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ABSTRACT
We present and demo of Lattigo, a multiparty homomorphic en-
cryption library in Go. After a brief introduction of the origin and
history of the library, we dive into the most relevant technical as-
pects that differentiate Lattigo from other existing libraries. From
the cryptographic research perspective, we describe our realiza-
tion of the keyswitch and CKKS bootstrapping operations. We
also present our approach to multiparty homomorphic encryption
and its importance for Lattigo use-cases. From the software per-
spective, we elaborate on the choice of the Go language and the
benefits it brings to application developers who use the library.
We then present performance benchmarks and the main use-case
applications the library had so far. The last part of the presentation
comprises a tutorial on how to use Lattigo to build a "toy" use-case:
a privacy-preserving web-application for scheduling meetings.

1 INTRODUCTION
Homomorphic Encryption (HE) techniques are becoming increas-
ingly popular. This is reflected in a growing number of crypto-
graphic libraries that implement efficient instantiations, and in the
current process for standardization of HE [3]. Traditionally, HE
schemes are used in a two-party setting comprising a data-holder
party 𝑃1 that sends its encrypted input data 𝑥𝑃1 to an external party
𝑃2, which can compute any polynomial function 𝑓 (𝑥𝑃1 ) over the
scheme’s plaintext space, and then sends the encrypted result back
to party 𝑃1 for decryption. In the passive-adversary model, this
simple protocol can achieve secure two-party computations.

The aforementioned setting can be extended to𝑁 parties through
the use of Multiparty Homomorphic Encryption (MHE) techniques
such as multi-key-HE (MKHE) [9, 18] and threshold-HE (Th-HE)
[4, 19]. In such schemes, the involved parties collectively (hence,
interactively) enforce the access control to the data by distributing
the scheme’s decryption circuit. Mouchet et al. proposed a threshold
version of BFV and showed that its use as a secure-multiparty-
computation (MPC) solution is, for several generic circuits, faster
and has less communication overhead than LSSS-based MPC in
the same adversary model [19]. Thus, there is a great interest in
building concrete MPC systems that can employ MHE schemes.

Such systems, by nature, are highly interactive, concurrent and
cross-platform. For this reason, implementing them may represent
a significant investment in terms of time and effort when using
C++, which most of the state-of-the-art HE libraries are using. More
recent languages, such as Go [1], greatly reduce this effort, notably
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Table 1: The github.com/ldsec/lattigo/v2 Go module

lattigo/ring provides the RNS (Residue Number Sys-
tem) modular arithmetic over the ring
Z𝑄 [𝑋 ]/(𝑋𝑑 + 1) with 𝑑 a power of two. This
includes: RNS basis extension, RNS division,
number theoretic transform (NTT), and uni-
form, Gaussian and ternary sampling.

lattigo/bfv implements the Full-RNS, scale-invariant
scheme of Brakerski, Fan and Vercauteren
(BFV) [5, 12, 14]; it supports Z𝑑𝑝 arithmetic.

lattigo/ckks implements the Full-RNS scheme of Cheon et
al. [10, 11] (CKKS, a.k.a. HEAAN), that sup-
ports approximate arithmetic over C𝑑/2. This
package features a bootstrapping procedure.

lattigo/dbfv implements the local operations for mul-
tiparty key-generation and key-switching
functionalities for the BFV scheme [19].

lattigo/dckks implements the local operations for mul-
tiparty key-generation and key-switching
functionalities for the CKKS scheme [19].

by featuring built-in concurrency primitives, extensive standard
libraries and comprehensive toolchains for building, testing and
analyzing code. In this demo, we present the Lattigo library, a Go
module for R-LWE-based multiparty homomorphic encryption.

2 LIBRARY OVERVIEW
Lattigo is a Go module that contains the packages listed in Table 1.

Genesis. The development of Lattigo started in March 2019 as a
part of our research on multiparty homomorphic encryption (MHE)
and secure multiparty computation. In addition to the scientific
interest in being able to quickly integrate our research results into
a code-base for their empirical evaluation, we saw an opportunity
to benefit the community by bringing HE to a new programming
language: Go. Our group currently uses Go for the implementation
of several applied research projects. As these systems transitioned
from proof-of-concept implementations to real-world prototypes
deployed in operational settings, the need for a cryptographic layer
supporting MHE became essential.

