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A B S T R A C T   

We present an image-based pipeline for generating geometrical digital twins (GDTs) of stone masonry elements 
with detail down to the stone level. For this purpose, we acquire RGB images of the individual stones and of the 
wall during the construction phase. In our framework, we use structure from motion (SfM) to first generate 3D 
source and destination models, which are then registered to form the GDT through non-linear least squares and 
2D point feature correspondences detected on the SfM images. This method contrasts with traditional techniques 
that register point clouds using 3D point descriptors. Because of the robustness of image feature descriptors, we 
found that using 2D instead of 3D point features facilitates the automation of the GDT generation. To benchmark 
our algorithm, we compared the results through an Euclidean–distance-based proposed metric with a known 3D 
textured model from which images were synthetically generated. We show the robustness and feasibility of our 
method for full size elements, wherein GDTs were generated for dry-stone and stone-mortar systems. This study 
allows researchers to produce accurate representations of the 3D geometry of walls built for experimental 
research, reducing therefore uncertainties related to the stone size, shape and arrangement to a minimum when 
comparing 3D numerical simulations of these walls to experimental results. Codes and data sets are publicly 
available (https://github.com/eesd-epfl/stone_masonry_GDT and https://doi.org/10.5281/zenodo.7266587).   

1. Introduction 

Many existing buildings, including those of significant cultural value, 
are made of stone masonry. This type of building is among the most 
vulnerable for various static and dynamic load cases, such as differential 
settlements, traffic loads, and earthquake loads [1–4]. To improve the 
ability of these buildings to withstand these loads, a good understanding 
of their response to the various load cases is necessary. The behaviour of 
stone masonry walls depends not only on the static and kinematic 
boundary conditions and on the material properties of the mortar and 
the stones but also on the size and shapes of the stones and on the 
arrangement of the stones in the wall [5–10]; in the following we refer to 
this stone layout as the microstructure of the wall. 

For engineering practice applications, key engineering quantities of 
stone masonry walls (i.e. stiffness, strength, and deformation capacity) 
are estimated either from new tests (in situ or laboratory) or using 
empirical data from large-scale tests available in the literature [11–16]. 
On the other hand, some national codes (e.g. in Italy [17] and 
Switzerland [18]) adopt a classification for stone masonry according to 

their microstructures and propose ranges of values for strength and 
stiffness (Fig. 1). The new generation of Eurocodes will adopt the same 
approach. While this approach is suitable for today’s engineering 
practice, in research, a more fundamental approach to treating the effect 
of microstructures is sometimes warranted. This applies, for example, to 
research that aims at developing detailed or simplified micro-models of 
stone masonry [19]. In these models the stones are represented by their 
actual shape and mortar joints are modelled explicitly, for example 
through solid elements, contact elements and/or sets of spring elements. 
With the advancement of numerical simulation tools and the increase in 
computational power, numerical simulations of stone masonry walls 
that represent stones and mortar explicitly become more and more 
feasible and several such simulation approaches exists or are currently 
developed (see for a 2D example Fig. 2). 

When validating such numerical models against laboratory tests, it 
would be useful to have as input the exact geometry of the microstruc
ture of the wall as it was tested (Fig. 3) rather than only the assignment 
to one of the classes (Fig. 1). Such a representation of the as-built 3D 
microstructure down to the level of the individual stone would reduce 
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uncertainties resulting from the microstructure to a minimum. The goal 
of this paper is to present such a method for creating the geometric 
digital twins (GDTs) of the as-built microstructure of stone masonry 
walls. 

While our work focuses on constructing GDTs for specimens built for 
laboratory testing purposes, i.e., for specimens for which we can also 
record the construction process, works that treat the reconstruction of 
microstructure from sensing techniques that can be applied after the 
construction of the wall was completed, already exist. If the micro
structure of the masonry is regular, manually controlled computer-aided 
design can be used to define dimensions and shapes of the stones and 
assemble these to a microstructure. For irregular microstructures, 
however, new approaches are required. For 2D models, the micro
structure can be derived from the outer faces of the walls. Work in recent 
years has aimed to enhance the accuracy of model geometry through the 
investigation of numerous non-contact sensing techniques. Kassotakis 
et al. [22] present an extensive literature review on state-of-the-art 
techniques for surveying masonry structures using laser scanning 
(LiDAR) and image collection techniques for obtaining accurate repre
sentations of the geometry of existent structures. This geometrical in
formation can be used as an input for various modeling strategies of 
masonry structures, such as continuum [1,23–31] and block-based ap
proaches [32–35]. While computer vision approaches have been 
developed in recent years to provide detailed geometry at the stone unit 
level of the external faces of masonry walls [36–38], it is still not 
possible to acquire the internal (not visible from the exterior) geometry 
of these structural elements. Instead, this internal morphology can only 
be estimated using non-destructive techniques, such as ground pene
trating radar and sonic tomography [7,28,29,39–43]. However, these 
non-destructive techniques yield at present not sufficient information 
for reconstructing the internal microstructure in terms of a 3D 
geometrical model. 3D microstructures for single leaf masonry can be 
based on 2D geometries in combination with extrusion algorithms to 
generate 3D models [10]. For creating multiple-leaf masonry micro
structures, our 3D microstructure generator can be used to generate 
artificial microstructures [44] resembling those of the stone masonry 
classes defined in Fig. 1. Such microstructures are suitable for numerical 
sensitivity studies on the effect of the microstructure on the mechanical 
response of the stone masonry wall. However, this 3D microstructure 
generator always generates artificial microstructures and not micro
structures of as-built walls. 

