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Abstract

This work introduces a reduced order modeling (ROM) framework for the solution of
parameterized second-order linear elliptic partial differential equations formulated on
unfitted geometries. The goal is to construct efficient projection-based ROMs, which
rely on techniques such as the reduced basis method and discrete empirical interpola-
tion. The presence of geometrical parameters in unfitted domain discretizations entails
challenges for the application of standard ROMs. Therefore, in this work we propose a
methodology based on i) extension of snapshots on the background mesh and ii) localiza-
tion strategies to decrease the number of reduced basis functions. The method we obtain
is computationally efficient and accurate, while it is agnostic with respect to the under-
lying discretization choice. We test the applicability of the proposed framework with
numerical experiments on two model problems, namely the Poisson and linear elasticity
problems. In particular, we study several benchmarks formulated on two-dimensional,
trimmed domains discretized with splines and we observe a significant reduction of the
online computational cost compared to standard ROMs for the same level of accuracy.
Moreover, we show the applicability of our methodology to a three-dimensional geometry
of a linear elastic problem.

Keywords: reduced basis method, discrete empirical interpolation method, proper
orthogonal decomposition, immersed method, isogeometric analysis, trimming

1. Introduction

In recent years, unfitted domain methods have attracted a lot of attention. The
main idea behind these methods is embedding a geometric representation into a simple
background domain. A wide class of immersed and embedded methods fall within this
category, where the geometry is decoupled from the discretization of the solution. This
is the case, for example, in the immersed boundary method [1], the immersed interface
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[2], the fictitious domain and finite cell method [3], CutFEM [4], the Shifted Bound-
ary Method [5, 6], and others. Some of the challenges involved in immersed methods
have been the focus of research activities in the past, such as numerical integration and
imposition of boundary conditions. We further refer the reader to the review in [7].

Moreover, great efforts have been devoted in the research area of design-oriented sim-
ulation. Isogeometric Analysis (IGA) was introduced in [8] and has been successfully
applied in several fields of computational science and engineering. The idea behind IGA
is to adopt the same representation employed in Computer Aided Design (CAD), such
as B-splines and their rational variants (NURBS), for the approximation of the solution
in finite element analysis. This paradigm provides a unified framework from design to
analysis that is capable of simplifying the clean-up and meshing of geometric models. A
review of isogeometric methods can be found in [8, 9]. One of the main challenges in
IGA is dealing with boundary representations (B-rep). Commercial CAD software are
currently using B-reps for solid modeling, that is, the solid is only modeled by its bound-
ary. Since the volumetric description is missing, such boundary representations are not
analysis-suitable [10, 11, 12]. In the context of IGA, immersed methods have become
particularly popular since they circumvent the need to construct volumetric parameteri-
zations by simply embedding B-reps into a background domain [13, 14, 15, 16, 17]. Fur-
thermore, immersed isogeometric methods bear connections to Boolean operations and
trimming. In CAD, spline parameterizations are commonly trimmed in order to repre-
sent complex geometric shapes. The result of trimming operations are unfitted meshes,
since the parameterization is defined in the original background domain. As trimming is
the prevailing technology to represent complex shapes in CAD, its treatment is crucial
to achieve a unified design-through-analysis framework and tackle geometries that are
relevant from an industrial viewpoint. The reader is further referred to [18] for a detailed
review and current challenges on trimming. Moreover, we refer to previous works ad-
dressing the challenges posed by trimming in the analysis, such as numerical integration
[19, 20, 21, 22, 23, 24], conditioning [25] and stabilization techniques [26, 27].

One further aspect to be considered is that in many cases partial differential equations
(PDEs) need to be solved multiple times for several parametric configurations. This is
the case in a real-time and many-query context arising, for example, in design optimiza-
tion, uncertainty quantification, control, and other applications. Efficient reduced order
modeling techniques are essential to establish a suitable offline/online procedure that
achieves a computational speedup. To this end, projection-based reduced order models
(ROMs) have been successfully employed in a wide range of domains for the solution of
parameterized PDEs.

In the past years, there have been several successful applications of IGA in the con-
text of reduced order modeling techniques [28]. The fields of application span from
fluid dynamics [29, 30], to parabolic problems [31] and cardiac electrophysiology [32].
Moreover, ROMs were constructed using IGA on complex, multipatch geometries and
isotopological meshes in [33]. The combination of reduced basis methods (RB) and IGA
has been particularly motivated by their combined advantages to solve PDEs on pa-
rameterized geometries [34]. The interested reader is referred to [35, 36] for a thorough
discussion on reduced basis methods as well as to our previous work [37] in the context
of isogeometric ROMs and domain decomposition. We also refer to [38] in the context
of IGA and tensor train compression for parameterized geometries. On the other hand,
the combination of unfitted domain methods with ROMs and in particular IGA is still

2



in its infancy. Model reduction within an embedded framework was first investigated
in [39] for uncertain parameterized geometries, where a fictitious domain method was
combined with Proper Generalized Decomposition (PGD) and also in [40] for interfaces
evolving in time, where a low-rank approximation was formulated for snapshot compres-
sion. Recently, ROMs were combined with CutFEM [41, 42] and the Shifted Boundary
Method [43, 44, 45] for parameterized geometries. These works address aspects related
to embedded methods, such as definition of solutions on a common mesh through suit-
able extension and transportation of snapshots on the background domain. Their main
advantage is that they avoid remeshing and overcome the need for reference domain for-
mulations typically used for ROMs on parameterized geometries, where the snapshots
are mapped to a reference domain and the transformation depends highly on the given
problem at hand. Nevertheless, these works do not resolve the nonaffine dependence
of differential operators and transport maps on the geometrical parameters, i.e., do not
make use of hyper-reduction techniques, which is essential for an efficient offline/online
decomposition. In the context of unfitted finite elements, hyper-reduction was combined
with ROMs for PDE-constrained optimization in [46]. However, the combination of re-
duced basis and isogeometric methods formulated on unfitted geometries has not been
thoroughly investigated in previous studies.

In this work, we propose a full reduction framework for nonaffine problems on pa-
rameterized unfitted geometries that relies on hyper-reduction techniques to achieve an
efficient solution on the fly. The proposed framework is agnostic with respect to the
chosen discretization and can be applied in combination with finite element as well as
isogeometric methods formulated on unfitted domains.

Our contribution falls within the context of projection-based ROMs, while we employ
the Proper Orthogonal Decomposition (POD) to construct reduced basis spaces. We
remark that the RB method is based on the assumption of affine dependence of the
operators on the parameters. Since we are interested in parameterized geometries, this
assumption is not always fulfilled. To recover the affine dependence on the geometrical
parameters we rely on the empirical interpolation method (EIM) [47] and in particular its
discrete variant (DEIM) for vectors and matrices [48, 49]. We recall that the solution of
PDEs on parameterized embedded domains necessitates proper extension of solutions to
a common mesh. In this respect, our approach is inspired by previous studies on snapshot
extension techniques [41, 43]. The extended solutions for varying geometrical parameters
may exhibit discontinuities for different values of the parameters. In fact, it is inefficient
to construct a reduced basis approximation with a single, linear subspace since a very
large set of global reduced basis functions is required to achieve a sufficient accuracy. It
should be noted that even for a large dimension of the basis the approximation properties
may be poor and characterized by oscillatory behavior as discussed in [50] and references
therein.

On the other hand, strategies based on the idea of local reduced bases have been
proposed in the past to circumvent these shortcomings. Local ROMs based on clustering
of solution snapshots were first introduced in [51] and further proposed, for example,
in the context of discrete empirical interpolation [52], cardiac electrophysiology [53] and
bifurcation problems [54]. In this work, we propose a parameter-based partitioning of
snapshots. This approach bears connections to hp-reduced basis methods introduced
in [55, 56] for elliptic and parabolic PDEs and later in [57] for empirical interpolation.
We also refer to [58, 59] for adaptive local reduced bases. Finally, we illustrate the
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methodology with numerical experiments employing spline discretizations on trimmed
geometries. The features of the proposed ROM framework are summarized as follows:

• It is agnostic to the underlying discretization and cutting operations performed on
parameterized unfitted domains.

• It enables an efficient offline/online decomposition for nonaffine problems with geo-
metrical parameters based on hyper-reduction. The latter is applied to the algebraic
structure of the differential operators and combined with interpolation to ensure a
fast and less intrusive treatment of nonaffine dependencies.

• It allows to construct efficient ROMs based on a localization strategy. The online
cost is low, as the dimension of the local problems is small and one can easily switch
between subspaces in the online phase.

We structure this contribution as follows: Section 2 provides a brief review of the
main concepts related to unfitted domain discretizations formulated on parameterized
geometries. Section 3 presents the generic framework of parameterized linear elliptic
PDEs considered throughout this work. In Section 4 we discuss the reduced basis method
for PDEs on unfitted geometries, in particular the snapshots extension, reduced space
construction and the discrete empirical interpolation method. In Section 5 we present the
localization strategy to construct efficient ROMs. Section 6 provides several numerical
experiments in order to assess both the computational efficiency and accuracy of the
proposed methodology. Finally, the main conclusions are summarized in Section 7.

