
Electric Power Systems Research 217 (2023) 109102

Available online 12 January 2023
0378-7796/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Current propagation type self-consistent leader-return stroke model 

Vernon Cooray a,*, Marcos Rubinstein b, Farhad Rachidi c 

a Department of Electrical Engineering, Uppsala University, 75237 Uppsala, Sweden 
b HEIG-VD, University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland 
c Electromagnetic Compatibility Laboratory, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland   

A R T I C L E  I N F O   

Keywords: 
Lightning 
Return stroke 
Modelling 
Lightning leader 
Return stroke modeles 

A B S T R A C T   

A current propagation type return stroke model which is consistent with the estimated distribution of the charge 
on the leader channel is described. The model takes into account the dispersion of the return stroke current along 
the return stroke channel. The model is capable of generating lightning return stroke electromagnetic fields that 
are in close agreement with experimental observations. The model could also be used to estimate the electric 
fields from the leader-return stroke combination at any given distance.   

1. Introduction 

Engineers use return stroke models to estimate electromagnetic 
fields generated by lightning at different distances [1]. Return stroke 
models can be categorized into physics-based models, Transmission Line 
models, Electromagnetic models, Waveguide models, and Engineering 
models [1–3]. Out of these different model types, engineering models 
are the best suited for the calculation of electromagnetic fields due to the 
fact that their predictions agree reasonably well with measured elec
tromagnetic fields. Engineering models can be divided into Current 
Propagation (CP), Current Generation (CG), and Current Dissipation 
(CD) models [1], although Current Propagation models are in fact a 
special case of current dissipation models and all these model types can 
be considered as special cases of a more general return stroke model, 
called the Current Model [4]. This general model can be reduced to 
either CP, CG or CD by a suitable selection of model parameters. 

The most popular engineering models are the Modified Transmission 
Line (MTL) type models [5–7]. MTL type models are actually modifi
cations of the Transmission Line Model (TL) [8]. In these models, the 
way in which the return stroke current amplitude decreases with height, 
i.e., the current attenuation function, is specified as an input parameter. 
In a recent paper, Cooray et al. [9] showed that the information con
cerning the current attenuation function in MTL type models can be 
extracted from the distant radiation field. They also pointed out that a 
necessary condition for the MTL type models to generate all the exper
imentally observed features of the return stroke electromagnetic fields is 
the inclusion of the current dispersion. Based on these considerations, 

they came up with an MTL type model that incorporates current 
dispersion and whose attenuation function is derived from the typical 
shape of the measured return stroke radiation fields. The model is called 
Modified Transmission Line Model with Derived Attenuation Function 
(MTLD). 

The input parameters of CP models are the channel base current, the 
current attenuation function that describes the way in which the current 
is attenuated with height, the equations describing the current disper
sion and the return stroke speed. The attenuation function can be con
verted directly into a function that describes the distribution of the 
charge deposited by the return stroke along the channel and vice versa 
[10]. Thus, the current attenuation function of MTL models can also be 
obtained if the distribution of the charge deposited by the return stroke 
(from here onwards this parameter is called return stroke charge dis
tribution) is estimated. The goal of this paper is to develop an engi
neering model that belongs to the CP type with the distribution of the 
charge deposited by the return stroke, channel base current, and return 
stroke speed as input parameters. The return stroke charge distribution 
necessary for the model is obtained from the work conducted by Cooray 
et al. [11], who estimated the charge distribution along the leader 
channel as a function of the return stroke peak current. For this reason, 
the model could be used in a self-consistent manner by combining it with 
a down coming leader to estimate not only the return stroke fields but 
also the electromagnetic fields generated by the leader-return stroke 
combination. For this reason, the engineering model that we will 
develop here will be called SLR-CP with SLR standing for Self consistent 
Leader-Return stroke model and CP standing for Current Propagation. 
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2. SLR-CP model 

In the CP models used frequently in the literature [5–8], the input 
parameters are the channel base current, current attenuation function 
with height and the return stroke speed. From these three input pa
rameters, the measurable quantities are the channel base current and the 
speed of the return stroke. The current attenuation function can be 
either estimated from the distant radiation field [9] or from any esti
mation of the distribution of the charge deposited by the return stroke. 
However, in reference [9] it was shown that this inverse problem can 
give erroneous results if the current dispersion is not taken into account. 

