annals

of Biomedical Engineering, vol. 40, no. 2, pp. 304–331, 2012.

126

https://doi.org/10.1364/OPTICA.386574
https://doi.org/10.1364/OPTICA.386574
https://doi.org/10.1109/ISSCC19947.2020.9063045
https://doi.org/10.1109/ISSCC19947.2020.9063045
https://global.canon/en/news/2021/20211215.html
https://global.canon/en/news/2021/20211215.html
https://doi.org/10.1109/JSTQE.2021.3124825
https://doi.org/10.1117/12.2618349
https://doi.org/10.1109/JSTQE.2018.2867439
https://doi.org/10.1021/cr900343z
https://doi.org/10.1038/s41377-019-0191-5

Bibliography

[75] X. Liu, D. Lin, W. Becker, J. Niu, B. Yu, L. Liu, and J. Qu, “Fast fluorescence

lifetime imaging techniques: A review on challenge and development”, Journal

of Innovative Optical Health Sciences, vol. 12, no. 5, p. 1 930 003, 2019.

[76] R. K. Henderson, B. R. Rae, and D.-U Li, “Complementary metal-oxide-semiconductor

(CMOS) sensors for fluorescence lifetime imaging (FLIM)”, in High Perfor-

mance Silicon Imaging, Elsevier, 2014, pp. 312–347, ISBN: 9780857095985. DOI:

10.1533/9780857097521.2.312.

[77] L. M. Hirvonen and K. Suhling, “Fast Timing Techniques in FLIM Applications”,

Frontiers in Physics, vol. 8, 2020, ISSN: 2296-424X. DOI: 10.3389/fphy.2020.

00161.

[78] S. Rajoria, L. Zhao, X. Intes, and M. Barroso, “FLIM-FRET for Cancer Applica-

tions”, Current Molecular Imaging, vol. 3, no. 2, pp. 144–161, 2014.

[79] J. W. Borst and A. J. W. G. Visser, “Fluorescence lifetime imaging microscopy in

life sciences”, Measurement Science and Technology, vol. 21, no. 10, p. 102 002,

2010. DOI: 10.1088/0957-0233/21/10/102002.

[80] K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence mi-

croscopy”, Photochem. Photobiol. Sci., vol. 4, pp. 13–22, 1 2005. DOI: 10.1039/

B412924P.

[81] L. M. Hirvonen and K. Suhling, “Wide-field TCSPC: methods and applications”,

Measurement Science and Technology, vol. 28, no. 1, p. 012 003, 2016. DOI:

10.1088/1361-6501/28/1/012003.

[82] W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup,

“Fluorescence lifetime imaging by time-correlated single-photon counting”,

Microscopy research and technique, vol. 63, no. 1, pp. 58–66, 2004. DOI: 10.1002/

jemt.10421.

[83] picoquant.com, PicoQuant, 2022. [Online]. Available: https://www.picoquant.

com/products/category/tcspc-and-time-tagging-modules.

[84] A. C. Ulku, Large-Format Time-Gated SPAD Cameras for Real-Time Phasor-

Based FLIM, 2021. [Online]. Available: https://infoscience.epfl.ch/record/

285478?ln=en.

[85] M. Maus, M. Cotlet, J. Hofkens, T. Gensch, F. C. De Schryver, J. Schaffer, and

C. A. Seidel, “An experimental comparison of the maximum likelihood es-

timation and nonlinear least-squares fluorescence lifetime analysis of sin-

gle molecules”, Analytical chemistry, vol. 73, no. 9, pp. 2078–2086, 2001. DOI:

10.1021/ac000877g.

127

https://doi.org/10.1533/9780857097521.2.312
https://doi.org/10.3389/fphy.2020.00161
https://doi.org/10.3389/fphy.2020.00161
https://doi.org/10.1088/0957-0233/21/10/102002
https://doi.org/10.1039/B412924P
https://doi.org/10.1039/B412924P
https://doi.org/10.1088/1361-6501/28/1/012003
https://doi.org/10.1002/jemt.10421
https://doi.org/10.1002/jemt.10421
https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules
https://www.picoquant.com/products/category/tcspc-and-time-tagging-modules
https://infoscience.epfl.ch/record/285478?ln=en
https://infoscience.epfl.ch/record/285478?ln=en
https://doi.org/10.1021/ac000877g

Bibliography

[86] P. Hall and B. Selinger, “Better estimates of exponential decay parameters”,

The Journal of Physical Chemistry, vol. 85, no. 20, pp. 2941–2946, 1981. DOI:

10.1021/j150620a019.

[87] G. Wu, T. Nowotny, Y. Chen, and D. D.-U. Li, “GPU acceleration of time-domain

fluorescence lifetime imaging”, Journal of Biomedical Optics, vol. 21, no. 1,

p. 017 001, 2016. DOI: 10.1117/1.JBO.21.1.017001.