2. Unfitted domain discretization of geometrically parameterized problems

In this section we provide a brief overview of some basic concepts related to unfitted
boundary methods, which will constitute the basis of the methods to be developed along
the manuscript. Let us denote as Ω(µ) ⊂ Rd the domain in which we want to solve our
PDE problem at hand, where d is the spatial dimension, either 2D or 3D. This physical
domain is described by a set of geometrical parameters µ ∈ P ⊂ RM , where P is the
space of parameters and M > 0 is the number of parameters. In this work we assume
that Ω(µ) is built by cutting a master domain Ω̂0(µ) with a series of K > 0 domains{

Ω̂i(µ)
}K
i=1

, all of them potentially dependent on the geometrical parameters µ, as (see

Figure 1)

Ω(µ) = Ω̂0(µ) \
K⋃
i=1

Ω̂i(µ) . (1)

In order to deal with such generic domain parameterizations in a way that is com-
patible with reduced order modeling techniques we rely upon unfitted domain methods.
Thus, we assume that Ω(µ) is immersed in a larger background domain Ω0, as

Ω(µ) ⊂ Ω0 ⊂ Rd ∀µ ∈ P , (2)
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Figure 1: Geometrical setting: the geometrically parameterized domain Ω(µ), built through subtraction
operations, is embedded in the background domain Ω0.

that is independent of the geometrical parameters. Ω0 is the base upon which we create
a discrete functional space Vh,0, that is independent of µ, defined in a general way as

Vh,0 = span {Bi, i = 1, . . . ,Nh,0} , (3)

where {Bi}
Nh,0

i=1 is a basis of the space, being Nh,0 = dim (Vh0
). Then, for a given set of

geometrical parameters µ, we want to solve our problem of interest on the domain Ω(µ),
and for that purpose we introduce a smaller space Vh(µ), defined as

Vh(µ) = span {Bi ∈ Vh,0 | supp(Bi) ∩ Ω(µ) 6= ∅} , (4)

being Nh(µ) = dim(Vh(µ)). Clearly it holds Nh(µ) ≤ Nh,0. Using such a space for dis-
cretizing a differential problem on Ω(µ), the domain partition (i.e. meshing) is decoupled
from the solution discretization, which renders this family of methods flexible alterna-
tives to traditional boundary fitted techniques. Furthermore, it is worth highlighting
that the basis functions are defined on Ω0, and so, their definition remains unchanged,
not depending on the geometrical parameters. In what follows we will rely upon our pre-
vious works for the computation of integrals arising from unfitted domain discretizations
[21, 60].

From the definition (4), it is clear that a set of basis functions may be inactive
(those whose support does not intersect Ω(µ)). They do not contribute to the solution
discretization and therefore they will be just simply not considered. In addition, that
set of functions depends on the particular choice of µ, and may change from problem to
problem. We will further elaborate on this aspect and its implications in the context of
efficient reduced order modeling in Section 4.

Remark 1. The numerical experiments discussed in Section 6 are based on the use
of spline discretizations (i.e., Isogeometric Analysis [8]). Therefore, in those examples
we assume Ω0 to be a Cartesian product domain, as, for instance, the bounding box
of all the possible domains Ω(µ). We define a Cartesian mesh in such domain (see
Figure 1) upon which the discretization spline space is built. However, the framework
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presented above and used in the following sections is completely agnostic with respect
to the discretization chosen for Vh,0, and it can be applied in combination with other
unfitted domain techniques as, e.g., the Finite Cell Method [3], CutFEM [4], or the
aggregated unfitted domain method [61].

In addition, due to the fact that in Section 6 we limit our discussion to the Poisson and
linear elasticity problems, there we assume that Vh,0 ⊂ H1(Ω0). However, the method
introduced in this work applies to other problems and space choices.

Remark 2. As it will be illustrated in the example of Section 6.2.1, the geometry Ω(µ)
can be further transformed using a mapping F : Ω0 × P → Rs, with s ≥ d, in a similar
way as proposed in [21].

3. Parameterized model problem

In the following, we introduce a generic linear elliptic PDE that will serve as model
problem for our exposition. We consider the following equation:

Lu = f in Ω(µ), (5)

equipped with proper boundary conditions on the boundary ∂Ω(µ). We suppose that we
have the well-posed discrete weak formulation of the parameterized problem in Equation
(5) as: find uh ∈ Vh(µ) such that

a(uh, vh;µ) = f(vh;µ), ∀vh ∈ Vh(µ), (6)

where a(·, ·;µ) : Vh(µ) × Vh(µ) → R is a bilinear, continuous, and coercive form and
f(·;µ) : Vh(µ) → R is a linear and continuous functional associated to a parameterized
PDE for every µ ∈ P. The space Vh(µ) is a discrete subspace whose choice depends
in general on the boundary conditions. In the case where Dirichlet boundary conditions
are imposed on an unfitted part of the boundary, a suitable stabilization technique must
be adopted, as for example the one introduced in [27, 60]. Note that in the numerical
experiments discussed in Section 6 we will consider homogeneous Dirichlet and Neumann
boundary conditions for ease of exposition, while we will impose Dirichlet boundary con-
ditions on the part of the boundary that coincides with the boundary of the background
domain ∂Ω(µ) ∩ ∂Ω0 and not on the unfitted part of ∂Ω(µ). From the algebraic view-
point, the discrete approximation leads to the following parameterized linear system of
dimension Nh(µ) = dim(Vh(µ))

A(µ)uh(µ) = f(µ), (7)

where A ∈ RNh(µ)×Nh(µ) is the stiffness matrix corresponding to the differential operator,
f ∈ RNh(µ) is the vector representing the source term and uh(µ) ∈ RNh(µ) is the solution
vector. In Section 6 we will consider two model problems to validate the methods, namely
the Poisson and linear elasticity problems. From now on, we refer to the problem (6)
as high-fidelity or full order model (FOM). We are interested in solving Equation (7)
for different values of the parameter vector µ (order of at least hundreds) and analyze
different geometrical representations. Driven by this, in the next sections we will turn
to reduced order models as a means of tackling parameterized problems in an efficient
manner.
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4. Reduced basis method for PDEs on parameterized unfitted geometries

In the context of parameterized PDEs, the main idea behind projection-based re-
duced order models (ROMs) is to approximate the solution of FOMs based on a linear
combination of global reduced basis functions. The latter can be obtained from selected
solutions of the FOM, which are referred to as snapshots. In the following we will discuss
the key features related to unfitted domain discretizations and briefly review some basic
concepts in order to obtain an effective model order reduction.

4.1. Snapshots extension

The solution of problems on parameterized unfitted domains might vary highly over
the parameter space P. Let us consider a spline discretization as an illustrative example.
In fact, as the active domain Ω(µ) depends on µ, the support of B-spline basis is also µ-
dependent: the basis functions that are active or inactive may change for different values
of the parameters. An example of a trimmed univariate B-spline basis is illustrated in
Figure 2. Let us now consider a geometrical parameter µ affecting the location of the
elements cut away from the Cartesian mesh upon which the spline discretization is built.
The trimmed basis comprises basis functions that are cut and depicted in blue dotted
lines in Figure 2. The active basis functions with full support inside the domain (0, µ)
are depicted in blue color, while the inactive functions, outside of (0, µ) are shown in
grey. For different values of µ, different basis functions are fully or partially active.

Thus, when solving problem (7) we seek a solution uh(µ) in a spline space Vh(µ) (4)
whose set of active basis functions depends on the parameters µ and the same holds for
its dimension Nh(µ). Indeed, depending on the parameters µ, the set of active basis
functions may change for different snapshots. Practically, this implies that the snapshot
solution vectors uh(µ) obtained from (7) might have different length. This fact will hinder
the formation of snapshots matrices for constructing a reduced basis by techniques such
as the Proper Orthogonal Decomposition (POD). Therefore, a suitable extension of the
solution vectors uh(µ) has to be performed in order to render all vectors of the same
length. Since the background domain Ω0 and the associated space Vh,0 remain unchanged
by the cutting operation (1), it is convenient to extend the snapshot solutions of (7) to
the background domain Ω0. In this paper, we consider a trivial extension of the snapshot
solutions to zero in the inactive regions of the domain Ω0. We remark that a thorough
discussion and investigation of other possible extensions in the context of projection-
based reduced order models are given in [41]. Since the latter work concluded that the
trivial extensions only slightly affects the eigenvalues decay, i.e., the dimension of the
reduced basis, the zero extension is the choice we adopt in this work, although other
alternatives are also possible. Therefore, the extended version of the full order problem
(FOM) (7) reads

Â(µ)ûh(µ) = f̂(µ). (8)

The size of this extended problem is µ-independent, being Â ∈ RNh,0×Nh,0 and ûh(µ), f̂ ,∈
RNh,0 .