Scope and interface principles. For each scheme, the corre-
sponding package implements the cryptographic objects and the
local operations on these objects. These local operations are de-
fined as exported Go interface types (e.g., bfv.Encryptor) for
which implementations are provided as methods (e.g., Encrypt(*))
of context-specific objects (e.g., skEncryptor, pkEncryptor) that
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encapsulate the cryptographic parameters, temporary buffers and
pre-computations. As of version v2.1.0, Lattigo provides a single-
threaded implementation of its API and all types assume single-
threaded use. Therefore, the API user controls the concurrency
aspects of its application.

Support for Multiparty Access Structures. At the time of
writing, the dbfv and dckks packages implement the 𝑁 -out-of-𝑁 -
Threshold access structure of Mouchet et al. [19] (we elaborate on
this scheme in Section 2.2).

2.1 Cryptographic Optimizations and Features
We summarize the features in Lattigo that are relevant from a
cryptographic-research standpoint.

Standalone Arithmetic Layer. The library exposes most of
its polynomial arithmetic layer in the lattigo/ring sub-package.
This package is implemented in pure Go and features a wide range
of low-level optimized algorithms, with a minimal, unexported use
of the unsafe package (that enables pointer arithmetic) and with-
out any dependency on external numerical libraries. This includes
Montgomery-form arithmetic, ring operations, Number Theoretic
Transforms (NTT), evaluation of automorphisms, RNS bases exten-
sions and scaling, and sampling of Gaussian, uniform and ternary
distributions. Hence, it can be used to build and evaluate other
R-LWE based FHE schemes and primitives.

Generalized Keyswitch Procedure. For both the BFV and
CKKS schemes, Lattigo uses a generalization of the keyswitch pro-
cedure proposed by Han and Ki [15], which lets the user specify the
norm of the decomposition-basis 𝑃 used during the key-switching.
Hence, the parameters can be represented as a triplet {𝑑, 𝐿, 𝛼},
where 𝑑 is the ring degree, 𝐿 is the number of ciphertext moduli
(prime factors of 𝑄) and 𝛼 is the number of special primes for the
key-switching (prime factors of 𝑃 ). Even though it introduces an ad-
ditional (yet optional) parameter, we observed that giving the user
the ability to tune the trade-off (indeed, the size of 𝑄𝑃 is capped
by the security parameter) between homomorphic-capacity and
keyswitch complexity results in great throughput gains. We com-
pared the homomorphic throughput of the keyswitch procedure
along with the size of the public switch-key for several values of 𝛼
using the parameters {215, 16 − 𝛼, 𝛼}, i.e. for a fixed modulus size
𝑄𝑃 , the number of primes between 𝑄 and 𝑃 varies. Figure 1 shows
that, by increasing 𝛼 to 4, we get a 2× increase in throughput and a
5× decrease in the key-size. This shows that, in terms of throughput,
the loss in homomorphic capacity is more than compensated by
the run-time reduction.

We also further optimized the keyswitch-key format and keyswitch
algorithm for the evaluation of automorphisms such as rotations,
as proposed by Bossuat et al. [7].

Novel BFV Quantization. Even in its RNS variant, [5, 14], the
BFV homomorphic multiplication is an expensive operation be-
cause it requires the use of a secondary and temporary basis [12].
Lattigo takes a novel approach to this operation, by adapting the
RNS-friendly quantization techniques proposed in original full-
RNS variant of the CKKS scheme [10]. See Section 4 for benchmark
comparisons.

CKKS Bootstrapping. The Lattigo library comprises an imple-
mentation of the CKKS bootstrapping from Bossuat et al. [7]. Hence,
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Figure 1: Comparison of the public key-switch operation
throughput (in ciphertext-bits/sec.) and public switching-
key size in Lattigo v2.1.0 for 𝑑 = 215 and variable 1 ≤ 𝛼 ≤ 8
and 𝐿 = 16 − 𝛼 .