The input parameters of the SLR-CP model are the distribution of the 
charge neutralized by the return stroke, the channel base current, and 
the return stroke speed. We will utilize the leader charge distribution 
derived by Cooray et al. [11] to extract the distribution of the charge 
deposited by both first and subsequent return strokes along the leader 
channel (henceforth called the first return stroke charge or subsequent 
return stroke charge) and, from it, the current attenuation function. We 
will also include the current dispersion along the return stroke channel 
using a procedure identical to that used previously by Cooray et al. [11]. 
The return stroke speed is assumed to be uniform and equal to 1.0 × 108 

m/s for first and 1.5 × 108 m/s for subsequent return strokes. However, 
it is a trivial matter to change the uniform speed to a non-uniform one. 

2.1. The distribution of the charge deposited by the return stroke along the 
leader channel and the channel base current waveform 

In a recent study, utilizing the return stroke current waveforms of 
downward negative lightning flashes measured by Berger [12], Cooray 
et al. [11] obtained the charge brought to ground by the first 100 μs of 
the first return stroke and the first 50 μs of the subsequent return strokes. 
They found a strong correlation between the peak return stroke current 
and the transferred charge to ground by return strokes. Combining this 
information with the bi-directional leader model [13] and a simplified 
cloud model as described in [11], they investigated how this charge was 
distributed along the stepped and dart leader channels. The results ob
tained in that study can be approximated by 

ρl(ξ) = Ir

[

a0

(

1 −
ξ

H − z0

)(
1 −

z0

H

)
+
(

1 −
z0

H

) (a + bξ)
1 + cξ + dξ2

]

(1) 

In the above equation, z0 is the vertical height of the tip of the leader, 
H is the total vertical length of the leader channel in meters, ρ(ξ) is the 
charge per unit length of the leader channel located at a vertical distance 
ξ from the tip of the leader channel and Ir is the peak return stroke 
current in kA. Observe that Eq. (1) is slightly different to the one given in 

[11]. Eq. (1) is simpler than the one given in that reference but it gen
erates an identical charge distribution. The geometry and relevant pa
rameters are identified in Fig. 1a. 

In the case of first return strokes, the charge per unit length of the 
stepped leader channel ρsl is given when a0= 1.476 × 10− 5 Cm− 1 kA− 1, 
a=4.857 × 10− 5 Cm− 1kA− 1,b =3.909 × 10− 6 Cm− 2kA− 1, c=0.522 m− 1, 
and d =3.73 × 10− 3 m− 2. In the case of dart leaders, the charge per unit 
length ρdlis obtained with a0= 5.09 × 10− 5 Cm− 1kA− 1, a=1.325 × 10− 6 

Cm− 1kA− 1, b =7.06 × 10− 6 Cm− 2kA− 1, c=2.089 m− 1, and d =1.492 ×
10− 2 m− 2. Observe that this equation represents the charge distribution 
of a leader channel of length H corresponding to a return stroke peak 
current with peak amplitudeIp. 

Cooray [14] utilized the expression for the leader charge distribution 
derived by Cooray et al. [11] to estimate the distribution of charge per 
unit length deposited by the return stroke on the leader channel. In 
deriving this, he appealed to the same bidirectional leader model that 
was utilized by Cooray et al. [11] in estimating the leader charge dis
tribution given above. According to the bidirectional leader model, 
during the return stroke process, in addition to neutralizing the negative 
charge (we are considering a negative return stroke here) already 
located on the leader channel, additional positive charge will be added 
along the channel [13]. According to this work, the derived charge per 
unit length ρ(z) deposited by a return stroke as a function of the length 
along the channel, in which z is the position from the ground to height z 
along the return stroke channel, is given by 

ρret(z) = Ir

{

a0 +
(a + zb)

1 + cz + dz2

}

(2) 

Note that in (2), the charge is expressed as a function of the height z 
above the ground, as opposed to (1) which is expressed as a function of 
distance ξ from the tip of the leader channel. The geometry and relevant 
parameters are identified in Fig. 1b. 