[88] J. Jo, Q. Fang, and L. Marcu, “Ultrafast method for the analysis of fluorescence

lifetime imaging microscopy data based on the Laguerre expansion technique”,

IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, no. 4, pp. 835–

845, 2005. DOI: 10.1109/JSTQE.2005.857685.

[89] K. K. Sharman, A. Periasamy, H. Ashworth, and J. N. Demas, “Error Analysis of

the Rapid Lifetime Determination Method for Double-Exponential Decays and

New Windowing Schemes”, Analytical Chemistry, vol. 71, no. 5, pp. 947–952,

1999. DOI: 10.1021/ac981050d.

[90] R. M. Ballew and J. N. Demas, “An error analysis of the rapid lifetime deter-

mination method for the evaluation of single exponential decays”, Analytical

Chemistry, vol. 61, no. 1, pp. 30–33, 1989. DOI: 10.1021/ac00176a007.

[91] A. Vard, S. F. Silva, J. P. Domingues, and A. M. Morgado, “Accurate Rapid Life-

time Determination on Time-Gated FLIM Microscopy with Optical Sectioning”,

Journal of Healthcare Engineering, vol. 2018, 2018. DOI: 10.1155/2018/1371386.

[92] D. D. U. Li, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementa-

tion algorithm and error analysis of high-speed fluorescence lifetime sensing

systems using center-of-mass method”, Journal of Biomedical Optics, vol. 15,

no. 1, p. 017 006, 2010. DOI: 10.1117/1.3309737.

[93] D. D. U. Li, H. Yu, and Y. Chen, “Fast bi-exponential fluorescence lifetime

imaging analysis methods”, Optics Letters, vol. 40, no. 3, pp. 336–339, 2015.

DOI: 10.1364/OL.40.000336.

[94] S. P. Poland, A. T. Erdogan, N. Krstajić, J. Levitt, V. Devauges, R. J. Walker, D. D.-U.

Li, S. M. Ameer-Beg, and R. K. Henderson, “New high-speed centre of mass

method incorporating background subtraction for accurate determination of

fluorescence lifetime”, Opt. Express, vol. 24, no. 7, pp. 6899–6915, 2016. DOI:

10.1364/OE.24.006899.

[95] M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach

to fluorescence lifetime imaging analysis”, Biophysical Journal, vol. 94, no. 2,

pp. L14–L16, 2008. DOI: 10.1529/biophysj.107.120154.

[96] SimFCS, 2022. [Online]. Available: https://www.lfd.uci.edu/globals/.

128

https://doi.org/10.1021/j150620a019
https://doi.org/10.1117/1.JBO.21.1.017001
https://doi.org/10.1109/JSTQE.2005.857685
https://doi.org/10.1021/ac981050d
https://doi.org/10.1021/ac00176a007
https://doi.org/10.1155/2018/1371386
https://doi.org/10.1117/1.3309737
https://doi.org/10.1364/OL.40.000336
https://doi.org/10.1364/OE.24.006899
https://doi.org/10.1529/biophysj.107.120154
https://www.lfd.uci.edu/globals/

Bibliography

[97] C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E.

Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes

different metabolic states of germ cells in a live tissue”, Proceedings of the

National Academy of Sciences, vol. 108, no. 33, pp. 13 582–13 587, 2011. DOI:

10.1073/pnas.1108161108.

[98] A. Celli, S. Sanchez, T. Behne M. abd Hazlett, E. Gratton, and T. Mauro, “The

epidermal Ca2+ gradient: measurement using the phasor representation of

fluorescent lifetime imaging”, Byophisics Journal, vol. 98, no. 5, pp. 911–921,

2010. DOI: 10.1016/j.bpj.2009.10.055.

[99] A. Ulku, A. Ardelean, M. Antolovic, S. Weiss, E. Charbon, C. Bruschini, and

X. Michalet, “Wide-field time-gated SPAD imager for phasor-based FLIM ap-

plications”, Methods and Applications in Fluorescence, vol. 8, no. 2, p. 024 002,

2020. DOI: 10.1088/2050-6120/ab6ed7.

[100] X. Michalet, “Continuous and discrete phasor analysis of binned or time-gated

periodic decays”, AIP Advances, vol. 11, p. 035 331, 2021. DOI: 10.1088/2050-

6120/ab6ed7.

[101] M.-J. Lee and E. Charbon, “Progress in single-photon avalanche diode im-

age sensors in standard CMOS: From two-dimensional monolithic to three-

dimensional-stacked technology”, Japanese journal of applied physics, vol. 57,

no. 10, 1002A3, 2018.

[102] P. W. R. Connolly, X. Ren, R. K. Henderson, and G. S. Buller, “Hot pixel classifi-

cation of single-photon avalanche diode detector arrays using a log-normal

statistical distribution”, Electronics letters, vol. 55, no. 18, pp. 1004–1006, 2019.

DOI: 10.1049/el.2019.1427.

[103] M. W. Fishburn, Fundamentals of CMOS Single-Photon Avalanche Diodes, 2012.