Table 2: CKKS Bootstrapping Parameters. 𝑑 is the ring de-
gree, ℎ is the number of non-zero coefficients in the secret-
key, log(𝑄) bit-size of the ciphertext modulus, log(𝑃) is the
bit-size of the key-switching decomposition-basis (the secu-
rity is based on log(𝑄𝑃)) and 𝐶 the ciphertext modulus con-
sumption by bootstrapping (in bits).

Set 𝑑 ℎ log(𝑄) log(𝑃) 𝐶

Best of [8]

216
64 1240 1240 1057

Best of [15] 1270 182 900
II 192 1248 305 743
III 215 1416 366 956

Lattigo is the second library to feature an open-source implementa-
tion of a bootstrapping circuit for the CKKS scheme and the first
one to make such implementation available for the Full-RNS vari-
ant of the scheme. Compared to the current state-of-the-art, the
procedure is both more efficient and more precise (as shown in
Figure 2), and it does not require the use of sparse secret keys.

Homomorphic Polynomial Evaluation. The lattigo/ckks
package provides a scale-invariant and depth-optimal polynomial
evaluation algorithm, for both the standard and the Chebyshev
bases. It allows the user to provide the clear-text polynomial coeffi-
cient and a desired output scale, and it recursively back-propagates
it to ensure that all rescalings in the evaluation are exact (as de-
scribed in more details by Bossuat et al. [7]).

2.2 Multiparty Homomorphic Encryption
MHE has a great potential as a generic secure multiparty computa-
tion (MPC) solution thanks to its low communication requirements
and versatility. However, whereas traditional Linear Shamir Secret
Sharing (LSSS)-based generic MPC protocols are implemented in
several, well-established libraries, MHE-based solutions have been
implemented mainly for specific computations. One of the main
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Figure 2: (From [7]) Comparison of the bootstrapping util-
ity. See Table 2 for the parameters. We plot the results for
our best performing parameter set against the state of the
art. Nodes are labeled with 𝑛, the number of plaintext slots,
log(𝑄) −𝐶 is the residual homomorphic capacity (in bits) af-
ter the bootstrapping, and the precision log(1/𝜖) is defined
as the negative log of the mean error across all the slots.

purposes of the Lattigo library is to support the development of
MHE-based MPC protocols.

Lattigo implements the scheme of Mouchet et al. [19] for both
BFV and CKKS. We summarize its protocols from a high-level and
refer the reader to [19] for the scheme details. Let 𝑃1, ..., 𝑃𝑁 be
𝑁 parties holding their respective secret keys sk1, ...sk𝑁 and let
s̃k =

∑𝑁
𝑖=1 sk𝑁 . This scheme comprises the following multiparty

protocols:

EncKeyGen Collective encryption-key generation.
It generates a public encryption-key pk for
the secret-key s̃k, in a single round.

RelinKeyGen Relinearization-key generation. It gen-
erates a public relinearization-key rlk for
the secret-key s̃k, in two rounds.

RotKeyGen Rotation-key generation. Given an inte-
ger 𝑘 , it generates a public rotation-key
rot𝑘 enabling homomorphic plaintext-slots
rotation by 𝑘 , in a single round.

ColKeySwitch Collective Key-switching. Given a ci-
phertext ct and a target secret-key s̃k

′, it
computes the re-encryption of ct from s̃k to
s̃k

′, in a single round. A decryption proto-
col is obtained from the special case s̃k′ = 0.

PubColKeySwitch Collective Public-key-switching. Given
a ciphertext ct and a target public-key pk′,
it computes the re-encryption of ct from s̃k
to pk′, in a single round.

As for several threshold schemes, the multiparty scheme em-
ulates a single-key setting and preserves the structure of the ci-
phertexts and keys. Hence, apart from the above functionalities

Figure 3: The MHE-based MPC protocol

(those that depend on the secret-key), the single-party scheme
operations can be directly used in a multi-party setting (and are
non-interactive).