In the above equation, Ir is the peak return stroke current in kA. 
Observe that Eqs. (1) and (2) represent the charge deposited by both first 
and subsequent return stroke currents. It is also important to point out 
that the charge distributions given by Eqs. (1) and (2) are based on static 
calculations and they neglect the dynamics of the charging of the leader 
channels. For example, consider the dart leader. At the time at which the 
dart leader tip reaches the ground, the dart leader current peak occurs at 
a height of about ten meters above the ground. This is the case because 
the dart leader current risetime is about 1 μs and the speed of the dart 
leader close to ground is about 107 m/s [15]. In the case of first return 
strokes, the initial phase of the return stroke takes place along the 
streamer region of the stepped leader, where the charge density could be 
less than that on the fully developed part of the stepped leader channel. 

Fig. 1. Geometry and relevant parameters for the evaluation of the charge distribution along the leader channel (a) and the charge distribution deposited by the 
return stroke along the leader channel. 
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Thus, even in the case of first return strokes, one can expect the charge 
density to increase initially over a length roughly on the order of a step 
length, i.e., about 10 m [16]. In order to take these effects into account, 
the charge distribution is modified slightly by assuming that the peak of 
the distribution is reached not at ground level as in Eq. (1) but at some 
height. This is done simply by multiplying the charge distributions by a 
factor (1 − e− ξ/λ). This modification gives the charge density along a 
fully extended leader channel as 

ρl(z) =
(
1 − e− z/λ)Ir

{

a0

(
1 −

z
H

)
+

(a + bz)
1 + cz + dz2

}

(3) 

The resulting charge distribution of the return stroke is 

ρret(z) =
(
1 − e− z/λ)Ir

{

a0 +
(a + bz)

1 + cz + dz2

}

(4) 

Note that the expression given in Eq. (4) is the same as that in Eq. (2) 
except for the factor that appears outside the bracket. In our analysis, we 
will select λ= 10 m for both first and subsequent strokes. It is important 
to point out that this change in the charge distribution does not influence 
the results of the calculations to be presented here. Thus, for all practical 
purposes, one can use the charge distributions given by Eqs. (1) and (2) 
in the model. In a recent study, the same charge distribution was used in 
[17] to construct a CG type return stroke model which could predict the 
effect of the local ground conductivity at the strike point on the return 
stroke current parameters. 

The charge distributed by the first and subsequent return strokes as 
given by Eq. (4) are depicted in Fig. 2. Note that the charge deposited by 
the return stroke increases initially with height, reaches a peak and then 
decreases rapidly with height approaching a constant value for heights 
larger than about 1 km. 

Consider a return stroke channel of height H. The total charge, Q, 
deposited along the channel by the return stroke is given by 

Q =

∫H

0

ρ(ζ)dζ (5) 

If we assume that the current at the upper channel end is zero 
(boundary condition), then this charge should be equal to the total 
charge contained in the channel-base current, Ib(t). That is 

Q =

∫H

0

ρ(ζ)dζ =

∫∞

0

Ib(t)dt (6) 

This shows that for a given channel-base current with a specified 
peak current, there is a specific channel length that accommodates its 
charge or vice versa. For example, the total charge available for a first 
return stroke current of 30 kA is 1.89 C, 2.34 C, or 2.79 C respectively for 
4 km, 5 km and 6 km long channels. Similarly, for a subsequent stroke of 
12 kA, the corresponding charges are 0.26 C, 0.33 C, and 0.39 C. This 
means the channel length and the channel-base current cannot be freely 
specified because both parameters depend on each other. In the model, 
we can select the channel-base current waveform and fit the height of 
the channel to the selected current waveform or we can select the 
channel height and fit the duration of the current waveform to match the 
resulting charge. In this paper, we have decided to select the channel 
height as the independent parameter. A discussion on this point is given 
in Section 4. 