[Online]. Available: https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-

6b0b5c7fa0fe.

[104] I. M. Antolovic, S. Burri, C. Bruschini, R. Hoebe, and E. Charbon, “Nonunifor-

mity analysis of a 65-kpixel CMOS SPAD imager”, IEEE Transactions on Electron

Devices, vol. 63, no. 1, pp. 57–64, 2016. DOI: 10.1109/TED.2015.2458295.

[105] I. Gyongy, N. Calder, A. Davies, N. A. W. Dutton, R. R. Duncan, C. Rickman,

P. Dalgarno, and R. K. Henderson, “A 256×256 , 100-kfps, 61% fill-factor SPAD

image sensor for time-resolved microscopy applications”, IEEE Transactions

on Electron Devices, vol. 65, no. 2, pp. 547–554, 2018. DOI: 10.1109/TED.2017.

2779790.

[106] P. Seitz and A. Theuwissen, Eds., Single-photon imaging. Berlin: Springer Berlin,

Heidelberg, 2011, ISBN: 9783642184420.

129

https://doi.org/10.1073/pnas.1108161108
https://doi.org/10.1016/j.bpj.2009.10.055
https://doi.org/10.1088/2050-6120/ab6ed7
https://doi.org/10.1088/2050-6120/ab6ed7
https://doi.org/10.1088/2050-6120/ab6ed7
https://doi.org/10.1049/el.2019.1427
https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-6b0b5c7fa0fe
https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-6b0b5c7fa0fe
https://doi.org/10.1109/TED.2015.2458295
https://doi.org/10.1109/TED.2017.2779790
https://doi.org/10.1109/TED.2017.2779790

Bibliography

[107] C. Veerappan, Single-photon avalanche diodes for cancer diagnosis, 2016. [On-

line]. Available: https://doi.org/10.4233/uuid:7db13e84-9ced-4c9c-94fa-

8c2a14ad6679.

[108] M. W. Fishburn, Fundamentals of CMOS single-photon avalanche diodes, 2012.

[Online]. Available: https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-

6b0b5c7fa0fe.

[109] K. Morimoto and E. Charbon, “A Scaling Law for SPAD Pixel Miniaturization”,

Sensors, vol. 21, no. 10, 2021, ISSN: 1424-8220. DOI: 10.3390/s21103447.

[110] J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of mi-

crolenses fabricated on single-photon avalanche diode arrays for fill factor

recovery”, Opt. Express, vol. 22, no. 4, pp. 4202–4213, 2014. DOI: 10.1364/OE.22.

004202.

[111] I. Gyongy, A. Davies, B. Gallinet, N. A. Dutton, R. R. Duncan, C. Rickman,

R. K. Henderson, and P. A. Dalgarno, “Cylindrical microlensing for enhanced

collection efficiency of small pixel SPAD arrays in single-molecule localisation

microscopy”, Opt. Express, vol. 26, no. 3, pp. 2280–2291, 2018. DOI: 10.1364/

OE.26.002280.

[112] I. M. Antolovic, A. C. Ulku, E. Kizilkan, S. Lindner, F. Zanella, R. Ferrini, M.

Schnieper, E. Charbon, and C. Bruschini, “Optical-stack optimization for im-

proved SPAD photon detection efficiency”, in Quantum Sensing and Nano

Electronics and Photonics XVI, M. Razeghi, J. S. Lewis, E. Tournié, and G. A.

Khodaparast, Eds., International Society for Optics and Photonics, vol. 10926,

SPIE, 2019, 109262T. DOI: 10.1117/12.2511301.

[113] C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-

pixels CMOS single-photon avalanche diodes array for single-photon counting

from 300 nm to 900 nm”, Review of Scientific Instruments, vol. 84, no. 12,

p. 123 112, 2013. DOI: 10.1063/1.4850677.

[114] T. Seets, A. Ingle, M. Laurenzis, and A. Velten, Motion Adaptive Deblurring

with Single-Photon Cameras, 2020. DOI: 10.48550/ARXIV.2012.07931. [Online].

Available: https://arxiv.org/abs/2012.07931.

[115] S. Ma, S. Gupta, A. C. Ulku, C. Bruschini, E. Charbon, and M. Gupta, “Quanta

Burst Photography”, ACM Trans. Graph., vol. 39, no. 4, 2020. DOI: 10.1145/

3386569.3392470.