The multiparty scheme of Mouchet et al. enables generic 2+2-
roundsMPCprotocols (illustrated in Figure 3) in the passive-adversary,
dishonest-majority setting [19]. In the first 2 rounds, the parties run
a PubKeyGen protocol, which is a parallel composition of EncK-
eyGen, RelinKeyGen and RotKeyGen, to generate the necessary
public-key material. This can be done in an off-line phase and only
once for a given set of parties and cryptographic parameters. In the
next round, the parties provide their inputs, encrypted under the
generated public-key. The evaluation of the circuit is done using
the usual homomorphic operations for the scheme. The last round
corresponds to the output phase: Depending on the setting, the
parties use either the ColKeySwitch or the PubColKeySwitch to
re-encrypt or decrypt the final result. An interesting feature of the
MHE-MPC protocol is that its transcript is entirely public, so it
does not require private channels between the parties. Hence, in
addition to the traditional peer-to-peer system-model for MPC, the
MHE-based protocols can work in cloud-assisted models in which
the parties communicate solely with a central server.

Go is an ideal choice for implementing networked systems and
web-services, thanks to its natural concurrency model, rich API
and ease of deployment. Hence, building on these features using
the Lattigo library makes developing HE-based privacy-preserving
applications considerably easier.

3 SOFTWARE FEATURES
We provide an overview on the features that distinguish Lattigo
from other homomorphic encryption libraries. Whereas most state-
of-the-art HE libraries use C++, Lattigo is written in Go.

The Go language. The Go language was designed for multi-
core, concurrent and networked systems, which makes it ideal for
implementing multiparty computation. It features a minimal set of
fundamental concepts and associated syntax, which makes learn-
ing Go easy. The Go run-time is highly efficient and Go programs
can match and even outperform C++ programs, if the overhead of
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Table 3: BFV Timings in 𝜇𝑠 for 210 ≤ 𝑑 ≤ 213.

Op 𝑑 = 211, 𝐿 = 1 𝑑 = 212, 𝐿 = 2 𝑑 = 213, 𝐿 = 4
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 29 26 60 55 122 123
Decode 29 30 73 56 129 112
Encrypt 803 226 2085 936 5711 2935
Decrypt 110 64 358 284 1374 1251
Add 7 3 28 11 126 46

Mul-Pt 129 90 482 380 2084 1652
Mul-Ct 1146 476 3721 2065 14987 9123
Square 816 368 2693 1569 10918 7234

KeySwitch - - 775 745 3933 3781

Table 4: CKKS Timings in 𝜇𝑠 for 210 ≤ 𝑑 ≤ 213.

Op 𝑑 = 211, 𝐿 = 1 𝑑 = 212, 𝐿 = 2 𝑑 = 213, 𝐿 = 4
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 112 103 305 247 854 668
Decode 63 82 345 174 1385 382
Encrypt 548 392 1816 1115 5329 3680
Decrypt 18 6 71 27 272 108
Add 7 3 28 10 124 46

Mul-Pt 14 7 52 27 210 126
Mul-Ct 45 15 187 61 795 242
Square 27 13 124 54 496 224
Rescale - - 203 222 861 857

KeySwitch - - 807 731 3927 3619

garbage collection is taken into account. We found that, by imple-
menting allocation-free API methods, this overhead is negligible.

The Go toolchain. As for most modern languages, Go provides
a complete toolchain for building programs. In addition to the com-
piler, this toolchain comprises a dependency resolver and integrates
unit-tests and benchmarks. This makes Lattigo easy to download,
compile, test and benchmark.

To simply explore the library and run the examples programs, the
easiest way is to clone the repository at github.com/ldsec/lattigo.
From the library root directory, example programs can be run using
the go run command. For example,

$ go run ./examples/dbfv/psi
runs the multiparty-BFV-based PSI example. Benchmarking and
testing Lattigo is equally easy:
$ go test ./... (run all tests)
$ go test ./ckks (ckks tests only)
$ go test -run=X -bench=. ./... (run all benchmarks)
$ go test -run=X -bench=. ./ckks (ckks bench only)
$ go test -run=X -bench=./Encrypt ./... (encrypt only)

The Go toolchain also makes it easy to import Lattigo as a depen-
dency. From within the directory of another Go module, running

$ go get github.com/ldsec/lattigo/v2
$ go test github.com/ldsec/lattigo/v2/...

installs the latest released version of Lattigo as a dependency and
runs its unit tests.