To complement existing and ongoing work on the geometric digital 
twinning of stone masonry walls, in this paper we make a contribution 
towards geometric digital twinning the microstructure of a stone 

masonry wall during its construction process. Such pipeline is useful for 
the geometric digital twinning of new stone masonry walls and we see 
immediate applications in research when comparing numerical simu
lations to experimental results. In a first study, the geometric digital 
twinning was based on laser scanning and a manual procedure for the 
reconstruction. This proved, however, as very time-consuming, relied on 
expensive laser-scanning equipment and the result was also dependent 
on the person performing the registration tasks. In this paper, we 
overcome these limitations by presenting a method for creating geo
metric digital twins (GDTs) of stone masonry walls down to the level of 
the individual stone of real stone masonry walls. We generate this GDTs 
from RGB images that are taken of the individual stones before the 
construction of the wall and from images taken during the construction 
of the wall. 

Our research focuses on developing GDTs for laboratory-built stone 
masonry specimens so that highly accurate 3D geometries can be 
employed for numerical simulations via finite or discrete element 
analysis (FEA or DEA). The results of these mechanical simulations can 
be compared with those of the real model tested in the laboratory, 
resulting in a greater understanding of the behavior of existing struc
tures and the creation of new lineaments for the construction of new 
structures. As stated previously, the current approach for numerical 
simulations is inaccurate due to the subjectivity present in the typology 
selection of the elements and the paucity of experimental data. This is 
the motivation for this study. 

In this paper, we describe this method for geometrical digital twin
ning of stone masonry walls from RGB images and apply it to case 
studies. In Section 2, we state the problem, provide a general description 
of our methodology, and emphasize our research contribution. In Sec
tion 3, we describe the components of the methodology, including SfM, 
image feature detection, description and matching, and the nonlinear 
least squares method with its formulation to our registration problem. 
Additionally, we explain some extra considerations and capabilities of 
our codes, such as the use of the RANSAC algorithm to reduce the in
fluence of outlier data and the use of extra views and features for 
registration. Following this, in Section 4, we validate our methodology 
on synthetic image data generated by a computer graphics software 
using a known 3D textured-mesh model. To show the effectiveness of 
our methodology for generating GDTs, we perform further experiments 
on real and typical dry stone and stone-mortar masonry elements. 
Finally, we present the conclusions of our work and the outlook to future 
developments. 

Fig. 1. Classification of stone masonry walls into six discrete classes according to [17] (figure from [16]).  
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2. Problem statement 

The objective of this work is to develop a method for generating 
GDTs of new stone masonry elements from images taken during con
struction. A method for doing this can impact the design of new struc
tures in two ways. First, due to the lack of methods for generating GDTs 
of newly constructed irregular stone masonry walls, it is currently 
impossible to directly compare between experimental and numerical 
results of stone masonry structures. Thus for walls built and tested in the 
laboratory, our method could validate the numerical models used to 
simulate the response of stone masonry structures. Second, this method 
can be the basis for the future automated construction of walls using 
either natural stones or demolition waste, making the development of a 
procedure for automated GDT generation for stone masonry elements an 
important step towards the digital age. Furthermore, the methodology 
proposed here both advances current research in the field of stone ma
sonry structures as well as provides ready-to-use tools for the digitali
zation of the construction industry. The primary objective of the 
research presented here is the first aspect, i.e., the generation of highly 
detailed geometries that serve as input for numerical analyses applicable 
to laboratory-built stone masonry specimens. This will allow for a 
greater understanding of the behavior of these types of structures by 
comparing and validating the numerical modeling and experimental test 
results. 

A digital twin (DT) is an accurate digital representation of a physical 
object that contains variety of information depending on the type and 
application [45]. Here, we focus on generating geometric digital twins 
(GDTs) [46,47] that contain detailed information of the geometry of real 
stone masonry structural elements. Recent breakthroughs in artificial 
intelligence, including computer vision and machine learning, make it 
possible to automate the generation of a GDT of a physical element. For 
example, a desired real object can be reconstructed from multiple view 
images together with well-established techniques such as structure- 
from-motion (SfM) and multiple-view stereopsis [48–50]. In general, 
these photogrammetry methods extract repeated features from images 
of the object, which are later used to recover the camera poses (rotation 
and camera center position) to project those features to the 3D space as 
point clouds [51,52]. Further post-processing of the images and point 
clouds, such as the generation of depth maps, can densify the point 
clouds, which can later be used to generate textured meshes. 