4.2. Reduced basis problem

In order to solve the FOM problem (8) using ROM techniques, we seek for a reduced
basis V ∈ RNh,0×N where N is the reduced space dimension that is ideally chosen to be
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Figure 2: Univariate B-spline basis for different parameters µ1, µ2, µ3 defining the trimming location.
The functions depicted in blue are fully active, in dotted blue are trimmed active and in grey are inactive.

N � Nh,0. Throughout this work we will consider the POD to construct the reduced
basis V, while other techniques, such as the Greedy algorithm [36] can also be used. The
POD will be briefly reviewed in Section 4.3. The Galerkin reduced basis problem reads:
find uN ∈ VN such that

a(uN , vN ;µ) = f(vN ;µ), ∀vN ∈ VN , (9)

where VN denotes the reduced basis space spanned by V. Thus, using the reduced basis
V, the solution ûh(µ) can be approximated as

ûh(µ) ≈ VuN (µ), (10)

where uN (µ) ∈ RN is the solution vector of the reduced problem. To obtain a projection-
based ROM from (8), the residual is enforced to be orthogonal to the subspace VN such
that

VT (Â(µ)VuN (µ)− f̂(µ)) = 0. (11)

Thus, the reduced basis approximation leads to the linear system

AN (µ)uN (µ) = fN (µ), (12)
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where the reduced matrices and vectors are given as

AN = VT Â(µ)V, fN = VT f̂(µ). (13)

Remark 3. By introducing the snapshots extension, we construct a reduced basis with
global basis functions that are defined on the µ-independent background domain Ω0.
The solution of the reduced problem in 12 is likewise defined on the background domain.
Its values inside the inactive regions are not relevant and can be discarded during the
analysis.

The reduced problem (12) has size N , which makes it suitable for fast online solution
given many different parameters µ ∈ P. Nevertheless, beyond the size of the problem,
(12) still requires the assembly of the FOM matrix Â(µ) and vector f̂(µ) for each pa-
rameter µ, that is in principle expensive. Therefore, a crucial aspect for the efficiency
of the ROM is the assumption that both Â(µ) and f̂(µ) depend affinely on the parame-
ters µ. Unfortunately due to the fact that µ encodes geometrical parameters, neither of
Â(µ) and f̂(µ) can be affinely decomposed as functions of µ in general. Instead we will
approximate them as

Â(µ) ≈
Qa∑
q=1

θaq (µ)Âq, f̂(µ) ≈
Qf∑
q=1

θfq (µ)f̂q, (14)

where
{
θaq (µ)

}Qa

q=1
and

{
θfq (µ)

}Qf

q=1
are µ-dependent parameter functions and Âq ∈

RNh,0×Nh,0 and f̂q ∈ RNh,0 are µ-independent matrices and vectors, respectively. In
order to build the approximation (14), we rely on hyper-reduction techniques, such as
the empirical interpolation method (EIM) [47, 62] and its discrete variant (DEIM) for
vectors and matrices [48, 49] to recover the affine dependence. In particular, our goal is to
provide an efficient and non-intrusive procedure that is agnostic to parameter-dependent
cutting operations for rapid online evaluation of the coefficients θaq (µ), θfq (µ) in Equation
(14). In this work, we will exploit interpolation with radial basis functions (RBFs) [63]
for fast online evaluation of the parameter-dependent functions in Equation (14). This
allows to obtain infinite or piecewise smoothness depending on the chosen type of RBFs.
The hyper-reduction procedure will be further discussed in Section 4.4. Introducing the
affine approximation (14) into (13), the reduced matrix AN ∈ RN×N and the right-hand
side vector fN ∈ RN are computed for a given parameter µ as

AN (µ) =

Qa∑
q=1

θaq (µ)VT ÂqV, fN (µ) =

Qf∑
q=1

θfq (µ)VT f̂q. (15)

The matrices
{

VT ÂqV
}Qa

q=1
and vectors

{
VT f̂q

}Qf

q=1
are µ-independent and can be

pre-computed once and stored during the offline phase. During the online phase, we
solve the reduced problem (12) for a given value of µ. To this end, we first compute the
coefficients θaq (µ), θfq (µ) in the affine approximation of (14), assemble the reduced matrix
AN (µ) and vector fN (µ) as in (15) and then solve the linear system (12). Finally, the
solution referred to the space Vh,0 is reconstructed through (10). It should be highlighted
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that ideally Qf , Qa � Nh,0 and therefore the online assembly in the form of (15) is
inexpensive.

So far we have introduced two approximations with respect to the original problem
(7): the reduced solution and the affine approximations of Â(µ) and f̂(µ). To build such
reduction framework there are two crucial steps, namely, the construction of the reduced
basis V and the creation of the approximate affine decompositions in (14). In this work,
the reduced basis V is constructed by means of the POD and its generation is detailed
in Section 4.3. On the other hand, the affine approximations (14) are performed based
on the DEIM and will be elaborated in Section 4.4. Nevertheless, the construction of the
reduced basis V on the extended domain Ω0 required by unfitted domain discretizations
results in a manifold that is highly nonlinear on the parameters µ. The same holds
also for the affine approximations of Â(µ) and f̂(µ). In fact, the approximation of a
nonlinear solution manifold with a global linear subspace may be accurate only for a
very high number of basis functions, which hinders the construction of efficient ROMs.
Therefore, we will provide a localization strategy to construct local bases that can be
switched online in an efficient manner. We further elaborate the localized reduced basis
method in Section 5.

4.3. Proper Orthogonal Decomposition

In this section we briefly review the Proper Orthogonal Decomposition (POD) tech-
nique. The reader is referred to [35, 36] for a more detailed exposition. Let us first set
our notation for the POD approach based on the singular value decomposition (SVD)
algorithm that we will use a few times later. The SVD of a matrix S ∈ Rm×n reads:

S = UΣZT , (16)

where the orthogonal matrices U ∈ Rm×m and Z ∈ Rn×n contain the left and right
singular vectors of S, respectively, and Σ ∈ Rm×n is a diagonal matrix containing the
positive singular values of S sorted in descending order. For m ≥ n, the correlation
matrix is defined as C = STS ∈ Rn×n. The following eigenvalue problem can be then
derived:

Cψi = σ2
iψi, i = 1, . . . , r. (17)

Here, σ2
i are the nonzero eigenvalues of the correlation matrix C sorted in nondecreasing

order and ψi ∈ Rn×n are the associated normalized eigenvectors being r ≤ n the rank of
S. The POD basis of dimension P is then obtained from the first P eigenvectors of the
correlation matrix as

ζj =
1

σj
Sψj , j = 1, . . . , P, (18)

where ζj ∈ Rm. The POD basis is orthonormal by construction and its dimension P can
be chosen such that the projection error induced by the POD, that is, the energy captured
by the neglected modes, is smaller than a prescribed tolerance εPOD [36]. Therefore, it
is sufficient to choose P as the smallest integer such that

1−
∑P
i=1 σ

2
i∑r

i=1 σ
2
i

≤ εPOD. (19)

In order to construct a POD basis V for the approximation in (10) we assume to have
a sufficiently fine and properly selected training sample set Ptrain = {µ1, ...,µNs

} ⊂ P
10



of dimension Ns = dim(Ptrain). Using this sample set, we form the solution snapshots
matrix Su ∈ RNh,0×Ns

Su = [û1, ..., ûNs
], (20)

where the vectors ûj ∈ RNh,0 represent the solutions ûh(µj) extended to the background
domain Ω0 for j = 1, ..., Ns. The reduced basis V = [ζ1, .., ζN ] ∈ RNh,0×N is then
extracted with the POD as shown above in Equations (16)-(19).

Remark 4. We remark that also other techniques, such as the Greedy algorithm, can
be in principle used to construct the reduced basis. In this work we focus on the POD
since our interest lies in addressing its shortcomings related to parameterized unfitted
geometries, i.e., the slow decay of the singular values of the SVD. Similarly to advection
dominated problems with slowly decreasing Kolmogorov n-widths, the effective model
reduction is a challenging task. In fact, the proposed framework bears connections to
such type of problems that need to be tackled efficiently from the reduction viewpoint.

4.4. Discrete Empirical Interpolation Method

The key feature to ensure efficiency of the reduced basis method is the affine paramet-
ric assumption discussed previously, which allows to decompose the stiffness matrix and
right-hand side vector with respect to the parameters µ. As a very first step, an affine
approximation in the form of Equation (14) is constructed with the discrete empirical
interpolation method (DEIM) for matrices and vectors. The reader is further referred to
[49, 64] for a detailed overview of this procedure.