The downsides of Go. The Go compiler, while being constantly
improved, is not as mature as C++ compilers. We found that it does
not optimize arithmetic and does not use SIMD or vectorized in-
structions when available. Hence we implemented several low-level

Table 5: BFV Timings in𝑚𝑠 for 214 ≤ 𝑑 ≤ 216

Op 𝑑 = 214, 𝐿 = 8 𝑑 = 215, 𝐿 = 15 𝑑 = 216, 𝐿 = 31
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 0.2 0.2 0.5 0.5 1.1 1.2
Decode 0.2 0.2 0.6 0.6 1.2 1.3
Encrypt 18.5 10.5 65.4 39.2 253.5 153.0
Decrypt 5.6 5.3 23.5 22.4 115.7 95.6
Add 0.4 0.2 1.7 1.0 7.1 4.5

Mul-Pt 8.8 7.4 34.1 32.1 149.5 133.2
Mul-Ct 65.7 44.9 400.3 205.7 2822.6 1186.3
Square 48.4 35.0 306.8 155.8 2185.1 946.6

KeySwitch 24.3 24.1 147.0 154.5 1183.8 1235.5

Table 6: CKKS Timings in𝑚𝑠 for 214 ≤ 𝑑 ≤ 216

Op 𝑑 = 214, 𝐿 = 8 𝑑 = 215, 𝐿 = 15 𝑑 = 216, 𝐿 = 31
SEAL Lattigo SEAL Lattigo SEAL Lattigo

Encode 3.2 1.9 14.3 6.3 58.0 22.9
Decode 6.4 0.8 31.7 3.1 230.7 6.5
Encrypt 19.0 13.0 71.6 50.0 295.7 211.4
Decrypt 1.1 0.4 4.7 2.3 19.2 9.1
Add 0.4 0.2 1.7 0.9 7.2 4.5

Mul-Pt 0.8 0.5 3.1 2.2 13.2 9.1
Mul-Ct 3.1 1.1 12.0 4.6 49.2 19.4
Square 2.1 0.9 8.4 4.0 35.3 17.1
Rescale 3.6 3.4 14.6 13.8 64.2 65.7

KeySwitch 23.4 22.8 146.5 143.5 1178.5 1205.8

optimizations, such as loop-unrolling and pointer arithmetic, to
obtain performance figures comparable to C++. However, this com-
plexity is not exposed to the user. The garbage collection introduces
a slight overhead, which can however be reduced to negligible by
writing allocation-free code.

4 PERFORMANCE COMPARISON
We provide performance benchmarks for the single-party and mul-
tiparty primitives implemented in Lattigo v2.1.0. We used SEAL
v3.6 [21] as a baseline for the single-party schemes. All experiments
were conducted single-threaded on an i5-6600k at 3.5 GHz with
32 GB of RAM running Windows 10. We used Go version 1.14.2
for building Lattigo and the MSVC++ compiler version 14.28 to
compile the SEAL library and its examples.

Parameters. We define the benchmarked parameters as the
triplet {𝑑, 𝐿, 𝛼}, where 𝑑 is the ring degree, 𝐿 is the number of ci-
phertext moduli (prime factors of𝑄) and 𝛼 is the number of special
primes for the key-switching (prime factors of 𝑃 ). These are indeed
the most relevant factors when comparing the library performance,
as each individual modulus fits within one machine limb. Both
Lattigo and SEAL propose several default parameter sets for 128-
bit security (according to the standardization document [3]) and
varying homomorphic capacity. However, SEAL does not yet sup-
port the use of multiple moduli in the extended-basis 𝑃 (it enforces
𝛼 ≤ 1), so the default parameters proposed by Lattigo cannot be
directly compared. Hence, we performed our benchmarks with the
default parameters of SEAL. We generated custom parameters for
the ring degree 𝑑 = 216; these parameters use 31 moduli, for an
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equivalent log(𝑄𝑃) of 1782 bits. For all parameter sets, we used a
number of plaintext slots 𝑛 = 𝑑 for BFV and 𝑛 = 𝑑/2 for CKKS.