In this context, we would like to automate the process of generating 
GDTs of stone masonry elements using images taken during their con
struction, with particular emphasis on models for laboratory-built 
components. In this work, we propose an image-based algorithm that 
uses SfM information (e.g., images, camera poses, structure) to register 
3D models. In this algorithm, we generate 3D models for each individual 
stone, which we register to a 3D model of the stone masonry element 
through a non-linear least squares algorithm that uses 2D feature 
detection-description on images employed in the SfM pipeline. This 

leads to a GDT of an element that has, for the first time, a level of detail 
down to the single stones. This level of detail makes the models gener
ated from our pipeline suitable for use in mechanical analysis method
ologies, such as finite element analysis (FEA) and discrete element 
analysis (DEA). 

3. Methodology 

Our objective is to develop a method for the automated generation of 
a GDT for stone masonry components that contains detail down to the 
level of a single stone. For this, we combine computer vision and ma
chine learning techniques, specifically SfM, 2D feature detection, and 
non-linear least squares, to generate 3D models of stones and walls that 
can be registered to generate the desired detailed GDT for stone masonry 
elements. 

Fig. 4 represents the pipeline of our methodology. This pipeline starts 
by generating 3D SfM models as point clouds for each stone Si, for each 
wall layer during construction Lj, and for the final built wall W (with 
integer values for i ∈ [0,N] and j ∈ [0,M], where N and M are the number 
of stones and layers in the wall model, respectively). Later, we use the 
2D image features employed to generate each of those SfM models to 
match reference images used to generate a source model (src, this could 
be a single stone or a wall layer model) with those used to generate a 
destination model (dst, this could be a wall layer or the final wall model). 
This helps locate correspondences between the src and dst models in 3D 
(Xsrc,Xdst), which are used to find a transformation matrix (Tsrc− dst) that 
allows their registration. We find transformation matrices to register 
each stone model Si to its correspondent wall layer model Lj (TSL) and 
each wall layer model Lj to the final wall model W (TLW). With these 
matrices, we can finally transform each stone model Si to register it in 
the correct position on the final wall model W to generate the desired 
GDT as TLWTSLSi. In the next subsections, we detail the important 
components of this pipeline. 

3.1. Structure from motion 

The core of our methodology is the SfM technique, as it can both 
generate 3D models as well as produce information about 2D image 
features, which facilitates the production of the detailed GDTs for stone 
masonry components. SfM is a 3D reconstruction technique that em
ploys multiple-view geometry, which was defined by Hartley et al. [52] 
as the branch of computer vision that uses various image views of a 
scene to answer three questions: 1) How is the same point visualized and 
constrained across different views (hereafter referred as correspondence 
geometry)? 2) What is the 3D camera pose (i.e., location and rotation) 
associated with each view (hereafter referred as motion)? 3) What is the 
3D position of a point observed in different views (hereafter referred as 
structure)? 

In multiple-view geometry, each of the views is associated with a 

Fig. 2. 2D numerical simulation of a stone masonry panel subjected to diagonal compression loading where stone and mortar are represented explicitly [8] using the 
open-source software Akantu [20,21]. 
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projection matrix P that contains extrinsic (i.e., camera pose) and 
intrinsic (e.g., focal length) parameters of the camera. This matrix can 
project a 3D point X to the corresponding image as x = PX. The same 
point can be projected to another image view using the camera matrix P′

as x′

= P′ X′ . In these two views, x and x′ are termed correspondences, as 
they are points in two view images that correspond to the same 3D point 
X. This is used in a classical pipeline for 3D reconstruction from 
multiple-view geometry, whereby the point correspondences are iden
tified from images and used to generate both motion (i.e., camera poses) 
and structure (i.e., 3D point clouds) [51]. To generate 3D SfM models, 
various software have been developed over the last years, including 
Meshroom© [53], an open source photogrammetry library that we use 
in our pipeline. Fig. 4 presents examples of point clouds generated using 
Meshroom©. 

3.2. 2D feature detection, description, and 3D point matching 

As mentioned previously, multiple-view geometry solves for three 
interrelated aspects: correspondence geometry, motion, and structure[52]. 
The structure is formed in 3D space by triangulating the information 
related to the correspondences between views. This triangulation is 
performed with the motion. With this in mind, the starting point of 
multiple-view geometry is the identification of correspondences be
tween images from two views. These correspondences are two points x 
and x′ in the two image views that correspond to the same 3D point X. To 
find the correspondences in two views, it is necessary to detect features 
(keypoints) that would possibly form a correspondence. One common 
solution here is to use points in the images where the intensity gradient 
of the pixels is high [54], which can be done using various methodolo
gies developed for this purpose based on differentiation, learning, or a 
gradient (e.g., [55–57]. To form correspondences, each keypoint is 
described using descriptor vectors, and descriptor vectors of keypoints 
are compared between two image views. When descriptor vectors meet 
certain criteria of similarity, it signals a correspondence between a pair 
of keypoints (e.g., [56,58–61]). 