130

https://doi.org/10.4233/uuid:7db13e84-9ced-4c9c-94fa-8c2a14ad6679
https://doi.org/10.4233/uuid:7db13e84-9ced-4c9c-94fa-8c2a14ad6679
https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-6b0b5c7fa0fe
https://doi.org/10.4233/uuid:7ed6e57d-404e-4372-8053-6b0b5c7fa0fe
https://doi.org/10.3390/s21103447
https://doi.org/10.1364/OE.22.004202
https://doi.org/10.1364/OE.22.004202
https://doi.org/10.1364/OE.26.002280
https://doi.org/10.1364/OE.26.002280
https://doi.org/10.1117/12.2511301
https://doi.org/10.1063/1.4850677
https://doi.org/10.48550/ARXIV.2012.07931
https://arxiv.org/abs/2012.07931
https://doi.org/10.1145/3386569.3392470
https://doi.org/10.1145/3386569.3392470

Bibliography

[116] M. Wayne, A. Ulku, A. Ardelean, P. Mos, C. Bruschini, and E. Charbon, “A 500 ×

500 Dual-Gate SPAD Imager With 100% Temporal Aperture and 1 ns Minimum

Gate Length for FLIM and Phasor Imaging Applications”, IEEE Transactions on

Electron Devices, vol. 69, no. 6, pp. 2865–2872, 2022. DOI: 10.1109/TED.2022.

3168249.

[117] L. Gasparini, M. Zarghami, H. Xu, L. Parmesan, M. M. Garcia, M. Unternährer,

B. Bessire, A. Stefanov, D. Stoppa, and M. Perenzoni, “A 32×32-pixel time-

resolved single-photon image sensor with 44.64µm pitch and 19.48features

reaching 800kHz observation rate for quantum physics applications”, in 2018

IEEE International Solid - State Circuits Conference - (ISSCC), 2018, pp. 98–100.

DOI: 10.1109/ISSCC.2018.8310202.

[118] M. Zarghami, L. Gasparini, and D. Stoppa, “Optimal readout schemes in SPAD-

based time-correlated event detection sensor for quantum imaging appli-

cations”, in 2017 13th Conference on Ph.D. Research in Microelectronics and

Electronics (PRIME), 2017, pp. 373–376. DOI: 10.1109/PRIME.2017.7974185.

[119] S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, M. Wolf, and E. Charbon, “A high-

PDE, backside-illuminated SPAD in 65/40-nm 3D IC CMOS pixel with cas-

coded passive quenching and active recharge”, IEEE Electron Device Letters,

vol. 38, no. 11, pp. 1547–1550, 2017. DOI: 10.1109/LED.2017.2755989.

[120] M. Hayat, D. Ramirez, G. Rees, and M. Itzler, “Modeling Negative Feedback

in Single Photon Avalanche Diodes”, Proceedings of SPIE - The International

Society for Optical Engineering, vol. 7681, Apr. 2010. DOI: 10.1117/12.851914.

[121] Opalkelly.com, OpalKelly, 2021. [Online]. Available: https://opalkelly.com/

products/xem7360/.

[122] H. Xu, L. Pancheri, G.-F. D. Betta, and D. Stoppa, “Design and characterization

of a p+/n-well SPAD array in 150nm CMOS process”, Opt. Express, vol. 25,

no. 11, pp. 12 765–12 778, 2017. DOI: 10.1364/OE.25.012765.

[123] PTC2.5K-CH, 2022. [Online]. Available: https://www.teamwavelength.com/

product/ptc2-5k-ch-2-5-a-temperature-controller-chassis-mount/.

[124] flir.eu, FLIR ETS320, 2022. [Online]. Available: https://www.flir.eu/products/

ets320/.

[125] I. M. Antolovic, C. Bruschini, and E. Charbon, “Dynamic range extension for

photon counting arrays”, Opt. Express, vol. 26, no. 17, pp. 22 234–22 248, 2018.

DOI: 10.1364/OE.26.022234.

[126] CM100 - Single-channel confocal microscope for reflected-light imaging, 2022.

[Online]. Available: https://www.thorlabs.com/thorproduct.cfm?partnumber=

CM100.

131

https://doi.org/10.1109/TED.2022.3168249
https://doi.org/10.1109/TED.2022.3168249
https://doi.org/10.1109/ISSCC.2018.8310202
https://doi.org/10.1109/PRIME.2017.7974185
https://doi.org/10.1109/LED.2017.2755989
https://doi.org/10.1117/12.851914
https://opalkelly.com/products/xem7360/
https://opalkelly.com/products/xem7360/
https://doi.org/10.1364/OE.25.012765
https://www.teamwavelength.com/product/ptc2-5k-ch-2-5-a-temperature-controller-chassis-mount/
https://www.teamwavelength.com/product/ptc2-5k-ch-2-5-a-temperature-controller-chassis-mount/
https://www.flir.eu/products/ets320/
https://www.flir.eu/products/ets320/
https://doi.org/10.1364/OE.26.022234
https://www.thorlabs.com/thorproduct.cfm?partnumber=CM100
https://www.thorlabs.com/thorproduct.cfm?partnumber=CM100

Bibliography

[127] WFA2001 - Epi-illuminator module, 2022. [Online]. Available: https://www.

thorlabs.com/thorproduct.cfm?partnumber=CM100.

[128] PILAS, 2022. [Online]. Available: https://www.nktphotonics.com/products/

pulsed-diode-lasers/pilas/.