Similar to the solution, the same extension is performed to form the snapshots matri-
ces in the DEIM procedure. Let us consider the stiffness matrix Â(µ) and right-hand side

f̂(µ) obtained by extending A(µ) and f(µ) to zero inside inactive regions. Following [49],

the matrices Âq for q = 1, . . . , Qa and vectors f̂q for q = 1, . . . , Qf in (14) are obtained by
applying the POD procedure described in Section 4.3. In the following, we assume that
we have a sufficiently fine training sample set Pdtrain = {µ1, ...,µNd

s
} ⊂ P of dimension

Nd
s = dim(Pdtrain) and apply the POD to the vectorization k̂(µ) = vec(Â(µ)) and to the

vectors f̂(µ) for each µ ∈ Pdtrain. We denote the snapshots matrices Sa ∈ RN
2
h,0×N

d
s and

Sf ∈ RNh,0×Nd
s upon which the POD bases are built as

Sa = [k̂1, ..., k̂Nd
s
], Sf = [̂f1, ..., f̂Nd

s
], (21)

where k̂j = vec(Â(µj)) and f̂j = f̂(µj), for j = 1, ..., Nd
s . It should be highlighted that

the procedure depends on the sparsity pattern associated to the background domain Ω0

and only non-zero entries are considered for the implementation. The reader is further
referred to [49] for a detailed discussion on implementation aspects. After performing
the SVD to the matrices Sa and Sf , the number of affine terms Qa and Qf can be
determined by prescribing a tolerance εdPOD and applying the expression (19). Note that
hyper-reduction in general requires a higher level of accuracy (i.e., εdPOD < εPOD) to
obtain reduced basis approximations that are not impaired by the accuracy of the DEIM
approximations [36].
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Remark 5. In this work, we first consider the DEIM procedure to obtain affine ap-
proximations and then construct a reduced basis space with the POD approach. The
solution snapshots in Equation (20) are obtained by solving (8) and exploiting (14). Such
solution is performed offline and its evaluation is nevertheless inexpensive provided that
Qf , Qa � Nh,0. We further refer to the discussion in [49, 65] regarding the preservation
of the non-singularity of the stiffness matrix for µ ∈ P by the affine approximation.
It is worthwhile highlighting that for the sake of offline savings one can construct the
snapshots matrices for both the DEIM approximations (21) and the reduced basis (20)
simultaneously in case the reduced space is built with the POD. More details on this
alternative option are given in [49]. Note that our strategy is intended to be also applica-
ble with other techniques, e.g. the Greedy algorithm, thus we do not further investigate
this option here.

Now, a strategy to efficiently compute the parameter-dependent coefficients θaq (µ),

q = 1, . . . , Qa and θfq (µ), q = 1, . . . , Qf , in (14) is needed. Following the empirical
interpolation procedure [47], we set ourselves at using the magic points [62]. Let us focus
on the stiffness matrix first. A Greedy algorithm [36] that minimizes the interpolation
error over the snapshots is used to select a collection of Qa matrix entries, which we
denote as Ja. These entries fulfill exactly the interpolation constraint for the matrix
Â(µ), i.e., for each (i, j) ∈ Ja

Qa∑
q=1

θaq (µ)[Âq]i,j = [Â(µ)]i,j . (22)

The interpolation constraint for the vector f̂(µ) reads, for each i ∈ Jf

Qf∑
q=1

θfq (µ)[̂fq]i = [̂f(µ)]i. (23)

Note that the well-posedness of the DEIM procedure follows from [48] and [36, Theo-
rem 10.1]. In order for Equations (22)-(23) to be efficiently computed online, we need to
assure that for a given µ ∈ P their right-hand side can be rapidly computed on the fly.
However, the following aspects should be considered:

• This evaluation requires to assemble online the matrix and vector associated to a
collection of Qa matrix and Qf vector entries given a new value of µ. Depending
on the parametric complexity, i.e. the number of functions Qa, Qf , this operation
can be costly.

• In the context of finite element methods, the PDE operators are in practice as-
sembled employing a reduced mesh that benefits from the local support of basis
functions [49]. However, the goal of our work is to provide a strategy that is
independent of the underlying discretization.

• In the case of unfitted domains, the magic points selected by DEIM may correspond
to active or cut functions. The latter are identified during integration and assem-
bly and may change depending on µ. Therefore, efficient implementation of this
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operation requires several intrusive techniques in the high-fidelity approximation
and assembly routines [46]. In what follows, we aim to provide a non-intrusive pro-
cedure that is completely agnostic to the cutting operations, i.e., it is independent
of the number of cut basis functions and cut domains.

To this end, our approach is inspired by interpolation-based ROMs that have been a
subject of research in previous studies [28, 66]. In particular, the online computation of
the coefficients θaq (µ) and θfq (µ) can be made more efficient by:

1. pre-computing the values of
{
θaq (µ)

}Qa

q=1
and

{
θfq (µ)

}Qf

q=1
in (22)-(23) during the

offline phase for each µ ∈ Pdtrain,

2. using such computations to train a fast interpolation method during the offline
phase,

3. evaluating efficiently the interpolants during the online phase for any given µ ∈ P.

In the following we adopt radial basis functions (RBFs) for the interpolation [63], due
to their capability to interpolate scattered data, although the use of other methods is of

course also possible. The procedure is identical for both
{
θaq (µ)

}Qa

q=1
and

{
θfq (µ)

}Qf

q=1
,

therefore we will consider from now on only the first one to keep the exposition concise.

During the online phase, the function
{
θaq (µ)

}Qa

q=1
in (14) is approximated as

θaq (µ) ≈
Nd

s∑
j=1

ωaq,jφq,j(‖µ− µj‖2), q = 1, . . . , Qa. (24)

where φq,j denotes the radial basis function associated to the j-th center parameter
point µj and ‖·‖2 represents the Euclidean norm. There are several alternatives for
radial basis functions, such as Gaussian, multi-quadratic, and others. In the numerical
experiments discussed in Section 6 we will use cubic radial basis functions. These feature
piecewise, higher-order smoothness without spurious oscillations. It should be noted
that the number of interpolation parameter points coincides with the number of training
parameter samples Nd

s . The unknown weights ωaq,j are computed during the offline phase

such that they fulfill the interpolation constraint exactly for µk ∈ Pdtrain

Nd
s∑

j=1

ωaq,jφq,j(‖µk − µj‖2) = θaq (µk), k = 1, . . . , Nd
s , q = 1, . . . , Qa. (25)

We refer the reader to [63], where the unique solvability of the underlying linear system
is analyzed. Note that depending on the type of radial basis functions, polynomials may
be augmented to the above definition to render the problem uniquely solvable [67]. We
remark that the condition number of the matrix associated to the RBF problem grows
with the number of interpolation points and preconditioning techniques [68] or tuning
of shape parameters [69] may be needed for large data sets. However, the localization
strategy we propose in Section 5 mitigates this effect to some extent, since we partition
the data set to construct local approximations.

We recall that in the context of unfitted domain discretizations, the construction of
affine approximations on the extended domain Ω0 results in a manifold that is nonlinear
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on the parameters µ. Thus, constructing one global approximation may lead to a high
number of affine terms Qa, Qf . This impedes the overall efficiency of the ROM. The same
holds also for the construction of the reduced basis V and its dimension N discussed in
Section 4.2. Therefore, we will introduce a localization strategy to construct accurate,
local approximations while containing the dimension of the reduced problem.

5. Localization strategy

In the following we will present a strategy to construct efficient ROMs based on lo-
calized reduced bases. Our approach is inspired by problems with moving fronts and
discontinuities, where local subspaces are constructed for the DEIM and reduced ba-
sis approximation [51, 52, 53]. This allows the approximation with multiple, smaller
subspaces and switching between different local bases in the online phase. Since online
evaluations depend only on the dimension of the local bases, one can construct more
efficient ROMs compared to a single, global reduced basis approach. The main steps
involved in the proposed strategy are:

1. setup a clustering strategy to partition separately the parameters, i.e. the associated
snapshots, for the DEIM and reduced basis approximations,

2. for each cluster combination train local DEIM approximations and reduced bases
during the offline phase as discussed in Section 4,

3. during the online phase, select the cluster with the smallest distance to a given
µ ∈ P and solve the reduced problem (12).

5.1. Parameter-based clustering

Having in mind problems formulated on parameterized unfitted geometries, the ques-
tion that arises is how to partition snapshots obtained by extension such that the solution
can be approximated by a local subspace of sufficiently small dimension. For this purpose
we formulate a parameter-based partitioning strategy.