Each model of the stone Si, of the layer Lj, and of the wall W 
generated with SfM contains information about 2D image feature 
points x (Figs. 5a and 6a) and their associated 3D point X (Figs. 5b and 
6b). Our methodology uses those 2D features and their descriptions 
between the source src and the destination dst model to find 3D cor
respondences (Xsrc, Xdst). Figs. 5 and 6 illustrate how 3D correspon
dences can be found by directly employing the information provided 

by the SfM framework. In these two examples, the src (stone model Si 
for Fig. 5 and layer model Lj for 6) and dst models (layer model Lj for 
Fig. 5 and wall model W for 6) are presented together with one of the 
image views used to generate the 3D point clouds. The red points xview 
(Figs. 5a and 6a) correspond to the fraction of the 3D point cloud Xview 
(Figs. 5b and 6b) that was contributed by the image view during the 
reconstruction of the 3D model X. Then, for the src and dst models, we 
have 2D-3D correspondences (xsrc,Xsrc) and (xdst ,Xdst), respectively. As 
the image related to the src model contains an object that also is present 
in the image related to the dst model, some of the src features (xsrc)

should correspond to dst features (xdst). To find the (xsrc, xdst) corre
spondences, we followed the matching process of 2D features described 
by Lowe [57], which computes Euclidean distances between feature 
descriptors for xsrc and xdst . Then, matched features (correspondences) 
are defined as those with the smallest value for this distance. According 
to Lowe [57], one feature point of the source model k (xksrc) corre
sponds with a feature point of the destination model m (xmdst) when the 
distance between their descriptors is equal to the minimum distance 
and is less than 75% of the second smallest distance between the de
scriptors of point k and all point descriptors in the destination model. 
The colored points in Figs. 5c and 6c link the correspondences (xsrc, xdst)

between the reference images of the src and dst models. As a result of 
this and our knowledge of the 2D-3D correspondences (xsrc,Xsrc) and 
(xdst , Xdst), matching the 2D features allows us to find 3D correspon
dences (Xsrc,Xdst) between models. These correspondences will facili
tate the registration between the src and dst models through a matrix 
that transforms Xsrc into Xdst using the non-linear least squares algo
rithm. It is noted that outliers in the correspondences (matched points 
that do not actually represent the same point in the 3D model) can 
affect the results. To avoid this, we used the RANSAC algorithm, 
explained in the next sections, together with the non-linear least 
squares algorithm. 

3.3. Non-linear least squares algorithm 

The non-linear least squares algorithm fits data to a nonlinear model 
by optimizing a loss function [62]. To do this, m parameters β = [β1,… 
, βm] of a model f(x; β) are found with the goal of minimizing the mean 
squared error (MSE) that represents the loss function L(x; β) as: 

L(β) =
1
2
∑N

1
r2

i (β), (1) 

Fig. 3. Stone masonry walls: (a) Multi-leaf stone masonry wall built for laboratory testing and (b) corresponding test setup [15].  
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Fig. 4. Pipeline for generating geometrical digital twins (GDTs) of stone masonry elements. From left to right: acquiring images; generating SfM models of the stone, 
layers of stones, and the wall; registering src models to dst models; registering each stone at the final position in the wall. 

Fig. 5. Feature matching between the reference images for the stone and layer models. Top row: source (src) model. Bottom row: destination (dst) model. a) Keypoint 
features detected on the reference image that are part of the point cloud structure. b) Parts of the point cloud structure that were detected on the reference images. c) 
Matched keypoints between the src and dst models. 

Fig. 6. Feature matching between the reference images for the stone and layer models. Top row: src model. Bottom row: dst model. a) Keypoint features detected on 
the reference image that are part of the point cloud structure. b) Parts of the point cloud structure that were detected on the reference images. c) Matched keypoints 
between the src and dst models. 
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where ri(β) = f(xi; β) − yi is defined as the residual function at N discrete 
points xi in the domain, where yi is the observed data that corresponds to 
xi. Formally, the optimization is defined as: 

βopt = argmin
β

L(β), (2)  

in which the objective is to find the set of optimal parameters βopt that 
minimize L(β). We solve Eq. (2) through the Gauss–Newton method in 
which the optimal set of parameters βopt is found through changes in the 
β variables following the direction determined by the step Δβ, which is 
obtained iteratively as: 

βn+1 = βn − γΔβ, (3)  

for the iteration n+1 with γ as the learning rate controlling the step size, 
and the step Δβ is given by: 

Δβ = H[L(β)]− 1
∇L(β), (4)  

with H[L(β)] and ∇L(β) representing the Hessian and the gradient of the 
loss function, respectively. For a detailed description, refer to Betts et al. 
[63]. 