In the calculations to be presented here, we will utilize a channel 
height of 6 km for both first and subsequent strokes. This will fix the 
charge associated with the channel-base current waveform. There are 
several standard current waveforms available to represent first and 
subsequent strokes. The charge associated with them can be changed by 
changing the decay time constant of the current waveform. The first 
return stroke current waveform based on Heidler’s functions is given by 
[18] 

i(t) = i01
(t/τ11)

2

(t/τ11)
2
+ 1

e− t/τ12 (7)  

with i01 = 30.57 kA, τ11 = 0.09 μs andτ12 = 92.0 μs. The channel-base 
current of the subsequent return stroke is given by 

i(t) = i01
(t/τ11)

2

(t/τ11)
2
+ 1

e− t/τ12 + i02
(t/τ21)

2

(t/τ21)
2
+ 1

e− t/τ22 (8)  

with the parameters i01 = 13.751 kA, i02 = 9.252 kA, τ11 = 0.055 μs, τ12 
= 2.0 μs, τ21 = 2.0 μs, and τ22 = 41.6 μs. These are similar to the typical 
current waveforms used in the literature except in the case of subsequent 
strokes which has somewhat smaller duration than the ones used in 
practice. Both these current waveforms dissipate all their charge along 

(a)                                                                             (b)

Fig. 2. The charge deposited by (a) a 30-kA-peak first return stroke (curve i) and by (b) a 12-kA-peak subsequent return stroke (curve i) along the leader channel. The 
curves marked ii show the charge distribution over the first 600 m on 10 times longer length scale. 
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the 6 km long channel and the current amplitude at the channel end goes 
to zero. With the selected parameters, the net charge transported up by 
these two currents are the values given above, 2.8 C and 0.39 C, 
respectively. These current waveforms are depicted in Fig. 3. 

2.2. Current attenuation function 

Once the charge deposited by the return stroke as a function of height 
is known, one can convert it directly to the current attenuation function 
in the current propagation type return stroke models. The relationship 
between the attenuation function and the charge deposited per unit 
length by the return stroke at any given height is given by [10] 

ρ(ζ) = −
∂A(ζ)

∂ζ
Q (9) 

Note that this equation is valid for a dispersion-free propagation. It is 
also valid when the dispersion function itself does not lead to charge 
deposition along the channel. 

In the above Equationρ(ζ) is the charge dissipated by the return 
stroke per unit length, A is the current attenuation function, ζ is the 
length along the channel and Q is the total charge dissipated by the 
return stroke along the channel. Knowing the channel-base current 
waveform, one can estimate the current attenuation function from the 
above equation. The attenuation function extracted for the first return 
stroke and the subsequent return strokes are shown by solid lines 
marked ‘1′ in Fig. 4a and b. The attenuation function can be closely 
approximated by the function 

A(ζ) = 1 −
ζ
Lc

(10)  

where Lc is the total length of the channel. We have used the subscript c 
to indicate that one cannot freely select this length but it is directly 
coupled to the total charge dissipated by the return stroke. This is also 
plotted in Fig. 4a and b by the lines marked ‘2′. 

It is important to point out that a linearly decreasing attenuation 
function corresponds to a constant charge deposition along the leader 
channel by the return stroke. However, the return stroke charge distri
butions shown in Fig. 2 deviate significantly from a constant charge 
distribution at small heights. Thus, even though the curves ‘1′ and ‘2′ in 
Fig. 4 appear almost the same, they have enough differences to affect the 
finer details of the return stroke field. 

2.3. Current dispersion 

As shown recently by Cooray et al. [9], in order to generate results in 
agreement with experiment, in addition to current attenuation, the re
turn stroke current in the CP type models should undergo dispersion as it 
propagates along the channel. In reference [9], the presence of current 
dispersion is introduced into return stroke models by an expression for 
the dispersion of an impulse current as it propagates along the channel. 
We will use the same expression here. The expression used to represent 
the dispersion of an impulse as a function of the length z measured along 
the channel is given by 

Rδ(t, z) =
e− t/tr (z)

tr(z)
(11) 

The parameter tr(z), which is a measure of the width of the response 
function, is given by 

tr(z) = t0

(
1 − e− z2/λ2

r

)
(12) 

Note that Eq. (11) reduces to an impulse function at ground level and 
its width increases with increasing height. Note that λr is a constant that 
defines how the width of the response function changes with height. 
Observe that the time integral of Rδ(t, z) is equal to unity, a necessary 
criterion to ensure that there is no charge deposition along the channel 
as the current disperses. 