Let us first present the main idea behind the proposed strategy. We assume that we
have Nc partitions that are centered around fixed points, i.e. centroids, µ̄1, . . . , µ̄Nc in
the parameter space P. We will discuss later how to obtain those. Then let us recall the
cut domains Ω̂i(µ) for i = 0, . . . ,K in (1) and define the following distance for a given
µ ∈ P

D(µ, k) = max
i

dist(∂Ω̂i(µ̄k) ∩ ∂Ω̂i(µ)), k = 1, . . . , Nc. (26)

In what follows we set ourselves to assign a given parameter vector µ to the partition k
that minimizes D(µ, k). This strategy allows us to form partitions comprising unfitted
discretizations with similar active and inactive regions. In order to ensure the efficient
computation of the above operation, we assume that ∃C > 0 such that

max
i

dist(∂Ω̂i(µ̄k) ∩ ∂Ω̂i(µ)) ≤ C ‖µ− µ̄k‖22 , k = 1, . . . , Nc, i = 0, . . . ,K. (27)

That is, the maximum distance between boundaries is bounded by the distance between
the parameters in the Euclidean norm. To this end, the natural choice is to use the
parameters as indicator for grouping together snapshots. We remark that in this work
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we focus on unfitted domain discretizations, where active basis functions may vary for
different values of the parameters µ. In fact, the proposed strategy can be also adapted
to other cases where the discontinuity or variability of the solutions stems, for example,
from the underlying physical problem.

Let us now discuss how to obtain a partition of the parameter space in Nc sub-
spaces as P =

⋃Nc

k=1 Pk. In practice, we consider the partitioning applied to the discrete
counterpart of the parameter space. Moreover, in what follows we opt for an automatic
partitioning with the k-means clustering algorithm [70], although other partitioning tech-
niques are also possible [55, 56, 58]. Then the i-th snapshot, i.e., the i-th column of the
matrices (20) and (21) is assigned to a specific cluster k if µi ∈ Pk. Note that neighbor-
ing snapshots can be added to each cluster to obtain overlapping clusters with smooth
transitions from one cluster to another. In the numerical experiments of Section 6 we will
not consider overlaps between clusters, although this is in principle possible [51]. In the
following, we will consider a separate partitioning for the DEIM approximation, as this
allows to render the dimension of the local bases associated to the DEIM approximations
independent of the dimension of the local reduced bases obtained with the POD.

5.2. Offline phase

We now present in detail the offline steps involved in the localization strategy. First,
we consider the DEIM approximation and the parameter set Pdtrain = {µ1, ...,µNd

s
} ⊂ P

introduced in Section 4.4. The first step in the offline phase is to partition the matrix
Pdtrain into Nd

c submatrices corresponding to subregions Pdk ⊂ P for k = 1, . . . , Nd
c . The

k-means algorithm starts by choosing random cluster centers (i.e. centroids) {µ̄dk}
Nd

c

k=1.
Then the partition is performed such that ∀µ ∈ Pdtrain

Pdk = {µ | if arg min
i

∥∥µ− µ̄di ∥∥2

2
= k}, k = 1, ..., Nd

c . (28)

The cluster centroids are updated iteratively until the algorithm converges such that

µ̄dk =
1∣∣Pdk ∣∣

∑
µ∈Pd

k

µ, k = 1, ..., Nd
c . (29)

The k-means clustering minimizes the distance between each parameter vector and the
cluster’s centroid with respect to the Euclidean norm ‖·‖2. We refer the reader to [51,
Algorithm 5] for a detailed overview of the k-means algorithm. The snapshots are then
grouped into the same clusters as their corresponding parameters following the assump-
tion in (27). Thereafter, the DEIM procedure and RBF interpolation described in Sec-
tion 4.4 is performed separately for each cluster. In the numerical experiments, we will
adopt the same number of clusters for the DEIM approximation of the stiffness matrix
and right-hand side, although in principle this could be chosen differently. The offline
localization procedure for the DEIM approximations is presented in Algorithm 1.
Once the local DEIM approximations are constructed, the next step in the offline phase is
to construct local reduced bases. We consider the parameter set Ptrain = {µ1, ...,µNs

} ⊂
P and the solution snapshots matrix defined in Equation (20). The partitioning is per-
formed in the same manner as before, that is, we seek Nc partitions corresponding to
subregions Pk ⊂ P, k = 1, .., Nc. Then, the k-means algorithm initially selects random
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Algorithm 1 Localized DEIM procedure

1: procedure [{µ̄dk}, {Âk
q}, {f̂kq }, {ωaq,j,k}, {ω

f
q,j,k}] = OFFLINE(P dtrain, N

d
c , ε

d
POD)

2: {µ̄dk}
Nd

c

k=1, {Pd1 , ..,PdNd
c
} ← k-means clustering (Pdtrain, Nd

c )

3: Local DEIM basis functions, indices and interpolation weights:
4: for k = 1, ..., Nd

c do
5: for µ ∈ Pdk do

6: Compute Â(µ), f̂(µ) with full order model

7: Ska = [Ska, Â(µ)]; Skf = [Skf , f̂(µ)]
8: end for
9: Âk

q ← POD(Ska, ε
d
POD); J kα ← DEIM-indices(Âk

q ) , q = 1, . . . , Qa

10: f̂kq ← POD(Skf , ε
d
POD); J kf ← DEIM-indices(f̂kq ), , q = 1, . . . , Qf

11: ωaq,j,k ← RBF(P dk ,S
k
a, Â

k
q ,J kα ) (25), q = 1, . . . , Qa, j = 1, . . . ,dim(Pdtrain)

12: ωfq,j,k ← RBF(P dk ,S
k
f , f̂

k
q ,J kf ) (25), q = 1, . . . , Qf , j = 1, . . . ,dim(Pdtrain)

13: end for
14: end procedure

cluster centroids {µ̄k}Nc

k=1 that are updated iteratively following the steps in Equations
(28) and (29). In order to evaluate (14), we select the local DEIM approximation by min-
imizing the distance between a given parameter µ ∈ Ptrain and the clusters’ centroids
such that:

l = arg min
i

∥∥µ− µ̄di ∥∥2

2
, i = 1, . . . , Nd

c . (30)

Once the snapshots matrix is constructed, each snapshot is assigned to the same cluster as
its respective parameter. Then we construct local reduced bases and project all possible
combinations of full order arrays obtained by DEIM onto each local subspace as described
in Section 4. Algorithm 2 presents the offline localization procedure to construct the
reduced bases. Note that the input DEIM arrays refer to the output of Algorithm 1.

Since the number of clusters has to be chosen in advance, the k-means variance can
be considered to choose the optimal number during the offline phase. In this work, we
adopt this criterion for the parameter vectors. The k-means variance reads

V =

Nc∑
k=1

∑
µ∈Pk

‖µ− µ̄k‖22 . (31)

The same criterion holds also for the DEIM approximations by replacing the sum over
Nd
c clusters and evaluating the Euclidean distance to the centroids µ̄dk for µ ∈ Pdk . As

the number of clusters increases, the variance is expected to decrease rapidly until it
reaches a plateau. One can choose the number of clusters based on this elbowing effect
of the variance, that is, the smallest integer for which a transition from a steep slope to
a plateau occurs. We further refer the reader to [54] for a thorough discussion on this
criterion. It is worthwhile noting that the optimal choice of clusters depends to some
extent on the given problem at hand, that is, the targeted accuracy and computational
speedup. We now summarize the steps of the offline phase as follows:
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Algorithm 2 Localized reduced basis procedure

1: procedure [{µ̄k}, {A
k,k̄
N,q}, {f

k,k̄
N,q}] = OFFLINE(DEIM ARRAYS,Ptrain, Nc, εPOD)

2: {µ̄k}Nc

k=1, {P1, ..,PNc
} ← k-means clustering (Ptrain, Nc)

3: Local reduced basis functions and reduced arrays:
4: for k = 1, ..., Nc do
5: for µ ∈ Pk do
6: Full order arrays:

7: l = arg mini
∥∥µ− µ̄di ∥∥2

2
, i = 1, . . . , Nd

c

8: {{Âl
q}
Qa

q=1, {θaq,l(µ)}Qa

q=1} ← assemble Â(µ) using (14) and (24)

9: {{f̂ lq}
Qf

q=1, {θ
f
q,l(µ)}Qf

q=1} ← assemble f̂(µ) using (14) and (24)
10: ûh(µ)← solve FOM in (8)
11: Solution snapshots:
12: Sku = [Sku, ûh(µ)]
13: end for
14: Vk ← POD(Sku, εPOD);
15: for k̄ = 1, ..., Nd

c do

16: {{Ak,k̄
N,q}

Qa

q=1, {f
k,k̄
N,q}

Qf

q=1} ← projection of full order arrays onto Vk (15)
17: end for
18: end for
19: end procedure

1. We partition the parameters Pdtrain into clusters for a given number of clusters Nd
c .

2. We construct the snapshots matrices Ska, Skf with k = 1, . . . , Nd
c for the DEIM

approximations by solving the FOM. Each snapshot (i.e. column of Ska, Skf ) is
assigned to the same cluster as its corresponding parameter.