[129] P. W. R. Connolly, X. Ren, A. McCarthy, H. Mai, F. Villa, A. J. Waddie, M. R.

Taghizadeh, A. Tosi, F. Zappa, R. K. Henderson, and G. S. Buller, “High con-

centration factor diffractive microlenses integrated with CMOS single-photon

avalanche diode detector arrays for fill-factor improvement”, Appl. Opt., vol. 59,

no. 14, pp. 4488–4498, 2020. DOI: 10.1364/AO.388993.

[130] C. Zhang, S. Lindner, I. M. Antolović, J. Mata Pavia, M. Wolf, and E. Charbon,

“A 30-frames/s, 252×144 SPAD Flash LiDAR With 1728 Dual-Clock 48.8-ps

TDCs, and Pixel-Wise Integrated Histogramming”, IEEE Journal of Solid-State

Circuits, vol. 54, no. 4, pp. 1137–1151, 2019. DOI: 10.1109/JSSC.2018.2883720.

[131] L. Sbaiz, F. Yang, E. Charbon, S. Susstrunk, and M. Vetterli, “The gigavision

camera”, in 2009 IEEE International Conference on Acoustics, Speech and Signal

Processing, 2009, pp. 1093–1096. DOI: 10.1109/ICASSP.2009.4959778.

[132] E. R. Fossum, J. Ma, S. Masoodian, L. Anzagira, and R. Zizza, “The Quanta

Image Sensor: Every Photon Counts”, Sensors, vol. 16, no. 8, 2016, ISSN: 1424-

8220. DOI: 10.3390/s16081260. [Online]. Available: https://www.mdpi.com/

1424-8220/16/8/1260.

[133] M.-J. Lee, A. R. Ximenes, P. Padmanabhan, T. J. Wang, K. C. Huang, Y. Yamashita,

D. N. Yaung, and E. Charbon, “A back-illuminated 3d-stacked single-photon

avalanche diode in 45nm cmos technology”, in 2017 IEEE International Elec-

tron Devices Meeting (IEDM), 2017, pp. 16.6.1–16.6.4. DOI: 10.1109/IEDM.2017.

8268405.

[134] Y. Kagawa, S. Hida, Y. Kobayashi, K. Takahashi, S. Miyanomae, M. Kawamura,

H. Kawashima, H. Yamagishi, T. Hirano, K. Tatani, H. Nakayama, K. Ohno,

H. Iwamoto, and S. Kadomura, “The Scaling of Cu-Cu Hybrid Bonding For

High Density 3D Chip Stacking”, in 2019 Electron Devices Technology and

Manufacturing Conference (EDTM), 2019, pp. 297–299. DOI: 10.1109/EDTM.

2019.8731186.

[135] S.-W. Kim, F. Fodor, N. Heylen, S. Iacovo, J. De Vos, A. Miller, G. Beyer, and E.

Beyne, “Novel Cu/SiCN surface topography control for 1 µm pitch hybrid wafer-

to-wafer bonding”, in 2020 IEEE 70th Electronic Components and Technology

Conference (ECTC), 2020, pp. 216–222. DOI: 10.1109/ECTC32862.2020.00046.

132

https://www.thorlabs.com/thorproduct.cfm?partnumber=CM100
https://www.thorlabs.com/thorproduct.cfm?partnumber=CM100
https://www.nktphotonics.com/products/pulsed-diode-lasers/pilas/
https://www.nktphotonics.com/products/pulsed-diode-lasers/pilas/
https://doi.org/10.1364/AO.388993
https://doi.org/10.1109/JSSC.2018.2883720
https://doi.org/10.1109/ICASSP.2009.4959778
https://doi.org/10.3390/s16081260
https://www.mdpi.com/1424-8220/16/8/1260
https://www.mdpi.com/1424-8220/16/8/1260
https://doi.org/10.1109/IEDM.2017.8268405
https://doi.org/10.1109/IEDM.2017.8268405
https://doi.org/10.1109/EDTM.2019.8731186
https://doi.org/10.1109/EDTM.2019.8731186
https://doi.org/10.1109/ECTC32862.2020.00046

Bibliography

[136] Y. Kagawa, T. Kamibayashi, Y. Yamano, K. Nishio, A. Sakamoto, T. Yamada, K.

Shimizu, T. Hirano, and H. Iwamoto, “Development of face-to-face and face-

to-back ultra-fine pitch Cu-Cu hybrid bonding”, in 2022 IEEE 72nd Electronic

Components and Technology Conference (ECTC), 2022, pp. 306–311. DOI: 10.

1109/ECTC51906.2022.00057.

[137] S. A. I. Quadri and M. Z. Jahangir, “Design, Implementation and Performance

Comparison of Different Branch Predictors on Pipelined-CPU”, in 2017 Inter-

national Conference on Computer, Electrical and Communication Engineering

(ICCECE), 2017, pp. 1–7. DOI: 10.1109/ICCECE.2017.8526196.