This dispersion formula also shows that a step current pulse at 
ground level will change with height according to the expression 

RH(t, z) = 1 − e− t/tr (ζ) (13) 

Observe that the risetime of the step current pulse increases initially 
but it will be clamped to a fixed value as the height increases beyond 
about λr. As we will show later, this clamping of the risetime is a 
necessary feature in the current dispersion to generate a subsidiary peak 
in the distant radiation field which is observed frequently in the radia
tion fields of subsequent return strokes. Once the response function for a 
step current is given, the effect of dispersion on any other current 
waveform can be obtained using the Duhammel’s theorem. It is 
important to point out that current dispersion is a feature that is always 
present in actual return strokes, as demonstrated by Jordan and Uman 
[19] and Mack and Rust [20] using optical observations. These mea
surements indicate that the optical risetime may increase by about a 
microsecond or so in travelling about 1 km of the channel. However, 

(a)                                                                         (b)

Fig. 3. The channel base current in (a) first and (b) subsequent return stroke.  
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experimental data also show that the optical radiation may not follow 
the rising part of the current waveform exactly; the risetime of the 
current being somewhat smaller than the optical radiation [21,22]. 
Thus, optical radiation provides evidence for the presence of current 
dispersion, and hence the need to incorporate it into return stroke 
models, but it does not provide quantitative information on the effect of 
current dispersion on the risetime of the current. 

We have now defined all the parameters necessary for the SLR-CP 
model. In the following section we will present the results pertinent to 
the SLR-CP model. In all the presented calculations, the ground is 
assumed to be perfectly conducting. 

3. Derived features of the SLR-CP model 

3.1. Effect of current dispersion 

The radiation fields of a subsequent return stroke at 200 km for 
different dispersion functions are shown in Fig. 5. Note that the 
dispersion will introduce a subsidiary peak in the radiation field. 
However, if the dispersion is such that the risetime of the current in
creases monotonically, the subsidiary peak of the electric field disap
pears. The broadness of this subsidiary peak is determined by t0 and λr. 
In the rest of the calculations, we will use t0 = 1.0 × 10− 6 s and 
λr=250.0 m for both first and subsequent return strokes (corresponding 
to curve 3 in Fig. 4). These are the parameters used by Cooray et al. [9] 
in the MTLD model. 

3.2. Variation of return stroke current with height 

The return stroke current as a function of height for both first and 
subsequent return strokes is shown in Fig. 6. Observe that the initial part 
of the current attenuates with height. At the same time, due to disper
sion, its risetime will increase initially, but then it will become steady 
with height. 

3.3. Electric field at different distances 

The electric and magnetic fields calculated at different distances 
incorporating the current dispersion are shown in Figs. 7–10 for first and 
subsequent return strokes. Note that the model can reproduce the main 
features of the return stroke electromagnetic fields observed in experi
mental data [23,24]. Specifically, compared to the experimentally 
derived typical electric field waveforms in Fig. 1 of [23], the features 
that are reproduced by our model are the ramp at distances below 10 
km, the initial peak after 5 km followed by a distinctive start of the 
electric field ramp, and the zero-crossing time at 40 to 50 µs for distances 
greater than 50 km. For the magnetic field, the features reproduced are 
the hump at distances lower then 15 km, the initial peak at distances 
greater than 2 km, and the zero-crossing time at 40 to 50 µs for distances 
greater than 50 km. 

According to experimental data, the electric field at 50 m of subse
quent return strokes saturates within a few microseconds. This is a 
feature observed in the subsequent strokes of triggered lightning. 
Whether the same feature should be present in first return strokes needs 
further observations. Moreover, the tail of the electric field at around 1 
to 5 km shows a ramp-like increase, and the corresponding magnetic 
fields display a prominent hump. Furthermore, the radiation fields cross 

Fig. 4. The current attenuation function of (a) first return strokes and (b) subsequent return stroke. The current attenuation functions derived from the charge 
distribution given by Eq. (4) are denoted by the curves marked ‘1′ and the linear approximation for the charge distributions (Eq. (10)) are shown by the curves 
marked 2. 