3. We construct local DEIM approximations and store the basis functions and inter-
polation weights for each cluster.

4. We partition the parameters Ptrain for a given number of cluster Nc.

5. We construct the solution snapshots matrix Sku with k = 1, . . . . . . , Nc by solving the
problem (8) exploiting the affine form of Equation (14). Each snapshot (i.e. column
of Sku) is assigned to the same cluster as its corresponding parameter.

6. We construct local reduced bases for each cluster applying the POD technique.

7. We construct local ROMs for all cluster combinations, that is, by projecting each
local DEIM approximation onto each local reduced basis space.

5.3. Online phase

In the online phase, for a given parameter µ ∈ P, we switch between DEIM ap-
proximations and local bases such that the distance to the respective cluster centroid is
minimized following Equation (30). In this way, the online evaluation depends only on
the dimension of the local bases. Note that in case the reduced basis is constructed with
the Greedy algorithm, an additional transformation of the basis is done as discussed in
[59]. It should be highlighted that since both DEIM and reduced basis approximations
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are localized, during the offline phase we project and store all possible cluster combina-

tions when pre-computing the matrices
{

VT ÂqV
}Qa

q=1
and vectors

{
VT f̂q

}Qf

q=1
in (15).

Then, during the online phase we pick the operators associated to the selected clusters.
Thus, the primary goal in constructing local, low-dimensional reduced bases is to reduce
the online computational cost at the price, however, of additional offline effort associated
to constructing and storing multiple reduced bases. We remark that the online cost might
vary between different clusters depending on the dimension of the associated local basis
and the number of affine terms. In the presented algorithms and numerical experiments,
the respective dimensions N,Qa, Qf refer to the number of local functions in the selected
cluster. The online phase is given in Algorithm 3. Note that the input ROM arrays refer
to the output of Algorithm 2 and RBF arrays to the output of the RBF interpolation in
Algorithm 1.

Algorithm 3 Online phase

1: procedure [uN ] = ONLINE(ROM ARRAYS, RBF ARRAYS, {µ̄dk}
Nd

c

k=1,µ)

2: l = arg mini
∥∥µ− µ̄di ∥∥2

2
, i = 1, . . . , Nd

c

3: m = arg minj ‖µ− µ̄j‖22 j = 1, . . . , Nc
4: Reduced order arrays:
5: compute θaq,l(µ), q = 1, . . . , Qa (24)

6: compute θfq,l(µ), q = 1, . . . , Qf (24)

7: AN (µ) =
∑Qa

q=1 θ
a
q,l(µ)Al,m

N,q; fN (µ) =
∑Qf

q=1 θ
f
q,l(µ)f l,mN,q

8: uN ← solve reduced linear system in (12)
9: end procedure

6. Numerical experiments

In this section we present some numerical experiments for the Poisson and linear elas-
ticity problems to assess the performance of the proposed methodology in constructing
efficient reduced order models for PDEs defined on parameterized unfitted geometries.
As discussed in Section 2, we make use of spline discretizations that are built upon a
Cartesian mesh (see Remark 1). However, the method is agnostic to the underlying dis-
cretization and perfectly suitable for other choices. We further refer the reader to [8, 9]
and references therein for a detailed review on splines and isogeometric analysis in gen-
eral as well as to our previous works on trimming using isogeometric analysis [71, 72, 73].
The results have been obtained using the open-source Octave/Matlab isogeometric pack-
age GeoPDEs [74] in combination with the open-source library redbKIT [75] and the
re-parameterization tool for integration of trimmed geometries presented in [21, 60]. It
is worthwhile remarking that we adopt a simple diagonal pre-conditioning to limit the
consequences of trimming on the condition number while a more detailed discussion is
provided in [76]. Unless stated otherwise, we approximate the parameter-dependent coef-
ficients in (14) using cubic RBFs to compute (24) and employ Latin hypercube sampling
[77] to select the parameters for our training and test sets. Table 1 summarizes the
notation defined in the previous sections and used in the numerical experiments.
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Table 1: Overview of parameters employed for the numerical experiments

N dimension of reduced basis
Qa number of affine terms for stiffness matrix
Qf number of affine terms for right-hand side vector
Nh,0 degrees of freedom of the background domain
Nd
s dimension of training sample for DEIM approximations

Ns dimension of training sample for POD
Nc number of clusters for reduced basis
Nd
c number of clusters for DEIM approximations

Nt dimension of test sample for error analysis

6.1. The Poisson problem

Let us first consider the Poisson equation on a parameterized domain. The continuous
formulation of the problem reads in strong form: for any µ ∈ P, find u ∈ H1

0,ΓD
(Ω(µ))

such that 
−∆u = f in Ω(µ)

u = 0 on ΓD(µ)
∂u

∂n
= 0 on ΓN (µ),

(32)

where ΓD(µ) ⊂ ∂Ω(µ) ∩ ∂Ω0 denotes the Dirichlet part of the boundary. We define
H1

0,ΓD
(Ω(µ)) ⊂ H1(Ω(µ)) as the subspace of H1(Ω(µ)) such that functions vanish on

the Dirichlet boundary. The Neumann part of the boundary is ΓN (µ) and it holds that
ΓD(µ) ∪ ΓN (µ) = ∂Ω(µ) and ΓD(µ) ∩ ΓN (µ) = ∅. Furthermore, f ∈ L2(Ω(µ)) is the
source term and n the outward unit normal to the boundary ∂Ω(µ). For simplicity
of exposition, we assumed above homogeneous Dirichlet and Neumann boundary condi-
tions without loss of generality. We can now write the discrete weak formulation of the
parameterized problem as: find uh ∈ Vh such that

a(uh, vh;µ) = f(vh;µ), ∀vh ∈ Vh, (33)

where Vh ⊂ H1
0,ΓD

(Ω(µ)) is the finite-dimensional subspace spanned by a B-spline basis.
The associated parameterized bilinear form a(·, ·;µ) and the linear functional f(·;µ)
read:

a(uh, vh;µ) =

∫
Ω(µ)

∇uh · ∇vh dΩ,

f(vh;µ) =

∫
Ω(µ)

fvh dΩ.

(34)

6.1.1. Square with circular hole: 1D geometrical parameterization

The first example we consider is a two-dimensional problem with a single geometrical
parameter. The model is defined on a rectangular domain Ω0 = (0, 2)2, which is trimmed
by a circular curve of radius R = 0.3. The trimmed domain Ω(µ) is parameter-dependent,
where µ ∈ [0.5, 1.5] is a parameter representing the coordinates of the center of the
circular hole. The hole is centered at (µ, µ) and therefore moves along one diagonal
of the square Ω0. Homogeneous Dirichlet boundary conditions are imposed on the left
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boundary of the domain and a constant source term is set as f = 1. The geometry
is discretized with cubic C2-continuous B-splines using a mesh with 32 elements per
direction over a Cartesian grid, resulting in Nh,0 = 1225 degrees of freedom. We remark
that the radius of the hole is fixed and the trimming causes the number of active basis
functions to change slightly for the problem at hand. However, different basis functions
are active depending on the location of the circular hole. The solution of the FOM is
depicted in Figure 3 for three different values of the parameter µ. Although we have
chosen a simplified setup, the solution of the problem varies significantly for different
values of the parameter depending on the location of the trimmed region. Therefore,
constructing an efficient ROM for this problem poses challenges to traditional reduced
basis methods.

Figure 3: Example 6.1.1: Exemplary solution snapshots for µ = [0.5, 0.9, 1.5].

Let us first consider the standard case where a global ROM is constructed, in order
to show that such an approach is not feasible for our problem. Given the above param-
eterization, the extended stiffness matrix Â(µ) and right-hand side vector f̂(µ) depend
on the geometric parameter in a nonaffine way. Therefore, they can be approximated
by DEIM to obtain an affine expansion of the given matrix and vector, respectively,
as discussed in Section 4.4. Figure 4 depicts the error decay of the DEIM approxima-
tions for varying dimension of the training set used to compute the POD basis, namely
Nd
s = [50, 100, 250, 500]. The error analysis is performed based on a test set of dimension

Nt = 100 by computing the mean relative error in the L∞ norm between the full order
operators and the DEIM approximations, while the coefficients θaq (µ), q = 1, . . . , Qa and

θfq (µ), q = 1, . . . , Qf are computed exactly using Equations (22)-(23). Observing the
results in Figure 4, it is evident that the training set needs to be sufficiently rich (i.e.
Nd
s ≥ 100) to achieve an accuracy of the order 10−5. The results indicate that a large

number of basis functions Qa and Qf needs to be selected to achieve accuracy of the
ROM that is not impaired by the error of the DEIM approximation. In fact, a large
number of DEIM terms is known to reduce significantly the efficiency of the ROM, that
is, the online cost within the RB framework [57]. For the problem at hand, this moti-
vates the localized strategy introduced in Section 5 to contain the number of selected
basis functions.