3.4. Solving for point cloud registration 

Here we solve the 3D point-set registration problem by transforming 
one set of points (Xsrc) from a source 3D model (src) to fit over another 
set of points (Xdst) from a destination 3D model (dst). The sets of points 
Xsrc and Xdst are correspondences matched using 2D image features, as 
described previously. The src and dst models are represented, respec
tively, by the sets of points Xsrc = [X(src)

0 ,…,X(src)
N ] and Xdst = [X(dst)

0 ,…,

X(dst)
n ] in R3 space. 

Because the 3D reconstruction provided by SfM is up to scale (i.e., 
the dimensions of the models are proportional to the real dimensions 
unless metric information is given in post processing), the trans
formation necessary to register the src to the dst model consists of a 
similarity transformation. In this, the 3D model is assumed to have seven 
degrees-of-freedom (DOF), three associated translations in perpendic
ular directions t = (tx, ty, tz)T , three rotations associated with Euler an
gles θ = (θx, θy, θz)

T, and one related to scaling s. As the rotation can be 
represented by a 3x3 matrix that is a function of the rotation angles R(θ), 
the objective is to find the parameters β = [t, θ, s] to transform the src 
point cloud Xsrc into X′

src, such that the Euclidean distance is minimized 
between the transformed point cloud X′

src and a dst point cloud Xdst . X
′

src 
in homogeneous coordinates is given by: 

X′

src = T(R, t, s)Xsrc, (5)  

where T(R, t, s) is the 4x4 similarity transformation matrix defined as 

T(R, t, s) =
[

sR t
0 1

]

. (6)  

It follows that the residual to be optimized is: 

r(β) =
[

sR t
0 1

]

Xsrc − Xdst. (7) 

The transformation matrix T that determines the registration of the 
src to the dst model is found using the nonlinear least squares method. 
Fig. 7a shows the results after applying the transformation defined by 
the optimal parameters of the transformation matrix T to Xsrc. Here, the 
src and dst models correspond to 3D point clouds of a single stone Si and 
a wall layer Lj, respectively. The results of Fig. 7b can be obtained by 
applying the same algorithms while considering the src model as the 
wall layer Lj and the dst model as the final wall W. Then, combining the 
transformation matrices of the stone-layer (TSiLj ) and layer-stone (TLjW), 
a transformation matrix can be found to register the stone at its corre
sponding position in the wall as: TSiW = TLjWTSiLj . Fig. 7c shows the 
results of the registration of a stone model into the final wall layer. 

3.5. RANSAC to avoid outlier influence 

The 3D point correspondences (Xsrc,Xdst) can contain a number of 
outliers (mismatch between src and dst model features; check Figs. 5c 
and 6c) because the detection, description, and matching of 2D features 
are not deterministic procedures. To make the algorithm robust against 
possible outliers, we use random sample consensus (RANSAC) presented 
by Fischler et al. [64], which is a simple yet robust methodology that fits 
models to experimental data while avoiding the consideration of out
liers. In essence, the method starts by finding an initial model with the 
minimum quantity of necessary data n (e.g., if the model is a 2D line, 
find a model for two points). This data is randomly selected. By estab
lishing a threshold t for a defined error from this model, inliers and 
outliers can be detected (e.g., the distances from the rest of data to the 
proposed line). Performed over a previously defined number of itera
tions k, the generated model is scored based on the quantity of inliers d, 
and then another minimum data set is selected, a new model is pro
posed, and a new score is given. The largest score dictates which model 
is selected (here we score based on the mean error of the inliers). 
Overall, this procedure renders the methodology suitable for the anal
ysis and interpretation of error-prone data, which is common in com
puter vision problems. For more details please refer to the original paper 
wherein Fischler et al. also show a numerical analysis evidencing the 
robustness of the method [64]. 

Here, RANSAC is used to find the transformation matrix T that allows 
the registration of a src into a dst model. The RANSAC hyper-parameters 
we used to obtain a satisfactory performance in our experiments were 
n = 4, k = 300, t = 0.1l (l: mean of distances among points in Xdst) and 
d = 0.2w (w: number of 3D correspondences). 

Fig. 7. Registration of src to dst 3D point cloud models. a) src: Stone Si,dst: Layer Lj. b) src: Layer Lj,dst: Wall W. c) Registration of stone Si on the wall W by combining 
the transformation matrices resulting from a) and b). 
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3.6. Automatic selection of reference images 

Our methodology can automatically select the reference images for 
the src and dst models used to find the 2D features required for the 
registration process. To accomplish this, we detect, describe, and match 
point features between the batch of available images of the src and dst 
models. We consider the reference images to be the pair (one from src 
and one from dst) with the greatest number of matches. Although this 
automation works without difficulty, we have enabled an option 
wherein the user inputs these reference images for faster results, and we 
plan to speed up the automatic selection of the reference images in the 
future by implementing parallel programming. 