Fig. 5. The effect of dispersion of the current on the radiation fields of sub
sequent return strokes. The radiation field is calculated at 200 km distance. 
Curve 1: Without dispersion. Curve 2:tr(z) = 10− 6z/1000.0. Curve 3: t0 = 1.0 
× 10− 6 s and λr=250.0 m. Curve 4: t0 = 2.5 × 10− 6 s and λr=500.0 m. In these 
equations, z is the height along the return stroke channel. 
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the zero line and display the characteristic subsidiary peak. The peak 
value of the radiation field at 100 km is 3.4 V/m for subsequent return 
strokes and 5.5 V/m for first strokes. These values do not differ 

significantly from the TL model. This is the case because the change in 
current amplitude and shape with height due to attenuation and 
dispersion does not affect significantly the peak value of the current over 

(a)                                                                     (b)

Fig. 6. The current at different heights in (a) first return strokes and (b) subsequent return strokes. Curve 1: 0 m, Curve 2: 100 m, Curve 3: 500 m, Curve 4: 1000 m, 
Curve 5: 2000 m. 

(a)                  (b)                                            (c)

(d)                                                     (e)                                          (f)

Fig. 7. Electric fields generated by first return strokes over the distance range from 50 m to 200 km. (a) Electric field at 50 m, (b) Electric field at 1 km, (c) Electric 
field at 2 km, (d) Electric field at 5 km, (e) Electric field at 10 km, (f) Electric field at 200 km. 
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the first few tens of meters. These features show that even though the 
introduction of current dispersion makes the model slightly more com
plex, it compensates for this by generating electromagnetic fields with 
features in good agreement with experimental observations. Note that 
the sudden change apparent in the electromagnetic fields, especially the 
first return stroke fields pertinent to 10 km distance, is actually caused 
by the sudden termination of the return stroke channel at 6 km height. 
These changes will be smoothed out considerably if one considers a 
return stroke speed that decreases along the channel. 

The magnetic field at 50 m resembles mostly the channel base cur
rent and it is similar to the experimental data. The magnetic field at 
intermediate distances displays the characteristic hump. The distant 
magnetic field being mainly radiation, it has the same features as those 
of the electric radiation field. 

3.4. Electromagnetic radiation field derivative 

The derivatives of the radiation field produced by the first and sub
sequent strokes are shown in Fig. 11. The range normalized peak field 
derivative of first return strokes is 43 V/m/μs and the one corresponding 
to the subsequent strokes is 48 V/m/μs. These values are in general 
agreement with experimental observations [25]. The full width at half 
maximum of the electric field derivative is about 50 − 100 ns, which is 
also in agreement with experimental observations. Of course, for a given 
return stroke speed, the peak value of the electric field derivative at any 
given distance is controlled to some extent by the derivative of the 
channel-base current waveform used as an input. 

3.5. Leader-return stroke fields 

In this paper, we have introduced a model which belongs to the CP 

category. The main difference compared to other models is the use of the 
dart leader charge distribution as the basic input. One advantage of the 
model is the following. The leader charge distribution derived by Cooray 
et al. [11] has been used frequently in estimating the electric field 
generated by down coming dart leaders. The resulting fields from the 
charge distribution are also in agreement with the measured dart leader 
fields. Since the model developed in this paper is based on this leader 
charge distribution, this model in combination with the dart leader 
model could be used in a self-consistent manner to model the 
leader-return stroke fields at different distances. Eqs. (1) and (3) give the 
variation of the leader charge as the leader descends, allowing the total 
field at any given point to be calculated. Fig. 12 depicts the leader return 
stroke field at 50 and 100 m for subsequent strokes. The general features 
of the dart leader-return stroke sequence are in general agreement with 
the experimental data obtained from triggered lightning experiments 
[26,27]. 