[138] J. Balfour, R. Harting, and W. Dally, “Operand Registers and Explicit Operand

Forwarding”, IEEE Computer Architecture Letters, vol. 8, no. 2, pp. 60–63, 2009.

DOI: 10.1109/L-CA.2009.45.

[139] S. Hily and A. Seznec, “Out-of-order execution may not be cost-effective on

processors featuring simultaneous multithreading”, in Proceedings Fifth In-

ternational Symposium on High-Performance Computer Architecture, 1999,

pp. 64–67. DOI: 10.1109/HPCA.1999.744331.

[140] Y. Gao and X. Li, “Formal Verification of Out-of-Order Processor”, in 2009 Inter-

national Conference on Computer Modeling and Simulation, 2009, pp. 129–135.

DOI: 10.1109/ICCMS.2009.47.

[141] T. Selvameena and R. A. Prasath, “Out-of-order execution on reconfigurable

heterogeneous MPSOC using particle swarm optimization”, in 2017 Interna-

tional Conference on Innovations in Information, Embedded and Communica-

tion Systems (ICIIECS), 2017, pp. 1–6. DOI: 10.1109/ICIIECS.2017.8276021.

[142] J. Farrell and T. Fischer, “Issue logic for a 600-MHz out-of-order execution

microprocessor”, IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 707–

712, 1998. DOI: 10.1109/4.668985.

[143] S. G. Nayak, “Dynamic Branch Prediction for Embedded System Applications”,

in 2019 International Conference on Communication and Electronics Systems

(ICCES), 2019, pp. 966–969. DOI: 10.1109/ICCES45898.2019.9002301.

[144] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn, “Virtual Program

Counter (VPC) Prediction: Very Low Cost Indirect Branch Prediction Using

Conditional Branch Prediction Hardware”, IEEE Transactions on Computers,

vol. 58, no. 9, pp. 1153–1170, 2009. DOI: 10.1109/TC.2008.227.

[145] H. Arora, S. Kotecha, and R. Samyal, “Dynamic Branch Prediction Modeller for

RISC Architecture”, in 2013 International Conference on Machine Intelligence

and Research Advancement, 2013, pp. 397–401. DOI: 10.1109/ICMIRA.2013.84.

133

https://doi.org/10.1109/ECTC51906.2022.00057
https://doi.org/10.1109/ECTC51906.2022.00057
https://doi.org/10.1109/ICCECE.2017.8526196
https://doi.org/10.1109/L-CA.2009.45
https://doi.org/10.1109/HPCA.1999.744331
https://doi.org/10.1109/ICCMS.2009.47
https://doi.org/10.1109/ICIIECS.2017.8276021
https://doi.org/10.1109/4.668985
https://doi.org/10.1109/ICCES45898.2019.9002301
https://doi.org/10.1109/TC.2008.227
https://doi.org/10.1109/ICMIRA.2013.84

Bibliography

[146] P. J. Koopman, Ed., Stack computers: the new wave. Pittsburgh: Ellis Horwood,

1989, ISBN: 0745804187.

[147] F. Gramuglia, High-Performance CMOS SPAD-Based Sensors for Time-of-Flight

PET Applications, 2022. [Online]. Available: https://infoscience.epfl.ch/record/

292253?ln=en.

[148] PULP platform, 2022. [Online]. Available: https://pulp-platform.org.

[149] PicoBlaze, 2022. [Online]. Available: https : / / www. xilinx . com / products /

intellectual-property/picoblaze.html.

[150] ShivyC, 2022. [Online]. Available: https://github.com/ShivamSarodia/ShivyC.

[151] F. Gutierrez-Barragan, A. Ingle, T. Seets, M. Gupta, and A. Velten, “Compres-

sive single-photon 3d cameras”, in 2022 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), 2022, pp. 17 833–17 843. DOI: 10.1109/

CVPR52688.2022.01733.

[152] D. Stoppa, A reconfigurable QVGA/Q3VGA direct Time-of-Flight 3D imaging

system with on-chip depth-map computation in 45/40nm 3D-stacked BSI SPAD

CMOS, 2021.

[153] P.-Y. Taloud, S. Bernhard, A. Biber, M. Boehm, P. Chelvam, A. Cruz, A. D. Chele,

R. Gancarz, K. Ishizaki, P. Jantscher, T. Jessenig, R. Kappel, L. Lin, S. Lindner,

H. Mahmoudi, A. Makkaoui, J. Miguel, P. Padmanabhan, L. Perruchoud, D.

Perenzoni, G. Roehrer, A. Srowig, B. Vaello, and D. Stoppa, A 1.2K dots direct

Time-of-Flight 3D Imaging System with on-chip depth map computation, in

45/22nm 3D-stacked BSI SPAD CMOS, 2022.

[154] C. Peters, J. Klein, M. B. Hullin, and R. Klein, “Solving Trigonometric Moment

Problems for Fast Transient Imaging”, ACM Trans. Graph., vol. 34, no. 6, 2015.

DOI: 10.1145/2816795.2818103.