Now we consider the strategy presented in Section 5. To perform the localized DEIM
approximation, the snapshots matrices Sa and Sf are subdivided considering the vector
of parameters as a cluster indicator. We recall that the dimensionality of the training set
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(a) Right-hand side (b) Stiffness matrix

Figure 4: Example 6.1.1: Error decay of global DEIM approximations in L∞-error norm for right-hand
side vector (a) and matrix (b) based on POD tolerance of εdPOD = 10−7.

Pdtrain should be chosen sufficiently high for each cluster. Figure 5 shows the decay of the
singular values of the POD for the DEIM approximations with respect to the maximum
number of selected basis functions (Qa, Qf ) over all clusters for a given number of
clusters Nd

c . It is evident that the number of affine terms is significantly reduced by
using local subspaces. In Table 2 we compare the selected number of affine terms for
different number of clusters. Here, we use the same number of clusters for the matrix
and right-hand side, although in principle this could be different. As discussed in Section
5, the number of terms may differ between clusters. Thus, we only depict the minimum
and maximum number of terms over all clusters.

Table 2: Example 6.1.1: DEIM approximations for different number of clusters. Comparison in terms of
minimum and maximum number of basis functions over all clusters for the matrix (Qa) and right-hand
side vector (Qf ) based on POD tolerance εdPOD = 10−7.

Nd
c min. Qa max. Qa min. Qf max. Qf

1 349 349 124 124
4 118 122 38 39
8 62 66 21 23
12 42 47 15 18
16 31 38 11 15
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(a) Right-hand side (b) Stiffness matrix

Figure 5: Example 6.1.1: Comparison of singular values decay between global and local DEIM approxi-
mations for right-hand side vector (a) and matrix (b) using different number of clusters.

Let us now assess the performance of the localization strategy in constructing a
reduced basis with the POD. The solution snapshot matrix Su is subdivided into clusters
considering a training set of dimension Ns = 250 as indicator, that is, the solutions are
assigned to the same cluster as their respective parameters. We consider the number of
clusters for the DEIM approximations fixed to Nd

c = 16 and show the singular values
decay in Figure 6a for different number of clusters Nc with respect to the maximum
number of RB functions over all clusters. We observe that the clustering leads to a
significant reduction of the RB functions N . Moreover, we perform an error analysis of
the problem solution uh on a test sample of dimension Nt = 100 constructed based on
uniformly distributed random points in the parameter space. Figure 6b shows that a
small number of clusters (Nc = 4) is sufficient to achieve a ROM with accuracy of 10−5

and a local reduced basis with maximum dimension of N = 35 over all clusters, compared
to the global ROM that requires N = 182 functions. Moreover, increasing the number
of clusters further improves the accuracy, while the dimension of the basis is reduced as
shown in Figure 7.

Table 3 compares the efficiency of the ROMs. We observe that increasing the number
of clusters Nc reduces significantly the number of RB functions while it does not impair
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(a) Nd
c = 16 (b) Nd

c = 16, Nc = 4

Figure 6: Example 6.1.1: Singular values decay for different numbers of clusters (a) and relative error
vs. maximum number of reduced basis functions (N) over all clusters (b).

(a) Nd
c = 8 (b) Nd

c = 16

Figure 7: Example 6.1.1: Decay of relative error vs. maximum number of reduced basis functions (N)
for different numbers of clusters.

dramatically the online cost. Furthermore, the solution obtained with the local ROMs
is illustrated in Figure 8 for the same values of the parameter µ as in Figure 3.

Table 3: Example 6.1.1: Comparison of ROMs in terms of number of reduced basis functions (N) and
computational cost for different numbers of clusters Nc and Nd

c = 8 with POD tolerance εPOD = 10−5.

Nc min. N max. N online CPU time [ms]
1 182 182 879.0
4 33 35 94.0
8 10 17 85.7
12 6 12 86.6
16 4 9 93.9
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Figure 8: Example 6.1.1: ROM solutions for µ = [0.5, 0.9, 1.5] and Nd
c = Nc = 16.

6.1.2. Square with circular hole: 2D geometrical parameterization

To illustrate the applicability of the methodology for multiple parameters, we consider
a 2D geometrical parameterization for our problem. The parameter vector µ = [µ1, µ2]
represents the position of the center (µ1) and the radius of the hole (µ2) in the range
(µ1, µ2) ∈ [0.5, 1.5]×[0.25, 0.35], while the circular hole is centered at (µ1, µ1). This causes
the number of active degrees of freedom to vary significantly between snapshots, which
introduces a strong complexity to the solution’s manifold. Note that the 2D parameter
vector acts as indicator for clustering the snapshots.

(a) Right-hand side (b) Stiffness matrix

Figure 9: Example 6.1.2: Comparison of singular values decay between global and local DEIM approxi-
mations for right-hand side vector (a) and matrix (b) using different numbers of clusters.

24



In fact, the number of affine terms selected by the global DEIM is much higher than
the 1D parameterization as depicted in Figure 9. The use of local subspaces significantly
reduces the maximum number of affine terms over all clusters. Figure 10 shows that the
number of RB functions is effectively reduced without compromising the accuracy. The
error analysis is performed on a test sample of dimension Nt = 100 for a fixed number
of clusters Nd

c = Nc = 16. Moreover, the solution snapshots for three exemplary cluster
centroids computed by k-means are depicted in Figure 11. In Table 4, we compare the
performance between the local and global ROMs: a 17.6x speedup is achieved with the
local ROM, versus a speedup of 9.1x for the global ROM, both with respect to the FOM.

(a) Singular values decay (b) Error analysis

Figure 10: Example 6.1.2: Singular values decay for different number of clusters (a) and relative error
vs. maximum number of reduced basis functions (N) over all clusters (b) for Nd

c = Nc = 16.

Figure 11: Example 6.1.2: Solution snapshots corresponding to selected cluster centroids for µ1 =
[1.2214, 0.7562, 0.5237] and µ2 = [0.2851, 0.2715, 0.3268].

Finally, in Figure 12 we show the error analysis of the problem solution uh with
respect to the H1 norm using again a test sample of dimension Nt = 100 and a fixed
number of clusters Nd

c = Nc = 16. We remark that the POD basis is constructed such
that it minimizes the squared projection error with respect to the algebraic counterpart
of the H1 norm [36, Proposition 6.2]. Similarly to the previous test cases, the singular
values decay rapidly and the reduction is more effective in the case of localization.
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Table 4: Example 6.1.2: Comparison of global and local ROM with Nd
c = Nc = 16 in terms of maximum

number of basis functions over all clusters and computational cost. POD tolerance set to εdPOD = 10−7

for the DEIM approximation and εPOD = 10−5 for the reduced basis.

max. Qa max. Qf max. N Online CPU time [ms] speedup
local 107 59 17 122 17.6x

global 1024 282 201 251 9.1x

(a) Singular values decay (b) Error analysis

Figure 12: Example 6.1.2: Singular values decay for different number of clusters (a) and relative error in
H1 norm vs. maximum number of reduced basis functions (N) over all clusters (b) for Nd

c = Nc = 16.

6.2. Linear elasticity

Let us now briefly recall the equations of linear elasticity on a parameterized domain.
We consider an isotropic parameterized solid Ω(µ) ⊂ Rd with elastic deformations de-
scribed in terms of a stress tensor σ, a small strain tensor ε, the body force vector f
and the unknown displacement field u. The Dirichlet and Neumann part of the bound-
ary of the domain ∂Ω(µ) are denoted by ΓD(µ) and ΓN (µ), respectively, while n is
the outward unit normal to the boundary. Similarly to the previous case of the Poisson
problem, homogeneous Dirichlet and Neumann boundary conditions are assumed, with
ΓD(µ) ⊂ ∂Ω(µ)∩∂Ω0. The continuous formulation of the problem in strong form reads:
for any µ ∈ P, find u ∈ [H1

0,ΓD
(Ω(µ))]d such that

−div(σ(u)) = f in Ω(µ)

σ(u) = 2µ̃ε(u) + λ̃(div(u))I in Ω(µ)

ε(u) =
1

2
(∇u+ (∇u)T ) in Ω(µ)

u = 0 on ΓD(µ)

σ(u) · n = 0 on ΓN (µ).