In the current model, since positive charge deposited along the dart 
leader channel after the neutralization of the negative charge close to 
ground is zero, the leader field is completely neutralized by the return 
stroke field in the vicinity of the strike point. However, as the distance to 
the strike point becomes longer, the effect of the positive charge 
deposited by the return stroke at higher points becomes effective and the 
return stroke field amplitude overwhelms the dart leader field. It is 
important to point out that in the experimental observations, sometimes 
the return stroke field is larger than the leader field and, in other in
stances, it is smaller. This observation cannot be explained within the 
confines of the present model. However, we would like to point out that 
a return stoke model that uses the same charge distribution given here 
but that belongs to the CG category can account for such features by 
introducing current reflection at ground level. 

(a)                                                   (b)                                             (c)

(d)                                                       (e)                                             (f)

Fig. 8. Magnetic fields generated by first return strokes over the distance range from 50 m to 200 km. (a) Magnetic field at 50 m, (b) Magnetic field at 1 km, (c) 
Magnetic field at 2 km, (d) Magnetic field at 5 km, (e) Magnetic field at 10 km, (f) Magnetic field at 200 km. 
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(a)                                                    (b) (c)

(d)                                                       (e)                                                (f)

Fig. 9. Electric fields generated by subsequent return strokes over the distance range from 50 m to 200 km. (a) Electric field at 50 m, (b) Electric field at 1 km, (c) 
Electric field at 2 km, (d) Electric field at 5 km, (e) Electric field at 10 km, (f) Electric field at 200 km. 

Fig. 10. Magnetic fields generated by subsequent return strokes over the distance range from 50 m to 200 km. (a) Magnetic field at 50 m, (b) Magnetic field at 1 km, 
(c) Magnetic field at 2 km, (d) Magnetic field at 5 km, (e) Magnetic field at 10 km, (f) Magnetic field at 200 km. 
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4. Discussion 

Experimental data show that the charge dissipated by subsequent 
return strokes is close to 1 C and that of first return strokes is about 4 C. 
These numbers are significantly larger than the charge associated with 
the two current waveforms used in the paper. There are two ways to 
accommodate a current with charge similar to that of measured cur
rents. The first is to assume that only the first few tens of microseconds of 
the return stroke current injected at the channel base will contribute to 
the charge deposition along the channel. In this case, the tail part of the 
current travels along the return stroke channel without attenuation, thus 
without contributing to the charge deposition. This can be realized in 
practice by incorporating into the model a current waveform with a 
smaller amplitude, longer risetime, and longer duration that travels 
along the channel without attenuating (i.e., classical TL model). Such a 
scenario will make it possible to accommodate a current waveform 
carrying larger charge in the return stroke model. The second procedure 
is to consider a longer but non vertical channel. Experimental data show 
that return stroke channels are much longer than their vertical extent 
and contain large horizontal channels. By employing a long but non- 
vertical channel, the model will be able to accommodate a return 
stroke current waveform containing larger charge. Furthermore, in the 
model we have assumed a straight vertical channel without any 

branches. Extension of the model to include branches and horizontal 
channel sections requires information concerning the charge distribu
tion on non-vertical channels. This requires modification of Eqs. (1) to 
(4) to include non-vertical channels and branches. Moreover, how to 
include the effects of branches in CP-type return stroke models has not 
yet been investigated in the literature. These points are under investi
gation at present. 

5. Conclusions 

In this paper we have described an engineering return stroke model 
that belongs to the CP type. The input parameters of the model are the 
distribution of the charge deposited by the return stroke, the return 
stroke speed, and the channel-base current. The charge deposited by the 
return stroke on the leader channel is obtained from the leader charge 
distribution and, for this reason, it could be used to model self consis
tently the leader-return stroke fields. The model incorporates current 
dispersion. The results obtained from the model are in reasonable 
agreement with experiments. 

Author credit statement 

All authors have read and agreed to the published version of the 

(a)                                                                     (b)

Fig. 11. Electric field derivative at 100 km generated by (a) a first return stroke and (2) a subsequent return stroke.  

(a)                                                                 (b)

Fig. 12. The electric field generated by the dart leader- return stroke sequence at (a) 50 m and (b) 100 m. The portion of the field taking place before the zero time 
mark (in red) is due to the dart leader and the section of the field after the zero time mark (in blue) is due to the return stroke. The time axis is selected in such a way 
that the dart leader contacts the ground at the time marked zero. 
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