[155] A. Simonetto, G. Agresti, P. Zanuttigh, and H. Schäfer, “Lightweight Deep

Learning Architecture for MPI Correction and Transient Reconstruction”, IEEE

Transactions on Computational Imaging, vol. 8, pp. 721–732, 2022. DOI: 10.

1109/TCI.2022.3197928.

[156] Z. Wu, C. Zuo, W. Guo, T. Tao, and Q. Zhang, “High-speed three-dimensional

shape measurement based on cyclic complementary Gray-code light”, Opt.

Express, vol. 27, no. 2, pp. 1283–1297, 2019. DOI: 10.1364/OE.27.001283.

[157] Q. Zhang, X. Su, L. Xiang, and X. Sun, “3-D shape measurement based on

complementary Gray-code light”, Optics and Lasers in Engineering, vol. 50,

no. 4, pp. 574–579, 2012, Computational Optical Measurement, ISSN: 0143-

8166. DOI: https://doi.org/10.1016/j.optlaseng.2011.06.024.

134

https://infoscience.epfl.ch/record/292253?ln=en
https://infoscience.epfl.ch/record/292253?ln=en
https://pulp-platform.org
https://www.xilinx.com/products/intellectual-property/picoblaze.html
https://www.xilinx.com/products/intellectual-property/picoblaze.html
https://github.com/ShivamSarodia/ShivyC
https://doi.org/10.1109/CVPR52688.2022.01733
https://doi.org/10.1109/CVPR52688.2022.01733
https://doi.org/10.1145/2816795.2818103
https://doi.org/10.1109/TCI.2022.3197928
https://doi.org/10.1109/TCI.2022.3197928
https://doi.org/10.1364/OE.27.001283
https://doi.org/https://doi.org/10.1016/j.optlaseng.2011.06.024

Bibliography

[158] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural compu-

tation, vol. 9, pp. 1735–80, Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.

[159] VisIR-780, 2022. [Online]. Available: https://www.picoquant.com/products/

category / high - power- and - uv - lasers / visir- versatile - picosecond - laser-

module#custom1.

[160] F. Gramuglia, P. Keshavarzian, E. Kizilkan, C. Bruschini, S. S. Tan, M. Tng, E.

Quek, M.-J. Lee, and E. Charbon, “Engineering Breakdown Probability Profile

for PDP and DCR Optimization in a SPAD Fabricated in a Standard 55 nm BCD

Process”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2:

Optical Detectors, pp. 1–10, 2022. DOI: 10.1109/JSTQE.2021.3114346.

[161] K. Morimoto, M.-L. Wu, A. Ardelean, and E. Charbon, “Superluminal Motion-

Assisted Four-Dimensional Light-in-Flight Imaging”, Phys. Rev. X, vol. 11,

p. 011 005, 1 2021. DOI: 10.1103/PhysRevX.11.011005.

135

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.picoquant.com/products/category/high-power-and-uv-lasers/visir-versatile-picosecond-laser-module#custom1
https://www.picoquant.com/products/category/high-power-and-uv-lasers/visir-versatile-picosecond-laser-module#custom1
https://www.picoquant.com/products/category/high-power-and-uv-lasers/visir-versatile-picosecond-laser-module#custom1
https://doi.org/10.1109/JSTQE.2021.3114346
https://doi.org/10.1103/PhysRevX.11.011005

Chip gallery

kiloPhase (Chapter 2). Die size is 9.5×3.3 mm2.

MegaPhase (Chapter 3). Die size is 8×7.5 mm2.

137

Bibliography

UltraPhase bottom tier (Chapter 4). Die size is 2×2 mm2.

UltraPhase top tier (Chapter 4). Die size is 0.86×0.95 mm2.

138

List of publications

Journal articles as first author

• A. C. Ulku*, A. Ardelean*, M. Antolovic, S. Weiss, E. Charbon, C. Bruschini

and X. Michalet, "Wide-Field Time-Gated SPAD Imager for Phasor-Based FLIM

Applications", Methods and Applications in Fluorescence, vol. 8, no. 2, p. 024002,

2020. (*Equally contributing authors)

• K. Morimoto*, M. L. Wu*, A. Ardelean* and E. Charbon, "Superluminal Motion-

Assisted Four-Dimensional Light-in-Flight Imaging", Physical Review X, vol. 11,

2021. (*Equally contributing authors)

Journal articles as co-author

• K. Morimoto, A. Ardelean, M. L. Wu, A. C. Ulku, M. Antolovic, C. Bruschini and

E. Charbon, "Megapixel Time-Gated SPAD Image Sensor for 2D and 3D Imaging

Applications", Optica, vol. 7, 2020.

• A. Muntean, E. Venialgo, A. Ardelean, A. Sachdeva, E. Ripiccini, D. Palubiak,

C. Jackson and E. Charbon, "Blumino: The First Fully Integrated Analog SiPM

With On-Chip Time Conversion", IEEE Transactions on Radiation and Plasma

Medical Sciences, vol. PP, p. 1-1, 2020.