(35)

Here, the Lamé coefficients µ̃ and λ̃ can be expressed with respect to the Young modulus
E and Poisson coefficient ν as

µ̃ =
E

2(1 + ν)
, λ̃ =

Eν

(1 + ν)(1− 2ν)
. (36)
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The discrete weak formulation of the parameterized problem in Equation (35) can be
expressed in a similar manner to the Poisson problem as: find uh ∈ Vh such that

a(uh,vh;µ) = f(vh;µ), ∀vh ∈ Vh, (37)

where Vh ⊂ [H1
0,ΓD

(Ω(µ))]d is a vector subspace spanned by a B-spline basis. Then the
parameterized bilinear form a(·, ·;µ) is given as:

a(uh,vh;µ) =

∫
Ω(µ)

2µ̃ε(uh) : ε(vh) dΩ +

∫
Ω(µ)

λ̃div(uh)div(vh) dΩ, (38)

and the linear functional f(·;µ) reads:

f(vh;µ) =

∫
Ω(µ)

f · vh dΩ. (39)

6.2.1. Multi-perforated quarter cylinder

In this example we assess the performance of the proposed procedure for geometries
with multiple trimmed regions. For this purpose, we consider a two-dimensional geometry
of one-quarter cylindrical ring with multiple holes. The model is defined in Figure 13. The
trimmed domain Ω(µ) is parameter-dependent, where µ = r ∈ [0.1, 0.2] is a parameter
representing the radius of the circular holes in the pre-image domain, that is a Cartesian
grid as discussed in Section 2, Remark 1. In this case, we make use of a spline mapping
F to obtain the actual geometry (see Remark 2).

Figure 13: Example 6.2.1: Geometry of the multi-perforated quarter cylinder.

Homogeneous Dirichlet boundary conditions are imposed on all four boundaries of the
domain and the body force is set to f = [fx, fy] = [2xy, 2xy]. The Young modulus and
Poisson coefficient are given as E = 1.0 and ν = 0.3, respectively. The geometry is dis-
cretized with quadratic C1-continuous B-splines employing a mesh with 32 elements per
direction of the Cartesian grid, resulting in Nh,0 = 2312 degrees of freedom. The number
of active degrees of freedom changes significantly for different values of the parameter
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and our problem is characterized by strong solution variations in different regions of the
parameter space.

In order to construct the affine approximations and reduced bases, we consider a
sufficiently rich training set of dimension Nd

s = 1000 and Ns = 500, accordingly. It
should be noted that these dimensions refer to the global snapshot matrices, that is
the number of snapshots in each cluster after partitioning should be sufficiently high to
obtain accurate approximations. Figure 14 shows the k-means variance (31) computed
for different numbers of clusters Nd

c . It is observed that the variance does not decrease
significantly after 10 clusters, therefore this number is chosen as the optimal one.

Figure 14: Example 6.2.1: K-means variance versus number of clusters Nd
c .

Table 5 summarizes the results of the comparison between the local and global ROM.
The number of basis functions is reduced significantly for both the affine approximations
and the reduced basis. Regarding the performance of the ROMs, the results indicate that
a 130x speedup is achieved with the local ROM, versus a speedup of 16.5x for the global
ROM, both with respect to the FOM. Note that as expected, the overall efficiency of the
ROM depends highly on the number of affine terms Qa, Qf . Compared to the results of
the previous example in Table 4, the number of affine terms is much lower here, which
leads to a significantly higher speedup of the local ROM.

Table 5: Example 6.2.1: Comparison of global and local ROM with Nd
c = Nc = 10 in terms of maximum

number of basis functions over all clusters and computational cost. POD tolerance set to εdPOD = 10−7

for the DEIM approximation and εPOD = 10−5 for the reduced basis.

max. Qa max. Qf max. N Online CPU time [ms] speedup
local 36 20 16 36.7 130x

global 260 117 198 291 16.5x

Moreover, Figure 15 depicts the singular values and error decay for the ROM with
global and local reduced basis based on a test sample of dimension Nt = 30. Similarly
to the previous test cases for the Poisson problem, we observe a rapid decay for the local
ROM. Moreover, we obtain an accuracy of the order 10−5 for the local reduced basis
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with maximum dimension of N = 16 over all clusters. In Figure 16, the error analysis
with respect to the H1 norm results in accuracy of the order 10−4 for the local reduced
basis with maximum dimension of N = 31 over all clusters. As in the previous example,
the reduced basis is constructed also here such that it minimizes the squared projection
error with respect to the algebraic counterpart of the H1 norm. Finally, the solutions of
the local ROM are compared to the FOM for three different values of the test sample in
Figure 17. It can be observed that the solutions vary highly for different values of the
parameter. The results indicate a good qualitative agreement with the FOM.

(a) Singular values decay (b) Error analysis

Figure 15: Example 6.2.1: Decay of singular values (a) and relative error vs. maximum number of
reduced basis functions (N) over all clusters (b) for Nd

c = Nc = 10.

(a) Singular values decay (b) Error analysis

Figure 16: Example 6.2.1: Decay of singular values (a) and relative error in H1 norm vs. maximum
number of reduced basis functions (N) over all clusters (b) for Nd

c = Nc = 10.

6.2.2. Cube with spherical inclusion

This example aims to demonstrate the applicability of our approach to three dimen-
sional geometries. For this purpose we consider a cube with a spherical inclusion. The

29



Figure 17: Example 6.2.1: Solution computed with the FOM (top) and local ROM (bottom) with
Nd

c = Nc = 10 clusters for three parameter values from the test sample µ = [0.1106, 0.1440, 0.1981].

model is defined in Figure 18a. The geometric parameter we consider here is the radius
of the sphere µ = R ∈ [0.5, 1.5], while the sphere is centered at the center of the cube.

(a) Geometry (b) K-means variance

Figure 18: Example 6.2.2: Geometry of cube with spherical inclusion (a) and k-means variance versus
number of clusters Nd

c (b).

We impose homogeneous Dirichlet boundary conditions on the bottom of the cube as
depicted in Figure 18a. The body load is set to f = [fx, fy, fz] = [0, 0,−10]. The Young
modulus and Poisson coefficient are given as E = 100 and ν = 0.3, respectively. The
geometry is discretized with quadratic C1-continuous B-splines and the mesh consists
of 8 elements per direction over a Cartesian grid, resulting in Nh,0 = 3000 degrees of
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freedom. Figure 18b shows the k-means variance (31) computed for different numbers of
clusters Nd

c . Similarly to the previous test case, we observe that the variance does not
decrease significantly after 10 clusters.

In the following, we will investigate the reducibility of the problem at hand. For this
purpose, we consider a training set of dimension Nd

s = 250 for the affine decomposition
and Ns = 100 for the reduced basis. Moreover, Figure 19a depicts the singular values
decay of the DEIM approximation for the stiffness matrix versus the maximum number of
basis functions Qa over all clusters. It is evident, that the maximum number of the DEIM
basis functions over all clusters is reduced effectively to Qa = 35 with Nd

c = 8 clusters,
while the global approach requires Qa = 180. A similar behavior can be observed for the
reduced basis in Figure 19b. The dimension of the reduced basis with Nc = 8 clusters is
reduced from N = 35 to N = 14 basis functions. It should be noted that the depicted
decay corresponds to the cluster with the maximum number of basis functions for all
cases. The decay is more rapid for the local ROMs, which implies that the solution
can be captured with less basis functions and the problem at hand is more effectively
reducible with the proposed localization strategy.

(a) DEIM approximation (b) Reduced basis approximation

Figure 19: Example 6.2.2: Comparison of singular values decay for DEIM approximations of the stiffness
matrix (a) and reduced basis approximation over all clusters (b) using different numbers of clusters.

7. Conclusions

We have presented a novel reduced basis framework in the context of second-order
linear elliptic PDEs defined on parameterized unfitted domains. Our approach is based
on projection-based ROMs and techniques such as the reduced basis method and discrete
empirical interpolation [36, 49]. The latter ensures an efficient offline/online procedure
for problems formulated in parameterized geometries. To construct efficient ROMs for
PDEs formulated on parameterized unfitted geometries, we proposed a methodology
based on extension of snapshots within the cut regions and a localization strategy that
reduces the dimension of the reduced basis. The presented framework allows an efficient
offline/online decomposition with low online cost, while it is perfectly suitable for any
discretization choice within an unfitted framework.
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We have studied numerically the performance of the proposed methodology using
the Poisson and linear elasticity problems. For this purpose, we considered trimmed
spline discretizations by exploiting the re-parameterization tool for integration of cut
elements in [21, 60]. We observed a significant reduction of the computational cost
in the online phase compared to standard ROMs, while we obtained accurate reduced
basis approximations for problems distinguished by parameterized cut regions and strong
variability of the solutions. Finally, we have applied the proposed strategy to a three-
dimensional geometry in order to investigate the potential of our framework to achieve
effective reduction.

From the model reduction point of view, an interesting research direction for the
future is the application of Greedy algorithms to construct localized reduced bases and
error certification driven by a posteriori error estimators. Moreover, the extension to
more involved problems, such as fourth-order PDEs, and complex geometrical represen-
tations is a further topic of interest. To the best of the authors’ knowledge, this work
comprises the first general methodology allowing reduced order modeling in the context
of parameterized trimmed domains in isogeometric analysis. The proposed strategy paves
the way for several applications involving complex shapes within a parametric framework,
such as design, shape and topology optimization.
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