3.7. Adding extra views 

Our registration algorithm uses two reference images: one from the 
src model and one from the dst model. The features in those images, 
which were detected and used to generate the SfM model, were then re- 
used to find 3D point correspondences (Xsrc,Xdst). In case it is required 
(e.g., there are not enough keypoint correspondences between the initial 
reference images), we have enabled the use of extra images for the src 
model. As extra images, we selected the m (defined by user) extra images 
that contain the most matched features when compared to the reference 
image. For this, we again used information gathered from the SfM 
framework, this time referencing the image matching performed using 
2D features. Similarly to the initial reference image, the features from 
those extra images that were used to generate the 3D point cloud were 
also used to find extra 3D point correspondences following the proced
ure explained in previous paragraphs. 

3.8. Adding extra features 

The input for our algorithm comes from the SfM pipeline. During the 
SfM computation it is possible to select from various types of point 

features to be detected and used during the reconstruction process. To 
increase the number of correspondences (Xsrc,Xdst), our method allows 
the use of extra keypoint features and descriptors in addition to those of 
the original SfM framework, specifically SIFT [57], AKAZE [60], ORB 
[65], FAST [66], and BRIEF [67]. The use of these additional features 
functions as the rest of the algorithm, wherein we detect, describe, and 
match new keypoints in the src and dst reference images to find 2D image 
correspondences (xsrcnew ,xdstnew ). Then, these new point correspondences 
are associated with the 2D features used to generate the 3D point cloud 
model by SfM to produce extra 3D correspondences (Xsrc,Xdst) as 
follows:  

1. Find the pixel distances between new feature correspondences and 
the features used to generate the 3D point cloud in SfM (||xsrc − xsrcnew ||

and ||xdst − xdstnew ||);  
2. If the distance from the previous step is lower than one pixel, the 3D 

points associated with xsrc and xdst form a correspondence [i.e., 
(Xsrcnew ,Xdstnew )];  

3. From (Xsrcnew ,Xdstnew ), select as extra correspondences (Xsrcextra ,Xdstexta )

those that have not been accounted for in the correspondences (Xsrc,

Xdst). 

These extra 3D correspondences can be concatenated to the initial 
(Xsrc,Xdst) and then used during the optimization process to find the 
transformation matrix T that allows the registration of src to dst point 
cloud models. The higher the number of 3D correspondences, the better 
the accuracy and robustness of our algorithm. 

3.9. Geometric digital twins 

The objective of our methodology is to create faithful 3D represen
tations of stone masonry elements that reach a level of detail of single 
stones. To reach the registration results presented in Fig. 8b, the algo
rithm described in the previous steps is applied to each stone of the 

Fig. 8. Digital twinning methodology example: (a) Image view of wall model W. (b) Point clouds of stone models Si registered on the wall model W. (c) Digital twin 
represented as mesh. (d) Digital twin represented as textured mesh. 
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masonry elements. Taking this even further, obtaining results such as 
those presented in the Fig. 8c and d requires that the SfM motion models 
be augmented to generate dense meshes, which can be done through 
multiple-view stereopsis. The transformations applied to the point cloud 
models for each stone component can be applied to meshes and textured 
meshes to reach this final image. The GDTs represented in Fig. 8c and 
d constitute our final result, and they are capable of generating the ge
ometry for numerical analysis, such as finite element analysis (FEA) or 
discrete element analysis (DEA). 

3.10. Image acquisition device 

As it can be laborious to collect the necessary images to generate 3D 
stone models through SfM and as the input images affect the quality of 
reconstructions, we propose an imaging device to simplify and stan
dardize image acquisition (Fig. 9). This device consists of a curved ro
botic arm that rotates around the target object to be reconstructed and 
takes photos from its five synchronized cameras hung at strategical lo
cations. The camera positions and arm rotation during the image 
acquisition are selected to guarantee 60–80% overlap between consec
utive images, as recommended by Snavely et al. [68]), which can in
crease the quality of reconstructions. With this device facilitating image 
collection for the single stone models as a first step, we plan to continue 
aiming for total automation in data acquisition by developing further 
tools, including for full stone masonry elements during construction. 

3.11. Metrics 

No metrics currently exist for evaluating automated GDT generation 
using photogrammetry. Therefore, we propose a metric to evaluate 
reconstruction performance by correlating a generated model with the 
3D point cloud or mesh ground truths. 

3.11.1. Distance of model fidelity (DMF) 
Our metric is inspired by the inliers of model fidelity (IMF) metric 

proposed by Pantoja-Rosero et al. [69], which evaluates the recon
struction of level-of-detail (LOD) models using point clouds by 
measuring how well the polygonal surface model fits the point cloud. 
IMF measures the distance from a point (of the ground truth) to the 
nearest plane (of the assessed model), considering only those inliers that 
are closer than a defined threshold. The IMF metric score is considered 
to be the mean distance of a number of inliers. 