Results. Tables 3, 4, 5, and 6 summarize the timings of local op-
erations for BFV and CKKS in a single-key setting, along with the
corresponding baseline-system timings. We observe that, within
the scope of these benchmarks, it is possible to produce Go crypto-
graphic code that matches the performance of C++.

The timings for the local operations for DBFV are presented in
Table 7 (the timings for DCKKS would be identical). These timings
reflect the per-party cost of generating its share in the protocol
(Gen), the cost of aggregating two received shares (Agg) and the cost
of computing the protocol output from its transcript (Out). Table 8
reports the size of one share, which corresponds to the total amount
of data sent by one party in each protocol. For the RelinKeyGen
protocol, the values represent the aggregation between the two
rounds. Note that, thanks to the properties of themultiparty scheme,
none of these values actually depend on the number of parties 𝑁 .
Indeed, the system-wide network load and number of calls to the
share aggregation operations (Agg) grows with 𝑁 and depends
on the system model and network topology. We refer the reader
to [19] for an analysis of these costs in concrete instances of the
MHE-based MPC protocol.

The good performance of Lattigo can be attributed to the effi-
ciency of the package lattigo/ring, which heavily leverages on
low-level Go-friendly optimizations (e.g. Montgomery and pointer
arithmetic, lazy-reduction, loop unrolling) aswell as scheme-specific
high-level algorithmic optimization (e.g, a novel BFV quantization,
operation-specific plaintext encoding).

5 APPLICATIONS
Lattigo has been successfully used in the implementation of complex
application workflows involving both client-server applications and
large-scale multiparty settings.

Client-server applications. A paradigmatic case of a secure
service that works on encrypted sensitive client data was proposed
in the 2019 iDash challenge [2], involving a problem of secure geno-
type imputation. Lattigo was used for developing one of the three
winning solutions, implementing a multinomial logistic regression
with CKKS-encrypted data, that performs a batch prediction (1,000
patients with 80,000 to-be-imputed variants each) in seconds, and
has memory requirements and prediction accuracy comparable to
clear-text state-of-the-art genotype imputation tools [17].

Lattigo was also used for implementing building blocks for MPC
protocols, such as a passively-secure oblivious linear function evalu-
ation (OLE) protocol [6]. This protocol generalizes oblivious transfer
to linear functions, and its Lattigo implementation (on top of the
ring package) is able to evaluate more than 1 million OLEs per
second over the ring Z𝑚 , for a 120-bit𝑚 on standard hardware.

Large-scale multi-party applications. The main use-case of
Lattigo is the development of multi-party secure protocols where
the input confidential data is partitioned among several entities.
These entities impose an access structure on the computation re-
sults, by leveraging the MHE solution enabled by Lattigo. The
achieved security guarantees are much stronger than traditional
federated learning approaches, which leak intermediate computa-
tion results. Lattigo has been used for implementing distributed

Table 7: DBFV Timings [ms]: Total cost per party for gener-
ation (Gen), aggregation (Agg) and output (Out) local opera-
tions. Aggregated over the two rounds for the RelinKeyGen.

Op 𝑑 = 213 𝑑 = 214 𝑑 = 215
Gen 0.77 2.59 10.45

EncKeyGen Agg 0.02 0.08 0.32
Out 0.09 0.34 1.28
Gen 8.79 30.79 159.48

RelinKeyGen Agg 0.25 1.12 6.18
Out 0.36 1.81 9.72
Gen 2.46 8.73 45.24

RotKeyGen Agg 0.06 0.25 1.53
Out 0.11 0.67 3.88
Gen 1.15 4.43 19.31

ColKeySwitch Agg 0.02 0.06 0.25
Out 0.02 0.07 0.32
Gen 3.01 11.98 48.74

PubColKeySwitch Agg 0.03 0.12 0.55
Out 0.03 0.12 0.68

Table 8: DBFV Share Sizes [MB]: Total amount sent per party.
Aggregated over the two rounds for the RelinKeyGen.