• M. Wayne, A. C. Ulku, A. Ardelean, P. Mos, C. Bruschini and E. Charbon, "A 500×
500 Dual-Gate SPAD Imager With 100% Temporal Aperture and 1 ns Minimum

Gate Length for FLIM and Phasor Imaging Applications", IEEE Transactions on

Electron Devices, vol. 69, p. 2865-2872, 2022.

• M. Wayne,A. C. Ulku, P. Mos, A. Ardelean, E. Sie, C. Bruschini, F. Marsili and E.

Charbon, "High-sensitivity multispeckle diffuse correlation spectroscopy with a

500×500 SPAD array", submitted to Biomedical Optics Express, 2022.

139

List of publications

Conference articles as first author

• A. Ardelean, A. C. Ulku, X. Michalet, E. Charbon and C. Bruschini, "Fluorescence

Lifetime Imaging with a Single-Photon SPAD Array Using Long Overlapping

Gates: an Experimental and Theoretical Study", Proceedings of SPIE–the Inter-

national Society for Optical Engineering, vol. 10882, p. 33, 2019.

Conference articles as co-author

• F. Gramuglia, A. Muntean, E. Venialgo, M.J. Lee, S. Lindner, M. Motoyoshi, A.
Ardelean, C. Bruschini and E. Charbon, "CMOS 3D-Stacked FSI Multi-Channel

Digital SiPM for Time-of-Flight PET Applications", Proceedings of IEEE Nuclear

Science Symposium and Medical Imaging Conference (NSS/MIC), 2020.

Conference presentations

• A. C. Ulku*, A. Ardelean*, P. Mos, E. Charbon and C. Bruschini, "SwissSPAD3 - a

Dual-Gate Photon-Counting SPAD Sensor for Widefield FLIM Imaging", Focus

on Microscopy, 2021, Conference presentation. (*Equally contributing authors)

• A. C. Ulku, A. Ardelean, M. Antolovic, S. Weiss, E. Charbon, C. Bruschini and X.

Michalet, "Wide-Field Time-Gated SPAD Imager for Phasor-Based FLIM Appli-

cations", Biophysical Society Annual Meeting, 2020, Poster.

140

Curriculum vitae

Andrei Ardelean

1992 Born in Timis, oara, Romania

Education

2017 - 2022 Ecole Polytechnique Fédérale de Lausanne (EPFL)
Advanced Quantum Architecture Laboratory (AQUA)
Lausanne, Switzerland
Ph.D. in Microelectronics
Thesis: "Computational Imaging SPAD Cameras"

2015 - 2017 Delft University of Technology (TUDelft)
Circuit and Systems Group (CAS)
Delft, The Netherlands
M.Sc. in Microelectronics
Thesis: "Energy-efficient Multipath Ring Network for Heterogeneous
Clustered Neuronal Arrays"

2011 - 2015
Politehnica University of Timis, oara (UPT)
Timis, oara, Romania
B.Sc in Electronics Engineering
Thesis: "Control of a Ball-and-Plate System with an Artificial
Neural Network on FPGA"

141

Curriculum vitae

Professional Experience

2016 - 2016 NASA Jet Propulsion Laboratory
Pasadena, California, USA
Advanced UV/Vis/NIR Detector Arrays, Systems and Nanoscience Group
Intern

2014 - 2015 HELLA Romania
Timis, oara, Romania
Advanced Engineering Group
Hardware Developer

142

	Acknowledgements
	Abstract (English/Français)
	Contents
	List of figures
	List of tables
	List of acronyms
	Introduction
	Computational imaging
	FLIM
	Photon counting techniques
	Phasor-based FLIM

	SPAD
	Technology and implementation
	Metrology

	Research motivation
	Scientific contributions
	Thesis structure

	kiloPhase
	Motivation
	Processing flow
	Architecture
	Pixel
	Token-passing readout
	Bus manager
	Accumulator bank
	Computational unit
	RAM bank

	Implementation
	Characterization
	Camera system
	Breakdown voltage
	Dark count rate
	Crosstalk
	PDP
	Power consumption
	Gate profile
	Frame rate
	Data rate
	Microlenses

	Conclusion

	MegaPhase
	Motivation
	Processing flow
	Architecture
	Pixel
	Computational unit
	Readout

	Implementation
	Top tier
	Bottom tier

	Design verification
	Conclusion

	UltraPhase
	Motivation
	Architecture
	Reconfigurable front end
	Timing module
	Processing module
	Control module
	Processor array

	Implementation
	Top tier
	Bottom tier

	Programming
	Instructions
	Assembler
	Compiler

	Characterization
	Power consumption
	Timing performance

	Applications
	ToF histogram compression
	LSTM LiDAR

	Conclusion

	Conclusion
	Summary
	Future work

	Appendix
	Bibliography
	Chip gallery
	List of publications
	Curriculum vitae