Our modified version, hereafter called the distance of model fidelity 
(DMF), differentiates from IMF in two main ways. First, the model to be 
assessed is the representation of the GDT as a point cloud, and the 
ground truth can be represented as either mesh or point clouds. Second, 
instead of considering the quantity of inliers for the score, we compute 

the mean of the distances of the full model 3D points to the ground truth 
planes or points. 

Thus, the DMF metric can be calculated from the set of points P that 
represent the GDT, where for each point p ∈ P, we compute its distance 
to the nearest plane π in the set of planes Π comprising the mesh ground 
truth, 

dp = min
π∈Π

(|πTp|2)
2
. (8)  

We then define our DMF metric as the average distance from the points 
to their closest plane, 

DMF =
1
|P|

∑

p∈P
dp. (9)  

Note that if the ground truth is given as a point cloud, dp in Eq. (8) is the 
distance between the point p ∈ P to the closest point of the ground truth 
model pgt ∈ Pgt as follows: 

dp = min
pgt∈Pgt

‖pgt − p‖2. (10) 

In an ideal scenario, where the ground truth and digital twin model 
perfectly overlap, the DMF score would be zero. When using the score to 
benchmark methodologies, keep in mind that lower DMF values indicate 
better performance. 

4. Experiments 

In this section, we present three examples of the generation of a GDT 
using our methodology. The first example validates our algorithm using 
synthetic image data from a known 3D textured-mesh dry stone wall 
model. The second and third examples use image data from life-sized 
dry-stone and stone-mortar stacks, which comprise typical stone ma
sonry elements. With these two examples, we demonstrate the viability 
of the proposed pipeline for generating GDTs of stone masonry walls at 
infrastructure-level scales. 

4.1. Validation: synthetic dry-stone element 

In this example, we validated our method for generating a GDT of a 
3D textured model. This model is of a dry-stone stack composed of 27 
stones in three layers. The synthetic image data was generated according 
to the indications of our methodology for simulating the construction 
process in models for stone Si, layer Lj, and wall W. For this, we used the 
open-source computer graphics software tool-set Blender©. Images for 
the different models rendered in this software and used in our meth
odology are shown in the Fig. 10a. Using the optimal transformation 
matrix found by our method, Fig. 10b shows the registered point clouds 

Fig. 9. Image acquisition device to collect data from objects to be registered.  
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generated for how a stone is registered to its respective layer, the 
registration of the first and second layer to the wall model, and finally 
the registration of all the stones to the final wall. The results for the GDT 
model are presented in Fig. 10c. Fig. 10c0 shows the dst textured mesh 
that contains just external information, and Fig. 10c1–c3 show the 
registered stone models as textured mesh at their corresponding position 
in the final model for the three layers of the masonry element. 

Using our DMF metric, this model scored DMF = 1.05mm. This 
metric represents the mean offset between all of the GDT components 
and the ground truth. To evaluate the accuracy of this metric, consider 
that the approximate dimensions of the studied wall are 600mm ×

400mm × 250mm and its bounding box diagonal dimension is dw =

763mm. Similarly, the average of the largest dimension of the bounding 
box of the stones used in the model is ds = 20.5mm. With these values in 
mind, our presented DMF score corresponds to 0.13% and 5.12% of the 
largest dimension of the wall and stones, respectively, indicating that 
our methodology is surprisingly accurate. 

It is important to note that we first need to scale both the ground 
truth and GDT models to real measurements and then align them 
through a traditional RANSAC global registration and an iterative 
closest point (ICP) algorithm that is based on 3D point clouds [70]. This 
of course includes errors in the DMF score that are not related to our 
method, indicating that the method itself is likely even more accurate 
than reported through the metric. 

4.2. Dry stone and mortar-stone stacks 

Representing parts of typical stone masonry elements, we next con
structed dry-stone and stone-mortar stacks layer by layer using 27 and 
25 irregular stones, respectively. Figs. 11a and 12a present images taken 
from an individual stone and the wall construction process for the two 
stacks. Figs. 11b and 12b present the registered src on the dst point cloud 
models. Finally, Figs. 11c and 12c present the GDTs for the two cases. As 

the configuration of the elements produced herein constitute the com
mon practices when building stone masonry structures, these results 
demonstrate the robustness of our methodology and the possibility of 
scaling this method to complete structures. Similar models were 
generated using a pipeline based on laser scanning and registration of 
point clouds with manual intervention. The results reported by the au
thors in their work indicated that the average time for a stone to be 
registered on a wall was five minutes. Our algorithm takes an average of 
20s to register each stone to the final GDT, quantitatively demonstrating 
the increased efficiency of our method compared to the state of the art. 

5. Conclusions 

We present an image-based methodology to generate GDTs for stone 
masonry elements. Our research focuses on the generation of GDTs of 
laboratory-built stone masonry specimens. Using an exact geometric 
representation of the as-built microstructure of the wall permits a proper 
validation and comparison of numerical and experimental results, which 
can lead to an increased understanding of the behavior of existing stone 
masonry structures. For our approach, we assume that the construction 
process of these walls can be recorded by RGB images that are taken of 
the individual stones before the construction of the wall and from im
ages taken during the construction of the wall. 