Op 𝑑 = 213 𝑑 = 214 𝑑 = 215
EncKeyGen 0.26 1.05 3.93
RelinKeyGen 3.15 12.58 62.91
RotKeyGen 0.79 3.15 15.73

ColKeySwitch 0.2 0.79 3.15
PubColKeySwitch 0.39 1.57 6.29

training and evaluation of several machine learning models, in-
cluding generalized linear models [13] and feed-forward neural
networks [20]. The systems built with Lattigo are capable of ef-
ficiently scaling up to thousands of parties and achieve a high
training throughput, while closing the accuracy gap with respect to
centralized clear-text systems. Examples of its performance include
training a logistic regression model on a dataset of 1 million sam-
ples with 32 features distributed among 160 data providers in less
than three minutes [13], and training a 3-layer neural network on
the MNIST dataset with 784 features and 60,000 samples distributed
among 10 parties in less than 2 hours.

6 DEMO
The final part of the presentation is a tutorial demonstrating the
use of Lattigo for building a simple Doodle-like web-application for
privacy-preserving scheduling. The code for this demo is available
at https://github.com/ldsec/lattigo-polls-demo.

6.1 Example Web-Application
In this application, we consider a web-service provider and𝐷 clients
willing to find an intersection in their availabilities, while revealing
only this intersection to the creator of the poll. We assume that
the clients will not cheat on their input and that the web-service
provider is honest-but-curious (passive adversaries). For the sake of
this demo, we assume that the creator of the poll does not collude

5

https://github.com/ldsec/lattigo-polls-demo


WAHC’20, 15 Dec. 2020, Online Christian Mouchet, Jean-Philippe Bossuat, Juan Troncoso-Pastoriza, and Jean-Pierre Hubaux

with the web-service provider and we instantiate it in single-key
setting. This assumption can be relaxed by using MHE.

The server is a Go program using the net/http package to
serve the web-application. It implements different routes to create
the poll, collect the answers and finally compute and serve the
result to the poll creator.

The client is a web browser that makes requests to the server
and presents the UI to the user. When loading the page, the client
fetches and runs a Go executable compiled inWebAssembly (Wasm).
This program exposes procedures that can be called through javascript,
and is used by the browser client to call Lattigo functions.

The protocol. A client creates a new poll by generating a new
key-triple (sk, pk, rlk) and sending a POST /createpoll request
containing pk and rlk). The participants can join this poll by retriev-
ing the associated pk, encoding their availabilities as binary vector
pt (0 meaning unavailable and 1 meaning available for this option)
and sending a POST /<poll ID>/availability containing their
name and ct = Encryptpk (pt). Upon the poll closing by the creator,
the server computes the product between all submitted ciphertexts,
and serves the resulting ciphertext to the poll creator.

6.2 Hands-On Tutorial
During the tutorial, we will review the Go code for the server and
client and their respective use of the Lattigo library. Thanks to Go’s
rich API and simplicity, the whole application requires less than
300 lines of Go code. We will also show how the client program
can be called by the client through Javascript. Finally, we will show
a complete polling scenario, from the client (browser window) and
server (terminal output) perspectives.

7 CONCLUSIONS & ON-GOINGWORK
This demo presents the Lattigo library, a multiparty homomorphic
encryption library written in Go. Lattigo greatly facilitates the
development of new HE- and MHE-applications, by enabling the
use of these primitives in a modern language: Go. By considerably
reducing the development time of such applications, Lattigo can be
a catalyst in both the cryptography research and the adoption of
HE in real systems. Our ongoing work comprises:

Fully-Threshold MHE. When the number of parties 𝑁 is large,
the risk of one party going offline for an indeterminate amount of
time can become an issue. By relaxing the threshold to 𝑇 -out-of-𝑁
(𝑇 < 𝑁 ), this risk can be mitigated. Full-threshold variants of BFV
and CKKS are implemented in a development branch of Lattigo.

Real-CKKS. Although the CKKS scheme encrypts complex
numbers, most of its applications only use the real part of the
plaintexts. Hence, only half of the homomorphic capacity is effec-
tively used. Kim and Song proposed a variant of CKKS that encrypts
𝑑 real numbers [16]. This scheme is implemented in a development
branch of Lattigo.

Lattigo-Cloud/Lattigo-MP. Two generic network-layers im-
plementing the MHE-based MPC protocol are currently in devel-
opment. They provide the network and service layers for both the
cloud-based (client+server) and peer-to-peer (client) settings.
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