To generate these 3D models, we rely on the information required for 
and produced by photogrammetry pipelines. Our method uses 2D fea
tures from reference images automatically selected from the SfM dataset 
to register 3D GDT models detailed to the level of single stones. The 
efficient manner in which this is performed substantially decreases the 
time required for manual user interaction in comparison to current 
techniques that register 3D models from points generated from laser 
scanning. In this way, we avoid the use of more complex and expensive 
devices such as LiDAR, enabling the use of simple imaging devices to 
generate a faithful GDT. 

Fig. 10. Generation of a GDT using synthetic image data of a dry-stone element. (a) Examples of the generated synthetic images used as input in the SfM algorithm. 
(b) src SfM models registered on dst SfM models; (b0) Stone model registered on respective layer model; (b1 - b2) Layer models registered on wall model; (b3) All the 
stone models registered on the wall model. (c) GDT results; (c0) dst textured wall model containing only external information; (c1 - c3) GDT containing both external 
and internal information of each stone component placed at their final position. 
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Fig. 12. GDT for a stone-mortar element. (a) Images used as input in the SfM algorithm. (b) src SfM models registered on dst SfM models; (c0) Stone model registered 
on respective layer model; (c1 - c2) Layer models registered on wall model; (c3) All the stone models registered on the wall model. (c) GDT results; (c0) dst textured 
wall model containing only outside information; (c1 - c3) GDT displaying internal information of each stone component placed at its final position. 

Fig. 11. GDT for a dry-stone element. (a) Images used as input in the SfM algorithm. (b) src SfM models registered on dst SfM models; (c0) Stone model registered on 
respective layer model; (c1 - c2) Layer models registered on wall model; (c3) All the stone models registered on the wall model. (c) GDT results; (c0) dst textured wall 
model containing only outside information; (c1 - c3) GDT displaying internal information of each stone component placed at its final position. 
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Although our methodology is presented for stone-masonry elements 
that undergo testing in experimental campaigns, properly acquired im
ages during the construction process could be used to generate GDTs for 
entire new-built masonry structures, such as buildings or bridges. This 
might be computationally expensive using current technology and per
sonal computers, but the continuous development of computational 
tools and processors will also remove this obstacle in the near future. 
Along the same lines, the use of the proposed pipeline in real engi
neering applications will first need to address the issue of efficient data 
compression and storage. 

Even though our examples presented here consisted only of stone 
masonry materials, our algorithm can easily be adapted and used for 
structures composed of other materials, such as precast concrete and 
timber elements. Furthermore, we believe that the presented pipeline 
can be a valuable tool within a circular construction industry to improve 
the reuse of residual materials coming from demolition of structures. In 
particular, our algorithm can generate the geometry of elements built 
with demolition materials, enabling structural analysis and optimization 
of the microstructure of the new masonry. 

The accuracy of GDT generation depends on the quality of the ac
quired images and the texture of the elements. The first point can be 
easily controlled following SfM lineaments (i.e., camera positioning and 
overlap/redundancy among images), using high quality imaging de
vices, and controlling light and background. For the second point, the 
number of detected features on the images drops if the elements are 
texture-less (intensity of pixels almost constant along the object) and 
might be not sufficient to generate 3D models and register the source to 
destination models. Contrary to stones, which have the appropriate 
texture to work well with our method, steel elements with uniform 
painting are an example of texture-less elements that might not produce 
satisfactory results with our method. Nevertheless, it would be still 
possibly to produce GDTs with the presented method by adding aleatory 
texture effects through painting before the image acquisition. 

For future studies, we plan to enhance the presented pipeline across 
four main fronts. First, the image acquisition process should be auto
mated to reduce the collection time. For this, we are designing pro
tocols/manuals for users to follow during data collection and are 
designing imaging devices, such as the one presented in Section 3. The 
second front relates directly to the algorithm, which should be adapted 
to the protocols/manuals and devices proposed in the first front. In 
addition, further development in terms of automation needs to be 
considered, including parallel computing for the optimal selection of 
reference images (to perform the 3D correspondences matching based 
on 2D features) and the optimal selection and detection of models to be 
registered (i.e., automatically select which stone should be registered in 
which layer from batches of stone and wall-layer models). Accuracy is 
also an obvious aspect to improve, which we plan to do by implementing 
and testing various optimization algorithms in our methodology with 
the aim of improving the registration. The third front to be considered is 
the use of the generated models for mechanical analysis. Specifically, we 
would like to evaluate our algorithm to generate GDTs for laboratory 
specimens and then perform numerical analyses using our produced 
geometry to assess and validate experimental results. Finally, we 
consider that further research is needed for the use of our algorithm in 
real engineering applications, especially on efficient compression of the 
data used for the generation and the resultant data after employing our 
methodology as well as the use and storage of the GDT. 
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